1Compiler-RT
2================================
3
4This directory and its subdirectories contain source code for the compiler
5support routines.
6
7Compiler-RT is open source software. You may freely distribute it under the
8terms of the license agreement found in LICENSE.txt.
9
10================================
11
12This is a replacement library for libgcc.  Each function is contained
13in its own file.  Each function has a corresponding unit test under
14test/Unit.
15
16A rudimentary script to test each file is in the file called
17test/Unit/test.
18
19Here is the specification for this library:
20
21http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
23Please note that the libgcc specification explicitly mentions actual types of
24arguments and returned values being expressed with machine modes.
25In some cases particular types such as "int", "unsigned", "long long", etc.
26may be specified just as examples there.
27
28Here is a synopsis of the contents of this library:
29
30typedef  int32_t si_int;
31typedef uint32_t su_int;
32
33typedef  int64_t di_int;
34typedef uint64_t du_int;
35
36// Integral bit manipulation
37
38di_int __ashldi3(di_int a, si_int b);      // a << b
39ti_int __ashlti3(ti_int a, si_int b);      // a << b
40
41di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
42ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
43di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
44ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
45
46int __clzsi2(si_int a);  // count leading zeros
47int __clzdi2(di_int a);  // count leading zeros
48int __clzti2(ti_int a);  // count leading zeros
49int __ctzsi2(si_int a);  // count trailing zeros
50int __ctzdi2(di_int a);  // count trailing zeros
51int __ctzti2(ti_int a);  // count trailing zeros
52
53int __ffssi2(si_int a);  // find least significant 1 bit
54int __ffsdi2(di_int a);  // find least significant 1 bit
55int __ffsti2(ti_int a);  // find least significant 1 bit
56
57int __paritysi2(si_int a);  // bit parity
58int __paritydi2(di_int a);  // bit parity
59int __parityti2(ti_int a);  // bit parity
60
61int __popcountsi2(si_int a);  // bit population
62int __popcountdi2(di_int a);  // bit population
63int __popcountti2(ti_int a);  // bit population
64
65uint32_t __bswapsi2(uint32_t a);   // a byteswapped
66uint64_t __bswapdi2(uint64_t a);   // a byteswapped
67
68// Integral arithmetic
69
70di_int __negdi2    (di_int a);                         // -a
71ti_int __negti2    (ti_int a);                         // -a
72di_int __muldi3    (di_int a, di_int b);               // a * b
73ti_int __multi3    (ti_int a, ti_int b);               // a * b
74si_int __divsi3    (si_int a, si_int b);               // a / b   signed
75di_int __divdi3    (di_int a, di_int b);               // a / b   signed
76ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
77su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
78du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
79tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
80si_int __modsi3    (si_int a, si_int b);               // a % b   signed
81di_int __moddi3    (di_int a, di_int b);               // a % b   signed
82ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
83su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
84du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
85tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
86du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b  unsigned
87tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b  unsigned
88su_int __udivmodsi4(su_int a, su_int b, su_int* rem);  // a / b, *rem = a % b  unsigned
89si_int __divmodsi4(si_int a, si_int b, si_int* rem);   // a / b, *rem = a % b  signed
90
91
92
93//  Integral arithmetic with trapping overflow
94
95si_int __absvsi2(si_int a);           // abs(a)
96di_int __absvdi2(di_int a);           // abs(a)
97ti_int __absvti2(ti_int a);           // abs(a)
98
99si_int __negvsi2(si_int a);           // -a
100di_int __negvdi2(di_int a);           // -a
101ti_int __negvti2(ti_int a);           // -a
102
103si_int __addvsi3(si_int a, si_int b);  // a + b
104di_int __addvdi3(di_int a, di_int b);  // a + b
105ti_int __addvti3(ti_int a, ti_int b);  // a + b
106
107si_int __subvsi3(si_int a, si_int b);  // a - b
108di_int __subvdi3(di_int a, di_int b);  // a - b
109ti_int __subvti3(ti_int a, ti_int b);  // a - b
110
111si_int __mulvsi3(si_int a, si_int b);  // a * b
112di_int __mulvdi3(di_int a, di_int b);  // a * b
113ti_int __mulvti3(ti_int a, ti_int b);  // a * b
114
115
116// Integral arithmetic which returns if overflow
117
118si_int __mulosi4(si_int a, si_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
119di_int __mulodi4(di_int a, di_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
120ti_int __muloti4(ti_int a, ti_int b, int* overflow);  // a * b, overflow set to
