1//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect the sequence of machine instructions for a basic block.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15
16#include "llvm/ADT/GraphTraits.h"
17#include "llvm/ADT/ilist.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/ADT/SparseBitVector.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineInstrBundleIterator.h"
22#include "llvm/IR/DebugLoc.h"
23#include "llvm/MC/LaneBitmask.h"
24#include "llvm/Support/BranchProbability.h"
25#include <cassert>
26#include <cstdint>
27#include <functional>
28#include <iterator>
29#include <string>
30#include <vector>
31
32namespace llvm {
33
34class BasicBlock;
35class MachineFunction;
36class MCSymbol;
37class ModuleSlotTracker;
38class Pass;
39class Printable;
40class SlotIndexes;
41class StringRef;
42class raw_ostream;
43class TargetRegisterClass;
44class TargetRegisterInfo;
45
46// This structure uniquely identifies a basic block section.
47// Possible values are
48//  {Type: Default, Number: (unsigned)} (These are regular section IDs)
49//  {Type: Exception, Number: 0}  (ExceptionSectionID)
50//  {Type: Cold, Number: 0}  (ColdSectionID)
51struct MBBSectionID {
52  enum SectionType {
53    Default = 0, // Regular section (these sections are distinguished by the
54                 // Number field).
55    Exception,   // Special section type for exception handling blocks
56    Cold,        // Special section type for cold blocks
57  } Type;
58  unsigned Number;
59
60  MBBSectionID(unsigned N) : Type(Default), Number(N) {}
61
62  // Special unique sections for cold and exception blocks.
63  const static MBBSectionID ColdSectionID;
64  const static MBBSectionID ExceptionSectionID;
65
66  bool operator==(const MBBSectionID &Other) const {
67    return Type == Other.Type && Number == Other.Number;
68  }
69
70  bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
71
72private:
73  // This is only used to construct the special cold and exception sections.
74  MBBSectionID(SectionType T) : Type(T), Number(0) {}
75};
76
77template <> struct ilist_traits<MachineInstr> {
78private:
79  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
80
81  MachineBasicBlock *Parent;
82
83  using instr_iterator =
84      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
85
86public:
87  void addNodeToList(MachineInstr *N);
88  void removeNodeFromList(MachineInstr *N);
89  void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
90                             instr_iterator Last);
91  void deleteNode(MachineInstr *MI);
92};
93
94class MachineBasicBlock
95    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
96public:
97  /// Pair of physical register and lane mask.
98  /// This is not simply a std::pair typedef because the members should be named
99  /// clearly as they both have an integer type.
100  struct RegisterMaskPair {
101  public:
102    MCPhysReg PhysReg;
103    LaneBitmask LaneMask;
104
105    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
106        : PhysReg(PhysReg), LaneMask(LaneMask) {}
107  };
108
109private:
110  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
111
112  Instructions Insts;
113  const BasicBlock *BB;
114  int Number;
115  MachineFunction *xParent;
116
117  /// Keep track of the predecessor / successor basic blocks.
118  std::vector<MachineBasicBlock *> Predecessors;
119  std::vector<MachineBasicBlock *> Successors;
120
121  /// Keep track of the probabilities to the successors. This vector has the
122  /// same order as Successors, or it is empty if we don't use it (disable
123  /// optimization).
124  std::vector<BranchProbability> Probs;
125  using probability_iterator = std::vector<BranchProbability>::iterator;
126  using const_probability_iterator =
127      std::vector<BranchProbability>::const_iterator;
128
129  Optional<uint64_t> IrrLoopHeaderWeight;
130
131  /// Keep track of the physical registers that are livein of the basicblock.
132  using LiveInVector = std::vector<RegisterMaskPair>;
133  LiveInVector LiveIns;
134
135  /// Alignment of the basic block. One if the basic block does not need to be
136  /// aligned.
137  Align Alignment;
138
139  /// Indicate that this basic block is entered via an exception handler.
140  bool IsEHPad = false;
141
142  /// Indicate that this basic block is potentially the target of an indirect
143  /// branch.
144  bool AddressTaken = false;
145
146  /// Indicate that this basic block needs its symbol be emitted regardless of
147  /// whether the flow just falls-through to it.
148  bool LabelMustBeEmitted = false;
149
150  /// Indicate that this basic block is the entry block of an EH scope, i.e.,
151  /// the block that used to have a catchpad or cleanuppad instruction in the
152  /// LLVM IR.
153  bool IsEHScopeEntry = false;
154
155  /// Indicate that this basic block is the entry block of an EH funclet.
156  bool IsEHFuncletEntry = false;
157
158  /// Indicate that this basic block is the entry block of a cleanup funclet.
159  bool IsCleanupFuncletEntry = false;
160
161  /// With basic block sections, this stores the Section ID of the basic block.
