1//===-- tsan_interceptors_mac.cpp -----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11// Mac-specific interceptors.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_common/sanitizer_platform.h"
15#if SANITIZER_MAC
16
17#include "interception/interception.h"
18#include "tsan_interceptors.h"
19#include "tsan_interface.h"
20#include "tsan_interface_ann.h"
21#include "sanitizer_common/sanitizer_addrhashmap.h"
22
23#include <errno.h>
24#include <libkern/OSAtomic.h>
25#include <objc/objc-sync.h>
26#include <os/lock.h>
27#include <sys/ucontext.h>
28
29#if defined(__has_include) && __has_include(<xpc/xpc.h>)
30#include <xpc/xpc.h>
31#endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
32
33typedef long long_t;
34
35extern "C" {
36int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
37int setcontext(const ucontext_t *ucp);
38}
39
40namespace __tsan {
41
42// The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
43// but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
44// actually aliases of each other, and we cannot have different interceptors for
45// them, because they're actually the same function.  Thus, we have to stay
46// conservative and treat the non-barrier versions as mo_acq_rel.
47static const morder kMacOrderBarrier = mo_acq_rel;
48static const morder kMacOrderNonBarrier = mo_acq_rel;
49
50#define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
51  TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
52    SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
53    return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
54  }
55
56#define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
57  TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
58    SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
59    return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
60  }
61
62#define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
63  TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
64    SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
65    return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
66  }
67
68#define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
69                                     mo)                                    \
70  TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
71    SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
72    return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
73  }
74
75#define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
76  m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
77    kMacOrderNonBarrier)                                                       \
78  m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
79    kMacOrderBarrier)                                                          \
80  m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
81    kMacOrderNonBarrier)                                                       \
82  m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
83    kMacOrderBarrier)
84
85#define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
86  m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
87    kMacOrderNonBarrier)                                                       \
88  m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
89    kMacOrderBarrier)                                                          \
90  m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
91    kMacOrderNonBarrier)                                                       \
92  m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
93    __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
94
95OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
96                                 OSATOMIC_INTERCEPTOR_PLUS_X)
97OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
98                                 OSATOMIC_INTERCEPTOR_PLUS_1)
99OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
100                                 OSATOMIC_INTERCEPTOR_MINUS_1)
101OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
102                              OSATOMIC_INTERCEPTOR)
103OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
104                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
105OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
106                              OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
107
108#define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
109  TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
110    SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
111    return tsan_atomic_f##_compare_exchange_strong(                         \
112        (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
113        kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
114  }                                                                         \
115                                                                            \
116  TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
117                   t volatile *ptr) {                                       \
118    SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
119    return tsan_atomic_f##_compare_exchange_strong(                         \
120        (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
121        kMacOrderBarrier, kMacOrderNonBarrier);                             \
122  }
123
124OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
125OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
126                          long_t)
127OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
128                          void *)
129OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
130                          int32_t)
131OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
132                          int64_t)
133
134#define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
135  TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
136    SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
137    volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
138    char bit = 0x80u >> (n & 7);                                 \
139    char mask = clear ? ~bit : bit;                              \
140    char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
141    return orig_byte & bit;                                      \
142  }
143
144#define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
145  OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
146  OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
147
148OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
149OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
150                            true)
151
152TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
153                 size_t offset) {
154  SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
155  __tsan_release(item);
156  REAL(OSAtomicEnqueue)(list, item, offset);
157}
158
159TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
160  SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
161  void *item = REAL(OSAtomicDequeue)(list, offset);
162  if (item) __tsan_acquire(item);
163  return item;
164}
165
166// OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
167#if !SANITIZER_IOS
168
169TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
170                 size_t offset) {
171  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
172  __tsan_release(item);
173  REAL(OSAtomicFifoEnqueue)(list, item, offset);
174}
175
176TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
177                 size_t offset) {
178  SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
179  void *item = REAL(OSAtomicFifoDequeue)(list, offset);
180  if (item) __tsan_acquire(item);
181  return item;
182}
183
184#endif
185
186TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
187  CHECK(!cur_thread()->is_dead);
188  if (!cur_thread()->is_inited) {
189    return REAL(OSSpinLockLock)(lock);
190  }
191  SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
192  REAL(OSSpinLockLock)(lock);
193  Acquire(thr, pc, (uptr)lock);
194}
195
196TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
197  CHECK(!cur_thread()->is_dead);
198  if (!cur_thread()->is_inited) {
199    return REAL(OSSpinLockTry)(lock);
200  }
201  SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
202  bool result = REAL(OSSpinLockTry)(lock);
203  if (result)
204    Acquire(thr, pc, (uptr)lock);
205  return result;
206}
207
208TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
209  CHECK(!cur_thread()->is_dead);
210  if (!cur_thread()->is_inited) {
211    return REAL(OSSpinLockUnlock)(lock);
212  }
213  SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
214  Release(thr, pc, (uptr)lock);
215  REAL(OSSpinLockUnlock)(lock);
216}
217
218TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
219  CHECK(!cur_thread()->is_dead);
220  if (!cur_thread()->is_inited) {
221    return REAL(os_lock_lock)(lock);
222  }
223  SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
224  REAL(os_lock_lock)(lock);
225  Acquire(thr, pc, (uptr)lock);
226}
227
228TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
229  CHECK(!cur_thread()->is_dead);
230  if (!cur_thread()->is_inited) {
231    return REAL(os_lock_trylock)(lock);
232  }
233  SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
234  bool result = REAL(os_lock_trylock)(lock);
235  if (result)
236    Acquire(thr, pc, (uptr)lock);
237  return result;
238}
239
240TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
241  CHECK(!cur_thread()->is_dead);
242  if (!cur_thread()->is_inited) {
243    return REAL(os_lock_unlock)(lock);
244  }
245  SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
246  Release(thr, pc, (uptr)lock);
247  REAL(os_lock_unlock)(lock);
248}
249
250TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
251  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
252    return REAL(os_unfair_lock_lock)(lock);
253  }
254  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
255  REAL(os_unfair_lock_lock)(lock);
256  Acquire(thr, pc, (uptr)lock);
257}
258
259TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
260                 u32 options) {
261  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
262    return REAL(os_unfair_lock_lock_with_options)(lock, options);
263  }
264  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
265  REAL(os_unfair_lock_lock_with_options)(lock, options);
266  Acquire(thr, pc, (uptr)lock);
267}
268
269TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
270  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
271    return REAL(os_unfair_lock_trylock)(lock);
272  }
273  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
274  bool result = REAL(os_unfair_lock_trylock)(lock);
275  if (result)
276    Acquire(thr, pc, (uptr)lock);
277  return result;
278}
279
280TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
281  if (!cur_thread()->is_inited || cur_thread()->is_dead) {
282    return REAL(os_unfair_lock_unlock)(lock);
283  }
284  SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
285  Release(thr, pc, (uptr)lock);
286  REAL(os_unfair_lock_unlock)(lock);
287}
288
289#if defined(__has_include) && __has_include(<xpc/xpc.h>)
290
291TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
292                 xpc_connection_t connection, xpc_handler_t handler) {
293  SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
294                          handler);
295  Release(thr, pc, (uptr)connection);
296  xpc_handler_t new_handler = ^(xpc_object_t object) {
297    {
298      SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
299      Acquire(thr, pc, (uptr)connection);
300    }
301    handler(object);
302  };
303  REAL(xpc_connection_set_event_handler)(connection, new_handler);
304}
305
306TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
307                 dispatch_block_t barrier) {
308  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
309  Release(thr, pc, (uptr)connection);
310  dispatch_block_t new_barrier = ^() {
311    {
312      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
313      Acquire(thr, pc, (uptr)connection);
314    }
315    barrier();
316  };
317  REAL(xpc_connection_send_barrier)(connection, new_barrier);
318}
319
320TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
321                 xpc_connection_t connection, xpc_object_t message,
322                 dispatch_queue_t replyq, xpc_handler_t handler) {
323  SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
324                          message, replyq, handler);
325  Release(thr, pc, (uptr)connection);
326  xpc_handler_t new_handler = ^(xpc_object_t object) {
327    {
328      SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
329      Acquire(thr, pc, (uptr)connection);
330    }
331    handler(object);
332  };
333  REAL(xpc_connection_send_message_with_reply)
334  (connection, message, replyq, new_handler);
335}
336
337TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
338  SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
339  Release(thr, pc, (uptr)connection);
340  REAL(xpc_connection_cancel)(connection);
341}
342
343#endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
344
345// Determines whether the Obj-C object pointer is a tagged pointer. Tagged
346// pointers encode the object data directly in their pointer bits and do not
347// have an associated memory allocation. The Obj-C runtime uses tagged pointers
348// to transparently optimize small objects.
349static bool IsTaggedObjCPointer(id obj) {
350  const uptr kPossibleTaggedBits = 0x8000000000000001ull;
351  return ((uptr)obj & kPossibleTaggedBits) != 0;
352}
353
354// Returns an address which can be used to inform TSan about synchronization
355// points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
356// address in the process space. We do a small allocation here to obtain a
357// stable address (the array backing the hash map can change). The memory is
358// never free'd (leaked) and allocation and locking are slow, but this code only
359// runs for @synchronized with tagged pointers, which is very rare.
360static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
361  typedef AddrHashMap<uptr, 5> Map;
362  static Map Addresses;
363  Map::Handle h(&Addresses, addr);
364  if (h.created()) {
365    ThreadIgnoreBegin(thr, pc);
366    *h = (uptr) user_alloc(thr, pc, /*size=*/1);
367    ThreadIgnoreEnd(thr, pc);
368  }
369  return *h;
370}
371
372// Returns an address on which we can synchronize given an Obj-C object pointer.
