1//===- SyntheticSections.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains linker-synthesized sections. Currently,
10// synthetic sections are created either output sections or input sections,
11// but we are rewriting code so that all synthetic sections are created as
12// input sections.
13//
14//===----------------------------------------------------------------------===//
15
16#include "SyntheticSections.h"
17#include "Config.h"
18#include "InputFiles.h"
19#include "LinkerScript.h"
20#include "OutputSections.h"
21#include "SymbolTable.h"
22#include "Symbols.h"
23#include "Target.h"
24#include "Writer.h"
25#include "lld/Common/DWARF.h"
26#include "lld/Common/ErrorHandler.h"
27#include "lld/Common/Memory.h"
28#include "lld/Common/Strings.h"
29#include "lld/Common/Version.h"
30#include "llvm/ADT/SetOperations.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/BinaryFormat/Dwarf.h"
34#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
35#include "llvm/Object/ELFObjectFile.h"
36#include "llvm/Support/Compression.h"
37#include "llvm/Support/Endian.h"
38#include "llvm/Support/LEB128.h"
39#include "llvm/Support/MD5.h"
40#include "llvm/Support/Parallel.h"
41#include "llvm/Support/TimeProfiler.h"
42#include <cstdlib>
43#include <thread>
44
45using namespace llvm;
46using namespace llvm::dwarf;
47using namespace llvm::ELF;
48using namespace llvm::object;
49using namespace llvm::support;
50using namespace lld;
51using namespace lld::elf;
52
53using llvm::support::endian::read32le;
54using llvm::support::endian::write32le;
55using llvm::support::endian::write64le;
56
57constexpr size_t MergeNoTailSection::numShards;
58
59static uint64_t readUint(uint8_t *buf) {
60  return config->is64 ? read64(buf) : read32(buf);
61}
62
63static void writeUint(uint8_t *buf, uint64_t val) {
64  if (config->is64)
65    write64(buf, val);
66  else
67    write32(buf, val);
68}
69
70// Returns an LLD version string.
71static ArrayRef<uint8_t> getVersion() {
72  // Check LLD_VERSION first for ease of testing.
73  // You can get consistent output by using the environment variable.
74  // This is only for testing.
75  StringRef s = getenv("LLD_VERSION");
76  if (s.empty())
77    s = saver.save(Twine("Linker: ") + getLLDVersion());
78
79  // +1 to include the terminating '\0'.
80  return {(const uint8_t *)s.data(), s.size() + 1};
81}
82
83// Creates a .comment section containing LLD version info.
84// With this feature, you can identify LLD-generated binaries easily
85// by "readelf --string-dump .comment <file>".
86// The returned object is a mergeable string section.
87MergeInputSection *elf::createCommentSection() {
88  return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
89                                 getVersion(), ".comment");
90}
91
92// .MIPS.abiflags section.
93template <class ELFT>
94MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
95    : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
96      flags(flags) {
97  this->entsize = sizeof(Elf_Mips_ABIFlags);
98}
99
100template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
101  memcpy(buf, &flags, sizeof(flags));
102}
103
104template <class ELFT>
105MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
106  Elf_Mips_ABIFlags flags = {};
107  bool create = false;
108
109  for (InputSectionBase *sec : inputSections) {
110    if (sec->type != SHT_MIPS_ABIFLAGS)
111      continue;
112    sec->markDead();
113    create = true;
114
115    std::string filename = toString(sec->file);
116    const size_t size = sec->data().size();
117    // Older version of BFD (such as the default FreeBSD linker) concatenate
118    // .MIPS.abiflags instead of merging. To allow for this case (or potential
119    // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
120    if (size < sizeof(Elf_Mips_ABIFlags)) {
121      error(filename + ": invalid size of .MIPS.abiflags section: got " +
122            Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
123      return nullptr;
124    }
125    auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data());
126    if (s->version != 0) {
127      error(filename + ": unexpected .MIPS.abiflags version " +
128            Twine(s->version));
129      return nullptr;
130    }
131
132    // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
133    // select the highest number of ISA/Rev/Ext.
134    flags.isa_level = std::max(flags.isa_level, s->isa_level);
135    flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
136    flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
137    flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
138    flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
139    flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
140    flags.ases |= s->ases;
141    flags.flags1 |= s->flags1;
142    flags.flags2 |= s->flags2;
143    flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
144  };
145
146  if (create)
147    return make<MipsAbiFlagsSection<ELFT>>(flags);
148  return nullptr;
149}
150
151// .MIPS.options section.
152template <class ELFT>
153MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
154    : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
155      reginfo(reginfo) {
156  this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
157}
158
159template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
160  auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
161  options->kind = ODK_REGINFO;
162  options->size = getSize();
163
164  if (!config->relocatable)
165    reginfo.ri_gp_value = in.mipsGot->getGp();
166  memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
167}
168
169template <class ELFT>
170MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
171  // N64 ABI only.
172  if (!ELFT::Is64Bits)
173    return nullptr;
174
175  std::vector<InputSectionBase *> sections;
176  for (InputSectionBase *sec : inputSections)
177    if (sec->type == SHT_MIPS_OPTIONS)
178      sections.push_back(sec);
179
180  if (sections.empty())
181    return nullptr;
182
183  Elf_Mips_RegInfo reginfo = {};
184  for (InputSectionBase *sec : sections) {
185    sec->markDead();
186
187    std::string filename = toString(sec->file);
188    ArrayRef<uint8_t> d = sec->data();
189
190    while (!d.empty()) {
191      if (d.size() < sizeof(Elf_Mips_Options)) {
192        error(filename + ": invalid size of .MIPS.options section");
193        break;
194      }
195
196      auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
197      if (opt->kind == ODK_REGINFO) {
198        reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
199        sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
200        break;
201      }
202
203      if (!opt->size)
204        fatal(filename + ": zero option descriptor size");
205      d = d.slice(opt->size);
206    }
207  };
208
209  return make<MipsOptionsSection<ELFT>>(reginfo);
210}
211
212// MIPS .reginfo section.
213template <class ELFT>
214MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
215    : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
216      reginfo(reginfo) {
217  this->entsize = sizeof(Elf_Mips_RegInfo);
218}
219
220template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
221  if (!config->relocatable)
222    reginfo.ri_gp_value = in.mipsGot->getGp();
223  memcpy(buf, &reginfo, sizeof(reginfo));
224}
225
226template <class ELFT>
227MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
228  // Section should be alive for O32 and N32 ABIs only.
229  if (ELFT::Is64Bits)
230    return nullptr;
231
232  std::vector<InputSectionBase *> sections;
233  for (InputSectionBase *sec : inputSections)
234    if (sec->type == SHT_MIPS_REGINFO)
235      sections.push_back(sec);
236
237  if (sections.empty())
238    return nullptr;
239
240  Elf_Mips_RegInfo reginfo = {};
241  for (InputSectionBase *sec : sections) {
242    sec->markDead();
243
244    if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) {
245      error(toString(sec->file) + ": invalid size of .reginfo section");
246      return nullptr;
247    }
248
249    auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data());
250    reginfo.ri_gprmask |= r->ri_gprmask;
251    sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
252  };
253
254  return make<MipsReginfoSection<ELFT>>(reginfo);
255}
256
257InputSection *elf::createInterpSection() {
258  // StringSaver guarantees that the returned string ends with '\0'.
259  StringRef s = saver.save(config->dynamicLinker);
260  ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
261
262  return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
263                            ".interp");
264}
265
266Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
267                                uint64_t size, InputSectionBase &section) {
268  auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type,
269                          value, size, &section);
270  if (in.symTab)
271    in.symTab->addSymbol(s);
272  return s;
273}
274
275static size_t getHashSize() {
276  switch (config->buildId) {
277  case BuildIdKind::Fast:
278    return 8;
279  case BuildIdKind::Md5:
280  case BuildIdKind::Uuid:
281    return 16;
282  case BuildIdKind::Sha1:
283    return 20;
284  case BuildIdKind::Hexstring:
285    return config->buildIdVector.size();
286  default:
287    llvm_unreachable("unknown BuildIdKind");
288  }
289}
290
291// This class represents a linker-synthesized .note.gnu.property section.
292//
293// In x86 and AArch64, object files may contain feature flags indicating the
294// features that they have used. The flags are stored in a .note.gnu.property
295// section.
296//
297// lld reads the sections from input files and merges them by computing AND of
298// the flags. The result is written as a new .note.gnu.property section.
299//
300// If the flag is zero (which indicates that the intersection of the feature
301// sets is empty, or some input files didn't have .note.gnu.property sections),
302// we don't create this section.
303GnuPropertySection::GnuPropertySection()
304    : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
305                       config->wordsize, ".note.gnu.property") {}
306
307void GnuPropertySection::writeTo(uint8_t *buf) {
308  uint32_t featureAndType = config->emachine == EM_AARCH64
309                                ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
310                                : GNU_PROPERTY_X86_FEATURE_1_AND;
311
312  write32(buf, 4);                                   // Name size
313  write32(buf + 4, config->is64 ? 16 : 12);          // Content size
314  write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
315  memcpy(buf + 12, "GNU", 4);                        // Name string
316  write32(buf + 16, featureAndType);                 // Feature type
317  write32(buf + 20, 4);                              // Feature size
318  write32(buf + 24, config->andFeatures);            // Feature flags
319  if (config->is64)
320    write32(buf + 28, 0); // Padding
321}
322
323size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
324
325BuildIdSection::BuildIdSection()
326    : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
327      hashSize(getHashSize()) {}
328
329void BuildIdSection::writeTo(uint8_t *buf) {
330  write32(buf, 4);                      // Name size
331  write32(buf + 4, hashSize);           // Content size
332  write32(buf + 8, NT_GNU_BUILD_ID);    // Type
333  memcpy(buf + 12, "GNU", 4);           // Name string
334  hashBuf = buf + 16;
335}
336
337void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
338  assert(buf.size() == hashSize);
339  memcpy(hashBuf, buf.data(), hashSize);
340}
341
342BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
343    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
344  this->bss = true;
345  this->size = size;
346}
347
348EhFrameSection::EhFrameSection()
349    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
350
351// Search for an existing CIE record or create a new one.
352// CIE records from input object files are uniquified by their contents
353// and where their relocations point to.
354template <class ELFT, class RelTy>
355CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
356  Symbol *personality = nullptr;
357  unsigned firstRelI = cie.firstRelocation;
358  if (firstRelI != (unsigned)-1)
359    personality =
360        &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
361
362  // Search for an existing CIE by CIE contents/relocation target pair.
363  CieRecord *&rec = cieMap[{cie.data(), personality}];
364
365  // If not found, create a new one.
366  if (!rec) {
367    rec = make<CieRecord>();
368    rec->cie = &cie;
369    cieRecords.push_back(rec);
370  }
371  return rec;
372}
373
374// There is one FDE per function. Returns true if a given FDE
375// points to a live function.
376template <class ELFT, class RelTy>
377bool EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
378  auto *sec = cast<EhInputSection>(fde.sec);
379  unsigned firstRelI = fde.firstRelocation;
380
381  // An FDE should point to some function because FDEs are to describe
382  // functions. That's however not always the case due to an issue of
383  // ld.gold with -r. ld.gold may discard only functions and leave their
384  // corresponding FDEs, which results in creating bad .eh_frame sections.
385  // To deal with that, we ignore such FDEs.
386  if (firstRelI == (unsigned)-1)
387    return false;
388
389  const RelTy &rel = rels[firstRelI];
390  Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
391
392  // FDEs for garbage-collected or merged-by-ICF sections, or sections in
393  // another partition, are dead.
394  if (auto *d = dyn_cast<Defined>(&b))
395    if (SectionBase *sec = d->section)
396      return sec->partition == partition;
397  return false;
398}
399
400// .eh_frame is a sequence of CIE or FDE records. In general, there
401// is one CIE record per input object file which is followed by
402// a list of FDEs. This function searches an existing CIE or create a new
403// one and associates FDEs to the CIE.
404template <class ELFT, class RelTy>
405void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
406  offsetToCie.clear();
407  for (EhSectionPiece &piece : sec->pieces) {
408    // The empty record is the end marker.
409    if (piece.size == 4)
410      return;
411
412    size_t offset = piece.inputOff;
413    uint32_t id = read32(piece.data().data() + 4);
414    if (id == 0) {
415      offsetToCie[offset] = addCie<ELFT>(piece, rels);
416      continue;
417    }
418
419    uint32_t cieOffset = offset + 4 - id;
420    CieRecord *rec = offsetToCie[cieOffset];
421    if (!rec)
422      fatal(toString(sec) + ": invalid CIE reference");
423
424    if (!isFdeLive<ELFT>(piece, rels))
425      continue;
426    rec->fdes.push_back(&piece);
427    numFdes++;
428  }
429}
430
431template <class ELFT>
432void EhFrameSection::addSectionAux(EhInputSection *sec) {
433  if (!sec->isLive())
434    return;
435  if (sec->areRelocsRela)
436    addRecords<ELFT>(sec, sec->template relas<ELFT>());
437  else
438    addRecords<ELFT>(sec, sec->template rels<ELFT>());
439}
440
441void EhFrameSection::addSection(EhInputSection *sec) {
442  sec->parent = this;
443
444  alignment = std::max(alignment, sec->alignment);
445  sections.push_back(sec);
446
447  for (auto *ds : sec->dependentSections)
448    dependentSections.push_back(ds);
449}
450
451static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
452  memcpy(buf, d.data(), d.size());
453
454  size_t aligned = alignTo(d.size(), config->wordsize);
455
456  // Zero-clear trailing padding if it exists.
457  memset(buf + d.size(), 0, aligned - d.size());
458
459  // Fix the size field. -4 since size does not include the size field itself.
460  write32(buf, aligned - 4);
461}
462
463void EhFrameSection::finalizeContents() {
464  assert(!this->size); // Not finalized.
465
466  switch (config->ekind) {
467  case ELFNoneKind:
468    llvm_unreachable("invalid ekind");
469  case ELF32LEKind:
470    for (EhInputSection *sec : sections)
471      addSectionAux<ELF32LE>(sec);
472    break;
473  case ELF32BEKind:
474    for (EhInputSection *sec : sections)
475      addSectionAux<ELF32BE>(sec);
476    break;
477  case ELF64LEKind:
478    for (EhInputSection *sec : sections)
479      addSectionAux<ELF64LE>(sec);
480    break;
481  case ELF64BEKind:
482    for (EhInputSection *sec : sections)
483      addSectionAux<ELF64BE>(sec);
484    break;
485  }
486
487  size_t off = 0;
488  for (CieRecord *rec : cieRecords) {
489    rec->cie->outputOff = off;
490    off += alignTo(rec->cie->size, config->wordsize);
491
492    for (EhSectionPiece *fde : rec->fdes) {
493      fde->outputOff = off;
494      off += alignTo(fde->size, config->wordsize);
495    }
496  }
497
498  // The LSB standard does not allow a .eh_frame section with zero
499  // Call Frame Information records. glibc unwind-dw2-fde.c
500  // classify_object_over_fdes expects there is a CIE record length 0 as a
501  // terminator. Thus we add one unconditionally.
502  off += 4;
503
504  this->size = off;
505}
506
507// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
508// to get an FDE from an address to which FDE is applied. This function
509// returns a list of such pairs.
510std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const {
511  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
512  std::vector<FdeData> ret;
513
514  uint64_t va = getPartition().ehFrameHdr->getVA();
515  for (CieRecord *rec : cieRecords) {
516    uint8_t enc = getFdeEncoding(rec->cie);
517    for (EhSectionPiece *fde : rec->fdes) {
518      uint64_t pc = getFdePc(buf, fde->outputOff, enc);
519      uint64_t fdeVA = getParent()->addr + fde->outputOff;
520      if (!isInt<32>(pc - va))
521        fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
522              Twine::utohexstr(pc - va));
523      ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
524    }
525  }
526
527  // Sort the FDE list by their PC and uniqueify. Usually there is only
528  // one FDE for a PC (i.e. function), but if ICF merges two functions
529  // into one, there can be more than one FDEs pointing to the address.
