1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements name lookup for C, C++, Objective-C, and
10//  Objective-C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclLookups.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/FileManager.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50#include "OpenCLBuiltins.inc"
51
52using namespace clang;
53using namespace sema;
54
55namespace {
56  class UnqualUsingEntry {
57    const DeclContext *Nominated;
58    const DeclContext *CommonAncestor;
59
60  public:
61    UnqualUsingEntry(const DeclContext *Nominated,
62                     const DeclContext *CommonAncestor)
63      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
64    }
65
66    const DeclContext *getCommonAncestor() const {
67      return CommonAncestor;
68    }
69
70    const DeclContext *getNominatedNamespace() const {
71      return Nominated;
72    }
73
74    // Sort by the pointer value of the common ancestor.
75    struct Comparator {
76      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
77        return L.getCommonAncestor() < R.getCommonAncestor();
78      }
79
80      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
81        return E.getCommonAncestor() < DC;
82      }
83
84      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
85        return DC < E.getCommonAncestor();
86      }
87    };
88  };
89
90  /// A collection of using directives, as used by C++ unqualified
91  /// lookup.
92  class UnqualUsingDirectiveSet {
93    Sema &SemaRef;
94
95    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
96
97    ListTy list;
98    llvm::SmallPtrSet<DeclContext*, 8> visited;
99
100  public:
101    UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
102
103    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
104      // C++ [namespace.udir]p1:
105      //   During unqualified name lookup, the names appear as if they
106      //   were declared in the nearest enclosing namespace which contains
107      //   both the using-directive and the nominated namespace.
108      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
109      assert(InnermostFileDC && InnermostFileDC->isFileContext());
110
111      for (; S; S = S->getParent()) {
112        // C++ [namespace.udir]p1:
113        //   A using-directive shall not appear in class scope, but may
114        //   appear in namespace scope or in block scope.
115        DeclContext *Ctx = S->getEntity();
116        if (Ctx && Ctx->isFileContext()) {
117          visit(Ctx, Ctx);
118        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
119          for (auto *I : S->using_directives())
120            if (SemaRef.isVisible(I))
121              visit(I, InnermostFileDC);
122        }
123      }
124    }
125
126    // Visits a context and collect all of its using directives
127    // recursively.  Treats all using directives as if they were
128    // declared in the context.
129    //
130    // A given context is only every visited once, so it is important
131    // that contexts be visited from the inside out in order to get
132    // the effective DCs right.
133    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
134      if (!visited.insert(DC).second)
135        return;
136
137      addUsingDirectives(DC, EffectiveDC);
138    }
139
140    // Visits a using directive and collects all of its using
141    // directives recursively.  Treats all using directives as if they
142    // were declared in the effective DC.
143    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
144      DeclContext *NS = UD->getNominatedNamespace();
145      if (!visited.insert(NS).second)
146        return;
147
148      addUsingDirective(UD, EffectiveDC);
149      addUsingDirectives(NS, EffectiveDC);
150    }
151
152    // Adds all the using directives in a context (and those nominated
153    // by its using directives, transitively) as if they appeared in
154    // the given effective context.
155    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
156      SmallVector<DeclContext*, 4> queue;
157      while (true) {
158        for (auto UD : DC->using_directives()) {
159          DeclContext *NS = UD->getNominatedNamespace();
160          if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
161            addUsingDirective(UD, EffectiveDC);
162            queue.push_back(NS);
163          }
164        }
165
166        if (queue.empty())
167          return;
168
169        DC = queue.pop_back_val();
170      }
171    }
172
173    // Add a using directive as if it had been declared in the given
174    // context.  This helps implement C++ [namespace.udir]p3:
175    //   The using-directive is transitive: if a scope contains a
176    //   using-directive that nominates a second namespace that itself
177    //   contains using-directives, the effect is as if the
178    //   using-directives from the second namespace also appeared in
179    //   the first.
180    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
181      // Find the common ancestor between the effective context and
182      // the nominated namespace.
183      DeclContext *Common = UD->getNominatedNamespace();
184      while (!Common->Encloses(EffectiveDC))
185        Common = Common->getParent();
186      Common = Common->getPrimaryContext();
187
188      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
189    }
190
191    void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
192
193    typedef ListTy::const_iterator const_iterator;
194
195    const_iterator begin() const { return list.begin(); }
196    const_iterator end() const { return list.end(); }
197
198    llvm::iterator_range<const_iterator>
199    getNamespacesFor(DeclContext *DC) const {
200      return llvm::make_range(std::equal_range(begin(), end(),
201                                               DC->getPrimaryContext(),
202                                               UnqualUsingEntry::Comparator()));
203    }
204  };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210                               bool CPlusPlus,
211                               bool Redeclaration) {
212  unsigned IDNS = 0;
213  switch (NameKind) {
214  case Sema::LookupObjCImplicitSelfParam:
215  case Sema::LookupOrdinaryName:
216  case Sema::LookupRedeclarationWithLinkage:
217  case Sema::LookupLocalFriendName:
218  case Sema::LookupDestructorName:
219    IDNS = Decl::IDNS_Ordinary;
220    if (CPlusPlus) {
221      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
222      if (Redeclaration)
223        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
224    }
225    if (Redeclaration)
226      IDNS |= Decl::IDNS_LocalExtern;
227    break;
228
229  case Sema::LookupOperatorName:
230    // Operator lookup is its own crazy thing;  it is not the same
231    // as (e.g.) looking up an operator name for redeclaration.
232    assert(!Redeclaration && "cannot do redeclaration operator lookup");
233    IDNS = Decl::IDNS_NonMemberOperator;
234    break;
235
236  case Sema::LookupTagName:
237    if (CPlusPlus) {
238      IDNS = Decl::IDNS_Type;
239
240      // When looking for a redeclaration of a tag name, we add:
241      // 1) TagFriend to find undeclared friend decls
242      // 2) Namespace because they can't "overload" with tag decls.
243      // 3) Tag because it includes class templates, which can't
244      //    "overload" with tag decls.