162  MBBSectionID SectionID{0};
163
164  // Indicate that this basic block begins a section.
165  bool IsBeginSection = false;
166
167  // Indicate that this basic block ends a section.
168  bool IsEndSection = false;
169
170  /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
171  bool IsInlineAsmBrIndirectTarget = false;
172
173  /// since getSymbol is a relatively heavy-weight operation, the symbol
174  /// is only computed once and is cached.
175  mutable MCSymbol *CachedMCSymbol = nullptr;
176
177  /// Used during basic block sections to mark the end of a basic block.
178  MCSymbol *EndMCSymbol = nullptr;
179
180  // Intrusive list support
181  MachineBasicBlock() = default;
182
183  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
184
185  ~MachineBasicBlock();
186
187  // MachineBasicBlocks are allocated and owned by MachineFunction.
188  friend class MachineFunction;
189
190public:
191  /// Return the LLVM basic block that this instance corresponded to originally.
192  /// Note that this may be NULL if this instance does not correspond directly
193  /// to an LLVM basic block.
194  const BasicBlock *getBasicBlock() const { return BB; }
195
196  /// Return the name of the corresponding LLVM basic block, or an empty string.
197  StringRef getName() const;
198
199  /// Return a formatted string to identify this block and its parent function.
200  std::string getFullName() const;
201
202  /// Test whether this block is potentially the target of an indirect branch.
203  bool hasAddressTaken() const { return AddressTaken; }
204
205  /// Set this block to reflect that it potentially is the target of an indirect
206  /// branch.
207  void setHasAddressTaken() { AddressTaken = true; }
208
209  /// Test whether this block must have its label emitted.
210  bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
211
212  /// Set this block to reflect that, regardless how we flow to it, we need
213  /// its label be emitted.
214  void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
215
216  /// Return the MachineFunction containing this basic block.
217  const MachineFunction *getParent() const { return xParent; }
218  MachineFunction *getParent() { return xParent; }
219
220  using instr_iterator = Instructions::iterator;
221  using const_instr_iterator = Instructions::const_iterator;
222  using reverse_instr_iterator = Instructions::reverse_iterator;
223  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
224
225  using iterator = MachineInstrBundleIterator<MachineInstr>;
226  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
227  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
228  using const_reverse_iterator =
229      MachineInstrBundleIterator<const MachineInstr, true>;
230
231  unsigned size() const { return (unsigned)Insts.size(); }
232  bool empty() const { return Insts.empty(); }
233
234  MachineInstr       &instr_front()       { return Insts.front(); }
235  MachineInstr       &instr_back()        { return Insts.back();  }
236  const MachineInstr &instr_front() const { return Insts.front(); }
237  const MachineInstr &instr_back()  const { return Insts.back();  }
238
239  MachineInstr       &front()             { return Insts.front(); }
240  MachineInstr       &back()              { return *--end();      }
241  const MachineInstr &front()       const { return Insts.front(); }
242  const MachineInstr &back()        const { return *--end();      }
243
244  instr_iterator                instr_begin()       { return Insts.begin();  }
245  const_instr_iterator          instr_begin() const { return Insts.begin();  }
246  instr_iterator                  instr_end()       { return Insts.end();    }
247  const_instr_iterator            instr_end() const { return Insts.end();    }
248  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
249  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
250  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
251  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
252
253  using instr_range = iterator_range<instr_iterator>;
254  using const_instr_range = iterator_range<const_instr_iterator>;
255  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
256  const_instr_range instrs() const {
257    return const_instr_range(instr_begin(), instr_end());
258  }
259
260  iterator                begin()       { return instr_begin();  }
261  const_iterator          begin() const { return instr_begin();  }
262  iterator                end  ()       { return instr_end();    }
263  const_iterator          end  () const { return instr_end();    }
264  reverse_iterator rbegin() {
265    return reverse_iterator::getAtBundleBegin(instr_rbegin());
266  }
267  const_reverse_iterator rbegin() const {
268    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
269  }
270  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
271  const_reverse_iterator rend() const {
272    return const_reverse_iterator(instr_rend());
273  }
274
275  /// Support for MachineInstr::getNextNode().
276  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
277    return &MachineBasicBlock::Insts;
278  }
279
280  inline iterator_range<iterator> terminators() {
281    return make_range(getFirstTerminator(), end());
282  }
283  inline iterator_range<const_iterator> terminators() const {
284    return make_range(getFirstTerminator(), end());
285  }
286
287  /// Returns a range that iterates over the phis in the basic block.