121 one if result not in signed range
122
123
124//  Integral comparison: a  < b -> 0
125//                       a == b -> 1
126//                       a  > b -> 2
127
128si_int __cmpdi2 (di_int a, di_int b);
129si_int __cmpti2 (ti_int a, ti_int b);
130si_int __ucmpdi2(du_int a, du_int b);
131si_int __ucmpti2(tu_int a, tu_int b);
132
133//  Integral / floating point conversion
134
135di_int __fixsfdi(      float a);
136di_int __fixdfdi(     double a);
137di_int __fixxfdi(long double a);
138
139ti_int __fixsfti(      float a);
140ti_int __fixdfti(     double a);
141ti_int __fixxfti(long double a);
142uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
143
144su_int __fixunssfsi(      float a);
145su_int __fixunsdfsi(     double a);
146su_int __fixunsxfsi(long double a);
147
148du_int __fixunssfdi(      float a);
149du_int __fixunsdfdi(     double a);
150du_int __fixunsxfdi(long double a);
151
152tu_int __fixunssfti(      float a);
153tu_int __fixunsdfti(     double a);
154tu_int __fixunsxfti(long double a);
155uint64_t __fixunstfdi(long double input);  // ppc only
156
157float       __floatdisf(di_int a);
158double      __floatdidf(di_int a);
159long double __floatdixf(di_int a);
160long double __floatditf(int64_t a);        // ppc only
161
162float       __floattisf(ti_int a);
163double      __floattidf(ti_int a);
164long double __floattixf(ti_int a);
165
166float       __floatundisf(du_int a);
167double      __floatundidf(du_int a);
168long double __floatundixf(du_int a);
169long double __floatunditf(uint64_t a);     // ppc only
170
171float       __floatuntisf(tu_int a);
172double      __floatuntidf(tu_int a);
173long double __floatuntixf(tu_int a);
174
175//  Floating point raised to integer power
176
177float       __powisf2(      float a, int b);  // a ^ b
178double      __powidf2(     double a, int b);  // a ^ b
179long double __powixf2(long double a, int b);  // a ^ b
180long double __powitf2(long double a, int b);  // ppc only, a ^ b
181
182//  Complex arithmetic
183
184//  (a + ib) * (c + id)
185
186      float _Complex __mulsc3( float a,  float b,  float c,  float d);
187     double _Complex __muldc3(double a, double b, double c, double d);
188long double _Complex __mulxc3(long double a, long double b,
189                              long double c, long double d);
190long double _Complex __multc3(long double a, long double b,
191                              long double c, long double d); // ppc only
192
193//  (a + ib) / (c + id)
194
195      float _Complex __divsc3( float a,  float b,  float c,  float d);
196     double _Complex __divdc3(double a, double b, double c, double d);
197long double _Complex __divxc3(long double a, long double b,
198                              long double c, long double d);
199long double _Complex __divtc3(long double a, long double b,
200                              long double c, long double d);  // ppc only
201
202
203//         Runtime support
204
205// __clear_cache() is used to tell process that new instructions have been
206// written to an address range.  Necessary on processors that do not have
207// a unified instruction and data cache.
208void __clear_cache(void* start, void* end);
209
210// __enable_execute_stack() is used with nested functions when a trampoline
211// function is written onto the stack and that page range needs to be made
212// executable.
213void __enable_execute_stack(void* addr);
214
215// __gcc_personality_v0() is normally only called by the system unwinder.
216// C code (as opposed to C++) normally does not need a personality function
217// because there are no catch clauses or destructors to be run.  But there
218// is a C language extension __attribute__((cleanup(func))) which marks local
219// variables as needing the cleanup function "func" to be run when the
220// variable goes out of scope.  That includes when an exception is thrown,
221// so a personality handler is needed.  
222_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
223         uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
224         _Unwind_Context_t context);
225
226// for use with some implementations of assert() in <assert.h>
227void __eprintf(const char* format, const char* assertion_expression,
228				const char* line, const char* file);
229
230// for systems with emulated thread local storage
231void* __emutls_get_address(struct __emutls_control*);
232
233
234//   Power PC specific functions
235
236// There is no C interface to the saveFP/restFP functions.  They are helper
237// functions called by the prolog and epilog of functions that need to save
238// a number of non-volatile float point registers.  
239saveFP
240restFP
241
242// PowerPC has a standard template for trampoline functions.  This function
243// generates a custom trampoline function with the specific realFunc
244// and localsPtr values.