245      if (Redeclaration)
246        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
247    } else {
248      IDNS = Decl::IDNS_Tag;
249    }
250    break;
251
252  case Sema::LookupLabel:
253    IDNS = Decl::IDNS_Label;
254    break;
255
256  case Sema::LookupMemberName:
257    IDNS = Decl::IDNS_Member;
258    if (CPlusPlus)
259      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
260    break;
261
262  case Sema::LookupNestedNameSpecifierName:
263    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
264    break;
265
266  case Sema::LookupNamespaceName:
267    IDNS = Decl::IDNS_Namespace;
268    break;
269
270  case Sema::LookupUsingDeclName:
271    assert(Redeclaration && "should only be used for redecl lookup");
272    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
273           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
274           Decl::IDNS_LocalExtern;
275    break;
276
277  case Sema::LookupObjCProtocolName:
278    IDNS = Decl::IDNS_ObjCProtocol;
279    break;
280
281  case Sema::LookupOMPReductionName:
282    IDNS = Decl::IDNS_OMPReduction;
283    break;
284
285  case Sema::LookupOMPMapperName:
286    IDNS = Decl::IDNS_OMPMapper;
287    break;
288
289  case Sema::LookupAnyName:
290    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
291      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
292      | Decl::IDNS_Type;
293    break;
294  }
295  return IDNS;
296}
297
298void LookupResult::configure() {
299  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
300                 isForRedeclaration());
301
302  // If we're looking for one of the allocation or deallocation
303  // operators, make sure that the implicitly-declared new and delete
304  // operators can be found.
305  switch (NameInfo.getName().getCXXOverloadedOperator()) {
306  case OO_New:
307  case OO_Delete:
308  case OO_Array_New:
309  case OO_Array_Delete:
310    getSema().DeclareGlobalNewDelete();
311    break;
312
313  default:
314    break;
315  }
316
317  // Compiler builtins are always visible, regardless of where they end
318  // up being declared.
319  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
320    if (unsigned BuiltinID = Id->getBuiltinID()) {
321      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
322        AllowHidden = true;
323    }
324  }
325}
326
327bool LookupResult::sanity() const {
328  // This function is never called by NDEBUG builds.
329  assert(ResultKind != NotFound || Decls.size() == 0);
330  assert(ResultKind != Found || Decls.size() == 1);
331  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
332         (Decls.size() == 1 &&
333          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
334  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
335  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
336         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
337                                Ambiguity == AmbiguousBaseSubobjectTypes)));
338  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
339                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
340                                 Ambiguity == AmbiguousBaseSubobjects)));
341  return true;
342}
343
344// Necessary because CXXBasePaths is not complete in Sema.h
345void LookupResult::deletePaths(CXXBasePaths *Paths) {
346  delete Paths;
347}
348
349/// Get a representative context for a declaration such that two declarations
350/// will have the same context if they were found within the same scope.
351static DeclContext *getContextForScopeMatching(Decl *D) {
352  // For function-local declarations, use that function as the context. This
353  // doesn't account for scopes within the function; the caller must deal with
354  // those.
355  DeclContext *DC = D->getLexicalDeclContext();
356  if (DC->isFunctionOrMethod())
357    return DC;
358
359  // Otherwise, look at the semantic context of the declaration. The
360  // declaration must have been found there.
361  return D->getDeclContext()->getRedeclContext();
362}
363
364/// Determine whether \p D is a better lookup result than \p Existing,
365/// given that they declare the same entity.
366static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
367                                    NamedDecl *D, NamedDecl *Existing) {
368  // When looking up redeclarations of a using declaration, prefer a using
369  // shadow declaration over any other declaration of the same entity.
370  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
371      !isa<UsingShadowDecl>(Existing))
372    return true;
373
374  auto *DUnderlying = D->getUnderlyingDecl();
375  auto *EUnderlying = Existing->getUnderlyingDecl();
376
377  // If they have different underlying declarations, prefer a typedef over the
378  // original type (this happens when two type declarations denote the same
379  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
380  // might carry additional semantic information, such as an alignment override.
381  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
382  // declaration over a typedef. Also prefer a tag over a typedef for
383  // destructor name lookup because in some contexts we only accept a
384  // class-name in a destructor declaration.
385  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
386    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
387    bool HaveTag = isa<TagDecl>(EUnderlying);
388    bool WantTag =
389        Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
390    return HaveTag != WantTag;
391  }
392
393  // Pick the function with more default arguments.
394  // FIXME: In the presence of ambiguous default arguments, we should keep both,
395  //        so we can diagnose the ambiguity if the default argument is needed.
396  //        See C++ [over.match.best]p3.
397  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
398    auto *EFD = cast<FunctionDecl>(EUnderlying);
399    unsigned DMin = DFD->getMinRequiredArguments();
400    unsigned EMin = EFD->getMinRequiredArguments();
401    // If D has more default arguments, it is preferred.
402    if (DMin != EMin)
403      return DMin < EMin;
404    // FIXME: When we track visibility for default function arguments, check
405    // that we pick the declaration with more visible default arguments.
406  }
407
408  // Pick the template with more default template arguments.
409  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
410    auto *ETD = cast<TemplateDecl>(EUnderlying);
411    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
412    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
413    // If D has more default arguments, it is preferred. Note that default
414    // arguments (and their visibility) is monotonically increasing across the
415    // redeclaration chain, so this is a quick proxy for "is more recent".
416    if (DMin != EMin)
417      return DMin < EMin;
418    // If D has more *visible* default arguments, it is preferred. Note, an
419    // earlier default argument being visible does not imply that a later
420    // default argument is visible, so we can't just check the first one.
421    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
422        I != N; ++I) {
423      if (!S.hasVisibleDefaultArgument(
424              ETD->getTemplateParameters()->getParam(I)) &&
425          S.hasVisibleDefaultArgument(
426              DTD->getTemplateParameters()->getParam(I)))
427        return true;
428    }
429  }
430
431  // VarDecl can have incomplete array types, prefer the one with more complete
432  // array type.
433  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
434    VarDecl *EVD = cast<VarDecl>(EUnderlying);
435    if (EVD->getType()->isIncompleteType() &&
436        !DVD->getType()->isIncompleteType()) {
437      // Prefer the decl with a more complete type if visible.
438      return S.isVisible(DVD);
439    }
440    return false; // Avoid picking up a newer decl, just because it was newer.
441  }
442
443  // For most kinds of declaration, it doesn't really matter which one we pick.
444  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
445    // If the existing declaration is hidden, prefer the new one. Otherwise,
446    // keep what we've got.
447    return !S.isVisible(Existing);
448  }
449
450  // Pick the newer declaration; it might have a more precise type.
