1//===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for writing dwarf debug info into asm files.
10//
11//===----------------------------------------------------------------------===//
12
13#include "DwarfDebug.h"
14#include "ByteStreamer.h"
15#include "DIEHash.h"
16#include "DebugLocEntry.h"
17#include "DebugLocStream.h"
18#include "DwarfCompileUnit.h"
19#include "DwarfExpression.h"
20#include "DwarfFile.h"
21#include "DwarfUnit.h"
22#include "llvm/ADT/APInt.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/DenseSet.h"
25#include "llvm/ADT/MapVector.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/Triple.h"
31#include "llvm/ADT/Twine.h"
32#include "llvm/BinaryFormat/Dwarf.h"
33#include "llvm/CodeGen/AccelTable.h"
34#include "llvm/CodeGen/AsmPrinter.h"
35#include "llvm/CodeGen/DIE.h"
36#include "llvm/CodeGen/LexicalScopes.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstr.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineOperand.h"
42#include "llvm/CodeGen/TargetInstrInfo.h"
43#include "llvm/CodeGen/TargetLowering.h"
44#include "llvm/CodeGen/TargetRegisterInfo.h"
45#include "llvm/CodeGen/TargetSubtargetInfo.h"
46#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DebugInfoMetadata.h"
50#include "llvm/IR/DebugLoc.h"
51#include "llvm/IR/Function.h"
52#include "llvm/IR/GlobalVariable.h"
53#include "llvm/IR/Module.h"
54#include "llvm/MC/MCAsmInfo.h"
55#include "llvm/MC/MCContext.h"
56#include "llvm/MC/MCDwarf.h"
57#include "llvm/MC/MCSection.h"
58#include "llvm/MC/MCStreamer.h"
59#include "llvm/MC/MCSymbol.h"
60#include "llvm/MC/MCTargetOptions.h"
61#include "llvm/MC/MachineLocation.h"
62#include "llvm/MC/SectionKind.h"
63#include "llvm/Pass.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/MD5.h"
69#include "llvm/Support/MathExtras.h"
70#include "llvm/Support/Timer.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/Target/TargetLoweringObjectFile.h"
73#include "llvm/Target/TargetMachine.h"
74#include "llvm/Target/TargetOptions.h"
75#include <algorithm>
76#include <cassert>
77#include <cstddef>
78#include <cstdint>
79#include <iterator>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85
86#define DEBUG_TYPE "dwarfdebug"
87
88STATISTIC(NumCSParams, "Number of dbg call site params created");
89
90static cl::opt<bool>
91DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                         cl::desc("Disable debug info printing"));
93
94static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95    "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96    cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97
98static cl::opt<bool> EmitDwarfDebugEntryValues(
99    "emit-debug-entry-values", cl::Hidden,
100    cl::desc("Emit the debug entry values"), cl::init(false));
101
102static cl::opt<bool> GenerateARangeSection("generate-arange-section",
103                                           cl::Hidden,
104                                           cl::desc("Generate dwarf aranges"),
105                                           cl::init(false));
106
107static cl::opt<bool>
108    GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
109                           cl::desc("Generate DWARF4 type units."),
110                           cl::init(false));
111
112static cl::opt<bool> SplitDwarfCrossCuReferences(
113    "split-dwarf-cross-cu-references", cl::Hidden,
114    cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
115
116enum DefaultOnOff { Default, Enable, Disable };
117
118static cl::opt<DefaultOnOff> UnknownLocations(
119    "use-unknown-locations", cl::Hidden,
120    cl::desc("Make an absence of debug location information explicit."),
121    cl::values(clEnumVal(Default, "At top of block or after label"),
122               clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
123    cl::init(Default));
124
125static cl::opt<AccelTableKind> AccelTables(
126    "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
127    cl::values(clEnumValN(AccelTableKind::Default, "Default",
128                          "Default for platform"),
129               clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
130               clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
131               clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
132    cl::init(AccelTableKind::Default));
133
134static cl::opt<DefaultOnOff>
135DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
136                 cl::desc("Use inlined strings rather than string section."),
137                 cl::values(clEnumVal(Default, "Default for platform"),
138                            clEnumVal(Enable, "Enabled"),
139                            clEnumVal(Disable, "Disabled")),
140                 cl::init(Default));
141
142static cl::opt<bool>
143    NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
144                         cl::desc("Disable emission .debug_ranges section."),
145                         cl::init(false));
146
147static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
148    "dwarf-sections-as-references", cl::Hidden,
149    cl::desc("Use sections+offset as references rather than labels."),
150    cl::values(clEnumVal(Default, "Default for platform"),
151               clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
152    cl::init(Default));
153
154enum LinkageNameOption {
155  DefaultLinkageNames,
156  AllLinkageNames,
157  AbstractLinkageNames
158};
159
160static cl::opt<LinkageNameOption>
161    DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
162                      cl::desc("Which DWARF linkage-name attributes to emit."),
163                      cl::values(clEnumValN(DefaultLinkageNames, "Default",
164                                            "Default for platform"),
165                                 clEnumValN(AllLinkageNames, "All", "All"),
166                                 clEnumValN(AbstractLinkageNames, "Abstract",
167                                            "Abstract subprograms")),
168                      cl::init(DefaultLinkageNames));
169
170static cl::opt<unsigned> LocationAnalysisSizeLimit(
171    "singlevarlocation-input-bb-limit",
172    cl::desc("Maximum block size to analyze for single-location variables"),
173    cl::init(30000), cl::Hidden);
174
175static const char *const DWARFGroupName = "dwarf";
176static const char *const DWARFGroupDescription = "DWARF Emission";
177static const char *const DbgTimerName = "writer";
178static const char *const DbgTimerDescription = "DWARF Debug Writer";
179static constexpr unsigned ULEB128PadSize = 4;
180
181void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
182  getActiveStreamer().EmitInt8(
183      Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
184                  : dwarf::OperationEncodingString(Op));
185}
186
187void DebugLocDwarfExpression::emitSigned(int64_t Value) {
188  getActiveStreamer().emitSLEB128(Value, Twine(Value));
189}
190
191void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
192  getActiveStreamer().emitULEB128(Value, Twine(Value));
193}
194
195void DebugLocDwarfExpression::emitData1(uint8_t Value) {
196  getActiveStreamer().EmitInt8(Value, Twine(Value));
197}
198
199void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
200  assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
201  getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
202}
203
204bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
205                                              unsigned MachineReg) {
206  // This information is not available while emitting .debug_loc entries.
207  return false;
208}
209
210void DebugLocDwarfExpression::enableTemporaryBuffer() {
211  assert(!IsBuffering && "Already buffering?");
212  if (!TmpBuf)
213    TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
214  IsBuffering = true;
215}
216
217void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
218
219unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
220  return TmpBuf ? TmpBuf->Bytes.size() : 0;
221}
222
223void DebugLocDwarfExpression::commitTemporaryBuffer() {
224  if (!TmpBuf)
225    return;
226  for (auto Byte : enumerate(TmpBuf->Bytes)) {
227    const char *Comment = (Byte.index() < TmpBuf->Comments.size())
228                              ? TmpBuf->Comments[Byte.index()].c_str()
229                              : "";
230    OutBS.EmitInt8(Byte.value(), Comment);
231  }
232  TmpBuf->Bytes.clear();
233  TmpBuf->Comments.clear();
234}
235
236const DIType *DbgVariable::getType() const {
237  return getVariable()->getType();
238}
239
240/// Get .debug_loc entry for the instruction range starting at MI.
241static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
242  const DIExpression *Expr = MI->getDebugExpression();
243  assert(MI->getNumOperands() == 4);
244  if (MI->getDebugOperand(0).isReg()) {
245    auto RegOp = MI->getDebugOperand(0);
246    auto Op1 = MI->getDebugOffset();
247    // If the second operand is an immediate, this is a
248    // register-indirect address.
249    assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
250    MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
251    return DbgValueLoc(Expr, MLoc);
252  }
253  if (MI->getDebugOperand(0).isTargetIndex()) {
254    auto Op = MI->getDebugOperand(0);
255    return DbgValueLoc(Expr,
256                       TargetIndexLocation(Op.getIndex(), Op.getOffset()));
257  }
258  if (MI->getDebugOperand(0).isImm())
259    return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
260  if (MI->getDebugOperand(0).isFPImm())
261    return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
262  if (MI->getDebugOperand(0).isCImm())
263    return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
264
265  llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
266}
267
268void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
269  assert(FrameIndexExprs.empty() && "Already initialized?");
270  assert(!ValueLoc.get() && "Already initialized?");
271
272  assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
273  assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
274         "Wrong inlined-at");
275
276  ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
277  if (auto *E = DbgValue->getDebugExpression())
278    if (E->getNumElements())
279      FrameIndexExprs.push_back({0, E});
280}
281
282ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
283  if (FrameIndexExprs.size() == 1)
284    return FrameIndexExprs;
285
286  assert(llvm::all_of(FrameIndexExprs,
287                      [](const FrameIndexExpr &A) {
288                        return A.Expr->isFragment();
289                      }) &&
290         "multiple FI expressions without DW_OP_LLVM_fragment");
291  llvm::sort(FrameIndexExprs,
292             [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
293               return A.Expr->getFragmentInfo()->OffsetInBits <
294                      B.Expr->getFragmentInfo()->OffsetInBits;
295             });
296
297  return FrameIndexExprs;
298}
299
300void DbgVariable::addMMIEntry(const DbgVariable &V) {
301  assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
302  assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
303  assert(V.getVariable() == getVariable() && "conflicting variable");
304  assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
305
306  assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
307  assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
308
309  // FIXME: This logic should not be necessary anymore, as we now have proper
310  // deduplication. However, without it, we currently run into the assertion
311  // below, which means that we are likely dealing with broken input, i.e. two
312  // non-fragment entries for the same variable at different frame indices.
313  if (FrameIndexExprs.size()) {
314    auto *Expr = FrameIndexExprs.back().Expr;
315    if (!Expr || !Expr->isFragment())
316      return;
317  }
318
319  for (const auto &FIE : V.FrameIndexExprs)
320    // Ignore duplicate entries.
321    if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
322          return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
323        }))
324      FrameIndexExprs.push_back(FIE);
325
326  assert((FrameIndexExprs.size() == 1 ||
327          llvm::all_of(FrameIndexExprs,
328                       [](FrameIndexExpr &FIE) {
329                         return FIE.Expr && FIE.Expr->isFragment();
330                       })) &&
331         "conflicting locations for variable");
332}
333
334static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
335                                            bool GenerateTypeUnits,
336                                            DebuggerKind Tuning,
337                                            const Triple &TT) {
338  // Honor an explicit request.
339  if (AccelTables != AccelTableKind::Default)
340    return AccelTables;
341
342  // Accelerator tables with type units are currently not supported.
343  if (GenerateTypeUnits)
344    return AccelTableKind::None;
345
346  // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
347  // always implies debug_names. For lower standard versions we use apple
348  // accelerator tables on apple platforms and debug_names elsewhere.
349  if (DwarfVersion >= 5)
350    return AccelTableKind::Dwarf;
351  if (Tuning == DebuggerKind::LLDB)
352    return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
353                                   : AccelTableKind::Dwarf;
354  return AccelTableKind::None;
355}
356
357DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
358    : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
359      InfoHolder(A, "info_string", DIEValueAllocator),
360      SkeletonHolder(A, "skel_string", DIEValueAllocator),
361      IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
362  const Triple &TT = Asm->TM.getTargetTriple();
363
364  // Make sure we know our "debugger tuning".  The target option takes
365  // precedence; fall back to triple-based defaults.
366  if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
367    DebuggerTuning = Asm->TM.Options.DebuggerTuning;
368  else if (IsDarwin)
369    DebuggerTuning = DebuggerKind::LLDB;
370  else if (TT.isPS4CPU())
371    DebuggerTuning = DebuggerKind::SCE;
372  else
373    DebuggerTuning = DebuggerKind::GDB;
374
375  if (DwarfInlinedStrings == Default)
376    UseInlineStrings = TT.isNVPTX();
377  else
378    UseInlineStrings = DwarfInlinedStrings == Enable;
379
380  UseLocSection = !TT.isNVPTX();
381
382  HasAppleExtensionAttributes = tuneForLLDB();
383
384  // Handle split DWARF.
385  HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
386
387  // SCE defaults to linkage names only for abstract subprograms.
388  if (DwarfLinkageNames == DefaultLinkageNames)
389    UseAllLinkageNames = !tuneForSCE();
390  else
391    UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
392
393  unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
394  unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
395                                    : MMI->getModule()->getDwarfVersion();
396  // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
397  DwarfVersion =
398      TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
399
400  UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
401
402  // Use sections as references. Force for NVPTX.
403  if (DwarfSectionsAsReferences == Default)
404    UseSectionsAsReferences = TT.isNVPTX();
405  else
406    UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
407
408  // Don't generate type units for unsupported object file formats.
409  GenerateTypeUnits =
410      A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
411
412  TheAccelTableKind = computeAccelTableKind(
413      DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
414
415  // Work around a GDB bug. GDB doesn't support the standard opcode;
416  // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
417  // is defined as of DWARF 3.
418  // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
419  // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
420  UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
421
422  // GDB does not fully support the DWARF 4 representation for bitfields.
423  UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
424
425  // The DWARF v5 string offsets table has - possibly shared - contributions
426  // from each compile and type unit each preceded by a header. The string
427  // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
428  // a monolithic string offsets table without any header.
429  UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
430
431  // Emit call-site-param debug info for GDB and LLDB, if the target supports
432  // the debug entry values feature. It can also be enabled explicitly.
433  EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() &&
434                          (tuneForGDB() || tuneForLLDB())) ||
435                         EmitDwarfDebugEntryValues;
436
437  Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
438}
439
440// Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
441DwarfDebug::~DwarfDebug() = default;
442
443static bool isObjCClass(StringRef Name) {
444  return Name.startswith("+") || Name.startswith("-");
445}
446
447static bool hasObjCCategory(StringRef Name) {
448  if (!isObjCClass(Name))
449    return false;
450
451  return Name.find(") ") != StringRef::npos;
452}
453
454static void getObjCClassCategory(StringRef In, StringRef &Class,
455                                 StringRef &Category) {
456  if (!hasObjCCategory(In)) {
457    Class = In.slice(In.find('[') + 1, In.find(' '));
458    Category = "";
459    return;
460  }
461
462  Class = In.slice(In.find('[') + 1, In.find('('));
463  Category = In.slice(In.find('[') + 1, In.find(' '));
464}
465
466static StringRef getObjCMethodName(StringRef In) {
467  return In.slice(In.find(' ') + 1, In.find(']'));
468}
469
470// Add the various names to the Dwarf accelerator table names.