288  inline iterator_range<iterator> phis() {
289    return make_range(begin(), getFirstNonPHI());
290  }
291  inline iterator_range<const_iterator> phis() const {
292    return const_cast<MachineBasicBlock *>(this)->phis();
293  }
294
295  // Machine-CFG iterators
296  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
297  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
298  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
299  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
300  using pred_reverse_iterator =
301      std::vector<MachineBasicBlock *>::reverse_iterator;
302  using const_pred_reverse_iterator =
303      std::vector<MachineBasicBlock *>::const_reverse_iterator;
304  using succ_reverse_iterator =
305      std::vector<MachineBasicBlock *>::reverse_iterator;
306  using const_succ_reverse_iterator =
307      std::vector<MachineBasicBlock *>::const_reverse_iterator;
308  pred_iterator        pred_begin()       { return Predecessors.begin(); }
309  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
310  pred_iterator        pred_end()         { return Predecessors.end();   }
311  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
312  pred_reverse_iterator        pred_rbegin()
313                                          { return Predecessors.rbegin();}
314  const_pred_reverse_iterator  pred_rbegin() const
315                                          { return Predecessors.rbegin();}
316  pred_reverse_iterator        pred_rend()
317                                          { return Predecessors.rend();  }
318  const_pred_reverse_iterator  pred_rend()   const
319                                          { return Predecessors.rend();  }
320  unsigned             pred_size()  const {
321    return (unsigned)Predecessors.size();
322  }
323  bool                 pred_empty() const { return Predecessors.empty(); }
324  succ_iterator        succ_begin()       { return Successors.begin();   }
325  const_succ_iterator  succ_begin() const { return Successors.begin();   }
326  succ_iterator        succ_end()         { return Successors.end();     }
327  const_succ_iterator  succ_end()   const { return Successors.end();     }
328  succ_reverse_iterator        succ_rbegin()
329                                          { return Successors.rbegin();  }
330  const_succ_reverse_iterator  succ_rbegin() const
331                                          { return Successors.rbegin();  }
332  succ_reverse_iterator        succ_rend()
333                                          { return Successors.rend();    }
334  const_succ_reverse_iterator  succ_rend()   const
335                                          { return Successors.rend();    }
336  unsigned             succ_size()  const {
337    return (unsigned)Successors.size();
338  }
339  bool                 succ_empty() const { return Successors.empty();   }
340
341  inline iterator_range<pred_iterator> predecessors() {
342    return make_range(pred_begin(), pred_end());
343  }
344  inline iterator_range<const_pred_iterator> predecessors() const {
345    return make_range(pred_begin(), pred_end());
346  }
347  inline iterator_range<succ_iterator> successors() {
348    return make_range(succ_begin(), succ_end());
349  }
350  inline iterator_range<const_succ_iterator> successors() const {
351    return make_range(succ_begin(), succ_end());
352  }
353
354  // LiveIn management methods.
355
356  /// Adds the specified register as a live in. Note that it is an error to add
357  /// the same register to the same set more than once unless the intention is
358  /// to call sortUniqueLiveIns after all registers are added.
359  void addLiveIn(MCRegister PhysReg,
360                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
361    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
362  }
363  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
364    LiveIns.push_back(RegMaskPair);
365  }
366
367  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
368  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
369  /// LiveIn insertion.
370  void sortUniqueLiveIns();
371
372  /// Clear live in list.
373  void clearLiveIns();
374
375  /// Add PhysReg as live in to this block, and ensure that there is a copy of
376  /// PhysReg to a virtual register of class RC. Return the virtual register
377  /// that is a copy of the live in PhysReg.
378  Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
379
380  /// Remove the specified register from the live in set.
381  void removeLiveIn(MCPhysReg Reg,
382                    LaneBitmask LaneMask = LaneBitmask::getAll());
383
384  /// Return true if the specified register is in the live in set.
385  bool isLiveIn(MCPhysReg Reg,
386                LaneBitmask LaneMask = LaneBitmask::getAll()) const;
387
388  // Iteration support for live in sets.  These sets are kept in sorted
389  // order by their register number.
390  using livein_iterator = LiveInVector::const_iterator;
391#ifndef NDEBUG
392  /// Unlike livein_begin, this method does not check that the liveness
393  /// information is accurate. Still for debug purposes it may be useful
394  /// to have iterators that won't assert if the liveness information
395  /// is not current.
396  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
397  iterator_range<livein_iterator> liveins_dbg() const {
398    return make_range(livein_begin_dbg(), livein_end());
399  }
400#endif
401  livein_iterator livein_begin() const;
402  livein_iterator livein_end()   const { return LiveIns.end(); }
403  bool            livein_empty() const { return LiveIns.empty(); }
404  iterator_range<livein_iterator> liveins() const {
405    return make_range(livein_begin(), livein_end());
406  }
407
408  /// Remove entry from the livein set and return iterator to the next.
409  livein_iterator removeLiveIn(livein_iterator I);
410
411  /// Get the clobber mask for the start of this basic block. Funclets use this
412  /// to prevent register allocation across funclet transitions.