451  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
452       Prev = Prev->getPreviousDecl())
453    if (Prev == EUnderlying)
454      return true;
455  return false;
456}
457
458/// Determine whether \p D can hide a tag declaration.
459static bool canHideTag(NamedDecl *D) {
460  // C++ [basic.scope.declarative]p4:
461  //   Given a set of declarations in a single declarative region [...]
462  //   exactly one declaration shall declare a class name or enumeration name
463  //   that is not a typedef name and the other declarations shall all refer to
464  //   the same variable, non-static data member, or enumerator, or all refer
465  //   to functions and function templates; in this case the class name or
466  //   enumeration name is hidden.
467  // C++ [basic.scope.hiding]p2:
468  //   A class name or enumeration name can be hidden by the name of a
469  //   variable, data member, function, or enumerator declared in the same
470  //   scope.
471  // An UnresolvedUsingValueDecl always instantiates to one of these.
472  D = D->getUnderlyingDecl();
473  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
474         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
475         isa<UnresolvedUsingValueDecl>(D);
476}
477
478/// Resolves the result kind of this lookup.
479void LookupResult::resolveKind() {
480  unsigned N = Decls.size();
481
482  // Fast case: no possible ambiguity.
483  if (N == 0) {
484    assert(ResultKind == NotFound ||
485           ResultKind == NotFoundInCurrentInstantiation);
486    return;
487  }
488
489  // If there's a single decl, we need to examine it to decide what
490  // kind of lookup this is.
491  if (N == 1) {
492    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
493    if (isa<FunctionTemplateDecl>(D))
494      ResultKind = FoundOverloaded;
495    else if (isa<UnresolvedUsingValueDecl>(D))
496      ResultKind = FoundUnresolvedValue;
497    return;
498  }
499
500  // Don't do any extra resolution if we've already resolved as ambiguous.
501  if (ResultKind == Ambiguous) return;
502
503  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
504  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
505
506  bool Ambiguous = false;
507  bool HasTag = false, HasFunction = false;
508  bool HasFunctionTemplate = false, HasUnresolved = false;
509  NamedDecl *HasNonFunction = nullptr;
510
511  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
512
513  unsigned UniqueTagIndex = 0;
514
515  unsigned I = 0;
516  while (I < N) {
517    NamedDecl *D = Decls[I]->getUnderlyingDecl();
518    D = cast<NamedDecl>(D->getCanonicalDecl());
519
520    // Ignore an invalid declaration unless it's the only one left.
521    if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
522      Decls[I] = Decls[--N];
523      continue;
524    }
525
526    llvm::Optional<unsigned> ExistingI;
527
528    // Redeclarations of types via typedef can occur both within a scope
529    // and, through using declarations and directives, across scopes. There is
530    // no ambiguity if they all refer to the same type, so unique based on the
531    // canonical type.
532    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
533      QualType T = getSema().Context.getTypeDeclType(TD);
534      auto UniqueResult = UniqueTypes.insert(
535          std::make_pair(getSema().Context.getCanonicalType(T), I));
536      if (!UniqueResult.second) {
537        // The type is not unique.
538        ExistingI = UniqueResult.first->second;
539      }
540    }
541
542    // For non-type declarations, check for a prior lookup result naming this
543    // canonical declaration.
544    if (!ExistingI) {
545      auto UniqueResult = Unique.insert(std::make_pair(D, I));
546      if (!UniqueResult.second) {
547        // We've seen this entity before.
548        ExistingI = UniqueResult.first->second;
549      }
550    }
551
552    if (ExistingI) {
553      // This is not a unique lookup result. Pick one of the results and
554      // discard the other.
555      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
556                                  Decls[*ExistingI]))
557        Decls[*ExistingI] = Decls[I];
558      Decls[I] = Decls[--N];
559      continue;
560    }
561
562    // Otherwise, do some decl type analysis and then continue.
563
564    if (isa<UnresolvedUsingValueDecl>(D)) {
565      HasUnresolved = true;
566    } else if (isa<TagDecl>(D)) {
567      if (HasTag)
568        Ambiguous = true;
569      UniqueTagIndex = I;
570      HasTag = true;
571    } else if (isa<FunctionTemplateDecl>(D)) {
572      HasFunction = true;
573      HasFunctionTemplate = true;
574    } else if (isa<FunctionDecl>(D)) {
575      HasFunction = true;
576    } else {
577      if (HasNonFunction) {
578        // If we're about to create an ambiguity between two declarations that
579        // are equivalent, but one is an internal linkage declaration from one
580        // module and the other is an internal linkage declaration from another
581        // module, just skip it.
582        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
583                                                             D)) {
584          EquivalentNonFunctions.push_back(D);
585          Decls[I] = Decls[--N];
586          continue;
587        }
588
589        Ambiguous = true;
590      }
591      HasNonFunction = D;
592    }
593    I++;
594  }
595
596  // C++ [basic.scope.hiding]p2:
597  //   A class name or enumeration name can be hidden by the name of
598  //   an object, function, or enumerator declared in the same
599  //   scope. If a class or enumeration name and an object, function,
600  //   or enumerator are declared in the same scope (in any order)
601  //   with the same name, the class or enumeration name is hidden
602  //   wherever the object, function, or enumerator name is visible.
603  // But it's still an error if there are distinct tag types found,
604  // even if they're not visible. (ref?)
605  if (N > 1 && HideTags && HasTag && !Ambiguous &&
606      (HasFunction || HasNonFunction || HasUnresolved)) {
607    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
608    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
609        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
610            getContextForScopeMatching(OtherDecl)) &&
611        canHideTag(OtherDecl))
612      Decls[UniqueTagIndex] = Decls[--N];
613    else
614      Ambiguous = true;
615  }
616
617  // FIXME: This diagnostic should really be delayed until we're done with
618  // the lookup result, in case the ambiguity is resolved by the caller.
