1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Bitcode/BitcodeReader.h"
10#include "MetadataLoader.h"
11#include "ValueList.h"
12#include "llvm/ADT/APFloat.h"
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Bitstream/BitstreamReader.h"
24#include "llvm/Bitcode/LLVMBitCodes.h"
25#include "llvm/Config/llvm-config.h"
26#include "llvm/IR/Argument.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/AutoUpgrade.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/Comdat.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DebugInfo.h"
36#include "llvm/IR/DebugInfoMetadata.h"
37#include "llvm/IR/DebugLoc.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GVMaterializer.h"
41#include "llvm/IR/GlobalAlias.h"
42#include "llvm/IR/GlobalIFunc.h"
43#include "llvm/IR/GlobalIndirectSymbol.h"
44#include "llvm/IR/GlobalObject.h"
45#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/GlobalVariable.h"
47#include "llvm/IR/InlineAsm.h"
48#include "llvm/IR/InstIterator.h"
49#include "llvm/IR/InstrTypes.h"
50#include "llvm/IR/Instruction.h"
51#include "llvm/IR/Instructions.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ModuleSummaryIndex.h"
57#include "llvm/IR/Operator.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/Value.h"
60#include "llvm/IR/Verifier.h"
61#include "llvm/Support/AtomicOrdering.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/CommandLine.h"
64#include "llvm/Support/Compiler.h"
65#include "llvm/Support/Debug.h"
66#include "llvm/Support/Error.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/ErrorOr.h"
69#include "llvm/Support/ManagedStatic.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/MemoryBuffer.h"
72#include "llvm/Support/raw_ostream.h"
73#include <algorithm>
74#include <cassert>
75#include <cstddef>
76#include <cstdint>
77#include <deque>
78#include <map>
79#include <memory>
80#include <set>
81#include <string>
82#include <system_error>
83#include <tuple>
84#include <utility>
85#include <vector>
86
87using namespace llvm;
88
89static cl::opt<bool> PrintSummaryGUIDs(
90    "print-summary-global-ids", cl::init(false), cl::Hidden,
91    cl::desc(
92        "Print the global id for each value when reading the module summary"));
93
94namespace {
95
96enum {
97  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98};
99
100} // end anonymous namespace
101
102static Error error(const Twine &Message) {
103  return make_error<StringError>(
104      Message, make_error_code(BitcodeError::CorruptedBitcode));
105}
106
107static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108  if (!Stream.canSkipToPos(4))
109    return createStringError(std::errc::illegal_byte_sequence,
110                             "file too small to contain bitcode header");
111  for (unsigned C : {'B', 'C'})
112    if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113      if (Res.get() != C)
114        return createStringError(std::errc::illegal_byte_sequence,
115                                 "file doesn't start with bitcode header");
116    } else
117      return Res.takeError();
118  for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119    if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120      if (Res.get() != C)
121        return createStringError(std::errc::illegal_byte_sequence,
122                                 "file doesn't start with bitcode header");
123    } else
124      return Res.takeError();
125  return Error::success();
126}
127
128static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129  const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130  const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131
132  if (Buffer.getBufferSize() & 3)
133    return error("Invalid bitcode signature");
134
135  // If we have a wrapper header, parse it and ignore the non-bc file contents.
136  // The magic number is 0x0B17C0DE stored in little endian.
137  if (isBitcodeWrapper(BufPtr, BufEnd))
138    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139      return error("Invalid bitcode wrapper header");
140
141  BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142  if (Error Err = hasInvalidBitcodeHeader(Stream))
143    return std::move(Err);
144
145  return std::move(Stream);
146}
147
148/// Convert a string from a record into an std::string, return true on failure.
149template <typename StrTy>
150static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                            StrTy &Result) {
152  if (Idx > Record.size())
153    return true;
154
155  Result.append(Record.begin() + Idx, Record.end());
156  return false;
157}
158
159// Strip all the TBAA attachment for the module.
160static void stripTBAA(Module *M) {
161  for (auto &F : *M) {
162    if (F.isMaterializable())
163      continue;
164    for (auto &I : instructions(F))
165      I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166  }
167}
168
169/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170/// "epoch" encoded in the bitcode, and return the producer name if any.
171static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172  if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173    return std::move(Err);
174
175  // Read all the records.
176  SmallVector<uint64_t, 64> Record;
177
178  std::string ProducerIdentification;
179
180  while (true) {
181    BitstreamEntry Entry;
182    if (Expected<BitstreamEntry> Res = Stream.advance())
183      Entry = Res.get();
184    else
185      return Res.takeError();
186
187    switch (Entry.Kind) {
188    default:
189    case BitstreamEntry::Error:
190      return error("Malformed block");
191    case BitstreamEntry::EndBlock:
192      return ProducerIdentification;
193    case BitstreamEntry::Record:
194      // The interesting case.
195      break;
196    }
197
198    // Read a record.
199    Record.clear();
200    Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
201    if (!MaybeBitCode)
202      return MaybeBitCode.takeError();
203    switch (MaybeBitCode.get()) {
204    default: // Default behavior: reject
205      return error("Invalid value");
206    case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
207      convertToString(Record, 0, ProducerIdentification);
208      break;
209    case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
210      unsigned epoch = (unsigned)Record[0];
211      if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
212        return error(
213          Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
214          "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
215      }
216    }
217    }
218  }
219}
220
221static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
222  // We expect a number of well-defined blocks, though we don't necessarily
223  // need to understand them all.
224  while (true) {
225    if (Stream.AtEndOfStream())
226      return "";
227
228    BitstreamEntry Entry;
229    if (Expected<BitstreamEntry> Res = Stream.advance())
230      Entry = std::move(Res.get());
231    else
232      return Res.takeError();
233
234    switch (Entry.Kind) {
235    case BitstreamEntry::EndBlock:
236    case BitstreamEntry::Error:
237      return error("Malformed block");
238
239    case BitstreamEntry::SubBlock:
240      if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
241        return readIdentificationBlock(Stream);
242
243      // Ignore other sub-blocks.
244      if (Error Err = Stream.SkipBlock())
245        return std::move(Err);
246      continue;
247    case BitstreamEntry::Record:
248      if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
249        continue;
250      else
251        return Skipped.takeError();
252    }
253  }
254}
255
256static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
257  if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
258    return std::move(Err);
259
260  SmallVector<uint64_t, 64> Record;
261  // Read all the records for this module.
262
263  while (true) {
264    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
265    if (!MaybeEntry)
266      return MaybeEntry.takeError();
267    BitstreamEntry Entry = MaybeEntry.get();
268
269    switch (Entry.Kind) {
270    case BitstreamEntry::SubBlock: // Handled for us already.
271    case BitstreamEntry::Error:
272      return error("Malformed block");
273    case BitstreamEntry::EndBlock:
274      return false;
275    case BitstreamEntry::Record:
276      // The interesting case.
277      break;
278    }
279
280    // Read a record.
281    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
282    if (!MaybeRecord)
283      return MaybeRecord.takeError();
284    switch (MaybeRecord.get()) {
285    default:
286      break; // Default behavior, ignore unknown content.
287    case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
288      std::string S;
289      if (convertToString(Record, 0, S))
290        return error("Invalid record");
291      // Check for the i386 and other (x86_64, ARM) conventions
292      if (S.find("__DATA,__objc_catlist") != std::string::npos ||
293          S.find("__OBJC,__category") != std::string::npos)
294        return true;
295      break;
296    }
297    }
298    Record.clear();
299  }
300  llvm_unreachable("Exit infinite loop");
301}
302
303static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
304  // We expect a number of well-defined blocks, though we don't necessarily
305  // need to understand them all.
306  while (true) {
307    BitstreamEntry Entry;
308    if (Expected<BitstreamEntry> Res = Stream.advance())
309      Entry = std::move(Res.get());
310    else
311      return Res.takeError();
312
313    switch (Entry.Kind) {
314    case BitstreamEntry::Error:
315      return error("Malformed block");
316    case BitstreamEntry::EndBlock:
317      return false;
318
319    case BitstreamEntry::SubBlock:
320      if (Entry.ID == bitc::MODULE_BLOCK_ID)
321        return hasObjCCategoryInModule(Stream);
322
323      // Ignore other sub-blocks.
324      if (Error Err = Stream.SkipBlock())
325        return std::move(Err);
326      continue;
327
328    case BitstreamEntry::Record:
329      if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
330        continue;
331      else
332        return Skipped.takeError();
333    }
334  }
335}
336
337static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
338  if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
339    return std::move(Err);
340
341  SmallVector<uint64_t, 64> Record;
342
343  std::string Triple;
344
345  // Read all the records for this module.
346  while (true) {
347    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
348    if (!MaybeEntry)
349      return MaybeEntry.takeError();
350    BitstreamEntry Entry = MaybeEntry.get();
351
352    switch (Entry.Kind) {
353    case BitstreamEntry::SubBlock: // Handled for us already.
354    case BitstreamEntry::Error:
355      return error("Malformed block");
356    case BitstreamEntry::EndBlock:
357      return Triple;
358    case BitstreamEntry::Record:
359      // The interesting case.
360      break;
361    }
362
363    // Read a record.
364    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
365    if (!MaybeRecord)
366      return MaybeRecord.takeError();
367    switch (MaybeRecord.get()) {
368    default: break;  // Default behavior, ignore unknown content.
369    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
370      std::string S;
371      if (convertToString(Record, 0, S))
372        return error("Invalid record");
373      Triple = S;
374      break;
375    }
376    }
377    Record.clear();
378  }
379  llvm_unreachable("Exit infinite loop");
380}
381
382static Expected<std::string> readTriple(BitstreamCursor &Stream) {
383  // We expect a number of well-defined blocks, though we don't necessarily
384  // need to understand them all.
385  while (true) {
386    Expected<BitstreamEntry> MaybeEntry = Stream.advance();
387    if (!MaybeEntry)
388      return MaybeEntry.takeError();
389    BitstreamEntry Entry = MaybeEntry.get();
390
391    switch (Entry.Kind) {
392    case BitstreamEntry::Error:
393      return error("Malformed block");
394    case BitstreamEntry::EndBlock:
395      return "";
396
397    case BitstreamEntry::SubBlock:
398      if (Entry.ID == bitc::MODULE_BLOCK_ID)
399        return readModuleTriple(Stream);
400
401      // Ignore other sub-blocks.
402      if (Error Err = Stream.SkipBlock())
403        return std::move(Err);
404      continue;
405
406    case BitstreamEntry::Record:
407      if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
408        continue;
409      else
410        return Skipped.takeError();
411    }
412  }
413}
414
415namespace {
416
417class BitcodeReaderBase {
418protected:
419  BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
420      : Stream(std::move(Stream)), Strtab(Strtab) {
421    this->Stream.setBlockInfo(&BlockInfo);
422  }
423
424  BitstreamBlockInfo BlockInfo;
425  BitstreamCursor Stream;
426  StringRef Strtab;
427
428  /// In version 2 of the bitcode we store names of global values and comdats in
429  /// a string table rather than in the VST.
430  bool UseStrtab = false;
431
432  Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
433
434  /// If this module uses a string table, pop the reference to the string table
435  /// and return the referenced string and the rest of the record. Otherwise
436  /// just return the record itself.
437  std::pair<StringRef, ArrayRef<uint64_t>>
438  readNameFromStrtab(ArrayRef<uint64_t> Record);
439
440  bool readBlockInfo();
441
442  // Contains an arbitrary and optional string identifying the bitcode producer
443  std::string ProducerIdentification;
444
445  Error error(const Twine &Message);
446};
447
448} // end anonymous namespace
449
450Error BitcodeReaderBase::error(const Twine &Message) {
451  std::string FullMsg = Message.str();
452  if (!ProducerIdentification.empty())
453    FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
454               LLVM_VERSION_STRING "')";
455  return ::error(FullMsg);
456}
457
458Expected<unsigned>
459BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
460  if (Record.empty())
461    return error("Invalid record");
462  unsigned ModuleVersion = Record[0];
463  if (ModuleVersion > 2)
464    return error("Invalid value");
465  UseStrtab = ModuleVersion >= 2;
466  return ModuleVersion;
467}
468
469std::pair<StringRef, ArrayRef<uint64_t>>
470BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
471  if (!UseStrtab)
472    return {"", Record};
473  // Invalid reference. Let the caller complain about the record being empty.
474  if (Record[0] + Record[1] > Strtab.size())
475    return {"", {}};
476  return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
477}
478
479namespace {
480
481class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
482  LLVMContext &Context;
483  Module *TheModule = nullptr;
484  // Next offset to start scanning for lazy parsing of function bodies.
485  uint64_t NextUnreadBit = 0;
486  // Last function offset found in the VST.
487  uint64_t LastFunctionBlockBit = 0;
488  bool SeenValueSymbolTable = false;
489  uint64_t VSTOffset = 0;
490
491  std::vector<std::string> SectionTable;
492  std::vector<std::string> GCTable;
493
494  std::vector<Type*> TypeList;
495  DenseMap<Function *, FunctionType *> FunctionTypes;
496  BitcodeReaderValueList ValueList;
497  Optional<MetadataLoader> MDLoader;
498  std::vector<Comdat *> ComdatList;
499  SmallVector<Instruction *, 64> InstructionList;
500
501  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
502  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
503  std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
504  std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
505  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
506
507  /// The set of attributes by index.  Index zero in the file is for null, and
508  /// is thus not represented here.  As such all indices are off by one.
509  std::vector<AttributeList> MAttributes;
510
511  /// The set of attribute groups.
512  std::map<unsigned, AttributeList> MAttributeGroups;
513
514  /// While parsing a function body, this is a list of the basic blocks for the
515  /// function.
516  std::vector<BasicBlock*> FunctionBBs;
517
518  // When reading the module header, this list is populated with functions that
519  // have bodies later in the file.
520  std::vector<Function*> FunctionsWithBodies;
521
522  // When intrinsic functions are encountered which require upgrading they are
523  // stored here with their replacement function.
524  using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
525  UpdatedIntrinsicMap UpgradedIntrinsics;
526  // Intrinsics which were remangled because of types rename
527  UpdatedIntrinsicMap RemangledIntrinsics;
528
529  // Several operations happen after the module header has been read, but
530  // before function bodies are processed. This keeps track of whether
531  // we've done this yet.
532  bool SeenFirstFunctionBody = false;
533
534  /// When function bodies are initially scanned, this map contains info about
535  /// where to find deferred function body in the stream.
536  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
537
538  /// When Metadata block is initially scanned when parsing the module, we may
539  /// choose to defer parsing of the metadata. This vector contains info about
540  /// which Metadata blocks are deferred.
541  std::vector<uint64_t> DeferredMetadataInfo;
542
543  /// These are basic blocks forward-referenced by block addresses.  They are
544  /// inserted lazily into functions when they're loaded.  The basic block ID is
545  /// its index into the vector.
546  DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
547  std::deque<Function *> BasicBlockFwdRefQueue;
548
549  /// Indicates that we are using a new encoding for instruction operands where
550  /// most operands in the current FUNCTION_BLOCK are encoded relative to the
551  /// instruction number, for a more compact encoding.  Some instruction
552  /// operands are not relative to the instruction ID: basic block numbers, and
553  /// types. Once the old style function blocks have been phased out, we would
554  /// not need this flag.
555  bool UseRelativeIDs = false;
556
557  /// True if all functions will be materialized, negating the need to process
558  /// (e.g.) blockaddress forward references.
559  bool WillMaterializeAllForwardRefs = false;
560
561  bool StripDebugInfo = false;
562  TBAAVerifier TBAAVerifyHelper;
563
564  std::vector<std::string> BundleTags;
565  SmallVector<SyncScope::ID, 8> SSIDs;
566
567public:
568  BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
569                StringRef ProducerIdentification, LLVMContext &Context);
570
571  Error materializeForwardReferencedFunctions();
572
573  Error materialize(GlobalValue *GV) override;
574  Error materializeModule() override;
575  std::vector<StructType *> getIdentifiedStructTypes() const override;
576
577  /// Main interface to parsing a bitcode buffer.
578  /// \returns true if an error occurred.
579  Error parseBitcodeInto(
580      Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
581      DataLayoutCallbackTy DataLayoutCallback = [](std::string) {
582        return None;
583      });
584
585  static uint64_t decodeSignRotatedValue(uint64_t V);
586
587  /// Materialize any deferred Metadata block.
588  Error materializeMetadata() override;
589
590  void setStripDebugInfo() override;
591
592private:
593  std::vector<StructType *> IdentifiedStructTypes;
594  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
595  StructType *createIdentifiedStructType(LLVMContext &Context);
596
597  /// Map all pointer types within \param Ty to the opaque pointer
598  /// type in the same address space if opaque pointers are being
599  /// used, otherwise nop. This converts a bitcode-reader internal
600  /// type into one suitable for use in a Value.
601  Type *flattenPointerTypes(Type *Ty) {
602    return Ty;
603  }
604
605  /// Given a fully structured pointer type (i.e. not opaque), return
606  /// the flattened form of its element, suitable for use in a Value.
607  Type *getPointerElementFlatType(Type *Ty) {
608    return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
609  }
610
611  /// Given a fully structured pointer type, get its element type in
612  /// both fully structured form, and flattened form suitable for use
613  /// in a Value.
614  std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
615    Type *ElTy = cast<PointerType>(FullTy)->getElementType();
616    return std::make_pair(ElTy, flattenPointerTypes(ElTy));
617  }
618
619  /// Return the flattened type (suitable for use in a Value)
620  /// specified by the given \param ID .
621  Type *getTypeByID(unsigned ID) {
622    return flattenPointerTypes(getFullyStructuredTypeByID(ID));
623  }
624
625  /// Return the fully structured (bitcode-reader internal) type
626  /// corresponding to the given \param ID .
627  Type *getFullyStructuredTypeByID(unsigned ID);
628
629  Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
630    if (Ty && Ty->isMetadataTy())
631      return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
632    return ValueList.getValueFwdRef(ID, Ty, FullTy);
633  }
634
635  Metadata *getFnMetadataByID(unsigned ID) {
636    return MDLoader->getMetadataFwdRefOrLoad(ID);
637  }
638
639  BasicBlock *getBasicBlock(unsigned ID) const {
640    if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
641    return FunctionBBs[ID];
642  }
643
644  AttributeList getAttributes(unsigned i) const {
645    if (i-1 < MAttributes.size())
646      return MAttributes[i-1];
647    return AttributeList();
648  }
649
650  /// Read a value/type pair out of the specified record from slot 'Slot'.
651  /// Increment Slot past the number of slots used in the record. Return true on
652  /// failure.
653  bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
654                        unsigned InstNum, Value *&ResVal,
655                        Type **FullTy = nullptr) {
656    if (Slot == Record.size()) return true;
657    unsigned ValNo = (unsigned)Record[Slot++];
658    // Adjust the ValNo, if it was encoded relative to the InstNum.
659    if (UseRelativeIDs)
660      ValNo = InstNum - ValNo;
661    if (ValNo < InstNum) {
662      // If this is not a forward reference, just return the value we already
663      // have.
664      ResVal = getFnValueByID(ValNo, nullptr, FullTy);
665      return ResVal == nullptr;
666    }
667    if (Slot == Record.size())
668      return true;
669
670    unsigned TypeNo = (unsigned)Record[Slot++];
671    ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
672    if (FullTy)
673      *FullTy = getFullyStructuredTypeByID(TypeNo);
674    return ResVal == nullptr;
675  }
676
677  /// Read a value out of the specified record from slot 'Slot'. Increment Slot
678  /// past the number of slots used by the value in the record. Return true if
679  /// there is an error.
680  bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
681                unsigned InstNum, Type *Ty, Value *&ResVal) {
682    if (getValue(Record, Slot, InstNum, Ty, ResVal))
683      return true;
684    // All values currently take a single record slot.
685    ++Slot;
686    return false;
687  }
688
689  /// Like popValue, but does not increment the Slot number.
690  bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
691                unsigned InstNum, Type *Ty, Value *&ResVal) {
692    ResVal = getValue(Record, Slot, InstNum, Ty);
693    return ResVal == nullptr;
694  }
695
696  /// Version of getValue that returns ResVal directly, or 0 if there is an
697  /// error.
698  Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
699                  unsigned InstNum, Type *Ty) {
700    if (Slot == Record.size()) return nullptr;
701    unsigned ValNo = (unsigned)Record[Slot];
702    // Adjust the ValNo, if it was encoded relative to the InstNum.
703    if (UseRelativeIDs)
704      ValNo = InstNum - ValNo;
705    return getFnValueByID(ValNo, Ty);
706  }
707
708  /// Like getValue, but decodes signed VBRs.
709  Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
710                        unsigned InstNum, Type *Ty) {
711    if (Slot == Record.size()) return nullptr;
712    unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
713    // Adjust the ValNo, if it was encoded relative to the InstNum.
714    if (UseRelativeIDs)
715      ValNo = InstNum - ValNo;
716    return getFnValueByID(ValNo, Ty);
717  }
718
719  /// Upgrades old-style typeless byval attributes by adding the corresponding
720  /// argument's pointee type.
721  void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
722
723  /// Converts alignment exponent (i.e. power of two (or zero)) to the
724  /// corresponding alignment to use. If alignment is too large, returns
725  /// a corresponding error code.
726  Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
727  Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
728  Error parseModule(
729      uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
730      DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
731
732  Error parseComdatRecord(ArrayRef<uint64_t> Record);
733  Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
734  Error parseFunctionRecord(ArrayRef<uint64_t> Record);
735  Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
736                                        ArrayRef<uint64_t> Record);
737
738  Error parseAttributeBlock();
739  Error parseAttributeGroupBlock();
740  Error parseTypeTable();
741  Error parseTypeTableBody();
742  Error parseOperandBundleTags();
743  Error parseSyncScopeNames();
744
745  Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
746                                unsigned NameIndex, Triple &TT);
747  void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
748                               ArrayRef<uint64_t> Record);
749  Error parseValueSymbolTable(uint64_t Offset = 0);
750  Error parseGlobalValueSymbolTable();
751  Error parseConstants();
752  Error rememberAndSkipFunctionBodies();
753  Error rememberAndSkipFunctionBody();
754  /// Save the positions of the Metadata blocks and skip parsing the blocks.
755  Error rememberAndSkipMetadata();
756  Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
757  Error parseFunctionBody(Function *F);
758  Error globalCleanup();
759  Error resolveGlobalAndIndirectSymbolInits();
760  Error parseUseLists();
761  Error findFunctionInStream(
762      Function *F,
763      DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
764
765  SyncScope::ID getDecodedSyncScopeID(unsigned Val);
766};
767
768/// Class to manage reading and parsing function summary index bitcode
769/// files/sections.
770class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
771  /// The module index built during parsing.
772  ModuleSummaryIndex &TheIndex;
773
774  /// Indicates whether we have encountered a global value summary section
775  /// yet during parsing.
776  bool SeenGlobalValSummary = false;
777
778  /// Indicates whether we have already parsed the VST, used for error checking.
779  bool SeenValueSymbolTable = false;
780
781  /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
782  /// Used to enable on-demand parsing of the VST.
783  uint64_t VSTOffset = 0;
784
785  // Map to save ValueId to ValueInfo association that was recorded in the
786  // ValueSymbolTable. It is used after the VST is parsed to convert
787  // call graph edges read from the function summary from referencing
788  // callees by their ValueId to using the ValueInfo instead, which is how
789  // they are recorded in the summary index being built.
790  // We save a GUID which refers to the same global as the ValueInfo, but
791  // ignoring the linkage, i.e. for values other than local linkage they are
792  // identical.
793  DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
794      ValueIdToValueInfoMap;
795
796  /// Map populated during module path string table parsing, from the
797  /// module ID to a string reference owned by the index's module
798  /// path string table, used to correlate with combined index
799  /// summary records.
800  DenseMap<uint64_t, StringRef> ModuleIdMap;
801
802  /// Original source file name recorded in a bitcode record.
803  std::string SourceFileName;
804
805  /// The string identifier given to this module by the client, normally the
806  /// path to the bitcode file.
807  StringRef ModulePath;
808
809  /// For per-module summary indexes, the unique numerical identifier given to
810  /// this module by the client.
811  unsigned ModuleId;
812
813public:
814  ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
815                                  ModuleSummaryIndex &TheIndex,
816                                  StringRef ModulePath, unsigned ModuleId);
817
818  Error parseModule();
819
820private:
821  void setValueGUID(uint64_t ValueID, StringRef ValueName,
822                    GlobalValue::LinkageTypes Linkage,
823                    StringRef SourceFileName);
824  Error parseValueSymbolTable(
825      uint64_t Offset,
826      DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
827  std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
828  std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
829                                                    bool IsOldProfileFormat,
830                                                    bool HasProfile,
831                                                    bool HasRelBF);
832  Error parseEntireSummary(unsigned ID);
833  Error parseModuleStringTable();
834  void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
835  void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
836                                       TypeIdCompatibleVtableInfo &TypeId);
837
838  std::pair<ValueInfo, GlobalValue::GUID>
839  getValueInfoFromValueId(unsigned ValueId);
840
841  void addThisModule();
842  ModuleSummaryIndex::ModuleInfo *getThisModule();
843};
844
845} // end anonymous namespace
846
847std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
848                                                    Error Err) {
849  if (Err) {
850    std::error_code EC;
851    handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
852      EC = EIB.convertToErrorCode();
853      Ctx.emitError(EIB.message());
854    });
855    return EC;
856  }
857  return std::error_code();
858}
859
860BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
861                             StringRef ProducerIdentification,
862                             LLVMContext &Context)
863    : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
864      ValueList(Context, Stream.SizeInBytes()) {
865  this->ProducerIdentification = std::string(ProducerIdentification);
866}
867
868Error BitcodeReader::materializeForwardReferencedFunctions() {
869  if (WillMaterializeAllForwardRefs)
870    return Error::success();
871
872  // Prevent recursion.
873  WillMaterializeAllForwardRefs = true;
874
875  while (!BasicBlockFwdRefQueue.empty()) {
876    Function *F = BasicBlockFwdRefQueue.front();
877    BasicBlockFwdRefQueue.pop_front();
878    assert(F && "Expected valid function");
879    if (!BasicBlockFwdRefs.count(F))
880      // Already materialized.
881      continue;
882
883    // Check for a function that isn't materializable to prevent an infinite
884    // loop.  When parsing a blockaddress stored in a global variable, there
885    // isn't a trivial way to check if a function will have a body without a
886    // linear search through FunctionsWithBodies, so just check it here.
887    if (!F->isMaterializable())
888      return error("Never resolved function from blockaddress");
889
890    // Try to materialize F.
891    if (Error Err = materialize(F))
892      return Err;
893  }
894  assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
895
896  // Reset state.
897  WillMaterializeAllForwardRefs = false;
898  return Error::success();
899}
900
901//===----------------------------------------------------------------------===//
902//  Helper functions to implement forward reference resolution, etc.
903//===----------------------------------------------------------------------===//
904
905static bool hasImplicitComdat(size_t Val) {
906  switch (Val) {
907  default:
908    return false;
909  case 1:  // Old WeakAnyLinkage
910  case 4:  // Old LinkOnceAnyLinkage
911  case 10: // Old WeakODRLinkage
912  case 11: // Old LinkOnceODRLinkage
913    return true;
914  }
915}
916
917static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
918  switch (Val) {
919  default: // Map unknown/new linkages to external
920  case 0:
921    return GlobalValue::ExternalLinkage;
922  case 2:
923    return GlobalValue::AppendingLinkage;
924  case 3:
925    return GlobalValue::InternalLinkage;
926  case 5:
927    return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
928  case 6:
929    return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
930  case 7:
931    return GlobalValue::ExternalWeakLinkage;
932  case 8:
933    return GlobalValue::CommonLinkage;
934  case 9:
935    return GlobalValue::PrivateLinkage;
936  case 12:
937    return GlobalValue::AvailableExternallyLinkage;
938  case 13:
939    return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
940  case 14:
941    return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
942  case 15:
943    return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
944  case 1: // Old value with implicit comdat.
945  case 16:
946    return GlobalValue::WeakAnyLinkage;
947  case 10: // Old value with implicit comdat.
948  case 17:
949    return GlobalValue::WeakODRLinkage;
950  case 4: // Old value with implicit comdat.
951  case 18:
952    return GlobalValue::LinkOnceAnyLinkage;
953  case 11: // Old value with implicit comdat.
