1//===-- tsan_rtl_report.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11//===----------------------------------------------------------------------===//
12
13#include "sanitizer_common/sanitizer_libc.h"
14#include "sanitizer_common/sanitizer_placement_new.h"
15#include "sanitizer_common/sanitizer_stackdepot.h"
16#include "sanitizer_common/sanitizer_common.h"
17#include "sanitizer_common/sanitizer_stacktrace.h"
18#include "tsan_platform.h"
19#include "tsan_rtl.h"
20#include "tsan_suppressions.h"
21#include "tsan_symbolize.h"
22#include "tsan_report.h"
23#include "tsan_sync.h"
24#include "tsan_mman.h"
25#include "tsan_flags.h"
26#include "tsan_fd.h"
27
28namespace __tsan {
29
30using namespace __sanitizer;
31
32static ReportStack *SymbolizeStack(StackTrace trace);
33
34void TsanCheckFailed(const char *file, int line, const char *cond,
35                     u64 v1, u64 v2) {
36  // There is high probability that interceptors will check-fail as well,
37  // on the other hand there is no sense in processing interceptors
38  // since we are going to die soon.
39  ScopedIgnoreInterceptors ignore;
40#if !SANITIZER_GO
41  cur_thread()->ignore_sync++;
42  cur_thread()->ignore_reads_and_writes++;
43#endif
44  Printf("FATAL: ThreadSanitizer CHECK failed: "
45         "%s:%d \"%s\" (0x%zx, 0x%zx)\n",
46         file, line, cond, (uptr)v1, (uptr)v2);
47  PrintCurrentStackSlow(StackTrace::GetCurrentPc());
48  Die();
49}
50
51// Can be overriden by an application/test to intercept reports.
52#ifdef TSAN_EXTERNAL_HOOKS
53bool OnReport(const ReportDesc *rep, bool suppressed);
54#else
55SANITIZER_WEAK_CXX_DEFAULT_IMPL
56bool OnReport(const ReportDesc *rep, bool suppressed) {
57  (void)rep;
58  return suppressed;
59}
60#endif
61
62SANITIZER_WEAK_DEFAULT_IMPL
63void __tsan_on_report(const ReportDesc *rep) {
64  (void)rep;
65}
66
67static void StackStripMain(SymbolizedStack *frames) {
68  SymbolizedStack *last_frame = nullptr;
69  SymbolizedStack *last_frame2 = nullptr;
70  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
71    last_frame2 = last_frame;
72    last_frame = cur;
73  }
74
75  if (last_frame2 == 0)
76    return;
77#if !SANITIZER_GO
78  const char *last = last_frame->info.function;
79  const char *last2 = last_frame2->info.function;
80  // Strip frame above 'main'
81  if (last2 && 0 == internal_strcmp(last2, "main")) {
82    last_frame->ClearAll();
83    last_frame2->next = nullptr;
84  // Strip our internal thread start routine.
85  } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) {
86    last_frame->ClearAll();
87    last_frame2->next = nullptr;
88  // Strip global ctors init.
89  } else if (last && 0 == internal_strcmp(last, "__do_global_ctors_aux")) {
90    last_frame->ClearAll();
91    last_frame2->next = nullptr;
92  // If both are 0, then we probably just failed to symbolize.
93  } else if (last || last2) {
94    // Ensure that we recovered stack completely. Trimmed stack
95    // can actually happen if we do not instrument some code,
96    // so it's only a debug print. However we must try hard to not miss it
97    // due to our fault.
98    DPrintf("Bottom stack frame is missed\n");
99  }
100#else
101  // The last frame always point into runtime (gosched0, goexit0, runtime.main).
102  last_frame->ClearAll();
103  last_frame2->next = nullptr;
104#endif
105}
106
107ReportStack *SymbolizeStackId(u32 stack_id) {
108  if (stack_id == 0)
109    return 0;
110  StackTrace stack = StackDepotGet(stack_id);
111  if (stack.trace == nullptr)
112    return nullptr;
113  return SymbolizeStack(stack);
114}
115
116static ReportStack *SymbolizeStack(StackTrace trace) {
117  if (trace.size == 0)
118    return 0;
119  SymbolizedStack *top = nullptr;
120  for (uptr si = 0; si < trace.size; si++) {
121    const uptr pc = trace.trace[si];
122    uptr pc1 = pc;
123    // We obtain the return address, but we're interested in the previous
124    // instruction.