245void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 
246                                const void* realFunc, void* localsPtr);
247
248// adds two 128-bit double-double precision values ( x + y )
249long double __gcc_qadd(long double x, long double y);  
250
251// subtracts two 128-bit double-double precision values ( x - y )
252long double __gcc_qsub(long double x, long double y); 
253
254// multiples two 128-bit double-double precision values ( x * y )
255long double __gcc_qmul(long double x, long double y);  
256
257// divides two 128-bit double-double precision values ( x / y )
258long double __gcc_qdiv(long double a, long double b);  
259
260
261//    ARM specific functions
262
263// There is no C interface to the switch* functions.  These helper functions
264// are only needed by Thumb1 code for efficient switch table generation.
265switch16
266switch32
267switch8
268switchu8
269
270// There is no C interface to the *_vfp_d8_d15_regs functions.  There are
271// called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
272// SJLJ for exceptions, each function with a catch clause or destuctors needs
273// to save and restore all registers in it prolog and epliog.  But there is 
274// no way to access vector and high float registers from thumb1 code, so the 
275// compiler must add call outs to these helper functions in the prolog and 
276// epilog.
277restore_vfp_d8_d15_regs
278save_vfp_d8_d15_regs
279
280
281// Note: long ago ARM processors did not have floating point hardware support.
282// Floating point was done in software and floating point parameters were 
283// passed in integer registers.  When hardware support was added for floating
284// point, new *vfp functions were added to do the same operations but with 
285// floating point parameters in floating point registers.
286
287// Undocumented functions
288
289float  __addsf3vfp(float a, float b);   // Appears to return a + b
290double __adddf3vfp(double a, double b); // Appears to return a + b
291float  __divsf3vfp(float a, float b);   // Appears to return a / b
292double __divdf3vfp(double a, double b); // Appears to return a / b
293int    __eqsf2vfp(float a, float b);    // Appears to return  one
294                                        //     iff a == b and neither is NaN.
295int    __eqdf2vfp(double a, double b);  // Appears to return  one
296                                        //     iff a == b and neither is NaN.
297double __extendsfdf2vfp(float a);       // Appears to convert from
298                                        //     float to double.
299int    __fixdfsivfp(double a);          // Appears to convert from
300                                        //     double to int.
301int    __fixsfsivfp(float a);           // Appears to convert from
302                                        //     float to int.
303unsigned int __fixunssfsivfp(float a);  // Appears to convert from
304                                        //     float to unsigned int.
305unsigned int __fixunsdfsivfp(double a); // Appears to convert from
306                                        //     double to unsigned int.
307double __floatsidfvfp(int a);           // Appears to convert from
308                                        //     int to double.
309float __floatsisfvfp(int a);            // Appears to convert from
310                                        //     int to float.
311double __floatunssidfvfp(unsigned int a); // Appears to convert from
312                                        //     unisgned int to double.
313float __floatunssisfvfp(unsigned int a); // Appears to convert from
314                                        //     unisgned int to float.
315int __gedf2vfp(double a, double b);     // Appears to return __gedf2
316                                        //     (a >= b)
317int __gesf2vfp(float a, float b);       // Appears to return __gesf2
318                                        //     (a >= b)
319int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
320                                        //     (a > b)
321int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
322                                        //     (a > b)
323int __ledf2vfp(double a, double b);     // Appears to return __ledf2
324                                        //     (a <= b)
325int __lesf2vfp(float a, float b);       // Appears to return __lesf2
326                                        //     (a <= b)
327int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
328                                        //     (a < b)
329int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
330                                        //     (a < b)
331double __muldf3vfp(double a, double b); // Appears to return a * b
332float __mulsf3vfp(float a, float b);    // Appears to return a * b
333int __nedf2vfp(double a, double b);     // Appears to return __nedf2
334                                        //     (a != b)
335double __negdf2vfp(double a);           // Appears to return -a
336float __negsf2vfp(float a);             // Appears to return -a
337float __negsf2vfp(float a);             // Appears to return -a
338double __subdf3vfp(double a, double b); // Appears to return a - b
339float __subsf3vfp(float a, float b);    // Appears to return a - b
340float __truncdfsf2vfp(double a);        // Appears to convert from
341                                        //     double to float.
342int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
343int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
344
345
346Preconditions are listed for each function at the definition when there are any.
347Any preconditions reflect the specification at
348http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
349
350Assumptions are listed in "int_lib.h", and in individual files.  Where possible
351assumptions are checked at compile time.
352