530  auto less = [](const FdeData &a, const FdeData &b) {
531    return a.pcRel < b.pcRel;
532  };
533  llvm::stable_sort(ret, less);
534  auto eq = [](const FdeData &a, const FdeData &b) {
535    return a.pcRel == b.pcRel;
536  };
537  ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
538
539  return ret;
540}
541
542static uint64_t readFdeAddr(uint8_t *buf, int size) {
543  switch (size) {
544  case DW_EH_PE_udata2:
545    return read16(buf);
546  case DW_EH_PE_sdata2:
547    return (int16_t)read16(buf);
548  case DW_EH_PE_udata4:
549    return read32(buf);
550  case DW_EH_PE_sdata4:
551    return (int32_t)read32(buf);
552  case DW_EH_PE_udata8:
553  case DW_EH_PE_sdata8:
554    return read64(buf);
555  case DW_EH_PE_absptr:
556    return readUint(buf);
557  }
558  fatal("unknown FDE size encoding");
559}
560
561// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
562// We need it to create .eh_frame_hdr section.
563uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
564                                  uint8_t enc) const {
565  // The starting address to which this FDE applies is
566  // stored at FDE + 8 byte.
567  size_t off = fdeOff + 8;
568  uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
569  if ((enc & 0x70) == DW_EH_PE_absptr)
570    return addr;
571  if ((enc & 0x70) == DW_EH_PE_pcrel)
572    return addr + getParent()->addr + off;
573  fatal("unknown FDE size relative encoding");
574}
575
576void EhFrameSection::writeTo(uint8_t *buf) {
577  // Write CIE and FDE records.
578  for (CieRecord *rec : cieRecords) {
579    size_t cieOffset = rec->cie->outputOff;
580    writeCieFde(buf + cieOffset, rec->cie->data());
581
582    for (EhSectionPiece *fde : rec->fdes) {
583      size_t off = fde->outputOff;
584      writeCieFde(buf + off, fde->data());
585
586      // FDE's second word should have the offset to an associated CIE.
587      // Write it.
588      write32(buf + off + 4, off + 4 - cieOffset);
589    }
590  }
591
592  // Apply relocations. .eh_frame section contents are not contiguous
593  // in the output buffer, but relocateAlloc() still works because
594  // getOffset() takes care of discontiguous section pieces.
595  for (EhInputSection *s : sections)
596    s->relocateAlloc(buf, nullptr);
597
598  if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
599    getPartition().ehFrameHdr->write();
600}
601
602GotSection::GotSection()
603    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
604                       ".got") {
605  // If ElfSym::globalOffsetTable is relative to .got and is referenced,
606  // increase numEntries by the number of entries used to emit
607  // ElfSym::globalOffsetTable.
608  if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt)
609    numEntries += target->gotHeaderEntriesNum;
610}
611
612void GotSection::addEntry(Symbol &sym) {
613  sym.gotIndex = numEntries;
614  ++numEntries;
615}
616
617bool GotSection::addDynTlsEntry(Symbol &sym) {
618  if (sym.globalDynIndex != -1U)
619    return false;
620  sym.globalDynIndex = numEntries;
621  // Global Dynamic TLS entries take two GOT slots.
622  numEntries += 2;
623  return true;
624}
625
626// Reserves TLS entries for a TLS module ID and a TLS block offset.
627// In total it takes two GOT slots.
628bool GotSection::addTlsIndex() {
629  if (tlsIndexOff != uint32_t(-1))
630    return false;
631  tlsIndexOff = numEntries * config->wordsize;
632  numEntries += 2;
633  return true;
634}
635
636uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
637  return this->getVA() + b.globalDynIndex * config->wordsize;
638}
639
640uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
641  return b.globalDynIndex * config->wordsize;
642}
643
644void GotSection::finalizeContents() {
645  size = numEntries * config->wordsize;
646}
647
648bool GotSection::isNeeded() const {
649  // We need to emit a GOT even if it's empty if there's a relocation that is
650  // relative to GOT(such as GOTOFFREL).
651  return numEntries || hasGotOffRel;
652}
653
654void GotSection::writeTo(uint8_t *buf) {
655  // Buf points to the start of this section's buffer,
656  // whereas InputSectionBase::relocateAlloc() expects its argument
657  // to point to the start of the output section.
658  target->writeGotHeader(buf);
659  relocateAlloc(buf - outSecOff, buf - outSecOff + size);
660}
661
662static uint64_t getMipsPageAddr(uint64_t addr) {
663  return (addr + 0x8000) & ~0xffff;
664}
665
666static uint64_t getMipsPageCount(uint64_t size) {
667  return (size + 0xfffe) / 0xffff + 1;
668}
669
670MipsGotSection::MipsGotSection()
671    : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
672                       ".got") {}
673
674void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
675                              RelExpr expr) {
676  FileGot &g = getGot(file);
677  if (expr == R_MIPS_GOT_LOCAL_PAGE) {
678    if (const OutputSection *os = sym.getOutputSection())
679      g.pagesMap.insert({os, {}});
680    else
681      g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
682  } else if (sym.isTls())
683    g.tls.insert({&sym, 0});
684  else if (sym.isPreemptible && expr == R_ABS)
685    g.relocs.insert({&sym, 0});
686  else if (sym.isPreemptible)
687    g.global.insert({&sym, 0});
688  else if (expr == R_MIPS_GOT_OFF32)
689    g.local32.insert({{&sym, addend}, 0});
690  else
691    g.local16.insert({{&sym, addend}, 0});
692}
693
694void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
695  getGot(file).dynTlsSymbols.insert({&sym, 0});
696}
697
698void MipsGotSection::addTlsIndex(InputFile &file) {
699  getGot(file).dynTlsSymbols.insert({nullptr, 0});
700}
701
702size_t MipsGotSection::FileGot::getEntriesNum() const {
703  return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
704         tls.size() + dynTlsSymbols.size() * 2;
705}
706
707size_t MipsGotSection::FileGot::getPageEntriesNum() const {
708  size_t num = 0;
709  for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
710    num += p.second.count;
711  return num;
712}
713
714size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
715  size_t count = getPageEntriesNum() + local16.size() + global.size();
716  // If there are relocation-only entries in the GOT, TLS entries
717  // are allocated after them. TLS entries should be addressable
718  // by 16-bit index so count both reloc-only and TLS entries.
719  if (!tls.empty() || !dynTlsSymbols.empty())
720    count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
721  return count;
722}
723
724MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
725  if (!f.mipsGotIndex.hasValue()) {
726    gots.emplace_back();
727    gots.back().file = &f;
728    f.mipsGotIndex = gots.size() - 1;
729  }
730  return gots[*f.mipsGotIndex];
731}
732
733uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
734                                            const Symbol &sym,
735                                            int64_t addend) const {
736  const FileGot &g = gots[*f->mipsGotIndex];
737  uint64_t index = 0;
738  if (const OutputSection *outSec = sym.getOutputSection()) {
739    uint64_t secAddr = getMipsPageAddr(outSec->addr);
740    uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
741    index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
742  } else {
743    index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
744  }
745  return index * config->wordsize;
746}
747
748uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
749                                           int64_t addend) const {
750  const FileGot &g = gots[*f->mipsGotIndex];
751  Symbol *sym = const_cast<Symbol *>(&s);
752  if (sym->isTls())
753    return g.tls.lookup(sym) * config->wordsize;
754  if (sym->isPreemptible)
755    return g.global.lookup(sym) * config->wordsize;
756  return g.local16.lookup({sym, addend}) * config->wordsize;
757}
758
759uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
760  const FileGot &g = gots[*f->mipsGotIndex];
761  return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
762}
763
764uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
765                                            const Symbol &s) const {
766  const FileGot &g = gots[*f->mipsGotIndex];
767  Symbol *sym = const_cast<Symbol *>(&s);
768  return g.dynTlsSymbols.lookup(sym) * config->wordsize;
769}
770
771const Symbol *MipsGotSection::getFirstGlobalEntry() const {
772  if (gots.empty())
773    return nullptr;
774  const FileGot &primGot = gots.front();
775  if (!primGot.global.empty())
776    return primGot.global.front().first;
777  if (!primGot.relocs.empty())
778    return primGot.relocs.front().first;
779  return nullptr;
780}
781
782unsigned MipsGotSection::getLocalEntriesNum() const {
783  if (gots.empty())
784    return headerEntriesNum;
785  return headerEntriesNum + gots.front().getPageEntriesNum() +
786         gots.front().local16.size();
787}
788
789bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
790  FileGot tmp = dst;
791  set_union(tmp.pagesMap, src.pagesMap);
792  set_union(tmp.local16, src.local16);
793  set_union(tmp.global, src.global);
794  set_union(tmp.relocs, src.relocs);
795  set_union(tmp.tls, src.tls);
796  set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
797
798  size_t count = isPrimary ? headerEntriesNum : 0;
799  count += tmp.getIndexedEntriesNum();
800
801  if (count * config->wordsize > config->mipsGotSize)
802    return false;
803
804  std::swap(tmp, dst);
805  return true;
806}
807
808void MipsGotSection::finalizeContents() { updateAllocSize(); }
809
810bool MipsGotSection::updateAllocSize() {
811  size = headerEntriesNum * config->wordsize;
812  for (const FileGot &g : gots)
813    size += g.getEntriesNum() * config->wordsize;
814  return false;
815}
816
817void MipsGotSection::build() {
818  if (gots.empty())
819    return;
820
821  std::vector<FileGot> mergedGots(1);
822
823  // For each GOT move non-preemptible symbols from the `Global`
824  // to `Local16` list. Preemptible symbol might become non-preemptible
825  // one if, for example, it gets a related copy relocation.
826  for (FileGot &got : gots) {
827    for (auto &p: got.global)
828      if (!p.first->isPreemptible)
829        got.local16.insert({{p.first, 0}, 0});
830    got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
831      return !p.first->isPreemptible;
832    });
833  }
834
835  // For each GOT remove "reloc-only" entry if there is "global"
836  // entry for the same symbol. And add local entries which indexed
837  // using 32-bit value at the end of 16-bit entries.
838  for (FileGot &got : gots) {
839    got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
840      return got.global.count(p.first);
841    });
842    set_union(got.local16, got.local32);
843    got.local32.clear();
844  }
845
846  // Evaluate number of "reloc-only" entries in the resulting GOT.
847  // To do that put all unique "reloc-only" and "global" entries
848  // from all GOTs to the future primary GOT.
849  FileGot *primGot = &mergedGots.front();
850  for (FileGot &got : gots) {
851    set_union(primGot->relocs, got.global);
852    set_union(primGot->relocs, got.relocs);
853    got.relocs.clear();
854  }
855
856  // Evaluate number of "page" entries in each GOT.
857  for (FileGot &got : gots) {
858    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
859         got.pagesMap) {
860      const OutputSection *os = p.first;
861      uint64_t secSize = 0;
862      for (BaseCommand *cmd : os->sectionCommands) {
863        if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
864          for (InputSection *isec : isd->sections) {
865            uint64_t off = alignTo(secSize, isec->alignment);
866            secSize = off + isec->getSize();
867          }
868      }
869      p.second.count = getMipsPageCount(secSize);
870    }
871  }
872
873  // Merge GOTs. Try to join as much as possible GOTs but do not exceed
874  // maximum GOT size. At first, try to fill the primary GOT because
875  // the primary GOT can be accessed in the most effective way. If it
876  // is not possible, try to fill the last GOT in the list, and finally
877  // create a new GOT if both attempts failed.
878  for (FileGot &srcGot : gots) {
879    InputFile *file = srcGot.file;
880    if (tryMergeGots(mergedGots.front(), srcGot, true)) {
881      file->mipsGotIndex = 0;
882    } else {
883      // If this is the first time we failed to merge with the primary GOT,
884      // MergedGots.back() will also be the primary GOT. We must make sure not
885      // to try to merge again with isPrimary=false, as otherwise, if the
886      // inputs are just right, we could allow the primary GOT to become 1 or 2
887      // words bigger due to ignoring the header size.
888      if (mergedGots.size() == 1 ||
889          !tryMergeGots(mergedGots.back(), srcGot, false)) {
890        mergedGots.emplace_back();
891        std::swap(mergedGots.back(), srcGot);
892      }
893      file->mipsGotIndex = mergedGots.size() - 1;
894    }
895  }
896  std::swap(gots, mergedGots);
897
898  // Reduce number of "reloc-only" entries in the primary GOT
899  // by subtracting "global" entries in the primary GOT.
900  primGot = &gots.front();
901  primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
902    return primGot->global.count(p.first);
903  });
904
905  // Calculate indexes for each GOT entry.
906  size_t index = headerEntriesNum;
907  for (FileGot &got : gots) {
908    got.startIndex = &got == primGot ? 0 : index;
909    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
910         got.pagesMap) {
911      // For each output section referenced by GOT page relocations calculate
912      // and save into pagesMap an upper bound of MIPS GOT entries required
913      // to store page addresses of local symbols. We assume the worst case -
914      // each 64kb page of the output section has at least one GOT relocation
915      // against it. And take in account the case when the section intersects
916      // page boundaries.
917      p.second.firstIndex = index;
918      index += p.second.count;
919    }
920    for (auto &p: got.local16)
921      p.second = index++;
922    for (auto &p: got.global)
923      p.second = index++;
924    for (auto &p: got.relocs)
925      p.second = index++;
926    for (auto &p: got.tls)
927      p.second = index++;
928    for (auto &p: got.dynTlsSymbols) {
929      p.second = index;
930      index += 2;
931    }
932  }
933
934  // Update Symbol::gotIndex field to use this
935  // value later in the `sortMipsSymbols` function.
936  for (auto &p : primGot->global)
937    p.first->gotIndex = p.second;
938  for (auto &p : primGot->relocs)
939    p.first->gotIndex = p.second;
940
941  // Create dynamic relocations.
942  for (FileGot &got : gots) {
943    // Create dynamic relocations for TLS entries.
944    for (std::pair<Symbol *, size_t> &p : got.tls) {
945      Symbol *s = p.first;
946      uint64_t offset = p.second * config->wordsize;
947      if (s->isPreemptible)
948        mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s);
949    }
950    for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
951      Symbol *s = p.first;
952      uint64_t offset = p.second * config->wordsize;
953      if (s == nullptr) {
954        if (!config->isPic)
955          continue;
956        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
957      } else {
958        // When building a shared library we still need a dynamic relocation
959        // for the module index. Therefore only checking for
960        // S->isPreemptible is not sufficient (this happens e.g. for
961        // thread-locals that have been marked as local through a linker script)
962        if (!s->isPreemptible && !config->isPic)
963          continue;
964        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
965        // However, we can skip writing the TLS offset reloc for non-preemptible
966        // symbols since it is known even in shared libraries
967        if (!s->isPreemptible)
968          continue;
969        offset += config->wordsize;
970        mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s);
971      }
972    }
973
974    // Do not create dynamic relocations for non-TLS
975    // entries in the primary GOT.
976    if (&got == primGot)
977      continue;
978
979    // Dynamic relocations for "global" entries.
980    for (const std::pair<Symbol *, size_t> &p : got.global) {
981      uint64_t offset = p.second * config->wordsize;
982      mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first);
983    }
984    if (!config->isPic)
985      continue;
986    // Dynamic relocations for "local" entries in case of PIC.
987    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
988         got.pagesMap) {
989      size_t pageCount = l.second.count;
990      for (size_t pi = 0; pi < pageCount; ++pi) {
991        uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
992        mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
993                                 int64_t(pi * 0x10000)});
994      }
995    }
996    for (const std::pair<GotEntry, size_t> &p : got.local16) {
997      uint64_t offset = p.second * config->wordsize;
998      mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true,
999                               p.first.first, p.first.second});
1000    }
1001  }
1002}
1003
1004bool MipsGotSection::isNeeded() const {
1005  // We add the .got section to the result for dynamic MIPS target because
1006  // its address and properties are mentioned in the .dynamic section.
1007  return !config->relocatable;
1008}
1009
1010uint64_t MipsGotSection::getGp(const InputFile *f) const {
1011  // For files without related GOT or files refer a primary GOT
1012  // returns "common" _gp value. For secondary GOTs calculate
1013  // individual _gp values.
1014  if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0)
1015    return ElfSym::mipsGp->getVA(0);
1016  return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize +
1017         0x7ff0;
1018}
1019
1020void MipsGotSection::writeTo(uint8_t *buf) {
1021  // Set the MSB of the second GOT slot. This is not required by any
1022  // MIPS ABI documentation, though.