619  if (!EquivalentNonFunctions.empty() && !Ambiguous)
620    getSema().diagnoseEquivalentInternalLinkageDeclarations(
621        getNameLoc(), HasNonFunction, EquivalentNonFunctions);
622
623  Decls.set_size(N);
624
625  if (HasNonFunction && (HasFunction || HasUnresolved))
626    Ambiguous = true;
627
628  if (Ambiguous)
629    setAmbiguous(LookupResult::AmbiguousReference);
630  else if (HasUnresolved)
631    ResultKind = LookupResult::FoundUnresolvedValue;
632  else if (N > 1 || HasFunctionTemplate)
633    ResultKind = LookupResult::FoundOverloaded;
634  else
635    ResultKind = LookupResult::Found;
636}
637
638void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
639  CXXBasePaths::const_paths_iterator I, E;
640  for (I = P.begin(), E = P.end(); I != E; ++I)
641    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
642         DE = I->Decls.end(); DI != DE; ++DI)
643      addDecl(*DI);
644}
645
646void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
647  Paths = new CXXBasePaths;
648  Paths->swap(P);
649  addDeclsFromBasePaths(*Paths);
650  resolveKind();
651  setAmbiguous(AmbiguousBaseSubobjects);
652}
653
654void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
655  Paths = new CXXBasePaths;
656  Paths->swap(P);
657  addDeclsFromBasePaths(*Paths);
658  resolveKind();
659  setAmbiguous(AmbiguousBaseSubobjectTypes);
660}
661
662void LookupResult::print(raw_ostream &Out) {
663  Out << Decls.size() << " result(s)";
664  if (isAmbiguous()) Out << ", ambiguous";
665  if (Paths) Out << ", base paths present";
666
667  for (iterator I = begin(), E = end(); I != E; ++I) {
668    Out << "\n";
669    (*I)->print(Out, 2);
670  }
671}
672
673LLVM_DUMP_METHOD void LookupResult::dump() {
674  llvm::errs() << "lookup results for " << getLookupName().getAsString()
675               << ":\n";
676  for (NamedDecl *D : *this)
677    D->dump();
678}
679
680/// Get the QualType instances of the return type and arguments for an OpenCL
681/// builtin function signature.
682/// \param Context (in) The Context instance.
683/// \param OpenCLBuiltin (in) The signature currently handled.
684/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
685///        type used as return type or as argument.
686///        Only meaningful for generic types, otherwise equals 1.
687/// \param RetTypes (out) List of the possible return types.
688/// \param ArgTypes (out) List of the possible argument types.  For each
689///        argument, ArgTypes contains QualTypes for the Cartesian product
690///        of (vector sizes) x (types) .
691static void GetQualTypesForOpenCLBuiltin(
692    ASTContext &Context, const OpenCLBuiltinStruct &OpenCLBuiltin,
693    unsigned &GenTypeMaxCnt, SmallVector<QualType, 1> &RetTypes,
694    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
695  // Get the QualType instances of the return types.
696  unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
697  OCL2Qual(Context, TypeTable[Sig], RetTypes);
698  GenTypeMaxCnt = RetTypes.size();
699
700  // Get the QualType instances of the arguments.
701  // First type is the return type, skip it.
702  for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
703    SmallVector<QualType, 1> Ty;
704    OCL2Qual(Context,
705        TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], Ty);
706    GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
707    ArgTypes.push_back(std::move(Ty));
708  }
709}
710
711/// Create a list of the candidate function overloads for an OpenCL builtin
712/// function.
713/// \param Context (in) The ASTContext instance.
714/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
715///        type used as return type or as argument.
716///        Only meaningful for generic types, otherwise equals 1.
717/// \param FunctionList (out) List of FunctionTypes.
718/// \param RetTypes (in) List of the possible return types.
719/// \param ArgTypes (in) List of the possible types for the arguments.
720static void GetOpenCLBuiltinFctOverloads(
721    ASTContext &Context, unsigned GenTypeMaxCnt,
722    std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
723    SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
724  FunctionProtoType::ExtProtoInfo PI;
725  PI.Variadic = false;
726
727  // Create FunctionTypes for each (gen)type.
728  for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
729    SmallVector<QualType, 5> ArgList;
730
731    for (unsigned A = 0; A < ArgTypes.size(); A++) {
732      // Builtins such as "max" have an "sgentype" argument that represents
733      // the corresponding scalar type of a gentype.  The number of gentypes
734      // must be a multiple of the number of sgentypes.
735      assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
736             "argument type count not compatible with gentype type count");
737      unsigned Idx = IGenType % ArgTypes[A].size();
738      ArgList.push_back(ArgTypes[A][Idx]);
739    }
740
741    FunctionList.push_back(Context.getFunctionType(
742        RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
743  }
744}
745
746/// Add extensions to the function declaration.
747/// \param S (in/out) The Sema instance.
748/// \param BIDecl (in) Description of the builtin.
749/// \param FDecl (in/out) FunctionDecl instance.
750static void AddOpenCLExtensions(Sema &S, const OpenCLBuiltinStruct &BIDecl,
751                                FunctionDecl *FDecl) {
752  // Fetch extension associated with a function prototype.
753  StringRef E = FunctionExtensionTable[BIDecl.Extension];
754  if (E != "")
755    S.setOpenCLExtensionForDecl(FDecl, E);
756}
757
758/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
759/// non-null <Index, Len> pair, then the name is referencing an OpenCL
760/// builtin function.  Add all candidate signatures to the LookUpResult.
761///
762/// \param S (in) The Sema instance.
763/// \param LR (inout) The LookupResult instance.
764/// \param II (in) The identifier being resolved.
765/// \param FctIndex (in) Starting index in the BuiltinTable.
766/// \param Len (in) The signature list has Len elements.
767static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
768                                                  IdentifierInfo *II,
769                                                  const unsigned FctIndex,
770                                                  const unsigned Len) {
771  // The builtin function declaration uses generic types (gentype).
772  bool HasGenType = false;
773
774  // Maximum number of types contained in a generic type used as return type or
775  // as argument.  Only meaningful for generic types, otherwise equals 1.
776  unsigned GenTypeMaxCnt;
777
778  for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
779    const OpenCLBuiltinStruct &OpenCLBuiltin =
780        BuiltinTable[FctIndex + SignatureIndex];
781    ASTContext &Context = S.Context;
782
783    // Ignore this BIF if its version does not match the language options.
784    unsigned OpenCLVersion = Context.getLangOpts().OpenCLVersion;
785    if (Context.getLangOpts().OpenCLCPlusPlus)
786      OpenCLVersion = 200;
787    if (OpenCLVersion < OpenCLBuiltin.MinVersion)
788      continue;
789    if ((OpenCLBuiltin.MaxVersion != 0) &&
790        (OpenCLVersion >= OpenCLBuiltin.MaxVersion))
791      continue;
792
793    SmallVector<QualType, 1> RetTypes;
794    SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
795
796    // Obtain QualType lists for the function signature.