125    if ((pc & kExternalPCBit) == 0)
126      pc1 = StackTrace::GetPreviousInstructionPc(pc);
127    SymbolizedStack *ent = SymbolizeCode(pc1);
128    CHECK_NE(ent, 0);
129    SymbolizedStack *last = ent;
130    while (last->next) {
131      last->info.address = pc;  // restore original pc for report
132      last = last->next;
133    }
134    last->info.address = pc;  // restore original pc for report
135    last->next = top;
136    top = ent;
137  }
138  StackStripMain(top);
139
140  ReportStack *stack = ReportStack::New();
141  stack->frames = top;
142  return stack;
143}
144
145ScopedReportBase::ScopedReportBase(ReportType typ, uptr tag) {
146  ctx->thread_registry->CheckLocked();
147  void *mem = internal_alloc(MBlockReport, sizeof(ReportDesc));
148  rep_ = new(mem) ReportDesc;
149  rep_->typ = typ;
150  rep_->tag = tag;
151  ctx->report_mtx.Lock();
152}
153
154ScopedReportBase::~ScopedReportBase() {
155  ctx->report_mtx.Unlock();
156  DestroyAndFree(rep_);
157  rep_ = nullptr;
158}
159
160void ScopedReportBase::AddStack(StackTrace stack, bool suppressable) {
161  ReportStack **rs = rep_->stacks.PushBack();
162  *rs = SymbolizeStack(stack);
163  (*rs)->suppressable = suppressable;
164}
165
166void ScopedReportBase::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s,
167                                       StackTrace stack, const MutexSet *mset) {
168  void *mem = internal_alloc(MBlockReportMop, sizeof(ReportMop));
169  ReportMop *mop = new(mem) ReportMop;
170  rep_->mops.PushBack(mop);
171  mop->tid = s.tid();
172  mop->addr = addr + s.addr0();
173  mop->size = s.size();
174  mop->write = s.IsWrite();
175  mop->atomic = s.IsAtomic();
176  mop->stack = SymbolizeStack(stack);
177  mop->external_tag = external_tag;
178  if (mop->stack)
179    mop->stack->suppressable = true;
180  for (uptr i = 0; i < mset->Size(); i++) {
181    MutexSet::Desc d = mset->Get(i);
182    u64 mid = this->AddMutex(d.id);
183    ReportMopMutex mtx = {mid, d.write};
184    mop->mset.PushBack(mtx);
185  }
186}
187
188void ScopedReportBase::AddUniqueTid(int unique_tid) {
189  rep_->unique_tids.PushBack(unique_tid);
190}
191
192void ScopedReportBase::AddThread(const ThreadContext *tctx, bool suppressable) {
193  for (uptr i = 0; i < rep_->threads.Size(); i++) {
194    if ((u32)rep_->threads[i]->id == tctx->tid)
195      return;
196  }
197  void *mem = internal_alloc(MBlockReportThread, sizeof(ReportThread));
198  ReportThread *rt = new(mem) ReportThread;
199  rep_->threads.PushBack(rt);
200  rt->id = tctx->tid;
201  rt->os_id = tctx->os_id;
202  rt->running = (tctx->status == ThreadStatusRunning);
203  rt->name = internal_strdup(tctx->name);
204  rt->parent_tid = tctx->parent_tid;
205  rt->thread_type = tctx->thread_type;
206  rt->stack = 0;
207  rt->stack = SymbolizeStackId(tctx->creation_stack_id);
208  if (rt->stack)
209    rt->stack->suppressable = suppressable;
210}
211
212#if !SANITIZER_GO
213static bool FindThreadByUidLockedCallback(ThreadContextBase *tctx, void *arg) {
214  int unique_id = *(int *)arg;
215  return tctx->unique_id == (u32)unique_id;
216}
217
218static ThreadContext *FindThreadByUidLocked(int unique_id) {
219  ctx->thread_registry->CheckLocked();
220  return static_cast<ThreadContext *>(
221      ctx->thread_registry->FindThreadContextLocked(
222          FindThreadByUidLockedCallback, &unique_id));
223}
224
225static ThreadContext *FindThreadByTidLocked(int tid) {
226  ctx->thread_registry->CheckLocked();
227  return static_cast<ThreadContext*>(
228      ctx->thread_registry->GetThreadLocked(tid));
229}
230
231static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) {
232  uptr addr = (uptr)arg;