1023  //
1024  // There is a comment in glibc saying that "The MSB of got[1] of a
1025  // gnu object is set to identify gnu objects," and in GNU gold it
1026  // says "the second entry will be used by some runtime loaders".
1027  // But how this field is being used is unclear.
1028  //
1029  // We are not really willing to mimic other linkers behaviors
1030  // without understanding why they do that, but because all files
1031  // generated by GNU tools have this special GOT value, and because
1032  // we've been doing this for years, it is probably a safe bet to
1033  // keep doing this for now. We really need to revisit this to see
1034  // if we had to do this.
1035  writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1036  for (const FileGot &g : gots) {
1037    auto write = [&](size_t i, const Symbol *s, int64_t a) {
1038      uint64_t va = a;
1039      if (s)
1040        va = s->getVA(a);
1041      writeUint(buf + i * config->wordsize, va);
1042    };
1043    // Write 'page address' entries to the local part of the GOT.
1044    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1045         g.pagesMap) {
1046      size_t pageCount = l.second.count;
1047      uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1048      for (size_t pi = 0; pi < pageCount; ++pi)
1049        write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1050    }
1051    // Local, global, TLS, reloc-only  entries.
1052    // If TLS entry has a corresponding dynamic relocations, leave it
1053    // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1054    // To calculate the adjustments use offsets for thread-local storage.
1055    // https://www.linux-mips.org/wiki/NPTL
1056    for (const std::pair<GotEntry, size_t> &p : g.local16)
1057      write(p.second, p.first.first, p.first.second);
1058    // Write VA to the primary GOT only. For secondary GOTs that
1059    // will be done by REL32 dynamic relocations.
1060    if (&g == &gots.front())
1061      for (const std::pair<Symbol *, size_t> &p : g.global)
1062        write(p.second, p.first, 0);
1063    for (const std::pair<Symbol *, size_t> &p : g.relocs)
1064      write(p.second, p.first, 0);
1065    for (const std::pair<Symbol *, size_t> &p : g.tls)
1066      write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000);
1067    for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1068      if (p.first == nullptr && !config->isPic)
1069        write(p.second, nullptr, 1);
1070      else if (p.first && !p.first->isPreemptible) {
1071        // If we are emitting PIC code with relocations we mustn't write
1072        // anything to the GOT here. When using Elf_Rel relocations the value
1073        // one will be treated as an addend and will cause crashes at runtime
1074        if (!config->isPic)
1075          write(p.second, nullptr, 1);
1076        write(p.second + 1, p.first, -0x8000);
1077      }
1078    }
1079  }
1080}
1081
1082// On PowerPC the .plt section is used to hold the table of function addresses
1083// instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1084// section. I don't know why we have a BSS style type for the section but it is
1085// consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1086GotPltSection::GotPltSection()
1087    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1088                       ".got.plt") {
1089  if (config->emachine == EM_PPC) {
1090    name = ".plt";
1091  } else if (config->emachine == EM_PPC64) {
1092    type = SHT_NOBITS;
1093    name = ".plt";
1094  }
1095}
1096
1097void GotPltSection::addEntry(Symbol &sym) {
1098  assert(sym.pltIndex == entries.size());
1099  entries.push_back(&sym);
1100}
1101
1102size_t GotPltSection::getSize() const {
1103  return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize;
1104}
1105
1106void GotPltSection::writeTo(uint8_t *buf) {
1107  target->writeGotPltHeader(buf);
1108  buf += target->gotPltHeaderEntriesNum * config->wordsize;
1109  for (const Symbol *b : entries) {
1110    target->writeGotPlt(buf, *b);
1111    buf += config->wordsize;
1112  }
1113}
1114
1115bool GotPltSection::isNeeded() const {
1116  // We need to emit GOTPLT even if it's empty if there's a relocation relative
1117  // to it.
1118  return !entries.empty() || hasGotPltOffRel;
1119}
1120
1121static StringRef getIgotPltName() {
1122  // On ARM the IgotPltSection is part of the GotSection.
1123  if (config->emachine == EM_ARM)
1124    return ".got";
1125
1126  // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1127  // needs to be named the same.
1128  if (config->emachine == EM_PPC64)
1129    return ".plt";
1130
1131  return ".got.plt";
1132}
1133
1134// On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1135// with the IgotPltSection.
1136IgotPltSection::IgotPltSection()
1137    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1138                       config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1139                       config->wordsize, getIgotPltName()) {}
1140
1141void IgotPltSection::addEntry(Symbol &sym) {
1142  assert(sym.pltIndex == entries.size());
1143  entries.push_back(&sym);
1144}
1145
1146size_t IgotPltSection::getSize() const {
1147  return entries.size() * config->wordsize;
1148}
1149
1150void IgotPltSection::writeTo(uint8_t *buf) {
1151  for (const Symbol *b : entries) {
1152    target->writeIgotPlt(buf, *b);
1153    buf += config->wordsize;
1154  }
1155}
1156
1157StringTableSection::StringTableSection(StringRef name, bool dynamic)
1158    : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1159      dynamic(dynamic) {
1160  // ELF string tables start with a NUL byte.
1161  addString("");
1162}
1163
1164// Adds a string to the string table. If `hashIt` is true we hash and check for
1165// duplicates. It is optional because the name of global symbols are already
1166// uniqued and hashing them again has a big cost for a small value: uniquing
1167// them with some other string that happens to be the same.
1168unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1169  if (hashIt) {
1170    auto r = stringMap.insert(std::make_pair(s, this->size));
1171    if (!r.second)
1172      return r.first->second;
1173  }
1174  unsigned ret = this->size;
1175  this->size = this->size + s.size() + 1;
1176  strings.push_back(s);
1177  return ret;
1178}
1179
1180void StringTableSection::writeTo(uint8_t *buf) {
1181  for (StringRef s : strings) {
1182    memcpy(buf, s.data(), s.size());
1183    buf[s.size()] = '\0';
1184    buf += s.size() + 1;
1185  }
1186}
1187
1188// Returns the number of entries in .gnu.version_d: the number of
1189// non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1190// Note that we don't support vd_cnt > 1 yet.
1191static unsigned getVerDefNum() {
1192  return namedVersionDefs().size() + 1;
1193}
1194
1195template <class ELFT>
1196DynamicSection<ELFT>::DynamicSection()
1197    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1198                       ".dynamic") {
1199  this->entsize = ELFT::Is64Bits ? 16 : 8;
1200
1201  // .dynamic section is not writable on MIPS and on Fuchsia OS
1202  // which passes -z rodynamic.
1203  // See "Special Section" in Chapter 4 in the following document:
1204  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1205  if (config->emachine == EM_MIPS || config->zRodynamic)
1206    this->flags = SHF_ALLOC;
1207}
1208
1209template <class ELFT>
1210void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) {
1211  entries.push_back({tag, fn});
1212}
1213
1214template <class ELFT>
1215void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) {
1216  entries.push_back({tag, [=] { return val; }});
1217}
1218
1219template <class ELFT>
1220void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) {
1221  entries.push_back({tag, [=] { return sec->getVA(0); }});
1222}
1223
1224template <class ELFT>
1225void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) {
1226  size_t tagOffset = entries.size() * entsize;
1227  entries.push_back(
1228      {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }});
1229}
1230
1231template <class ELFT>
1232void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) {
1233  entries.push_back({tag, [=] { return sec->addr; }});
1234}
1235
1236template <class ELFT>
1237void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) {
1238  entries.push_back({tag, [=] { return sec->size; }});
1239}
1240
1241template <class ELFT>
1242void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) {
1243  entries.push_back({tag, [=] { return sym->getVA(); }});
1244}
1245
1246// The output section .rela.dyn may include these synthetic sections:
1247//
1248// - part.relaDyn
1249// - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1250// - in.relaPlt: this is included if a linker script places .rela.plt inside
1251//   .rela.dyn
1252//
1253// DT_RELASZ is the total size of the included sections.
1254static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) {
1255  return [=]() {
1256    size_t size = relaDyn->getSize();
1257    if (in.relaIplt->getParent() == relaDyn->getParent())
1258      size += in.relaIplt->getSize();
1259    if (in.relaPlt->getParent() == relaDyn->getParent())
1260      size += in.relaPlt->getSize();
1261    return size;
1262  };
1263}
1264
1265// A Linker script may assign the RELA relocation sections to the same
1266// output section. When this occurs we cannot just use the OutputSection
1267// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1268// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1269static uint64_t addPltRelSz() {
1270  size_t size = in.relaPlt->getSize();
1271  if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1272      in.relaIplt->name == in.relaPlt->name)
1273    size += in.relaIplt->getSize();
1274  return size;
1275}
1276
1277// Add remaining entries to complete .dynamic contents.
1278template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1279  elf::Partition &part = getPartition();
1280  bool isMain = part.name.empty();
1281
1282  for (StringRef s : config->filterList)
1283    addInt(DT_FILTER, part.dynStrTab->addString(s));
1284  for (StringRef s : config->auxiliaryList)
1285    addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1286
1287  if (!config->rpath.empty())
1288    addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1289           part.dynStrTab->addString(config->rpath));
1290
1291  for (SharedFile *file : sharedFiles)
1292    if (file->isNeeded)
1293      addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1294
1295  if (isMain) {
1296    if (!config->soName.empty())
1297      addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1298  } else {
1299    if (!config->soName.empty())
1300      addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1301    addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1302  }
1303
1304  // Set DT_FLAGS and DT_FLAGS_1.
1305  uint32_t dtFlags = 0;
1306  uint32_t dtFlags1 = 0;
1307  if (config->bsymbolic)
1308    dtFlags |= DF_SYMBOLIC;
1309  if (config->zGlobal)
1310    dtFlags1 |= DF_1_GLOBAL;
1311  if (config->zInitfirst)
1312    dtFlags1 |= DF_1_INITFIRST;
1313  if (config->zInterpose)
1314    dtFlags1 |= DF_1_INTERPOSE;
1315  if (config->zNodefaultlib)
1316    dtFlags1 |= DF_1_NODEFLIB;
1317  if (config->zNodelete)
1318    dtFlags1 |= DF_1_NODELETE;
1319  if (config->zNodlopen)
1320    dtFlags1 |= DF_1_NOOPEN;
1321  if (config->pie)
1322    dtFlags1 |= DF_1_PIE;
1323  if (config->zNow) {
1324    dtFlags |= DF_BIND_NOW;
1325    dtFlags1 |= DF_1_NOW;
1326  }
1327  if (config->zOrigin) {
1328    dtFlags |= DF_ORIGIN;
1329    dtFlags1 |= DF_1_ORIGIN;
1330  }
1331  if (!config->zText)
1332    dtFlags |= DF_TEXTREL;
1333  if (config->hasStaticTlsModel)
1334    dtFlags |= DF_STATIC_TLS;
1335
1336  if (dtFlags)
1337    addInt(DT_FLAGS, dtFlags);
1338  if (dtFlags1)
1339    addInt(DT_FLAGS_1, dtFlags1);
1340
1341  // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1342  // need it for each process, so we don't write it for DSOs. The loader writes
1343  // the pointer into this entry.
1344  //
1345  // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1346  // systems (currently only Fuchsia OS) provide other means to give the
1347  // debugger this information. Such systems may choose make .dynamic read-only.
1348  // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1349  if (!config->shared && !config->relocatable && !config->zRodynamic)
1350    addInt(DT_DEBUG, 0);
1351
1352  if (OutputSection *sec = part.dynStrTab->getParent())
1353    this->link = sec->sectionIndex;
1354
1355  if (part.relaDyn->isNeeded() ||
1356      (in.relaIplt->isNeeded() &&
1357       part.relaDyn->getParent() == in.relaIplt->getParent())) {
1358    addInSec(part.relaDyn->dynamicTag, part.relaDyn);
1359    entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)});
1360
1361    bool isRela = config->isRela;
1362    addInt(isRela ? DT_RELAENT : DT_RELENT,
1363           isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1364
1365    // MIPS dynamic loader does not support RELCOUNT tag.
1366    // The problem is in the tight relation between dynamic
1367    // relocations and GOT. So do not emit this tag on MIPS.
1368    if (config->emachine != EM_MIPS) {
1369      size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1370      if (config->zCombreloc && numRelativeRels)
1371        addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1372    }
1373  }
1374  if (part.relrDyn && !part.relrDyn->relocs.empty()) {
1375    addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1376             part.relrDyn);
1377    addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1378            part.relrDyn->getParent());
1379    addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1380           sizeof(Elf_Relr));
1381  }
1382  // .rel[a].plt section usually consists of two parts, containing plt and
1383  // iplt relocations. It is possible to have only iplt relocations in the
1384  // output. In that case relaPlt is empty and have zero offset, the same offset
1385  // as relaIplt has. And we still want to emit proper dynamic tags for that
1386  // case, so here we always use relaPlt as marker for the beginning of
1387  // .rel[a].plt section.
1388  if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1389    addInSec(DT_JMPREL, in.relaPlt);
1390    entries.push_back({DT_PLTRELSZ, addPltRelSz});
1391    switch (config->emachine) {
1392    case EM_MIPS:
1393      addInSec(DT_MIPS_PLTGOT, in.gotPlt);
1394      break;
1395    case EM_SPARCV9:
1396      addInSec(DT_PLTGOT, in.plt);
1397      break;
1398    default:
1399      addInSec(DT_PLTGOT, in.gotPlt);
1400      break;
1401    }
1402    addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1403  }
1404
1405  if (config->emachine == EM_AARCH64) {
1406    if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1407      addInt(DT_AARCH64_BTI_PLT, 0);
1408    if (config->zPacPlt)
1409      addInt(DT_AARCH64_PAC_PLT, 0);
1410  }
1411
1412  addInSec(DT_SYMTAB, part.dynSymTab);
1413  addInt(DT_SYMENT, sizeof(Elf_Sym));
1414  addInSec(DT_STRTAB, part.dynStrTab);
1415  addInt(DT_STRSZ, part.dynStrTab->getSize());
1416  if (!config->zText)
1417    addInt(DT_TEXTREL, 0);
1418  if (part.gnuHashTab)
1419    addInSec(DT_GNU_HASH, part.gnuHashTab);
1420  if (part.hashTab)
1421    addInSec(DT_HASH, part.hashTab);
1422
1423  if (isMain) {
1424    if (Out::preinitArray) {
1425      addOutSec(DT_PREINIT_ARRAY, Out::preinitArray);
1426      addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray);
1427    }
1428    if (Out::initArray) {
1429      addOutSec(DT_INIT_ARRAY, Out::initArray);
1430      addSize(DT_INIT_ARRAYSZ, Out::initArray);
1431    }
1432    if (Out::finiArray) {
1433      addOutSec(DT_FINI_ARRAY, Out::finiArray);
1434      addSize(DT_FINI_ARRAYSZ, Out::finiArray);
1435    }
1436
1437    if (Symbol *b = symtab->find(config->init))
1438      if (b->isDefined())
1439        addSym(DT_INIT, b);
1440    if (Symbol *b = symtab->find(config->fini))
1441      if (b->isDefined())
1442        addSym(DT_FINI, b);
1443  }
1444
1445  if (part.verSym && part.verSym->isNeeded())
1446    addInSec(DT_VERSYM, part.verSym);
1447  if (part.verDef && part.verDef->isLive()) {
1448    addInSec(DT_VERDEF, part.verDef);
1449    addInt(DT_VERDEFNUM, getVerDefNum());
1450  }
1451  if (part.verNeed && part.verNeed->isNeeded()) {
1452    addInSec(DT_VERNEED, part.verNeed);
1453    unsigned needNum = 0;
1454    for (SharedFile *f : sharedFiles)
1455      if (!f->vernauxs.empty())
1456        ++needNum;
1457    addInt(DT_VERNEEDNUM, needNum);
1458  }
1459
1460  if (config->emachine == EM_MIPS) {
1461    addInt(DT_MIPS_RLD_VERSION, 1);
1462    addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1463    addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1464    addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1465
1466    add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); });
1467
1468    if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1469      addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1470    else
1471      addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1472    addInSec(DT_PLTGOT, in.mipsGot);
1473    if (in.mipsRldMap) {
1474      if (!config->pie)
1475        addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap);
1476      // Store the offset to the .rld_map section
1477      // relative to the address of the tag.
1478      addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap);
1479    }
1480  }
1481
1482  // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1483  // glibc assumes the old-style BSS PLT layout which we don't support.