797    GetQualTypesForOpenCLBuiltin(Context, OpenCLBuiltin, GenTypeMaxCnt,
798                                 RetTypes, ArgTypes);
799    if (GenTypeMaxCnt > 1) {
800      HasGenType = true;
801    }
802
803    // Create function overload for each type combination.
804    std::vector<QualType> FunctionList;
805    GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
806                                 ArgTypes);
807
808    SourceLocation Loc = LR.getNameLoc();
809    DeclContext *Parent = Context.getTranslationUnitDecl();
810    FunctionDecl *NewOpenCLBuiltin;
811
812    for (unsigned Index = 0; Index < GenTypeMaxCnt; Index++) {
813      NewOpenCLBuiltin = FunctionDecl::Create(
814          Context, Parent, Loc, Loc, II, FunctionList[Index],
815          /*TInfo=*/nullptr, SC_Extern, false,
816          FunctionList[Index]->isFunctionProtoType());
817      NewOpenCLBuiltin->setImplicit();
818
819      // Create Decl objects for each parameter, adding them to the
820      // FunctionDecl.
821      if (const FunctionProtoType *FP =
822              dyn_cast<FunctionProtoType>(FunctionList[Index])) {
823        SmallVector<ParmVarDecl *, 16> ParmList;
824        for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
825          ParmVarDecl *Parm = ParmVarDecl::Create(
826              Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
827              nullptr, FP->getParamType(IParm),
828              /*TInfo=*/nullptr, SC_None, nullptr);
829          Parm->setScopeInfo(0, IParm);
830          ParmList.push_back(Parm);
831        }
832        NewOpenCLBuiltin->setParams(ParmList);
833      }
834
835      // Add function attributes.
836      if (OpenCLBuiltin.IsPure)
837        NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
838      if (OpenCLBuiltin.IsConst)
839        NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
840      if (OpenCLBuiltin.IsConv)
841        NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
842
843      if (!S.getLangOpts().OpenCLCPlusPlus)
844        NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
845
846      AddOpenCLExtensions(S, OpenCLBuiltin, NewOpenCLBuiltin);
847
848      LR.addDecl(NewOpenCLBuiltin);
849    }
850  }
851
852  // If we added overloads, need to resolve the lookup result.
853  if (Len > 1 || HasGenType)
854    LR.resolveKind();
855}
856
857/// Lookup a builtin function, when name lookup would otherwise
858/// fail.
859bool Sema::LookupBuiltin(LookupResult &R) {
860  Sema::LookupNameKind NameKind = R.getLookupKind();
861
862  // If we didn't find a use of this identifier, and if the identifier
863  // corresponds to a compiler builtin, create the decl object for the builtin
864  // now, injecting it into translation unit scope, and return it.
865  if (NameKind == Sema::LookupOrdinaryName ||
866      NameKind == Sema::LookupRedeclarationWithLinkage) {
867    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
868    if (II) {
869      if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
870        if (II == getASTContext().getMakeIntegerSeqName()) {
871          R.addDecl(getASTContext().getMakeIntegerSeqDecl());
872          return true;
873        } else if (II == getASTContext().getTypePackElementName()) {
874          R.addDecl(getASTContext().getTypePackElementDecl());
875          return true;
876        }
877      }
878
879      // Check if this is an OpenCL Builtin, and if so, insert its overloads.
880      if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
881        auto Index = isOpenCLBuiltin(II->getName());
882        if (Index.first) {
883          InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
884                                                Index.second);
885          return true;
886        }
887      }
888
889      // If this is a builtin on this (or all) targets, create the decl.
890      if (unsigned BuiltinID = II->getBuiltinID()) {
891        // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
892        // library functions like 'malloc'. Instead, we'll just error.
893        if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
894            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
895          return false;
896
897        if (NamedDecl *D =
898                LazilyCreateBuiltin(II, BuiltinID, TUScope,
899                                    R.isForRedeclaration(), R.getNameLoc())) {
900          R.addDecl(D);
901          return true;
902        }
903      }
904    }
905  }
906
907  return false;
908}
909
910/// Determine whether we can declare a special member function within
911/// the class at this point.
912static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
913  // We need to have a definition for the class.
914  if (!Class->getDefinition() || Class->isDependentContext())
915    return false;
916
917  // We can't be in the middle of defining the class.
918  return !Class->isBeingDefined();
919}
920
921void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
922  if (!CanDeclareSpecialMemberFunction(Class))
923    return;
924
925  // If the default constructor has not yet been declared, do so now.
926  if (Class->needsImplicitDefaultConstructor())
927    DeclareImplicitDefaultConstructor(Class);
928
929  // If the copy constructor has not yet been declared, do so now.
930  if (Class->needsImplicitCopyConstructor())
931    DeclareImplicitCopyConstructor(Class);
932
933  // If the copy assignment operator has not yet been declared, do so now.
934  if (Class->needsImplicitCopyAssignment())
935    DeclareImplicitCopyAssignment(Class);
936
937  if (getLangOpts().CPlusPlus11) {
938    // If the move constructor has not yet been declared, do so now.
939    if (Class->needsImplicitMoveConstructor())
940      DeclareImplicitMoveConstructor(Class);
941
942    // If the move assignment operator has not yet been declared, do so now.
943    if (Class->needsImplicitMoveAssignment())
944      DeclareImplicitMoveAssignment(Class);
945  }
946
947  // If the destructor has not yet been declared, do so now.
948  if (Class->needsImplicitDestructor())
949    DeclareImplicitDestructor(Class);
950}
951
952/// Determine whether this is the name of an implicitly-declared
953/// special member function.
954static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
955  switch (Name.getNameKind()) {
956  case DeclarationName::CXXConstructorName:
957  case DeclarationName::CXXDestructorName:
958    return true;
959
960  case DeclarationName::CXXOperatorName:
961    return Name.getCXXOverloadedOperator() == OO_Equal;
962
963  default:
964    break;
965  }
966
967  return false;
968}
969
970/// If there are any implicit member functions with the given name
971/// that need to be declared in the given declaration context, do so.