471void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
472                                    const DISubprogram *SP, DIE &Die) {
473  if (getAccelTableKind() != AccelTableKind::Apple &&
474      CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
475    return;
476
477  if (!SP->isDefinition())
478    return;
479
480  if (SP->getName() != "")
481    addAccelName(CU, SP->getName(), Die);
482
483  // If the linkage name is different than the name, go ahead and output that as
484  // well into the name table. Only do that if we are going to actually emit
485  // that name.
486  if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
487      (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
488    addAccelName(CU, SP->getLinkageName(), Die);
489
490  // If this is an Objective-C selector name add it to the ObjC accelerator
491  // too.
492  if (isObjCClass(SP->getName())) {
493    StringRef Class, Category;
494    getObjCClassCategory(SP->getName(), Class, Category);
495    addAccelObjC(CU, Class, Die);
496    if (Category != "")
497      addAccelObjC(CU, Category, Die);
498    // Also add the base method name to the name table.
499    addAccelName(CU, getObjCMethodName(SP->getName()), Die);
500  }
501}
502
503/// Check whether we should create a DIE for the given Scope, return true
504/// if we don't create a DIE (the corresponding DIE is null).
505bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
506  if (Scope->isAbstractScope())
507    return false;
508
509  // We don't create a DIE if there is no Range.
510  const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
511  if (Ranges.empty())
512    return true;
513
514  if (Ranges.size() > 1)
515    return false;
516
517  // We don't create a DIE if we have a single Range and the end label
518  // is null.
519  return !getLabelAfterInsn(Ranges.front().second);
520}
521
522template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
523  F(CU);
524  if (auto *SkelCU = CU.getSkeleton())
525    if (CU.getCUNode()->getSplitDebugInlining())
526      F(*SkelCU);
527}
528
529bool DwarfDebug::shareAcrossDWOCUs() const {
530  return SplitDwarfCrossCuReferences;
531}
532
533void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
534                                                     LexicalScope *Scope) {
535  assert(Scope && Scope->getScopeNode());
536  assert(Scope->isAbstractScope());
537  assert(!Scope->getInlinedAt());
538
539  auto *SP = cast<DISubprogram>(Scope->getScopeNode());
540
541  // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
542  // was inlined from another compile unit.
543  if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
544    // Avoid building the original CU if it won't be used
545    SrcCU.constructAbstractSubprogramScopeDIE(Scope);
546  else {
547    auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
548    if (auto *SkelCU = CU.getSkeleton()) {
549      (shareAcrossDWOCUs() ? CU : SrcCU)
550          .constructAbstractSubprogramScopeDIE(Scope);
551      if (CU.getCUNode()->getSplitDebugInlining())
552        SkelCU->constructAbstractSubprogramScopeDIE(Scope);
553    } else
554      CU.constructAbstractSubprogramScopeDIE(Scope);
555  }
556}
557
558DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
559  DICompileUnit *Unit = SP->getUnit();
560  assert(SP->isDefinition() && "Subprogram not a definition");
561  assert(Unit && "Subprogram definition without parent unit");
562  auto &CU = getOrCreateDwarfCompileUnit(Unit);
563  return *CU.getOrCreateSubprogramDIE(SP);
564}
565
566/// Represents a parameter whose call site value can be described by applying a
567/// debug expression to a register in the forwarded register worklist.
568struct FwdRegParamInfo {
569  /// The described parameter register.
570  unsigned ParamReg;
571
572  /// Debug expression that has been built up when walking through the
573  /// instruction chain that produces the parameter's value.
574  const DIExpression *Expr;
575};
576
577/// Register worklist for finding call site values.
578using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
579
580/// Append the expression \p Addition to \p Original and return the result.
581static const DIExpression *combineDIExpressions(const DIExpression *Original,
582                                                const DIExpression *Addition) {
583  std::vector<uint64_t> Elts = Addition->getElements().vec();
584  // Avoid multiple DW_OP_stack_values.
585  if (Original->isImplicit() && Addition->isImplicit())
586    erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; });
587  const DIExpression *CombinedExpr =
588      (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
589  return CombinedExpr;
590}
591
592/// Emit call site parameter entries that are described by the given value and
593/// debug expression.
594template <typename ValT>
595static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
596                                 ArrayRef<FwdRegParamInfo> DescribedParams,
597                                 ParamSet &Params) {
598  for (auto Param : DescribedParams) {
599    bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
600
601    // TODO: Entry value operations can currently not be combined with any
602    // other expressions, so we can't emit call site entries in those cases.
603    if (ShouldCombineExpressions && Expr->isEntryValue())
604      continue;
605
606    // If a parameter's call site value is produced by a chain of
607    // instructions we may have already created an expression for the
608    // parameter when walking through the instructions. Append that to the
609    // base expression.
610    const DIExpression *CombinedExpr =
611        ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
612                                 : Expr;
613    assert((!CombinedExpr || CombinedExpr->isValid()) &&
614           "Combined debug expression is invalid");
615
616    DbgValueLoc DbgLocVal(CombinedExpr, Val);
617    DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
618    Params.push_back(CSParm);
619    ++NumCSParams;
620  }
621}
622
623/// Add \p Reg to the worklist, if it's not already present, and mark that the
624/// given parameter registers' values can (potentially) be described using
625/// that register and an debug expression.
626static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
627                                const DIExpression *Expr,
628                                ArrayRef<FwdRegParamInfo> ParamsToAdd) {
629  auto I = Worklist.insert({Reg, {}});
630  auto &ParamsForFwdReg = I.first->second;
631  for (auto Param : ParamsToAdd) {
632    assert(none_of(ParamsForFwdReg,
633                   [Param](const FwdRegParamInfo &D) {
634                     return D.ParamReg == Param.ParamReg;
635                   }) &&
636           "Same parameter described twice by forwarding reg");
637
638    // If a parameter's call site value is produced by a chain of
639    // instructions we may have already created an expression for the
640    // parameter when walking through the instructions. Append that to the
641    // new expression.
642    const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
643    ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
644  }
645}
646
647/// Interpret values loaded into registers by \p CurMI.
648static void interpretValues(const MachineInstr *CurMI,
649                            FwdRegWorklist &ForwardedRegWorklist,
650                            ParamSet &Params) {
651
652  const MachineFunction *MF = CurMI->getMF();
653  const DIExpression *EmptyExpr =
654      DIExpression::get(MF->getFunction().getContext(), {});
655  const auto &TRI = *MF->getSubtarget().getRegisterInfo();
656  const auto &TII = *MF->getSubtarget().getInstrInfo();
657  const auto &TLI = *MF->getSubtarget().getTargetLowering();
658
659  // If an instruction defines more than one item in the worklist, we may run
660  // into situations where a worklist register's value is (potentially)
661  // described by the previous value of another register that is also defined
662  // by that instruction.
663  //
664  // This can for example occur in cases like this:
665  //
666  //   $r1 = mov 123
667  //   $r0, $r1 = mvrr $r1, 456
668  //   call @foo, $r0, $r1
669  //
670  // When describing $r1's value for the mvrr instruction, we need to make sure
671  // that we don't finalize an entry value for $r0, as that is dependent on the
672  // previous value of $r1 (123 rather than 456).
673  //
674  // In order to not have to distinguish between those cases when finalizing
675  // entry values, we simply postpone adding new parameter registers to the
676  // worklist, by first keeping them in this temporary container until the
677  // instruction has been handled.
678  FwdRegWorklist TmpWorklistItems;
679
680  // If the MI is an instruction defining one or more parameters' forwarding
681  // registers, add those defines.
682  auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
683                                          SmallSetVector<unsigned, 4> &Defs) {
684    if (MI.isDebugInstr())
685      return;
686
687    for (const MachineOperand &MO : MI.operands()) {
688      if (MO.isReg() && MO.isDef() &&
689          Register::isPhysicalRegister(MO.getReg())) {
690        for (auto FwdReg : ForwardedRegWorklist)
691          if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
692            Defs.insert(FwdReg.first);
693      }
694    }
695  };
696
697  // Set of worklist registers that are defined by this instruction.
698  SmallSetVector<unsigned, 4> FwdRegDefs;
699
700  getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
701  if (FwdRegDefs.empty())
702    return;
703
704  for (auto ParamFwdReg : FwdRegDefs) {
705    if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
706      if (ParamValue->first.isImm()) {
707        int64_t Val = ParamValue->first.getImm();
708        finishCallSiteParams(Val, ParamValue->second,
709                             ForwardedRegWorklist[ParamFwdReg], Params);
710      } else if (ParamValue->first.isReg()) {
711        Register RegLoc = ParamValue->first.getReg();
712        unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
713        Register FP = TRI.getFrameRegister(*MF);
714        bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
715        if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
716          MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP);
717          finishCallSiteParams(MLoc, ParamValue->second,
718                               ForwardedRegWorklist[ParamFwdReg], Params);
719        } else {
720          // ParamFwdReg was described by the non-callee saved register
721          // RegLoc. Mark that the call site values for the parameters are
722          // dependent on that register instead of ParamFwdReg. Since RegLoc
723          // may be a register that will be handled in this iteration, we
724          // postpone adding the items to the worklist, and instead keep them
725          // in a temporary container.
726          addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
727                              ForwardedRegWorklist[ParamFwdReg]);
728        }
729      }
730    }
731  }
732
733  // Remove all registers that this instruction defines from the worklist.
734  for (auto ParamFwdReg : FwdRegDefs)
735    ForwardedRegWorklist.erase(ParamFwdReg);
736
737  // Now that we are done handling this instruction, add items from the
738  // temporary worklist to the real one.
739  for (auto New : TmpWorklistItems)
740    addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
741  TmpWorklistItems.clear();
742}
743
744static bool interpretNextInstr(const MachineInstr *CurMI,
745                               FwdRegWorklist &ForwardedRegWorklist,
746                               ParamSet &Params) {
747  // Skip bundle headers.
748  if (CurMI->isBundle())
749    return true;
750
751  // If the next instruction is a call we can not interpret parameter's
752  // forwarding registers or we finished the interpretation of all
753  // parameters.
754  if (CurMI->isCall())
755    return false;
756
757  if (ForwardedRegWorklist.empty())
758    return false;
759
760  // Avoid NOP description.
761  if (CurMI->getNumOperands() == 0)
762    return true;
763
764  interpretValues(CurMI, ForwardedRegWorklist, Params);
765
766  return true;
767}
768
769/// Try to interpret values loaded into registers that forward parameters
770/// for \p CallMI. Store parameters with interpreted value into \p Params.
771static void collectCallSiteParameters(const MachineInstr *CallMI,
772                                      ParamSet &Params) {
773  const MachineFunction *MF = CallMI->getMF();
774  auto CalleesMap = MF->getCallSitesInfo();
775  auto CallFwdRegsInfo = CalleesMap.find(CallMI);
776
777  // There is no information for the call instruction.
778  if (CallFwdRegsInfo == CalleesMap.end())
779    return;
780
781  const MachineBasicBlock *MBB = CallMI->getParent();
782
783  // Skip the call instruction.
784  auto I = std::next(CallMI->getReverseIterator());
785
786  FwdRegWorklist ForwardedRegWorklist;
787
788  const DIExpression *EmptyExpr =
789      DIExpression::get(MF->getFunction().getContext(), {});
790
791  // Add all the forwarding registers into the ForwardedRegWorklist.
792  for (auto ArgReg : CallFwdRegsInfo->second) {
793    bool InsertedReg =
794        ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
795            .second;
796    assert(InsertedReg && "Single register used to forward two arguments?");
797    (void)InsertedReg;
798  }
799
800  // We erase, from the ForwardedRegWorklist, those forwarding registers for
801  // which we successfully describe a loaded value (by using
802  // the describeLoadedValue()). For those remaining arguments in the working
803  // list, for which we do not describe a loaded value by
804  // the describeLoadedValue(), we try to generate an entry value expression
805  // for their call site value description, if the call is within the entry MBB.
806  // TODO: Handle situations when call site parameter value can be described
807  // as the entry value within basic blocks other than the first one.
808  bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
809
810  // Search for a loading value in forwarding registers inside call delay slot.
811  if (CallMI->hasDelaySlot()) {
812    auto Suc = std::next(CallMI->getIterator());
813    // Only one-instruction delay slot is supported.
814    auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
815    (void)BundleEnd;
816    assert(std::next(Suc) == BundleEnd &&
817           "More than one instruction in call delay slot");
818    // Try to interpret value loaded by instruction.
819    if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
820      return;
821  }
822
823  // Search for a loading value in forwarding registers.
824  for (; I != MBB->rend(); ++I) {
825    // Try to interpret values loaded by instruction.
826    if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
827      return;
828  }
829
830  // Emit the call site parameter's value as an entry value.
831  if (ShouldTryEmitEntryVals) {
832    // Create an expression where the register's entry value is used.
833    DIExpression *EntryExpr = DIExpression::get(
834        MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
835    for (auto RegEntry : ForwardedRegWorklist) {
836      MachineLocation MLoc(RegEntry.first);
837      finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
838    }
839  }
840}
841
842void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
843                                            DwarfCompileUnit &CU, DIE &ScopeDIE,
844                                            const MachineFunction &MF) {
845  // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
846  // the subprogram is required to have one.
847  if (!SP.areAllCallsDescribed() || !SP.isDefinition())
848    return;
849
850  // Use DW_AT_call_all_calls to express that call site entries are present
851  // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
852  // because one of its requirements is not met: call site entries for
853  // optimized-out calls are elided.
854  CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
855
856  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
857  assert(TII && "TargetInstrInfo not found: cannot label tail calls");
858
859  // Delay slot support check.
860  auto delaySlotSupported = [&](const MachineInstr &MI) {
861    if (!MI.isBundledWithSucc())
862      return false;
863    auto Suc = std::next(MI.getIterator());
864    auto CallInstrBundle = getBundleStart(MI.getIterator());
865    (void)CallInstrBundle;
866    auto DelaySlotBundle = getBundleStart(Suc);
867    (void)DelaySlotBundle;
868    // Ensure that label after call is following delay slot instruction.