1484  if (config->emachine == EM_PPC)
1485    add(DT_PPC_GOT, [] { return in.got->getVA(); });
1486
1487  // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1488  if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1489    // The Glink tag points to 32 bytes before the first lazy symbol resolution
1490    // stub, which starts directly after the header.
1491    entries.push_back({DT_PPC64_GLINK, [=] {
1492                         unsigned offset = target->pltHeaderSize - 32;
1493                         return in.plt->getVA(0) + offset;
1494                       }});
1495  }
1496
1497  addInt(DT_NULL, 0);
1498
1499  getParent()->link = this->link;
1500  this->size = entries.size() * this->entsize;
1501}
1502
1503template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1504  auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1505
1506  for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) {
1507    p->d_tag = kv.first;
1508    p->d_un.d_val = kv.second();
1509    ++p;
1510  }
1511}
1512
1513uint64_t DynamicReloc::getOffset() const {
1514  return inputSec->getVA(offsetInSec);
1515}
1516
1517int64_t DynamicReloc::computeAddend() const {
1518  if (useSymVA)
1519    return sym->getVA(addend);
1520  if (!outputSec)
1521    return addend;
1522  // See the comment in the DynamicReloc ctor.
1523  return getMipsPageAddr(outputSec->addr) + addend;
1524}
1525
1526uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1527  if (sym && !useSymVA)
1528    return symTab->getSymbolIndex(sym);
1529  return 0;
1530}
1531
1532RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1533                                             int32_t dynamicTag,
1534                                             int32_t sizeDynamicTag)
1535    : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1536      dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {}
1537
1538void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec,
1539                                     uint64_t offsetInSec, Symbol *sym) {
1540  addReloc({dynType, isec, offsetInSec, false, sym, 0});
1541}
1542
1543void RelocationBaseSection::addReloc(RelType dynType,
1544                                     InputSectionBase *inputSec,
1545                                     uint64_t offsetInSec, Symbol *sym,
1546                                     int64_t addend, RelExpr expr,
1547                                     RelType type) {
1548  // Write the addends to the relocated address if required. We skip
1549  // it if the written value would be zero.
1550  if (config->writeAddends && (expr != R_ADDEND || addend != 0))
1551    inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1552  addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend});
1553}
1554
1555void RelocationBaseSection::addReloc(const DynamicReloc &reloc) {
1556  if (reloc.type == target->relativeRel)
1557    ++numRelativeRelocs;
1558  relocs.push_back(reloc);
1559}
1560
1561void RelocationBaseSection::finalizeContents() {
1562  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1563
1564  // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1565  // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1566  // case.
1567  if (symTab && symTab->getParent())
1568    getParent()->link = symTab->getParent()->sectionIndex;
1569  else
1570    getParent()->link = 0;
1571
1572  if (in.relaPlt == this)
1573    getParent()->info = in.gotPlt->getParent()->sectionIndex;
1574  if (in.relaIplt == this)
1575    getParent()->info = in.igotPlt->getParent()->sectionIndex;
1576}
1577
1578RelrBaseSection::RelrBaseSection()
1579    : SyntheticSection(SHF_ALLOC,
1580                       config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1581                       config->wordsize, ".relr.dyn") {}
1582
1583template <class ELFT>
1584static void encodeDynamicReloc(SymbolTableBaseSection *symTab,
1585                               typename ELFT::Rela *p,
1586                               const DynamicReloc &rel) {
1587  if (config->isRela)
1588    p->r_addend = rel.computeAddend();
1589  p->r_offset = rel.getOffset();
1590  p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL);
1591}
1592
1593template <class ELFT>
1594RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort)
1595    : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1596                            config->isRela ? DT_RELA : DT_REL,
1597                            config->isRela ? DT_RELASZ : DT_RELSZ),
1598      sort(sort) {
1599  this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1600}
1601
1602template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1603  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1604
1605  // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1606  // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1607  // is to make results easier to read.
1608  if (sort)
1609    llvm::stable_sort(
1610        relocs, [&](const DynamicReloc &a, const DynamicReloc &b) {
1611          return std::make_tuple(a.type != target->relativeRel,
1612                                 a.getSymIndex(symTab), a.getOffset()) <
1613                 std::make_tuple(b.type != target->relativeRel,
1614                                 b.getSymIndex(symTab), b.getOffset());
1615        });
1616
1617  for (const DynamicReloc &rel : relocs) {
1618    encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel);
1619    buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1620  }
1621}
1622
1623template <class ELFT>
1624AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1625    StringRef name)
1626    : RelocationBaseSection(
1627          name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1628          config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1629          config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) {
1630  this->entsize = 1;
1631}
1632
1633template <class ELFT>
1634bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1635  // This function computes the contents of an Android-format packed relocation
1636  // section.
1637  //
1638  // This format compresses relocations by using relocation groups to factor out
1639  // fields that are common between relocations and storing deltas from previous
1640  // relocations in SLEB128 format (which has a short representation for small
1641  // numbers). A good example of a relocation type with common fields is
1642  // R_*_RELATIVE, which is normally used to represent function pointers in
1643  // vtables. In the REL format, each relative relocation has the same r_info
1644  // field, and is only different from other relative relocations in terms of
1645  // the r_offset field. By sorting relocations by offset, grouping them by
1646  // r_info and representing each relocation with only the delta from the
1647  // previous offset, each 8-byte relocation can be compressed to as little as 1
1648  // byte (or less with run-length encoding). This relocation packer was able to
1649  // reduce the size of the relocation section in an Android Chromium DSO from
1650  // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1651  //
1652  // A relocation section consists of a header containing the literal bytes
1653  // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1654  // elements are the total number of relocations in the section and an initial
1655  // r_offset value. The remaining elements define a sequence of relocation
1656  // groups. Each relocation group starts with a header consisting of the
1657  // following elements:
1658  //
1659  // - the number of relocations in the relocation group
1660  // - flags for the relocation group
1661  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1662  //   for each relocation in the group.
1663  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1664  //   field for each relocation in the group.
1665  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1666  //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1667  //   each relocation in the group.
1668  //
1669  // Following the relocation group header are descriptions of each of the
1670  // relocations in the group. They consist of the following elements:
1671  //
1672  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1673  //   delta for this relocation.
1674  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1675  //   field for this relocation.
1676  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1677  //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1678  //   this relocation.
1679
1680  size_t oldSize = relocData.size();
1681
1682  relocData = {'A', 'P', 'S', '2'};
1683  raw_svector_ostream os(relocData);
1684  auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1685
1686  // The format header includes the number of relocations and the initial
1687  // offset (we set this to zero because the first relocation group will
1688  // perform the initial adjustment).
1689  add(relocs.size());
1690  add(0);
1691
1692  std::vector<Elf_Rela> relatives, nonRelatives;
1693
1694  for (const DynamicReloc &rel : relocs) {
1695    Elf_Rela r;
1696    encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel);
1697
1698    if (r.getType(config->isMips64EL) == target->relativeRel)
1699      relatives.push_back(r);
1700    else
1701      nonRelatives.push_back(r);
1702  }
1703
1704  llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1705    return a.r_offset < b.r_offset;
1706  });
1707
1708  // Try to find groups of relative relocations which are spaced one word
1709  // apart from one another. These generally correspond to vtable entries. The
1710  // format allows these groups to be encoded using a sort of run-length
1711  // encoding, but each group will cost 7 bytes in addition to the offset from
1712  // the previous group, so it is only profitable to do this for groups of
1713  // size 8 or larger.
1714  std::vector<Elf_Rela> ungroupedRelatives;
1715  std::vector<std::vector<Elf_Rela>> relativeGroups;
1716  for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1717    std::vector<Elf_Rela> group;
1718    do {
1719      group.push_back(*i++);
1720    } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1721
1722    if (group.size() < 8)
1723      ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1724                                group.end());
1725    else
1726      relativeGroups.emplace_back(std::move(group));
1727  }
1728
1729  // For non-relative relocations, we would like to:
1730  //   1. Have relocations with the same symbol offset to be consecutive, so
1731  //      that the runtime linker can speed-up symbol lookup by implementing an
1732  //      1-entry cache.
1733  //   2. Group relocations by r_info to reduce the size of the relocation
1734  //      section.
1735  // Since the symbol offset is the high bits in r_info, sorting by r_info
1736  // allows us to do both.
1737  //
1738  // For Rela, we also want to sort by r_addend when r_info is the same. This
1739  // enables us to group by r_addend as well.
1740  llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1741    if (a.r_info != b.r_info)
1742      return a.r_info < b.r_info;
1743    if (config->isRela)
1744      return a.r_addend < b.r_addend;
1745    return false;
1746  });
1747
1748  // Group relocations with the same r_info. Note that each group emits a group
1749  // header and that may make the relocation section larger. It is hard to
1750  // estimate the size of a group header as the encoded size of that varies
1751  // based on r_info. However, we can approximate this trade-off by the number
1752  // of values encoded. Each group header contains 3 values, and each relocation
1753  // in a group encodes one less value, as compared to when it is not grouped.
1754  // Therefore, we only group relocations if there are 3 or more of them with
1755  // the same r_info.
1756  //
1757  // For Rela, the addend for most non-relative relocations is zero, and thus we
1758  // can usually get a smaller relocation section if we group relocations with 0
1759  // addend as well.
1760  std::vector<Elf_Rela> ungroupedNonRelatives;
1761  std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1762  for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1763    auto j = i + 1;
1764    while (j != e && i->r_info == j->r_info &&
1765           (!config->isRela || i->r_addend == j->r_addend))
1766      ++j;
1767    if (j - i < 3 || (config->isRela && i->r_addend != 0))
1768      ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1769    else
1770      nonRelativeGroups.emplace_back(i, j);
1771    i = j;
1772  }
1773
1774  // Sort ungrouped relocations by offset to minimize the encoded length.
1775  llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1776    return a.r_offset < b.r_offset;
1777  });
1778
1779  unsigned hasAddendIfRela =
1780      config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1781
1782  uint64_t offset = 0;
1783  uint64_t addend = 0;
1784
1785  // Emit the run-length encoding for the groups of adjacent relative
1786  // relocations. Each group is represented using two groups in the packed
1787  // format. The first is used to set the current offset to the start of the
1788  // group (and also encodes the first relocation), and the second encodes the
1789  // remaining relocations.
1790  for (std::vector<Elf_Rela> &g : relativeGroups) {
1791    // The first relocation in the group.
1792    add(1);
1793    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1794        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1795    add(g[0].r_offset - offset);
1796    add(target->relativeRel);
1797    if (config->isRela) {
1798      add(g[0].r_addend - addend);
1799      addend = g[0].r_addend;
1800    }
1801
1802    // The remaining relocations.
1803    add(g.size() - 1);
1804    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1805        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1806    add(config->wordsize);
1807    add(target->relativeRel);
1808    if (config->isRela) {
1809      for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
1810        add(i->r_addend - addend);
1811        addend = i->r_addend;
1812      }
1813    }
1814
1815    offset = g.back().r_offset;
1816  }
1817
1818  // Now the ungrouped relatives.
1819  if (!ungroupedRelatives.empty()) {
1820    add(ungroupedRelatives.size());
1821    add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1822    add(target->relativeRel);
1823    for (Elf_Rela &r : ungroupedRelatives) {
1824      add(r.r_offset - offset);
1825      offset = r.r_offset;
1826      if (config->isRela) {
1827        add(r.r_addend - addend);
1828        addend = r.r_addend;
1829      }
1830    }
1831  }
1832
1833  // Grouped non-relatives.
1834  for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1835    add(g.size());
1836    add(RELOCATION_GROUPED_BY_INFO_FLAG);
1837    add(g[0].r_info);
1838    for (const Elf_Rela &r : g) {
1839      add(r.r_offset - offset);
1840      offset = r.r_offset;
1841    }
1842    addend = 0;
1843  }
1844
1845  // Finally the ungrouped non-relative relocations.
1846  if (!ungroupedNonRelatives.empty()) {
1847    add(ungroupedNonRelatives.size());
1848    add(hasAddendIfRela);
1849    for (Elf_Rela &r : ungroupedNonRelatives) {
1850      add(r.r_offset - offset);
1851      offset = r.r_offset;
1852      add(r.r_info);
1853      if (config->isRela) {
1854        add(r.r_addend - addend);
1855        addend = r.r_addend;
1856      }
1857    }
1858  }
1859
1860  // Don't allow the section to shrink; otherwise the size of the section can
1861  // oscillate infinitely.
1862  if (relocData.size() < oldSize)
1863    relocData.append(oldSize - relocData.size(), 0);
1864
1865  // Returns whether the section size changed. We need to keep recomputing both
1866  // section layout and the contents of this section until the size converges
1867  // because changing this section's size can affect section layout, which in
1868  // turn can affect the sizes of the LEB-encoded integers stored in this
1869  // section.
1870  return relocData.size() != oldSize;
1871}
1872
1873template <class ELFT> RelrSection<ELFT>::RelrSection() {
1874  this->entsize = config->wordsize;
1875}
1876
1877template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1878  // This function computes the contents of an SHT_RELR packed relocation
1879  // section.
1880  //
1881  // Proposal for adding SHT_RELR sections to generic-abi is here:
1882  //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1883  //
1884  // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
1885  // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
1886  //
1887  // i.e. start with an address, followed by any number of bitmaps. The address
1888  // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
1889  // relocations each, at subsequent offsets following the last address entry.
1890  //
1891  // The bitmap entries must have 1 in the least significant bit. The assumption
1892  // here is that an address cannot have 1 in lsb. Odd addresses are not
1893  // supported.
1894  //
1895  // Excluding the least significant bit in the bitmap, each non-zero bit in
1896  // the bitmap represents a relocation to be applied to a corresponding machine
1897  // word that follows the base address word. The second least significant bit
1898  // represents the machine word immediately following the initial address, and
1899  // each bit that follows represents the next word, in linear order. As such,
1900  // a single bitmap can encode up to 31 relocations in a 32-bit object, and
1901  // 63 relocations in a 64-bit object.
1902  //
1903  // This encoding has a couple of interesting properties:
1904  // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
1905  //    even means address, odd means bitmap.
1906  // 2. Just a simple list of addresses is a valid encoding.
1907
1908  size_t oldSize = relrRelocs.size();
1909  relrRelocs.clear();
1910
1911  // Same as Config->Wordsize but faster because this is a compile-time
1912  // constant.
1913  const size_t wordsize = sizeof(typename ELFT::uint);
1914
1915  // Number of bits to use for the relocation offsets bitmap.
1916  // Must be either 63 or 31.
1917  const size_t nBits = wordsize * 8 - 1;
1918
1919  // Get offsets for all relative relocations and sort them.
1920  std::vector<uint64_t> offsets;
1921  for (const RelativeReloc &rel : relocs)
1922    offsets.push_back(rel.getOffset());
1923  llvm::sort(offsets);
1924
1925  // For each leading relocation, find following ones that can be folded
1926  // as a bitmap and fold them.
1927  for (size_t i = 0, e = offsets.size(); i < e;) {
1928    // Add a leading relocation.
1929    relrRelocs.push_back(Elf_Relr(offsets[i]));
1930    uint64_t base = offsets[i] + wordsize;
1931    ++i;
1932
1933    // Find foldable relocations to construct bitmaps.
1934    while (i < e) {
1935      uint64_t bitmap = 0;
1936
1937      while (i < e) {
1938        uint64_t delta = offsets[i] - base;
1939
1940        // If it is too far, it cannot be folded.
1941        if (delta >= nBits * wordsize)
1942          break;
1943
1944        // If it is not a multiple of wordsize away, it cannot be folded.
1945        if (delta % wordsize)
1946          break;
1947
1948        // Fold it.
1949        bitmap |= 1ULL << (delta / wordsize);
1950        ++i;
1951      }
1952
1953      if (!bitmap)
1954        break;
1955
1956      relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
1957      base += nBits * wordsize;
1958    }
1959  }
1960
1961  // Don't allow the section to shrink; otherwise the size of the section can
1962  // oscillate infinitely. Trailing 1s do not decode to more relocations.