233  ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
234  if (tctx->status != ThreadStatusRunning)
235    return false;
236  ThreadState *thr = tctx->thr;
237  CHECK(thr);
238  return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) ||
239          (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size));
240}
241
242ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) {
243  ctx->thread_registry->CheckLocked();
244  ThreadContext *tctx = static_cast<ThreadContext*>(
245      ctx->thread_registry->FindThreadContextLocked(IsInStackOrTls,
246                                                    (void*)addr));
247  if (!tctx)
248    return 0;
249  ThreadState *thr = tctx->thr;
250  CHECK(thr);
251  *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size);
252  return tctx;
253}
254#endif
255
256void ScopedReportBase::AddThread(int unique_tid, bool suppressable) {
257#if !SANITIZER_GO
258  if (const ThreadContext *tctx = FindThreadByUidLocked(unique_tid))
259    AddThread(tctx, suppressable);
260#endif
261}
262
263void ScopedReportBase::AddMutex(const SyncVar *s) {
264  for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
265    if (rep_->mutexes[i]->id == s->uid)
266      return;
267  }
268  void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
269  ReportMutex *rm = new(mem) ReportMutex;
270  rep_->mutexes.PushBack(rm);
271  rm->id = s->uid;
272  rm->addr = s->addr;
273  rm->destroyed = false;
274  rm->stack = SymbolizeStackId(s->creation_stack_id);
275}
276
277u64 ScopedReportBase::AddMutex(u64 id) {
278  u64 uid = 0;
279  u64 mid = id;
280  uptr addr = SyncVar::SplitId(id, &uid);
281  SyncVar *s = ctx->metamap.GetIfExistsAndLock(addr, true);
282  // Check that the mutex is still alive.
283  // Another mutex can be created at the same address,
284  // so check uid as well.
285  if (s && s->CheckId(uid)) {
286    mid = s->uid;
287    AddMutex(s);
288  } else {
289    AddDeadMutex(id);
290  }
291  if (s)
292    s->mtx.Unlock();
293  return mid;
294}
295
296void ScopedReportBase::AddDeadMutex(u64 id) {
297  for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
298    if (rep_->mutexes[i]->id == id)
299      return;
300  }
301  void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
302  ReportMutex *rm = new(mem) ReportMutex;
303  rep_->mutexes.PushBack(rm);
304  rm->id = id;
305  rm->addr = 0;
306  rm->destroyed = true;
307  rm->stack = 0;
308}
309
310void ScopedReportBase::AddLocation(uptr addr, uptr size) {
311  if (addr == 0)
312    return;
313#if !SANITIZER_GO
314  int fd = -1;
315  int creat_tid = kInvalidTid;
316  u32 creat_stack = 0;
317  if (FdLocation(addr, &fd, &creat_tid, &creat_stack)) {
318    ReportLocation *loc = ReportLocation::New(ReportLocationFD);
319    loc->fd = fd;
320    loc->tid = creat_tid;
321    loc->stack = SymbolizeStackId(creat_stack);
322    rep_->locs.PushBack(loc);
323    ThreadContext *tctx = FindThreadByUidLocked(creat_tid);
324    if (tctx)
325      AddThread(tctx);
326    return;
327  }
328  MBlock *b = 0;
329  Allocator *a = allocator();
330  if (a->PointerIsMine((void*)addr)) {
331    void *block_begin = a->GetBlockBegin((void*)addr);
332    if (block_begin)
333      b = ctx->metamap.GetBlock((uptr)block_begin);
334  }
335  if (b != 0) {
336    ThreadContext *tctx = FindThreadByTidLocked(b->tid);
337    ReportLocation *loc = ReportLocation::New(ReportLocationHeap);
338    loc->heap_chunk_start = (uptr)allocator()->GetBlockBegin((void *)addr);
339    loc->heap_chunk_size = b->siz;
340    loc->external_tag = b->tag;
341    loc->tid = tctx ? tctx->tid : b->tid;
342    loc->stack = SymbolizeStackId(b->stk);
343    rep_->locs.PushBack(loc);