413  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
414
415  /// Get the clobber mask for the end of the basic block.
416  /// \see getBeginClobberMask()
417  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
418
419  /// Return alignment of the basic block.
420  Align getAlignment() const { return Alignment; }
421
422  /// Set alignment of the basic block.
423  void setAlignment(Align A) { Alignment = A; }
424
425  /// Returns true if the block is a landing pad. That is this basic block is
426  /// entered via an exception handler.
427  bool isEHPad() const { return IsEHPad; }
428
429  /// Indicates the block is a landing pad.  That is this basic block is entered
430  /// via an exception handler.
431  void setIsEHPad(bool V = true) { IsEHPad = V; }
432
433  bool hasEHPadSuccessor() const;
434
435  /// Returns true if this is the entry block of an EH scope, i.e., the block
436  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
437  bool isEHScopeEntry() const { return IsEHScopeEntry; }
438
439  /// Indicates if this is the entry block of an EH scope, i.e., the block that
440  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
441  void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
442
443  /// Returns true if this is the entry block of an EH funclet.
444  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
445
446  /// Indicates if this is the entry block of an EH funclet.
447  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
448
449  /// Returns true if this is the entry block of a cleanup funclet.
450  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
451
452  /// Indicates if this is the entry block of a cleanup funclet.
453  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
454
455  /// Returns true if this block begins any section.
456  bool isBeginSection() const { return IsBeginSection; }
457
458  /// Returns true if this block ends any section.
459  bool isEndSection() const { return IsEndSection; }
460
461  void setIsBeginSection(bool V = true) { IsBeginSection = V; }
462
463  void setIsEndSection(bool V = true) { IsEndSection = V; }
464
465  /// Returns the section ID of this basic block.
466  MBBSectionID getSectionID() const { return SectionID; }
467
468  /// Returns the unique section ID number of this basic block.
469  unsigned getSectionIDNum() const {
470    return ((unsigned)MBBSectionID::SectionType::Cold) -
471           ((unsigned)SectionID.Type) + SectionID.Number;
472  }
473
474  /// Sets the section ID for this basic block.
475  void setSectionID(MBBSectionID V) { SectionID = V; }
476
477  /// Returns true if this block may have an INLINEASM_BR (overestimate, by
478  /// checking if any of the successors are indirect targets of any inlineasm_br
479  /// in the function).
480  bool mayHaveInlineAsmBr() const;
481
482  /// Returns true if this is the indirect dest of an INLINEASM_BR.
483  bool isInlineAsmBrIndirectTarget() const {
484    return IsInlineAsmBrIndirectTarget;
485  }
486
487  /// Indicates if this is the indirect dest of an INLINEASM_BR.
488  void setIsInlineAsmBrIndirectTarget(bool V = true) {
489    IsInlineAsmBrIndirectTarget = V;
490  }
491
492  /// Returns true if it is legal to hoist instructions into this block.
493  bool isLegalToHoistInto() const;
494
495  // Code Layout methods.
496
497  /// Move 'this' block before or after the specified block.  This only moves
498  /// the block, it does not modify the CFG or adjust potential fall-throughs at
499  /// the end of the block.
500  void moveBefore(MachineBasicBlock *NewAfter);
501  void moveAfter(MachineBasicBlock *NewBefore);
502
503  /// Returns true if this and MBB belong to the same section.
504  bool sameSection(const MachineBasicBlock *MBB) const {
505    return getSectionID() == MBB->getSectionID();
506  }
507
508  /// Update the terminator instructions in block to account for changes to
509  /// block layout which may have been made. PreviousLayoutSuccessor should be
510  /// set to the block which may have been used as fallthrough before the block
511  /// layout was modified.  If the block previously fell through to that block,
512  /// it may now need a branch. If it previously branched to another block, it
513  /// may now be able to fallthrough to the current layout successor.
514  void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
515
516  // Machine-CFG mutators
517
518  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
519  /// of Succ is automatically updated. PROB parameter is stored in
520  /// Probabilities list. The default probability is set as unknown. Mixing
521  /// known and unknown probabilities in successor list is not allowed. When all
522  /// successors have unknown probabilities, 1 / N is returned as the
523  /// probability for each successor, where N is the number of successors.
524  ///
525  /// Note that duplicate Machine CFG edges are not allowed.
526  void addSuccessor(MachineBasicBlock *Succ,
527                    BranchProbability Prob = BranchProbability::getUnknown());
528
529  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
530  /// of Succ is automatically updated. The probability is not provided because
531  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
532  /// won't be used. Using this interface can save some space.
533  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
534
535  /// Set successor probability of a given iterator.
536  void setSuccProbability(succ_iterator I, BranchProbability Prob);
537
538  /// Normalize probabilities of all successors so that the sum of them becomes
539  /// one. This is usually done when the current update on this MBB is done, and
540  /// the sum of its successors' probabilities is not guaranteed to be one. The
541  /// user is responsible for the correct use of this function.