972static void DeclareImplicitMemberFunctionsWithName(Sema &S,
973                                                   DeclarationName Name,
974                                                   SourceLocation Loc,
975                                                   const DeclContext *DC) {
976  if (!DC)
977    return;
978
979  switch (Name.getNameKind()) {
980  case DeclarationName::CXXConstructorName:
981    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
982      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
983        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
984        if (Record->needsImplicitDefaultConstructor())
985          S.DeclareImplicitDefaultConstructor(Class);
986        if (Record->needsImplicitCopyConstructor())
987          S.DeclareImplicitCopyConstructor(Class);
988        if (S.getLangOpts().CPlusPlus11 &&
989            Record->needsImplicitMoveConstructor())
990          S.DeclareImplicitMoveConstructor(Class);
991      }
992    break;
993
994  case DeclarationName::CXXDestructorName:
995    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
996      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
997          CanDeclareSpecialMemberFunction(Record))
998        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
999    break;
1000
1001  case DeclarationName::CXXOperatorName:
1002    if (Name.getCXXOverloadedOperator() != OO_Equal)
1003      break;
1004
1005    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1006      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1007        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1008        if (Record->needsImplicitCopyAssignment())
1009          S.DeclareImplicitCopyAssignment(Class);
1010        if (S.getLangOpts().CPlusPlus11 &&
1011            Record->needsImplicitMoveAssignment())
1012          S.DeclareImplicitMoveAssignment(Class);
1013      }
1014    }
1015    break;
1016
1017  case DeclarationName::CXXDeductionGuideName:
1018    S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1019    break;
1020
1021  default:
1022    break;
1023  }
1024}
1025
1026// Adds all qualifying matches for a name within a decl context to the
1027// given lookup result.  Returns true if any matches were found.
1028static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1029  bool Found = false;
1030
1031  // Lazily declare C++ special member functions.
1032  if (S.getLangOpts().CPlusPlus)
1033    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1034                                           DC);
1035
1036  // Perform lookup into this declaration context.
1037  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1038  for (NamedDecl *D : DR) {
1039    if ((D = R.getAcceptableDecl(D))) {
1040      R.addDecl(D);
1041      Found = true;
1042    }
1043  }
1044
1045  if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1046    return true;
1047
1048  if (R.getLookupName().getNameKind()
1049        != DeclarationName::CXXConversionFunctionName ||
1050      R.getLookupName().getCXXNameType()->isDependentType() ||
1051      !isa<CXXRecordDecl>(DC))
1052    return Found;
1053
1054  // C++ [temp.mem]p6:
1055  //   A specialization of a conversion function template is not found by
1056  //   name lookup. Instead, any conversion function templates visible in the
1057  //   context of the use are considered. [...]
1058  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1059  if (!Record->isCompleteDefinition())
1060    return Found;
1061
1062  // For conversion operators, 'operator auto' should only match
1063  // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1064  // as a candidate for template substitution.
1065  auto *ContainedDeducedType =
1066      R.getLookupName().getCXXNameType()->getContainedDeducedType();
1067  if (R.getLookupName().getNameKind() ==
1068          DeclarationName::CXXConversionFunctionName &&
1069      ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1070    return Found;
1071
1072  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1073         UEnd = Record->conversion_end(); U != UEnd; ++U) {
1074    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1075    if (!ConvTemplate)
1076      continue;
1077
1078    // When we're performing lookup for the purposes of redeclaration, just
1079    // add the conversion function template. When we deduce template
1080    // arguments for specializations, we'll end up unifying the return
1081    // type of the new declaration with the type of the function template.
1082    if (R.isForRedeclaration()) {
1083      R.addDecl(ConvTemplate);
1084      Found = true;
1085      continue;
1086    }
1087
1088    // C++ [temp.mem]p6:
1089    //   [...] For each such operator, if argument deduction succeeds
1090    //   (14.9.2.3), the resulting specialization is used as if found by
1091    //   name lookup.
1092    //
1093    // When referencing a conversion function for any purpose other than
1094    // a redeclaration (such that we'll be building an expression with the
1095    // result), perform template argument deduction and place the
1096    // specialization into the result set. We do this to avoid forcing all
1097    // callers to perform special deduction for conversion functions.
1098    TemplateDeductionInfo Info(R.getNameLoc());
1099    FunctionDecl *Specialization = nullptr;
1100
1101    const FunctionProtoType *ConvProto
1102      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1103    assert(ConvProto && "Nonsensical conversion function template type");
1104
1105    // Compute the type of the function that we would expect the conversion
1106    // function to have, if it were to match the name given.
1107    // FIXME: Calling convention!
1108    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1109    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1110    EPI.ExceptionSpec = EST_None;
1111    QualType ExpectedType
1112      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
1113                                            None, EPI);
1114
1115    // Perform template argument deduction against the type that we would
1116    // expect the function to have.
1117    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1118                                            Specialization, Info)
1119          == Sema::TDK_Success) {
1120      R.addDecl(Specialization);
1121      Found = true;
1122    }
1123  }
1124
1125  return Found;
1126}
1127
1128// Performs C++ unqualified lookup into the given file context.
1129static bool
1130CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1131                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1132
1133  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1134
1135  // Perform direct name lookup into the LookupCtx.
1136  bool Found = LookupDirect(S, R, NS);
1137
1138  // Perform direct name lookup into the namespaces nominated by the
1139  // using directives whose common ancestor is this namespace.
1140  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1141    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1142      Found = true;
1143
1144  R.resolveKind();
1145
1146  return Found;
1147}
1148
1149static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1150  if (DeclContext *Ctx = S->getEntity())
1151    return Ctx->isFileContext();
1152  return false;
1153}
1154
1155/// Find the outer declaration context from this scope. This indicates the
1156/// context that we should search up to (exclusive) before considering the
1157/// parent of the specified scope.
1158static DeclContext *findOuterContext(Scope *S) {
1159  for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1160    if (DeclContext *DC = OuterS->getLookupEntity())
1161      return DC;
1162  return nullptr;
1163}
1164
1165namespace {
1166/// An RAII object to specify that we want to find block scope extern
1167/// declarations.
1168struct FindLocalExternScope {
1169  FindLocalExternScope(LookupResult &R)
1170      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1171                                 Decl::IDNS_LocalExtern) {
1172    R.setFindLocalExtern(R.getIdentifierNamespace() &
1173                         (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1174  }
1175  void restore() {
1176    R.setFindLocalExtern(OldFindLocalExtern);
1177  }
1178  ~FindLocalExternScope() {
1179    restore();
1180  }
1181  LookupResult &R;
1182  bool OldFindLocalExtern;
1183};
1184} // end anonymous namespace
1185
1186bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1187  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1188
1189  DeclarationName Name = R.getLookupName();
1190  Sema::LookupNameKind NameKind = R.getLookupKind();
1191
1192  // If this is the name of an implicitly-declared special member function,
1193  // go through the scope stack to implicitly declare
1194  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1195    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1196      if (DeclContext *DC = PreS->getEntity())
1197        DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1198  }
1199
1200  // Implicitly declare member functions with the name we're looking for, if in
1201  // fact we are in a scope where it matters.