954  case 19:
955    return GlobalValue::LinkOnceODRLinkage;
956  }
957}
958
959static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
960  FunctionSummary::FFlags Flags;
961  Flags.ReadNone = RawFlags & 0x1;
962  Flags.ReadOnly = (RawFlags >> 1) & 0x1;
963  Flags.NoRecurse = (RawFlags >> 2) & 0x1;
964  Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
965  Flags.NoInline = (RawFlags >> 4) & 0x1;
966  Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
967  return Flags;
968}
969
970/// Decode the flags for GlobalValue in the summary.
971static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
972                                                            uint64_t Version) {
973  // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
974  // like getDecodedLinkage() above. Any future change to the linkage enum and
975  // to getDecodedLinkage() will need to be taken into account here as above.
976  auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
977  RawFlags = RawFlags >> 4;
978  bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
979  // The Live flag wasn't introduced until version 3. For dead stripping
980  // to work correctly on earlier versions, we must conservatively treat all
981  // values as live.
982  bool Live = (RawFlags & 0x2) || Version < 3;
983  bool Local = (RawFlags & 0x4);
984  bool AutoHide = (RawFlags & 0x8);
985
986  return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
987}
988
989// Decode the flags for GlobalVariable in the summary
990static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
991  return GlobalVarSummary::GVarFlags(
992      (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
993      (RawFlags & 0x4) ? true : false,
994      (GlobalObject::VCallVisibility)(RawFlags >> 3));
995}
996
997static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
998  switch (Val) {
999  default: // Map unknown visibilities to default.
1000  case 0: return GlobalValue::DefaultVisibility;
1001  case 1: return GlobalValue::HiddenVisibility;
1002  case 2: return GlobalValue::ProtectedVisibility;
1003  }
1004}
1005
1006static GlobalValue::DLLStorageClassTypes
1007getDecodedDLLStorageClass(unsigned Val) {
1008  switch (Val) {
1009  default: // Map unknown values to default.
1010  case 0: return GlobalValue::DefaultStorageClass;
1011  case 1: return GlobalValue::DLLImportStorageClass;
1012  case 2: return GlobalValue::DLLExportStorageClass;
1013  }
1014}
1015
1016static bool getDecodedDSOLocal(unsigned Val) {
1017  switch(Val) {
1018  default: // Map unknown values to preemptable.
1019  case 0:  return false;
1020  case 1:  return true;
1021  }
1022}
1023
1024static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1025  switch (Val) {
1026    case 0: return GlobalVariable::NotThreadLocal;
1027    default: // Map unknown non-zero value to general dynamic.
1028    case 1: return GlobalVariable::GeneralDynamicTLSModel;
1029    case 2: return GlobalVariable::LocalDynamicTLSModel;
1030    case 3: return GlobalVariable::InitialExecTLSModel;
1031    case 4: return GlobalVariable::LocalExecTLSModel;
1032  }
1033}
1034
1035static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1036  switch (Val) {
1037    default: // Map unknown to UnnamedAddr::None.
1038    case 0: return GlobalVariable::UnnamedAddr::None;
1039    case 1: return GlobalVariable::UnnamedAddr::Global;
1040    case 2: return GlobalVariable::UnnamedAddr::Local;
1041  }
1042}
1043
1044static int getDecodedCastOpcode(unsigned Val) {
1045  switch (Val) {
1046  default: return -1;
1047  case bitc::CAST_TRUNC   : return Instruction::Trunc;
1048  case bitc::CAST_ZEXT    : return Instruction::ZExt;
1049  case bitc::CAST_SEXT    : return Instruction::SExt;
1050  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1051  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1052  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1053  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1054  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1055  case bitc::CAST_FPEXT   : return Instruction::FPExt;
1056  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1057  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1058  case bitc::CAST_BITCAST : return Instruction::BitCast;
1059  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1060  }
1061}
1062
1063static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1064  bool IsFP = Ty->isFPOrFPVectorTy();
1065  // UnOps are only valid for int/fp or vector of int/fp types
1066  if (!IsFP && !Ty->isIntOrIntVectorTy())
1067    return -1;
1068
1069  switch (Val) {
1070  default:
1071    return -1;
1072  case bitc::UNOP_FNEG:
1073    return IsFP ? Instruction::FNeg : -1;
1074  }
1075}
1076
1077static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1078  bool IsFP = Ty->isFPOrFPVectorTy();
1079  // BinOps are only valid for int/fp or vector of int/fp types
1080  if (!IsFP && !Ty->isIntOrIntVectorTy())
1081    return -1;
1082
1083  switch (Val) {
1084  default:
1085    return -1;
1086  case bitc::BINOP_ADD:
1087    return IsFP ? Instruction::FAdd : Instruction::Add;
1088  case bitc::BINOP_SUB:
1089    return IsFP ? Instruction::FSub : Instruction::Sub;
1090  case bitc::BINOP_MUL:
1091    return IsFP ? Instruction::FMul : Instruction::Mul;
1092  case bitc::BINOP_UDIV:
1093    return IsFP ? -1 : Instruction::UDiv;
1094  case bitc::BINOP_SDIV:
1095    return IsFP ? Instruction::FDiv : Instruction::SDiv;
1096  case bitc::BINOP_UREM:
1097    return IsFP ? -1 : Instruction::URem;
1098  case bitc::BINOP_SREM:
1099    return IsFP ? Instruction::FRem : Instruction::SRem;
1100  case bitc::BINOP_SHL:
1101    return IsFP ? -1 : Instruction::Shl;
1102  case bitc::BINOP_LSHR:
1103    return IsFP ? -1 : Instruction::LShr;
1104  case bitc::BINOP_ASHR:
1105    return IsFP ? -1 : Instruction::AShr;
1106  case bitc::BINOP_AND:
1107    return IsFP ? -1 : Instruction::And;
1108  case bitc::BINOP_OR:
1109    return IsFP ? -1 : Instruction::Or;
1110  case bitc::BINOP_XOR:
1111    return IsFP ? -1 : Instruction::Xor;
1112  }
1113}
1114
1115static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1116  switch (Val) {
1117  default: return AtomicRMWInst::BAD_BINOP;
1118  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1119  case bitc::RMW_ADD: return AtomicRMWInst::Add;
1120  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1121  case bitc::RMW_AND: return AtomicRMWInst::And;
1122  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1123  case bitc::RMW_OR: return AtomicRMWInst::Or;
1124  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1125  case bitc::RMW_MAX: return AtomicRMWInst::Max;
1126  case bitc::RMW_MIN: return AtomicRMWInst::Min;
1127  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1128  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1129  case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1130  case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1131  }
1132}
1133
1134static AtomicOrdering getDecodedOrdering(unsigned Val) {
1135  switch (Val) {
1136  case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1137  case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1138  case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1139  case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1140  case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1141  case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1142  default: // Map unknown orderings to sequentially-consistent.
1143  case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1144  }
1145}
1146
1147static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1148  switch (Val) {
1149  default: // Map unknown selection kinds to any.
1150  case bitc::COMDAT_SELECTION_KIND_ANY:
1151    return Comdat::Any;
1152  case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1153    return Comdat::ExactMatch;
1154  case bitc::COMDAT_SELECTION_KIND_LARGEST:
1155    return Comdat::Largest;
1156  case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1157    return Comdat::NoDuplicates;
1158  case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1159    return Comdat::SameSize;
1160  }
1161}
1162
1163static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1164  FastMathFlags FMF;
1165  if (0 != (Val & bitc::UnsafeAlgebra))
1166    FMF.setFast();
1167  if (0 != (Val & bitc::AllowReassoc))
1168    FMF.setAllowReassoc();
1169  if (0 != (Val & bitc::NoNaNs))
1170    FMF.setNoNaNs();
1171  if (0 != (Val & bitc::NoInfs))
1172    FMF.setNoInfs();
1173  if (0 != (Val & bitc::NoSignedZeros))
1174    FMF.setNoSignedZeros();
1175  if (0 != (Val & bitc::AllowReciprocal))
1176    FMF.setAllowReciprocal();
1177  if (0 != (Val & bitc::AllowContract))
1178    FMF.setAllowContract(true);
1179  if (0 != (Val & bitc::ApproxFunc))
1180    FMF.setApproxFunc();
1181  return FMF;
1182}
1183
1184static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1185  switch (Val) {
1186  case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1187  case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1188  }
1189}
1190
1191Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1192  // The type table size is always specified correctly.
1193  if (ID >= TypeList.size())
1194    return nullptr;
1195
1196  if (Type *Ty = TypeList[ID])
1197    return Ty;
1198
1199  // If we have a forward reference, the only possible case is when it is to a
1200  // named struct.  Just create a placeholder for now.
1201  return TypeList[ID] = createIdentifiedStructType(Context);
1202}
1203
1204StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1205                                                      StringRef Name) {
1206  auto *Ret = StructType::create(Context, Name);
1207  IdentifiedStructTypes.push_back(Ret);
1208  return Ret;
1209}
1210
1211StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1212  auto *Ret = StructType::create(Context);
1213  IdentifiedStructTypes.push_back(Ret);
1214  return Ret;
1215}
1216
1217//===----------------------------------------------------------------------===//
1218//  Functions for parsing blocks from the bitcode file
1219//===----------------------------------------------------------------------===//
1220
1221static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1222  switch (Val) {
1223  case Attribute::EndAttrKinds:
1224  case Attribute::EmptyKey:
1225  case Attribute::TombstoneKey:
1226    llvm_unreachable("Synthetic enumerators which should never get here");
1227
1228  case Attribute::None:            return 0;
1229  case Attribute::ZExt:            return 1 << 0;
1230  case Attribute::SExt:            return 1 << 1;
1231  case Attribute::NoReturn:        return 1 << 2;
1232  case Attribute::InReg:           return 1 << 3;
1233  case Attribute::StructRet:       return 1 << 4;
1234  case Attribute::NoUnwind:        return 1 << 5;
1235  case Attribute::NoAlias:         return 1 << 6;
1236  case Attribute::ByVal:           return 1 << 7;
1237  case Attribute::Nest:            return 1 << 8;
1238  case Attribute::ReadNone:        return 1 << 9;
1239  case Attribute::ReadOnly:        return 1 << 10;
1240  case Attribute::NoInline:        return 1 << 11;
1241  case Attribute::AlwaysInline:    return 1 << 12;
1242  case Attribute::OptimizeForSize: return 1 << 13;
1243  case Attribute::StackProtect:    return 1 << 14;
1244  case Attribute::StackProtectReq: return 1 << 15;
1245  case Attribute::Alignment:       return 31 << 16;
1246  case Attribute::NoCapture:       return 1 << 21;
1247  case Attribute::NoRedZone:       return 1 << 22;
1248  case Attribute::NoImplicitFloat: return 1 << 23;
1249  case Attribute::Naked:           return 1 << 24;
1250  case Attribute::InlineHint:      return 1 << 25;
1251  case Attribute::StackAlignment:  return 7 << 26;
1252  case Attribute::ReturnsTwice:    return 1 << 29;
1253  case Attribute::UWTable:         return 1 << 30;
1254  case Attribute::NonLazyBind:     return 1U << 31;
1255  case Attribute::SanitizeAddress: return 1ULL << 32;
1256  case Attribute::MinSize:         return 1ULL << 33;
1257  case Attribute::NoDuplicate:     return 1ULL << 34;
1258  case Attribute::StackProtectStrong: return 1ULL << 35;
1259  case Attribute::SanitizeThread:  return 1ULL << 36;
1260  case Attribute::SanitizeMemory:  return 1ULL << 37;
1261  case Attribute::NoBuiltin:       return 1ULL << 38;
1262  case Attribute::Returned:        return 1ULL << 39;
1263  case Attribute::Cold:            return 1ULL << 40;
1264  case Attribute::Builtin:         return 1ULL << 41;
1265  case Attribute::OptimizeNone:    return 1ULL << 42;
1266  case Attribute::InAlloca:        return 1ULL << 43;
1267  case Attribute::NonNull:         return 1ULL << 44;
1268  case Attribute::JumpTable:       return 1ULL << 45;
1269  case Attribute::Convergent:      return 1ULL << 46;
1270  case Attribute::SafeStack:       return 1ULL << 47;
1271  case Attribute::NoRecurse:       return 1ULL << 48;
1272  case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1273  case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1274  case Attribute::SwiftSelf:       return 1ULL << 51;
1275  case Attribute::SwiftError:      return 1ULL << 52;
1276  case Attribute::WriteOnly:       return 1ULL << 53;
1277  case Attribute::Speculatable:    return 1ULL << 54;
1278  case Attribute::StrictFP:        return 1ULL << 55;
1279  case Attribute::SanitizeHWAddress: return 1ULL << 56;
1280  case Attribute::NoCfCheck:       return 1ULL << 57;
1281  case Attribute::OptForFuzzing:   return 1ULL << 58;
1282  case Attribute::ShadowCallStack: return 1ULL << 59;
1283  case Attribute::SpeculativeLoadHardening:
1284    return 1ULL << 60;
1285  case Attribute::ImmArg:
1286    return 1ULL << 61;
1287  case Attribute::WillReturn:
1288    return 1ULL << 62;
1289  case Attribute::NoFree:
1290    return 1ULL << 63;
1291  default:
1292    // Other attributes are not supported in the raw format,
1293    // as we ran out of space.
1294    return 0;
1295  }
1296  llvm_unreachable("Unsupported attribute type");
1297}
1298
1299static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1300  if (!Val) return;
1301
1302  for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1303       I = Attribute::AttrKind(I + 1)) {
1304    if (uint64_t A = (Val & getRawAttributeMask(I))) {
1305      if (I == Attribute::Alignment)
1306        B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1307      else if (I == Attribute::StackAlignment)
1308        B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1309      else
1310        B.addAttribute(I);
1311    }
1312  }
1313}
1314
1315/// This fills an AttrBuilder object with the LLVM attributes that have
1316/// been decoded from the given integer. This function must stay in sync with
1317/// 'encodeLLVMAttributesForBitcode'.
1318static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1319                                           uint64_t EncodedAttrs) {
1320  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1321  // the bits above 31 down by 11 bits.
1322  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1323  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1324         "Alignment must be a power of two.");
1325
1326  if (Alignment)
1327    B.addAlignmentAttr(Alignment);
1328  addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1329                          (EncodedAttrs & 0xffff));
1330}
1331
1332Error BitcodeReader::parseAttributeBlock() {
1333  if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1334    return Err;
1335
1336  if (!MAttributes.empty())
1337    return error("Invalid multiple blocks");
1338
1339  SmallVector<uint64_t, 64> Record;
1340
1341  SmallVector<AttributeList, 8> Attrs;
1342
1343  // Read all the records.
1344  while (true) {
1345    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1346    if (!MaybeEntry)
1347      return MaybeEntry.takeError();
1348    BitstreamEntry Entry = MaybeEntry.get();
1349
1350    switch (Entry.Kind) {
1351    case BitstreamEntry::SubBlock: // Handled for us already.
1352    case BitstreamEntry::Error:
1353      return error("Malformed block");
1354    case BitstreamEntry::EndBlock:
1355      return Error::success();
1356    case BitstreamEntry::Record:
1357      // The interesting case.
1358      break;
1359    }
1360
1361    // Read a record.
1362    Record.clear();
1363    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1364    if (!MaybeRecord)
1365      return MaybeRecord.takeError();
1366    switch (MaybeRecord.get()) {
1367    default:  // Default behavior: ignore.
1368      break;
1369    case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1370      // Deprecated, but still needed to read old bitcode files.
1371      if (Record.size() & 1)
1372        return error("Invalid record");
1373
1374      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1375        AttrBuilder B;
1376        decodeLLVMAttributesForBitcode(B, Record[i+1]);
1377        Attrs.push_back(AttributeList::get(Context, Record[i], B));
1378      }
1379
1380      MAttributes.push_back(AttributeList::get(Context, Attrs));
1381      Attrs.clear();
1382      break;
1383    case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1384      for (unsigned i = 0, e = Record.size(); i != e; ++i)
1385        Attrs.push_back(MAttributeGroups[Record[i]]);
1386
1387      MAttributes.push_back(AttributeList::get(Context, Attrs));
1388      Attrs.clear();
1389      break;
1390    }
1391  }
1392}
1393
1394// Returns Attribute::None on unrecognized codes.
1395static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1396  switch (Code) {
1397  default:
1398    return Attribute::None;
1399  case bitc::ATTR_KIND_ALIGNMENT:
1400    return Attribute::Alignment;
1401  case bitc::ATTR_KIND_ALWAYS_INLINE:
1402    return Attribute::AlwaysInline;
1403  case bitc::ATTR_KIND_ARGMEMONLY:
1404    return Attribute::ArgMemOnly;
1405  case bitc::ATTR_KIND_BUILTIN:
1406    return Attribute::Builtin;
1407  case bitc::ATTR_KIND_BY_VAL:
1408    return Attribute::ByVal;
1409  case bitc::ATTR_KIND_IN_ALLOCA:
1410    return Attribute::InAlloca;
1411  case bitc::ATTR_KIND_COLD:
1412    return Attribute::Cold;
1413  case bitc::ATTR_KIND_CONVERGENT:
1414    return Attribute::Convergent;
1415  case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1416    return Attribute::InaccessibleMemOnly;
1417  case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1418    return Attribute::InaccessibleMemOrArgMemOnly;
1419  case bitc::ATTR_KIND_INLINE_HINT:
1420    return Attribute::InlineHint;
1421  case bitc::ATTR_KIND_IN_REG:
1422    return Attribute::InReg;
1423  case bitc::ATTR_KIND_JUMP_TABLE:
1424    return Attribute::JumpTable;
1425  case bitc::ATTR_KIND_MIN_SIZE:
1426    return Attribute::MinSize;
1427  case bitc::ATTR_KIND_NAKED:
1428    return Attribute::Naked;
1429  case bitc::ATTR_KIND_NEST:
1430    return Attribute::Nest;
1431  case bitc::ATTR_KIND_NO_ALIAS:
1432    return Attribute::NoAlias;
1433  case bitc::ATTR_KIND_NO_BUILTIN:
1434    return Attribute::NoBuiltin;
1435  case bitc::ATTR_KIND_NO_CAPTURE:
1436    return Attribute::NoCapture;
1437  case bitc::ATTR_KIND_NO_DUPLICATE:
1438    return Attribute::NoDuplicate;
1439  case bitc::ATTR_KIND_NOFREE:
1440    return Attribute::NoFree;
1441  case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1442    return Attribute::NoImplicitFloat;
1443  case bitc::ATTR_KIND_NO_INLINE:
1444    return Attribute::NoInline;
1445  case bitc::ATTR_KIND_NO_RECURSE:
1446    return Attribute::NoRecurse;
1447  case bitc::ATTR_KIND_NO_MERGE:
1448    return Attribute::NoMerge;
1449  case bitc::ATTR_KIND_NON_LAZY_BIND:
1450    return Attribute::NonLazyBind;
1451  case bitc::ATTR_KIND_NON_NULL:
1452    return Attribute::NonNull;
1453  case bitc::ATTR_KIND_DEREFERENCEABLE:
1454    return Attribute::Dereferenceable;
1455  case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1456    return Attribute::DereferenceableOrNull;
1457  case bitc::ATTR_KIND_ALLOC_SIZE:
1458    return Attribute::AllocSize;
1459  case bitc::ATTR_KIND_NO_RED_ZONE:
1460    return Attribute::NoRedZone;
1461  case bitc::ATTR_KIND_NO_RETURN:
1462    return Attribute::NoReturn;
1463  case bitc::ATTR_KIND_NOSYNC:
1464    return Attribute::NoSync;
1465  case bitc::ATTR_KIND_NOCF_CHECK:
1466    return Attribute::NoCfCheck;
1467  case bitc::ATTR_KIND_NO_UNWIND:
1468    return Attribute::NoUnwind;
1469  case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1470    return Attribute::NullPointerIsValid;
1471  case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1472    return Attribute::OptForFuzzing;
1473  case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1474    return Attribute::OptimizeForSize;
1475  case bitc::ATTR_KIND_OPTIMIZE_NONE:
1476    return Attribute::OptimizeNone;
1477  case bitc::ATTR_KIND_READ_NONE:
1478    return Attribute::ReadNone;
1479  case bitc::ATTR_KIND_READ_ONLY:
1480    return Attribute::ReadOnly;
1481  case bitc::ATTR_KIND_RETURNED:
1482    return Attribute::Returned;
1483  case bitc::ATTR_KIND_RETURNS_TWICE:
1484    return Attribute::ReturnsTwice;
1485  case bitc::ATTR_KIND_S_EXT:
1486    return Attribute::SExt;
1487  case bitc::ATTR_KIND_SPECULATABLE:
1488    return Attribute::Speculatable;
1489  case bitc::ATTR_KIND_STACK_ALIGNMENT:
1490    return Attribute::StackAlignment;
1491  case bitc::ATTR_KIND_STACK_PROTECT:
1492    return Attribute::StackProtect;
1493  case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1494    return Attribute::StackProtectReq;
1495  case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1496    return Attribute::StackProtectStrong;
1497  case bitc::ATTR_KIND_SAFESTACK:
1498    return Attribute::SafeStack;
1499  case bitc::ATTR_KIND_SHADOWCALLSTACK:
1500    return Attribute::ShadowCallStack;
1501  case bitc::ATTR_KIND_STRICT_FP:
1502    return Attribute::StrictFP;
1503  case bitc::ATTR_KIND_STRUCT_RET:
1504    return Attribute::StructRet;
1505  case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1506    return Attribute::SanitizeAddress;
1507  case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1508    return Attribute::SanitizeHWAddress;
1509  case bitc::ATTR_KIND_SANITIZE_THREAD:
1510    return Attribute::SanitizeThread;
1511  case bitc::ATTR_KIND_SANITIZE_MEMORY:
1512    return Attribute::SanitizeMemory;
1513  case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1514    return Attribute::SpeculativeLoadHardening;
1515  case bitc::ATTR_KIND_SWIFT_ERROR:
1516    return Attribute::SwiftError;
1517  case bitc::ATTR_KIND_SWIFT_SELF:
1518    return Attribute::SwiftSelf;
1519  case bitc::ATTR_KIND_UW_TABLE:
1520    return Attribute::UWTable;
1521  case bitc::ATTR_KIND_WILLRETURN:
1522    return Attribute::WillReturn;
1523  case bitc::ATTR_KIND_WRITEONLY:
1524    return Attribute::WriteOnly;
1525  case bitc::ATTR_KIND_Z_EXT:
1526    return Attribute::ZExt;
1527  case bitc::ATTR_KIND_IMMARG:
1528    return Attribute::ImmArg;
1529  case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1530    return Attribute::SanitizeMemTag;
1531  case bitc::ATTR_KIND_PREALLOCATED:
1532    return Attribute::Preallocated;
1533  case bitc::ATTR_KIND_NOUNDEF:
1534    return Attribute::NoUndef;
1535  }
1536}
1537
1538Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1539                                         MaybeAlign &Alignment) {
1540  // Note: Alignment in bitcode files is incremented by 1, so that zero
1541  // can be used for default alignment.
1542  if (Exponent > Value::MaxAlignmentExponent + 1)
1543    return error("Invalid alignment value");
1544  Alignment = decodeMaybeAlign(Exponent);
1545  return Error::success();
1546}
1547
1548Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1549  *Kind = getAttrFromCode(Code);
1550  if (*Kind == Attribute::None)
1551    return error("Unknown attribute kind (" + Twine(Code) + ")");
1552  return Error::success();
1553}
1554
1555Error BitcodeReader::parseAttributeGroupBlock() {
1556  if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1557    return Err;
1558
1559  if (!MAttributeGroups.empty())
1560    return error("Invalid multiple blocks");
1561
1562  SmallVector<uint64_t, 64> Record;
1563
1564  // Read all the records.
1565  while (true) {
1566    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1567    if (!MaybeEntry)
1568      return MaybeEntry.takeError();
1569    BitstreamEntry Entry = MaybeEntry.get();
1570
1571    switch (Entry.Kind) {
1572    case BitstreamEntry::SubBlock: // Handled for us already.
1573    case BitstreamEntry::Error:
1574      return error("Malformed block");
1575    case BitstreamEntry::EndBlock:
1576      return Error::success();
1577    case BitstreamEntry::Record:
1578      // The interesting case.
1579      break;
1580    }
1581
1582    // Read a record.
1583    Record.clear();
1584    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1585    if (!MaybeRecord)
1586      return MaybeRecord.takeError();
1587    switch (MaybeRecord.get()) {
1588    default:  // Default behavior: ignore.
1589      break;
1590    case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1591      if (Record.size() < 3)
1592        return error("Invalid record");
1593
1594      uint64_t GrpID = Record[0];
1595      uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1596
1597      AttrBuilder B;
1598      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1599        if (Record[i] == 0) {        // Enum attribute
1600          Attribute::AttrKind Kind;
1601          if (Error Err = parseAttrKind(Record[++i], &Kind))
1602            return Err;
1603
1604          // Upgrade old-style byval attribute to one with a type, even if it's
1605          // nullptr. We will have to insert the real type when we associate
1606          // this AttributeList with a function.
1607          if (Kind == Attribute::ByVal)
1608            B.addByValAttr(nullptr);
1609
1610          B.addAttribute(Kind);
1611        } else if (Record[i] == 1) { // Integer attribute
1612          Attribute::AttrKind Kind;
1613          if (Error Err = parseAttrKind(Record[++i], &Kind))
1614            return Err;
1615          if (Kind == Attribute::Alignment)
1616            B.addAlignmentAttr(Record[++i]);
1617          else if (Kind == Attribute::StackAlignment)
1618            B.addStackAlignmentAttr(Record[++i]);
1619          else if (Kind == Attribute::Dereferenceable)
1620            B.addDereferenceableAttr(Record[++i]);
1621          else if (Kind == Attribute::DereferenceableOrNull)
1622            B.addDereferenceableOrNullAttr(Record[++i]);
1623          else if (Kind == Attribute::AllocSize)
1624            B.addAllocSizeAttrFromRawRepr(Record[++i]);
1625        } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1626          bool HasValue = (Record[i++] == 4);
1627          SmallString<64> KindStr;
1628          SmallString<64> ValStr;
1629
1630          while (Record[i] != 0 && i != e)
1631            KindStr += Record[i++];
1632          assert(Record[i] == 0 && "Kind string not null terminated");
1633
1634          if (HasValue) {
1635            // Has a value associated with it.
1636            ++i; // Skip the '0' that terminates the "kind" string.
1637            while (Record[i] != 0 && i != e)
1638              ValStr += Record[i++];
1639            assert(Record[i] == 0 && "Value string not null terminated");
1640          }
1641
1642          B.addAttribute(KindStr.str(), ValStr.str());
1643        } else {
1644          assert((Record[i] == 5 || Record[i] == 6) &&
1645                 "Invalid attribute group entry");
1646          bool HasType = Record[i] == 6;
1647          Attribute::AttrKind Kind;
1648          if (Error Err = parseAttrKind(Record[++i], &Kind))
1649            return Err;
1650          if (Kind == Attribute::ByVal) {
1651            B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1652          } else if (Kind == Attribute::Preallocated) {
1653            B.addPreallocatedAttr(getTypeByID(Record[++i]));
1654          }
1655        }
1656      }
1657
1658      UpgradeAttributes(B);
1659      MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1660      break;
1661    }
1662    }
1663  }
1664}
1665
1666Error BitcodeReader::parseTypeTable() {
1667  if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1668    return Err;
1669
1670  return parseTypeTableBody();
1671}
1672
1673Error BitcodeReader::parseTypeTableBody() {
1674  if (!TypeList.empty())
1675    return error("Invalid multiple blocks");
1676
1677  SmallVector<uint64_t, 64> Record;
1678  unsigned NumRecords = 0;
1679
1680  SmallString<64> TypeName;
1681
1682  // Read all the records for this type table.
1683  while (true) {
1684    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1685    if (!MaybeEntry)
1686      return MaybeEntry.takeError();
1687    BitstreamEntry Entry = MaybeEntry.get();
1688
1689    switch (Entry.Kind) {
1690    case BitstreamEntry::SubBlock: // Handled for us already.
1691    case BitstreamEntry::Error:
1692      return error("Malformed block");
1693    case BitstreamEntry::EndBlock:
1694      if (NumRecords != TypeList.size())
1695        return error("Malformed block");
1696      return Error::success();
1697    case BitstreamEntry::Record:
1698      // The interesting case.