542  /// MBB::removeSuccessor() has an option to do this automatically.
543  void normalizeSuccProbs() {
544    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
545  }
546
547  /// Validate successors' probabilities and check if the sum of them is
548  /// approximate one. This only works in DEBUG mode.
549  void validateSuccProbs() const;
550
551  /// Remove successor from the successors list of this MachineBasicBlock. The
552  /// Predecessors list of Succ is automatically updated.
553  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
554  /// after the successor is removed.
555  void removeSuccessor(MachineBasicBlock *Succ,
556                       bool NormalizeSuccProbs = false);
557
558  /// Remove specified successor from the successors list of this
559  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
560  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
561  /// after the successor is removed.
562  /// Return the iterator to the element after the one removed.
563  succ_iterator removeSuccessor(succ_iterator I,
564                                bool NormalizeSuccProbs = false);
565
566  /// Replace successor OLD with NEW and update probability info.
567  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
568
569  /// Copy a successor (and any probability info) from original block to this
570  /// block's. Uses an iterator into the original blocks successors.
571  ///
572  /// This is useful when doing a partial clone of successors. Afterward, the
573  /// probabilities may need to be normalized.
574  void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
575
576  /// Split the old successor into old plus new and updates the probability
577  /// info.
578  void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
579                      bool NormalizeSuccProbs = false);
580
581  /// Transfers all the successors from MBB to this machine basic block (i.e.,
582  /// copies all the successors FromMBB and remove all the successors from
583  /// FromMBB).
584  void transferSuccessors(MachineBasicBlock *FromMBB);
585
586  /// Transfers all the successors, as in transferSuccessors, and update PHI
587  /// operands in the successor blocks which refer to FromMBB to refer to this.
588  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
589
590  /// Return true if any of the successors have probabilities attached to them.
591  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
592
593  /// Return true if the specified MBB is a predecessor of this block.
594  bool isPredecessor(const MachineBasicBlock *MBB) const;
595
596  /// Return true if the specified MBB is a successor of this block.
597  bool isSuccessor(const MachineBasicBlock *MBB) const;
598
599  /// Return true if the specified MBB will be emitted immediately after this
600  /// block, such that if this block exits by falling through, control will
601  /// transfer to the specified MBB. Note that MBB need not be a successor at
602  /// all, for example if this block ends with an unconditional branch to some
603  /// other block.
604  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
605
606  /// Return the fallthrough block if the block can implicitly
607  /// transfer control to the block after it by falling off the end of
608  /// it.  This should return null if it can reach the block after
609  /// it, but it uses an explicit branch to do so (e.g., a table
610  /// jump).  Non-null return  is a conservative answer.
611  MachineBasicBlock *getFallThrough();
612
613  /// Return true if the block can implicitly transfer control to the
614  /// block after it by falling off the end of it.  This should return
615  /// false if it can reach the block after it, but it uses an
616  /// explicit branch to do so (e.g., a table jump).  True is a
617  /// conservative answer.
618  bool canFallThrough();
619
620  /// Returns a pointer to the first instruction in this block that is not a
621  /// PHINode instruction. When adding instructions to the beginning of the
622  /// basic block, they should be added before the returned value, not before
623  /// the first instruction, which might be PHI.
624  /// Returns end() is there's no non-PHI instruction.
625  iterator getFirstNonPHI();
626
627  /// Return the first instruction in MBB after I that is not a PHI or a label.
628  /// This is the correct point to insert lowered copies at the beginning of a
629  /// basic block that must be before any debugging information.
630  iterator SkipPHIsAndLabels(iterator I);
631
632  /// Return the first instruction in MBB after I that is not a PHI, label or
633  /// debug.  This is the correct point to insert copies at the beginning of a
634  /// basic block.
635  iterator SkipPHIsLabelsAndDebug(iterator I);
636
637  /// Returns an iterator to the first terminator instruction of this basic
638  /// block. If a terminator does not exist, it returns end().
639  iterator getFirstTerminator();
640  const_iterator getFirstTerminator() const {
641    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
642  }
643
644  /// Same getFirstTerminator but it ignores bundles and return an
645  /// instr_iterator instead.
646  instr_iterator getFirstInstrTerminator();
647
648  /// Returns an iterator to the first non-debug instruction in the basic block,
649  /// or end().
650  iterator getFirstNonDebugInstr();
651  const_iterator getFirstNonDebugInstr() const {
652    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
653  }
654
655  /// Returns an iterator to the last non-debug instruction in the basic block,
656  /// or end().
657  iterator getLastNonDebugInstr();
658  const_iterator getLastNonDebugInstr() const {
659    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
660  }
661
662  /// Convenience function that returns true if the block ends in a return
663  /// instruction.