869    // Ex. CALL_INSTRUCTION {
870    //       DELAY_SLOT_INSTRUCTION }
871    //      LABEL_AFTER_CALL
872    assert(getLabelAfterInsn(&*CallInstrBundle) ==
873               getLabelAfterInsn(&*DelaySlotBundle) &&
874           "Call and its successor instruction don't have same label after.");
875    return true;
876  };
877
878  // Emit call site entries for each call or tail call in the function.
879  for (const MachineBasicBlock &MBB : MF) {
880    for (const MachineInstr &MI : MBB.instrs()) {
881      // Bundles with call in them will pass the isCall() test below but do not
882      // have callee operand information so skip them here. Iterator will
883      // eventually reach the call MI.
884      if (MI.isBundle())
885        continue;
886
887      // Skip instructions which aren't calls. Both calls and tail-calling jump
888      // instructions (e.g TAILJMPd64) are classified correctly here.
889      if (!MI.isCandidateForCallSiteEntry())
890        continue;
891
892      // Skip instructions marked as frame setup, as they are not interesting to
893      // the user.
894      if (MI.getFlag(MachineInstr::FrameSetup))
895        continue;
896
897      // Check if delay slot support is enabled.
898      if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
899        return;
900
901      // If this is a direct call, find the callee's subprogram.
902      // In the case of an indirect call find the register that holds
903      // the callee.
904      const MachineOperand &CalleeOp = MI.getOperand(0);
905      if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
906        continue;
907
908      unsigned CallReg = 0;
909      DIE *CalleeDIE = nullptr;
910      const Function *CalleeDecl = nullptr;
911      if (CalleeOp.isReg()) {
912        CallReg = CalleeOp.getReg();
913        if (!CallReg)
914          continue;
915      } else {
916        CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
917        if (!CalleeDecl || !CalleeDecl->getSubprogram())
918          continue;
919        const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
920
921        if (CalleeSP->isDefinition()) {
922          // Ensure that a subprogram DIE for the callee is available in the
923          // appropriate CU.
924          CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
925        } else {
926          // Create the declaration DIE if it is missing. This is required to
927          // support compilation of old bitcode with an incomplete list of
928          // retained metadata.
929          CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
930        }
931        assert(CalleeDIE && "Must have a DIE for the callee");
932      }
933
934      // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
935
936      bool IsTail = TII->isTailCall(MI);
937
938      // If MI is in a bundle, the label was created after the bundle since
939      // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
940      // to search for that label below.
941      const MachineInstr *TopLevelCallMI =
942          MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
943
944      // For non-tail calls, the return PC is needed to disambiguate paths in
945      // the call graph which could lead to some target function. For tail
946      // calls, no return PC information is needed, unless tuning for GDB in
947      // DWARF4 mode in which case we fake a return PC for compatibility.
948      const MCSymbol *PCAddr =
949          (!IsTail || CU.useGNUAnalogForDwarf5Feature())
950              ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
951              : nullptr;
952
953      // For tail calls, it's necessary to record the address of the branch
954      // instruction so that the debugger can show where the tail call occurred.
955      const MCSymbol *CallAddr =
956          IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
957
958      assert((IsTail || PCAddr) && "Non-tail call without return PC");
959
960      LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
961                        << (CalleeDecl ? CalleeDecl->getName()
962                                       : StringRef(MF.getSubtarget()
963                                                       .getRegisterInfo()
964                                                       ->getName(CallReg)))
965                        << (IsTail ? " [IsTail]" : "") << "\n");
966
967      DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
968          ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
969
970      // Optionally emit call-site-param debug info.
971      if (emitDebugEntryValues()) {
972        ParamSet Params;
973        // Try to interpret values of call site parameters.
974        collectCallSiteParameters(&MI, Params);
975        CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
976      }
977    }
978  }
979}
980
981void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
982  if (!U.hasDwarfPubSections())
983    return;
984
985  U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
986}
987
988void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
989                                      DwarfCompileUnit &NewCU) {
990  DIE &Die = NewCU.getUnitDie();
991  StringRef FN = DIUnit->getFilename();
992
993  StringRef Producer = DIUnit->getProducer();
994  StringRef Flags = DIUnit->getFlags();
995  if (!Flags.empty() && !useAppleExtensionAttributes()) {
996    std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
997    NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
998  } else
999    NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1000
1001  NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1002                DIUnit->getSourceLanguage());
1003  NewCU.addString(Die, dwarf::DW_AT_name, FN);
1004  StringRef SysRoot = DIUnit->getSysRoot();
1005  if (!SysRoot.empty())
1006    NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1007  StringRef SDK = DIUnit->getSDK();
1008  if (!SDK.empty())
1009    NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1010
1011  // Add DW_str_offsets_base to the unit DIE, except for split units.
1012  if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1013    NewCU.addStringOffsetsStart();
1014
1015  if (!useSplitDwarf()) {
1016    NewCU.initStmtList();
1017
1018    // If we're using split dwarf the compilation dir is going to be in the
1019    // skeleton CU and so we don't need to duplicate it here.
1020    if (!CompilationDir.empty())
1021      NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1022    addGnuPubAttributes(NewCU, Die);
1023  }
1024
1025  if (useAppleExtensionAttributes()) {
1026    if (DIUnit->isOptimized())
1027      NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1028
1029    StringRef Flags = DIUnit->getFlags();
1030    if (!Flags.empty())
1031      NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1032
1033    if (unsigned RVer = DIUnit->getRuntimeVersion())
1034      NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1035                    dwarf::DW_FORM_data1, RVer);
1036  }
1037
1038  if (DIUnit->getDWOId()) {
1039    // This CU is either a clang module DWO or a skeleton CU.
1040    NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1041                  DIUnit->getDWOId());
1042    if (!DIUnit->getSplitDebugFilename().empty()) {
1043      // This is a prefabricated skeleton CU.
1044      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1045                                         ? dwarf::DW_AT_dwo_name
1046                                         : dwarf::DW_AT_GNU_dwo_name;
1047      NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1048    }
1049  }
1050}
1051// Create new DwarfCompileUnit for the given metadata node with tag
1052// DW_TAG_compile_unit.
1053DwarfCompileUnit &
1054DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1055  if (auto *CU = CUMap.lookup(DIUnit))
1056    return *CU;
1057
1058  CompilationDir = DIUnit->getDirectory();
1059
1060  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1061      InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1062  DwarfCompileUnit &NewCU = *OwnedUnit;
1063  InfoHolder.addUnit(std::move(OwnedUnit));
1064
1065  for (auto *IE : DIUnit->getImportedEntities())
1066    NewCU.addImportedEntity(IE);
1067
1068  // LTO with assembly output shares a single line table amongst multiple CUs.
1069  // To avoid the compilation directory being ambiguous, let the line table
1070  // explicitly describe the directory of all files, never relying on the
1071  // compilation directory.
1072  if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1073    Asm->OutStreamer->emitDwarfFile0Directive(
1074        CompilationDir, DIUnit->getFilename(),
1075        NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
1076        NewCU.getUniqueID());
1077
1078  if (useSplitDwarf()) {
1079    NewCU.setSkeleton(constructSkeletonCU(NewCU));
1080    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1081  } else {
1082    finishUnitAttributes(DIUnit, NewCU);
1083    NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1084  }
1085
1086  CUMap.insert({DIUnit, &NewCU});
1087  CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1088  return NewCU;
1089}
1090
1091void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1092                                                  const DIImportedEntity *N) {
1093  if (isa<DILocalScope>(N->getScope()))
1094    return;
1095  if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1096    D->addChild(TheCU.constructImportedEntityDIE(N));
1097}
1098
1099/// Sort and unique GVEs by comparing their fragment offset.
1100static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1101sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1102  llvm::sort(
1103      GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1104        // Sort order: first null exprs, then exprs without fragment
1105        // info, then sort by fragment offset in bits.
1106        // FIXME: Come up with a more comprehensive comparator so
1107        // the sorting isn't non-deterministic, and so the following
1108        // std::unique call works correctly.
1109        if (!A.Expr || !B.Expr)
1110          return !!B.Expr;
1111        auto FragmentA = A.Expr->getFragmentInfo();
1112        auto FragmentB = B.Expr->getFragmentInfo();
1113        if (!FragmentA || !FragmentB)
1114          return !!FragmentB;
1115        return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1116      });
1117  GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1118                         [](DwarfCompileUnit::GlobalExpr A,
1119                            DwarfCompileUnit::GlobalExpr B) {
1120                           return A.Expr == B.Expr;
1121                         }),
1122             GVEs.end());
1123  return GVEs;
1124}
1125
1126// Emit all Dwarf sections that should come prior to the content. Create
1127// global DIEs and emit initial debug info sections. This is invoked by
1128// the target AsmPrinter.
1129void DwarfDebug::beginModule() {
1130  NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
1131                     DWARFGroupDescription, TimePassesIsEnabled);
1132  if (DisableDebugInfoPrinting) {
1133    MMI->setDebugInfoAvailability(false);
1134    return;
1135  }
1136
1137  const Module *M = MMI->getModule();
1138
1139  unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1140                                       M->debug_compile_units_end());
1141  // Tell MMI whether we have debug info.
1142  assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
1143         "DebugInfoAvailabilty initialized unexpectedly");
1144  SingleCU = NumDebugCUs == 1;
1145  DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1146      GVMap;
1147  for (const GlobalVariable &Global : M->globals()) {
1148    SmallVector<DIGlobalVariableExpression *, 1> GVs;
1149    Global.getDebugInfo(GVs);
1150    for (auto *GVE : GVs)
1151      GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1152  }
1153
1154  // Create the symbol that designates the start of the unit's contribution
1155  // to the string offsets table. In a split DWARF scenario, only the skeleton
1156  // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1157  if (useSegmentedStringOffsetsTable())
1158    (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1159        .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1160
1161
1162  // Create the symbols that designates the start of the DWARF v5 range list
1163  // and locations list tables. They are located past the table headers.
1164  if (getDwarfVersion() >= 5) {
1165    DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1166    Holder.setRnglistsTableBaseSym(
1167        Asm->createTempSymbol("rnglists_table_base"));
1168
1169    if (useSplitDwarf())
1170      InfoHolder.setRnglistsTableBaseSym(
1171          Asm->createTempSymbol("rnglists_dwo_table_base"));
1172  }
1173
1174  // Create the symbol that points to the first entry following the debug
1175  // address table (.debug_addr) header.
1176  AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1177  DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1178
1179  for (DICompileUnit *CUNode : M->debug_compile_units()) {
1180    // FIXME: Move local imported entities into a list attached to the
1181    // subprogram, then this search won't be needed and a
1182    // getImportedEntities().empty() test should go below with the rest.
1183    bool HasNonLocalImportedEntities = llvm::any_of(
1184        CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1185          return !isa<DILocalScope>(IE->getScope());
1186        });
1187
1188    if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1189        CUNode->getRetainedTypes().empty() &&
1190        CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1191      continue;
1192
1193    DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1194
1195    // Global Variables.
1196    for (auto *GVE : CUNode->getGlobalVariables()) {
1197      // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1198      // already know about the variable and it isn't adding a constant
1199      // expression.
1200      auto &GVMapEntry = GVMap[GVE->getVariable()];
1201      auto *Expr = GVE->getExpression();
1202      if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1203        GVMapEntry.push_back({nullptr, Expr});
1204    }
1205    DenseSet<DIGlobalVariable *> Processed;
1206    for (auto *GVE : CUNode->getGlobalVariables()) {
1207      DIGlobalVariable *GV = GVE->getVariable();
1208      if (Processed.insert(GV).second)
1209        CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1210    }
1211
1212    for (auto *Ty : CUNode->getEnumTypes()) {
1213      // The enum types array by design contains pointers to
1214      // MDNodes rather than DIRefs. Unique them here.
1215      CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1216    }
1217    for (auto *Ty : CUNode->getRetainedTypes()) {
1218      // The retained types array by design contains pointers to
1219      // MDNodes rather than DIRefs. Unique them here.
1220      if (DIType *RT = dyn_cast<DIType>(Ty))
1221          // There is no point in force-emitting a forward declaration.
1222          CU.getOrCreateTypeDIE(RT);
1223    }
1224    // Emit imported_modules last so that the relevant context is already
1225    // available.
1226    for (auto *IE : CUNode->getImportedEntities())
1227      constructAndAddImportedEntityDIE(CU, IE);
1228  }
1229}
1230
1231void DwarfDebug::finishEntityDefinitions() {
1232  for (const auto &Entity : ConcreteEntities) {
1233    DIE *Die = Entity->getDIE();
1234    assert(Die);
1235    // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1236    // in the ConcreteEntities list, rather than looking it up again here.
1237    // DIE::getUnit isn't simple - it walks parent pointers, etc.
1238    DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1239    assert(Unit);
1240    Unit->finishEntityDefinition(Entity.get());
1241  }
1242}
1243
1244void DwarfDebug::finishSubprogramDefinitions() {
1245  for (const DISubprogram *SP : ProcessedSPNodes) {
1246    assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1247    forBothCUs(
1248        getOrCreateDwarfCompileUnit(SP->getUnit()),
1249        [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1250  }
1251}
1252
1253void DwarfDebug::finalizeModuleInfo() {
1254  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1255
1256  finishSubprogramDefinitions();
1257
1258  finishEntityDefinitions();
1259
1260  // Include the DWO file name in the hash if there's more than one CU.
1261  // This handles ThinLTO's situation where imported CUs may very easily be
1262  // duplicate with the same CU partially imported into another ThinLTO unit.
1263  StringRef DWOName;
1264  if (CUMap.size() > 1)
1265    DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1266
1267  // Handle anything that needs to be done on a per-unit basis after
1268  // all other generation.
1269  for (const auto &P : CUMap) {
1270    auto &TheCU = *P.second;
1271    if (TheCU.getCUNode()->isDebugDirectivesOnly())
1272      continue;
1273    // Emit DW_AT_containing_type attribute to connect types with their
1274    // vtable holding type.
1275    TheCU.constructContainingTypeDIEs();
1276
1277    // Add CU specific attributes if we need to add any.
1278    // If we're splitting the dwarf out now that we've got the entire
1279    // CU then add the dwo id to it.
1280    auto *SkCU = TheCU.getSkeleton();
1281
1282    bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1283
1284    if (HasSplitUnit) {
1285      dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1286                                         ? dwarf::DW_AT_dwo_name
1287                                         : dwarf::DW_AT_GNU_dwo_name;
1288      finishUnitAttributes(TheCU.getCUNode(), TheCU);
1289      TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1290                      Asm->TM.Options.MCOptions.SplitDwarfFile);
1291      SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1292                      Asm->TM.Options.MCOptions.SplitDwarfFile);
1293      // Emit a unique identifier for this CU.