1699      break;
1700    }
1701
1702    // Read a record.
1703    Record.clear();
1704    Type *ResultTy = nullptr;
1705    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1706    if (!MaybeRecord)
1707      return MaybeRecord.takeError();
1708    switch (MaybeRecord.get()) {
1709    default:
1710      return error("Invalid value");
1711    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1712      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1713      // type list.  This allows us to reserve space.
1714      if (Record.size() < 1)
1715        return error("Invalid record");
1716      TypeList.resize(Record[0]);
1717      continue;
1718    case bitc::TYPE_CODE_VOID:      // VOID
1719      ResultTy = Type::getVoidTy(Context);
1720      break;
1721    case bitc::TYPE_CODE_HALF:     // HALF
1722      ResultTy = Type::getHalfTy(Context);
1723      break;
1724    case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1725      ResultTy = Type::getBFloatTy(Context);
1726      break;
1727    case bitc::TYPE_CODE_FLOAT:     // FLOAT
1728      ResultTy = Type::getFloatTy(Context);
1729      break;
1730    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1731      ResultTy = Type::getDoubleTy(Context);
1732      break;
1733    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1734      ResultTy = Type::getX86_FP80Ty(Context);
1735      break;
1736    case bitc::TYPE_CODE_FP128:     // FP128
1737      ResultTy = Type::getFP128Ty(Context);
1738      break;
1739    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1740      ResultTy = Type::getPPC_FP128Ty(Context);
1741      break;
1742    case bitc::TYPE_CODE_LABEL:     // LABEL
1743      ResultTy = Type::getLabelTy(Context);
1744      break;
1745    case bitc::TYPE_CODE_METADATA:  // METADATA
1746      ResultTy = Type::getMetadataTy(Context);
1747      break;
1748    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1749      ResultTy = Type::getX86_MMXTy(Context);
1750      break;
1751    case bitc::TYPE_CODE_TOKEN:     // TOKEN
1752      ResultTy = Type::getTokenTy(Context);
1753      break;
1754    case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1755      if (Record.size() < 1)
1756        return error("Invalid record");
1757
1758      uint64_t NumBits = Record[0];
1759      if (NumBits < IntegerType::MIN_INT_BITS ||
1760          NumBits > IntegerType::MAX_INT_BITS)
1761        return error("Bitwidth for integer type out of range");
1762      ResultTy = IntegerType::get(Context, NumBits);
1763      break;
1764    }
1765    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1766                                    //          [pointee type, address space]
1767      if (Record.size() < 1)
1768        return error("Invalid record");
1769      unsigned AddressSpace = 0;
1770      if (Record.size() == 2)
1771        AddressSpace = Record[1];
1772      ResultTy = getTypeByID(Record[0]);
1773      if (!ResultTy ||
1774          !PointerType::isValidElementType(ResultTy))
1775        return error("Invalid type");
1776      ResultTy = PointerType::get(ResultTy, AddressSpace);
1777      break;
1778    }
1779    case bitc::TYPE_CODE_FUNCTION_OLD: {
1780      // Deprecated, but still needed to read old bitcode files.
1781      // FUNCTION: [vararg, attrid, retty, paramty x N]
1782      if (Record.size() < 3)
1783        return error("Invalid record");
1784      SmallVector<Type*, 8> ArgTys;
1785      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1786        if (Type *T = getTypeByID(Record[i]))
1787          ArgTys.push_back(T);
1788        else
1789          break;
1790      }
1791
1792      ResultTy = getTypeByID(Record[2]);
1793      if (!ResultTy || ArgTys.size() < Record.size()-3)
1794        return error("Invalid type");
1795
1796      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1797      break;
1798    }
1799    case bitc::TYPE_CODE_FUNCTION: {
1800      // FUNCTION: [vararg, retty, paramty x N]
1801      if (Record.size() < 2)
1802        return error("Invalid record");
1803      SmallVector<Type*, 8> ArgTys;
1804      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1805        if (Type *T = getTypeByID(Record[i])) {
1806          if (!FunctionType::isValidArgumentType(T))
1807            return error("Invalid function argument type");
1808          ArgTys.push_back(T);
1809        }
1810        else
1811          break;
1812      }
1813
1814      ResultTy = getTypeByID(Record[1]);
1815      if (!ResultTy || ArgTys.size() < Record.size()-2)
1816        return error("Invalid type");
1817
1818      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1819      break;
1820    }
1821    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1822      if (Record.size() < 1)
1823        return error("Invalid record");
1824      SmallVector<Type*, 8> EltTys;
1825      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1826        if (Type *T = getTypeByID(Record[i]))
1827          EltTys.push_back(T);
1828        else
1829          break;
1830      }
1831      if (EltTys.size() != Record.size()-1)
1832        return error("Invalid type");
1833      ResultTy = StructType::get(Context, EltTys, Record[0]);
1834      break;
1835    }
1836    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1837      if (convertToString(Record, 0, TypeName))
1838        return error("Invalid record");
1839      continue;
1840
1841    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1842      if (Record.size() < 1)
1843        return error("Invalid record");
1844
1845      if (NumRecords >= TypeList.size())
1846        return error("Invalid TYPE table");
1847
1848      // Check to see if this was forward referenced, if so fill in the temp.
1849      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1850      if (Res) {
1851        Res->setName(TypeName);
1852        TypeList[NumRecords] = nullptr;
1853      } else  // Otherwise, create a new struct.
1854        Res = createIdentifiedStructType(Context, TypeName);
1855      TypeName.clear();
1856
1857      SmallVector<Type*, 8> EltTys;
1858      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1859        if (Type *T = getTypeByID(Record[i]))
1860          EltTys.push_back(T);
1861        else
1862          break;
1863      }
1864      if (EltTys.size() != Record.size()-1)
1865        return error("Invalid record");
1866      Res->setBody(EltTys, Record[0]);
1867      ResultTy = Res;
1868      break;
1869    }
1870    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1871      if (Record.size() != 1)
1872        return error("Invalid record");
1873
1874      if (NumRecords >= TypeList.size())
1875        return error("Invalid TYPE table");
1876
1877      // Check to see if this was forward referenced, if so fill in the temp.
1878      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1879      if (Res) {
1880        Res->setName(TypeName);
1881        TypeList[NumRecords] = nullptr;
1882      } else  // Otherwise, create a new struct with no body.
1883        Res = createIdentifiedStructType(Context, TypeName);
1884      TypeName.clear();
1885      ResultTy = Res;
1886      break;
1887    }
1888    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1889      if (Record.size() < 2)
1890        return error("Invalid record");
1891      ResultTy = getTypeByID(Record[1]);
1892      if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1893        return error("Invalid type");
1894      ResultTy = ArrayType::get(ResultTy, Record[0]);
1895      break;
1896    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1897                                    //         [numelts, eltty, scalable]
1898      if (Record.size() < 2)
1899        return error("Invalid record");
1900      if (Record[0] == 0)
1901        return error("Invalid vector length");
1902      ResultTy = getTypeByID(Record[1]);
1903      if (!ResultTy || !StructType::isValidElementType(ResultTy))
1904        return error("Invalid type");
1905      bool Scalable = Record.size() > 2 ? Record[2] : false;
1906      ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1907      break;
1908    }
1909
1910    if (NumRecords >= TypeList.size())
1911      return error("Invalid TYPE table");
1912    if (TypeList[NumRecords])
1913      return error(
1914          "Invalid TYPE table: Only named structs can be forward referenced");
1915    assert(ResultTy && "Didn't read a type?");
1916    TypeList[NumRecords++] = ResultTy;
1917  }
1918}
1919
1920Error BitcodeReader::parseOperandBundleTags() {
1921  if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1922    return Err;
1923
1924  if (!BundleTags.empty())
1925    return error("Invalid multiple blocks");
1926
1927  SmallVector<uint64_t, 64> Record;
1928
1929  while (true) {
1930    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1931    if (!MaybeEntry)
1932      return MaybeEntry.takeError();
1933    BitstreamEntry Entry = MaybeEntry.get();
1934
1935    switch (Entry.Kind) {
1936    case BitstreamEntry::SubBlock: // Handled for us already.
1937    case BitstreamEntry::Error:
1938      return error("Malformed block");
1939    case BitstreamEntry::EndBlock:
1940      return Error::success();
1941    case BitstreamEntry::Record:
1942      // The interesting case.
1943      break;
1944    }
1945
1946    // Tags are implicitly mapped to integers by their order.
1947
1948    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1949    if (!MaybeRecord)
1950      return MaybeRecord.takeError();
1951    if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1952      return error("Invalid record");
1953
1954    // OPERAND_BUNDLE_TAG: [strchr x N]
1955    BundleTags.emplace_back();
1956    if (convertToString(Record, 0, BundleTags.back()))
1957      return error("Invalid record");
1958    Record.clear();
1959  }
1960}
1961
1962Error BitcodeReader::parseSyncScopeNames() {
1963  if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1964    return Err;
1965
1966  if (!SSIDs.empty())
1967    return error("Invalid multiple synchronization scope names blocks");
1968
1969  SmallVector<uint64_t, 64> Record;
1970  while (true) {
1971    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1972    if (!MaybeEntry)
1973      return MaybeEntry.takeError();
1974    BitstreamEntry Entry = MaybeEntry.get();
1975
1976    switch (Entry.Kind) {
1977    case BitstreamEntry::SubBlock: // Handled for us already.
1978    case BitstreamEntry::Error:
1979      return error("Malformed block");
1980    case BitstreamEntry::EndBlock:
1981      if (SSIDs.empty())
1982        return error("Invalid empty synchronization scope names block");
1983      return Error::success();
1984    case BitstreamEntry::Record:
1985      // The interesting case.
1986      break;
1987    }
1988
1989    // Synchronization scope names are implicitly mapped to synchronization
1990    // scope IDs by their order.
1991
1992    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1993    if (!MaybeRecord)
1994      return MaybeRecord.takeError();
1995    if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1996      return error("Invalid record");
1997
1998    SmallString<16> SSN;
1999    if (convertToString(Record, 0, SSN))
2000      return error("Invalid record");
2001
2002    SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2003    Record.clear();
2004  }
2005}
2006
2007/// Associate a value with its name from the given index in the provided record.
2008Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2009                                             unsigned NameIndex, Triple &TT) {
2010  SmallString<128> ValueName;
2011  if (convertToString(Record, NameIndex, ValueName))
2012    return error("Invalid record");
2013  unsigned ValueID = Record[0];
2014  if (ValueID >= ValueList.size() || !ValueList[ValueID])
2015    return error("Invalid record");
2016  Value *V = ValueList[ValueID];
2017
2018  StringRef NameStr(ValueName.data(), ValueName.size());
2019  if (NameStr.find_first_of(0) != StringRef::npos)
2020    return error("Invalid value name");
2021  V->setName(NameStr);
2022  auto *GO = dyn_cast<GlobalObject>(V);
2023  if (GO) {
2024    if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2025      if (TT.supportsCOMDAT())
2026        GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2027      else
2028        GO->setComdat(nullptr);
2029    }
2030  }
2031  return V;
2032}
2033
2034/// Helper to note and return the current location, and jump to the given
2035/// offset.
2036static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2037                                                 BitstreamCursor &Stream) {
2038  // Save the current parsing location so we can jump back at the end
2039  // of the VST read.
2040  uint64_t CurrentBit = Stream.GetCurrentBitNo();
2041  if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2042    return std::move(JumpFailed);
2043  Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2044  if (!MaybeEntry)
2045    return MaybeEntry.takeError();
2046  assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2047  assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2048  return CurrentBit;
2049}
2050
2051void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2052                                            Function *F,
2053                                            ArrayRef<uint64_t> Record) {
2054  // Note that we subtract 1 here because the offset is relative to one word
2055  // before the start of the identification or module block, which was
2056  // historically always the start of the regular bitcode header.
2057  uint64_t FuncWordOffset = Record[1] - 1;
2058  uint64_t FuncBitOffset = FuncWordOffset * 32;
2059  DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2060  // Set the LastFunctionBlockBit to point to the last function block.
2061  // Later when parsing is resumed after function materialization,
2062  // we can simply skip that last function block.
2063  if (FuncBitOffset > LastFunctionBlockBit)
2064    LastFunctionBlockBit = FuncBitOffset;
2065}
2066
2067/// Read a new-style GlobalValue symbol table.
2068Error BitcodeReader::parseGlobalValueSymbolTable() {
2069  unsigned FuncBitcodeOffsetDelta =
2070      Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2071
2072  if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2073    return Err;
2074
2075  SmallVector<uint64_t, 64> Record;
2076  while (true) {
2077    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2078    if (!MaybeEntry)
2079      return MaybeEntry.takeError();
2080    BitstreamEntry Entry = MaybeEntry.get();
2081
2082    switch (Entry.Kind) {
2083    case BitstreamEntry::SubBlock:
2084    case BitstreamEntry::Error:
2085      return error("Malformed block");
2086    case BitstreamEntry::EndBlock:
2087      return Error::success();
2088    case BitstreamEntry::Record:
2089      break;
2090    }
2091
2092    Record.clear();
2093    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2094    if (!MaybeRecord)
2095      return MaybeRecord.takeError();
2096    switch (MaybeRecord.get()) {
2097    case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2098      setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2099                              cast<Function>(ValueList[Record[0]]), Record);
2100      break;
2101    }
2102  }
2103}
2104
2105/// Parse the value symbol table at either the current parsing location or
2106/// at the given bit offset if provided.
2107Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2108  uint64_t CurrentBit;
2109  // Pass in the Offset to distinguish between calling for the module-level
2110  // VST (where we want to jump to the VST offset) and the function-level
2111  // VST (where we don't).
2112  if (Offset > 0) {
2113    Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2114    if (!MaybeCurrentBit)
2115      return MaybeCurrentBit.takeError();
2116    CurrentBit = MaybeCurrentBit.get();
2117    // If this module uses a string table, read this as a module-level VST.
2118    if (UseStrtab) {
2119      if (Error Err = parseGlobalValueSymbolTable())
2120        return Err;
2121      if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2122        return JumpFailed;
2123      return Error::success();
2124    }
2125    // Otherwise, the VST will be in a similar format to a function-level VST,
2126    // and will contain symbol names.
2127  }
2128
2129  // Compute the delta between the bitcode indices in the VST (the word offset
2130  // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2131  // expected by the lazy reader. The reader's EnterSubBlock expects to have
2132  // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2133  // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2134  // just before entering the VST subblock because: 1) the EnterSubBlock
2135  // changes the AbbrevID width; 2) the VST block is nested within the same
2136  // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2137  // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2138  // jump to the FUNCTION_BLOCK using this offset later, we don't want
2139  // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2140  unsigned FuncBitcodeOffsetDelta =
2141      Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2142
2143  if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2144    return Err;
2145
2146  SmallVector<uint64_t, 64> Record;
2147
2148  Triple TT(TheModule->getTargetTriple());
2149
2150  // Read all the records for this value table.
2151  SmallString<128> ValueName;
2152
2153  while (true) {
2154    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2155    if (!MaybeEntry)
2156      return MaybeEntry.takeError();
2157    BitstreamEntry Entry = MaybeEntry.get();
2158
2159    switch (Entry.Kind) {
2160    case BitstreamEntry::SubBlock: // Handled for us already.
2161    case BitstreamEntry::Error:
2162      return error("Malformed block");
2163    case BitstreamEntry::EndBlock:
2164      if (Offset > 0)
2165        if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2166          return JumpFailed;
2167      return Error::success();
2168    case BitstreamEntry::Record:
2169      // The interesting case.
2170      break;
2171    }
2172
2173    // Read a record.
2174    Record.clear();
2175    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2176    if (!MaybeRecord)
2177      return MaybeRecord.takeError();
2178    switch (MaybeRecord.get()) {
2179    default:  // Default behavior: unknown type.
2180      break;
2181    case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2182      Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2183      if (Error Err = ValOrErr.takeError())
2184        return Err;
2185      ValOrErr.get();
2186      break;
2187    }
2188    case bitc::VST_CODE_FNENTRY: {
2189      // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2190      Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2191      if (Error Err = ValOrErr.takeError())
2192        return Err;
2193      Value *V = ValOrErr.get();
2194
2195      // Ignore function offsets emitted for aliases of functions in older
2196      // versions of LLVM.
2197      if (auto *F = dyn_cast<Function>(V))
2198        setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2199      break;
2200    }
2201    case bitc::VST_CODE_BBENTRY: {
2202      if (convertToString(Record, 1, ValueName))
2203        return error("Invalid record");
2204      BasicBlock *BB = getBasicBlock(Record[0]);
2205      if (!BB)
2206        return error("Invalid record");
2207
2208      BB->setName(StringRef(ValueName.data(), ValueName.size()));
2209      ValueName.clear();
2210      break;
2211    }
2212    }
2213  }
2214}
2215
2216/// Decode a signed value stored with the sign bit in the LSB for dense VBR
2217/// encoding.
2218uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2219  if ((V & 1) == 0)
2220    return V >> 1;
2221  if (V != 1)
2222    return -(V >> 1);
2223  // There is no such thing as -0 with integers.  "-0" really means MININT.
2224  return 1ULL << 63;
2225}
2226
2227/// Resolve all of the initializers for global values and aliases that we can.
2228Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2229  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2230  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2231      IndirectSymbolInitWorklist;
2232  std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2233  std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2234  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2235
2236  GlobalInitWorklist.swap(GlobalInits);
2237  IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2238  FunctionPrefixWorklist.swap(FunctionPrefixes);
2239  FunctionPrologueWorklist.swap(FunctionPrologues);
2240  FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2241
2242  while (!GlobalInitWorklist.empty()) {
2243    unsigned ValID = GlobalInitWorklist.back().second;
2244    if (ValID >= ValueList.size()) {
2245      // Not ready to resolve this yet, it requires something later in the file.
2246      GlobalInits.push_back(GlobalInitWorklist.back());
2247    } else {
2248      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2249        GlobalInitWorklist.back().first->setInitializer(C);
2250      else
2251        return error("Expected a constant");
2252    }
2253    GlobalInitWorklist.pop_back();
2254  }
2255
2256  while (!IndirectSymbolInitWorklist.empty()) {
2257    unsigned ValID = IndirectSymbolInitWorklist.back().second;
2258    if (ValID >= ValueList.size()) {
2259      IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2260    } else {
2261      Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2262      if (!C)
2263        return error("Expected a constant");
2264      GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2265      if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2266        return error("Alias and aliasee types don't match");
2267      GIS->setIndirectSymbol(C);
2268    }
2269    IndirectSymbolInitWorklist.pop_back();
2270  }
2271
2272  while (!FunctionPrefixWorklist.empty()) {
2273    unsigned ValID = FunctionPrefixWorklist.back().second;
2274    if (ValID >= ValueList.size()) {
2275      FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2276    } else {
2277      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2278        FunctionPrefixWorklist.back().first->setPrefixData(C);
2279      else
2280        return error("Expected a constant");
2281    }
2282    FunctionPrefixWorklist.pop_back();
2283  }
2284
2285  while (!FunctionPrologueWorklist.empty()) {
2286    unsigned ValID = FunctionPrologueWorklist.back().second;
2287    if (ValID >= ValueList.size()) {
2288      FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2289    } else {
2290      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2291        FunctionPrologueWorklist.back().first->setPrologueData(C);
2292      else
2293        return error("Expected a constant");
2294    }
2295    FunctionPrologueWorklist.pop_back();
2296  }
2297
2298  while (!FunctionPersonalityFnWorklist.empty()) {
2299    unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2300    if (ValID >= ValueList.size()) {
2301      FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2302    } else {
2303      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2304        FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2305      else
2306        return error("Expected a constant");
2307    }
2308    FunctionPersonalityFnWorklist.pop_back();
2309  }
2310
2311  return Error::success();
2312}
2313
2314APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2315  SmallVector<uint64_t, 8> Words(Vals.size());
2316  transform(Vals, Words.begin(),
2317                 BitcodeReader::decodeSignRotatedValue);
2318
2319  return APInt(TypeBits, Words);
2320}
2321
2322Error BitcodeReader::parseConstants() {
2323  if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2324    return Err;
2325
2326  SmallVector<uint64_t, 64> Record;
2327
2328  // Read all the records for this value table.
2329  Type *CurTy = Type::getInt32Ty(Context);
2330  Type *CurFullTy = Type::getInt32Ty(Context);
2331  unsigned NextCstNo = ValueList.size();
2332
2333  struct DelayedShufTy {
2334    VectorType *OpTy;
2335    VectorType *RTy;
2336    Type *CurFullTy;
2337    uint64_t Op0Idx;
2338    uint64_t Op1Idx;
2339    uint64_t Op2Idx;
2340    unsigned CstNo;
2341  };
2342  std::vector<DelayedShufTy> DelayedShuffles;
2343  while (true) {
2344    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2345    if (!MaybeEntry)
2346      return MaybeEntry.takeError();
2347    BitstreamEntry Entry = MaybeEntry.get();
2348
2349    switch (Entry.Kind) {
2350    case BitstreamEntry::SubBlock: // Handled for us already.
2351    case BitstreamEntry::Error:
2352      return error("Malformed block");
2353    case BitstreamEntry::EndBlock:
2354      // Once all the constants have been read, go through and resolve forward
2355      // references.
2356      //
2357      // We have to treat shuffles specially because they don't have three
2358      // operands anymore.  We need to convert the shuffle mask into an array,
2359      // and we can't convert a forward reference.
2360      for (auto &DelayedShuffle : DelayedShuffles) {
2361        VectorType *OpTy = DelayedShuffle.OpTy;
2362        VectorType *RTy = DelayedShuffle.RTy;
2363        uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2364        uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2365        uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2366        uint64_t CstNo = DelayedShuffle.CstNo;
2367        Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2368        Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2369        Type *ShufTy =
2370            VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2371        Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2372        if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2373          return error("Invalid shufflevector operands");
2374        SmallVector<int, 16> Mask;
2375        ShuffleVectorInst::getShuffleMask(Op2, Mask);
2376        Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2377        ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2378      }
2379
2380      if (NextCstNo != ValueList.size())
2381        return error("Invalid constant reference");
2382
2383      ValueList.resolveConstantForwardRefs();
2384      return Error::success();
2385    case BitstreamEntry::Record:
2386      // The interesting case.
2387      break;
2388    }
2389
2390    // Read a record.
2391    Record.clear();
2392    Type *VoidType = Type::getVoidTy(Context);
2393    Value *V = nullptr;
2394    Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2395    if (!MaybeBitCode)
2396      return MaybeBitCode.takeError();
2397    switch (unsigned BitCode = MaybeBitCode.get()) {
2398    default:  // Default behavior: unknown constant
2399    case bitc::CST_CODE_UNDEF:     // UNDEF
2400      V = UndefValue::get(CurTy);
2401      break;
2402    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2403      if (Record.empty())
2404        return error("Invalid record");
2405      if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2406        return error("Invalid record");
2407      if (TypeList[Record[0]] == VoidType)
2408        return error("Invalid constant type");
2409      CurFullTy = TypeList[Record[0]];
2410      CurTy = flattenPointerTypes(CurFullTy);
2411      continue;  // Skip the ValueList manipulation.
2412    case bitc::CST_CODE_NULL:      // NULL
2413      if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2414        return error("Invalid type for a constant null value");
2415      V = Constant::getNullValue(CurTy);
2416      break;
2417    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2418      if (!CurTy->isIntegerTy() || Record.empty())
2419        return error("Invalid record");
2420      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2421      break;
2422    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2423      if (!CurTy->isIntegerTy() || Record.empty())
2424        return error("Invalid record");
2425
2426      APInt VInt =
2427          readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2428      V = ConstantInt::get(Context, VInt);
2429
2430      break;
2431    }
2432    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2433      if (Record.empty())
2434        return error("Invalid record");
2435      if (CurTy->isHalfTy())
2436        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2437                                             APInt(16, (uint16_t)Record[0])));
2438      else if (CurTy->isBFloatTy())
2439        V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2440                                             APInt(16, (uint32_t)Record[0])));
2441      else if (CurTy->isFloatTy())
2442        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2443                                             APInt(32, (uint32_t)Record[0])));
2444      else if (CurTy->isDoubleTy())
2445        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2446                                             APInt(64, Record[0])));
2447      else if (CurTy->isX86_FP80Ty()) {
2448        // Bits are not stored the same way as a normal i80 APInt, compensate.
2449        uint64_t Rearrange[2];
2450        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2451        Rearrange[1] = Record[0] >> 48;
2452        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2453                                             APInt(80, Rearrange)));
2454      } else if (CurTy->isFP128Ty())
2455        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2456                                             APInt(128, Record)));
2457      else if (CurTy->isPPC_FP128Ty())
2458        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2459                                             APInt(128, Record)));
2460      else
2461        V = UndefValue::get(CurTy);
2462      break;
2463    }
2464
2465    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2466      if (Record.empty())
2467        return error("Invalid record");
2468
2469      unsigned Size = Record.size();
2470      SmallVector<Constant*, 16> Elts;
2471
2472      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2473        for (unsigned i = 0; i != Size; ++i)
2474          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2475                                                     STy->getElementType(i)));
2476        V = ConstantStruct::get(STy, Elts);
2477      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2478        Type *EltTy = ATy->getElementType();
2479        for (unsigned i = 0; i != Size; ++i)
2480          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2481        V = ConstantArray::get(ATy, Elts);
2482      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2483        Type *EltTy = VTy->getElementType();
2484        for (unsigned i = 0; i != Size; ++i)
2485          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2486        V = ConstantVector::get(Elts);
2487      } else {
2488        V = UndefValue::get(CurTy);
2489      }
2490      break;
2491    }
2492    case bitc::CST_CODE_STRING:    // STRING: [values]
2493    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2494      if (Record.empty())
2495        return error("Invalid record");
2496
2497      SmallString<16> Elts(Record.begin(), Record.end());
2498      V = ConstantDataArray::getString(Context, Elts,
2499                                       BitCode == bitc::CST_CODE_CSTRING);
2500      break;
2501    }
2502    case bitc::CST_CODE_DATA: {// DATA: [n x value]
2503      if (Record.empty())
2504        return error("Invalid record");
2505
2506      Type *EltTy;
2507      if (auto *Array = dyn_cast<ArrayType>(CurTy))
2508        EltTy = Array->getElementType();
2509      else
2510        EltTy = cast<VectorType>(CurTy)->getElementType();
2511      if (EltTy->isIntegerTy(8)) {
2512        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2513        if (isa<VectorType>(CurTy))
2514          V = ConstantDataVector::get(Context, Elts);
2515        else
2516          V = ConstantDataArray::get(Context, Elts);
2517      } else if (EltTy->isIntegerTy(16)) {
2518        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2519        if (isa<VectorType>(CurTy))
2520          V = ConstantDataVector::get(Context, Elts);
2521        else
2522          V = ConstantDataArray::get(Context, Elts);
2523      } else if (EltTy->isIntegerTy(32)) {
2524        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2525        if (isa<VectorType>(CurTy))
2526          V = ConstantDataVector::get(Context, Elts);
2527        else
2528          V = ConstantDataArray::get(Context, Elts);
2529      } else if (EltTy->isIntegerTy(64)) {
2530        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2531        if (isa<VectorType>(CurTy))
2532          V = ConstantDataVector::get(Context, Elts);
2533        else
2534          V = ConstantDataArray::get(Context, Elts);
2535      } else if (EltTy->isHalfTy()) {
2536        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2537        if (isa<VectorType>(CurTy))
2538          V = ConstantDataVector::getFP(EltTy, Elts);
2539        else
2540          V = ConstantDataArray::getFP(EltTy, Elts);
2541      } else if (EltTy->isBFloatTy()) {
2542        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2543        if (isa<VectorType>(CurTy))
2544          V = ConstantDataVector::getFP(EltTy, Elts);
2545        else
2546          V = ConstantDataArray::getFP(EltTy, Elts);
2547      } else if (EltTy->isFloatTy()) {
2548        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2549        if (isa<VectorType>(CurTy))
2550          V = ConstantDataVector::getFP(EltTy, Elts);
2551        else
2552          V = ConstantDataArray::getFP(EltTy, Elts);
2553      } else if (EltTy->isDoubleTy()) {
2554        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2555        if (isa<VectorType>(CurTy))
2556          V = ConstantDataVector::getFP(EltTy, Elts);
2557        else
2558          V = ConstantDataArray::getFP(EltTy, Elts);
2559      } else {
2560        return error("Invalid type for value");
2561      }
2562      break;
2563    }
2564    case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2565      if (Record.size() < 2)
2566        return error("Invalid record");
2567      int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2568      if (Opc < 0) {
2569        V = UndefValue::get(CurTy);  // Unknown unop.
2570      } else {
2571        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2572        unsigned Flags = 0;
2573        V = ConstantExpr::get(Opc, LHS, Flags);
2574      }
2575      break;
2576    }
2577    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2578      if (Record.size() < 3)
2579        return error("Invalid record");
2580      int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2581      if (Opc < 0) {
2582        V = UndefValue::get(CurTy);  // Unknown binop.
2583      } else {
2584        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2585        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2586        unsigned Flags = 0;
2587        if (Record.size() >= 4) {
2588          if (Opc == Instruction::Add ||
2589              Opc == Instruction::Sub ||
2590              Opc == Instruction::Mul ||
2591              Opc == Instruction::Shl) {
2592            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2593              Flags |= OverflowingBinaryOperator::NoSignedWrap;
2594            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2595              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2596          } else if (Opc == Instruction::SDiv ||
2597                     Opc == Instruction::UDiv ||
2598                     Opc == Instruction::LShr ||
2599                     Opc == Instruction::AShr) {
2600            if (Record[3] & (1 << bitc::PEO_EXACT))
2601              Flags |= SDivOperator::IsExact;
2602          }
2603        }
2604        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2605      }
2606      break;
2607    }
2608    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2609      if (Record.size() < 3)
2610        return error("Invalid record");
2611      int Opc = getDecodedCastOpcode(Record[0]);
2612      if (Opc < 0) {
2613        V = UndefValue::get(CurTy);  // Unknown cast.
2614      } else {
2615        Type *OpTy = getTypeByID(Record[1]);
2616        if (!OpTy)
2617          return error("Invalid record");
2618        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2619        V = UpgradeBitCastExpr(Opc, Op, CurTy);
2620        if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2621      }
2622      break;
2623    }
2624    case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2625    case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2626    case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2627                                                     // operands]
2628      unsigned OpNum = 0;
2629      Type *PointeeType = nullptr;
2630      if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2631          Record.size() % 2)
2632        PointeeType = getTypeByID(Record[OpNum++]);
2633
2634      bool InBounds = false;
2635      Optional<unsigned> InRangeIndex;
2636      if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2637        uint64_t Op = Record[OpNum++];
2638        InBounds = Op & 1;
2639        InRangeIndex = Op >> 1;
2640      } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2641        InBounds = true;
2642
2643      SmallVector<Constant*, 16> Elts;
2644      Type *Elt0FullTy = nullptr;
2645      while (OpNum != Record.size()) {
2646        if (!Elt0FullTy)
2647          Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2648        Type *ElTy = getTypeByID(Record[OpNum++]);
2649        if (!ElTy)
2650          return error("Invalid record");
2651        Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2652      }
2653
2654      if (Elts.size() < 1)
2655        return error("Invalid gep with no operands");
2656
2657      Type *ImplicitPointeeType =
2658          getPointerElementFlatType(Elt0FullTy->getScalarType());
2659      if (!PointeeType)
2660        PointeeType = ImplicitPointeeType;
2661      else if (PointeeType != ImplicitPointeeType)
2662        return error("Explicit gep operator type does not match pointee type "
2663                     "of pointer operand");
2664
2665      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2666      V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2667                                         InBounds, InRangeIndex);
2668      break;
2669    }
2670    case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2671      if (Record.size() < 3)
2672        return error("Invalid record");
2673
2674      Type *SelectorTy = Type::getInt1Ty(Context);
2675
2676      // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2677      // Get the type from the ValueList before getting a forward ref.