344    if (tctx)
345      AddThread(tctx);
346    return;
347  }
348  bool is_stack = false;
349  if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) {
350    ReportLocation *loc =
351        ReportLocation::New(is_stack ? ReportLocationStack : ReportLocationTLS);
352    loc->tid = tctx->tid;
353    rep_->locs.PushBack(loc);
354    AddThread(tctx);
355  }
356#endif
357  if (ReportLocation *loc = SymbolizeData(addr)) {
358    loc->suppressable = true;
359    rep_->locs.PushBack(loc);
360    return;
361  }
362}
363
364#if !SANITIZER_GO
365void ScopedReportBase::AddSleep(u32 stack_id) {
366  rep_->sleep = SymbolizeStackId(stack_id);
367}
368#endif
369
370void ScopedReportBase::SetCount(int count) { rep_->count = count; }
371
372const ReportDesc *ScopedReportBase::GetReport() const { return rep_; }
373
374ScopedReport::ScopedReport(ReportType typ, uptr tag)
375    : ScopedReportBase(typ, tag) {}
376
377ScopedReport::~ScopedReport() {}
378
379void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
380                  MutexSet *mset, uptr *tag) {
381  // This function restores stack trace and mutex set for the thread/epoch.
382  // It does so by getting stack trace and mutex set at the beginning of
383  // trace part, and then replaying the trace till the given epoch.
384  Trace* trace = ThreadTrace(tid);
385  ReadLock l(&trace->mtx);
386  const int partidx = (epoch / kTracePartSize) % TraceParts();
387  TraceHeader* hdr = &trace->headers[partidx];
388  if (epoch < hdr->epoch0 || epoch >= hdr->epoch0 + kTracePartSize)
389    return;
390  CHECK_EQ(RoundDown(epoch, kTracePartSize), hdr->epoch0);
391  const u64 epoch0 = RoundDown(epoch, TraceSize());
392  const u64 eend = epoch % TraceSize();
393  const u64 ebegin = RoundDown(eend, kTracePartSize);
394  DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n",
395          tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx);
396  Vector<uptr> stack;
397  stack.Resize(hdr->stack0.size + 64);
398  for (uptr i = 0; i < hdr->stack0.size; i++) {
399    stack[i] = hdr->stack0.trace[i];
400    DPrintf2("  #%02zu: pc=%zx\n", i, stack[i]);
401  }
402  if (mset)
403    *mset = hdr->mset0;
404  uptr pos = hdr->stack0.size;
405  Event *events = (Event*)GetThreadTrace(tid);
406  for (uptr i = ebegin; i <= eend; i++) {
407    Event ev = events[i];
408    EventType typ = (EventType)(ev >> kEventPCBits);
409    uptr pc = (uptr)(ev & ((1ull << kEventPCBits) - 1));
410    DPrintf2("  %zu typ=%d pc=%zx\n", i, typ, pc);
411    if (typ == EventTypeMop) {
412      stack[pos] = pc;
413    } else if (typ == EventTypeFuncEnter) {
414      if (stack.Size() < pos + 2)
415        stack.Resize(pos + 2);
416      stack[pos++] = pc;
417    } else if (typ == EventTypeFuncExit) {
418      if (pos > 0)
419        pos--;
420    }
421    if (mset) {
422      if (typ == EventTypeLock) {
423        mset->Add(pc, true, epoch0 + i);
424      } else if (typ == EventTypeUnlock) {
425        mset->Del(pc, true);
426      } else if (typ == EventTypeRLock) {
427        mset->Add(pc, false, epoch0 + i);
428      } else if (typ == EventTypeRUnlock) {
429        mset->Del(pc, false);
430      }
431    }
432    for (uptr j = 0; j <= pos; j++)
433      DPrintf2("      #%zu: %zx\n", j, stack[j]);
434  }
435  if (pos == 0 && stack[0] == 0)
436    return;
437  pos++;
438  stk->Init(&stack[0], pos);
439  ExtractTagFromStack(stk, tag);
440}
441
442static bool FindRacyStacks(const RacyStacks &hash) {
443  for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) {
444    if (hash == ctx->racy_stacks[i]) {
445      VPrintf(2, "ThreadSanitizer: suppressing report as doubled (stack)\n");