664  bool isReturnBlock() const {
665    return !empty() && back().isReturn();
666  }
667
668  /// Convenience function that returns true if the bock ends in a EH scope
669  /// return instruction.
670  bool isEHScopeReturnBlock() const {
671    return !empty() && back().isEHScopeReturn();
672  }
673
674  /// Split the critical edge from this block to the given successor block, and
675  /// return the newly created block, or null if splitting is not possible.
676  ///
677  /// This function updates LiveVariables, MachineDominatorTree, and
678  /// MachineLoopInfo, as applicable.
679  MachineBasicBlock *
680  SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
681                    std::vector<SparseBitVector<>> *LiveInSets = nullptr);
682
683  /// Check if the edge between this block and the given successor \p
684  /// Succ, can be split. If this returns true a subsequent call to
685  /// SplitCriticalEdge is guaranteed to return a valid basic block if
686  /// no changes occurred in the meantime.
687  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
688
689  void pop_front() { Insts.pop_front(); }
690  void pop_back() { Insts.pop_back(); }
691  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
692
693  /// Insert MI into the instruction list before I, possibly inside a bundle.
694  ///
695  /// If the insertion point is inside a bundle, MI will be added to the bundle,
696  /// otherwise MI will not be added to any bundle. That means this function
697  /// alone can't be used to prepend or append instructions to bundles. See
698  /// MIBundleBuilder::insert() for a more reliable way of doing that.
699  instr_iterator insert(instr_iterator I, MachineInstr *M);
700
701  /// Insert a range of instructions into the instruction list before I.
702  template<typename IT>
703  void insert(iterator I, IT S, IT E) {
704    assert((I == end() || I->getParent() == this) &&
705           "iterator points outside of basic block");
706    Insts.insert(I.getInstrIterator(), S, E);
707  }
708
709  /// Insert MI into the instruction list before I.
710  iterator insert(iterator I, MachineInstr *MI) {
711    assert((I == end() || I->getParent() == this) &&
712           "iterator points outside of basic block");
713    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
714           "Cannot insert instruction with bundle flags");
715    return Insts.insert(I.getInstrIterator(), MI);
716  }
717
718  /// Insert MI into the instruction list after I.
719  iterator insertAfter(iterator I, MachineInstr *MI) {
720    assert((I == end() || I->getParent() == this) &&
721           "iterator points outside of basic block");
722    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
723           "Cannot insert instruction with bundle flags");
724    return Insts.insertAfter(I.getInstrIterator(), MI);
725  }
726
727  /// If I is bundled then insert MI into the instruction list after the end of
728  /// the bundle, otherwise insert MI immediately after I.
729  instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
730    assert((I == instr_end() || I->getParent() == this) &&
731           "iterator points outside of basic block");
732    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
733           "Cannot insert instruction with bundle flags");
734    while (I->isBundledWithSucc())
735      ++I;
736    return Insts.insertAfter(I, MI);
737  }
738
739  /// Remove an instruction from the instruction list and delete it.
740  ///
741  /// If the instruction is part of a bundle, the other instructions in the
742  /// bundle will still be bundled after removing the single instruction.
743  instr_iterator erase(instr_iterator I);
744
745  /// Remove an instruction from the instruction list and delete it.
746  ///
747  /// If the instruction is part of a bundle, the other instructions in the
748  /// bundle will still be bundled after removing the single instruction.
749  instr_iterator erase_instr(MachineInstr *I) {
750    return erase(instr_iterator(I));
751  }
752
753  /// Remove a range of instructions from the instruction list and delete them.
754  iterator erase(iterator I, iterator E) {
755    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
756  }
757
758  /// Remove an instruction or bundle from the instruction list and delete it.
759  ///
760  /// If I points to a bundle of instructions, they are all erased.
761  iterator erase(iterator I) {
762    return erase(I, std::next(I));
763  }
764
765  /// Remove an instruction from the instruction list and delete it.
766  ///
767  /// If I is the head of a bundle of instructions, the whole bundle will be
768  /// erased.
769  iterator erase(MachineInstr *I) {
770    return erase(iterator(I));
771  }
772
773  /// Remove the unbundled instruction from the instruction list without
774  /// deleting it.
775  ///
776  /// This function can not be used to remove bundled instructions, use
777  /// remove_instr to remove individual instructions from a bundle.
778  MachineInstr *remove(MachineInstr *I) {
779    assert(!I->isBundled() && "Cannot remove bundled instructions");
780    return Insts.remove(instr_iterator(I));
781  }
782
783  /// Remove the possibly bundled instruction from the instruction list
784  /// without deleting it.
785  ///
786  /// If the instruction is part of a bundle, the other instructions in the
787  /// bundle will still be bundled after removing the single instruction.