2678      if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2679        if (Value *V = ValueList[Record[0]])
2680          if (SelectorTy != V->getType())
2681            SelectorTy = VectorType::get(SelectorTy,
2682                                         VTy->getElementCount());
2683
2684      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2685                                                              SelectorTy),
2686                                  ValueList.getConstantFwdRef(Record[1],CurTy),
2687                                  ValueList.getConstantFwdRef(Record[2],CurTy));
2688      break;
2689    }
2690    case bitc::CST_CODE_CE_EXTRACTELT
2691        : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2692      if (Record.size() < 3)
2693        return error("Invalid record");
2694      VectorType *OpTy =
2695        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2696      if (!OpTy)
2697        return error("Invalid record");
2698      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2699      Constant *Op1 = nullptr;
2700      if (Record.size() == 4) {
2701        Type *IdxTy = getTypeByID(Record[2]);
2702        if (!IdxTy)
2703          return error("Invalid record");
2704        Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2705      } else {
2706        // Deprecated, but still needed to read old bitcode files.
2707        Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2708      }
2709      if (!Op1)
2710        return error("Invalid record");
2711      V = ConstantExpr::getExtractElement(Op0, Op1);
2712      break;
2713    }
2714    case bitc::CST_CODE_CE_INSERTELT
2715        : { // CE_INSERTELT: [opval, opval, opty, opval]
2716      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2717      if (Record.size() < 3 || !OpTy)
2718        return error("Invalid record");
2719      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2720      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2721                                                  OpTy->getElementType());
2722      Constant *Op2 = nullptr;
2723      if (Record.size() == 4) {
2724        Type *IdxTy = getTypeByID(Record[2]);
2725        if (!IdxTy)
2726          return error("Invalid record");
2727        Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2728      } else {
2729        // Deprecated, but still needed to read old bitcode files.
2730        Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2731      }
2732      if (!Op2)
2733        return error("Invalid record");
2734      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2735      break;
2736    }
2737    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2738      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2739      if (Record.size() < 3 || !OpTy)
2740        return error("Invalid record");
2741      DelayedShuffles.push_back(
2742          {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2743      ++NextCstNo;
2744      continue;
2745    }
2746    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2747      VectorType *RTy = dyn_cast<VectorType>(CurTy);
2748      VectorType *OpTy =
2749        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2750      if (Record.size() < 4 || !RTy || !OpTy)
2751        return error("Invalid record");
2752      DelayedShuffles.push_back(
2753          {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2754      ++NextCstNo;
2755      continue;
2756    }
2757    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2758      if (Record.size() < 4)
2759        return error("Invalid record");
2760      Type *OpTy = getTypeByID(Record[0]);
2761      if (!OpTy)
2762        return error("Invalid record");
2763      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2764      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2765
2766      if (OpTy->isFPOrFPVectorTy())
2767        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2768      else
2769        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2770      break;
2771    }
2772    // This maintains backward compatibility, pre-asm dialect keywords.
2773    // Deprecated, but still needed to read old bitcode files.
2774    case bitc::CST_CODE_INLINEASM_OLD: {
2775      if (Record.size() < 2)
2776        return error("Invalid record");
2777      std::string AsmStr, ConstrStr;
2778      bool HasSideEffects = Record[0] & 1;
2779      bool IsAlignStack = Record[0] >> 1;
2780      unsigned AsmStrSize = Record[1];
2781      if (2+AsmStrSize >= Record.size())
2782        return error("Invalid record");
2783      unsigned ConstStrSize = Record[2+AsmStrSize];
2784      if (3+AsmStrSize+ConstStrSize > Record.size())
2785        return error("Invalid record");
2786
2787      for (unsigned i = 0; i != AsmStrSize; ++i)
2788        AsmStr += (char)Record[2+i];
2789      for (unsigned i = 0; i != ConstStrSize; ++i)
2790        ConstrStr += (char)Record[3+AsmStrSize+i];
2791      UpgradeInlineAsmString(&AsmStr);
2792      V = InlineAsm::get(
2793          cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2794          ConstrStr, HasSideEffects, IsAlignStack);
2795      break;
2796    }
2797    // This version adds support for the asm dialect keywords (e.g.,
2798    // inteldialect).
2799    case bitc::CST_CODE_INLINEASM: {
2800      if (Record.size() < 2)
2801        return error("Invalid record");
2802      std::string AsmStr, ConstrStr;
2803      bool HasSideEffects = Record[0] & 1;
2804      bool IsAlignStack = (Record[0] >> 1) & 1;
2805      unsigned AsmDialect = Record[0] >> 2;
2806      unsigned AsmStrSize = Record[1];
2807      if (2+AsmStrSize >= Record.size())
2808        return error("Invalid record");
2809      unsigned ConstStrSize = Record[2+AsmStrSize];
2810      if (3+AsmStrSize+ConstStrSize > Record.size())
2811        return error("Invalid record");
2812
2813      for (unsigned i = 0; i != AsmStrSize; ++i)
2814        AsmStr += (char)Record[2+i];
2815      for (unsigned i = 0; i != ConstStrSize; ++i)
2816        ConstrStr += (char)Record[3+AsmStrSize+i];
2817      UpgradeInlineAsmString(&AsmStr);
2818      V = InlineAsm::get(
2819          cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2820          ConstrStr, HasSideEffects, IsAlignStack,
2821          InlineAsm::AsmDialect(AsmDialect));
2822      break;
2823    }
2824    case bitc::CST_CODE_BLOCKADDRESS:{
2825      if (Record.size() < 3)
2826        return error("Invalid record");
2827      Type *FnTy = getTypeByID(Record[0]);
2828      if (!FnTy)
2829        return error("Invalid record");
2830      Function *Fn =
2831        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2832      if (!Fn)
2833        return error("Invalid record");
2834
2835      // If the function is already parsed we can insert the block address right
2836      // away.
2837      BasicBlock *BB;
2838      unsigned BBID = Record[2];
2839      if (!BBID)
2840        // Invalid reference to entry block.
2841        return error("Invalid ID");
2842      if (!Fn->empty()) {
2843        Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2844        for (size_t I = 0, E = BBID; I != E; ++I) {
2845          if (BBI == BBE)
2846            return error("Invalid ID");
2847          ++BBI;
2848        }
2849        BB = &*BBI;
2850      } else {
2851        // Otherwise insert a placeholder and remember it so it can be inserted
2852        // when the function is parsed.
2853        auto &FwdBBs = BasicBlockFwdRefs[Fn];
2854        if (FwdBBs.empty())
2855          BasicBlockFwdRefQueue.push_back(Fn);
2856        if (FwdBBs.size() < BBID + 1)
2857          FwdBBs.resize(BBID + 1);
2858        if (!FwdBBs[BBID])
2859          FwdBBs[BBID] = BasicBlock::Create(Context);
2860        BB = FwdBBs[BBID];
2861      }
2862      V = BlockAddress::get(Fn, BB);
2863      break;
2864    }
2865    }
2866
2867    assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2868           "Incorrect fully structured type provided for Constant");
2869    ValueList.assignValue(V, NextCstNo, CurFullTy);
2870    ++NextCstNo;
2871  }
2872}
2873
2874Error BitcodeReader::parseUseLists() {
2875  if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2876    return Err;
2877
2878  // Read all the records.
2879  SmallVector<uint64_t, 64> Record;
2880
2881  while (true) {
2882    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2883    if (!MaybeEntry)
2884      return MaybeEntry.takeError();
2885    BitstreamEntry Entry = MaybeEntry.get();
2886
2887    switch (Entry.Kind) {
2888    case BitstreamEntry::SubBlock: // Handled for us already.
2889    case BitstreamEntry::Error:
2890      return error("Malformed block");
2891    case BitstreamEntry::EndBlock:
2892      return Error::success();
2893    case BitstreamEntry::Record:
2894      // The interesting case.
2895      break;
2896    }
2897
2898    // Read a use list record.
2899    Record.clear();
2900    bool IsBB = false;
2901    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2902    if (!MaybeRecord)
2903      return MaybeRecord.takeError();
2904    switch (MaybeRecord.get()) {
2905    default:  // Default behavior: unknown type.
2906      break;
2907    case bitc::USELIST_CODE_BB:
2908      IsBB = true;
2909      LLVM_FALLTHROUGH;
2910    case bitc::USELIST_CODE_DEFAULT: {
2911      unsigned RecordLength = Record.size();
2912      if (RecordLength < 3)
2913        // Records should have at least an ID and two indexes.
2914        return error("Invalid record");
2915      unsigned ID = Record.back();
2916      Record.pop_back();
2917
2918      Value *V;
2919      if (IsBB) {
2920        assert(ID < FunctionBBs.size() && "Basic block not found");
2921        V = FunctionBBs[ID];
2922      } else
2923        V = ValueList[ID];
2924      unsigned NumUses = 0;
2925      SmallDenseMap<const Use *, unsigned, 16> Order;
2926      for (const Use &U : V->materialized_uses()) {
2927        if (++NumUses > Record.size())
2928          break;
2929        Order[&U] = Record[NumUses - 1];
2930      }
2931      if (Order.size() != Record.size() || NumUses > Record.size())
2932        // Mismatches can happen if the functions are being materialized lazily
2933        // (out-of-order), or a value has been upgraded.
2934        break;
2935
2936      V->sortUseList([&](const Use &L, const Use &R) {
2937        return Order.lookup(&L) < Order.lookup(&R);
2938      });
2939      break;
2940    }
2941    }
2942  }
2943}
2944
2945/// When we see the block for metadata, remember where it is and then skip it.
2946/// This lets us lazily deserialize the metadata.
2947Error BitcodeReader::rememberAndSkipMetadata() {
2948  // Save the current stream state.
2949  uint64_t CurBit = Stream.GetCurrentBitNo();
2950  DeferredMetadataInfo.push_back(CurBit);
2951
2952  // Skip over the block for now.
2953  if (Error Err = Stream.SkipBlock())
2954    return Err;
2955  return Error::success();
2956}
2957
2958Error BitcodeReader::materializeMetadata() {
2959  for (uint64_t BitPos : DeferredMetadataInfo) {
2960    // Move the bit stream to the saved position.
2961    if (Error JumpFailed = Stream.JumpToBit(BitPos))
2962      return JumpFailed;
2963    if (Error Err = MDLoader->parseModuleMetadata())
2964      return Err;
2965  }
2966
2967  // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2968  // metadata.
2969  if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2970    NamedMDNode *LinkerOpts =
2971        TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2972    for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2973      LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2974  }
2975
2976  DeferredMetadataInfo.clear();
2977  return Error::success();
2978}
2979
2980void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2981
2982/// When we see the block for a function body, remember where it is and then
2983/// skip it.  This lets us lazily deserialize the functions.
2984Error BitcodeReader::rememberAndSkipFunctionBody() {
2985  // Get the function we are talking about.
2986  if (FunctionsWithBodies.empty())
2987    return error("Insufficient function protos");
2988
2989  Function *Fn = FunctionsWithBodies.back();
2990  FunctionsWithBodies.pop_back();
2991
2992  // Save the current stream state.
2993  uint64_t CurBit = Stream.GetCurrentBitNo();
2994  assert(
2995      (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2996      "Mismatch between VST and scanned function offsets");
2997  DeferredFunctionInfo[Fn] = CurBit;
2998
2999  // Skip over the function block for now.
3000  if (Error Err = Stream.SkipBlock())
3001    return Err;
3002  return Error::success();
3003}
3004
3005Error BitcodeReader::globalCleanup() {
3006  // Patch the initializers for globals and aliases up.
3007  if (Error Err = resolveGlobalAndIndirectSymbolInits())
3008    return Err;
3009  if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3010    return error("Malformed global initializer set");
3011
3012  // Look for intrinsic functions which need to be upgraded at some point
3013  // and functions that need to have their function attributes upgraded.
3014  for (Function &F : *TheModule) {
3015    MDLoader->upgradeDebugIntrinsics(F);
3016    Function *NewFn;
3017    if (UpgradeIntrinsicFunction(&F, NewFn))
3018      UpgradedIntrinsics[&F] = NewFn;
3019    else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3020      // Some types could be renamed during loading if several modules are
3021      // loaded in the same LLVMContext (LTO scenario). In this case we should
3022      // remangle intrinsics names as well.
3023      RemangledIntrinsics[&F] = Remangled.getValue();
3024    // Look for functions that rely on old function attribute behavior.
3025    UpgradeFunctionAttributes(F);
3026  }
3027
3028  // Look for global variables which need to be renamed.
3029  std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3030  for (GlobalVariable &GV : TheModule->globals())
3031    if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3032      UpgradedVariables.emplace_back(&GV, Upgraded);
3033  for (auto &Pair : UpgradedVariables) {
3034    Pair.first->eraseFromParent();
3035    TheModule->getGlobalList().push_back(Pair.second);
3036  }
3037
3038  // Force deallocation of memory for these vectors to favor the client that
3039  // want lazy deserialization.
3040  std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3041  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3042      IndirectSymbolInits);
3043  return Error::success();
3044}
3045
3046/// Support for lazy parsing of function bodies. This is required if we
3047/// either have an old bitcode file without a VST forward declaration record,
3048/// or if we have an anonymous function being materialized, since anonymous
3049/// functions do not have a name and are therefore not in the VST.
3050Error BitcodeReader::rememberAndSkipFunctionBodies() {
3051  if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3052    return JumpFailed;
3053
3054  if (Stream.AtEndOfStream())
3055    return error("Could not find function in stream");
3056
3057  if (!SeenFirstFunctionBody)
3058    return error("Trying to materialize functions before seeing function blocks");
3059
3060  // An old bitcode file with the symbol table at the end would have
3061  // finished the parse greedily.
3062  assert(SeenValueSymbolTable);
3063
3064  SmallVector<uint64_t, 64> Record;
3065
3066  while (true) {
3067    Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3068    if (!MaybeEntry)
3069      return MaybeEntry.takeError();
3070    llvm::BitstreamEntry Entry = MaybeEntry.get();
3071
3072    switch (Entry.Kind) {
3073    default:
3074      return error("Expect SubBlock");
3075    case BitstreamEntry::SubBlock:
3076      switch (Entry.ID) {
3077      default:
3078        return error("Expect function block");
3079      case bitc::FUNCTION_BLOCK_ID:
3080        if (Error Err = rememberAndSkipFunctionBody())
3081          return Err;
3082        NextUnreadBit = Stream.GetCurrentBitNo();
3083        return Error::success();
3084      }
3085    }
3086  }
3087}
3088
3089bool BitcodeReaderBase::readBlockInfo() {
3090  Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3091      Stream.ReadBlockInfoBlock();
3092  if (!MaybeNewBlockInfo)
3093    return true; // FIXME Handle the error.
3094  Optional<BitstreamBlockInfo> NewBlockInfo =
3095      std::move(MaybeNewBlockInfo.get());
3096  if (!NewBlockInfo)
3097    return true;
3098  BlockInfo = std::move(*NewBlockInfo);
3099  return false;
3100}
3101
3102Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3103  // v1: [selection_kind, name]
3104  // v2: [strtab_offset, strtab_size, selection_kind]
3105  StringRef Name;
3106  std::tie(Name, Record) = readNameFromStrtab(Record);
3107
3108  if (Record.empty())
3109    return error("Invalid record");
3110  Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3111  std::string OldFormatName;
3112  if (!UseStrtab) {
3113    if (Record.size() < 2)
3114      return error("Invalid record");
3115    unsigned ComdatNameSize = Record[1];
3116    OldFormatName.reserve(ComdatNameSize);
3117    for (unsigned i = 0; i != ComdatNameSize; ++i)
3118      OldFormatName += (char)Record[2 + i];
3119    Name = OldFormatName;
3120  }
3121  Comdat *C = TheModule->getOrInsertComdat(Name);
3122  C->setSelectionKind(SK);
3123  ComdatList.push_back(C);
3124  return Error::success();
3125}
3126
3127static void inferDSOLocal(GlobalValue *GV) {
3128  // infer dso_local from linkage and visibility if it is not encoded.
3129  if (GV->hasLocalLinkage() ||
3130      (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3131    GV->setDSOLocal(true);
3132}
3133
3134Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3135  // v1: [pointer type, isconst, initid, linkage, alignment, section,
3136  // visibility, threadlocal, unnamed_addr, externally_initialized,
3137  // dllstorageclass, comdat, attributes, preemption specifier,
3138  // partition strtab offset, partition strtab size] (name in VST)
3139  // v2: [strtab_offset, strtab_size, v1]
3140  StringRef Name;
3141  std::tie(Name, Record) = readNameFromStrtab(Record);
3142
3143  if (Record.size() < 6)
3144    return error("Invalid record");
3145  Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3146  Type *Ty = flattenPointerTypes(FullTy);
3147  if (!Ty)
3148    return error("Invalid record");
3149  bool isConstant = Record[1] & 1;
3150  bool explicitType = Record[1] & 2;
3151  unsigned AddressSpace;
3152  if (explicitType) {
3153    AddressSpace = Record[1] >> 2;
3154  } else {
3155    if (!Ty->isPointerTy())
3156      return error("Invalid type for value");
3157    AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3158    std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3159  }
3160
3161  uint64_t RawLinkage = Record[3];
3162  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3163  MaybeAlign Alignment;
3164  if (Error Err = parseAlignmentValue(Record[4], Alignment))
3165    return Err;
3166  std::string Section;
3167  if (Record[5]) {
3168    if (Record[5] - 1 >= SectionTable.size())
3169      return error("Invalid ID");
3170    Section = SectionTable[Record[5] - 1];
3171  }
3172  GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3173  // Local linkage must have default visibility.
3174  // auto-upgrade `hidden` and `protected` for old bitcode.
3175  if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3176    Visibility = getDecodedVisibility(Record[6]);
3177
3178  GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3179  if (Record.size() > 7)
3180    TLM = getDecodedThreadLocalMode(Record[7]);
3181
3182  GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3183  if (Record.size() > 8)
3184    UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3185
3186  bool ExternallyInitialized = false;
3187  if (Record.size() > 9)
3188    ExternallyInitialized = Record[9];
3189
3190  GlobalVariable *NewGV =
3191      new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3192                         nullptr, TLM, AddressSpace, ExternallyInitialized);
3193  NewGV->setAlignment(Alignment);
3194  if (!Section.empty())
3195    NewGV->setSection(Section);
3196  NewGV->setVisibility(Visibility);
3197  NewGV->setUnnamedAddr(UnnamedAddr);
3198
3199  if (Record.size() > 10)
3200    NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3201  else
3202    upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3203
3204  FullTy = PointerType::get(FullTy, AddressSpace);
3205  assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3206         "Incorrect fully specified type for GlobalVariable");
3207  ValueList.push_back(NewGV, FullTy);
3208
3209  // Remember which value to use for the global initializer.
3210  if (unsigned InitID = Record[2])
3211    GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3212
3213  if (Record.size() > 11) {
3214    if (unsigned ComdatID = Record[11]) {
3215      if (ComdatID > ComdatList.size())
3216        return error("Invalid global variable comdat ID");
3217      NewGV->setComdat(ComdatList[ComdatID - 1]);
3218    }
3219  } else if (hasImplicitComdat(RawLinkage)) {
3220    NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3221  }
3222
3223  if (Record.size() > 12) {
3224    auto AS = getAttributes(Record[12]).getFnAttributes();
3225    NewGV->setAttributes(AS);
3226  }
3227
3228  if (Record.size() > 13) {
3229    NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3230  }
3231  inferDSOLocal(NewGV);
3232
3233  // Check whether we have enough values to read a partition name.
3234  if (Record.size() > 15)
3235    NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3236
3237  return Error::success();
3238}
3239
3240Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3241  // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3242  // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3243  // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3244  // v2: [strtab_offset, strtab_size, v1]
3245  StringRef Name;
3246  std::tie(Name, Record) = readNameFromStrtab(Record);
3247
3248  if (Record.size() < 8)
3249    return error("Invalid record");
3250  Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3251  Type *FTy = flattenPointerTypes(FullFTy);
3252  if (!FTy)
3253    return error("Invalid record");
3254  if (isa<PointerType>(FTy))
3255    std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3256
3257  if (!isa<FunctionType>(FTy))
3258    return error("Invalid type for value");
3259  auto CC = static_cast<CallingConv::ID>(Record[1]);
3260  if (CC & ~CallingConv::MaxID)
3261    return error("Invalid calling convention ID");
3262
3263  unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3264  if (Record.size() > 16)
3265    AddrSpace = Record[16];
3266
3267  Function *Func =
3268      Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3269                       AddrSpace, Name, TheModule);
3270
3271  assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3272         "Incorrect fully specified type provided for function");
3273  FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3274
3275  Func->setCallingConv(CC);
3276  bool isProto = Record[2];
3277  uint64_t RawLinkage = Record[3];
3278  Func->setLinkage(getDecodedLinkage(RawLinkage));
3279  Func->setAttributes(getAttributes(Record[4]));
3280
3281  // Upgrade any old-style byval without a type by propagating the argument's
3282  // pointee type. There should be no opaque pointers where the byval type is
3283  // implicit.
3284  for (unsigned i = 0; i != Func->arg_size(); ++i) {
3285    if (!Func->hasParamAttribute(i, Attribute::ByVal))
3286      continue;
3287
3288    Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3289    Func->removeParamAttr(i, Attribute::ByVal);
3290    Func->addParamAttr(i, Attribute::getWithByValType(
3291                              Context, getPointerElementFlatType(PTy)));
3292  }
3293
3294  MaybeAlign Alignment;
3295  if (Error Err = parseAlignmentValue(Record[5], Alignment))
3296    return Err;
3297  Func->setAlignment(Alignment);
3298  if (Record[6]) {
3299    if (Record[6] - 1 >= SectionTable.size())
3300      return error("Invalid ID");
3301    Func->setSection(SectionTable[Record[6] - 1]);
3302  }
3303  // Local linkage must have default visibility.
3304  // auto-upgrade `hidden` and `protected` for old bitcode.
3305  if (!Func->hasLocalLinkage())
3306    Func->setVisibility(getDecodedVisibility(Record[7]));
3307  if (Record.size() > 8 && Record[8]) {
3308    if (Record[8] - 1 >= GCTable.size())
3309      return error("Invalid ID");
3310    Func->setGC(GCTable[Record[8] - 1]);
3311  }
3312  GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3313  if (Record.size() > 9)
3314    UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3315  Func->setUnnamedAddr(UnnamedAddr);
3316  if (Record.size() > 10 && Record[10] != 0)
3317    FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3318
3319  if (Record.size() > 11)
3320    Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3321  else
3322    upgradeDLLImportExportLinkage(Func, RawLinkage);
3323
3324  if (Record.size() > 12) {
3325    if (unsigned ComdatID = Record[12]) {
3326      if (ComdatID > ComdatList.size())
3327        return error("Invalid function comdat ID");
3328      Func->setComdat(ComdatList[ComdatID - 1]);
3329    }
3330  } else if (hasImplicitComdat(RawLinkage)) {
3331    Func->setComdat(reinterpret_cast<Comdat *>(1));
3332  }
3333
3334  if (Record.size() > 13 && Record[13] != 0)
3335    FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3336
3337  if (Record.size() > 14 && Record[14] != 0)
3338    FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3339
3340  if (Record.size() > 15) {
3341    Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3342  }
3343  inferDSOLocal(Func);
3344
3345  // Record[16] is the address space number.
3346
3347  // Check whether we have enough values to read a partition name.
3348  if (Record.size() > 18)
3349    Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3350
3351  Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3352  assert(Func->getType() == flattenPointerTypes(FullTy) &&
3353         "Incorrect fully specified type provided for Function");
3354  ValueList.push_back(Func, FullTy);
3355
3356  // If this is a function with a body, remember the prototype we are
3357  // creating now, so that we can match up the body with them later.
3358  if (!isProto) {
3359    Func->setIsMaterializable(true);
3360    FunctionsWithBodies.push_back(Func);
3361    DeferredFunctionInfo[Func] = 0;
3362  }
3363  return Error::success();
3364}
3365
3366Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3367    unsigned BitCode, ArrayRef<uint64_t> Record) {
3368  // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3369  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3370  // dllstorageclass, threadlocal, unnamed_addr,
3371  // preemption specifier] (name in VST)
3372  // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3373  // visibility, dllstorageclass, threadlocal, unnamed_addr,
3374  // preemption specifier] (name in VST)
3375  // v2: [strtab_offset, strtab_size, v1]
3376  StringRef Name;
3377  std::tie(Name, Record) = readNameFromStrtab(Record);
3378
3379  bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3380  if (Record.size() < (3 + (unsigned)NewRecord))
3381    return error("Invalid record");
3382  unsigned OpNum = 0;
3383  Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3384  Type *Ty = flattenPointerTypes(FullTy);
3385  if (!Ty)
3386    return error("Invalid record");
3387
3388  unsigned AddrSpace;
3389  if (!NewRecord) {
3390    auto *PTy = dyn_cast<PointerType>(Ty);
3391    if (!PTy)
3392      return error("Invalid type for value");
3393    std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3394    AddrSpace = PTy->getAddressSpace();
3395  } else {
3396    AddrSpace = Record[OpNum++];
3397  }
3398
3399  auto Val = Record[OpNum++];
3400  auto Linkage = Record[OpNum++];
3401  GlobalIndirectSymbol *NewGA;
3402  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3403      BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3404    NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3405                                TheModule);
3406  else
3407    NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3408                                nullptr, TheModule);
3409
3410  assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3411         "Incorrect fully structured type provided for GlobalIndirectSymbol");
3412  // Local linkage must have default visibility.