446      return true;
447    }
448  }
449  return false;
450}
451
452static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2]) {
453  if (!flags()->suppress_equal_stacks)
454    return false;
455  RacyStacks hash;
456  hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr));
457  hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr));
458  {
459    ReadLock lock(&ctx->racy_mtx);
460    if (FindRacyStacks(hash))
461      return true;
462  }
463  Lock lock(&ctx->racy_mtx);
464  if (FindRacyStacks(hash))
465    return true;
466  ctx->racy_stacks.PushBack(hash);
467  return false;
468}
469
470static bool FindRacyAddress(const RacyAddress &ra0) {
471  for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) {
472    RacyAddress ra2 = ctx->racy_addresses[i];
473    uptr maxbeg = max(ra0.addr_min, ra2.addr_min);
474    uptr minend = min(ra0.addr_max, ra2.addr_max);
475    if (maxbeg < minend) {
476      VPrintf(2, "ThreadSanitizer: suppressing report as doubled (addr)\n");
477      return true;
478    }
479  }
480  return false;
481}
482
483static bool HandleRacyAddress(ThreadState *thr, uptr addr_min, uptr addr_max) {
484  if (!flags()->suppress_equal_addresses)
485    return false;
486  RacyAddress ra0 = {addr_min, addr_max};
487  {
488    ReadLock lock(&ctx->racy_mtx);
489    if (FindRacyAddress(ra0))
490      return true;
491  }
492  Lock lock(&ctx->racy_mtx);
493  if (FindRacyAddress(ra0))
494    return true;
495  ctx->racy_addresses.PushBack(ra0);
496  return false;
497}
498
499bool OutputReport(ThreadState *thr, const ScopedReport &srep) {
500  if (!flags()->report_bugs || thr->suppress_reports)
501    return false;
502  atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime());
503  const ReportDesc *rep = srep.GetReport();
504  CHECK_EQ(thr->current_report, nullptr);
505  thr->current_report = rep;
506  Suppression *supp = 0;
507  uptr pc_or_addr = 0;
508  for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++)
509    pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp);
510  for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++)
511    pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp);
512  for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++)
513    pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp);
514  for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++)
515    pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp);
516  if (pc_or_addr != 0) {
517    Lock lock(&ctx->fired_suppressions_mtx);
518    FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp};
519    ctx->fired_suppressions.push_back(s);
520  }
521  {
522    bool old_is_freeing = thr->is_freeing;
523    thr->is_freeing = false;
524    bool suppressed = OnReport(rep, pc_or_addr != 0);
525    thr->is_freeing = old_is_freeing;
526    if (suppressed) {
527      thr->current_report = nullptr;
528      return false;
529    }
530  }
531  PrintReport(rep);
532  __tsan_on_report(rep);
533  ctx->nreported++;
534  if (flags()->halt_on_error)
535    Die();
536  thr->current_report = nullptr;
537  return true;
538}
539
540bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) {
541  ReadLock lock(&ctx->fired_suppressions_mtx);
542  for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
543    if (ctx->fired_suppressions[k].type != type)
544      continue;
545    for (uptr j = 0; j < trace.size; j++) {
546      FiredSuppression *s = &ctx->fired_suppressions[k];
547      if (trace.trace[j] == s->pc_or_addr) {
548        if (s->supp)
549          atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
550        return true;
551      }
552    }
553  }
554  return false;
555}
556