788  MachineInstr *remove_instr(MachineInstr *I);
789
790  void clear() {
791    Insts.clear();
792  }
793
794  /// Take an instruction from MBB 'Other' at the position From, and insert it
795  /// into this MBB right before 'Where'.
796  ///
797  /// If From points to a bundle of instructions, the whole bundle is moved.
798  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
799    // The range splice() doesn't allow noop moves, but this one does.
800    if (Where != From)
801      splice(Where, Other, From, std::next(From));
802  }
803
804  /// Take a block of instructions from MBB 'Other' in the range [From, To),
805  /// and insert them into this MBB right before 'Where'.
806  ///
807  /// The instruction at 'Where' must not be included in the range of
808  /// instructions to move.
809  void splice(iterator Where, MachineBasicBlock *Other,
810              iterator From, iterator To) {
811    Insts.splice(Where.getInstrIterator(), Other->Insts,
812                 From.getInstrIterator(), To.getInstrIterator());
813  }
814
815  /// This method unlinks 'this' from the containing function, and returns it,
816  /// but does not delete it.
817  MachineBasicBlock *removeFromParent();
818
819  /// This method unlinks 'this' from the containing function and deletes it.
820  void eraseFromParent();
821
822  /// Given a machine basic block that branched to 'Old', change the code and
823  /// CFG so that it branches to 'New' instead.
824  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
825
826  /// Update all phi nodes in this basic block to refer to basic block \p New
827  /// instead of basic block \p Old.
828  void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
829
830  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
831  /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
832  DebugLoc findDebugLoc(instr_iterator MBBI);
833  DebugLoc findDebugLoc(iterator MBBI) {
834    return findDebugLoc(MBBI.getInstrIterator());
835  }
836
837  /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
838  /// instructions.  Return UnknownLoc if there is none.
839  DebugLoc findPrevDebugLoc(instr_iterator MBBI);
840  DebugLoc findPrevDebugLoc(iterator MBBI) {
841    return findPrevDebugLoc(MBBI.getInstrIterator());
842  }
843
844  /// Find and return the merged DebugLoc of the branch instructions of the
845  /// block. Return UnknownLoc if there is none.
846  DebugLoc findBranchDebugLoc();
847
848  /// Possible outcome of a register liveness query to computeRegisterLiveness()
849  enum LivenessQueryResult {
850    LQR_Live,   ///< Register is known to be (at least partially) live.
851    LQR_Dead,   ///< Register is known to be fully dead.
852    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
853  };
854
855  /// Return whether (physical) register \p Reg has been defined and not
856  /// killed as of just before \p Before.
857  ///
858  /// Search is localised to a neighborhood of \p Neighborhood instructions
859  /// before (searching for defs or kills) and \p Neighborhood instructions
860  /// after (searching just for defs) \p Before.
861  ///
862  /// \p Reg must be a physical register.
863  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
864                                              MCRegister Reg,
865                                              const_iterator Before,
866                                              unsigned Neighborhood = 10) const;
867
868  // Debugging methods.
869  void dump() const;
870  void print(raw_ostream &OS, const SlotIndexes * = nullptr,
871             bool IsStandalone = true) const;
872  void print(raw_ostream &OS, ModuleSlotTracker &MST,
873             const SlotIndexes * = nullptr, bool IsStandalone = true) const;
874
875  // Printing method used by LoopInfo.
876  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
877
878  /// MachineBasicBlocks are uniquely numbered at the function level, unless
879  /// they're not in a MachineFunction yet, in which case this will return -1.
880  int getNumber() const { return Number; }
881  void setNumber(int N) { Number = N; }
882
883  /// Return the MCSymbol for this basic block.
884  MCSymbol *getSymbol() const;
885
886  Optional<uint64_t> getIrrLoopHeaderWeight() const {
887    return IrrLoopHeaderWeight;
888  }
889
890  void setIrrLoopHeaderWeight(uint64_t Weight) {
891    IrrLoopHeaderWeight = Weight;
892  }
893
894private:
895  /// Return probability iterator corresponding to the I successor iterator.
896  probability_iterator getProbabilityIterator(succ_iterator I);
897  const_probability_iterator
898  getProbabilityIterator(const_succ_iterator I) const;
899
900  friend class MachineBranchProbabilityInfo;
901  friend class MIPrinter;
902
903  /// Return probability of the edge from this block to MBB. This method should
904  /// NOT be called directly, but by using getEdgeProbability method from
905  /// MachineBranchProbabilityInfo class.
906  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
907
908  // Methods used to maintain doubly linked list of blocks...
909  friend struct ilist_callback_traits<MachineBasicBlock>;
910
911  // Machine-CFG mutators
912
913  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
914  /// unless you know what you're doing, because it doesn't update Pred's
915  /// successors list. Use Pred->addSuccessor instead.