3413  // auto-upgrade `hidden` and `protected` for old bitcode.
3414  if (OpNum != Record.size()) {
3415    auto VisInd = OpNum++;
3416    if (!NewGA->hasLocalLinkage())
3417      NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3418  }
3419  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3420      BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3421    if (OpNum != Record.size())
3422      NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3423    else
3424      upgradeDLLImportExportLinkage(NewGA, Linkage);
3425    if (OpNum != Record.size())
3426      NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3427    if (OpNum != Record.size())
3428      NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3429  }
3430  if (OpNum != Record.size())
3431    NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3432  inferDSOLocal(NewGA);
3433
3434  // Check whether we have enough values to read a partition name.
3435  if (OpNum + 1 < Record.size()) {
3436    NewGA->setPartition(
3437        StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3438    OpNum += 2;
3439  }
3440
3441  FullTy = PointerType::get(FullTy, AddrSpace);
3442  assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3443         "Incorrect fully structured type provided for GlobalIndirectSymbol");
3444  ValueList.push_back(NewGA, FullTy);
3445  IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3446  return Error::success();
3447}
3448
3449Error BitcodeReader::parseModule(uint64_t ResumeBit,
3450                                 bool ShouldLazyLoadMetadata,
3451                                 DataLayoutCallbackTy DataLayoutCallback) {
3452  if (ResumeBit) {
3453    if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3454      return JumpFailed;
3455  } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3456    return Err;
3457
3458  SmallVector<uint64_t, 64> Record;
3459
3460  // Parts of bitcode parsing depend on the datalayout.  Make sure we
3461  // finalize the datalayout before we run any of that code.
3462  bool ResolvedDataLayout = false;
3463  auto ResolveDataLayout = [&] {
3464    if (ResolvedDataLayout)
3465      return;
3466
3467    // datalayout and triple can't be parsed after this point.
3468    ResolvedDataLayout = true;
3469
3470    // Upgrade data layout string.
3471    std::string DL = llvm::UpgradeDataLayoutString(
3472        TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3473    TheModule->setDataLayout(DL);
3474
3475    if (auto LayoutOverride =
3476            DataLayoutCallback(TheModule->getTargetTriple()))
3477      TheModule->setDataLayout(*LayoutOverride);
3478  };
3479
3480  // Read all the records for this module.
3481  while (true) {
3482    Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3483    if (!MaybeEntry)
3484      return MaybeEntry.takeError();
3485    llvm::BitstreamEntry Entry = MaybeEntry.get();
3486
3487    switch (Entry.Kind) {
3488    case BitstreamEntry::Error:
3489      return error("Malformed block");
3490    case BitstreamEntry::EndBlock:
3491      ResolveDataLayout();
3492      return globalCleanup();
3493
3494    case BitstreamEntry::SubBlock:
3495      switch (Entry.ID) {
3496      default:  // Skip unknown content.
3497        if (Error Err = Stream.SkipBlock())
3498          return Err;
3499        break;
3500      case bitc::BLOCKINFO_BLOCK_ID:
3501        if (readBlockInfo())
3502          return error("Malformed block");
3503        break;
3504      case bitc::PARAMATTR_BLOCK_ID:
3505        if (Error Err = parseAttributeBlock())
3506          return Err;
3507        break;
3508      case bitc::PARAMATTR_GROUP_BLOCK_ID:
3509        if (Error Err = parseAttributeGroupBlock())
3510          return Err;
3511        break;
3512      case bitc::TYPE_BLOCK_ID_NEW:
3513        if (Error Err = parseTypeTable())
3514          return Err;
3515        break;
3516      case bitc::VALUE_SYMTAB_BLOCK_ID:
3517        if (!SeenValueSymbolTable) {
3518          // Either this is an old form VST without function index and an
3519          // associated VST forward declaration record (which would have caused
3520          // the VST to be jumped to and parsed before it was encountered
3521          // normally in the stream), or there were no function blocks to
3522          // trigger an earlier parsing of the VST.
3523          assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3524          if (Error Err = parseValueSymbolTable())
3525            return Err;
3526          SeenValueSymbolTable = true;
3527        } else {
3528          // We must have had a VST forward declaration record, which caused
3529          // the parser to jump to and parse the VST earlier.
3530          assert(VSTOffset > 0);
3531          if (Error Err = Stream.SkipBlock())
3532            return Err;
3533        }
3534        break;
3535      case bitc::CONSTANTS_BLOCK_ID:
3536        if (Error Err = parseConstants())
3537          return Err;
3538        if (Error Err = resolveGlobalAndIndirectSymbolInits())
3539          return Err;
3540        break;
3541      case bitc::METADATA_BLOCK_ID:
3542        if (ShouldLazyLoadMetadata) {
3543          if (Error Err = rememberAndSkipMetadata())
3544            return Err;
3545          break;
3546        }
3547        assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3548        if (Error Err = MDLoader->parseModuleMetadata())
3549          return Err;
3550        break;
3551      case bitc::METADATA_KIND_BLOCK_ID:
3552        if (Error Err = MDLoader->parseMetadataKinds())
3553          return Err;
3554        break;
3555      case bitc::FUNCTION_BLOCK_ID:
3556        ResolveDataLayout();
3557
3558        // If this is the first function body we've seen, reverse the
3559        // FunctionsWithBodies list.
3560        if (!SeenFirstFunctionBody) {
3561          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3562          if (Error Err = globalCleanup())
3563            return Err;
3564          SeenFirstFunctionBody = true;
3565        }
3566
3567        if (VSTOffset > 0) {
3568          // If we have a VST forward declaration record, make sure we
3569          // parse the VST now if we haven't already. It is needed to
3570          // set up the DeferredFunctionInfo vector for lazy reading.
3571          if (!SeenValueSymbolTable) {
3572            if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3573              return Err;
3574            SeenValueSymbolTable = true;
3575            // Fall through so that we record the NextUnreadBit below.
3576            // This is necessary in case we have an anonymous function that
3577            // is later materialized. Since it will not have a VST entry we
3578            // need to fall back to the lazy parse to find its offset.
3579          } else {
3580            // If we have a VST forward declaration record, but have already
3581            // parsed the VST (just above, when the first function body was
3582            // encountered here), then we are resuming the parse after
3583            // materializing functions. The ResumeBit points to the
3584            // start of the last function block recorded in the
3585            // DeferredFunctionInfo map. Skip it.
3586            if (Error Err = Stream.SkipBlock())
3587              return Err;
3588            continue;
3589          }
3590        }
3591
3592        // Support older bitcode files that did not have the function
3593        // index in the VST, nor a VST forward declaration record, as
3594        // well as anonymous functions that do not have VST entries.
3595        // Build the DeferredFunctionInfo vector on the fly.
3596        if (Error Err = rememberAndSkipFunctionBody())
3597          return Err;
3598
3599        // Suspend parsing when we reach the function bodies. Subsequent
3600        // materialization calls will resume it when necessary. If the bitcode
3601        // file is old, the symbol table will be at the end instead and will not
3602        // have been seen yet. In this case, just finish the parse now.
3603        if (SeenValueSymbolTable) {
3604          NextUnreadBit = Stream.GetCurrentBitNo();
3605          // After the VST has been parsed, we need to make sure intrinsic name
3606          // are auto-upgraded.
3607          return globalCleanup();
3608        }
3609        break;
3610      case bitc::USELIST_BLOCK_ID:
3611        if (Error Err = parseUseLists())
3612          return Err;
3613        break;
3614      case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3615        if (Error Err = parseOperandBundleTags())
3616          return Err;
3617        break;
3618      case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3619        if (Error Err = parseSyncScopeNames())
3620          return Err;
3621        break;
3622      }
3623      continue;
3624
3625    case BitstreamEntry::Record:
3626      // The interesting case.
3627      break;
3628    }
3629
3630    // Read a record.
3631    Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3632    if (!MaybeBitCode)
3633      return MaybeBitCode.takeError();
3634    switch (unsigned BitCode = MaybeBitCode.get()) {
3635    default: break;  // Default behavior, ignore unknown content.
3636    case bitc::MODULE_CODE_VERSION: {
3637      Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3638      if (!VersionOrErr)
3639        return VersionOrErr.takeError();
3640      UseRelativeIDs = *VersionOrErr >= 1;
3641      break;
3642    }
3643    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3644      if (ResolvedDataLayout)
3645        return error("target triple too late in module");
3646      std::string S;
3647      if (convertToString(Record, 0, S))
3648        return error("Invalid record");
3649      TheModule->setTargetTriple(S);
3650      break;
3651    }
3652    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3653      if (ResolvedDataLayout)
3654        return error("datalayout too late in module");
3655      std::string S;
3656      if (convertToString(Record, 0, S))
3657        return error("Invalid record");
3658      TheModule->setDataLayout(S);
3659      break;
3660    }
3661    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3662      std::string S;
3663      if (convertToString(Record, 0, S))
3664        return error("Invalid record");
3665      TheModule->setModuleInlineAsm(S);
3666      break;
3667    }
3668    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3669      // Deprecated, but still needed to read old bitcode files.
3670      std::string S;
3671      if (convertToString(Record, 0, S))
3672        return error("Invalid record");
3673      // Ignore value.
3674      break;
3675    }
3676    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3677      std::string S;
3678      if (convertToString(Record, 0, S))
3679        return error("Invalid record");
3680      SectionTable.push_back(S);
3681      break;
3682    }
3683    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3684      std::string S;
3685      if (convertToString(Record, 0, S))
3686        return error("Invalid record");
3687      GCTable.push_back(S);
3688      break;
3689    }
3690    case bitc::MODULE_CODE_COMDAT:
3691      if (Error Err = parseComdatRecord(Record))
3692        return Err;
3693      break;
3694    case bitc::MODULE_CODE_GLOBALVAR:
3695      if (Error Err = parseGlobalVarRecord(Record))
3696        return Err;
3697      break;
3698    case bitc::MODULE_CODE_FUNCTION:
3699      ResolveDataLayout();
3700      if (Error Err = parseFunctionRecord(Record))
3701        return Err;
3702      break;
3703    case bitc::MODULE_CODE_IFUNC:
3704    case bitc::MODULE_CODE_ALIAS:
3705    case bitc::MODULE_CODE_ALIAS_OLD:
3706      if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3707        return Err;
3708      break;
3709    /// MODULE_CODE_VSTOFFSET: [offset]
3710    case bitc::MODULE_CODE_VSTOFFSET:
3711      if (Record.size() < 1)
3712        return error("Invalid record");
3713      // Note that we subtract 1 here because the offset is relative to one word
3714      // before the start of the identification or module block, which was
3715      // historically always the start of the regular bitcode header.
3716      VSTOffset = Record[0] - 1;
3717      break;
3718    /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3719    case bitc::MODULE_CODE_SOURCE_FILENAME:
3720      SmallString<128> ValueName;
3721      if (convertToString(Record, 0, ValueName))
3722        return error("Invalid record");
3723      TheModule->setSourceFileName(ValueName);
3724      break;
3725    }
3726    Record.clear();
3727  }
3728}
3729
3730Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3731                                      bool IsImporting,
3732                                      DataLayoutCallbackTy DataLayoutCallback) {
3733  TheModule = M;
3734  MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3735                            [&](unsigned ID) { return getTypeByID(ID); });
3736  return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3737}
3738
3739Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3740  if (!isa<PointerType>(PtrType))
3741    return error("Load/Store operand is not a pointer type");
3742  Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3743
3744  if (ValType && ValType != ElemType)
3745    return error("Explicit load/store type does not match pointee "
3746                 "type of pointer operand");
3747  if (!PointerType::isLoadableOrStorableType(ElemType))
3748    return error("Cannot load/store from pointer");
3749  return Error::success();
3750}
3751
3752void BitcodeReader::propagateByValTypes(CallBase *CB,
3753                                        ArrayRef<Type *> ArgsFullTys) {
3754  for (unsigned i = 0; i != CB->arg_size(); ++i) {
3755    if (!CB->paramHasAttr(i, Attribute::ByVal))
3756      continue;
3757
3758    CB->removeParamAttr(i, Attribute::ByVal);
3759    CB->addParamAttr(
3760        i, Attribute::getWithByValType(
3761               Context, getPointerElementFlatType(ArgsFullTys[i])));
3762  }
3763}
3764
3765/// Lazily parse the specified function body block.
3766Error BitcodeReader::parseFunctionBody(Function *F) {
3767  if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3768    return Err;
3769
3770  // Unexpected unresolved metadata when parsing function.
3771  if (MDLoader->hasFwdRefs())
3772    return error("Invalid function metadata: incoming forward references");
3773
3774  InstructionList.clear();
3775  unsigned ModuleValueListSize = ValueList.size();
3776  unsigned ModuleMDLoaderSize = MDLoader->size();
3777
3778  // Add all the function arguments to the value table.
3779  unsigned ArgNo = 0;
3780  FunctionType *FullFTy = FunctionTypes[F];
3781  for (Argument &I : F->args()) {
3782    assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3783           "Incorrect fully specified type for Function Argument");
3784    ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3785  }
3786  unsigned NextValueNo = ValueList.size();
3787  BasicBlock *CurBB = nullptr;
3788  unsigned CurBBNo = 0;
3789
3790  DebugLoc LastLoc;
3791  auto getLastInstruction = [&]() -> Instruction * {
3792    if (CurBB && !CurBB->empty())
3793      return &CurBB->back();
3794    else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3795             !FunctionBBs[CurBBNo - 1]->empty())
3796      return &FunctionBBs[CurBBNo - 1]->back();
3797    return nullptr;
3798  };
3799
3800  std::vector<OperandBundleDef> OperandBundles;
3801
3802  // Read all the records.
3803  SmallVector<uint64_t, 64> Record;
3804
3805  while (true) {
3806    Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3807    if (!MaybeEntry)
3808      return MaybeEntry.takeError();
3809    llvm::BitstreamEntry Entry = MaybeEntry.get();
3810
3811    switch (Entry.Kind) {
3812    case BitstreamEntry::Error:
3813      return error("Malformed block");
3814    case BitstreamEntry::EndBlock:
3815      goto OutOfRecordLoop;
3816
3817    case BitstreamEntry::SubBlock:
3818      switch (Entry.ID) {
3819      default:  // Skip unknown content.
3820        if (Error Err = Stream.SkipBlock())
3821          return Err;
3822        break;
3823      case bitc::CONSTANTS_BLOCK_ID:
3824        if (Error Err = parseConstants())
3825          return Err;
3826        NextValueNo = ValueList.size();
3827        break;
3828      case bitc::VALUE_SYMTAB_BLOCK_ID:
3829        if (Error Err = parseValueSymbolTable())
3830          return Err;
3831        break;
3832      case bitc::METADATA_ATTACHMENT_ID:
3833        if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3834          return Err;
3835        break;
3836      case bitc::METADATA_BLOCK_ID:
3837        assert(DeferredMetadataInfo.empty() &&
3838               "Must read all module-level metadata before function-level");
3839        if (Error Err = MDLoader->parseFunctionMetadata())
3840          return Err;
3841        break;
3842      case bitc::USELIST_BLOCK_ID:
3843        if (Error Err = parseUseLists())
3844          return Err;
3845        break;
3846      }
3847      continue;
3848
3849    case BitstreamEntry::Record:
3850      // The interesting case.
3851      break;
3852    }
3853
3854    // Read a record.
3855    Record.clear();
3856    Instruction *I = nullptr;
3857    Type *FullTy = nullptr;
3858    Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3859    if (!MaybeBitCode)
3860      return MaybeBitCode.takeError();
3861    switch (unsigned BitCode = MaybeBitCode.get()) {
3862    default: // Default behavior: reject
3863      return error("Invalid value");
3864    case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3865      if (Record.size() < 1 || Record[0] == 0)
3866        return error("Invalid record");
3867      // Create all the basic blocks for the function.
3868      FunctionBBs.resize(Record[0]);
3869
3870      // See if anything took the address of blocks in this function.
3871      auto BBFRI = BasicBlockFwdRefs.find(F);
3872      if (BBFRI == BasicBlockFwdRefs.end()) {
3873        for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3874          FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3875      } else {
3876        auto &BBRefs = BBFRI->second;
3877        // Check for invalid basic block references.
3878        if (BBRefs.size() > FunctionBBs.size())
3879          return error("Invalid ID");
3880        assert(!BBRefs.empty() && "Unexpected empty array");
3881        assert(!BBRefs.front() && "Invalid reference to entry block");
3882        for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3883             ++I)
3884          if (I < RE && BBRefs[I]) {
3885            BBRefs[I]->insertInto(F);
3886            FunctionBBs[I] = BBRefs[I];
3887          } else {
3888            FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3889          }
3890
3891        // Erase from the table.
3892        BasicBlockFwdRefs.erase(BBFRI);
3893      }
3894
3895      CurBB = FunctionBBs[0];
3896      continue;
3897    }
3898
3899    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3900      // This record indicates that the last instruction is at the same
3901      // location as the previous instruction with a location.
3902      I = getLastInstruction();
3903
3904      if (!I)
3905        return error("Invalid record");
3906      I->setDebugLoc(LastLoc);
3907      I = nullptr;
3908      continue;
3909
3910    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3911      I = getLastInstruction();
3912      if (!I || Record.size() < 4)
3913        return error("Invalid record");
3914
3915      unsigned Line = Record[0], Col = Record[1];
3916      unsigned ScopeID = Record[2], IAID = Record[3];
3917      bool isImplicitCode = Record.size() == 5 && Record[4];
3918
3919      MDNode *Scope = nullptr, *IA = nullptr;
3920      if (ScopeID) {
3921        Scope = dyn_cast_or_null<MDNode>(
3922            MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3923        if (!Scope)
3924          return error("Invalid record");
3925      }
3926      if (IAID) {
3927        IA = dyn_cast_or_null<MDNode>(
3928            MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3929        if (!IA)
3930          return error("Invalid record");
3931      }
3932      LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3933      I->setDebugLoc(LastLoc);
3934      I = nullptr;
3935      continue;
3936    }
3937    case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3938      unsigned OpNum = 0;
3939      Value *LHS;
3940      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3941          OpNum+1 > Record.size())
3942        return error("Invalid record");
3943
3944      int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3945      if (Opc == -1)
3946        return error("Invalid record");
3947      I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3948      InstructionList.push_back(I);
3949      if (OpNum < Record.size()) {
3950        if (isa<FPMathOperator>(I)) {
3951          FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3952          if (FMF.any())
3953            I->setFastMathFlags(FMF);
3954        }
3955      }
3956      break;
3957    }
3958    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3959      unsigned OpNum = 0;
3960      Value *LHS, *RHS;
3961      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3962          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3963          OpNum+1 > Record.size())
3964        return error("Invalid record");
3965
3966      int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3967      if (Opc == -1)
3968        return error("Invalid record");
3969      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3970      InstructionList.push_back(I);
3971      if (OpNum < Record.size()) {
3972        if (Opc == Instruction::Add ||
3973            Opc == Instruction::Sub ||
3974            Opc == Instruction::Mul ||
3975            Opc == Instruction::Shl) {
3976          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3977            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3978          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3979            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3980        } else if (Opc == Instruction::SDiv ||
3981                   Opc == Instruction::UDiv ||
3982                   Opc == Instruction::LShr ||
3983                   Opc == Instruction::AShr) {
3984          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3985            cast<BinaryOperator>(I)->setIsExact(true);
3986        } else if (isa<FPMathOperator>(I)) {
3987          FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3988          if (FMF.any())
3989            I->setFastMathFlags(FMF);
3990        }
3991
3992      }
3993      break;
3994    }
3995    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3996      unsigned OpNum = 0;
3997      Value *Op;
3998      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3999          OpNum+2 != Record.size())
4000        return error("Invalid record");
4001
4002      FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4003      Type *ResTy = flattenPointerTypes(FullTy);
4004      int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4005      if (Opc == -1 || !ResTy)
4006        return error("Invalid record");
4007      Instruction *Temp = nullptr;
4008      if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4009        if (Temp) {
4010          InstructionList.push_back(Temp);
4011          assert(CurBB && "No current BB?");
4012          CurBB->getInstList().push_back(Temp);
4013        }
4014      } else {
4015        auto CastOp = (Instruction::CastOps)Opc;
4016        if (!CastInst::castIsValid(CastOp, Op, ResTy))
4017          return error("Invalid cast");
4018        I = CastInst::Create(CastOp, Op, ResTy);
4019      }
4020      InstructionList.push_back(I);
4021      break;
4022    }
4023    case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4024    case bitc::FUNC_CODE_INST_GEP_OLD:
4025    case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4026      unsigned OpNum = 0;
4027
4028      Type *Ty;
4029      bool InBounds;
4030
4031      if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4032        InBounds = Record[OpNum++];
4033        FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4034        Ty = flattenPointerTypes(FullTy);
4035      } else {
4036        InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4037        Ty = nullptr;
4038      }
4039
4040      Value *BasePtr;
4041      Type *FullBaseTy = nullptr;
4042      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4043        return error("Invalid record");
4044
4045      if (!Ty) {
4046        std::tie(FullTy, Ty) =
4047            getPointerElementTypes(FullBaseTy->getScalarType());
4048      } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4049        return error(
4050            "Explicit gep type does not match pointee type of pointer operand");
4051
4052      SmallVector<Value*, 16> GEPIdx;
4053      while (OpNum != Record.size()) {
4054        Value *Op;
4055        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4056          return error("Invalid record");
4057        GEPIdx.push_back(Op);
4058      }
4059
4060      I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4061      FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4062
4063      InstructionList.push_back(I);
4064      if (InBounds)
4065        cast<GetElementPtrInst>(I)->setIsInBounds(true);
4066      break;
4067    }
4068
4069    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4070                                       // EXTRACTVAL: [opty, opval, n x indices]
4071      unsigned OpNum = 0;
4072      Value *Agg;
4073      if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4074        return error("Invalid record");
4075
4076      unsigned RecSize = Record.size();
4077      if (OpNum == RecSize)
4078        return error("EXTRACTVAL: Invalid instruction with 0 indices");
4079
4080      SmallVector<unsigned, 4> EXTRACTVALIdx;
4081      for (; OpNum != RecSize; ++OpNum) {
4082        bool IsArray = FullTy->isArrayTy();
4083        bool IsStruct = FullTy->isStructTy();
4084        uint64_t Index = Record[OpNum];
4085
4086        if (!IsStruct && !IsArray)
4087          return error("EXTRACTVAL: Invalid type");
4088        if ((unsigned)Index != Index)
4089          return error("Invalid value");
4090        if (IsStruct && Index >= FullTy->getStructNumElements())
4091          return error("EXTRACTVAL: Invalid struct index");
4092        if (IsArray && Index >= FullTy->getArrayNumElements())
4093          return error("EXTRACTVAL: Invalid array index");
4094        EXTRACTVALIdx.push_back((unsigned)Index);
4095
4096        if (IsStruct)
4097          FullTy = FullTy->getStructElementType(Index);
4098        else
4099          FullTy = FullTy->getArrayElementType();
4100      }
4101
4102      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4103      InstructionList.push_back(I);
4104      break;
4105    }
4106
4107    case bitc::FUNC_CODE_INST_INSERTVAL: {
4108                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
4109      unsigned OpNum = 0;
4110      Value *Agg;
4111      if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4112        return error("Invalid record");
4113      Value *Val;
4114      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4115        return error("Invalid record");
4116
4117      unsigned RecSize = Record.size();
4118      if (OpNum == RecSize)
4119        return error("INSERTVAL: Invalid instruction with 0 indices");
4120
4121      SmallVector<unsigned, 4> INSERTVALIdx;
4122      Type *CurTy = Agg->getType();
4123      for (; OpNum != RecSize; ++OpNum) {
4124        bool IsArray = CurTy->isArrayTy();
4125        bool IsStruct = CurTy->isStructTy();
4126        uint64_t Index = Record[OpNum];
4127
4128        if (!IsStruct && !IsArray)
4129          return error("INSERTVAL: Invalid type");
4130        if ((unsigned)Index != Index)
4131          return error("Invalid value");
4132        if (IsStruct && Index >= CurTy->getStructNumElements())
4133          return error("INSERTVAL: Invalid struct index");
4134        if (IsArray && Index >= CurTy->getArrayNumElements())
4135          return error("INSERTVAL: Invalid array index");
4136
4137        INSERTVALIdx.push_back((unsigned)Index);
4138        if (IsStruct)
4139          CurTy = CurTy->getStructElementType(Index);
4140        else
4141          CurTy = CurTy->getArrayElementType();
4142      }
4143
4144      if (CurTy != Val->getType())
4145        return error("Inserted value type doesn't match aggregate type");
4146
4147      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4148      InstructionList.push_back(I);
4149      break;
4150    }
4151
4152    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4153      // obsolete form of select
4154      // handles select i1 ... in old bitcode
4155      unsigned OpNum = 0;
4156      Value *TrueVal, *FalseVal, *Cond;
4157      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4158          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4159          popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4160        return error("Invalid record");
4161
4162      I = SelectInst::Create(Cond, TrueVal, FalseVal);
4163      InstructionList.push_back(I);
4164      break;
4165    }
4166
4167    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4168      // new form of select
4169      // handles select i1 or select [N x i1]
4170      unsigned OpNum = 0;
4171      Value *TrueVal, *FalseVal, *Cond;
4172      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4173          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4174          getValueTypePair(Record, OpNum, NextValueNo, Cond))
4175        return error("Invalid record");
4176
4177      // select condition can be either i1 or [N x i1]
4178      if (VectorType* vector_type =
4179          dyn_cast<VectorType>(Cond->getType())) {
4180        // expect <n x i1>
4181        if (vector_type->getElementType() != Type::getInt1Ty(Context))
4182          return error("Invalid type for value");
4183      } else {
4184        // expect i1
4185        if (Cond->getType() != Type::getInt1Ty(Context))
4186          return error("Invalid type for value");
4187      }
4188
4189      I = SelectInst::Create(Cond, TrueVal, FalseVal);
4190      InstructionList.push_back(I);
4191      if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4192        FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4193        if (FMF.any())
4194          I->setFastMathFlags(FMF);
4195      }
4196      break;
4197    }
4198
4199    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4200      unsigned OpNum = 0;
4201      Value *Vec, *Idx;
4202      if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4203          getValueTypePair(Record, OpNum, NextValueNo, Idx))
4204        return error("Invalid record");
4205      if (!Vec->getType()->isVectorTy())
4206        return error("Invalid type for value");
4207      I = ExtractElementInst::Create(Vec, Idx);
4208      FullTy = cast<VectorType>(FullTy)->getElementType();
4209      InstructionList.push_back(I);
4210      break;
4211    }
4212
4213    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4214      unsigned OpNum = 0;
4215      Value *Vec, *Elt, *Idx;
4216      if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4217        return error("Invalid record");
4218      if (!Vec->getType()->isVectorTy())
4219        return error("Invalid type for value");
4220      if (popValue(Record, OpNum, NextValueNo,
4221                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4222          getValueTypePair(Record, OpNum, NextValueNo, Idx))
4223        return error("Invalid record");
4224      I = InsertElementInst::Create(Vec, Elt, Idx);
4225      InstructionList.push_back(I);
4226      break;
4227    }
4228
4229    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4230      unsigned OpNum = 0;
4231      Value *Vec1, *Vec2, *Mask;
4232      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4233          popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4234        return error("Invalid record");
4235
4236      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4237        return error("Invalid record");
4238      if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4239        return error("Invalid type for value");
4240
4241      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4242      FullTy =
4243          VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4244                          cast<VectorType>(Mask->getType())->getElementCount());
4245      InstructionList.push_back(I);
4246      break;
4247    }
4248
4249    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4250      // Old form of ICmp/FCmp returning bool
4251      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4252      // both legal on vectors but had different behaviour.