557static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) {
558  ReadLock lock(&ctx->fired_suppressions_mtx);
559  for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
560    if (ctx->fired_suppressions[k].type != type)
561      continue;
562    FiredSuppression *s = &ctx->fired_suppressions[k];
563    if (addr == s->pc_or_addr) {
564      if (s->supp)
565        atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
566      return true;
567    }
568  }
569  return false;
570}
571
572static bool RaceBetweenAtomicAndFree(ThreadState *thr) {
573  Shadow s0(thr->racy_state[0]);
574  Shadow s1(thr->racy_state[1]);
575  CHECK(!(s0.IsAtomic() && s1.IsAtomic()));
576  if (!s0.IsAtomic() && !s1.IsAtomic())
577    return true;
578  if (s0.IsAtomic() && s1.IsFreed())
579    return true;
580  if (s1.IsAtomic() && thr->is_freeing)
581    return true;
582  return false;
583}
584
585void ReportRace(ThreadState *thr) {
586  CheckNoLocks(thr);
587
588  // Symbolizer makes lots of intercepted calls. If we try to process them,
589  // at best it will cause deadlocks on internal mutexes.
590  ScopedIgnoreInterceptors ignore;
591
592  if (!flags()->report_bugs)
593    return;
594  if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr))
595    return;
596
597  bool freed = false;
598  {
599    Shadow s(thr->racy_state[1]);
600    freed = s.GetFreedAndReset();
601    thr->racy_state[1] = s.raw();
602  }
603
604  uptr addr = ShadowToMem((uptr)thr->racy_shadow_addr);
605  uptr addr_min = 0;
606  uptr addr_max = 0;
607  {
608    uptr a0 = addr + Shadow(thr->racy_state[0]).addr0();
609    uptr a1 = addr + Shadow(thr->racy_state[1]).addr0();
610    uptr e0 = a0 + Shadow(thr->racy_state[0]).size();
611    uptr e1 = a1 + Shadow(thr->racy_state[1]).size();
612    addr_min = min(a0, a1);
613    addr_max = max(e0, e1);
614    if (IsExpectedReport(addr_min, addr_max - addr_min))
615      return;
616  }
617  if (HandleRacyAddress(thr, addr_min, addr_max))
618    return;
619
620  ReportType typ = ReportTypeRace;
621  if (thr->is_vptr_access && freed)
622    typ = ReportTypeVptrUseAfterFree;
623  else if (thr->is_vptr_access)
624    typ = ReportTypeVptrRace;
625  else if (freed)
626    typ = ReportTypeUseAfterFree;
627
628  if (IsFiredSuppression(ctx, typ, addr))
629    return;
630
631  const uptr kMop = 2;
632  VarSizeStackTrace traces[kMop];
633  uptr tags[kMop] = {kExternalTagNone};
634  uptr toppc = TraceTopPC(thr);
635  if (toppc >> kEventPCBits) {
636    // This is a work-around for a known issue.
637    // The scenario where this happens is rather elaborate and requires
638    // an instrumented __sanitizer_report_error_summary callback and
639    // a __tsan_symbolize_external callback and a race during a range memory
640    // access larger than 8 bytes. MemoryAccessRange adds the current PC to
641    // the trace and starts processing memory accesses. A first memory access
642    // triggers a race, we report it and call the instrumented
643    // __sanitizer_report_error_summary, which adds more stuff to the trace
644    // since it is intrumented. Then a second memory access in MemoryAccessRange
645    // also triggers a race and we get here and call TraceTopPC to get the
646    // current PC, however now it contains some unrelated events from the
647    // callback. Most likely, TraceTopPC will now return a EventTypeFuncExit
648    // event. Later we subtract -1 from it (in GetPreviousInstructionPc)
649    // and the resulting PC has kExternalPCBit set, so we pass it to
650    // __tsan_symbolize_external_ex. __tsan_symbolize_external_ex is within its
651    // rights to crash since the PC is completely bogus.