1963  if (relrRelocs.size() < oldSize) {
1964    log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
1965        " padding word(s)");
1966    relrRelocs.resize(oldSize, Elf_Relr(1));
1967  }
1968
1969  return relrRelocs.size() != oldSize;
1970}
1971
1972SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
1973    : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
1974                       strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
1975                       config->wordsize,
1976                       strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
1977      strTabSec(strTabSec) {}
1978
1979// Orders symbols according to their positions in the GOT,
1980// in compliance with MIPS ABI rules.
1981// See "Global Offset Table" in Chapter 5 in the following document
1982// for detailed description:
1983// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1984static bool sortMipsSymbols(const SymbolTableEntry &l,
1985                            const SymbolTableEntry &r) {
1986  // Sort entries related to non-local preemptible symbols by GOT indexes.
1987  // All other entries go to the beginning of a dynsym in arbitrary order.
1988  if (l.sym->isInGot() && r.sym->isInGot())
1989    return l.sym->gotIndex < r.sym->gotIndex;
1990  if (!l.sym->isInGot() && !r.sym->isInGot())
1991    return false;
1992  return !l.sym->isInGot();
1993}
1994
1995void SymbolTableBaseSection::finalizeContents() {
1996  if (OutputSection *sec = strTabSec.getParent())
1997    getParent()->link = sec->sectionIndex;
1998
1999  if (this->type != SHT_DYNSYM) {
2000    sortSymTabSymbols();
2001    return;
2002  }
2003
2004  // If it is a .dynsym, there should be no local symbols, but we need
2005  // to do a few things for the dynamic linker.
2006
2007  // Section's Info field has the index of the first non-local symbol.
2008  // Because the first symbol entry is a null entry, 1 is the first.
2009  getParent()->info = 1;
2010
2011  if (getPartition().gnuHashTab) {
2012    // NB: It also sorts Symbols to meet the GNU hash table requirements.
2013    getPartition().gnuHashTab->addSymbols(symbols);
2014  } else if (config->emachine == EM_MIPS) {
2015    llvm::stable_sort(symbols, sortMipsSymbols);
2016  }
2017
2018  // Only the main partition's dynsym indexes are stored in the symbols
2019  // themselves. All other partitions use a lookup table.
2020  if (this == mainPart->dynSymTab) {
2021    size_t i = 0;
2022    for (const SymbolTableEntry &s : symbols)
2023      s.sym->dynsymIndex = ++i;
2024  }
2025}
2026
2027// The ELF spec requires that all local symbols precede global symbols, so we
2028// sort symbol entries in this function. (For .dynsym, we don't do that because
2029// symbols for dynamic linking are inherently all globals.)
2030//
2031// Aside from above, we put local symbols in groups starting with the STT_FILE
2032// symbol. That is convenient for purpose of identifying where are local symbols
2033// coming from.
2034void SymbolTableBaseSection::sortSymTabSymbols() {
2035  // Move all local symbols before global symbols.
2036  auto e = std::stable_partition(
2037      symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) {
2038        return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL;
2039      });
2040  size_t numLocals = e - symbols.begin();
2041  getParent()->info = numLocals + 1;
2042
2043  // We want to group the local symbols by file. For that we rebuild the local
2044  // part of the symbols vector. We do not need to care about the STT_FILE
2045  // symbols, they are already naturally placed first in each group. That
2046  // happens because STT_FILE is always the first symbol in the object and hence
2047  // precede all other local symbols we add for a file.
2048  MapVector<InputFile *, std::vector<SymbolTableEntry>> arr;
2049  for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2050    arr[s.sym->file].push_back(s);
2051
2052  auto i = symbols.begin();
2053  for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr)
2054    for (SymbolTableEntry &entry : p.second)
2055      *i++ = entry;
2056}
2057
2058void SymbolTableBaseSection::addSymbol(Symbol *b) {
2059  // Adding a local symbol to a .dynsym is a bug.
2060  assert(this->type != SHT_DYNSYM || !b->isLocal());
2061
2062  bool hashIt = b->isLocal();
2063  symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)});
2064}
2065
2066size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2067  if (this == mainPart->dynSymTab)
2068    return sym->dynsymIndex;
2069
2070  // Initializes symbol lookup tables lazily. This is used only for -r,
2071  // -emit-relocs and dynsyms in partitions other than the main one.
2072  llvm::call_once(onceFlag, [&] {
2073    symbolIndexMap.reserve(symbols.size());
2074    size_t i = 0;
2075    for (const SymbolTableEntry &e : symbols) {
2076      if (e.sym->type == STT_SECTION)
2077        sectionIndexMap[e.sym->getOutputSection()] = ++i;
2078      else
2079        symbolIndexMap[e.sym] = ++i;
2080    }
2081  });
2082
2083  // Section symbols are mapped based on their output sections
2084  // to maintain their semantics.
2085  if (sym->type == STT_SECTION)
2086    return sectionIndexMap.lookup(sym->getOutputSection());
2087  return symbolIndexMap.lookup(sym);
2088}
2089
2090template <class ELFT>
2091SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2092    : SymbolTableBaseSection(strTabSec) {
2093  this->entsize = sizeof(Elf_Sym);
2094}
2095
2096static BssSection *getCommonSec(Symbol *sym) {
2097  if (!config->defineCommon)
2098    if (auto *d = dyn_cast<Defined>(sym))
2099      return dyn_cast_or_null<BssSection>(d->section);
2100  return nullptr;
2101}
2102
2103static uint32_t getSymSectionIndex(Symbol *sym) {
2104  if (getCommonSec(sym))
2105    return SHN_COMMON;
2106  if (!isa<Defined>(sym) || sym->needsPltAddr)
2107    return SHN_UNDEF;
2108  if (const OutputSection *os = sym->getOutputSection())
2109    return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2110                                             : os->sectionIndex;
2111  return SHN_ABS;
2112}
2113
2114// Write the internal symbol table contents to the output symbol table.
2115template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2116  // The first entry is a null entry as per the ELF spec.
2117  memset(buf, 0, sizeof(Elf_Sym));
2118  buf += sizeof(Elf_Sym);
2119
2120  auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2121
2122  for (SymbolTableEntry &ent : symbols) {
2123    Symbol *sym = ent.sym;
2124    bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2125
2126    // Set st_info and st_other.
2127    eSym->st_other = 0;
2128    if (sym->isLocal()) {
2129      eSym->setBindingAndType(STB_LOCAL, sym->type);
2130    } else {
2131      eSym->setBindingAndType(sym->computeBinding(), sym->type);
2132      eSym->setVisibility(sym->visibility);
2133    }
2134
2135    // The 3 most significant bits of st_other are used by OpenPOWER ABI.
2136    // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
2137    if (config->emachine == EM_PPC64)
2138      eSym->st_other |= sym->stOther & 0xe0;
2139
2140    eSym->st_name = ent.strTabOffset;
2141    if (isDefinedHere)
2142      eSym->st_shndx = getSymSectionIndex(ent.sym);
2143    else
2144      eSym->st_shndx = 0;
2145
2146    // Copy symbol size if it is a defined symbol. st_size is not significant
2147    // for undefined symbols, so whether copying it or not is up to us if that's
2148    // the case. We'll leave it as zero because by not setting a value, we can
2149    // get the exact same outputs for two sets of input files that differ only
2150    // in undefined symbol size in DSOs.
2151    if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere)
2152      eSym->st_size = 0;
2153    else
2154      eSym->st_size = sym->getSize();
2155
2156    // st_value is usually an address of a symbol, but that has a
2157    // special meaning for uninstantiated common symbols (this can
2158    // occur if -r is given).
2159    if (BssSection *commonSec = getCommonSec(ent.sym))
2160      eSym->st_value = commonSec->alignment;
2161    else if (isDefinedHere)
2162      eSym->st_value = sym->getVA();
2163    else
2164      eSym->st_value = 0;
2165
2166    ++eSym;
2167  }
2168
2169  // On MIPS we need to mark symbol which has a PLT entry and requires
2170  // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2171  // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2172  // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2173  if (config->emachine == EM_MIPS) {
2174    auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2175
2176    for (SymbolTableEntry &ent : symbols) {
2177      Symbol *sym = ent.sym;
2178      if (sym->isInPlt() && sym->needsPltAddr)
2179        eSym->st_other |= STO_MIPS_PLT;
2180      if (isMicroMips()) {
2181        // We already set the less-significant bit for symbols
2182        // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2183        // records. That allows us to distinguish such symbols in
2184        // the `MIPS<ELFT>::relocate()` routine. Now we should
2185        // clear that bit for non-dynamic symbol table, so tools
2186        // like `objdump` will be able to deal with a correct
2187        // symbol position.
2188        if (sym->isDefined() &&
2189            ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) {
2190          if (!strTabSec.isDynamic())
2191            eSym->st_value &= ~1;
2192          eSym->st_other |= STO_MIPS_MICROMIPS;
2193        }
2194      }
2195      if (config->relocatable)
2196        if (auto *d = dyn_cast<Defined>(sym))
2197          if (isMipsPIC<ELFT>(d))
2198            eSym->st_other |= STO_MIPS_PIC;
2199      ++eSym;
2200    }
2201  }
2202}
2203
2204SymtabShndxSection::SymtabShndxSection()
2205    : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2206  this->entsize = 4;
2207}
2208
2209void SymtabShndxSection::writeTo(uint8_t *buf) {
2210  // We write an array of 32 bit values, where each value has 1:1 association
2211  // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2212  // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2213  buf += 4; // Ignore .symtab[0] entry.
2214  for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2215    if (getSymSectionIndex(entry.sym) == SHN_XINDEX)
2216      write32(buf, entry.sym->getOutputSection()->sectionIndex);
2217    buf += 4;
2218  }
2219}
2220
2221bool SymtabShndxSection::isNeeded() const {
2222  // SHT_SYMTAB can hold symbols with section indices values up to
2223  // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2224  // section. Problem is that we reveal the final section indices a bit too
2225  // late, and we do not know them here. For simplicity, we just always create
2226  // a .symtab_shndx section when the amount of output sections is huge.
2227  size_t size = 0;
2228  for (BaseCommand *base : script->sectionCommands)
2229    if (isa<OutputSection>(base))
2230      ++size;
2231  return size >= SHN_LORESERVE;
2232}
2233
2234void SymtabShndxSection::finalizeContents() {
2235  getParent()->link = in.symTab->getParent()->sectionIndex;
2236}
2237
2238size_t SymtabShndxSection::getSize() const {
2239  return in.symTab->getNumSymbols() * 4;
2240}
2241
2242// .hash and .gnu.hash sections contain on-disk hash tables that map
2243// symbol names to their dynamic symbol table indices. Their purpose
2244// is to help the dynamic linker resolve symbols quickly. If ELF files
2245// don't have them, the dynamic linker has to do linear search on all
2246// dynamic symbols, which makes programs slower. Therefore, a .hash
2247// section is added to a DSO by default. A .gnu.hash is added if you
2248// give the -hash-style=gnu or -hash-style=both option.
2249//
2250// The Unix semantics of resolving dynamic symbols is somewhat expensive.
2251// Each ELF file has a list of DSOs that the ELF file depends on and a
2252// list of dynamic symbols that need to be resolved from any of the
2253// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2254// where m is the number of DSOs and n is the number of dynamic
2255// symbols. For modern large programs, both m and n are large.  So
2256// making each step faster by using hash tables substantially
2257// improves time to load programs.
2258//
2259// (Note that this is not the only way to design the shared library.
2260// For instance, the Windows DLL takes a different approach. On
2261// Windows, each dynamic symbol has a name of DLL from which the symbol
2262// has to be resolved. That makes the cost of symbol resolution O(n).
2263// This disables some hacky techniques you can use on Unix such as
2264// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2265//
2266// Due to historical reasons, we have two different hash tables, .hash
2267// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2268// and better version of .hash. .hash is just an on-disk hash table, but
2269// .gnu.hash has a bloom filter in addition to a hash table to skip
2270// DSOs very quickly. If you are sure that your dynamic linker knows
2271// about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a
2272// safe bet is to specify -hash-style=both for backward compatibility.
2273GnuHashTableSection::GnuHashTableSection()
2274    : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2275}
2276
2277void GnuHashTableSection::finalizeContents() {
2278  if (OutputSection *sec = getPartition().dynSymTab->getParent())
2279    getParent()->link = sec->sectionIndex;
2280
2281  // Computes bloom filter size in word size. We want to allocate 12
2282  // bits for each symbol. It must be a power of two.
2283  if (symbols.empty()) {
2284    maskWords = 1;
2285  } else {
2286    uint64_t numBits = symbols.size() * 12;
2287    maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2288  }
2289
2290  size = 16;                            // Header
2291  size += config->wordsize * maskWords; // Bloom filter
2292  size += nBuckets * 4;                 // Hash buckets
2293  size += symbols.size() * 4;           // Hash values
2294}
2295
2296void GnuHashTableSection::writeTo(uint8_t *buf) {
2297  // The output buffer is not guaranteed to be zero-cleared because we pre-
2298  // fill executable sections with trap instructions. This is a precaution
2299  // for that case, which happens only when -no-rosegment is given.
2300  memset(buf, 0, size);
2301
2302  // Write a header.
2303  write32(buf, nBuckets);
2304  write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2305  write32(buf + 8, maskWords);
2306  write32(buf + 12, Shift2);
2307  buf += 16;
2308
2309  // Write a bloom filter and a hash table.
2310  writeBloomFilter(buf);
2311  buf += config->wordsize * maskWords;
2312  writeHashTable(buf);
2313}
2314
2315// This function writes a 2-bit bloom filter. This bloom filter alone
2316// usually filters out 80% or more of all symbol lookups [1].
2317// The dynamic linker uses the hash table only when a symbol is not
2318// filtered out by a bloom filter.
2319//
2320// [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2),
2321//     p.9, https://www.akkadia.org/drepper/dsohowto.pdf
2322void GnuHashTableSection::writeBloomFilter(uint8_t *buf) {
2323  unsigned c = config->is64 ? 64 : 32;
2324  for (const Entry &sym : symbols) {
2325    // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2326    // the word using bits [0:5] and [26:31].
2327    size_t i = (sym.hash / c) & (maskWords - 1);
2328    uint64_t val = readUint(buf + i * config->wordsize);
2329    val |= uint64_t(1) << (sym.hash % c);
2330    val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2331    writeUint(buf + i * config->wordsize, val);
2332  }
2333}
2334
2335void GnuHashTableSection::writeHashTable(uint8_t *buf) {
2336  uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2337  uint32_t oldBucket = -1;
2338  uint32_t *values = buckets + nBuckets;
2339  for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2340    // Write a hash value. It represents a sequence of chains that share the
2341    // same hash modulo value. The last element of each chain is terminated by
2342    // LSB 1.
2343    uint32_t hash = i->hash;
2344    bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2345    hash = isLastInChain ? hash | 1 : hash & ~1;
2346    write32(values++, hash);
2347
2348    if (i->bucketIdx == oldBucket)
2349      continue;
2350    // Write a hash bucket. Hash buckets contain indices in the following hash
2351    // value table.
2352    write32(buckets + i->bucketIdx,
2353            getPartition().dynSymTab->getSymbolIndex(i->sym));
2354    oldBucket = i->bucketIdx;
2355  }
2356}
2357
2358static uint32_t hashGnu(StringRef name) {
2359  uint32_t h = 5381;
2360  for (uint8_t c : name)
2361    h = (h << 5) + h + c;
2362  return h;
2363}
2364
2365// Add symbols to this symbol hash table. Note that this function
2366// destructively sort a given vector -- which is needed because
2367// GNU-style hash table places some sorting requirements.
2368void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) {
2369  // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2370  // its type correctly.
2371  std::vector<SymbolTableEntry>::iterator mid =
2372      std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2373        return !s.sym->isDefined() || s.sym->partition != partition;
2374      });
2375
2376  // We chose load factor 4 for the on-disk hash table. For each hash
2377  // collision, the dynamic linker will compare a uint32_t hash value.
2378  // Since the integer comparison is quite fast, we believe we can
2379  // make the load factor even larger. 4 is just a conservative choice.
2380  //
2381  // Note that we don't want to create a zero-sized hash table because
2382  // Android loader as of 2018 doesn't like a .gnu.hash containing such
2383  // table. If that's the case, we create a hash table with one unused
2384  // dummy slot.