1294      uint64_t ID =
1295          DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1296      if (getDwarfVersion() >= 5) {
1297        TheCU.setDWOId(ID);
1298        SkCU->setDWOId(ID);
1299      } else {
1300        TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1301                      dwarf::DW_FORM_data8, ID);
1302        SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1303                      dwarf::DW_FORM_data8, ID);
1304      }
1305
1306      if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1307        const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1308        SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1309                              Sym, Sym);
1310      }
1311    } else if (SkCU) {
1312      finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1313    }
1314
1315    // If we have code split among multiple sections or non-contiguous
1316    // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1317    // remain in the .o file, otherwise add a DW_AT_low_pc.
1318    // FIXME: We should use ranges allow reordering of code ala
1319    // .subsections_via_symbols in mach-o. This would mean turning on
1320    // ranges for all subprogram DIEs for mach-o.
1321    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1322
1323    if (unsigned NumRanges = TheCU.getRanges().size()) {
1324      if (NumRanges > 1 && useRangesSection())
1325        // A DW_AT_low_pc attribute may also be specified in combination with
1326        // DW_AT_ranges to specify the default base address for use in
1327        // location lists (see Section 2.6.2) and range lists (see Section
1328        // 2.17.3).
1329        U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1330      else
1331        U.setBaseAddress(TheCU.getRanges().front().Begin);
1332      U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1333    }
1334
1335    // We don't keep track of which addresses are used in which CU so this
1336    // is a bit pessimistic under LTO.
1337    if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1338      U.addAddrTableBase();
1339
1340    if (getDwarfVersion() >= 5) {
1341      if (U.hasRangeLists())
1342        U.addRnglistsBase();
1343
1344      if (!DebugLocs.getLists().empty()) {
1345        if (!useSplitDwarf())
1346          U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1347                            DebugLocs.getSym(),
1348                            TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1349      }
1350    }
1351
1352    auto *CUNode = cast<DICompileUnit>(P.first);
1353    // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1354    // attribute.
1355    if (CUNode->getMacros()) {
1356      if (getDwarfVersion() >= 5) {
1357        if (useSplitDwarf())
1358          TheCU.addSectionDelta(
1359              TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1360              TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1361        else
1362          U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macros,
1363                            U.getMacroLabelBegin(),
1364                            TLOF.getDwarfMacroSection()->getBeginSymbol());
1365      } else {
1366        if (useSplitDwarf())
1367          TheCU.addSectionDelta(
1368              TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1369              U.getMacroLabelBegin(),
1370              TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1371        else
1372          U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1373                            U.getMacroLabelBegin(),
1374                            TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1375      }
1376    }
1377    }
1378
1379  // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1380  for (auto *CUNode : MMI->getModule()->debug_compile_units())
1381    if (CUNode->getDWOId())
1382      getOrCreateDwarfCompileUnit(CUNode);
1383
1384  // Compute DIE offsets and sizes.
1385  InfoHolder.computeSizeAndOffsets();
1386  if (useSplitDwarf())
1387    SkeletonHolder.computeSizeAndOffsets();
1388}
1389
1390// Emit all Dwarf sections that should come after the content.
1391void DwarfDebug::endModule() {
1392  assert(CurFn == nullptr);
1393  assert(CurMI == nullptr);
1394
1395  for (const auto &P : CUMap) {
1396    auto &CU = *P.second;
1397    CU.createBaseTypeDIEs();
1398  }
1399
1400  // If we aren't actually generating debug info (check beginModule -
1401  // conditionalized on !DisableDebugInfoPrinting and the presence of the
1402  // llvm.dbg.cu metadata node)
1403  if (!MMI->hasDebugInfo())
1404    return;
1405
1406  // Finalize the debug info for the module.
1407  finalizeModuleInfo();
1408
1409  if (useSplitDwarf())
1410    // Emit debug_loc.dwo/debug_loclists.dwo section.
1411    emitDebugLocDWO();
1412  else
1413    // Emit debug_loc/debug_loclists section.
1414    emitDebugLoc();
1415
1416  // Corresponding abbreviations into a abbrev section.
1417  emitAbbreviations();
1418
1419  // Emit all the DIEs into a debug info section.
1420  emitDebugInfo();
1421
1422  // Emit info into a debug aranges section.
1423  if (GenerateARangeSection)
1424    emitDebugARanges();
1425
1426  // Emit info into a debug ranges section.
1427  emitDebugRanges();
1428
1429  if (useSplitDwarf())
1430  // Emit info into a debug macinfo.dwo section.
1431    emitDebugMacinfoDWO();
1432  else
1433    // Emit info into a debug macinfo/macro section.
1434    emitDebugMacinfo();
1435
1436  emitDebugStr();
1437
1438  if (useSplitDwarf()) {
1439    emitDebugStrDWO();
1440    emitDebugInfoDWO();
1441    emitDebugAbbrevDWO();
1442    emitDebugLineDWO();
1443    emitDebugRangesDWO();
1444  }
1445
1446  emitDebugAddr();
1447
1448  // Emit info into the dwarf accelerator table sections.
1449  switch (getAccelTableKind()) {
1450  case AccelTableKind::Apple:
1451    emitAccelNames();
1452    emitAccelObjC();
1453    emitAccelNamespaces();
1454    emitAccelTypes();
1455    break;
1456  case AccelTableKind::Dwarf:
1457    emitAccelDebugNames();
1458    break;
1459  case AccelTableKind::None:
1460    break;
1461  case AccelTableKind::Default:
1462    llvm_unreachable("Default should have already been resolved.");
1463  }
1464
1465  // Emit the pubnames and pubtypes sections if requested.
1466  emitDebugPubSections();
1467
1468  // clean up.
1469  // FIXME: AbstractVariables.clear();
1470}
1471
1472void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1473                                               const DINode *Node,
1474                                               const MDNode *ScopeNode) {
1475  if (CU.getExistingAbstractEntity(Node))
1476    return;
1477
1478  CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1479                                       cast<DILocalScope>(ScopeNode)));
1480}
1481
1482void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1483    const DINode *Node, const MDNode *ScopeNode) {
1484  if (CU.getExistingAbstractEntity(Node))
1485    return;
1486
1487  if (LexicalScope *Scope =
1488          LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1489    CU.createAbstractEntity(Node, Scope);
1490}
1491
1492// Collect variable information from side table maintained by MF.
1493void DwarfDebug::collectVariableInfoFromMFTable(
1494    DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1495  SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1496  LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1497  for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1498    if (!VI.Var)
1499      continue;
1500    assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1501           "Expected inlined-at fields to agree");
1502
1503    InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1504    Processed.insert(Var);
1505    LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1506
1507    // If variable scope is not found then skip this variable.
1508    if (!Scope) {
1509      LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1510                        << ", no variable scope found\n");
1511      continue;
1512    }
1513
1514    ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1515    auto RegVar = std::make_unique<DbgVariable>(
1516                    cast<DILocalVariable>(Var.first), Var.second);
1517    RegVar->initializeMMI(VI.Expr, VI.Slot);
1518    LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1519                      << "\n");
1520    if (DbgVariable *DbgVar = MFVars.lookup(Var))
1521      DbgVar->addMMIEntry(*RegVar);
1522    else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1523      MFVars.insert({Var, RegVar.get()});
1524      ConcreteEntities.push_back(std::move(RegVar));
1525    }
1526  }
1527}
1528
1529/// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1530/// enclosing lexical scope. The check ensures there are no other instructions
1531/// in the same lexical scope preceding the DBG_VALUE and that its range is
1532/// either open or otherwise rolls off the end of the scope.
1533static bool validThroughout(LexicalScopes &LScopes,
1534                            const MachineInstr *DbgValue,
1535                            const MachineInstr *RangeEnd) {
1536  assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1537  auto MBB = DbgValue->getParent();
1538  auto DL = DbgValue->getDebugLoc();
1539  auto *LScope = LScopes.findLexicalScope(DL);
1540  // Scope doesn't exist; this is a dead DBG_VALUE.
1541  if (!LScope)
1542    return false;
1543  auto &LSRange = LScope->getRanges();
1544  if (LSRange.size() == 0)
1545    return false;
1546
1547
1548  // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1549  const MachineInstr *LScopeBegin = LSRange.front().first;
1550  // Early exit if the lexical scope begins outside of the current block.
1551  if (LScopeBegin->getParent() != MBB)
1552    return false;
1553
1554  // If there are instructions belonging to our scope in another block, and
1555  // we're not a constant (see DWARF2 comment below), then we can't be
1556  // validThroughout.
1557  const MachineInstr *LScopeEnd = LSRange.back().second;
1558  if (RangeEnd && LScopeEnd->getParent() != MBB)
1559    return false;
1560
1561  MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1562  for (++Pred; Pred != MBB->rend(); ++Pred) {
1563    if (Pred->getFlag(MachineInstr::FrameSetup))
1564      break;
1565    auto PredDL = Pred->getDebugLoc();
1566    if (!PredDL || Pred->isMetaInstruction())
1567      continue;
1568    // Check whether the instruction preceding the DBG_VALUE is in the same
1569    // (sub)scope as the DBG_VALUE.
1570    if (DL->getScope() == PredDL->getScope())
1571      return false;
1572    auto *PredScope = LScopes.findLexicalScope(PredDL);
1573    if (!PredScope || LScope->dominates(PredScope))
1574      return false;
1575  }
1576
1577  // If the range of the DBG_VALUE is open-ended, report success.
1578  if (!RangeEnd)
1579    return true;
1580
1581  // Single, constant DBG_VALUEs in the prologue are promoted to be live
1582  // throughout the function. This is a hack, presumably for DWARF v2 and not
1583  // necessarily correct. It would be much better to use a dbg.declare instead
1584  // if we know the constant is live throughout the scope.
1585  if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1586    return true;
1587
1588  // Now check for situations where an "open-ended" DBG_VALUE isn't enough to
1589  // determine eligibility for a single location, e.g. nested scopes, inlined
1590  // functions.
1591  // FIXME: For now we just handle a simple (but common) case where the scope
1592  // is contained in MBB. We could be smarter here.
1593  //
1594  // At this point we know that our scope ends in MBB. So, if RangeEnd exists
1595  // outside of the block we can ignore it; the location is just leaking outside
1596  // its scope.
1597  assert(LScopeEnd->getParent() == MBB && "Scope ends outside MBB");
1598  if (RangeEnd->getParent() != DbgValue->getParent())
1599    return true;
1600
1601  // The location range and variable's enclosing scope are both contained within
1602  // MBB, test if location terminates before end of scope.
1603  for (auto I = RangeEnd->getIterator(); I != MBB->end(); ++I)
1604    if (&*I == LScopeEnd)
1605      return false;
1606
1607  // There's a single location which starts at the scope start, and ends at or
1608  // after the scope end.
1609  return true;
1610}
1611
1612/// Build the location list for all DBG_VALUEs in the function that
1613/// describe the same variable. The resulting DebugLocEntries will have
1614/// strict monotonically increasing begin addresses and will never
1615/// overlap. If the resulting list has only one entry that is valid
1616/// throughout variable's scope return true.
1617//
1618// See the definition of DbgValueHistoryMap::Entry for an explanation of the
1619// different kinds of history map entries. One thing to be aware of is that if
1620// a debug value is ended by another entry (rather than being valid until the
1621// end of the function), that entry's instruction may or may not be included in
1622// the range, depending on if the entry is a clobbering entry (it has an
1623// instruction that clobbers one or more preceding locations), or if it is an
1624// (overlapping) debug value entry. This distinction can be seen in the example
1625// below. The first debug value is ended by the clobbering entry 2, and the
1626// second and third debug values are ended by the overlapping debug value entry
1627// 4.
1628//
1629// Input:
1630//
1631//   History map entries [type, end index, mi]
1632//
1633// 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1634// 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1635// 2 | |    [Clobber, $reg0 = [...], -, -]
1636// 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1637// 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1638//
1639// Output [start, end) [Value...]:
1640//
1641// [0-1)    [(reg0, fragment 0, 32)]
1642// [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1643// [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1644// [4-)     [(@g, fragment 0, 96)]
1645bool DwarfDebug::buildLocationList(
1646    SmallVectorImpl<DebugLocEntry> &DebugLoc,
1647    const DbgValueHistoryMap::Entries &Entries,
1648    DenseSet<const MachineBasicBlock *> &VeryLargeBlocks) {
1649  using OpenRange =
1650      std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1651  SmallVector<OpenRange, 4> OpenRanges;
1652  bool isSafeForSingleLocation = true;
1653  const MachineInstr *StartDebugMI = nullptr;
1654  const MachineInstr *EndMI = nullptr;
1655
1656  for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1657    const MachineInstr *Instr = EI->getInstr();
1658
1659    // Remove all values that are no longer live.
1660    size_t Index = std::distance(EB, EI);
1661    auto Last =
1662        remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1663    OpenRanges.erase(Last, OpenRanges.end());
1664
1665    // If we are dealing with a clobbering entry, this iteration will result in
1666    // a location list entry starting after the clobbering instruction.
1667    const MCSymbol *StartLabel =
1668        EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1669    assert(StartLabel &&
1670           "Forgot label before/after instruction starting a range!");
1671
1672    const MCSymbol *EndLabel;
1673    if (std::next(EI) == Entries.end()) {
1674      const MachineBasicBlock &EndMBB = Asm->MF->back();
1675      EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1676      if (EI->isClobber())
1677        EndMI = EI->getInstr();
1678    }
1679    else if (std::next(EI)->isClobber())
1680      EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1681    else
1682      EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1683    assert(EndLabel && "Forgot label after instruction ending a range!");
1684
1685    if (EI->isDbgValue())
1686      LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1687
1688    // If this history map entry has a debug value, add that to the list of
1689    // open ranges and check if its location is valid for a single value
1690    // location.
1691    if (EI->isDbgValue()) {
1692      // Do not add undef debug values, as they are redundant information in
1693      // the location list entries. An undef debug results in an empty location
1694      // description. If there are any non-undef fragments then padding pieces
1695      // with empty location descriptions will automatically be inserted, and if
1696      // all fragments are undef then the whole location list entry is
1697      // redundant.
1698      if (!Instr->isUndefDebugValue()) {
1699        auto Value = getDebugLocValue(Instr);
1700        OpenRanges.emplace_back(EI->getEndIndex(), Value);
1701
1702        // TODO: Add support for single value fragment locations.