652    // test/tsan/double_race.cpp contains a test case for this.
653    toppc = 0;
654  }
655  ObtainCurrentStack(thr, toppc, &traces[0], &tags[0]);
656  if (IsFiredSuppression(ctx, typ, traces[0]))
657    return;
658
659  // MutexSet is too large to live on stack.
660  Vector<u64> mset_buffer;
661  mset_buffer.Resize(sizeof(MutexSet) / sizeof(u64) + 1);
662  MutexSet *mset2 = new(&mset_buffer[0]) MutexSet();
663
664  Shadow s2(thr->racy_state[1]);
665  RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2, &tags[1]);
666  if (IsFiredSuppression(ctx, typ, traces[1]))
667    return;
668
669  if (HandleRacyStacks(thr, traces))
670    return;
671
672  // If any of the accesses has a tag, treat this as an "external" race.
673  uptr tag = kExternalTagNone;
674  for (uptr i = 0; i < kMop; i++) {
675    if (tags[i] != kExternalTagNone) {
676      typ = ReportTypeExternalRace;
677      tag = tags[i];
678      break;
679    }
680  }
681
682  ThreadRegistryLock l0(ctx->thread_registry);
683  ScopedReport rep(typ, tag);
684  for (uptr i = 0; i < kMop; i++) {
685    Shadow s(thr->racy_state[i]);
686    rep.AddMemoryAccess(addr, tags[i], s, traces[i],
687                        i == 0 ? &thr->mset : mset2);
688  }
689
690  for (uptr i = 0; i < kMop; i++) {
691    FastState s(thr->racy_state[i]);
692    ThreadContext *tctx = static_cast<ThreadContext*>(
693        ctx->thread_registry->GetThreadLocked(s.tid()));
694    if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1)
695      continue;
696    rep.AddThread(tctx);
697  }
698
699  rep.AddLocation(addr_min, addr_max - addr_min);
700
701#if !SANITIZER_GO
702  {
703    Shadow s(thr->racy_state[1]);
704    if (s.epoch() <= thr->last_sleep_clock.get(s.tid()))
705      rep.AddSleep(thr->last_sleep_stack_id);
706  }
707#endif
708
709  if (!OutputReport(thr, rep))
710    return;
711
712}
713
714void PrintCurrentStack(ThreadState *thr, uptr pc) {
715  VarSizeStackTrace trace;
716  ObtainCurrentStack(thr, pc, &trace);
717  PrintStack(SymbolizeStack(trace));
718}
719
720// Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes
721// __sanitizer_print_stack_trace exists in the actual unwinded stack, but
722// tail-call to PrintCurrentStackSlow breaks this assumption because
723// __sanitizer_print_stack_trace disappears after tail-call.
724// However, this solution is not reliable enough, please see dvyukov's comment
725// http://reviews.llvm.org/D19148#406208
726// Also see PR27280 comment 2 and 3 for breaking examples and analysis.
727ALWAYS_INLINE
728void PrintCurrentStackSlow(uptr pc) {
729#if !SANITIZER_GO
730  uptr bp = GET_CURRENT_FRAME();
731  BufferedStackTrace *ptrace =
732      new(internal_alloc(MBlockStackTrace, sizeof(BufferedStackTrace)))
733          BufferedStackTrace();
734  ptrace->Unwind(pc, bp, nullptr, false);
735
736  for (uptr i = 0; i < ptrace->size / 2; i++) {
737    uptr tmp = ptrace->trace_buffer[i];
738    ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1];
739    ptrace->trace_buffer[ptrace->size - i - 1] = tmp;
740  }
741  PrintStack(SymbolizeStack(*ptrace));
742#endif
743}
744
745}  // namespace __tsan
746
747using namespace __tsan;
748
749extern "C" {
750SANITIZER_INTERFACE_ATTRIBUTE
751void __sanitizer_print_stack_trace() {
752  PrintCurrentStackSlow(StackTrace::GetCurrentPc());
753}
754}  // extern "C"
755