2385  nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2386
2387  if (mid == v.end())
2388    return;
2389
2390  for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2391    Symbol *b = ent.sym;
2392    uint32_t hash = hashGnu(b->getName());
2393    uint32_t bucketIdx = hash % nBuckets;
2394    symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2395  }
2396
2397  llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) {
2398    return l.bucketIdx < r.bucketIdx;
2399  });
2400
2401  v.erase(mid, v.end());
2402  for (const Entry &ent : symbols)
2403    v.push_back({ent.sym, ent.strTabOffset});
2404}
2405
2406HashTableSection::HashTableSection()
2407    : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2408  this->entsize = 4;
2409}
2410
2411void HashTableSection::finalizeContents() {
2412  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2413
2414  if (OutputSection *sec = symTab->getParent())
2415    getParent()->link = sec->sectionIndex;
2416
2417  unsigned numEntries = 2;               // nbucket and nchain.
2418  numEntries += symTab->getNumSymbols(); // The chain entries.
2419
2420  // Create as many buckets as there are symbols.
2421  numEntries += symTab->getNumSymbols();
2422  this->size = numEntries * 4;
2423}
2424
2425void HashTableSection::writeTo(uint8_t *buf) {
2426  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2427
2428  // See comment in GnuHashTableSection::writeTo.
2429  memset(buf, 0, size);
2430
2431  unsigned numSymbols = symTab->getNumSymbols();
2432
2433  uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2434  write32(p++, numSymbols); // nbucket
2435  write32(p++, numSymbols); // nchain
2436
2437  uint32_t *buckets = p;
2438  uint32_t *chains = p + numSymbols;
2439
2440  for (const SymbolTableEntry &s : symTab->getSymbols()) {
2441    Symbol *sym = s.sym;
2442    StringRef name = sym->getName();
2443    unsigned i = sym->dynsymIndex;
2444    uint32_t hash = hashSysV(name) % numSymbols;
2445    chains[i] = buckets[hash];
2446    write32(buckets + hash, i);
2447  }
2448}
2449
2450PltSection::PltSection()
2451    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2452      headerSize(target->pltHeaderSize) {
2453  // On PowerPC, this section contains lazy symbol resolvers.
2454  if (config->emachine == EM_PPC64) {
2455    name = ".glink";
2456    alignment = 4;
2457  }
2458
2459  // On x86 when IBT is enabled, this section contains the second PLT (lazy
2460  // symbol resolvers).
2461  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2462      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2463    name = ".plt.sec";
2464
2465  // The PLT needs to be writable on SPARC as the dynamic linker will
2466  // modify the instructions in the PLT entries.
2467  if (config->emachine == EM_SPARCV9)
2468    this->flags |= SHF_WRITE;
2469}
2470
2471void PltSection::writeTo(uint8_t *buf) {
2472  // At beginning of PLT, we have code to call the dynamic
2473  // linker to resolve dynsyms at runtime. Write such code.
2474  target->writePltHeader(buf);
2475  size_t off = headerSize;
2476
2477  for (const Symbol *sym : entries) {
2478    target->writePlt(buf + off, *sym, getVA() + off);
2479    off += target->pltEntrySize;
2480  }
2481}
2482
2483void PltSection::addEntry(Symbol &sym) {
2484  sym.pltIndex = entries.size();
2485  entries.push_back(&sym);
2486}
2487
2488size_t PltSection::getSize() const {
2489  return headerSize + entries.size() * target->pltEntrySize;
2490}
2491
2492bool PltSection::isNeeded() const {
2493  // For -z retpolineplt, .iplt needs the .plt header.
2494  return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2495}
2496
2497// Used by ARM to add mapping symbols in the PLT section, which aid
2498// disassembly.
2499void PltSection::addSymbols() {
2500  target->addPltHeaderSymbols(*this);
2501
2502  size_t off = headerSize;
2503  for (size_t i = 0; i < entries.size(); ++i) {
2504    target->addPltSymbols(*this, off);
2505    off += target->pltEntrySize;
2506  }
2507}
2508
2509IpltSection::IpltSection()
2510    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2511  if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2512    name = ".glink";
2513    alignment = 4;
2514  }
2515}
2516
2517void IpltSection::writeTo(uint8_t *buf) {
2518  uint32_t off = 0;
2519  for (const Symbol *sym : entries) {
2520    target->writeIplt(buf + off, *sym, getVA() + off);
2521    off += target->ipltEntrySize;
2522  }
2523}
2524
2525size_t IpltSection::getSize() const {
2526  return entries.size() * target->ipltEntrySize;
2527}
2528
2529void IpltSection::addEntry(Symbol &sym) {
2530  sym.pltIndex = entries.size();
2531  entries.push_back(&sym);
2532}
2533
2534// ARM uses mapping symbols to aid disassembly.
2535void IpltSection::addSymbols() {
2536  size_t off = 0;
2537  for (size_t i = 0, e = entries.size(); i != e; ++i) {
2538    target->addPltSymbols(*this, off);
2539    off += target->pltEntrySize;
2540  }
2541}
2542
2543PPC32GlinkSection::PPC32GlinkSection() {
2544  name = ".glink";
2545  alignment = 4;
2546}
2547
2548void PPC32GlinkSection::writeTo(uint8_t *buf) {
2549  writePPC32GlinkSection(buf, entries.size());
2550}
2551
2552size_t PPC32GlinkSection::getSize() const {
2553  return headerSize + entries.size() * target->pltEntrySize + footerSize;
2554}
2555
2556// This is an x86-only extra PLT section and used only when a security
2557// enhancement feature called CET is enabled. In this comment, I'll explain what
2558// the feature is and why we have two PLT sections if CET is enabled.
2559//
2560// So, what does CET do? CET introduces a new restriction to indirect jump
2561// instructions. CET works this way. Assume that CET is enabled. Then, if you
2562// execute an indirect jump instruction, the processor verifies that a special
2563// "landing pad" instruction (which is actually a repurposed NOP instruction and
2564// now called "endbr32" or "endbr64") is at the jump target. If the jump target
2565// does not start with that instruction, the processor raises an exception
2566// instead of continuing executing code.
2567//
2568// If CET is enabled, the compiler emits endbr to all locations where indirect
2569// jumps may jump to.
2570//
2571// This mechanism makes it extremely hard to transfer the control to a middle of
2572// a function that is not supporsed to be a indirect jump target, preventing
2573// certain types of attacks such as ROP or JOP.
2574//
2575// Note that the processors in the market as of 2019 don't actually support the
2576// feature. Only the spec is available at the moment.
2577//
2578// Now, I'll explain why we have this extra PLT section for CET.
2579//
2580// Since you can indirectly jump to a PLT entry, we have to make PLT entries
2581// start with endbr. The problem is there's no extra space for endbr (which is 4
2582// bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2583// used.
2584//
2585// In order to deal with the issue, we split a PLT entry into two PLT entries.
2586// Remember that each PLT entry contains code to jump to an address read from
2587// .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2588// the former code is written to .plt.sec, and the latter code is written to
2589// .plt.
2590//
2591// Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2592// that the regular .plt is now called .plt.sec and .plt is repurposed to
2593// contain only code for lazy symbol resolution.
2594//
2595// In other words, this is how the 2-PLT scheme works. Application code is
2596// supposed to jump to .plt.sec to call an external function. Each .plt.sec
2597// entry contains code to read an address from a corresponding .got.plt entry
2598// and jump to that address. Addresses in .got.plt initially point to .plt, so
2599// when an application calls an external function for the first time, the
2600// control is transferred to a function that resolves a symbol name from
2601// external shared object files. That function then rewrites a .got.plt entry
2602// with a resolved address, so that the subsequent function calls directly jump
2603// to a desired location from .plt.sec.
2604//
2605// There is an open question as to whether the 2-PLT scheme was desirable or
2606// not. We could have simply extended the PLT entry size to 32-bytes to
2607// accommodate endbr, and that scheme would have been much simpler than the
2608// 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2609// code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2610// that the optimization actually makes a difference.
2611//
2612// That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2613// depend on it, so we implement the ABI.
2614IBTPltSection::IBTPltSection()
2615    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2616
2617void IBTPltSection::writeTo(uint8_t *buf) {
2618  target->writeIBTPlt(buf, in.plt->getNumEntries());
2619}
2620
2621size_t IBTPltSection::getSize() const {
2622  // 16 is the header size of .plt.
2623  return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2624}
2625
2626// The string hash function for .gdb_index.
2627static uint32_t computeGdbHash(StringRef s) {
2628  uint32_t h = 0;
2629  for (uint8_t c : s)
2630    h = h * 67 + toLower(c) - 113;
2631  return h;
2632}
2633
2634GdbIndexSection::GdbIndexSection()
2635    : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2636
2637// Returns the desired size of an on-disk hash table for a .gdb_index section.
2638// There's a tradeoff between size and collision rate. We aim 75% utilization.
2639size_t GdbIndexSection::computeSymtabSize() const {
2640  return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2641}
2642
2643// Compute the output section size.
2644void GdbIndexSection::initOutputSize() {
2645  size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
2646
2647  for (GdbChunk &chunk : chunks)
2648    size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2649
2650  // Add the constant pool size if exists.
2651  if (!symbols.empty()) {
2652    GdbSymbol &sym = symbols.back();
2653    size += sym.nameOff + sym.name.size() + 1;
2654  }
2655}
2656
2657static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) {
2658  std::vector<GdbIndexSection::CuEntry> ret;
2659  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2660    ret.push_back({cu->getOffset(), cu->getLength() + 4});
2661  return ret;
2662}
2663
2664static std::vector<GdbIndexSection::AddressEntry>
2665readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2666  std::vector<GdbIndexSection::AddressEntry> ret;
2667
2668  uint32_t cuIdx = 0;
2669  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2670    if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2671      warn(toString(sec) + ": " + toString(std::move(e)));
2672      return {};
2673    }
2674    Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2675    if (!ranges) {
2676      warn(toString(sec) + ": " + toString(ranges.takeError()));
2677      return {};
2678    }
2679
2680    ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2681    for (DWARFAddressRange &r : *ranges) {
2682      if (r.SectionIndex == -1ULL)
2683        continue;
2684      // Range list with zero size has no effect.
2685      InputSectionBase *s = sections[r.SectionIndex];
2686      if (s && s != &InputSection::discarded && s->isLive())
2687        if (r.LowPC != r.HighPC)
2688          ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2689    }
2690    ++cuIdx;
2691  }
2692
2693  return ret;
2694}
2695
2696template <class ELFT>
2697static std::vector<GdbIndexSection::NameAttrEntry>
2698readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2699                     const std::vector<GdbIndexSection::CuEntry> &cus) {
2700  const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2701  const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2702
2703  std::vector<GdbIndexSection::NameAttrEntry> ret;
2704  for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2705    DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2706    DWARFDebugPubTable table;
2707    table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2708      warn(toString(pub->sec) + ": " + toString(std::move(e)));
2709    });
2710    for (const DWARFDebugPubTable::Set &set : table.getData()) {
2711      // The value written into the constant pool is kind << 24 | cuIndex. As we
2712      // don't know how many compilation units precede this object to compute
2713      // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2714      // the number of preceding compilation units later.
2715      uint32_t i = llvm::partition_point(cus,
2716                                         [&](GdbIndexSection::CuEntry cu) {
2717                                           return cu.cuOffset < set.Offset;
2718                                         }) -
2719                   cus.begin();
2720      for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2721        ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2722                       (ent.Descriptor.toBits() << 24) | i});
2723    }
2724  }
2725  return ret;
2726}
2727
2728// Create a list of symbols from a given list of symbol names and types
2729// by uniquifying them by name.
2730static std::vector<GdbIndexSection::GdbSymbol>
2731createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs,
2732              const std::vector<GdbIndexSection::GdbChunk> &chunks) {
2733  using GdbSymbol = GdbIndexSection::GdbSymbol;
2734  using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2735
2736  // For each chunk, compute the number of compilation units preceding it.
2737  uint32_t cuIdx = 0;
2738  std::vector<uint32_t> cuIdxs(chunks.size());
2739  for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2740    cuIdxs[i] = cuIdx;
2741    cuIdx += chunks[i].compilationUnits.size();
2742  }
2743
2744  // The number of symbols we will handle in this function is of the order
2745  // of millions for very large executables, so we use multi-threading to
2746  // speed it up.
2747  constexpr size_t numShards = 32;
2748  size_t concurrency = PowerOf2Floor(
2749      std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
2750                           .compute_thread_count(),
2751                       numShards));
2752
2753  // A sharded map to uniquify symbols by name.
2754  std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards);
2755  size_t shift = 32 - countTrailingZeros(numShards);
2756
2757  // Instantiate GdbSymbols while uniqufying them by name.
2758  std::vector<std::vector<GdbSymbol>> symbols(numShards);
2759  parallelForEachN(0, concurrency, [&](size_t threadId) {
2760    uint32_t i = 0;
2761    for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2762      for (const NameAttrEntry &ent : entries) {
2763        size_t shardId = ent.name.hash() >> shift;
2764        if ((shardId & (concurrency - 1)) != threadId)
2765          continue;
2766
2767        uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2768        size_t &idx = map[shardId][ent.name];
2769        if (idx) {
2770          symbols[shardId][idx - 1].cuVector.push_back(v);
2771          continue;
2772        }
2773
2774        idx = symbols[shardId].size() + 1;
2775        symbols[shardId].push_back({ent.name, {v}, 0, 0});
2776      }
2777      ++i;
2778    }
2779  });
2780
2781  size_t numSymbols = 0;
2782  for (ArrayRef<GdbSymbol> v : symbols)
2783    numSymbols += v.size();
2784
2785  // The return type is a flattened vector, so we'll copy each vector
2786  // contents to Ret.
2787  std::vector<GdbSymbol> ret;
2788  ret.reserve(numSymbols);
2789  for (std::vector<GdbSymbol> &vec : symbols)
2790    for (GdbSymbol &sym : vec)
2791      ret.push_back(std::move(sym));
2792
2793  // CU vectors and symbol names are adjacent in the output file.
2794  // We can compute their offsets in the output file now.
2795  size_t off = 0;
2796  for (GdbSymbol &sym : ret) {
2797    sym.cuVectorOff = off;
2798    off += (sym.cuVector.size() + 1) * 4;
2799  }
2800  for (GdbSymbol &sym : ret) {
2801    sym.nameOff = off;
2802    off += sym.name.size() + 1;
2803  }
2804
2805  return ret;
2806}
2807
2808// Returns a newly-created .gdb_index section.
2809template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2810  // Collect InputFiles with .debug_info. See the comment in
2811  // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2812  // note that isec->data() may uncompress the full content, which should be
2813  // parallelized.
2814  SetVector<InputFile *> files;
2815  for (InputSectionBase *s : inputSections) {
2816    InputSection *isec = dyn_cast<InputSection>(s);
2817    if (!isec)
2818      continue;
2819    // .debug_gnu_pub{names,types} are useless in executables.
2820    // They are present in input object files solely for creating
2821    // a .gdb_index. So we can remove them from the output.
2822    if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2823      s->markDead();
2824    else if (isec->name == ".debug_info")
2825      files.insert(isec->file);
2826  }
2827
2828  std::vector<GdbChunk> chunks(files.size());
2829  std::vector<std::vector<NameAttrEntry>> nameAttrs(files.size());
2830
2831  parallelForEachN(0, files.size(), [&](size_t i) {
2832    // To keep memory usage low, we don't want to keep cached DWARFContext, so
2833    // avoid getDwarf() here.
2834    ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2835    DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2836    auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2837
2838    // If the are multiple compile units .debug_info (very rare ld -r --unique),
2839    // this only picks the last one. Other address ranges are lost.
2840    chunks[i].sec = dobj.getInfoSection();
2841    chunks[i].compilationUnits = readCuList(dwarf);
2842    chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2843    nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2844  });
2845
2846  auto *ret = make<GdbIndexSection>();
2847  ret->chunks = std::move(chunks);
2848  ret->symbols = createSymbols(nameAttrs, ret->chunks);
2849  ret->initOutputSize();
2850  return ret;
2851}
2852
2853void GdbIndexSection::writeTo(uint8_t *buf) {
2854  // Write the header.
2855  auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2856  uint8_t *start = buf;
2857  hdr->version = 7;
2858  buf += sizeof(*hdr);
2859
2860  // Write the CU list.