1703        if (Instr->getDebugExpression()->isFragment())
1704          isSafeForSingleLocation = false;
1705
1706        if (!StartDebugMI)
1707          StartDebugMI = Instr;
1708      } else {
1709        isSafeForSingleLocation = false;
1710      }
1711    }
1712
1713    // Location list entries with empty location descriptions are redundant
1714    // information in DWARF, so do not emit those.
1715    if (OpenRanges.empty())
1716      continue;
1717
1718    // Omit entries with empty ranges as they do not have any effect in DWARF.
1719    if (StartLabel == EndLabel) {
1720      LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1721      continue;
1722    }
1723
1724    SmallVector<DbgValueLoc, 4> Values;
1725    for (auto &R : OpenRanges)
1726      Values.push_back(R.second);
1727    DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1728
1729    // Attempt to coalesce the ranges of two otherwise identical
1730    // DebugLocEntries.
1731    auto CurEntry = DebugLoc.rbegin();
1732    LLVM_DEBUG({
1733      dbgs() << CurEntry->getValues().size() << " Values:\n";
1734      for (auto &Value : CurEntry->getValues())
1735        Value.dump();
1736      dbgs() << "-----\n";
1737    });
1738
1739    auto PrevEntry = std::next(CurEntry);
1740    if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1741      DebugLoc.pop_back();
1742  }
1743
1744  // If there's a single entry, safe for a single location, and not part of
1745  // an over-sized basic block, then ask validThroughout whether this
1746  // location can be represented as a single variable location.
1747  if (DebugLoc.size() != 1 || !isSafeForSingleLocation)
1748    return false;
1749  if (VeryLargeBlocks.count(StartDebugMI->getParent()))
1750    return false;
1751  return validThroughout(LScopes, StartDebugMI, EndMI);
1752}
1753
1754DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1755                                            LexicalScope &Scope,
1756                                            const DINode *Node,
1757                                            const DILocation *Location,
1758                                            const MCSymbol *Sym) {
1759  ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1760  if (isa<const DILocalVariable>(Node)) {
1761    ConcreteEntities.push_back(
1762        std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1763                                       Location));
1764    InfoHolder.addScopeVariable(&Scope,
1765        cast<DbgVariable>(ConcreteEntities.back().get()));
1766  } else if (isa<const DILabel>(Node)) {
1767    ConcreteEntities.push_back(
1768        std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1769                                    Location, Sym));
1770    InfoHolder.addScopeLabel(&Scope,
1771        cast<DbgLabel>(ConcreteEntities.back().get()));
1772  }
1773  return ConcreteEntities.back().get();
1774}
1775
1776// Find variables for each lexical scope.
1777void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1778                                   const DISubprogram *SP,
1779                                   DenseSet<InlinedEntity> &Processed) {
1780  // Grab the variable info that was squirreled away in the MMI side-table.
1781  collectVariableInfoFromMFTable(TheCU, Processed);
1782
1783  // Identify blocks that are unreasonably sized, so that we can later
1784  // skip lexical scope analysis over them.
1785  DenseSet<const MachineBasicBlock *> VeryLargeBlocks;
1786  for (const auto &MBB : *CurFn)
1787    if (MBB.size() > LocationAnalysisSizeLimit)
1788      VeryLargeBlocks.insert(&MBB);
1789
1790  for (const auto &I : DbgValues) {
1791    InlinedEntity IV = I.first;
1792    if (Processed.count(IV))
1793      continue;
1794
1795    // Instruction ranges, specifying where IV is accessible.
1796    const auto &HistoryMapEntries = I.second;
1797    if (HistoryMapEntries.empty())
1798      continue;
1799
1800    LexicalScope *Scope = nullptr;
1801    const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1802    if (const DILocation *IA = IV.second)
1803      Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1804    else
1805      Scope = LScopes.findLexicalScope(LocalVar->getScope());
1806    // If variable scope is not found then skip this variable.
1807    if (!Scope)
1808      continue;
1809
1810    Processed.insert(IV);
1811    DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1812                                            *Scope, LocalVar, IV.second));
1813
1814    const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1815    assert(MInsn->isDebugValue() && "History must begin with debug value");
1816
1817    // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1818    // If the history map contains a single debug value, there may be an
1819    // additional entry which clobbers the debug value.
1820    size_t HistSize = HistoryMapEntries.size();
1821    bool SingleValueWithClobber =
1822        HistSize == 2 && HistoryMapEntries[1].isClobber();
1823    if (HistSize == 1 || SingleValueWithClobber) {
1824      const auto *End =
1825          SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1826      if (VeryLargeBlocks.count(MInsn->getParent()) == 0 &&
1827          validThroughout(LScopes, MInsn, End)) {
1828        RegVar->initializeDbgValue(MInsn);
1829        continue;
1830      }
1831    }
1832
1833    // Do not emit location lists if .debug_loc secton is disabled.
1834    if (!useLocSection())
1835      continue;
1836
1837    // Handle multiple DBG_VALUE instructions describing one variable.
1838    DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1839
1840    // Build the location list for this variable.
1841    SmallVector<DebugLocEntry, 8> Entries;
1842    bool isValidSingleLocation =
1843        buildLocationList(Entries, HistoryMapEntries, VeryLargeBlocks);
1844
1845    // Check whether buildLocationList managed to merge all locations to one
1846    // that is valid throughout the variable's scope. If so, produce single
1847    // value location.
1848    if (isValidSingleLocation) {
1849      RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1850      continue;
1851    }
1852
1853    // If the variable has a DIBasicType, extract it.  Basic types cannot have
1854    // unique identifiers, so don't bother resolving the type with the
1855    // identifier map.
1856    const DIBasicType *BT = dyn_cast<DIBasicType>(
1857        static_cast<const Metadata *>(LocalVar->getType()));
1858
1859    // Finalize the entry by lowering it into a DWARF bytestream.
1860    for (auto &Entry : Entries)
1861      Entry.finalize(*Asm, List, BT, TheCU);
1862  }
1863
1864  // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1865  // DWARF-related DbgLabel.
1866  for (const auto &I : DbgLabels) {
1867    InlinedEntity IL = I.first;
1868    const MachineInstr *MI = I.second;
1869    if (MI == nullptr)
1870      continue;
1871
1872    LexicalScope *Scope = nullptr;
1873    const DILabel *Label = cast<DILabel>(IL.first);
1874    // The scope could have an extra lexical block file.
1875    const DILocalScope *LocalScope =
1876        Label->getScope()->getNonLexicalBlockFileScope();
1877    // Get inlined DILocation if it is inlined label.
1878    if (const DILocation *IA = IL.second)
1879      Scope = LScopes.findInlinedScope(LocalScope, IA);
1880    else
1881      Scope = LScopes.findLexicalScope(LocalScope);
1882    // If label scope is not found then skip this label.
1883    if (!Scope)
1884      continue;
1885
1886    Processed.insert(IL);
1887    /// At this point, the temporary label is created.
1888    /// Save the temporary label to DbgLabel entity to get the
1889    /// actually address when generating Dwarf DIE.
1890    MCSymbol *Sym = getLabelBeforeInsn(MI);
1891    createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1892  }
1893
1894  // Collect info for variables/labels that were optimized out.
1895  for (const DINode *DN : SP->getRetainedNodes()) {
1896    if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1897      continue;
1898    LexicalScope *Scope = nullptr;
1899    if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1900      Scope = LScopes.findLexicalScope(DV->getScope());
1901    } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1902      Scope = LScopes.findLexicalScope(DL->getScope());
1903    }
1904
1905    if (Scope)
1906      createConcreteEntity(TheCU, *Scope, DN, nullptr);
1907  }
1908}
1909
1910// Process beginning of an instruction.
1911void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1912  const MachineFunction &MF = *MI->getMF();
1913  const auto *SP = MF.getFunction().getSubprogram();
1914  bool NoDebug =
1915      !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1916
1917  // Delay slot support check.
1918  auto delaySlotSupported = [](const MachineInstr &MI) {
1919    if (!MI.isBundledWithSucc())
1920      return false;
1921    auto Suc = std::next(MI.getIterator());
1922    (void)Suc;
1923    // Ensure that delay slot instruction is successor of the call instruction.
1924    // Ex. CALL_INSTRUCTION {
1925    //        DELAY_SLOT_INSTRUCTION }
1926    assert(Suc->isBundledWithPred() &&
1927           "Call bundle instructions are out of order");
1928    return true;
1929  };
1930
1931  // When describing calls, we need a label for the call instruction.
1932  if (!NoDebug && SP->areAllCallsDescribed() &&
1933      MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1934      (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1935    const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1936    bool IsTail = TII->isTailCall(*MI);
1937    // For tail calls, we need the address of the branch instruction for
1938    // DW_AT_call_pc.
1939    if (IsTail)
1940      requestLabelBeforeInsn(MI);
1941    // For non-tail calls, we need the return address for the call for
1942    // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1943    // tail calls as well.
1944    requestLabelAfterInsn(MI);
1945  }
1946
1947  DebugHandlerBase::beginInstruction(MI);
1948  assert(CurMI);
1949
1950  if (NoDebug)
1951    return;
1952
1953  // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1954  // If the instruction is part of the function frame setup code, do not emit
1955  // any line record, as there is no correspondence with any user code.
1956  if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1957    return;
1958  const DebugLoc &DL = MI->getDebugLoc();
1959  // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1960  // the last line number actually emitted, to see if it was line 0.
1961  unsigned LastAsmLine =
1962      Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1963
1964  if (DL == PrevInstLoc) {
1965    // If we have an ongoing unspecified location, nothing to do here.
1966    if (!DL)
1967      return;
1968    // We have an explicit location, same as the previous location.
1969    // But we might be coming back to it after a line 0 record.
1970    if (LastAsmLine == 0 && DL.getLine() != 0) {
1971      // Reinstate the source location but not marked as a statement.
1972      const MDNode *Scope = DL.getScope();
1973      recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1974    }
1975    return;
1976  }
1977
1978  if (!DL) {
1979    // We have an unspecified location, which might want to be line 0.
1980    // If we have already emitted a line-0 record, don't repeat it.
1981    if (LastAsmLine == 0)
1982      return;
1983    // If user said Don't Do That, don't do that.
1984    if (UnknownLocations == Disable)
1985      return;
1986    // See if we have a reason to emit a line-0 record now.
1987    // Reasons to emit a line-0 record include:
1988    // - User asked for it (UnknownLocations).
1989    // - Instruction has a label, so it's referenced from somewhere else,
1990    //   possibly debug information; we want it to have a source location.
1991    // - Instruction is at the top of a block; we don't want to inherit the
1992    //   location from the physically previous (maybe unrelated) block.
1993    if (UnknownLocations == Enable || PrevLabel ||
1994        (PrevInstBB && PrevInstBB != MI->getParent())) {
1995      // Preserve the file and column numbers, if we can, to save space in
1996      // the encoded line table.
1997      // Do not update PrevInstLoc, it remembers the last non-0 line.
1998      const MDNode *Scope = nullptr;
1999      unsigned Column = 0;
2000      if (PrevInstLoc) {
2001        Scope = PrevInstLoc.getScope();
2002        Column = PrevInstLoc.getCol();
2003      }
2004      recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2005    }
2006    return;
2007  }
2008
2009  // We have an explicit location, different from the previous location.
2010  // Don't repeat a line-0 record, but otherwise emit the new location.
2011  // (The new location might be an explicit line 0, which we do emit.)
2012  if (DL.getLine() == 0 && LastAsmLine == 0)
2013    return;
2014  unsigned Flags = 0;
2015  if (DL == PrologEndLoc) {
2016    Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2017    PrologEndLoc = DebugLoc();
2018  }
2019  // If the line changed, we call that a new statement; unless we went to
2020  // line 0 and came back, in which case it is not a new statement.
2021  unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2022  if (DL.getLine() && DL.getLine() != OldLine)
2023    Flags |= DWARF2_FLAG_IS_STMT;
2024
2025  const MDNode *Scope = DL.getScope();
2026  recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2027
2028  // If we're not at line 0, remember this location.
2029  if (DL.getLine())
2030    PrevInstLoc = DL;
2031}
2032
2033static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2034  // First known non-DBG_VALUE and non-frame setup location marks
2035  // the beginning of the function body.
2036  for (const auto &MBB : *MF)
2037    for (const auto &MI : MBB)
2038      if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2039          MI.getDebugLoc())
2040        return MI.getDebugLoc();
2041  return DebugLoc();
2042}
2043
2044/// Register a source line with debug info. Returns the  unique label that was
2045/// emitted and which provides correspondence to the source line list.
2046static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2047                             const MDNode *S, unsigned Flags, unsigned CUID,
2048                             uint16_t DwarfVersion,
2049                             ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2050  StringRef Fn;
2051  unsigned FileNo = 1;
2052  unsigned Discriminator = 0;
2053  if (auto *Scope = cast_or_null<DIScope>(S)) {
2054    Fn = Scope->getFilename();
2055    if (Line != 0 && DwarfVersion >= 4)
2056      if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2057        Discriminator = LBF->getDiscriminator();
2058
2059    FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2060                 .getOrCreateSourceID(Scope->getFile());
2061  }
2062  Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2063                                         Discriminator, Fn);
2064}
2065
2066DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2067                                             unsigned CUID) {
2068  // Get beginning of function.
2069  if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2070    // Ensure the compile unit is created if the function is called before
2071    // beginFunction().
2072    (void)getOrCreateDwarfCompileUnit(
2073        MF.getFunction().getSubprogram()->getUnit());
2074    // We'd like to list the prologue as "not statements" but GDB behaves
2075    // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2076    const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2077    ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2078                       CUID, getDwarfVersion(), getUnits());
2079    return PrologEndLoc;
2080  }
2081  return DebugLoc();
2082}
2083
2084// Gather pre-function debug information.  Assumes being called immediately
2085// after the function entry point has been emitted.
2086void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2087  CurFn = MF;
2088
2089  auto *SP = MF->getFunction().getSubprogram();
2090  assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2091  if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2092    return;
2093
2094  DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2095
2096  // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2097  // belongs to so that we add to the correct per-cu line table in the
2098  // non-asm case.
2099  if (Asm->OutStreamer->hasRawTextSupport())
2100    // Use a single line table if we are generating assembly.
2101    Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2102  else
2103    Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2104
2105  // Record beginning of function.
2106  PrologEndLoc = emitInitialLocDirective(
2107      *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2108}
2109
2110void DwarfDebug::skippedNonDebugFunction() {
2111  // If we don't have a subprogram for this function then there will be a hole
2112  // in the range information. Keep note of this by setting the previously used
2113  // section to nullptr.