4253    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4254      // FCmp/ICmp returning bool or vector of bool
4255
4256      unsigned OpNum = 0;
4257      Value *LHS, *RHS;
4258      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4259          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4260        return error("Invalid record");
4261
4262      if (OpNum >= Record.size())
4263        return error(
4264            "Invalid record: operand number exceeded available operands");
4265
4266      unsigned PredVal = Record[OpNum];
4267      bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4268      FastMathFlags FMF;
4269      if (IsFP && Record.size() > OpNum+1)
4270        FMF = getDecodedFastMathFlags(Record[++OpNum]);
4271
4272      if (OpNum+1 != Record.size())
4273        return error("Invalid record");
4274
4275      if (LHS->getType()->isFPOrFPVectorTy())
4276        I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4277      else
4278        I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4279
4280      if (FMF.any())
4281        I->setFastMathFlags(FMF);
4282      InstructionList.push_back(I);
4283      break;
4284    }
4285
4286    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4287      {
4288        unsigned Size = Record.size();
4289        if (Size == 0) {
4290          I = ReturnInst::Create(Context);
4291          InstructionList.push_back(I);
4292          break;
4293        }
4294
4295        unsigned OpNum = 0;
4296        Value *Op = nullptr;
4297        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4298          return error("Invalid record");
4299        if (OpNum != Record.size())
4300          return error("Invalid record");
4301
4302        I = ReturnInst::Create(Context, Op);
4303        InstructionList.push_back(I);
4304        break;
4305      }
4306    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4307      if (Record.size() != 1 && Record.size() != 3)
4308        return error("Invalid record");
4309      BasicBlock *TrueDest = getBasicBlock(Record[0]);
4310      if (!TrueDest)
4311        return error("Invalid record");
4312
4313      if (Record.size() == 1) {
4314        I = BranchInst::Create(TrueDest);
4315        InstructionList.push_back(I);
4316      }
4317      else {
4318        BasicBlock *FalseDest = getBasicBlock(Record[1]);
4319        Value *Cond = getValue(Record, 2, NextValueNo,
4320                               Type::getInt1Ty(Context));
4321        if (!FalseDest || !Cond)
4322          return error("Invalid record");
4323        I = BranchInst::Create(TrueDest, FalseDest, Cond);
4324        InstructionList.push_back(I);
4325      }
4326      break;
4327    }
4328    case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4329      if (Record.size() != 1 && Record.size() != 2)
4330        return error("Invalid record");
4331      unsigned Idx = 0;
4332      Value *CleanupPad =
4333          getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4334      if (!CleanupPad)
4335        return error("Invalid record");
4336      BasicBlock *UnwindDest = nullptr;
4337      if (Record.size() == 2) {
4338        UnwindDest = getBasicBlock(Record[Idx++]);
4339        if (!UnwindDest)
4340          return error("Invalid record");
4341      }
4342
4343      I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4344      InstructionList.push_back(I);
4345      break;
4346    }
4347    case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4348      if (Record.size() != 2)
4349        return error("Invalid record");
4350      unsigned Idx = 0;
4351      Value *CatchPad =
4352          getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4353      if (!CatchPad)
4354        return error("Invalid record");
4355      BasicBlock *BB = getBasicBlock(Record[Idx++]);
4356      if (!BB)
4357        return error("Invalid record");
4358
4359      I = CatchReturnInst::Create(CatchPad, BB);
4360      InstructionList.push_back(I);
4361      break;
4362    }
4363    case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4364      // We must have, at minimum, the outer scope and the number of arguments.
4365      if (Record.size() < 2)
4366        return error("Invalid record");
4367
4368      unsigned Idx = 0;
4369
4370      Value *ParentPad =
4371          getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4372
4373      unsigned NumHandlers = Record[Idx++];
4374
4375      SmallVector<BasicBlock *, 2> Handlers;
4376      for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4377        BasicBlock *BB = getBasicBlock(Record[Idx++]);
4378        if (!BB)
4379          return error("Invalid record");
4380        Handlers.push_back(BB);
4381      }
4382
4383      BasicBlock *UnwindDest = nullptr;
4384      if (Idx + 1 == Record.size()) {
4385        UnwindDest = getBasicBlock(Record[Idx++]);
4386        if (!UnwindDest)
4387          return error("Invalid record");
4388      }
4389
4390      if (Record.size() != Idx)
4391        return error("Invalid record");
4392
4393      auto *CatchSwitch =
4394          CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4395      for (BasicBlock *Handler : Handlers)
4396        CatchSwitch->addHandler(Handler);
4397      I = CatchSwitch;
4398      InstructionList.push_back(I);
4399      break;
4400    }
4401    case bitc::FUNC_CODE_INST_CATCHPAD:
4402    case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4403      // We must have, at minimum, the outer scope and the number of arguments.
4404      if (Record.size() < 2)
4405        return error("Invalid record");
4406
4407      unsigned Idx = 0;
4408
4409      Value *ParentPad =
4410          getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4411
4412      unsigned NumArgOperands = Record[Idx++];
4413
4414      SmallVector<Value *, 2> Args;
4415      for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4416        Value *Val;
4417        if (getValueTypePair(Record, Idx, NextValueNo, Val))
4418          return error("Invalid record");
4419        Args.push_back(Val);
4420      }
4421
4422      if (Record.size() != Idx)
4423        return error("Invalid record");
4424
4425      if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4426        I = CleanupPadInst::Create(ParentPad, Args);
4427      else
4428        I = CatchPadInst::Create(ParentPad, Args);
4429      InstructionList.push_back(I);
4430      break;
4431    }
4432    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4433      // Check magic
4434      if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4435        // "New" SwitchInst format with case ranges. The changes to write this
4436        // format were reverted but we still recognize bitcode that uses it.
4437        // Hopefully someday we will have support for case ranges and can use
4438        // this format again.
4439
4440        Type *OpTy = getTypeByID(Record[1]);
4441        unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4442
4443        Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4444        BasicBlock *Default = getBasicBlock(Record[3]);
4445        if (!OpTy || !Cond || !Default)
4446          return error("Invalid record");
4447
4448        unsigned NumCases = Record[4];
4449
4450        SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4451        InstructionList.push_back(SI);
4452
4453        unsigned CurIdx = 5;
4454        for (unsigned i = 0; i != NumCases; ++i) {
4455          SmallVector<ConstantInt*, 1> CaseVals;
4456          unsigned NumItems = Record[CurIdx++];
4457          for (unsigned ci = 0; ci != NumItems; ++ci) {
4458            bool isSingleNumber = Record[CurIdx++];
4459
4460            APInt Low;
4461            unsigned ActiveWords = 1;
4462            if (ValueBitWidth > 64)
4463              ActiveWords = Record[CurIdx++];
4464            Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4465                                ValueBitWidth);
4466            CurIdx += ActiveWords;
4467
4468            if (!isSingleNumber) {
4469              ActiveWords = 1;
4470              if (ValueBitWidth > 64)
4471                ActiveWords = Record[CurIdx++];
4472              APInt High = readWideAPInt(
4473                  makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4474              CurIdx += ActiveWords;
4475
4476              // FIXME: It is not clear whether values in the range should be
4477              // compared as signed or unsigned values. The partially
4478              // implemented changes that used this format in the past used
4479              // unsigned comparisons.
4480              for ( ; Low.ule(High); ++Low)
4481                CaseVals.push_back(ConstantInt::get(Context, Low));
4482            } else
4483              CaseVals.push_back(ConstantInt::get(Context, Low));
4484          }
4485          BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4486          for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4487                 cve = CaseVals.end(); cvi != cve; ++cvi)
4488            SI->addCase(*cvi, DestBB);
4489        }
4490        I = SI;
4491        break;
4492      }
4493
4494      // Old SwitchInst format without case ranges.
4495
4496      if (Record.size() < 3 || (Record.size() & 1) == 0)
4497        return error("Invalid record");
4498      Type *OpTy = getTypeByID(Record[0]);
4499      Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4500      BasicBlock *Default = getBasicBlock(Record[2]);
4501      if (!OpTy || !Cond || !Default)
4502        return error("Invalid record");
4503      unsigned NumCases = (Record.size()-3)/2;
4504      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4505      InstructionList.push_back(SI);
4506      for (unsigned i = 0, e = NumCases; i != e; ++i) {
4507        ConstantInt *CaseVal =
4508          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4509        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4510        if (!CaseVal || !DestBB) {
4511          delete SI;
4512          return error("Invalid record");
4513        }
4514        SI->addCase(CaseVal, DestBB);
4515      }
4516      I = SI;
4517      break;
4518    }
4519    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4520      if (Record.size() < 2)
4521        return error("Invalid record");
4522      Type *OpTy = getTypeByID(Record[0]);
4523      Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4524      if (!OpTy || !Address)
4525        return error("Invalid record");
4526      unsigned NumDests = Record.size()-2;
4527      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4528      InstructionList.push_back(IBI);
4529      for (unsigned i = 0, e = NumDests; i != e; ++i) {
4530        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4531          IBI->addDestination(DestBB);
4532        } else {
4533          delete IBI;
4534          return error("Invalid record");
4535        }
4536      }
4537      I = IBI;
4538      break;
4539    }
4540
4541    case bitc::FUNC_CODE_INST_INVOKE: {
4542      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4543      if (Record.size() < 4)
4544        return error("Invalid record");
4545      unsigned OpNum = 0;
4546      AttributeList PAL = getAttributes(Record[OpNum++]);
4547      unsigned CCInfo = Record[OpNum++];
4548      BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4549      BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4550
4551      FunctionType *FTy = nullptr;
4552      FunctionType *FullFTy = nullptr;
4553      if ((CCInfo >> 13) & 1) {
4554        FullFTy =
4555            dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4556        if (!FullFTy)
4557          return error("Explicit invoke type is not a function type");
4558        FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4559      }
4560
4561      Value *Callee;
4562      if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4563        return error("Invalid record");
4564
4565      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4566      if (!CalleeTy)
4567        return error("Callee is not a pointer");
4568      if (!FTy) {
4569        FullFTy =
4570            dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4571        if (!FullFTy)
4572          return error("Callee is not of pointer to function type");
4573        FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4574      } else if (getPointerElementFlatType(FullTy) != FTy)
4575        return error("Explicit invoke type does not match pointee type of "
4576                     "callee operand");
4577      if (Record.size() < FTy->getNumParams() + OpNum)
4578        return error("Insufficient operands to call");
4579
4580      SmallVector<Value*, 16> Ops;
4581      SmallVector<Type *, 16> ArgsFullTys;
4582      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4583        Ops.push_back(getValue(Record, OpNum, NextValueNo,
4584                               FTy->getParamType(i)));
4585        ArgsFullTys.push_back(FullFTy->getParamType(i));
4586        if (!Ops.back())
4587          return error("Invalid record");
4588      }
4589
4590      if (!FTy->isVarArg()) {
4591        if (Record.size() != OpNum)
4592          return error("Invalid record");
4593      } else {
4594        // Read type/value pairs for varargs params.
4595        while (OpNum != Record.size()) {
4596          Value *Op;
4597          Type *FullTy;
4598          if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4599            return error("Invalid record");
4600          Ops.push_back(Op);
4601          ArgsFullTys.push_back(FullTy);
4602        }
4603      }
4604
4605      I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4606                             OperandBundles);
4607      FullTy = FullFTy->getReturnType();
4608      OperandBundles.clear();
4609      InstructionList.push_back(I);
4610      cast<InvokeInst>(I)->setCallingConv(
4611          static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4612      cast<InvokeInst>(I)->setAttributes(PAL);
4613      propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4614
4615      break;
4616    }
4617    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4618      unsigned Idx = 0;
4619      Value *Val = nullptr;
4620      if (getValueTypePair(Record, Idx, NextValueNo, Val))
4621        return error("Invalid record");
4622      I = ResumeInst::Create(Val);
4623      InstructionList.push_back(I);
4624      break;
4625    }
4626    case bitc::FUNC_CODE_INST_CALLBR: {
4627      // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4628      unsigned OpNum = 0;
4629      AttributeList PAL = getAttributes(Record[OpNum++]);
4630      unsigned CCInfo = Record[OpNum++];
4631
4632      BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4633      unsigned NumIndirectDests = Record[OpNum++];
4634      SmallVector<BasicBlock *, 16> IndirectDests;
4635      for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4636        IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4637
4638      FunctionType *FTy = nullptr;
4639      FunctionType *FullFTy = nullptr;
4640      if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4641        FullFTy =
4642            dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4643        if (!FullFTy)
4644          return error("Explicit call type is not a function type");
4645        FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4646      }
4647
4648      Value *Callee;
4649      if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4650        return error("Invalid record");
4651
4652      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4653      if (!OpTy)
4654        return error("Callee is not a pointer type");
4655      if (!FTy) {
4656        FullFTy =
4657            dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4658        if (!FullFTy)
4659          return error("Callee is not of pointer to function type");
4660        FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4661      } else if (getPointerElementFlatType(FullTy) != FTy)
4662        return error("Explicit call type does not match pointee type of "
4663                     "callee operand");
4664      if (Record.size() < FTy->getNumParams() + OpNum)
4665        return error("Insufficient operands to call");
4666
4667      SmallVector<Value*, 16> Args;
4668      // Read the fixed params.
4669      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4670        if (FTy->getParamType(i)->isLabelTy())
4671          Args.push_back(getBasicBlock(Record[OpNum]));
4672        else
4673          Args.push_back(getValue(Record, OpNum, NextValueNo,
4674                                  FTy->getParamType(i)));
4675        if (!Args.back())
4676          return error("Invalid record");
4677      }
4678
4679      // Read type/value pairs for varargs params.
4680      if (!FTy->isVarArg()) {
4681        if (OpNum != Record.size())
4682          return error("Invalid record");
4683      } else {
4684        while (OpNum != Record.size()) {
4685          Value *Op;
4686          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4687            return error("Invalid record");
4688          Args.push_back(Op);
4689        }
4690      }
4691
4692      I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4693                             OperandBundles);
4694      FullTy = FullFTy->getReturnType();
4695      OperandBundles.clear();
4696      InstructionList.push_back(I);
4697      cast<CallBrInst>(I)->setCallingConv(
4698          static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4699      cast<CallBrInst>(I)->setAttributes(PAL);
4700      break;
4701    }
4702    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4703      I = new UnreachableInst(Context);
4704      InstructionList.push_back(I);
4705      break;
4706    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4707      if (Record.size() < 1)
4708        return error("Invalid record");
4709      // The first record specifies the type.
4710      FullTy = getFullyStructuredTypeByID(Record[0]);
4711      Type *Ty = flattenPointerTypes(FullTy);
4712      if (!Ty)
4713        return error("Invalid record");
4714
4715      // Phi arguments are pairs of records of [value, basic block].
4716      // There is an optional final record for fast-math-flags if this phi has a
4717      // floating-point type.
4718      size_t NumArgs = (Record.size() - 1) / 2;
4719      PHINode *PN = PHINode::Create(Ty, NumArgs);
4720      if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4721        return error("Invalid record");
4722      InstructionList.push_back(PN);
4723
4724      for (unsigned i = 0; i != NumArgs; i++) {
4725        Value *V;
4726        // With the new function encoding, it is possible that operands have
4727        // negative IDs (for forward references).  Use a signed VBR
4728        // representation to keep the encoding small.
4729        if (UseRelativeIDs)
4730          V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4731        else
4732          V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4733        BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4734        if (!V || !BB)
4735          return error("Invalid record");
4736        PN->addIncoming(V, BB);
4737      }
4738      I = PN;
4739
4740      // If there are an even number of records, the final record must be FMF.
4741      if (Record.size() % 2 == 0) {
4742        assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4743        FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4744        if (FMF.any())
4745          I->setFastMathFlags(FMF);
4746      }
4747
4748      break;
4749    }
4750
4751    case bitc::FUNC_CODE_INST_LANDINGPAD:
4752    case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4753      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4754      unsigned Idx = 0;
4755      if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4756        if (Record.size() < 3)
4757          return error("Invalid record");
4758      } else {
4759        assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4760        if (Record.size() < 4)
4761          return error("Invalid record");
4762      }
4763      FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4764      Type *Ty = flattenPointerTypes(FullTy);
4765      if (!Ty)
4766        return error("Invalid record");
4767      if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4768        Value *PersFn = nullptr;
4769        if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4770          return error("Invalid record");
4771
4772        if (!F->hasPersonalityFn())
4773          F->setPersonalityFn(cast<Constant>(PersFn));
4774        else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4775          return error("Personality function mismatch");
4776      }
4777
4778      bool IsCleanup = !!Record[Idx++];
4779      unsigned NumClauses = Record[Idx++];
4780      LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4781      LP->setCleanup(IsCleanup);
4782      for (unsigned J = 0; J != NumClauses; ++J) {
4783        LandingPadInst::ClauseType CT =
4784          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4785        Value *Val;
4786
4787        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4788          delete LP;
4789          return error("Invalid record");
4790        }
4791
4792        assert((CT != LandingPadInst::Catch ||
4793                !isa<ArrayType>(Val->getType())) &&
4794               "Catch clause has a invalid type!");
4795        assert((CT != LandingPadInst::Filter ||
4796                isa<ArrayType>(Val->getType())) &&
4797               "Filter clause has invalid type!");
4798        LP->addClause(cast<Constant>(Val));
4799      }
4800
4801      I = LP;
4802      InstructionList.push_back(I);
4803      break;
4804    }
4805
4806    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4807      if (Record.size() != 4)
4808        return error("Invalid record");
4809      uint64_t AlignRecord = Record[3];
4810      const uint64_t InAllocaMask = uint64_t(1) << 5;
4811      const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4812      const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4813      const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4814                                SwiftErrorMask;
4815      bool InAlloca = AlignRecord & InAllocaMask;
4816      bool SwiftError = AlignRecord & SwiftErrorMask;
4817      FullTy = getFullyStructuredTypeByID(Record[0]);
4818      Type *Ty = flattenPointerTypes(FullTy);
4819      if ((AlignRecord & ExplicitTypeMask) == 0) {
4820        auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4821        if (!PTy)
4822          return error("Old-style alloca with a non-pointer type");
4823        std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4824      }
4825      Type *OpTy = getTypeByID(Record[1]);
4826      Value *Size = getFnValueByID(Record[2], OpTy);
4827      MaybeAlign Align;
4828      if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4829        return Err;
4830      }
4831      if (!Ty || !Size)
4832        return error("Invalid record");
4833
4834      // FIXME: Make this an optional field.
4835      const DataLayout &DL = TheModule->getDataLayout();
4836      unsigned AS = DL.getAllocaAddrSpace();
4837
4838      SmallPtrSet<Type *, 4> Visited;
4839      if (!Align && !Ty->isSized(&Visited))
4840        return error("alloca of unsized type");
4841      if (!Align)
4842        Align = DL.getPrefTypeAlign(Ty);
4843
4844      AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4845      AI->setUsedWithInAlloca(InAlloca);
4846      AI->setSwiftError(SwiftError);
4847      I = AI;
4848      FullTy = PointerType::get(FullTy, AS);
4849      InstructionList.push_back(I);
4850      break;
4851    }
4852    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4853      unsigned OpNum = 0;
4854      Value *Op;
4855      if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4856          (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4857        return error("Invalid record");
4858
4859      if (!isa<PointerType>(Op->getType()))
4860        return error("Load operand is not a pointer type");
4861
4862      Type *Ty = nullptr;
4863      if (OpNum + 3 == Record.size()) {
4864        FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4865        Ty = flattenPointerTypes(FullTy);
4866      } else
4867        std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4868
4869      if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4870        return Err;
4871
4872      MaybeAlign Align;
4873      if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4874        return Err;
4875      SmallPtrSet<Type *, 4> Visited;
4876      if (!Align && !Ty->isSized(&Visited))
4877        return error("load of unsized type");
4878      if (!Align)
4879        Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4880      I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4881      InstructionList.push_back(I);
4882      break;
4883    }
4884    case bitc::FUNC_CODE_INST_LOADATOMIC: {
4885       // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4886      unsigned OpNum = 0;
4887      Value *Op;
4888      if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4889          (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4890        return error("Invalid record");
4891
4892      if (!isa<PointerType>(Op->getType()))
4893        return error("Load operand is not a pointer type");
4894
4895      Type *Ty = nullptr;
4896      if (OpNum + 5 == Record.size()) {
4897        FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4898        Ty = flattenPointerTypes(FullTy);
4899      } else
4900        std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4901
4902      if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4903        return Err;
4904
4905      AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4906      if (Ordering == AtomicOrdering::NotAtomic ||
4907          Ordering == AtomicOrdering::Release ||
4908          Ordering == AtomicOrdering::AcquireRelease)
4909        return error("Invalid record");
4910      if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4911        return error("Invalid record");
4912      SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4913
4914      MaybeAlign Align;
4915      if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4916        return Err;
4917      if (!Align)
4918        return error("Alignment missing from atomic load");
4919      I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4920      InstructionList.push_back(I);
4921      break;
4922    }
4923    case bitc::FUNC_CODE_INST_STORE:
4924    case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4925      unsigned OpNum = 0;
4926      Value *Val, *Ptr;
4927      Type *FullTy;
4928      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4929          (BitCode == bitc::FUNC_CODE_INST_STORE
4930               ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4931               : popValue(Record, OpNum, NextValueNo,
4932                          getPointerElementFlatType(FullTy), Val)) ||
4933          OpNum + 2 != Record.size())
4934        return error("Invalid record");
4935
4936      if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4937        return Err;
4938      MaybeAlign Align;
4939      if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4940        return Err;
4941      SmallPtrSet<Type *, 4> Visited;
4942      if (!Align && !Val->getType()->isSized(&Visited))
4943        return error("store of unsized type");
4944      if (!Align)
4945        Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4946      I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4947      InstructionList.push_back(I);
4948      break;
4949    }
4950    case bitc::FUNC_CODE_INST_STOREATOMIC:
4951    case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4952      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4953      unsigned OpNum = 0;
4954      Value *Val, *Ptr;
4955      Type *FullTy;
4956      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4957          !isa<PointerType>(Ptr->getType()) ||
4958          (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4959               ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4960               : popValue(Record, OpNum, NextValueNo,
4961                          getPointerElementFlatType(FullTy), Val)) ||
4962          OpNum + 4 != Record.size())
4963        return error("Invalid record");
4964
4965      if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4966        return Err;
4967      AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4968      if (Ordering == AtomicOrdering::NotAtomic ||
4969          Ordering == AtomicOrdering::Acquire ||
4970          Ordering == AtomicOrdering::AcquireRelease)
4971        return error("Invalid record");
4972      SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4973      if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4974        return error("Invalid record");
4975
4976      MaybeAlign Align;
4977      if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4978        return Err;
4979      if (!Align)
4980        return error("Alignment missing from atomic store");
4981      I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
4982      InstructionList.push_back(I);
4983      break;
4984    }
4985    case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4986    case bitc::FUNC_CODE_INST_CMPXCHG: {
4987      // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4988      //          failureordering?, isweak?]
4989      unsigned OpNum = 0;
4990      Value *Ptr, *Cmp, *New;
4991      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4992        return error("Invalid record");
4993
4994      if (!isa<PointerType>(Ptr->getType()))
4995        return error("Cmpxchg operand is not a pointer type");
4996
4997      if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4998        if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4999          return error("Invalid record");
5000      } else if (popValue(Record, OpNum, NextValueNo,
5001                          getPointerElementFlatType(FullTy), Cmp))
5002        return error("Invalid record");
5003      else
5004        FullTy = cast<PointerType>(FullTy)->getElementType();
5005
5006      if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5007          Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5008        return error("Invalid record");
5009
5010      AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5011      if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5012          SuccessOrdering == AtomicOrdering::Unordered)
5013        return error("Invalid record");
5014      SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5015
5016      if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5017        return Err;
5018      AtomicOrdering FailureOrdering;
5019      if (Record.size() < 7)
5020        FailureOrdering =
5021            AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5022      else
5023        FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5024
5025      Align Alignment(
5026          TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5027      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5028                                FailureOrdering, SSID);
5029      FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5030      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5031
5032      if (Record.size() < 8) {
5033        // Before weak cmpxchgs existed, the instruction simply returned the
5034        // value loaded from memory, so bitcode files from that era will be
5035        // expecting the first component of a modern cmpxchg.
5036        CurBB->getInstList().push_back(I);
5037        I = ExtractValueInst::Create(I, 0);
5038        FullTy = cast<StructType>(FullTy)->getElementType(0);
5039      } else {
5040        cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5041      }
5042
5043      InstructionList.push_back(I);
5044      break;
5045    }
5046    case bitc::FUNC_CODE_INST_ATOMICRMW: {
5047      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5048      unsigned OpNum = 0;
5049      Value *Ptr, *Val;
5050      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5051          !isa<PointerType>(Ptr->getType()) ||
5052          popValue(Record, OpNum, NextValueNo,
5053                   getPointerElementFlatType(FullTy), Val) ||
5054          OpNum + 4 != Record.size())
5055        return error("Invalid record");
5056      AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5057      if (Operation < AtomicRMWInst::FIRST_BINOP ||
5058          Operation > AtomicRMWInst::LAST_BINOP)
5059        return error("Invalid record");
5060      AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5061      if (Ordering == AtomicOrdering::NotAtomic ||
5062          Ordering == AtomicOrdering::Unordered)
5063        return error("Invalid record");
5064      SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5065      Align Alignment(
5066          TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5067      I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
5068      FullTy = getPointerElementFlatType(FullTy);
5069      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5070      InstructionList.push_back(I);
5071      break;
5072    }
5073    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5074      if (2 != Record.size())
5075        return error("Invalid record");
5076      AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5077      if (Ordering == AtomicOrdering::NotAtomic ||
5078          Ordering == AtomicOrdering::Unordered ||
5079          Ordering == AtomicOrdering::Monotonic)
5080        return error("Invalid record");
5081      SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5082      I = new FenceInst(Context, Ordering, SSID);
5083      InstructionList.push_back(I);
5084      break;
5085    }
5086    case bitc::FUNC_CODE_INST_CALL: {
5087      // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5088      if (Record.size() < 3)
5089        return error("Invalid record");
5090
5091      unsigned OpNum = 0;
5092      AttributeList PAL = getAttributes(Record[OpNum++]);
5093      unsigned CCInfo = Record[OpNum++];
5094
5095      FastMathFlags FMF;
5096      if ((CCInfo >> bitc::CALL_FMF) & 1) {
5097        FMF = getDecodedFastMathFlags(Record[OpNum++]);
5098        if (!FMF.any())
5099          return error("Fast math flags indicator set for call with no FMF");
5100      }
5101
5102      FunctionType *FTy = nullptr;
5103      FunctionType *FullFTy = nullptr;
5104      if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5105        FullFTy =
5106            dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5107        if (!FullFTy)
5108          return error("Explicit call type is not a function type");
5109        FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5110      }
5111
5112      Value *Callee;
5113      if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5114        return error("Invalid record");
5115
5116      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5117      if (!OpTy)
5118        return error("Callee is not a pointer type");
5119      if (!FTy) {
5120        FullFTy =
5121            dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5122        if (!FullFTy)
5123          return error("Callee is not of pointer to function type");
5124        FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5125      } else if (getPointerElementFlatType(FullTy) != FTy)
5126        return error("Explicit call type does not match pointee type of "
5127                     "callee operand");
5128      if (Record.size() < FTy->getNumParams() + OpNum)
5129        return error("Insufficient operands to call");
5130
5131      SmallVector<Value*, 16> Args;
5132      SmallVector<Type*, 16> ArgsFullTys;
5133      // Read the fixed params.
5134      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5135        if (FTy->getParamType(i)->isLabelTy())
5136          Args.push_back(getBasicBlock(Record[OpNum]));
5137        else
5138          Args.push_back(getValue(Record, OpNum, NextValueNo,
5139                                  FTy->getParamType(i)));
5140        ArgsFullTys.push_back(FullFTy->getParamType(i));
5141        if (!Args.back())
5142          return error("Invalid record");
5143      }
5144
5145      // Read type/value pairs for varargs params.