1202
1203  Scope *Initial = S;
1204  IdentifierResolver::iterator
1205    I = IdResolver.begin(Name),
1206    IEnd = IdResolver.end();
1207
1208  // First we lookup local scope.
1209  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1210  // ...During unqualified name lookup (3.4.1), the names appear as if
1211  // they were declared in the nearest enclosing namespace which contains
1212  // both the using-directive and the nominated namespace.
1213  // [Note: in this context, "contains" means "contains directly or
1214  // indirectly".
1215  //
1216  // For example:
1217  // namespace A { int i; }
1218  // void foo() {
1219  //   int i;
1220  //   {
1221  //     using namespace A;
1222  //     ++i; // finds local 'i', A::i appears at global scope
1223  //   }
1224  // }
1225  //
1226  UnqualUsingDirectiveSet UDirs(*this);
1227  bool VisitedUsingDirectives = false;
1228  bool LeftStartingScope = false;
1229
1230  // When performing a scope lookup, we want to find local extern decls.
1231  FindLocalExternScope FindLocals(R);
1232
1233  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1234    bool SearchNamespaceScope = true;
1235    // Check whether the IdResolver has anything in this scope.
1236    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1237      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1238        if (NameKind == LookupRedeclarationWithLinkage &&
1239            !(*I)->isTemplateParameter()) {
1240          // If it's a template parameter, we still find it, so we can diagnose
1241          // the invalid redeclaration.
1242
1243          // Determine whether this (or a previous) declaration is
1244          // out-of-scope.
1245          if (!LeftStartingScope && !Initial->isDeclScope(*I))
1246            LeftStartingScope = true;
1247
1248          // If we found something outside of our starting scope that
1249          // does not have linkage, skip it.
1250          if (LeftStartingScope && !((*I)->hasLinkage())) {
1251            R.setShadowed();
1252            continue;
1253          }
1254        } else {
1255          // We found something in this scope, we should not look at the
1256          // namespace scope
1257          SearchNamespaceScope = false;
1258        }
1259        R.addDecl(ND);
1260      }
1261    }
1262    if (!SearchNamespaceScope) {
1263      R.resolveKind();
1264      if (S->isClassScope())
1265        if (CXXRecordDecl *Record =
1266                dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1267          R.setNamingClass(Record);
1268      return true;
1269    }
1270
1271    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1272      // C++11 [class.friend]p11:
1273      //   If a friend declaration appears in a local class and the name
1274      //   specified is an unqualified name, a prior declaration is
1275      //   looked up without considering scopes that are outside the
1276      //   innermost enclosing non-class scope.
1277      return false;
1278    }
1279
1280    if (DeclContext *Ctx = S->getLookupEntity()) {
1281      DeclContext *OuterCtx = findOuterContext(S);
1282      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1283        // We do not directly look into transparent contexts, since
1284        // those entities will be found in the nearest enclosing
1285        // non-transparent context.
1286        if (Ctx->isTransparentContext())
1287          continue;
1288
1289        // We do not look directly into function or method contexts,
1290        // since all of the local variables and parameters of the
1291        // function/method are present within the Scope.
1292        if (Ctx->isFunctionOrMethod()) {
1293          // If we have an Objective-C instance method, look for ivars
1294          // in the corresponding interface.
1295          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1296            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1297              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1298                ObjCInterfaceDecl *ClassDeclared;
1299                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1300                                                 Name.getAsIdentifierInfo(),
1301                                                             ClassDeclared)) {
1302                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1303                    R.addDecl(ND);
1304                    R.resolveKind();
1305                    return true;
1306                  }
1307                }
1308              }
1309          }
1310
1311          continue;
1312        }
1313
1314        // If this is a file context, we need to perform unqualified name
1315        // lookup considering using directives.
1316        if (Ctx->isFileContext()) {
1317          // If we haven't handled using directives yet, do so now.
1318          if (!VisitedUsingDirectives) {
1319            // Add using directives from this context up to the top level.
1320            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1321              if (UCtx->isTransparentContext())
1322                continue;
1323
1324              UDirs.visit(UCtx, UCtx);
1325            }
1326
1327            // Find the innermost file scope, so we can add using directives
1328            // from local scopes.
1329            Scope *InnermostFileScope = S;
1330            while (InnermostFileScope &&
1331                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1332              InnermostFileScope = InnermostFileScope->getParent();
1333            UDirs.visitScopeChain(Initial, InnermostFileScope);
1334
1335            UDirs.done();
1336
1337            VisitedUsingDirectives = true;
1338          }
1339
1340          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1341            R.resolveKind();
1342            return true;
1343          }
1344
1345          continue;
1346        }
1347
1348        // Perform qualified name lookup into this context.
1349        // FIXME: In some cases, we know that every name that could be found by
1350        // this qualified name lookup will also be on the identifier chain. For
1351        // example, inside a class without any base classes, we never need to
1352        // perform qualified lookup because all of the members are on top of the
1353        // identifier chain.
1354        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1355          return true;
1356      }
1357    }
1358  }
1359
1360  // Stop if we ran out of scopes.
1361  // FIXME:  This really, really shouldn't be happening.
1362  if (!S) return false;
1363
1364  // If we are looking for members, no need to look into global/namespace scope.
1365  if (NameKind == LookupMemberName)
1366    return false;
1367
1368  // Collect UsingDirectiveDecls in all scopes, and recursively all
1369  // nominated namespaces by those using-directives.
1370  //
1371  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1372  // don't build it for each lookup!
1373  if (!VisitedUsingDirectives) {
1374    UDirs.visitScopeChain(Initial, S);
1375    UDirs.done();
1376  }
1377
1378  // If we're not performing redeclaration lookup, do not look for local
1379  // extern declarations outside of a function scope.
1380  if (!R.isForRedeclaration())
1381    FindLocals.restore();
1382
1383  // Lookup namespace scope, and global scope.