2114  PrevCU = nullptr;
2115  CurFn = nullptr;
2116}
2117
2118// Gather and emit post-function debug information.
2119void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2120  const DISubprogram *SP = MF->getFunction().getSubprogram();
2121
2122  assert(CurFn == MF &&
2123      "endFunction should be called with the same function as beginFunction");
2124
2125  // Set DwarfDwarfCompileUnitID in MCContext to default value.
2126  Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2127
2128  LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2129  assert(!FnScope || SP == FnScope->getScopeNode());
2130  DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2131  if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2132    PrevLabel = nullptr;
2133    CurFn = nullptr;
2134    return;
2135  }
2136
2137  DenseSet<InlinedEntity> Processed;
2138  collectEntityInfo(TheCU, SP, Processed);
2139
2140  // Add the range of this function to the list of ranges for the CU.
2141  // With basic block sections, add ranges for all basic block sections.
2142  for (const auto &R : Asm->MBBSectionRanges)
2143    TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2144
2145  // Under -gmlt, skip building the subprogram if there are no inlined
2146  // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2147  // is still needed as we need its source location.
2148  if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2149      TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2150      LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2151    assert(InfoHolder.getScopeVariables().empty());
2152    PrevLabel = nullptr;
2153    CurFn = nullptr;
2154    return;
2155  }
2156
2157#ifndef NDEBUG
2158  size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2159#endif
2160  // Construct abstract scopes.
2161  for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2162    auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2163    for (const DINode *DN : SP->getRetainedNodes()) {
2164      if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2165        continue;
2166
2167      const MDNode *Scope = nullptr;
2168      if (auto *DV = dyn_cast<DILocalVariable>(DN))
2169        Scope = DV->getScope();
2170      else if (auto *DL = dyn_cast<DILabel>(DN))
2171        Scope = DL->getScope();
2172      else
2173        llvm_unreachable("Unexpected DI type!");
2174
2175      // Collect info for variables/labels that were optimized out.
2176      ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2177      assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2178             && "ensureAbstractEntityIsCreated inserted abstract scopes");
2179    }
2180    constructAbstractSubprogramScopeDIE(TheCU, AScope);
2181  }
2182
2183  ProcessedSPNodes.insert(SP);
2184  DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2185  if (auto *SkelCU = TheCU.getSkeleton())
2186    if (!LScopes.getAbstractScopesList().empty() &&
2187        TheCU.getCUNode()->getSplitDebugInlining())
2188      SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2189
2190  // Construct call site entries.
2191  constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2192
2193  // Clear debug info
2194  // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2195  // DbgVariables except those that are also in AbstractVariables (since they
2196  // can be used cross-function)
2197  InfoHolder.getScopeVariables().clear();
2198  InfoHolder.getScopeLabels().clear();
2199  PrevLabel = nullptr;
2200  CurFn = nullptr;
2201}
2202
2203// Register a source line with debug info. Returns the  unique label that was
2204// emitted and which provides correspondence to the source line list.
2205void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2206                                  unsigned Flags) {
2207  ::recordSourceLine(*Asm, Line, Col, S, Flags,
2208                     Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2209                     getDwarfVersion(), getUnits());
2210}
2211
2212//===----------------------------------------------------------------------===//
2213// Emit Methods
2214//===----------------------------------------------------------------------===//
2215
2216// Emit the debug info section.
2217void DwarfDebug::emitDebugInfo() {
2218  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2219  Holder.emitUnits(/* UseOffsets */ false);
2220}
2221
2222// Emit the abbreviation section.
2223void DwarfDebug::emitAbbreviations() {
2224  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2225
2226  Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2227}
2228
2229void DwarfDebug::emitStringOffsetsTableHeader() {
2230  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2231  Holder.getStringPool().emitStringOffsetsTableHeader(
2232      *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2233      Holder.getStringOffsetsStartSym());
2234}
2235
2236template <typename AccelTableT>
2237void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2238                           StringRef TableName) {
2239  Asm->OutStreamer->SwitchSection(Section);
2240
2241  // Emit the full data.
2242  emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2243}
2244
2245void DwarfDebug::emitAccelDebugNames() {
2246  // Don't emit anything if we have no compilation units to index.
2247  if (getUnits().empty())
2248    return;
2249
2250  emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2251}
2252
2253// Emit visible names into a hashed accelerator table section.
2254void DwarfDebug::emitAccelNames() {
2255  emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2256            "Names");
2257}
2258
2259// Emit objective C classes and categories into a hashed accelerator table
2260// section.
2261void DwarfDebug::emitAccelObjC() {
2262  emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2263            "ObjC");
2264}
2265
2266// Emit namespace dies into a hashed accelerator table.
2267void DwarfDebug::emitAccelNamespaces() {
2268  emitAccel(AccelNamespace,
2269            Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2270            "namespac");
2271}
2272
2273// Emit type dies into a hashed accelerator table.
2274void DwarfDebug::emitAccelTypes() {
2275  emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2276            "types");
2277}
2278
2279// Public name handling.
2280// The format for the various pubnames:
2281//
2282// dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2283// for the DIE that is named.
2284//
2285// gnu pubnames - offset/index value/name tuples where the offset is the offset
2286// into the CU and the index value is computed according to the type of value
2287// for the DIE that is named.
2288//
2289// For type units the offset is the offset of the skeleton DIE. For split dwarf
2290// it's the offset within the debug_info/debug_types dwo section, however, the
2291// reference in the pubname header doesn't change.
2292
2293/// computeIndexValue - Compute the gdb index value for the DIE and CU.
2294static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2295                                                        const DIE *Die) {
2296  // Entities that ended up only in a Type Unit reference the CU instead (since
2297  // the pub entry has offsets within the CU there's no real offset that can be
2298  // provided anyway). As it happens all such entities (namespaces and types,
2299  // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2300  // not to be true it would be necessary to persist this information from the
2301  // point at which the entry is added to the index data structure - since by
2302  // the time the index is built from that, the original type/namespace DIE in a
2303  // type unit has already been destroyed so it can't be queried for properties
2304  // like tag, etc.
2305  if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2306    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2307                                          dwarf::GIEL_EXTERNAL);
2308  dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2309
2310  // We could have a specification DIE that has our most of our knowledge,
2311  // look for that now.
2312  if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2313    DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2314    if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2315      Linkage = dwarf::GIEL_EXTERNAL;
2316  } else if (Die->findAttribute(dwarf::DW_AT_external))
2317    Linkage = dwarf::GIEL_EXTERNAL;
2318
2319  switch (Die->getTag()) {
2320  case dwarf::DW_TAG_class_type:
2321  case dwarf::DW_TAG_structure_type:
2322  case dwarf::DW_TAG_union_type:
2323  case dwarf::DW_TAG_enumeration_type:
2324    return dwarf::PubIndexEntryDescriptor(
2325        dwarf::GIEK_TYPE,
2326        dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2327            ? dwarf::GIEL_EXTERNAL
2328            : dwarf::GIEL_STATIC);
2329  case dwarf::DW_TAG_typedef:
2330  case dwarf::DW_TAG_base_type:
2331  case dwarf::DW_TAG_subrange_type:
2332    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2333  case dwarf::DW_TAG_namespace:
2334    return dwarf::GIEK_TYPE;
2335  case dwarf::DW_TAG_subprogram:
2336    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2337  case dwarf::DW_TAG_variable:
2338    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2339  case dwarf::DW_TAG_enumerator:
2340    return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2341                                          dwarf::GIEL_STATIC);
2342  default:
2343    return dwarf::GIEK_NONE;
2344  }
2345}
2346
2347/// emitDebugPubSections - Emit visible names and types into debug pubnames and
2348/// pubtypes sections.
2349void DwarfDebug::emitDebugPubSections() {
2350  for (const auto &NU : CUMap) {
2351    DwarfCompileUnit *TheU = NU.second;
2352    if (!TheU->hasDwarfPubSections())
2353      continue;
2354
2355    bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2356                    DICompileUnit::DebugNameTableKind::GNU;
2357
2358    Asm->OutStreamer->SwitchSection(
2359        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2360                 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2361    emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2362
2363    Asm->OutStreamer->SwitchSection(
2364        GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2365                 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2366    emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2367  }
2368}
2369
2370void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2371  if (useSectionsAsReferences())
2372    Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2373                         CU.getDebugSectionOffset());
2374  else
2375    Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2376}
2377
2378void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2379                                     DwarfCompileUnit *TheU,
2380                                     const StringMap<const DIE *> &Globals) {
2381  if (auto *Skeleton = TheU->getSkeleton())
2382    TheU = Skeleton;
2383
2384  // Emit the header.
2385  Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2386  MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2387  MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2388  Asm->emitLabelDifference(EndLabel, BeginLabel, 4);
2389
2390  Asm->OutStreamer->emitLabel(BeginLabel);
2391
2392  Asm->OutStreamer->AddComment("DWARF Version");
2393  Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2394
2395  Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2396  emitSectionReference(*TheU);
2397
2398  Asm->OutStreamer->AddComment("Compilation Unit Length");
2399  Asm->emitInt32(TheU->getLength());
2400
2401  // Emit the pubnames for this compilation unit.
2402  for (const auto &GI : Globals) {
2403    const char *Name = GI.getKeyData();
2404    const DIE *Entity = GI.second;
2405
2406    Asm->OutStreamer->AddComment("DIE offset");
2407    Asm->emitInt32(Entity->getOffset());
2408
2409    if (GnuStyle) {
2410      dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2411      Asm->OutStreamer->AddComment(
2412          Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2413          ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2414      Asm->emitInt8(Desc.toBits());
2415    }
2416
2417    Asm->OutStreamer->AddComment("External Name");
2418    Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2419  }
2420
2421  Asm->OutStreamer->AddComment("End Mark");
2422  Asm->emitInt32(0);
2423  Asm->OutStreamer->emitLabel(EndLabel);
2424}
2425
2426/// Emit null-terminated strings into a debug str section.
2427void DwarfDebug::emitDebugStr() {
2428  MCSection *StringOffsetsSection = nullptr;
2429  if (useSegmentedStringOffsetsTable()) {
2430    emitStringOffsetsTableHeader();
2431    StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2432  }
2433  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2434  Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2435                     StringOffsetsSection, /* UseRelativeOffsets = */ true);
2436}
2437
2438void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2439                                   const DebugLocStream::Entry &Entry,
2440                                   const DwarfCompileUnit *CU) {
2441  auto &&Comments = DebugLocs.getComments(Entry);
2442  auto Comment = Comments.begin();
2443  auto End = Comments.end();
2444
2445  // The expressions are inserted into a byte stream rather early (see
2446  // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2447  // need to reference a base_type DIE the offset of that DIE is not yet known.
2448  // To deal with this we instead insert a placeholder early and then extract
2449  // it here and replace it with the real reference.
2450  unsigned PtrSize = Asm->MAI->getCodePointerSize();
2451  DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2452                                    DebugLocs.getBytes(Entry).size()),
2453                          Asm->getDataLayout().isLittleEndian(), PtrSize);
2454  DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2455
2456  using Encoding = DWARFExpression::Operation::Encoding;
2457  uint64_t Offset = 0;
2458  for (auto &Op : Expr) {
2459    assert(Op.getCode() != dwarf::DW_OP_const_type &&
2460           "3 operand ops not yet supported");
2461    Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2462    Offset++;
2463    for (unsigned I = 0; I < 2; ++I) {
2464      if (Op.getDescription().Op[I] == Encoding::SizeNA)
2465        continue;
2466      if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2467        uint64_t Offset =
2468            CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2469        assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2470        Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2471        // Make sure comments stay aligned.
2472        for (unsigned J = 0; J < ULEB128PadSize; ++J)
2473          if (Comment != End)
2474            Comment++;
2475      } else {
2476        for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2477          Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2478      }
2479      Offset = Op.getOperandEndOffset(I);
2480    }
2481    assert(Offset == Op.getEndOffset());
2482  }
2483}
2484
2485void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2486                                   const DbgValueLoc &Value,
2487                                   DwarfExpression &DwarfExpr) {
2488  auto *DIExpr = Value.getExpression();
2489  DIExpressionCursor ExprCursor(DIExpr);
2490  DwarfExpr.addFragmentOffset(DIExpr);
2491  // Regular entry.
2492  if (Value.isInt()) {
2493    if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2494               BT->getEncoding() == dwarf::DW_ATE_signed_char))
2495      DwarfExpr.addSignedConstant(Value.getInt());
2496    else
2497      DwarfExpr.addUnsignedConstant(Value.getInt());
2498  } else if (Value.isLocation()) {
2499    MachineLocation Location = Value.getLoc();
2500    DwarfExpr.setLocation(Location, DIExpr);
2501    DIExpressionCursor Cursor(DIExpr);
2502
2503    if (DIExpr->isEntryValue())
2504      DwarfExpr.beginEntryValueExpression(Cursor);
2505
2506    const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2507    if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2508      return;
2509    return DwarfExpr.addExpression(std::move(Cursor));
2510  } else if (Value.isTargetIndexLocation()) {
2511    TargetIndexLocation Loc = Value.getTargetIndexLocation();
2512    // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2513    // encoding is supported.
2514    DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2515  } else if (Value.isConstantFP()) {
2516    APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2517    DwarfExpr.addUnsignedConstant(RawBytes);
2518  }
2519  DwarfExpr.addExpression(std::move(ExprCursor));
2520}
2521
2522void DebugLocEntry::finalize(const AsmPrinter &AP,
2523                             DebugLocStream::ListBuilder &List,
2524                             const DIBasicType *BT,
2525                             DwarfCompileUnit &TheCU) {
2526  assert(!Values.empty() &&
2527         "location list entries without values are redundant");
2528  assert(Begin != End && "unexpected location list entry with empty range");
2529  DebugLocStream::EntryBuilder Entry(List, Begin, End);
2530  BufferByteStreamer Streamer = Entry.getStreamer();
2531  DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2532  const DbgValueLoc &Value = Values[0];
2533  if (Value.isFragment()) {
2534    // Emit all fragments that belong to the same variable and range.
2535    assert(llvm::all_of(Values, [](DbgValueLoc P) {
2536          return P.isFragment();
2537        }) && "all values are expected to be fragments");
2538    assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2539
2540    for (auto Fragment : Values)
2541      DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2542
2543  } else {
2544    assert(Values.size() == 1 && "only fragments may have >1 value");
2545    DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2546  }
2547  DwarfExpr.finalize();
2548  if (DwarfExpr.TagOffset)
2549    List.setTagOffset(*DwarfExpr.TagOffset);
2550}
2551
2552void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2553                                           const DwarfCompileUnit *CU) {
2554  // Emit the size.