5146      if (!FTy->isVarArg()) {
5147        if (OpNum != Record.size())
5148          return error("Invalid record");
5149      } else {
5150        while (OpNum != Record.size()) {
5151          Value *Op;
5152          Type *FullTy;
5153          if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5154            return error("Invalid record");
5155          Args.push_back(Op);
5156          ArgsFullTys.push_back(FullTy);
5157        }
5158      }
5159
5160      I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5161      FullTy = FullFTy->getReturnType();
5162      OperandBundles.clear();
5163      InstructionList.push_back(I);
5164      cast<CallInst>(I)->setCallingConv(
5165          static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5166      CallInst::TailCallKind TCK = CallInst::TCK_None;
5167      if (CCInfo & 1 << bitc::CALL_TAIL)
5168        TCK = CallInst::TCK_Tail;
5169      if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5170        TCK = CallInst::TCK_MustTail;
5171      if (CCInfo & (1 << bitc::CALL_NOTAIL))
5172        TCK = CallInst::TCK_NoTail;
5173      cast<CallInst>(I)->setTailCallKind(TCK);
5174      cast<CallInst>(I)->setAttributes(PAL);
5175      propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5176      if (FMF.any()) {
5177        if (!isa<FPMathOperator>(I))
5178          return error("Fast-math-flags specified for call without "
5179                       "floating-point scalar or vector return type");
5180        I->setFastMathFlags(FMF);
5181      }
5182      break;
5183    }
5184    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5185      if (Record.size() < 3)
5186        return error("Invalid record");
5187      Type *OpTy = getTypeByID(Record[0]);
5188      Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5189      FullTy = getFullyStructuredTypeByID(Record[2]);
5190      Type *ResTy = flattenPointerTypes(FullTy);
5191      if (!OpTy || !Op || !ResTy)
5192        return error("Invalid record");
5193      I = new VAArgInst(Op, ResTy);
5194      InstructionList.push_back(I);
5195      break;
5196    }
5197
5198    case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5199      // A call or an invoke can be optionally prefixed with some variable
5200      // number of operand bundle blocks.  These blocks are read into
5201      // OperandBundles and consumed at the next call or invoke instruction.
5202
5203      if (Record.size() < 1 || Record[0] >= BundleTags.size())
5204        return error("Invalid record");
5205
5206      std::vector<Value *> Inputs;
5207
5208      unsigned OpNum = 1;
5209      while (OpNum != Record.size()) {
5210        Value *Op;
5211        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5212          return error("Invalid record");
5213        Inputs.push_back(Op);
5214      }
5215
5216      OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5217      continue;
5218    }
5219
5220    case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5221      unsigned OpNum = 0;
5222      Value *Op = nullptr;
5223      if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5224        return error("Invalid record");
5225      if (OpNum != Record.size())
5226        return error("Invalid record");
5227
5228      I = new FreezeInst(Op);
5229      InstructionList.push_back(I);
5230      break;
5231    }
5232    }
5233
5234    // Add instruction to end of current BB.  If there is no current BB, reject
5235    // this file.
5236    if (!CurBB) {
5237      I->deleteValue();
5238      return error("Invalid instruction with no BB");
5239    }
5240    if (!OperandBundles.empty()) {
5241      I->deleteValue();
5242      return error("Operand bundles found with no consumer");
5243    }
5244    CurBB->getInstList().push_back(I);
5245
5246    // If this was a terminator instruction, move to the next block.
5247    if (I->isTerminator()) {
5248      ++CurBBNo;
5249      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5250    }
5251
5252    // Non-void values get registered in the value table for future use.
5253    if (!I->getType()->isVoidTy()) {
5254      if (!FullTy) {
5255        FullTy = I->getType();
5256        assert(
5257            !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5258            !isa<ArrayType>(FullTy) &&
5259            (!isa<VectorType>(FullTy) ||
5260             cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5261             cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5262            "Structured types must be assigned with corresponding non-opaque "
5263            "pointer type");
5264      }
5265
5266      assert(I->getType() == flattenPointerTypes(FullTy) &&
5267             "Incorrect fully structured type provided for Instruction");
5268      ValueList.assignValue(I, NextValueNo++, FullTy);
5269    }
5270  }
5271
5272OutOfRecordLoop:
5273
5274  if (!OperandBundles.empty())
5275    return error("Operand bundles found with no consumer");
5276
5277  // Check the function list for unresolved values.
5278  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5279    if (!A->getParent()) {
5280      // We found at least one unresolved value.  Nuke them all to avoid leaks.
5281      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5282        if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5283          A->replaceAllUsesWith(UndefValue::get(A->getType()));
5284          delete A;
5285        }
5286      }
5287      return error("Never resolved value found in function");
5288    }
5289  }
5290
5291  // Unexpected unresolved metadata about to be dropped.
5292  if (MDLoader->hasFwdRefs())
5293    return error("Invalid function metadata: outgoing forward refs");
5294
5295  // Trim the value list down to the size it was before we parsed this function.
5296  ValueList.shrinkTo(ModuleValueListSize);
5297  MDLoader->shrinkTo(ModuleMDLoaderSize);
5298  std::vector<BasicBlock*>().swap(FunctionBBs);
5299  return Error::success();
5300}
5301
5302/// Find the function body in the bitcode stream
5303Error BitcodeReader::findFunctionInStream(
5304    Function *F,
5305    DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5306  while (DeferredFunctionInfoIterator->second == 0) {
5307    // This is the fallback handling for the old format bitcode that
5308    // didn't contain the function index in the VST, or when we have
5309    // an anonymous function which would not have a VST entry.
5310    // Assert that we have one of those two cases.
5311    assert(VSTOffset == 0 || !F->hasName());
5312    // Parse the next body in the stream and set its position in the
5313    // DeferredFunctionInfo map.
5314    if (Error Err = rememberAndSkipFunctionBodies())
5315      return Err;
5316  }
5317  return Error::success();
5318}
5319
5320SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5321  if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5322    return SyncScope::ID(Val);
5323  if (Val >= SSIDs.size())
5324    return SyncScope::System; // Map unknown synchronization scopes to system.
5325  return SSIDs[Val];
5326}
5327
5328//===----------------------------------------------------------------------===//
5329// GVMaterializer implementation
5330//===----------------------------------------------------------------------===//
5331
5332Error BitcodeReader::materialize(GlobalValue *GV) {
5333  Function *F = dyn_cast<Function>(GV);
5334  // If it's not a function or is already material, ignore the request.
5335  if (!F || !F->isMaterializable())
5336    return Error::success();
5337
5338  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5339  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5340  // If its position is recorded as 0, its body is somewhere in the stream
5341  // but we haven't seen it yet.
5342  if (DFII->second == 0)
5343    if (Error Err = findFunctionInStream(F, DFII))
5344      return Err;
5345
5346  // Materialize metadata before parsing any function bodies.
5347  if (Error Err = materializeMetadata())
5348    return Err;
5349
5350  // Move the bit stream to the saved position of the deferred function body.
5351  if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5352    return JumpFailed;
5353  if (Error Err = parseFunctionBody(F))
5354    return Err;
5355  F->setIsMaterializable(false);
5356
5357  if (StripDebugInfo)
5358    stripDebugInfo(*F);
5359
5360  // Upgrade any old intrinsic calls in the function.
5361  for (auto &I : UpgradedIntrinsics) {
5362    for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5363         UI != UE;) {
5364      User *U = *UI;
5365      ++UI;
5366      if (CallInst *CI = dyn_cast<CallInst>(U))
5367        UpgradeIntrinsicCall(CI, I.second);
5368    }
5369  }
5370
5371  // Update calls to the remangled intrinsics
5372  for (auto &I : RemangledIntrinsics)
5373    for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5374         UI != UE;)
5375      // Don't expect any other users than call sites
5376      cast<CallBase>(*UI++)->setCalledFunction(I.second);
5377
5378  // Finish fn->subprogram upgrade for materialized functions.
5379  if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5380    F->setSubprogram(SP);
5381
5382  // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5383  if (!MDLoader->isStrippingTBAA()) {
5384    for (auto &I : instructions(F)) {
5385      MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5386      if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5387        continue;
5388      MDLoader->setStripTBAA(true);
5389      stripTBAA(F->getParent());
5390    }
5391  }
5392
5393  // Look for functions that rely on old function attribute behavior.
5394  UpgradeFunctionAttributes(*F);
5395
5396  // Bring in any functions that this function forward-referenced via
5397  // blockaddresses.
5398  return materializeForwardReferencedFunctions();
5399}
5400
5401Error BitcodeReader::materializeModule() {
5402  if (Error Err = materializeMetadata())
5403    return Err;
5404
5405  // Promise to materialize all forward references.
5406  WillMaterializeAllForwardRefs = true;
5407
5408  // Iterate over the module, deserializing any functions that are still on
5409  // disk.
5410  for (Function &F : *TheModule) {
5411    if (Error Err = materialize(&F))
5412      return Err;
5413  }
5414  // At this point, if there are any function bodies, parse the rest of
5415  // the bits in the module past the last function block we have recorded
5416  // through either lazy scanning or the VST.
5417  if (LastFunctionBlockBit || NextUnreadBit)
5418    if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5419                                    ? LastFunctionBlockBit
5420                                    : NextUnreadBit))
5421      return Err;
5422
5423  // Check that all block address forward references got resolved (as we
5424  // promised above).
5425  if (!BasicBlockFwdRefs.empty())
5426    return error("Never resolved function from blockaddress");
5427
5428  // Upgrade any intrinsic calls that slipped through (should not happen!) and
5429  // delete the old functions to clean up. We can't do this unless the entire
5430  // module is materialized because there could always be another function body
5431  // with calls to the old function.
5432  for (auto &I : UpgradedIntrinsics) {
5433    for (auto *U : I.first->users()) {
5434      if (CallInst *CI = dyn_cast<CallInst>(U))
5435        UpgradeIntrinsicCall(CI, I.second);
5436    }
5437    if (!I.first->use_empty())
5438      I.first->replaceAllUsesWith(I.second);
5439    I.first->eraseFromParent();
5440  }
5441  UpgradedIntrinsics.clear();
5442  // Do the same for remangled intrinsics
5443  for (auto &I : RemangledIntrinsics) {
5444    I.first->replaceAllUsesWith(I.second);
5445    I.first->eraseFromParent();
5446  }
5447  RemangledIntrinsics.clear();
5448
5449  UpgradeDebugInfo(*TheModule);
5450
5451  UpgradeModuleFlags(*TheModule);
5452
5453  UpgradeARCRuntime(*TheModule);
5454
5455  return Error::success();
5456}
5457
5458std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5459  return IdentifiedStructTypes;
5460}
5461
5462ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5463    BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5464    StringRef ModulePath, unsigned ModuleId)
5465    : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5466      ModulePath(ModulePath), ModuleId(ModuleId) {}
5467
5468void ModuleSummaryIndexBitcodeReader::addThisModule() {
5469  TheIndex.addModule(ModulePath, ModuleId);
5470}
5471
5472ModuleSummaryIndex::ModuleInfo *
5473ModuleSummaryIndexBitcodeReader::getThisModule() {
5474  return TheIndex.getModule(ModulePath);
5475}
5476
5477std::pair<ValueInfo, GlobalValue::GUID>
5478ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5479  auto VGI = ValueIdToValueInfoMap[ValueId];
5480  assert(VGI.first);
5481  return VGI;
5482}
5483
5484void ModuleSummaryIndexBitcodeReader::setValueGUID(
5485    uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5486    StringRef SourceFileName) {
5487  std::string GlobalId =
5488      GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5489  auto ValueGUID = GlobalValue::getGUID(GlobalId);
5490  auto OriginalNameID = ValueGUID;
5491  if (GlobalValue::isLocalLinkage(Linkage))
5492    OriginalNameID = GlobalValue::getGUID(ValueName);
5493  if (PrintSummaryGUIDs)
5494    dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5495           << ValueName << "\n";
5496
5497  // UseStrtab is false for legacy summary formats and value names are
5498  // created on stack. In that case we save the name in a string saver in
5499  // the index so that the value name can be recorded.
5500  ValueIdToValueInfoMap[ValueID] = std::make_pair(
5501      TheIndex.getOrInsertValueInfo(
5502          ValueGUID,
5503          UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5504      OriginalNameID);
5505}
5506
5507// Specialized value symbol table parser used when reading module index
5508// blocks where we don't actually create global values. The parsed information
5509// is saved in the bitcode reader for use when later parsing summaries.
5510Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5511    uint64_t Offset,
5512    DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5513  // With a strtab the VST is not required to parse the summary.
5514  if (UseStrtab)
5515    return Error::success();
5516
5517  assert(Offset > 0 && "Expected non-zero VST offset");
5518  Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5519  if (!MaybeCurrentBit)
5520    return MaybeCurrentBit.takeError();
5521  uint64_t CurrentBit = MaybeCurrentBit.get();
5522
5523  if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5524    return Err;
5525
5526  SmallVector<uint64_t, 64> Record;
5527
5528  // Read all the records for this value table.
5529  SmallString<128> ValueName;
5530
5531  while (true) {
5532    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5533    if (!MaybeEntry)
5534      return MaybeEntry.takeError();
5535    BitstreamEntry Entry = MaybeEntry.get();
5536
5537    switch (Entry.Kind) {
5538    case BitstreamEntry::SubBlock: // Handled for us already.
5539    case BitstreamEntry::Error:
5540      return error("Malformed block");
5541    case BitstreamEntry::EndBlock:
5542      // Done parsing VST, jump back to wherever we came from.
5543      if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5544        return JumpFailed;
5545      return Error::success();
5546    case BitstreamEntry::Record:
5547      // The interesting case.
5548      break;
5549    }
5550
5551    // Read a record.
5552    Record.clear();
5553    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5554    if (!MaybeRecord)
5555      return MaybeRecord.takeError();
5556    switch (MaybeRecord.get()) {
5557    default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5558      break;
5559    case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5560      if (convertToString(Record, 1, ValueName))
5561        return error("Invalid record");
5562      unsigned ValueID = Record[0];
5563      assert(!SourceFileName.empty());
5564      auto VLI = ValueIdToLinkageMap.find(ValueID);
5565      assert(VLI != ValueIdToLinkageMap.end() &&
5566             "No linkage found for VST entry?");
5567      auto Linkage = VLI->second;
5568      setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5569      ValueName.clear();
5570      break;
5571    }
5572    case bitc::VST_CODE_FNENTRY: {
5573      // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5574      if (convertToString(Record, 2, ValueName))
5575        return error("Invalid record");
5576      unsigned ValueID = Record[0];
5577      assert(!SourceFileName.empty());
5578      auto VLI = ValueIdToLinkageMap.find(ValueID);
5579      assert(VLI != ValueIdToLinkageMap.end() &&
5580             "No linkage found for VST entry?");
5581      auto Linkage = VLI->second;
5582      setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5583      ValueName.clear();
5584      break;
5585    }
5586    case bitc::VST_CODE_COMBINED_ENTRY: {
5587      // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5588      unsigned ValueID = Record[0];
5589      GlobalValue::GUID RefGUID = Record[1];
5590      // The "original name", which is the second value of the pair will be
5591      // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5592      ValueIdToValueInfoMap[ValueID] =
5593          std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5594      break;
5595    }
5596    }
5597  }
5598}
5599
5600// Parse just the blocks needed for building the index out of the module.
5601// At the end of this routine the module Index is populated with a map
5602// from global value id to GlobalValueSummary objects.
5603Error ModuleSummaryIndexBitcodeReader::parseModule() {
5604  if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5605    return Err;
5606
5607  SmallVector<uint64_t, 64> Record;
5608  DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5609  unsigned ValueId = 0;
5610
5611  // Read the index for this module.
5612  while (true) {
5613    Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5614    if (!MaybeEntry)
5615      return MaybeEntry.takeError();
5616    llvm::BitstreamEntry Entry = MaybeEntry.get();
5617
5618    switch (Entry.Kind) {
5619    case BitstreamEntry::Error:
5620      return error("Malformed block");
5621    case BitstreamEntry::EndBlock:
5622      return Error::success();
5623
5624    case BitstreamEntry::SubBlock:
5625      switch (Entry.ID) {
5626      default: // Skip unknown content.
5627        if (Error Err = Stream.SkipBlock())
5628          return Err;
5629        break;
5630      case bitc::BLOCKINFO_BLOCK_ID:
5631        // Need to parse these to get abbrev ids (e.g. for VST)
5632        if (readBlockInfo())
5633          return error("Malformed block");
5634        break;
5635      case bitc::VALUE_SYMTAB_BLOCK_ID:
5636        // Should have been parsed earlier via VSTOffset, unless there
5637        // is no summary section.
5638        assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5639                !SeenGlobalValSummary) &&
5640               "Expected early VST parse via VSTOffset record");
5641        if (Error Err = Stream.SkipBlock())
5642          return Err;
5643        break;
5644      case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5645      case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5646        // Add the module if it is a per-module index (has a source file name).
5647        if (!SourceFileName.empty())
5648          addThisModule();
5649        assert(!SeenValueSymbolTable &&
5650               "Already read VST when parsing summary block?");
5651        // We might not have a VST if there were no values in the
5652        // summary. An empty summary block generated when we are
5653        // performing ThinLTO compiles so we don't later invoke
5654        // the regular LTO process on them.
5655        if (VSTOffset > 0) {
5656          if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5657            return Err;
5658          SeenValueSymbolTable = true;
5659        }
5660        SeenGlobalValSummary = true;
5661        if (Error Err = parseEntireSummary(Entry.ID))
5662          return Err;
5663        break;
5664      case bitc::MODULE_STRTAB_BLOCK_ID:
5665        if (Error Err = parseModuleStringTable())
5666          return Err;
5667        break;
5668      }
5669      continue;
5670
5671    case BitstreamEntry::Record: {
5672        Record.clear();
5673        Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5674        if (!MaybeBitCode)
5675          return MaybeBitCode.takeError();
5676        switch (MaybeBitCode.get()) {
5677        default:
5678          break; // Default behavior, ignore unknown content.
5679        case bitc::MODULE_CODE_VERSION: {
5680          if (Error Err = parseVersionRecord(Record).takeError())
5681            return Err;
5682          break;
5683        }
5684        /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5685        case bitc::MODULE_CODE_SOURCE_FILENAME: {
5686          SmallString<128> ValueName;
5687          if (convertToString(Record, 0, ValueName))
5688            return error("Invalid record");
5689          SourceFileName = ValueName.c_str();
5690          break;
5691        }
5692        /// MODULE_CODE_HASH: [5*i32]
5693        case bitc::MODULE_CODE_HASH: {
5694          if (Record.size() != 5)
5695            return error("Invalid hash length " + Twine(Record.size()).str());
5696          auto &Hash = getThisModule()->second.second;
5697          int Pos = 0;
5698          for (auto &Val : Record) {
5699            assert(!(Val >> 32) && "Unexpected high bits set");
5700            Hash[Pos++] = Val;
5701          }
5702          break;
5703        }
5704        /// MODULE_CODE_VSTOFFSET: [offset]
5705        case bitc::MODULE_CODE_VSTOFFSET:
5706          if (Record.size() < 1)
5707            return error("Invalid record");
5708          // Note that we subtract 1 here because the offset is relative to one
5709          // word before the start of the identification or module block, which
5710          // was historically always the start of the regular bitcode header.
5711          VSTOffset = Record[0] - 1;
5712          break;
5713        // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5714        // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5715        // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5716        // v2: [strtab offset, strtab size, v1]
5717        case bitc::MODULE_CODE_GLOBALVAR:
5718        case bitc::MODULE_CODE_FUNCTION:
5719        case bitc::MODULE_CODE_ALIAS: {
5720          StringRef Name;
5721          ArrayRef<uint64_t> GVRecord;
5722          std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5723          if (GVRecord.size() <= 3)
5724            return error("Invalid record");
5725          uint64_t RawLinkage = GVRecord[3];
5726          GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5727          if (!UseStrtab) {
5728            ValueIdToLinkageMap[ValueId++] = Linkage;
5729            break;
5730          }
5731
5732          setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5733          break;
5734        }
5735        }
5736      }
5737      continue;
5738    }
5739  }
5740}
5741
5742std::vector<ValueInfo>
5743ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5744  std::vector<ValueInfo> Ret;
5745  Ret.reserve(Record.size());
5746  for (uint64_t RefValueId : Record)
5747    Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5748  return Ret;
5749}
5750
5751std::vector<FunctionSummary::EdgeTy>
5752ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5753                                              bool IsOldProfileFormat,
5754                                              bool HasProfile, bool HasRelBF) {
5755  std::vector<FunctionSummary::EdgeTy> Ret;
5756  Ret.reserve(Record.size());
5757  for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5758    CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5759    uint64_t RelBF = 0;
5760    ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5761    if (IsOldProfileFormat) {
5762      I += 1; // Skip old callsitecount field
5763      if (HasProfile)
5764        I += 1; // Skip old profilecount field
5765    } else if (HasProfile)
5766      Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5767    else if (HasRelBF)
5768      RelBF = Record[++I];
5769    Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5770  }
5771  return Ret;
5772}
5773
5774static void
5775parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5776                                       WholeProgramDevirtResolution &Wpd) {
5777  uint64_t ArgNum = Record[Slot++];
5778  WholeProgramDevirtResolution::ByArg &B =
5779      Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5780  Slot += ArgNum;
5781
5782  B.TheKind =
5783      static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5784  B.Info = Record[Slot++];
5785  B.Byte = Record[Slot++];
5786  B.Bit = Record[Slot++];
5787}
5788
5789static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5790                                              StringRef Strtab, size_t &Slot,
5791                                              TypeIdSummary &TypeId) {
5792  uint64_t Id = Record[Slot++];
5793  WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5794
5795  Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5796  Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5797                        static_cast<size_t>(Record[Slot + 1])};
5798  Slot += 2;
5799
5800  uint64_t ResByArgNum = Record[Slot++];
5801  for (uint64_t I = 0; I != ResByArgNum; ++I)
5802    parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5803}
5804
5805static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5806                                     StringRef Strtab,
5807                                     ModuleSummaryIndex &TheIndex) {
5808  size_t Slot = 0;
5809  TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5810      {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5811  Slot += 2;
5812
5813  TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5814  TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5815  TypeId.TTRes.AlignLog2 = Record[Slot++];
5816  TypeId.TTRes.SizeM1 = Record[Slot++];
5817  TypeId.TTRes.BitMask = Record[Slot++];
5818  TypeId.TTRes.InlineBits = Record[Slot++];
5819
5820  while (Slot < Record.size())
5821    parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5822}
5823
5824static std::vector<FunctionSummary::ParamAccess>
5825parseParamAccesses(ArrayRef<uint64_t> Record) {
5826  auto ReadRange = [&]() {
5827    APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5828                BitcodeReader::decodeSignRotatedValue(Record.front()));
5829    Record = Record.drop_front();
5830    APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5831                BitcodeReader::decodeSignRotatedValue(Record.front()));
5832    Record = Record.drop_front();
5833    ConstantRange Range{Lower, Upper};
5834    assert(!Range.isFullSet());
5835    assert(!Range.isUpperSignWrapped());
5836    return Range;
5837  };
5838
5839  std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5840  while (!Record.empty()) {
5841    PendingParamAccesses.emplace_back();
5842    FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5843    ParamAccess.ParamNo = Record.front();
5844    Record = Record.drop_front();
5845    ParamAccess.Use = ReadRange();
5846    ParamAccess.Calls.resize(Record.front());
5847    Record = Record.drop_front();
5848    for (auto &Call : ParamAccess.Calls) {
5849      Call.ParamNo = Record.front();
5850      Record = Record.drop_front();
5851      Call.Callee = Record.front();
5852      Record = Record.drop_front();
5853      Call.Offsets = ReadRange();
5854    }
5855  }
5856  return PendingParamAccesses;
5857}
5858
5859void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5860    ArrayRef<uint64_t> Record, size_t &Slot,
5861    TypeIdCompatibleVtableInfo &TypeId) {
5862  uint64_t Offset = Record[Slot++];
5863  ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5864  TypeId.push_back({Offset, Callee});
5865}
5866
5867void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5868    ArrayRef<uint64_t> Record) {
5869  size_t Slot = 0;
5870  TypeIdCompatibleVtableInfo &TypeId =
5871      TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5872          {Strtab.data() + Record[Slot],
5873           static_cast<size_t>(Record[Slot + 1])});
5874  Slot += 2;
5875
5876  while (Slot < Record.size())
5877    parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5878}
5879
5880static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5881                           unsigned WOCnt) {
5882  // Readonly and writeonly refs are in the end of the refs list.
5883  assert(ROCnt + WOCnt <= Refs.size());
5884  unsigned FirstWORef = Refs.size() - WOCnt;
5885  unsigned RefNo = FirstWORef - ROCnt;
5886  for (; RefNo < FirstWORef; ++RefNo)
5887    Refs[RefNo].setReadOnly();
5888  for (; RefNo < Refs.size(); ++RefNo)
5889    Refs[RefNo].setWriteOnly();
5890}
5891
5892// Eagerly parse the entire summary block. This populates the GlobalValueSummary
5893// objects in the index.
5894Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5895  if (Error Err = Stream.EnterSubBlock(ID))
5896    return Err;
5897  SmallVector<uint64_t, 64> Record;
5898
5899  // Parse version
5900  {
5901    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5902    if (!MaybeEntry)
5903      return MaybeEntry.takeError();
5904    BitstreamEntry Entry = MaybeEntry.get();
5905
5906    if (Entry.Kind != BitstreamEntry::Record)
5907      return error("Invalid Summary Block: record for version expected");
5908    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5909    if (!MaybeRecord)
5910      return MaybeRecord.takeError();
5911    if (MaybeRecord.get() != bitc::FS_VERSION)
5912      return error("Invalid Summary Block: version expected");
5913  }
5914  const uint64_t Version = Record[0];
5915  const bool IsOldProfileFormat = Version == 1;
5916  if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5917    return error("Invalid summary version " + Twine(Version) +
5918                 ". Version should be in the range [1-" +
5919                 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5920                 "].");
5921  Record.clear();
5922
5923  // Keep around the last seen summary to be used when we see an optional
5924  // "OriginalName" attachement.
5925  GlobalValueSummary *LastSeenSummary = nullptr;
5926  GlobalValue::GUID LastSeenGUID = 0;
5927
5928  // We can expect to see any number of type ID information records before
5929  // each function summary records; these variables store the information
5930  // collected so far so that it can be used to create the summary object.
5931  std::vector<GlobalValue::GUID> PendingTypeTests;
5932  std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5933      PendingTypeCheckedLoadVCalls;
5934  std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5935      PendingTypeCheckedLoadConstVCalls;
5936  std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5937
5938  while (true) {
5939    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5940    if (!MaybeEntry)
5941      return MaybeEntry.takeError();
5942    BitstreamEntry Entry = MaybeEntry.get();
5943
5944    switch (Entry.Kind) {
5945    case BitstreamEntry::SubBlock: // Handled for us already.
5946    case BitstreamEntry::Error:
5947      return error("Malformed block");
5948    case BitstreamEntry::EndBlock:
5949      return Error::success();
5950    case BitstreamEntry::Record:
5951      // The interesting case.
5952      break;
5953    }
5954
5955    // Read a record. The record format depends on whether this
5956    // is a per-module index or a combined index file. In the per-module
5957    // case the records contain the associated value's ID for correlation
5958    // with VST entries. In the combined index the correlation is done
5959    // via the bitcode offset of the summary records (which were saved
5960    // in the combined index VST entries). The records also contain
5961    // information used for ThinLTO renaming and importing.
5962    Record.clear();
5963    Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5964    if (!MaybeBitCode)
5965      return MaybeBitCode.takeError();
5966    switch (unsigned BitCode = MaybeBitCode.get()) {
5967    default: // Default behavior: ignore.