916  void addPredecessor(MachineBasicBlock *Pred);
917
918  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
919  /// unless you know what you're doing, because it doesn't update Pred's
920  /// successors list. Use Pred->removeSuccessor instead.
921  void removePredecessor(MachineBasicBlock *Pred);
922};
923
924raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
925
926/// Prints a machine basic block reference.
927///
928/// The format is:
929///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
930///
931/// Usage: OS << printMBBReference(MBB) << '\n';
932Printable printMBBReference(const MachineBasicBlock &MBB);
933
934// This is useful when building IndexedMaps keyed on basic block pointers.
935struct MBB2NumberFunctor {
936  using argument_type = const MachineBasicBlock *;
937  unsigned operator()(const MachineBasicBlock *MBB) const {
938    return MBB->getNumber();
939  }
940};
941
942//===--------------------------------------------------------------------===//
943// GraphTraits specializations for machine basic block graphs (machine-CFGs)
944//===--------------------------------------------------------------------===//
945
946// Provide specializations of GraphTraits to be able to treat a
947// MachineFunction as a graph of MachineBasicBlocks.
948//
949
950template <> struct GraphTraits<MachineBasicBlock *> {
951  using NodeRef = MachineBasicBlock *;
952  using ChildIteratorType = MachineBasicBlock::succ_iterator;
953
954  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
955  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
956  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
957};
958
959template <> struct GraphTraits<const MachineBasicBlock *> {
960  using NodeRef = const MachineBasicBlock *;
961  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
962
963  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
964  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
965  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
966};
967
968// Provide specializations of GraphTraits to be able to treat a
969// MachineFunction as a graph of MachineBasicBlocks and to walk it
970// in inverse order.  Inverse order for a function is considered
971// to be when traversing the predecessor edges of a MBB
972// instead of the successor edges.
973//
974template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
975  using NodeRef = MachineBasicBlock *;
976  using ChildIteratorType = MachineBasicBlock::pred_iterator;
977
978  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
979    return G.Graph;
980  }
981
982  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
983  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
984};
985
986template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
987  using NodeRef = const MachineBasicBlock *;
988  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
989
990  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
991    return G.Graph;
992  }
993
994  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
995  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
996};
997
998/// MachineInstrSpan provides an interface to get an iteration range
999/// containing the instruction it was initialized with, along with all
1000/// those instructions inserted prior to or following that instruction
1001/// at some point after the MachineInstrSpan is constructed.
1002class MachineInstrSpan {
1003  MachineBasicBlock &MBB;
1004  MachineBasicBlock::iterator I, B, E;
1005
1006public:
1007  MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
1008      : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
1009        E(std::next(I)) {
1010    assert(I == BB->end() || I->getParent() == BB);
1011  }
1012
1013  MachineBasicBlock::iterator begin() {
1014    return B == MBB.end() ? MBB.begin() : std::next(B);
1015  }
1016  MachineBasicBlock::iterator end() { return E; }
1017  bool empty() { return begin() == end(); }
1018
1019  MachineBasicBlock::iterator getInitial() { return I; }
1020};
1021
1022/// Increment \p It until it points to a non-debug instruction or to \p End
1023/// and return the resulting iterator. This function should only be used
1024/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1025/// const_instr_iterator} and the respective reverse iterators.
1026template<typename IterT>
1027inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
1028  while (It != End && It->isDebugInstr())
1029    ++It;
1030  return It;
1031}
1032
1033/// Decrement \p It until it points to a non-debug instruction or to \p Begin
1034/// and return the resulting iterator. This function should only be used
1035/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1036/// const_instr_iterator} and the respective reverse iterators.
1037template<class IterT>
1038inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
1039  while (It != Begin && It->isDebugInstr())
1040    --It;
1041  return It;
1042}
1043
1044/// Increment \p It, then continue incrementing it while it points to a debug
1045/// instruction. A replacement for std::next.
1046template <typename IterT> inline IterT next_nodbg(IterT It, IterT End) {
1047  return skipDebugInstructionsForward(std::next(It), End);
1048}
1049
1050/// Decrement \p It, then continue decrementing it while it points to a debug
1051/// instruction. A replacement for std::prev.
1052template <typename IterT> inline IterT prev_nodbg(IterT It, IterT Begin) {
1053  return skipDebugInstructionsBackward(std::prev(It), Begin);
1054}
1055
1056/// Construct a range iterator which begins at \p It and moves forwards until
1057/// \p End is reached, skipping any debug instructions.
1058template <typename IterT>
1059inline auto instructionsWithoutDebug(IterT It, IterT End) {
1060  return make_filter_range(make_range(It, End), [](const MachineInstr &MI) {
1061    return !MI.isDebugInstr();
1062  });
1063}
1064
1065} // end namespace llvm
1066
1067#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
1068