2555  Asm->OutStreamer->AddComment("Loc expr size");
2556  if (getDwarfVersion() >= 5)
2557    Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2558  else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2559    Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2560  else {
2561    // The entry is too big to fit into 16 bit, drop it as there is nothing we
2562    // can do.
2563    Asm->emitInt16(0);
2564    return;
2565  }
2566  // Emit the entry.
2567  APByteStreamer Streamer(*Asm);
2568  emitDebugLocEntry(Streamer, Entry, CU);
2569}
2570
2571// Emit the header of a DWARF 5 range list table list table. Returns the symbol
2572// that designates the end of the table for the caller to emit when the table is
2573// complete.
2574static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2575                                         const DwarfFile &Holder) {
2576  MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2577
2578  Asm->OutStreamer->AddComment("Offset entry count");
2579  Asm->emitInt32(Holder.getRangeLists().size());
2580  Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2581
2582  for (const RangeSpanList &List : Holder.getRangeLists())
2583    Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4);
2584
2585  return TableEnd;
2586}
2587
2588// Emit the header of a DWARF 5 locations list table. Returns the symbol that
2589// designates the end of the table for the caller to emit when the table is
2590// complete.
2591static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2592                                         const DwarfDebug &DD) {
2593  MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2594
2595  const auto &DebugLocs = DD.getDebugLocs();
2596
2597  Asm->OutStreamer->AddComment("Offset entry count");
2598  Asm->emitInt32(DebugLocs.getLists().size());
2599  Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2600
2601  for (const auto &List : DebugLocs.getLists())
2602    Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2603
2604  return TableEnd;
2605}
2606
2607template <typename Ranges, typename PayloadEmitter>
2608static void emitRangeList(
2609    DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2610    const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2611    unsigned StartxLength, unsigned EndOfList,
2612    StringRef (*StringifyEnum)(unsigned),
2613    bool ShouldUseBaseAddress,
2614    PayloadEmitter EmitPayload) {
2615
2616  auto Size = Asm->MAI->getCodePointerSize();
2617  bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2618
2619  // Emit our symbol so we can find the beginning of the range.
2620  Asm->OutStreamer->emitLabel(Sym);
2621
2622  // Gather all the ranges that apply to the same section so they can share
2623  // a base address entry.
2624  MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2625
2626  for (const auto &Range : R)
2627    SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2628
2629  const MCSymbol *CUBase = CU.getBaseAddress();
2630  bool BaseIsSet = false;
2631  for (const auto &P : SectionRanges) {
2632    auto *Base = CUBase;
2633    if (!Base && ShouldUseBaseAddress) {
2634      const MCSymbol *Begin = P.second.front()->Begin;
2635      const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2636      if (!UseDwarf5) {
2637        Base = NewBase;
2638        BaseIsSet = true;
2639        Asm->OutStreamer->emitIntValue(-1, Size);
2640        Asm->OutStreamer->AddComment("  base address");
2641        Asm->OutStreamer->emitSymbolValue(Base, Size);
2642      } else if (NewBase != Begin || P.second.size() > 1) {
2643        // Only use a base address if
2644        //  * the existing pool address doesn't match (NewBase != Begin)
2645        //  * or, there's more than one entry to share the base address
2646        Base = NewBase;
2647        BaseIsSet = true;
2648        Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2649        Asm->emitInt8(BaseAddressx);
2650        Asm->OutStreamer->AddComment("  base address index");
2651        Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2652      }
2653    } else if (BaseIsSet && !UseDwarf5) {
2654      BaseIsSet = false;
2655      assert(!Base);
2656      Asm->OutStreamer->emitIntValue(-1, Size);
2657      Asm->OutStreamer->emitIntValue(0, Size);
2658    }
2659
2660    for (const auto *RS : P.second) {
2661      const MCSymbol *Begin = RS->Begin;
2662      const MCSymbol *End = RS->End;
2663      assert(Begin && "Range without a begin symbol?");
2664      assert(End && "Range without an end symbol?");
2665      if (Base) {
2666        if (UseDwarf5) {
2667          // Emit offset_pair when we have a base.
2668          Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2669          Asm->emitInt8(OffsetPair);
2670          Asm->OutStreamer->AddComment("  starting offset");
2671          Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2672          Asm->OutStreamer->AddComment("  ending offset");
2673          Asm->emitLabelDifferenceAsULEB128(End, Base);
2674        } else {
2675          Asm->emitLabelDifference(Begin, Base, Size);
2676          Asm->emitLabelDifference(End, Base, Size);
2677        }
2678      } else if (UseDwarf5) {
2679        Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2680        Asm->emitInt8(StartxLength);
2681        Asm->OutStreamer->AddComment("  start index");
2682        Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2683        Asm->OutStreamer->AddComment("  length");
2684        Asm->emitLabelDifferenceAsULEB128(End, Begin);
2685      } else {
2686        Asm->OutStreamer->emitSymbolValue(Begin, Size);
2687        Asm->OutStreamer->emitSymbolValue(End, Size);
2688      }
2689      EmitPayload(*RS);
2690    }
2691  }
2692
2693  if (UseDwarf5) {
2694    Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2695    Asm->emitInt8(EndOfList);
2696  } else {
2697    // Terminate the list with two 0 values.
2698    Asm->OutStreamer->emitIntValue(0, Size);
2699    Asm->OutStreamer->emitIntValue(0, Size);
2700  }
2701}
2702
2703// Handles emission of both debug_loclist / debug_loclist.dwo
2704static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2705  emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2706                *List.CU, dwarf::DW_LLE_base_addressx,
2707                dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2708                dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2709                /* ShouldUseBaseAddress */ true,
2710                [&](const DebugLocStream::Entry &E) {
2711                  DD.emitDebugLocEntryLocation(E, List.CU);
2712                });
2713}
2714
2715void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2716  if (DebugLocs.getLists().empty())
2717    return;
2718
2719  Asm->OutStreamer->SwitchSection(Sec);
2720
2721  MCSymbol *TableEnd = nullptr;
2722  if (getDwarfVersion() >= 5)
2723    TableEnd = emitLoclistsTableHeader(Asm, *this);
2724
2725  for (const auto &List : DebugLocs.getLists())
2726    emitLocList(*this, Asm, List);
2727
2728  if (TableEnd)
2729    Asm->OutStreamer->emitLabel(TableEnd);
2730}
2731
2732// Emit locations into the .debug_loc/.debug_loclists section.
2733void DwarfDebug::emitDebugLoc() {
2734  emitDebugLocImpl(
2735      getDwarfVersion() >= 5
2736          ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2737          : Asm->getObjFileLowering().getDwarfLocSection());
2738}
2739
2740// Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2741void DwarfDebug::emitDebugLocDWO() {
2742  if (getDwarfVersion() >= 5) {
2743    emitDebugLocImpl(
2744        Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2745
2746    return;
2747  }
2748
2749  for (const auto &List : DebugLocs.getLists()) {
2750    Asm->OutStreamer->SwitchSection(
2751        Asm->getObjFileLowering().getDwarfLocDWOSection());
2752    Asm->OutStreamer->emitLabel(List.Label);
2753
2754    for (const auto &Entry : DebugLocs.getEntries(List)) {
2755      // GDB only supports startx_length in pre-standard split-DWARF.
2756      // (in v5 standard loclists, it currently* /only/ supports base_address +
2757      // offset_pair, so the implementations can't really share much since they
2758      // need to use different representations)
2759      // * as of October 2018, at least
2760      //
2761      // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2762      // addresses in the address pool to minimize object size/relocations.
2763      Asm->emitInt8(dwarf::DW_LLE_startx_length);
2764      unsigned idx = AddrPool.getIndex(Entry.Begin);
2765      Asm->emitULEB128(idx);
2766      // Also the pre-standard encoding is slightly different, emitting this as
2767      // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2768      Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2769      emitDebugLocEntryLocation(Entry, List.CU);
2770    }
2771    Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2772  }
2773}
2774
2775struct ArangeSpan {
2776  const MCSymbol *Start, *End;
2777};
2778
2779// Emit a debug aranges section, containing a CU lookup for any
2780// address we can tie back to a CU.
2781void DwarfDebug::emitDebugARanges() {
2782  // Provides a unique id per text section.
2783  MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2784
2785  // Filter labels by section.
2786  for (const SymbolCU &SCU : ArangeLabels) {
2787    if (SCU.Sym->isInSection()) {
2788      // Make a note of this symbol and it's section.
2789      MCSection *Section = &SCU.Sym->getSection();
2790      if (!Section->getKind().isMetadata())
2791        SectionMap[Section].push_back(SCU);
2792    } else {
2793      // Some symbols (e.g. common/bss on mach-o) can have no section but still
2794      // appear in the output. This sucks as we rely on sections to build
2795      // arange spans. We can do it without, but it's icky.
2796      SectionMap[nullptr].push_back(SCU);
2797    }
2798  }
2799
2800  DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2801
2802  for (auto &I : SectionMap) {
2803    MCSection *Section = I.first;
2804    SmallVector<SymbolCU, 8> &List = I.second;
2805    if (List.size() < 1)
2806      continue;
2807
2808    // If we have no section (e.g. common), just write out
2809    // individual spans for each symbol.
2810    if (!Section) {
2811      for (const SymbolCU &Cur : List) {
2812        ArangeSpan Span;
2813        Span.Start = Cur.Sym;
2814        Span.End = nullptr;
2815        assert(Cur.CU);
2816        Spans[Cur.CU].push_back(Span);
2817      }
2818      continue;
2819    }
2820
2821    // Sort the symbols by offset within the section.
2822    llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2823      unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2824      unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2825
2826      // Symbols with no order assigned should be placed at the end.
2827      // (e.g. section end labels)
2828      if (IA == 0)
2829        return false;
2830      if (IB == 0)
2831        return true;
2832      return IA < IB;
2833    });
2834
2835    // Insert a final terminator.
2836    List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2837
2838    // Build spans between each label.
2839    const MCSymbol *StartSym = List[0].Sym;
2840    for (size_t n = 1, e = List.size(); n < e; n++) {
2841      const SymbolCU &Prev = List[n - 1];
2842      const SymbolCU &Cur = List[n];
2843
2844      // Try and build the longest span we can within the same CU.
2845      if (Cur.CU != Prev.CU) {
2846        ArangeSpan Span;
2847        Span.Start = StartSym;
2848        Span.End = Cur.Sym;
2849        assert(Prev.CU);
2850        Spans[Prev.CU].push_back(Span);
2851        StartSym = Cur.Sym;
2852      }
2853    }
2854  }
2855
2856  // Start the dwarf aranges section.
2857  Asm->OutStreamer->SwitchSection(
2858      Asm->getObjFileLowering().getDwarfARangesSection());
2859
2860  unsigned PtrSize = Asm->MAI->getCodePointerSize();
2861
2862  // Build a list of CUs used.
2863  std::vector<DwarfCompileUnit *> CUs;
2864  for (const auto &it : Spans) {
2865    DwarfCompileUnit *CU = it.first;
2866    CUs.push_back(CU);
2867  }
2868
2869  // Sort the CU list (again, to ensure consistent output order).
2870  llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2871    return A->getUniqueID() < B->getUniqueID();
2872  });
2873
2874  // Emit an arange table for each CU we used.
2875  for (DwarfCompileUnit *CU : CUs) {
2876    std::vector<ArangeSpan> &List = Spans[CU];
2877
2878    // Describe the skeleton CU's offset and length, not the dwo file's.
2879    if (auto *Skel = CU->getSkeleton())
2880      CU = Skel;
2881
2882    // Emit size of content not including length itself.
2883    unsigned ContentSize =
2884        sizeof(int16_t) + // DWARF ARange version number
2885        sizeof(int32_t) + // Offset of CU in the .debug_info section
2886        sizeof(int8_t) +  // Pointer Size (in bytes)
2887        sizeof(int8_t);   // Segment Size (in bytes)
2888
2889    unsigned TupleSize = PtrSize * 2;
2890
2891    // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2892    unsigned Padding =
2893        offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2894
2895    ContentSize += Padding;
2896    ContentSize += (List.size() + 1) * TupleSize;
2897
2898    // For each compile unit, write the list of spans it covers.
2899    Asm->OutStreamer->AddComment("Length of ARange Set");
2900    Asm->emitInt32(ContentSize);
2901    Asm->OutStreamer->AddComment("DWARF Arange version number");
2902    Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2903    Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2904    emitSectionReference(*CU);
2905    Asm->OutStreamer->AddComment("Address Size (in bytes)");
2906    Asm->emitInt8(PtrSize);
2907    Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2908    Asm->emitInt8(0);
2909
2910    Asm->OutStreamer->emitFill(Padding, 0xff);
2911
2912    for (const ArangeSpan &Span : List) {
2913      Asm->emitLabelReference(Span.Start, PtrSize);
2914
2915      // Calculate the size as being from the span start to it's end.
2916      if (Span.End) {
2917        Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2918      } else {
2919        // For symbols without an end marker (e.g. common), we
2920        // write a single arange entry containing just that one symbol.
2921        uint64_t Size = SymSize[Span.Start];
2922        if (Size == 0)
2923          Size = 1;
2924
2925        Asm->OutStreamer->emitIntValue(Size, PtrSize);
2926      }
2927    }
2928
2929    Asm->OutStreamer->AddComment("ARange terminator");
2930    Asm->OutStreamer->emitIntValue(0, PtrSize);
2931    Asm->OutStreamer->emitIntValue(0, PtrSize);
2932  }
2933}
2934
2935/// Emit a single range list. We handle both DWARF v5 and earlier.
2936static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2937                          const RangeSpanList &List) {
2938  emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2939                dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2940                dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2941                llvm::dwarf::RangeListEncodingString,
2942                List.CU->getCUNode()->getRangesBaseAddress() ||
2943                    DD.getDwarfVersion() >= 5,
2944                [](auto) {});
2945}
2946
2947void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2948  if (Holder.getRangeLists().empty())
2949    return;
2950
2951  assert(useRangesSection());
2952  assert(!CUMap.empty());
2953  assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2954    return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2955  }));
2956
2957  Asm->OutStreamer->SwitchSection(Section);
2958
2959  MCSymbol *TableEnd = nullptr;
2960  if (getDwarfVersion() >= 5)
2961    TableEnd = emitRnglistsTableHeader(Asm, Holder);
2962
2963  for (const RangeSpanList &List : Holder.getRangeLists())
2964    emitRangeList(*this, Asm, List);
2965
2966  if (TableEnd)
2967    Asm->OutStreamer->emitLabel(TableEnd);
2968}
2969
2970/// Emit address ranges into the .debug_ranges section or into the DWARF v5
2971/// .debug_rnglists section.