5968      break;
5969    case bitc::FS_FLAGS: {  // [flags]
5970      TheIndex.setFlags(Record[0]);
5971      break;
5972    }
5973    case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5974      uint64_t ValueID = Record[0];
5975      GlobalValue::GUID RefGUID = Record[1];
5976      ValueIdToValueInfoMap[ValueID] =
5977          std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5978      break;
5979    }
5980    // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5981    //                numrefs x valueid, n x (valueid)]
5982    // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5983    //                        numrefs x valueid,
5984    //                        n x (valueid, hotness)]
5985    // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5986    //                      numrefs x valueid,
5987    //                      n x (valueid, relblockfreq)]
5988    case bitc::FS_PERMODULE:
5989    case bitc::FS_PERMODULE_RELBF:
5990    case bitc::FS_PERMODULE_PROFILE: {
5991      unsigned ValueID = Record[0];
5992      uint64_t RawFlags = Record[1];
5993      unsigned InstCount = Record[2];
5994      uint64_t RawFunFlags = 0;
5995      unsigned NumRefs = Record[3];
5996      unsigned NumRORefs = 0, NumWORefs = 0;
5997      int RefListStartIndex = 4;
5998      if (Version >= 4) {
5999        RawFunFlags = Record[3];
6000        NumRefs = Record[4];
6001        RefListStartIndex = 5;
6002        if (Version >= 5) {
6003          NumRORefs = Record[5];
6004          RefListStartIndex = 6;
6005          if (Version >= 7) {
6006            NumWORefs = Record[6];
6007            RefListStartIndex = 7;
6008          }
6009        }
6010      }
6011
6012      auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6013      // The module path string ref set in the summary must be owned by the
6014      // index's module string table. Since we don't have a module path
6015      // string table section in the per-module index, we create a single
6016      // module path string table entry with an empty (0) ID to take
6017      // ownership.
6018      int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6019      assert(Record.size() >= RefListStartIndex + NumRefs &&
6020             "Record size inconsistent with number of references");
6021      std::vector<ValueInfo> Refs = makeRefList(
6022          ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6023      bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6024      bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6025      std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6026          ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6027          IsOldProfileFormat, HasProfile, HasRelBF);
6028      setSpecialRefs(Refs, NumRORefs, NumWORefs);
6029      auto FS = std::make_unique<FunctionSummary>(
6030          Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6031          std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6032          std::move(PendingTypeTestAssumeVCalls),
6033          std::move(PendingTypeCheckedLoadVCalls),
6034          std::move(PendingTypeTestAssumeConstVCalls),
6035          std::move(PendingTypeCheckedLoadConstVCalls),
6036          std::move(PendingParamAccesses));
6037      auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6038      FS->setModulePath(getThisModule()->first());
6039      FS->setOriginalName(VIAndOriginalGUID.second);
6040      TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6041      break;
6042    }
6043    // FS_ALIAS: [valueid, flags, valueid]
6044    // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6045    // they expect all aliasee summaries to be available.
6046    case bitc::FS_ALIAS: {
6047      unsigned ValueID = Record[0];
6048      uint64_t RawFlags = Record[1];
6049      unsigned AliaseeID = Record[2];
6050      auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6051      auto AS = std::make_unique<AliasSummary>(Flags);
6052      // The module path string ref set in the summary must be owned by the
6053      // index's module string table. Since we don't have a module path
6054      // string table section in the per-module index, we create a single
6055      // module path string table entry with an empty (0) ID to take
6056      // ownership.
6057      AS->setModulePath(getThisModule()->first());
6058
6059      auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6060      auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6061      if (!AliaseeInModule)
6062        return error("Alias expects aliasee summary to be parsed");
6063      AS->setAliasee(AliaseeVI, AliaseeInModule);
6064
6065      auto GUID = getValueInfoFromValueId(ValueID);
6066      AS->setOriginalName(GUID.second);
6067      TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6068      break;
6069    }
6070    // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6071    case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6072      unsigned ValueID = Record[0];
6073      uint64_t RawFlags = Record[1];
6074      unsigned RefArrayStart = 2;
6075      GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6076                                      /* WriteOnly */ false,
6077                                      /* Constant */ false,
6078                                      GlobalObject::VCallVisibilityPublic);
6079      auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6080      if (Version >= 5) {
6081        GVF = getDecodedGVarFlags(Record[2]);
6082        RefArrayStart = 3;
6083      }
6084      std::vector<ValueInfo> Refs =
6085          makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6086      auto FS =
6087          std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6088      FS->setModulePath(getThisModule()->first());
6089      auto GUID = getValueInfoFromValueId(ValueID);
6090      FS->setOriginalName(GUID.second);
6091      TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6092      break;
6093    }
6094    // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6095    //                        numrefs, numrefs x valueid,
6096    //                        n x (valueid, offset)]
6097    case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6098      unsigned ValueID = Record[0];
6099      uint64_t RawFlags = Record[1];
6100      GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6101      unsigned NumRefs = Record[3];
6102      unsigned RefListStartIndex = 4;
6103      unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6104      auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6105      std::vector<ValueInfo> Refs = makeRefList(
6106          ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6107      VTableFuncList VTableFuncs;
6108      for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6109        ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6110        uint64_t Offset = Record[++I];
6111        VTableFuncs.push_back({Callee, Offset});
6112      }
6113      auto VS =
6114          std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6115      VS->setModulePath(getThisModule()->first());
6116      VS->setVTableFuncs(VTableFuncs);
6117      auto GUID = getValueInfoFromValueId(ValueID);
6118      VS->setOriginalName(GUID.second);
6119      TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6120      break;
6121    }
6122    // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6123    //               numrefs x valueid, n x (valueid)]
6124    // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6125    //                       numrefs x valueid, n x (valueid, hotness)]
6126    case bitc::FS_COMBINED:
6127    case bitc::FS_COMBINED_PROFILE: {
6128      unsigned ValueID = Record[0];
6129      uint64_t ModuleId = Record[1];
6130      uint64_t RawFlags = Record[2];
6131      unsigned InstCount = Record[3];
6132      uint64_t RawFunFlags = 0;
6133      uint64_t EntryCount = 0;
6134      unsigned NumRefs = Record[4];
6135      unsigned NumRORefs = 0, NumWORefs = 0;
6136      int RefListStartIndex = 5;
6137
6138      if (Version >= 4) {
6139        RawFunFlags = Record[4];
6140        RefListStartIndex = 6;
6141        size_t NumRefsIndex = 5;
6142        if (Version >= 5) {
6143          unsigned NumRORefsOffset = 1;
6144          RefListStartIndex = 7;
6145          if (Version >= 6) {
6146            NumRefsIndex = 6;
6147            EntryCount = Record[5];
6148            RefListStartIndex = 8;
6149            if (Version >= 7) {
6150              RefListStartIndex = 9;
6151              NumWORefs = Record[8];
6152              NumRORefsOffset = 2;
6153            }
6154          }
6155          NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6156        }
6157        NumRefs = Record[NumRefsIndex];
6158      }
6159
6160      auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6161      int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6162      assert(Record.size() >= RefListStartIndex + NumRefs &&
6163             "Record size inconsistent with number of references");
6164      std::vector<ValueInfo> Refs = makeRefList(
6165          ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6166      bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6167      std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6168          ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6169          IsOldProfileFormat, HasProfile, false);
6170      ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6171      setSpecialRefs(Refs, NumRORefs, NumWORefs);
6172      auto FS = std::make_unique<FunctionSummary>(
6173          Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6174          std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6175          std::move(PendingTypeTestAssumeVCalls),
6176          std::move(PendingTypeCheckedLoadVCalls),
6177          std::move(PendingTypeTestAssumeConstVCalls),
6178          std::move(PendingTypeCheckedLoadConstVCalls),
6179          std::move(PendingParamAccesses));
6180      LastSeenSummary = FS.get();
6181      LastSeenGUID = VI.getGUID();
6182      FS->setModulePath(ModuleIdMap[ModuleId]);
6183      TheIndex.addGlobalValueSummary(VI, std::move(FS));
6184      break;
6185    }
6186    // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6187    // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6188    // they expect all aliasee summaries to be available.
6189    case bitc::FS_COMBINED_ALIAS: {
6190      unsigned ValueID = Record[0];
6191      uint64_t ModuleId = Record[1];
6192      uint64_t RawFlags = Record[2];
6193      unsigned AliaseeValueId = Record[3];
6194      auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6195      auto AS = std::make_unique<AliasSummary>(Flags);
6196      LastSeenSummary = AS.get();
6197      AS->setModulePath(ModuleIdMap[ModuleId]);
6198
6199      auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6200      auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6201      AS->setAliasee(AliaseeVI, AliaseeInModule);
6202
6203      ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6204      LastSeenGUID = VI.getGUID();
6205      TheIndex.addGlobalValueSummary(VI, std::move(AS));
6206      break;
6207    }
6208    // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6209    case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6210      unsigned ValueID = Record[0];
6211      uint64_t ModuleId = Record[1];
6212      uint64_t RawFlags = Record[2];
6213      unsigned RefArrayStart = 3;
6214      GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6215                                      /* WriteOnly */ false,
6216                                      /* Constant */ false,
6217                                      GlobalObject::VCallVisibilityPublic);
6218      auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6219      if (Version >= 5) {
6220        GVF = getDecodedGVarFlags(Record[3]);
6221        RefArrayStart = 4;
6222      }
6223      std::vector<ValueInfo> Refs =
6224          makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6225      auto FS =
6226          std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6227      LastSeenSummary = FS.get();
6228      FS->setModulePath(ModuleIdMap[ModuleId]);
6229      ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6230      LastSeenGUID = VI.getGUID();
6231      TheIndex.addGlobalValueSummary(VI, std::move(FS));
6232      break;
6233    }
6234    // FS_COMBINED_ORIGINAL_NAME: [original_name]
6235    case bitc::FS_COMBINED_ORIGINAL_NAME: {
6236      uint64_t OriginalName = Record[0];
6237      if (!LastSeenSummary)
6238        return error("Name attachment that does not follow a combined record");
6239      LastSeenSummary->setOriginalName(OriginalName);
6240      TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6241      // Reset the LastSeenSummary
6242      LastSeenSummary = nullptr;
6243      LastSeenGUID = 0;
6244      break;
6245    }
6246    case bitc::FS_TYPE_TESTS:
6247      assert(PendingTypeTests.empty());
6248      PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6249                              Record.end());
6250      break;
6251
6252    case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6253      assert(PendingTypeTestAssumeVCalls.empty());
6254      for (unsigned I = 0; I != Record.size(); I += 2)
6255        PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6256      break;
6257
6258    case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6259      assert(PendingTypeCheckedLoadVCalls.empty());
6260      for (unsigned I = 0; I != Record.size(); I += 2)
6261        PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6262      break;
6263
6264    case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6265      PendingTypeTestAssumeConstVCalls.push_back(
6266          {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6267      break;
6268
6269    case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6270      PendingTypeCheckedLoadConstVCalls.push_back(
6271          {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6272      break;
6273
6274    case bitc::FS_CFI_FUNCTION_DEFS: {
6275      std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6276      for (unsigned I = 0; I != Record.size(); I += 2)
6277        CfiFunctionDefs.insert(
6278            {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6279      break;
6280    }
6281
6282    case bitc::FS_CFI_FUNCTION_DECLS: {
6283      std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6284      for (unsigned I = 0; I != Record.size(); I += 2)
6285        CfiFunctionDecls.insert(
6286            {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6287      break;
6288    }
6289
6290    case bitc::FS_TYPE_ID:
6291      parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6292      break;
6293
6294    case bitc::FS_TYPE_ID_METADATA:
6295      parseTypeIdCompatibleVtableSummaryRecord(Record);
6296      break;
6297
6298    case bitc::FS_BLOCK_COUNT:
6299      TheIndex.addBlockCount(Record[0]);
6300      break;
6301
6302    case bitc::FS_PARAM_ACCESS: {
6303      PendingParamAccesses = parseParamAccesses(Record);
6304      break;
6305    }
6306    }
6307  }
6308  llvm_unreachable("Exit infinite loop");
6309}
6310
6311// Parse the  module string table block into the Index.
6312// This populates the ModulePathStringTable map in the index.
6313Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6314  if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6315    return Err;
6316
6317  SmallVector<uint64_t, 64> Record;
6318
6319  SmallString<128> ModulePath;
6320  ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6321
6322  while (true) {
6323    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6324    if (!MaybeEntry)
6325      return MaybeEntry.takeError();
6326    BitstreamEntry Entry = MaybeEntry.get();
6327
6328    switch (Entry.Kind) {
6329    case BitstreamEntry::SubBlock: // Handled for us already.
6330    case BitstreamEntry::Error:
6331      return error("Malformed block");
6332    case BitstreamEntry::EndBlock:
6333      return Error::success();
6334    case BitstreamEntry::Record:
6335      // The interesting case.
6336      break;
6337    }
6338
6339    Record.clear();
6340    Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6341    if (!MaybeRecord)
6342      return MaybeRecord.takeError();
6343    switch (MaybeRecord.get()) {
6344    default: // Default behavior: ignore.
6345      break;
6346    case bitc::MST_CODE_ENTRY: {
6347      // MST_ENTRY: [modid, namechar x N]
6348      uint64_t ModuleId = Record[0];
6349
6350      if (convertToString(Record, 1, ModulePath))
6351        return error("Invalid record");
6352
6353      LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6354      ModuleIdMap[ModuleId] = LastSeenModule->first();
6355
6356      ModulePath.clear();
6357      break;
6358    }
6359    /// MST_CODE_HASH: [5*i32]
6360    case bitc::MST_CODE_HASH: {
6361      if (Record.size() != 5)
6362        return error("Invalid hash length " + Twine(Record.size()).str());
6363      if (!LastSeenModule)
6364        return error("Invalid hash that does not follow a module path");
6365      int Pos = 0;
6366      for (auto &Val : Record) {
6367        assert(!(Val >> 32) && "Unexpected high bits set");
6368        LastSeenModule->second.second[Pos++] = Val;
6369      }
6370      // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6371      LastSeenModule = nullptr;
6372      break;
6373    }
6374    }
6375  }
6376  llvm_unreachable("Exit infinite loop");
6377}
6378
6379namespace {
6380
6381// FIXME: This class is only here to support the transition to llvm::Error. It
6382// will be removed once this transition is complete. Clients should prefer to
6383// deal with the Error value directly, rather than converting to error_code.
6384class BitcodeErrorCategoryType : public std::error_category {
6385  const char *name() const noexcept override {
6386    return "llvm.bitcode";
6387  }
6388
6389  std::string message(int IE) const override {
6390    BitcodeError E = static_cast<BitcodeError>(IE);
6391    switch (E) {
6392    case BitcodeError::CorruptedBitcode:
6393      return "Corrupted bitcode";
6394    }
6395    llvm_unreachable("Unknown error type!");
6396  }
6397};
6398
6399} // end anonymous namespace
6400
6401static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6402
6403const std::error_category &llvm::BitcodeErrorCategory() {
6404  return *ErrorCategory;
6405}
6406
6407static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6408                                            unsigned Block, unsigned RecordID) {
6409  if (Error Err = Stream.EnterSubBlock(Block))
6410    return std::move(Err);
6411
6412  StringRef Strtab;
6413  while (true) {
6414    Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6415    if (!MaybeEntry)
6416      return MaybeEntry.takeError();
6417    llvm::BitstreamEntry Entry = MaybeEntry.get();
6418
6419    switch (Entry.Kind) {
6420    case BitstreamEntry::EndBlock:
6421      return Strtab;
6422
6423    case BitstreamEntry::Error:
6424      return error("Malformed block");
6425
6426    case BitstreamEntry::SubBlock:
6427      if (Error Err = Stream.SkipBlock())
6428        return std::move(Err);
6429      break;
6430
6431    case BitstreamEntry::Record:
6432      StringRef Blob;
6433      SmallVector<uint64_t, 1> Record;
6434      Expected<unsigned> MaybeRecord =
6435          Stream.readRecord(Entry.ID, Record, &Blob);
6436      if (!MaybeRecord)
6437        return MaybeRecord.takeError();
6438      if (MaybeRecord.get() == RecordID)
6439        Strtab = Blob;
6440      break;
6441    }
6442  }
6443}
6444
6445//===----------------------------------------------------------------------===//
6446// External interface
6447//===----------------------------------------------------------------------===//
6448
6449Expected<std::vector<BitcodeModule>>
6450llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6451  auto FOrErr = getBitcodeFileContents(Buffer);
6452  if (!FOrErr)
6453    return FOrErr.takeError();
6454  return std::move(FOrErr->Mods);
6455}
6456
6457Expected<BitcodeFileContents>
6458llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6459  Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6460  if (!StreamOrErr)
6461    return StreamOrErr.takeError();
6462  BitstreamCursor &Stream = *StreamOrErr;
6463
6464  BitcodeFileContents F;
6465  while (true) {
6466    uint64_t BCBegin = Stream.getCurrentByteNo();
6467
6468    // We may be consuming bitcode from a client that leaves garbage at the end
6469    // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6470    // the end that there cannot possibly be another module, stop looking.
6471    if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6472      return F;
6473
6474    Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6475    if (!MaybeEntry)
6476      return MaybeEntry.takeError();
6477    llvm::BitstreamEntry Entry = MaybeEntry.get();
6478
6479    switch (Entry.Kind) {
6480    case BitstreamEntry::EndBlock:
6481    case BitstreamEntry::Error:
6482      return error("Malformed block");
6483
6484    case BitstreamEntry::SubBlock: {
6485      uint64_t IdentificationBit = -1ull;
6486      if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6487        IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6488        if (Error Err = Stream.SkipBlock())
6489          return std::move(Err);
6490
6491        {
6492          Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6493          if (!MaybeEntry)
6494            return MaybeEntry.takeError();
6495          Entry = MaybeEntry.get();
6496        }
6497
6498        if (Entry.Kind != BitstreamEntry::SubBlock ||
6499            Entry.ID != bitc::MODULE_BLOCK_ID)
6500          return error("Malformed block");
6501      }
6502
6503      if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6504        uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6505        if (Error Err = Stream.SkipBlock())
6506          return std::move(Err);
6507
6508        F.Mods.push_back({Stream.getBitcodeBytes().slice(
6509                              BCBegin, Stream.getCurrentByteNo() - BCBegin),
6510                          Buffer.getBufferIdentifier(), IdentificationBit,
6511                          ModuleBit});
6512        continue;
6513      }
6514
6515      if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6516        Expected<StringRef> Strtab =
6517            readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6518        if (!Strtab)
6519          return Strtab.takeError();
6520        // This string table is used by every preceding bitcode module that does
6521        // not have its own string table. A bitcode file may have multiple
6522        // string tables if it was created by binary concatenation, for example
6523        // with "llvm-cat -b".
6524        for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6525          if (!I->Strtab.empty())
6526            break;
6527          I->Strtab = *Strtab;
6528        }
6529        // Similarly, the string table is used by every preceding symbol table;
6530        // normally there will be just one unless the bitcode file was created
6531        // by binary concatenation.
6532        if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6533          F.StrtabForSymtab = *Strtab;
6534        continue;
6535      }
6536
6537      if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6538        Expected<StringRef> SymtabOrErr =
6539            readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6540        if (!SymtabOrErr)
6541          return SymtabOrErr.takeError();
6542
6543        // We can expect the bitcode file to have multiple symbol tables if it
6544        // was created by binary concatenation. In that case we silently
6545        // ignore any subsequent symbol tables, which is fine because this is a
6546        // low level function. The client is expected to notice that the number
6547        // of modules in the symbol table does not match the number of modules
6548        // in the input file and regenerate the symbol table.
6549        if (F.Symtab.empty())
6550          F.Symtab = *SymtabOrErr;
6551        continue;
6552      }
6553
6554      if (Error Err = Stream.SkipBlock())
6555        return std::move(Err);
6556      continue;
6557    }
6558    case BitstreamEntry::Record:
6559      if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6560        continue;
6561      else
6562        return StreamFailed.takeError();
6563    }
6564  }
6565}
6566
6567/// Get a lazy one-at-time loading module from bitcode.
6568///
6569/// This isn't always used in a lazy context.  In particular, it's also used by
6570/// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6571/// in forward-referenced functions from block address references.
6572///
6573/// \param[in] MaterializeAll Set to \c true if we should materialize
6574/// everything.
6575Expected<std::unique_ptr<Module>>
6576BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6577                             bool ShouldLazyLoadMetadata, bool IsImporting,
6578                             DataLayoutCallbackTy DataLayoutCallback) {
6579  BitstreamCursor Stream(Buffer);
6580
6581  std::string ProducerIdentification;
6582  if (IdentificationBit != -1ull) {
6583    if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6584      return std::move(JumpFailed);
6585    Expected<std::string> ProducerIdentificationOrErr =
6586        readIdentificationBlock(Stream);
6587    if (!ProducerIdentificationOrErr)
6588      return ProducerIdentificationOrErr.takeError();
6589
6590    ProducerIdentification = *ProducerIdentificationOrErr;
6591  }
6592
6593  if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6594    return std::move(JumpFailed);
6595  auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6596                              Context);
6597
6598  std::unique_ptr<Module> M =
6599      std::make_unique<Module>(ModuleIdentifier, Context);
6600  M->setMaterializer(R);
6601
6602  // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6603  if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6604                                      IsImporting, DataLayoutCallback))
6605    return std::move(Err);
6606
6607  if (MaterializeAll) {
6608    // Read in the entire module, and destroy the BitcodeReader.
6609    if (Error Err = M->materializeAll())
6610      return std::move(Err);
6611  } else {
6612    // Resolve forward references from blockaddresses.
6613    if (Error Err = R->materializeForwardReferencedFunctions())
6614      return std::move(Err);
6615  }
6616  return std::move(M);
6617}
6618
6619Expected<std::unique_ptr<Module>>
6620BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6621                             bool IsImporting) {
6622  return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6623                       [](StringRef) { return None; });
6624}
6625
6626// Parse the specified bitcode buffer and merge the index into CombinedIndex.
6627// We don't use ModuleIdentifier here because the client may need to control the
6628// module path used in the combined summary (e.g. when reading summaries for
6629// regular LTO modules).
6630Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6631                                 StringRef ModulePath, uint64_t ModuleId) {
6632  BitstreamCursor Stream(Buffer);
6633  if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6634    return JumpFailed;
6635
6636  ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6637                                    ModulePath, ModuleId);
6638  return R.parseModule();
6639}
6640
6641// Parse the specified bitcode buffer, returning the function info index.
6642Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6643  BitstreamCursor Stream(Buffer);
6644  if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6645    return std::move(JumpFailed);
6646
6647  auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6648  ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6649                                    ModuleIdentifier, 0);
6650
6651  if (Error Err = R.parseModule())
6652    return std::move(Err);
6653
6654  return std::move(Index);
6655}
6656
6657static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6658                                                unsigned ID) {
6659  if (Error Err = Stream.EnterSubBlock(ID))
6660    return std::move(Err);
6661  SmallVector<uint64_t, 64> Record;
6662
6663  while (true) {
6664    Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6665    if (!MaybeEntry)
6666      return MaybeEntry.takeError();
6667    BitstreamEntry Entry = MaybeEntry.get();
6668
6669    switch (Entry.Kind) {
6670    case BitstreamEntry::SubBlock: // Handled for us already.
6671    case BitstreamEntry::Error:
6672      return error("Malformed block");
6673    case BitstreamEntry::EndBlock:
6674      // If no flags record found, conservatively return true to mimic
6675      // behavior before this flag was added.
6676      return true;
6677    case BitstreamEntry::Record:
6678      // The interesting case.
6679      break;
6680    }
6681
6682    // Look for the FS_FLAGS record.
6683    Record.clear();
6684    Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6685    if (!MaybeBitCode)
6686      return MaybeBitCode.takeError();
6687    switch (MaybeBitCode.get()) {
6688    default: // Default behavior: ignore.
6689      break;
6690    case bitc::FS_FLAGS: { // [flags]
6691      uint64_t Flags = Record[0];
6692      // Scan flags.
6693      assert(Flags <= 0x3f && "Unexpected bits in flag");
6694
6695      return Flags & 0x8;
6696    }
6697    }
6698  }
6699  llvm_unreachable("Exit infinite loop");
6700}
6701
6702// Check if the given bitcode buffer contains a global value summary block.
6703Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6704  BitstreamCursor Stream(Buffer);
6705  if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6706    return std::move(JumpFailed);
6707
6708  if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6709    return std::move(Err);
6710
6711  while (true) {
6712    Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6713    if (!MaybeEntry)
6714      return MaybeEntry.takeError();
6715    llvm::BitstreamEntry Entry = MaybeEntry.get();
6716
6717    switch (Entry.Kind) {
6718    case BitstreamEntry::Error:
6719      return error("Malformed block");
6720    case BitstreamEntry::EndBlock:
6721      return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6722                            /*EnableSplitLTOUnit=*/false};
6723
6724    case BitstreamEntry::SubBlock:
6725      if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6726        Expected<bool> EnableSplitLTOUnit =
6727            getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6728        if (!EnableSplitLTOUnit)
6729          return EnableSplitLTOUnit.takeError();
6730        return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6731                              *EnableSplitLTOUnit};
6732      }
6733
6734      if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6735        Expected<bool> EnableSplitLTOUnit =
6736            getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6737        if (!EnableSplitLTOUnit)
6738          return EnableSplitLTOUnit.takeError();
6739        return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6740                              *EnableSplitLTOUnit};
6741      }
6742
6743      // Ignore other sub-blocks.
6744      if (Error Err = Stream.SkipBlock())
6745        return std::move(Err);
6746      continue;
6747
6748    case BitstreamEntry::Record:
6749      if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6750        continue;
6751      else
6752        return StreamFailed.takeError();
6753    }
6754  }
6755}
6756
6757static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6758  Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6759  if (!MsOrErr)
6760    return MsOrErr.takeError();
6761
6762  if (MsOrErr->size() != 1)
6763    return error("Expected a single module");
6764
6765  return (*MsOrErr)[0];
6766}
6767
6768Expected<std::unique_ptr<Module>>
6769llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6770                           bool ShouldLazyLoadMetadata, bool IsImporting) {
6771  Expected<BitcodeModule> BM = getSingleModule(Buffer);
6772  if (!BM)
6773    return BM.takeError();
6774
6775  return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6776}
6777
6778Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6779    std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6780    bool ShouldLazyLoadMetadata, bool IsImporting) {
6781  auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6782                                     IsImporting);
6783  if (MOrErr)
6784    (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6785  return MOrErr;
6786}
6787
6788Expected<std::unique_ptr<Module>>
6789BitcodeModule::parseModule(LLVMContext &Context,
6790                           DataLayoutCallbackTy DataLayoutCallback) {
6791  return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6792  // TODO: Restore the use-lists to the in-memory state when the bitcode was
6793  // written.  We must defer until the Module has been fully materialized.
6794}
6795
6796Expected<std::unique_ptr<Module>>
6797llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6798                       DataLayoutCallbackTy DataLayoutCallback) {
6799  Expected<BitcodeModule> BM = getSingleModule(Buffer);
6800  if (!BM)
6801    return BM.takeError();
6802
6803  return BM->parseModule(Context, DataLayoutCallback);
6804}
6805
6806Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6807  Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6808  if (!StreamOrErr)
6809    return StreamOrErr.takeError();
6810
6811  return readTriple(*StreamOrErr);
6812}
6813
6814Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6815  Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6816  if (!StreamOrErr)
6817    return StreamOrErr.takeError();
6818
6819  return hasObjCCategory(*StreamOrErr);
6820}
6821
6822Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6823  Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6824  if (!StreamOrErr)
6825    return StreamOrErr.takeError();
6826
6827  return readIdentificationCode(*StreamOrErr);
6828}
6829
6830Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6831                                   ModuleSummaryIndex &CombinedIndex,
6832                                   uint64_t ModuleId) {
6833  Expected<BitcodeModule> BM = getSingleModule(Buffer);
6834  if (!BM)
6835    return BM.takeError();
6836
6837  return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6838}
6839
6840Expected<std::unique_ptr<ModuleSummaryIndex>>
6841llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6842  Expected<BitcodeModule> BM = getSingleModule(Buffer);
6843  if (!BM)
6844    return BM.takeError();
6845
6846  return BM->getSummary();
6847}
6848
6849Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6850  Expected<BitcodeModule> BM = getSingleModule(Buffer);
6851  if (!BM)
6852    return BM.takeError();
6853
6854  return BM->getLTOInfo();
6855}
6856
6857Expected<std::unique_ptr<ModuleSummaryIndex>>
6858llvm::getModuleSummaryIndexForFile(StringRef Path,
6859                                   bool IgnoreEmptyThinLTOIndexFile) {
6860  ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6861      MemoryBuffer::getFileOrSTDIN(Path);
6862  if (!FileOrErr)
6863    return errorCodeToError(FileOrErr.getError());
6864  if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6865    return nullptr;
6866  return getModuleSummaryIndex(**FileOrErr);
6867}
6868