373// For normal object pointers, this is just the address of the object in memory.
374// Tagged pointers are not backed by an actual memory allocation, so we need to
375// synthesize a valid address.
376static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
377  if (IsTaggedObjCPointer(obj))
378    return GetOrCreateSyncAddress((uptr)obj, thr, pc);
379  return (uptr)obj;
380}
381
382TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
383  SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
384  if (!obj) return REAL(objc_sync_enter)(obj);
385  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
386  MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
387  int result = REAL(objc_sync_enter)(obj);
388  CHECK_EQ(result, OBJC_SYNC_SUCCESS);
389  MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
390  return result;
391}
392
393TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
394  SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
395  if (!obj) return REAL(objc_sync_exit)(obj);
396  uptr addr = SyncAddressForObjCObject(obj, thr, pc);
397  MutexUnlock(thr, pc, addr);
398  int result = REAL(objc_sync_exit)(obj);
399  if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
400  return result;
401}
402
403TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
404  {
405    SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
406  }
407  // Bacause of swapcontext() semantics we have no option but to copy its
408  // impementation here
409  if (!oucp || !ucp) {
410    errno = EINVAL;
411    return -1;
412  }
413  ThreadState *thr = cur_thread();
414  const int UCF_SWAPPED = 0x80000000;
415  oucp->uc_onstack &= ~UCF_SWAPPED;
416  thr->ignore_interceptors++;
417  int ret = getcontext(oucp);
418  if (!(oucp->uc_onstack & UCF_SWAPPED)) {
419    thr->ignore_interceptors--;
420    if (!ret) {
421      oucp->uc_onstack |= UCF_SWAPPED;
422      ret = setcontext(ucp);
423    }
424  }
425  return ret;
426}
427
428// On macOS, libc++ is always linked dynamically, so intercepting works the
429// usual way.
430#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
431
432namespace {
433struct fake_shared_weak_count {
434  volatile a64 shared_owners;
435  volatile a64 shared_weak_owners;
436  virtual void _unused_0x0() = 0;
437  virtual void _unused_0x8() = 0;
438  virtual void on_zero_shared() = 0;
439  virtual void _unused_0x18() = 0;
440  virtual void on_zero_shared_weak() = 0;
441};
442}  // namespace
443
444// The following code adds libc++ interceptors for:
445//     void __shared_weak_count::__release_shared() _NOEXCEPT;
446//     bool __shared_count::__release_shared() _NOEXCEPT;
447// Shared and weak pointers in C++ maintain reference counts via atomics in
448// libc++.dylib, which are TSan-invisible, and this leads to false positives in
449// destructor code. These interceptors re-implements the whole functions so that
450// the mo_acq_rel semantics of the atomic decrement are visible.
451//
452// Unfortunately, the interceptors cannot simply Acquire/Release some sync
453// object and call the original function, because it would have a race between
454// the sync and the destruction of the object.  Calling both under a lock will
455// not work because the destructor can invoke this interceptor again (and even
456// in a different thread, so recursive locks don't help).
457
458STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
459                   fake_shared_weak_count *o) {
460  if (!flags()->shared_ptr_interceptor)
461    return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
462
463  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
464                          o);
465  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
466    Acquire(thr, pc, (uptr)&o->shared_owners);
467    o->on_zero_shared();
468    if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
469        0) {
470      Acquire(thr, pc, (uptr)&o->shared_weak_owners);
471      o->on_zero_shared_weak();
472    }
473  }
474}
475
476STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
477                   fake_shared_weak_count *o) {
478  if (!flags()->shared_ptr_interceptor)
479    return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
480
481  SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
482  if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
483    Acquire(thr, pc, (uptr)&o->shared_owners);
484    o->on_zero_shared();
485    return true;
486  }
487  return false;
488}
489
490namespace {
491struct call_once_callback_args {
492  void (*orig_func)(void *arg);
493  void *orig_arg;
494  void *flag;
495};
496
497void call_once_callback_wrapper(void *arg) {
498  call_once_callback_args *new_args = (call_once_callback_args *)arg;
499  new_args->orig_func(new_args->orig_arg);
500  __tsan_release(new_args->flag);
501}
502}  // namespace
503
504// This adds a libc++ interceptor for:
505//     void __call_once(volatile unsigned long&, void*, void(*)(void*));
506// C++11 call_once is implemented via an internal function __call_once which is
507// inside libc++.dylib, and the atomic release store inside it is thus
508// TSan-invisible. To avoid false positives, this interceptor wraps the callback
509// function and performs an explicit Release after the user code has run.
510STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
511                   void *arg, void (*func)(void *arg)) {
512  call_once_callback_args new_args = {func, arg, flag};
513  REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
514                                            call_once_callback_wrapper);
515}
516
517}  // namespace __tsan
518
519#endif  // SANITIZER_MAC
520