2972void DwarfDebug::emitDebugRanges() {
2973  const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2974
2975  emitDebugRangesImpl(Holder,
2976                      getDwarfVersion() >= 5
2977                          ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2978                          : Asm->getObjFileLowering().getDwarfRangesSection());
2979}
2980
2981void DwarfDebug::emitDebugRangesDWO() {
2982  emitDebugRangesImpl(InfoHolder,
2983                      Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2984}
2985
2986/// Emit the header of a DWARF 5 macro section.
2987static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2988                            const DwarfCompileUnit &CU) {
2989  enum HeaderFlagMask {
2990#define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2991#include "llvm/BinaryFormat/Dwarf.def"
2992  };
2993  uint8_t Flags = 0;
2994  Asm->OutStreamer->AddComment("Macro information version");
2995  Asm->emitInt16(5);
2996  // We are setting Offset and line offset flags unconditionally here,
2997  // since we're only supporting DWARF32 and line offset should be mostly
2998  // present.
2999  // FIXME: Add support for DWARF64.
3000  Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET;
3001  Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3002  Asm->emitInt8(Flags);
3003  Asm->OutStreamer->AddComment("debug_line_offset");
3004  Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4);
3005}
3006
3007void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3008  for (auto *MN : Nodes) {
3009    if (auto *M = dyn_cast<DIMacro>(MN))
3010      emitMacro(*M);
3011    else if (auto *F = dyn_cast<DIMacroFile>(MN))
3012      emitMacroFile(*F, U);
3013    else
3014      llvm_unreachable("Unexpected DI type!");
3015  }
3016}
3017
3018void DwarfDebug::emitMacro(DIMacro &M) {
3019  StringRef Name = M.getName();
3020  StringRef Value = M.getValue();
3021  bool UseMacro = getDwarfVersion() >= 5;
3022
3023  if (UseMacro) {
3024    unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3025                        ? dwarf::DW_MACRO_define_strx
3026                        : dwarf::DW_MACRO_undef_strx;
3027    Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3028    Asm->emitULEB128(Type);
3029    Asm->OutStreamer->AddComment("Line Number");
3030    Asm->emitULEB128(M.getLine());
3031    Asm->OutStreamer->AddComment("Macro String");
3032    if (!Value.empty())
3033      Asm->emitULEB128(this->InfoHolder.getStringPool()
3034                           .getIndexedEntry(*Asm, (Name + " " + Value).str())
3035                           .getIndex());
3036    else
3037      // DW_MACRO_undef_strx doesn't have a value, so just emit the macro
3038      // string.
3039      Asm->emitULEB128(this->InfoHolder.getStringPool()
3040                           .getIndexedEntry(*Asm, (Name).str())
3041                           .getIndex());
3042  } else {
3043    Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3044    Asm->emitULEB128(M.getMacinfoType());
3045    Asm->OutStreamer->AddComment("Line Number");
3046    Asm->emitULEB128(M.getLine());
3047    Asm->OutStreamer->AddComment("Macro String");
3048    Asm->OutStreamer->emitBytes(Name);
3049    if (!Value.empty()) {
3050      // There should be one space between macro name and macro value.
3051      Asm->emitInt8(' ');
3052      Asm->OutStreamer->AddComment("Macro Value=");
3053      Asm->OutStreamer->emitBytes(Value);
3054    }
3055    Asm->emitInt8('\0');
3056  }
3057}
3058
3059void DwarfDebug::emitMacroFileImpl(
3060    DIMacroFile &F, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3061    StringRef (*MacroFormToString)(unsigned Form)) {
3062
3063  Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3064  Asm->emitULEB128(StartFile);
3065  Asm->OutStreamer->AddComment("Line Number");
3066  Asm->emitULEB128(F.getLine());
3067  Asm->OutStreamer->AddComment("File Number");
3068  Asm->emitULEB128(U.getOrCreateSourceID(F.getFile()));
3069  handleMacroNodes(F.getElements(), U);
3070  Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3071  Asm->emitULEB128(EndFile);
3072}
3073
3074void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3075  // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3076  // so for readibility/uniformity, We are explicitly emitting those.
3077  assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3078  bool UseMacro = getDwarfVersion() >= 5;
3079  if (UseMacro)
3080    emitMacroFileImpl(F, U, dwarf::DW_MACRO_start_file,
3081                      dwarf::DW_MACRO_end_file, dwarf::MacroString);
3082  else
3083    emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3084                      dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3085}
3086
3087void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3088  for (const auto &P : CUMap) {
3089    auto &TheCU = *P.second;
3090    auto *SkCU = TheCU.getSkeleton();
3091    DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3092    auto *CUNode = cast<DICompileUnit>(P.first);
3093    DIMacroNodeArray Macros = CUNode->getMacros();
3094    if (Macros.empty())
3095      continue;
3096    Asm->OutStreamer->SwitchSection(Section);
3097    Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3098    if (getDwarfVersion() >= 5)
3099      emitMacroHeader(Asm, *this, U);
3100    handleMacroNodes(Macros, U);
3101    Asm->OutStreamer->AddComment("End Of Macro List Mark");
3102    Asm->emitInt8(0);
3103  }
3104}
3105
3106/// Emit macros into a debug macinfo/macro section.
3107void DwarfDebug::emitDebugMacinfo() {
3108  auto &ObjLower = Asm->getObjFileLowering();
3109  emitDebugMacinfoImpl(getDwarfVersion() >= 5
3110                           ? ObjLower.getDwarfMacroSection()
3111                           : ObjLower.getDwarfMacinfoSection());
3112}
3113
3114void DwarfDebug::emitDebugMacinfoDWO() {
3115  auto &ObjLower = Asm->getObjFileLowering();
3116  emitDebugMacinfoImpl(getDwarfVersion() >= 5
3117                           ? ObjLower.getDwarfMacroDWOSection()
3118                           : ObjLower.getDwarfMacinfoDWOSection());
3119}
3120
3121// DWARF5 Experimental Separate Dwarf emitters.
3122
3123void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3124                                  std::unique_ptr<DwarfCompileUnit> NewU) {
3125
3126  if (!CompilationDir.empty())
3127    NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3128  addGnuPubAttributes(*NewU, Die);
3129
3130  SkeletonHolder.addUnit(std::move(NewU));
3131}
3132
3133DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3134
3135  auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3136      CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3137      UnitKind::Skeleton);
3138  DwarfCompileUnit &NewCU = *OwnedUnit;
3139  NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3140
3141  NewCU.initStmtList();
3142
3143  if (useSegmentedStringOffsetsTable())
3144    NewCU.addStringOffsetsStart();
3145
3146  initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3147
3148  return NewCU;
3149}
3150
3151// Emit the .debug_info.dwo section for separated dwarf. This contains the
3152// compile units that would normally be in debug_info.
3153void DwarfDebug::emitDebugInfoDWO() {
3154  assert(useSplitDwarf() && "No split dwarf debug info?");
3155  // Don't emit relocations into the dwo file.
3156  InfoHolder.emitUnits(/* UseOffsets */ true);
3157}
3158
3159// Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3160// abbreviations for the .debug_info.dwo section.
3161void DwarfDebug::emitDebugAbbrevDWO() {
3162  assert(useSplitDwarf() && "No split dwarf?");
3163  InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3164}
3165
3166void DwarfDebug::emitDebugLineDWO() {
3167  assert(useSplitDwarf() && "No split dwarf?");
3168  SplitTypeUnitFileTable.Emit(
3169      *Asm->OutStreamer, MCDwarfLineTableParams(),
3170      Asm->getObjFileLowering().getDwarfLineDWOSection());
3171}
3172
3173void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3174  assert(useSplitDwarf() && "No split dwarf?");
3175  InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3176      *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3177      InfoHolder.getStringOffsetsStartSym());
3178}
3179
3180// Emit the .debug_str.dwo section for separated dwarf. This contains the
3181// string section and is identical in format to traditional .debug_str
3182// sections.
3183void DwarfDebug::emitDebugStrDWO() {
3184  if (useSegmentedStringOffsetsTable())
3185    emitStringOffsetsTableHeaderDWO();
3186  assert(useSplitDwarf() && "No split dwarf?");
3187  MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3188  InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3189                         OffSec, /* UseRelativeOffsets = */ false);
3190}
3191
3192// Emit address pool.
3193void DwarfDebug::emitDebugAddr() {
3194  AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3195}
3196
3197MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3198  if (!useSplitDwarf())
3199    return nullptr;
3200  const DICompileUnit *DIUnit = CU.getCUNode();
3201  SplitTypeUnitFileTable.maybeSetRootFile(
3202      DIUnit->getDirectory(), DIUnit->getFilename(),
3203      CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3204  return &SplitTypeUnitFileTable;
3205}
3206
3207uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3208  MD5 Hash;
3209  Hash.update(Identifier);
3210  // ... take the least significant 8 bytes and return those. Our MD5
3211  // implementation always returns its results in little endian, so we actually
3212  // need the "high" word.
3213  MD5::MD5Result Result;
3214  Hash.final(Result);
3215  return Result.high();
3216}
3217
3218void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3219                                      StringRef Identifier, DIE &RefDie,
3220                                      const DICompositeType *CTy) {
3221  // Fast path if we're building some type units and one has already used the
3222  // address pool we know we're going to throw away all this work anyway, so
3223  // don't bother building dependent types.
3224  if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3225    return;
3226
3227  auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3228  if (!Ins.second) {
3229    CU.addDIETypeSignature(RefDie, Ins.first->second);
3230    return;
3231  }
3232
3233  bool TopLevelType = TypeUnitsUnderConstruction.empty();
3234  AddrPool.resetUsedFlag();
3235
3236  auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3237                                                    getDwoLineTable(CU));
3238  DwarfTypeUnit &NewTU = *OwnedUnit;
3239  DIE &UnitDie = NewTU.getUnitDie();
3240  TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3241
3242  NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3243                CU.getLanguage());
3244
3245  uint64_t Signature = makeTypeSignature(Identifier);
3246  NewTU.setTypeSignature(Signature);
3247  Ins.first->second = Signature;
3248
3249  if (useSplitDwarf()) {
3250    MCSection *Section =
3251        getDwarfVersion() <= 4
3252            ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3253            : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3254    NewTU.setSection(Section);
3255  } else {
3256    MCSection *Section =
3257        getDwarfVersion() <= 4
3258            ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3259            : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3260    NewTU.setSection(Section);
3261    // Non-split type units reuse the compile unit's line table.
3262    CU.applyStmtList(UnitDie);
3263  }
3264
3265  // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3266  // units.
3267  if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3268    NewTU.addStringOffsetsStart();
3269
3270  NewTU.setType(NewTU.createTypeDIE(CTy));
3271
3272  if (TopLevelType) {
3273    auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3274    TypeUnitsUnderConstruction.clear();
3275
3276    // Types referencing entries in the address table cannot be placed in type
3277    // units.
3278    if (AddrPool.hasBeenUsed()) {
3279
3280      // Remove all the types built while building this type.
3281      // This is pessimistic as some of these types might not be dependent on
3282      // the type that used an address.
3283      for (const auto &TU : TypeUnitsToAdd)
3284        TypeSignatures.erase(TU.second);
3285
3286      // Construct this type in the CU directly.
3287      // This is inefficient because all the dependent types will be rebuilt
3288      // from scratch, including building them in type units, discovering that
3289      // they depend on addresses, throwing them out and rebuilding them.
3290      CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3291      return;
3292    }
3293
3294    // If the type wasn't dependent on fission addresses, finish adding the type
3295    // and all its dependent types.
3296    for (auto &TU : TypeUnitsToAdd) {
3297      InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3298      InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3299    }
3300  }
3301  CU.addDIETypeSignature(RefDie, Signature);
3302}
3303
3304DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3305    : DD(DD),
3306      TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3307  DD->TypeUnitsUnderConstruction.clear();
3308  assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3309}
3310
3311DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3312  DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3313  DD->AddrPool.resetUsedFlag();
3314}
3315
3316DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3317  return NonTypeUnitContext(this);
3318}
3319
3320// Add the Name along with its companion DIE to the appropriate accelerator
3321// table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3322// AccelTableKind::Apple, we use the table we got as an argument). If
3323// accelerator tables are disabled, this function does nothing.
3324template <typename DataT>
3325void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3326                                  AccelTable<DataT> &AppleAccel, StringRef Name,
3327                                  const DIE &Die) {
3328  if (getAccelTableKind() == AccelTableKind::None)
3329    return;
3330
3331  if (getAccelTableKind() != AccelTableKind::Apple &&
3332      CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3333    return;
3334
3335  DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3336  DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3337
3338  switch (getAccelTableKind()) {
3339  case AccelTableKind::Apple:
3340    AppleAccel.addName(Ref, Die);
3341    break;
3342  case AccelTableKind::Dwarf:
3343    AccelDebugNames.addName(Ref, Die);
3344    break;
3345  case AccelTableKind::Default:
3346    llvm_unreachable("Default should have already been resolved.");
3347  case AccelTableKind::None:
3348    llvm_unreachable("None handled above");
3349  }
3350}
3351
3352void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3353                              const DIE &Die) {
3354  addAccelNameImpl(CU, AccelNames, Name, Die);
3355}
3356
3357void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3358                              const DIE &Die) {
3359  // ObjC names go only into the Apple accelerator tables.
3360  if (getAccelTableKind() == AccelTableKind::Apple)
3361    addAccelNameImpl(CU, AccelObjC, Name, Die);
3362}
3363
3364void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3365                                   const DIE &Die) {
3366  addAccelNameImpl(CU, AccelNamespace, Name, Die);
3367}
3368
3369void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3370                              const DIE &Die, char Flags) {
3371  addAccelNameImpl(CU, AccelTypes, Name, Die);
3372}
3373
3374uint16_t DwarfDebug::getDwarfVersion() const {
3375  return Asm->OutStreamer->getContext().getDwarfVersion();
3376}
3377
3378const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3379  return SectionLabels.find(S)->second;
3380}
3381void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3382  if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3383    if (useSplitDwarf() || getDwarfVersion() >= 5)
3384      AddrPool.getIndex(S);
3385}
3386