2861  hdr->cuListOff = buf - start;
2862  for (GdbChunk &chunk : chunks) {
2863    for (CuEntry &cu : chunk.compilationUnits) {
2864      write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2865      write64le(buf + 8, cu.cuLength);
2866      buf += 16;
2867    }
2868  }
2869
2870  // Write the address area.
2871  hdr->cuTypesOff = buf - start;
2872  hdr->addressAreaOff = buf - start;
2873  uint32_t cuOff = 0;
2874  for (GdbChunk &chunk : chunks) {
2875    for (AddressEntry &e : chunk.addressAreas) {
2876      uint64_t baseAddr = e.section->getVA(0);
2877      write64le(buf, baseAddr + e.lowAddress);
2878      write64le(buf + 8, baseAddr + e.highAddress);
2879      write32le(buf + 16, e.cuIndex + cuOff);
2880      buf += 20;
2881    }
2882    cuOff += chunk.compilationUnits.size();
2883  }
2884
2885  // Write the on-disk open-addressing hash table containing symbols.
2886  hdr->symtabOff = buf - start;
2887  size_t symtabSize = computeSymtabSize();
2888  uint32_t mask = symtabSize - 1;
2889
2890  for (GdbSymbol &sym : symbols) {
2891    uint32_t h = sym.name.hash();
2892    uint32_t i = h & mask;
2893    uint32_t step = ((h * 17) & mask) | 1;
2894
2895    while (read32le(buf + i * 8))
2896      i = (i + step) & mask;
2897
2898    write32le(buf + i * 8, sym.nameOff);
2899    write32le(buf + i * 8 + 4, sym.cuVectorOff);
2900  }
2901
2902  buf += symtabSize * 8;
2903
2904  // Write the string pool.
2905  hdr->constantPoolOff = buf - start;
2906  parallelForEach(symbols, [&](GdbSymbol &sym) {
2907    memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2908  });
2909
2910  // Write the CU vectors.
2911  for (GdbSymbol &sym : symbols) {
2912    write32le(buf, sym.cuVector.size());
2913    buf += 4;
2914    for (uint32_t val : sym.cuVector) {
2915      write32le(buf, val);
2916      buf += 4;
2917    }
2918  }
2919}
2920
2921bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
2922
2923EhFrameHeader::EhFrameHeader()
2924    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
2925
2926void EhFrameHeader::writeTo(uint8_t *buf) {
2927  // Unlike most sections, the EhFrameHeader section is written while writing
2928  // another section, namely EhFrameSection, which calls the write() function
2929  // below from its writeTo() function. This is necessary because the contents
2930  // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
2931  // don't know which order the sections will be written in.
2932}
2933
2934// .eh_frame_hdr contains a binary search table of pointers to FDEs.
2935// Each entry of the search table consists of two values,
2936// the starting PC from where FDEs covers, and the FDE's address.
2937// It is sorted by PC.
2938void EhFrameHeader::write() {
2939  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
2940  using FdeData = EhFrameSection::FdeData;
2941
2942  std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData();
2943
2944  buf[0] = 1;
2945  buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
2946  buf[2] = DW_EH_PE_udata4;
2947  buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
2948  write32(buf + 4,
2949          getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
2950  write32(buf + 8, fdes.size());
2951  buf += 12;
2952
2953  for (FdeData &fde : fdes) {
2954    write32(buf, fde.pcRel);
2955    write32(buf + 4, fde.fdeVARel);
2956    buf += 8;
2957  }
2958}
2959
2960size_t EhFrameHeader::getSize() const {
2961  // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
2962  return 12 + getPartition().ehFrame->numFdes * 8;
2963}
2964
2965bool EhFrameHeader::isNeeded() const {
2966  return isLive() && getPartition().ehFrame->isNeeded();
2967}
2968
2969VersionDefinitionSection::VersionDefinitionSection()
2970    : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
2971                       ".gnu.version_d") {}
2972
2973StringRef VersionDefinitionSection::getFileDefName() {
2974  if (!getPartition().name.empty())
2975    return getPartition().name;
2976  if (!config->soName.empty())
2977    return config->soName;
2978  return config->outputFile;
2979}
2980
2981void VersionDefinitionSection::finalizeContents() {
2982  fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
2983  for (const VersionDefinition &v : namedVersionDefs())
2984    verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
2985
2986  if (OutputSection *sec = getPartition().dynStrTab->getParent())
2987    getParent()->link = sec->sectionIndex;
2988
2989  // sh_info should be set to the number of definitions. This fact is missed in
2990  // documentation, but confirmed by binutils community:
2991  // https://sourceware.org/ml/binutils/2014-11/msg00355.html
2992  getParent()->info = getVerDefNum();
2993}
2994
2995void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
2996                                        StringRef name, size_t nameOff) {
2997  uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
2998
2999  // Write a verdef.
3000  write16(buf, 1);                  // vd_version
3001  write16(buf + 2, flags);          // vd_flags
3002  write16(buf + 4, index);          // vd_ndx
3003  write16(buf + 6, 1);              // vd_cnt
3004  write32(buf + 8, hashSysV(name)); // vd_hash
3005  write32(buf + 12, 20);            // vd_aux
3006  write32(buf + 16, 28);            // vd_next
3007
3008  // Write a veraux.
3009  write32(buf + 20, nameOff); // vda_name
3010  write32(buf + 24, 0);       // vda_next
3011}
3012
3013void VersionDefinitionSection::writeTo(uint8_t *buf) {
3014  writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3015
3016  auto nameOffIt = verDefNameOffs.begin();
3017  for (const VersionDefinition &v : namedVersionDefs()) {
3018    buf += EntrySize;
3019    writeOne(buf, v.id, v.name, *nameOffIt++);
3020  }
3021
3022  // Need to terminate the last version definition.
3023  write32(buf + 16, 0); // vd_next
3024}
3025
3026size_t VersionDefinitionSection::getSize() const {
3027  return EntrySize * getVerDefNum();
3028}
3029
3030// .gnu.version is a table where each entry is 2 byte long.
3031VersionTableSection::VersionTableSection()
3032    : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3033                       ".gnu.version") {
3034  this->entsize = 2;
3035}
3036
3037void VersionTableSection::finalizeContents() {
3038  // At the moment of june 2016 GNU docs does not mention that sh_link field
3039  // should be set, but Sun docs do. Also readelf relies on this field.
3040  getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3041}
3042
3043size_t VersionTableSection::getSize() const {
3044  return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3045}
3046
3047void VersionTableSection::writeTo(uint8_t *buf) {
3048  buf += 2;
3049  for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3050    write16(buf, s.sym->versionId);
3051    buf += 2;
3052  }
3053}
3054
3055bool VersionTableSection::isNeeded() const {
3056  return isLive() &&
3057         (getPartition().verDef || getPartition().verNeed->isNeeded());
3058}
3059
3060void elf::addVerneed(Symbol *ss) {
3061  auto &file = cast<SharedFile>(*ss->file);
3062  if (ss->verdefIndex == VER_NDX_GLOBAL) {
3063    ss->versionId = VER_NDX_GLOBAL;
3064    return;
3065  }
3066
3067  if (file.vernauxs.empty())
3068    file.vernauxs.resize(file.verdefs.size());
3069
3070  // Select a version identifier for the vernaux data structure, if we haven't
3071  // already allocated one. The verdef identifiers cover the range
3072  // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3073  // getVerDefNum()+1.
3074  if (file.vernauxs[ss->verdefIndex] == 0)
3075    file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3076
3077  ss->versionId = file.vernauxs[ss->verdefIndex];
3078}
3079
3080template <class ELFT>
3081VersionNeedSection<ELFT>::VersionNeedSection()
3082    : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3083                       ".gnu.version_r") {}
3084
3085template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3086  for (SharedFile *f : sharedFiles) {
3087    if (f->vernauxs.empty())
3088      continue;
3089    verneeds.emplace_back();
3090    Verneed &vn = verneeds.back();
3091    vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3092    for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3093      if (f->vernauxs[i] == 0)
3094        continue;
3095      auto *verdef =
3096          reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3097      vn.vernauxs.push_back(
3098          {verdef->vd_hash, f->vernauxs[i],
3099           getPartition().dynStrTab->addString(f->getStringTable().data() +
3100                                               verdef->getAux()->vda_name)});
3101    }
3102  }
3103
3104  if (OutputSection *sec = getPartition().dynStrTab->getParent())
3105    getParent()->link = sec->sectionIndex;
3106  getParent()->info = verneeds.size();
3107}
3108
3109template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3110  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3111  auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3112  auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3113
3114  for (auto &vn : verneeds) {
3115    // Create an Elf_Verneed for this DSO.
3116    verneed->vn_version = 1;
3117    verneed->vn_cnt = vn.vernauxs.size();
3118    verneed->vn_file = vn.nameStrTab;
3119    verneed->vn_aux =
3120        reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3121    verneed->vn_next = sizeof(Elf_Verneed);
3122    ++verneed;
3123
3124    // Create the Elf_Vernauxs for this Elf_Verneed.
3125    for (auto &vna : vn.vernauxs) {
3126      vernaux->vna_hash = vna.hash;
3127      vernaux->vna_flags = 0;
3128      vernaux->vna_other = vna.verneedIndex;
3129      vernaux->vna_name = vna.nameStrTab;
3130      vernaux->vna_next = sizeof(Elf_Vernaux);
3131      ++vernaux;
3132    }
3133
3134    vernaux[-1].vna_next = 0;
3135  }
3136  verneed[-1].vn_next = 0;
3137}
3138
3139template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3140  return verneeds.size() * sizeof(Elf_Verneed) +
3141         SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3142}
3143
3144template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3145  return isLive() && SharedFile::vernauxNum != 0;
3146}
3147
3148void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3149  ms->parent = this;
3150  sections.push_back(ms);
3151  assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
3152  alignment = std::max(alignment, ms->alignment);
3153}
3154
3155MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3156                                   uint64_t flags, uint32_t alignment)
3157    : MergeSyntheticSection(name, type, flags, alignment),
3158      builder(StringTableBuilder::RAW, alignment) {}
3159
3160size_t MergeTailSection::getSize() const { return builder.getSize(); }
3161
3162void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3163
3164void MergeTailSection::finalizeContents() {
3165  // Add all string pieces to the string table builder to create section
3166  // contents.
3167  for (MergeInputSection *sec : sections)
3168    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3169      if (sec->pieces[i].live)
3170        builder.add(sec->getData(i));
3171
3172  // Fix the string table content. After this, the contents will never change.
3173  builder.finalize();
3174
3175  // finalize() fixed tail-optimized strings, so we can now get
3176  // offsets of strings. Get an offset for each string and save it
3177  // to a corresponding SectionPiece for easy access.
3178  for (MergeInputSection *sec : sections)
3179    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3180      if (sec->pieces[i].live)
3181        sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3182}
3183
3184void MergeNoTailSection::writeTo(uint8_t *buf) {
3185  for (size_t i = 0; i < numShards; ++i)
3186    shards[i].write(buf + shardOffsets[i]);
3187}
3188
3189// This function is very hot (i.e. it can take several seconds to finish)
3190// because sometimes the number of inputs is in an order of magnitude of
3191// millions. So, we use multi-threading.
3192//
3193// For any strings S and T, we know S is not mergeable with T if S's hash
3194// value is different from T's. If that's the case, we can safely put S and
3195// T into different string builders without worrying about merge misses.
3196// We do it in parallel.
3197void MergeNoTailSection::finalizeContents() {
3198  // Initializes string table builders.
3199  for (size_t i = 0; i < numShards; ++i)
3200    shards.emplace_back(StringTableBuilder::RAW, alignment);
3201
3202  // Concurrency level. Must be a power of 2 to avoid expensive modulo
3203  // operations in the following tight loop.
3204  size_t concurrency = PowerOf2Floor(
3205      std::min<size_t>(hardware_concurrency(parallel::strategy.ThreadsRequested)
3206                           .compute_thread_count(),
3207                       numShards));
3208
3209  // Add section pieces to the builders.
3210  parallelForEachN(0, concurrency, [&](size_t threadId) {
3211    for (MergeInputSection *sec : sections) {
3212      for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3213        if (!sec->pieces[i].live)
3214          continue;
3215        size_t shardId = getShardId(sec->pieces[i].hash);
3216        if ((shardId & (concurrency - 1)) == threadId)
3217          sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3218      }
3219    }
3220  });
3221
3222  // Compute an in-section offset for each shard.
3223  size_t off = 0;
3224  for (size_t i = 0; i < numShards; ++i) {
3225    shards[i].finalizeInOrder();
3226    if (shards[i].getSize() > 0)
3227      off = alignTo(off, alignment);
3228    shardOffsets[i] = off;
3229    off += shards[i].getSize();
3230  }
3231  size = off;
3232
3233  // So far, section pieces have offsets from beginning of shards, but
3234  // we want offsets from beginning of the whole section. Fix them.
3235  parallelForEach(sections, [&](MergeInputSection *sec) {
3236    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3237      if (sec->pieces[i].live)
3238        sec->pieces[i].outputOff +=
3239            shardOffsets[getShardId(sec->pieces[i].hash)];
3240  });
3241}
3242
3243MergeSyntheticSection *elf::createMergeSynthetic(StringRef name, uint32_t type,
3244                                                 uint64_t flags,
3245                                                 uint32_t alignment) {
3246  bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2;
3247  if (shouldTailMerge)
3248    return make<MergeTailSection>(name, type, flags, alignment);
3249  return make<MergeNoTailSection>(name, type, flags, alignment);
3250}
3251
3252template <class ELFT> void elf::splitSections() {
3253  llvm::TimeTraceScope timeScope("Split sections");
3254  // splitIntoPieces needs to be called on each MergeInputSection
3255  // before calling finalizeContents().
3256  parallelForEach(inputSections, [](InputSectionBase *sec) {
3257    if (auto *s = dyn_cast<MergeInputSection>(sec))
3258      s->splitIntoPieces();
3259    else if (auto *eh = dyn_cast<EhInputSection>(sec))
3260      eh->split<ELFT>();
3261  });
3262}
3263
3264MipsRldMapSection::MipsRldMapSection()
3265    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3266                       ".rld_map") {}
3267
3268ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3269    : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3270                       config->wordsize, ".ARM.exidx") {}
3271
3272static InputSection *findExidxSection(InputSection *isec) {
3273  for (InputSection *d : isec->dependentSections)
3274    if (d->type == SHT_ARM_EXIDX && d->isLive())
3275      return d;
3276  return nullptr;
3277}
3278
3279static bool isValidExidxSectionDep(InputSection *isec) {
3280  return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3281         isec->getSize() > 0;
3282}
3283
3284bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3285  if (isec->type == SHT_ARM_EXIDX) {
3286    if (InputSection *dep = isec->getLinkOrderDep())
3287      if (isValidExidxSectionDep(dep)) {
3288        exidxSections.push_back(isec);
3289        // Every exidxSection is 8 bytes, we need an estimate of
3290        // size before assignAddresses can be called. Final size
3291        // will only be known after finalize is called.
3292        size += 8;
3293      }
3294    return true;
3295  }
3296
3297  if (isValidExidxSectionDep(isec)) {
3298    executableSections.push_back(isec);
3299    return false;
3300  }
3301
3302  // FIXME: we do not output a relocation section when --emit-relocs is used
3303  // as we do not have relocation sections for linker generated table entries
3304  // and we would have to erase at a late stage relocations from merged entries.
3305  // Given that exception tables are already position independent and a binary
3306  // analyzer could derive the relocations we choose to erase the relocations.
3307  if (config->emitRelocs && isec->type == SHT_REL)
3308    if (InputSectionBase *ex = isec->getRelocatedSection())
3309      if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3310        return true;
3311
3312  return false;
3313}
3314
3315// References to .ARM.Extab Sections have bit 31 clear and are not the
3316// special EXIDX_CANTUNWIND bit-pattern.
3317static bool isExtabRef(uint32_t unwind) {
3318  return (unwind & 0x80000000) == 0 && unwind != 0x1;
3319}
3320
3321// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3322// section Prev, where Cur follows Prev in the table. This can be done if the
3323// unwinding instructions in Cur are identical to Prev. Linker generated
3324// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3325// InputSection.
3326static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3327
3328  struct ExidxEntry {
3329    ulittle32_t fn;
3330    ulittle32_t unwind;
3331  };
3332  // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3333  // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3334  ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3335  if (prev)
3336    prevEntry = prev->getDataAs<ExidxEntry>().back();
3337  if (isExtabRef(prevEntry.unwind))
3338    return false;
3339
3340  // We consider the unwind instructions of an .ARM.exidx table entry
3341  // a duplicate if the previous unwind instructions if:
3342  // - Both are the special EXIDX_CANTUNWIND.
3343  // - Both are the same inline unwind instructions.
3344  // We do not attempt to follow and check links into .ARM.extab tables as
3345  // consecutive identical entries are rare and the effort to check that they
3346  // are identical is high.
3347
3348  // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3349  if (cur == nullptr)
3350    return prevEntry.unwind == 1;
3351
3352  for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3353    if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3354      return false;
3355
3356  // All table entries in this .ARM.exidx Section can be merged into the
3357  // previous Section.
3358  return true;
3359}
3360
3361// The .ARM.exidx table must be sorted in ascending order of the address of the
3362// functions the table describes. Optionally duplicate adjacent table entries
3363// can be removed. At the end of the function the executableSections must be
3364// sorted in ascending order of address, Sentinel is set to the InputSection
3365// with the highest address and any InputSections that have mergeable
3366// .ARM.exidx table entries are removed from it.
3367void ARMExidxSyntheticSection::finalizeContents() {
3368  // The executableSections and exidxSections that we use to derive the final
3369  // contents of this SyntheticSection are populated before
3370  // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3371  // ICF may remove executable InputSections and their dependent .ARM.exidx
3372  // section that we recorded earlier.
3373  auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3374  llvm::erase_if(exidxSections, isDiscarded);
3375  // We need to remove discarded InputSections and InputSections without
3376  // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3377  // of range.
3378  auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3379    if (!isec->isLive())
3380      return true;
3381    if (findExidxSection(isec))
3382      return false;
3383    int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3384    return off != llvm::SignExtend64(off, 31);
3385  };
3386  llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3387
3388  // Sort the executable sections that may or may not have associated
3389  // .ARM.exidx sections by order of ascending address. This requires the
3390  // relative positions of InputSections and OutputSections to be known.
3391  auto compareByFilePosition = [](const InputSection *a,
3392                                  const InputSection *b) {
3393    OutputSection *aOut = a->getParent();
3394    OutputSection *bOut = b->getParent();
3395
3396    if (aOut != bOut)
3397      return aOut->addr < bOut->addr;
3398    return a->outSecOff < b->outSecOff;
3399  };
3400  llvm::stable_sort(executableSections, compareByFilePosition);
3401  sentinel = executableSections.back();
3402  // Optionally merge adjacent duplicate entries.
3403  if (config->mergeArmExidx) {
3404    std::vector<InputSection *> selectedSections;
3405    selectedSections.reserve(executableSections.size());
3406    selectedSections.push_back(executableSections[0]);
3407    size_t prev = 0;
3408    for (size_t i = 1; i < executableSections.size(); ++i) {
3409      InputSection *ex1 = findExidxSection(executableSections[prev]);
3410      InputSection *ex2 = findExidxSection(executableSections[i]);
3411      if (!isDuplicateArmExidxSec(ex1, ex2)) {
3412        selectedSections.push_back(executableSections[i]);
3413        prev = i;
3414      }
3415    }
3416    executableSections = std::move(selectedSections);
3417  }
3418
3419  size_t offset = 0;
3420  size = 0;
3421  for (InputSection *isec : executableSections) {
3422    if (InputSection *d = findExidxSection(isec)) {
3423      d->outSecOff = offset;
3424      d->parent = getParent();
3425      offset += d->getSize();
3426    } else {
3427      offset += 8;
3428    }
3429  }
3430  // Size includes Sentinel.
3431  size = offset + 8;
3432}
3433
3434InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3435  return executableSections.front();
3436}
3437
3438// To write the .ARM.exidx table from the ExecutableSections we have three cases
3439// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3440//     We write the .ARM.exidx section contents and apply its relocations.
3441// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3442//     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3443//     start of the InputSection as the purpose of the linker generated
3444//     section is to terminate the address range of the previous entry.
3445// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3446//     the table to terminate the address range of the final entry.
3447void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3448
3449  const uint8_t cantUnwindData[8] = {0, 0, 0, 0,  // PREL31 to target
3450                                     1, 0, 0, 0}; // EXIDX_CANTUNWIND
3451
3452  uint64_t offset = 0;
3453  for (InputSection *isec : executableSections) {
3454    assert(isec->getParent() != nullptr);
3455    if (InputSection *d = findExidxSection(isec)) {
3456      memcpy(buf + offset, d->data().data(), d->data().size());
3457      d->relocateAlloc(buf, buf + d->getSize());
3458      offset += d->getSize();
3459    } else {
3460      // A Linker generated CANTUNWIND section.
3461      memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3462      uint64_t s = isec->getVA();
3463      uint64_t p = getVA() + offset;
3464      target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3465      offset += 8;
3466    }
3467  }
3468  // Write Sentinel.
3469  memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3470  uint64_t s = sentinel->getVA(sentinel->getSize());
3471  uint64_t p = getVA() + offset;
3472  target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3473  assert(size == offset + 8);
3474}
3475
3476bool ARMExidxSyntheticSection::isNeeded() const {
3477  return llvm::find_if(exidxSections, [](InputSection *isec) {
3478           return isec->isLive();
3479         }) != exidxSections.end();
3480}
3481
3482bool ARMExidxSyntheticSection::classof(const SectionBase *d) {
3483  return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX;
3484}
3485
3486ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3487    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
3488                       ".text.thunk") {
3489  this->parent = os;
3490  this->outSecOff = off;
3491}
3492
3493size_t ThunkSection::getSize() const {
3494  if (roundUpSizeForErrata)
3495    return alignTo(size, 4096);
3496  return size;
3497}
3498
3499void ThunkSection::addThunk(Thunk *t) {
3500  thunks.push_back(t);
3501  t->addSymbols(*this);
3502}
3503
3504void ThunkSection::writeTo(uint8_t *buf) {
3505  for (Thunk *t : thunks)
3506    t->writeTo(buf + t->offset);
3507}
3508
3509InputSection *ThunkSection::getTargetInputSection() const {
3510  if (thunks.empty())
3511    return nullptr;
3512  const Thunk *t = thunks.front();
3513  return t->getTargetInputSection();
3514}
3515
3516bool ThunkSection::assignOffsets() {
3517  uint64_t off = 0;
3518  for (Thunk *t : thunks) {
3519    off = alignTo(off, t->alignment);
3520    t->setOffset(off);
3521    uint32_t size = t->size();
3522    t->getThunkTargetSym()->size = size;
3523    off += size;
3524  }
3525  bool changed = off != size;
3526  size = off;
3527  return changed;
3528}
3529
3530PPC32Got2Section::PPC32Got2Section()
3531    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3532
3533bool PPC32Got2Section::isNeeded() const {
3534  // See the comment below. This is not needed if there is no other
3535  // InputSection.
3536  for (BaseCommand *base : getParent()->sectionCommands)
3537    if (auto *isd = dyn_cast<InputSectionDescription>(base))
3538      for (InputSection *isec : isd->sections)
3539        if (isec != this)
3540          return true;
3541  return false;
3542}
3543
3544void PPC32Got2Section::finalizeContents() {
3545  // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3546  // .got2 . This function computes outSecOff of each .got2 to be used in
3547  // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3548  // to collect input sections named ".got2".
3549  uint32_t offset = 0;
3550  for (BaseCommand *base : getParent()->sectionCommands)
3551    if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
3552      for (InputSection *isec : isd->sections) {
3553        if (isec == this)
3554          continue;
3555        isec->file->ppc32Got2OutSecOff = offset;
3556        offset += (uint32_t)isec->getSize();
3557      }
3558    }
3559}
3560
3561// If linking position-dependent code then the table will store the addresses
3562// directly in the binary so the section has type SHT_PROGBITS. If linking
3563// position-independent code the section has type SHT_NOBITS since it will be
3564// allocated and filled in by the dynamic linker.
3565PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3566    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3567                       config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3568                       ".branch_lt") {}
3569
3570uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3571                                                  int64_t addend) {
3572  return getVA() + entry_index.find({sym, addend})->second * 8;
3573}
3574
3575Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym,
3576                                                          int64_t addend) {
3577  auto res =
3578      entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3579  if (!res.second)
3580    return None;
3581  entries.emplace_back(sym, addend);
3582  return res.first->second;
3583}
3584
3585size_t PPC64LongBranchTargetSection::getSize() const {
3586  return entries.size() * 8;
3587}
3588
3589void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3590  // If linking non-pic we have the final addresses of the targets and they get
3591  // written to the table directly. For pic the dynamic linker will allocate
3592  // the section and fill it it.
3593  if (config->isPic)
3594    return;
3595
3596  for (auto entry : entries) {
3597    const Symbol *sym = entry.first;
3598    int64_t addend = entry.second;
3599    assert(sym->getVA());
3600    // Need calls to branch to the local entry-point since a long-branch
3601    // must be a local-call.
3602    write64(buf, sym->getVA(addend) +
3603                     getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3604    buf += 8;
3605  }
3606}
3607
3608bool PPC64LongBranchTargetSection::isNeeded() const {
3609  // `removeUnusedSyntheticSections()` is called before thunk allocation which
3610  // is too early to determine if this section will be empty or not. We need
3611  // Finalized to keep the section alive until after thunk creation. Finalized
3612  // only gets set to true once `finalizeSections()` is called after thunk
3613  // creation. Because of this, if we don't create any long-branch thunks we end
3614  // up with an empty .branch_lt section in the binary.
3615  return !finalized || !entries.empty();
3616}
3617
3618static uint8_t getAbiVersion() {
3619  // MIPS non-PIC executable gets ABI version 1.
3620  if (config->emachine == EM_MIPS) {
3621    if (!config->isPic && !config->relocatable &&
3622        (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3623      return 1;
3624    return 0;
3625  }
3626
3627  if (config->emachine == EM_AMDGPU) {
3628    uint8_t ver = objectFiles[0]->abiVersion;
3629    for (InputFile *file : makeArrayRef(objectFiles).slice(1))
3630      if (file->abiVersion != ver)
3631        error("incompatible ABI version: " + toString(file));
3632    return ver;
3633  }
3634
3635  return 0;
3636}
3637
3638template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3639  // For executable segments, the trap instructions are written before writing
3640  // the header. Setting Elf header bytes to zero ensures that any unused bytes
3641  // in header are zero-cleared, instead of having trap instructions.
3642  memset(buf, 0, sizeof(typename ELFT::Ehdr));
3643  memcpy(buf, "\177ELF", 4);
3644
3645  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3646  eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3647  eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3648  eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3649  eHdr->e_ident[EI_OSABI] = config->osabi;
3650  eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3651  eHdr->e_machine = config->emachine;
3652  eHdr->e_version = EV_CURRENT;
3653  eHdr->e_flags = config->eflags;
3654  eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3655  eHdr->e_phnum = part.phdrs.size();
3656  eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3657
3658  if (!config->relocatable) {
3659    eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3660    eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3661  }
3662}
3663
3664template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3665  // Write the program header table.
3666  auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3667  for (PhdrEntry *p : part.phdrs) {
3668    hBuf->p_type = p->p_type;
3669    hBuf->p_flags = p->p_flags;
3670    hBuf->p_offset = p->p_offset;
3671    hBuf->p_vaddr = p->p_vaddr;
3672    hBuf->p_paddr = p->p_paddr;
3673    hBuf->p_filesz = p->p_filesz;
3674    hBuf->p_memsz = p->p_memsz;
3675    hBuf->p_align = p->p_align;
3676    ++hBuf;
3677  }
3678}
3679
3680template <typename ELFT>
3681PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3682    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3683
3684template <typename ELFT>
3685size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3686  return sizeof(typename ELFT::Ehdr);
3687}
3688
3689template <typename ELFT>
3690void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3691  writeEhdr<ELFT>(buf, getPartition());
3692
3693  // Loadable partitions are always ET_DYN.
3694  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3695  eHdr->e_type = ET_DYN;
3696}
3697
3698template <typename ELFT>
3699PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3700    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3701
3702template <typename ELFT>
3703size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3704  return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3705}
3706
3707template <typename ELFT>
3708void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3709  writePhdrs<ELFT>(buf, getPartition());
3710}
3711
3712PartitionIndexSection::PartitionIndexSection()
3713    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3714
3715size_t PartitionIndexSection::getSize() const {
3716  return 12 * (partitions.size() - 1);
3717}
3718
3719void PartitionIndexSection::finalizeContents() {
3720  for (size_t i = 1; i != partitions.size(); ++i)
3721    partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3722}
3723
3724void PartitionIndexSection::writeTo(uint8_t *buf) {
3725  uint64_t va = getVA();
3726  for (size_t i = 1; i != partitions.size(); ++i) {
3727    write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3728    write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3729
3730    SyntheticSection *next =
3731        i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader;
3732    write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3733
3734    va += 12;
3735    buf += 12;
3736  }
3737}
3738
3739InStruct elf::in;
3740
3741std::vector<Partition> elf::partitions;
3742Partition *elf::mainPart;
3743
3744template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3745template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3746template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3747template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3748
3749template void elf::splitSections<ELF32LE>();
3750template void elf::splitSections<ELF32BE>();
3751template void elf::splitSections<ELF64LE>();
3752template void elf::splitSections<ELF64BE>();
3753
3754template class elf::MipsAbiFlagsSection<ELF32LE>;
3755template class elf::MipsAbiFlagsSection<ELF32BE>;
3756template class elf::MipsAbiFlagsSection<ELF64LE>;
3757template class elf::MipsAbiFlagsSection<ELF64BE>;
3758
3759template class elf::MipsOptionsSection<ELF32LE>;
3760template class elf::MipsOptionsSection<ELF32BE>;
3761template class elf::MipsOptionsSection<ELF64LE>;
3762template class elf::MipsOptionsSection<ELF64BE>;
3763
3764template class elf::MipsReginfoSection<ELF32LE>;
3765template class elf::MipsReginfoSection<ELF32BE>;
3766template class elf::MipsReginfoSection<ELF64LE>;
3767template class elf::MipsReginfoSection<ELF64BE>;
3768
3769template class elf::DynamicSection<ELF32LE>;
3770template class elf::DynamicSection<ELF32BE>;
3771template class elf::DynamicSection<ELF64LE>;
3772template class elf::DynamicSection<ELF64BE>;
3773
3774template class elf::RelocationSection<ELF32LE>;
3775template class elf::RelocationSection<ELF32BE>;
3776template class elf::RelocationSection<ELF64LE>;
3777template class elf::RelocationSection<ELF64BE>;
3778
3779template class elf::AndroidPackedRelocationSection<ELF32LE>;
3780template class elf::AndroidPackedRelocationSection<ELF32BE>;
3781template class elf::AndroidPackedRelocationSection<ELF64LE>;
3782template class elf::AndroidPackedRelocationSection<ELF64BE>;
3783
3784template class elf::RelrSection<ELF32LE>;
3785template class elf::RelrSection<ELF32BE>;
3786template class elf::RelrSection<ELF64LE>;
3787template class elf::RelrSection<ELF64BE>;
3788
3789template class elf::SymbolTableSection<ELF32LE>;
3790template class elf::SymbolTableSection<ELF32BE>;
3791template class elf::SymbolTableSection<ELF64LE>;
3792template class elf::SymbolTableSection<ELF64BE>;
3793
3794template class elf::VersionNeedSection<ELF32LE>;
3795template class elf::VersionNeedSection<ELF32BE>;
3796template class elf::VersionNeedSection<ELF64LE>;
3797template class elf::VersionNeedSection<ELF64BE>;
3798
3799template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3800template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3801template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3802template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3803
3804template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3805template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3806template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3807template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3808
3809template class elf::PartitionElfHeaderSection<ELF32LE>;
3810template class elf::PartitionElfHeaderSection<ELF32BE>;
3811template class elf::PartitionElfHeaderSection<ELF64LE>;
3812template class elf::PartitionElfHeaderSection<ELF64BE>;
3813
3814template class elf::PartitionProgramHeadersSection<ELF32LE>;
3815template class elf::PartitionProgramHeadersSection<ELF32BE>;
3816template class elf::PartitionProgramHeadersSection<ELF64LE>;
3817template class elf::PartitionProgramHeadersSection<ELF64BE>;
3818