1384  // Unqualified name lookup in C++ requires looking into scopes
1385  // that aren't strictly lexical, and therefore we walk through the
1386  // context as well as walking through the scopes.
1387  for (; S; S = S->getParent()) {
1388    // Check whether the IdResolver has anything in this scope.
1389    bool Found = false;
1390    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1391      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1392        // We found something.  Look for anything else in our scope
1393        // with this same name and in an acceptable identifier
1394        // namespace, so that we can construct an overload set if we
1395        // need to.
1396        Found = true;
1397        R.addDecl(ND);
1398      }
1399    }
1400
1401    if (Found && S->isTemplateParamScope()) {
1402      R.resolveKind();
1403      return true;
1404    }
1405
1406    DeclContext *Ctx = S->getLookupEntity();
1407    if (Ctx) {
1408      DeclContext *OuterCtx = findOuterContext(S);
1409      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1410        // We do not directly look into transparent contexts, since
1411        // those entities will be found in the nearest enclosing
1412        // non-transparent context.
1413        if (Ctx->isTransparentContext())
1414          continue;
1415
1416        // If we have a context, and it's not a context stashed in the
1417        // template parameter scope for an out-of-line definition, also
1418        // look into that context.
1419        if (!(Found && S->isTemplateParamScope())) {
1420          assert(Ctx->isFileContext() &&
1421              "We should have been looking only at file context here already.");
1422
1423          // Look into context considering using-directives.
1424          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1425            Found = true;
1426        }
1427
1428        if (Found) {
1429          R.resolveKind();
1430          return true;
1431        }
1432
1433        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1434          return false;
1435      }
1436    }
1437
1438    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1439      return false;
1440  }
1441
1442  return !R.empty();
1443}
1444
1445void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1446  if (auto *M = getCurrentModule())
1447    Context.mergeDefinitionIntoModule(ND, M);
1448  else
1449    // We're not building a module; just make the definition visible.
1450    ND->setVisibleDespiteOwningModule();
1451
1452  // If ND is a template declaration, make the template parameters
1453  // visible too. They're not (necessarily) within a mergeable DeclContext.
1454  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1455    for (auto *Param : *TD->getTemplateParameters())
1456      makeMergedDefinitionVisible(Param);
1457}
1458
1459/// Find the module in which the given declaration was defined.
1460static Module *getDefiningModule(Sema &S, Decl *Entity) {
1461  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1462    // If this function was instantiated from a template, the defining module is
1463    // the module containing the pattern.
1464    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1465      Entity = Pattern;
1466  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1467    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1468      Entity = Pattern;
1469  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1470    if (auto *Pattern = ED->getTemplateInstantiationPattern())
1471      Entity = Pattern;
1472  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1473    if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1474      Entity = Pattern;
1475  }
1476
1477  // Walk up to the containing context. That might also have been instantiated
1478  // from a template.
1479  DeclContext *Context = Entity->getLexicalDeclContext();
1480  if (Context->isFileContext())
1481    return S.getOwningModule(Entity);
1482  return getDefiningModule(S, cast<Decl>(Context));
1483}
1484
1485llvm::DenseSet<Module*> &Sema::getLookupModules() {
1486  unsigned N = CodeSynthesisContexts.size();
1487  for (unsigned I = CodeSynthesisContextLookupModules.size();
1488       I != N; ++I) {
1489    Module *M = CodeSynthesisContexts[I].Entity ?
1490                getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1491                nullptr;
1492    if (M && !LookupModulesCache.insert(M).second)
1493      M = nullptr;
1494    CodeSynthesisContextLookupModules.push_back(M);
1495  }
1496  return LookupModulesCache;
1497}
1498
1499/// Determine whether the module M is part of the current module from the
1500/// perspective of a module-private visibility check.
1501static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1502  // If M is the global module fragment of a module that we've not yet finished
1503  // parsing, then it must be part of the current module.
1504  return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1505         (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1506}
1507
1508bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1509  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1510    if (isModuleVisible(Merged))
1511      return true;
1512  return false;
1513}
1514
1515bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1516  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1517    if (isInCurrentModule(Merged, getLangOpts()))
1518      return true;
1519  return false;
1520}
1521
1522template<typename ParmDecl>
1523static bool
1524hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1525                          llvm::SmallVectorImpl<Module *> *Modules) {
1526  if (!D->hasDefaultArgument())
1527    return false;
1528
1529  while (D) {
1530    auto &DefaultArg = D->getDefaultArgStorage();
1531    if (!DefaultArg.isInherited() && S.isVisible(D))
1532      return true;
1533
1534    if (!DefaultArg.isInherited() && Modules) {
1535      auto *NonConstD = const_cast<ParmDecl*>(D);
1536      Modules->push_back(S.getOwningModule(NonConstD));
1537    }
1538
1539    // If there was a previous default argument, maybe its parameter is visible.
1540    D = DefaultArg.getInheritedFrom();
1541  }
1542  return false;
1543}
1544
1545bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1546                                     llvm::SmallVectorImpl<Module *> *Modules) {
1547  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1548    return ::hasVisibleDefaultArgument(*this, P, Modules);
1549  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1550    return ::hasVisibleDefaultArgument(*this, P, Modules);
1551  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1552                                     Modules);
1553}
1554
1555template<typename Filter>
1556static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1557                                      llvm::SmallVectorImpl<Module *> *Modules,
1558                                      Filter F) {
1559  bool HasFilteredRedecls = false;
1560
1561  for (auto *Redecl : D->redecls()) {
1562    auto *R = cast<NamedDecl>(Redecl);
1563    if (!F(R))
1564      continue;
1565
1566    if (S.isVisible(R))
1567      return true;
1568
1569    HasFilteredRedecls = true;
1570
1571    if (Modules)
1572      Modules->push_back(R->getOwningModule());
1573  }
1574
1575  // Only return false if there is at least one redecl that is not filtered out.
1576  if (HasFilteredRedecls)
1577    return false;
1578
1579  return true;
1580}
1581
1582bool Sema::hasVisibleExplicitSpecialization(
1583    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1584  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1585    if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1586      return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1587    if (auto *FD = dyn_cast<FunctionDecl>(D))
1588      return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1589    if (auto *VD = dyn_cast<VarDecl>(D))
1590      return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1591    llvm_unreachable("unknown explicit specialization kind");
1592  });
1593}
1594
1595bool Sema::hasVisibleMemberSpecialization(
1596    const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1597  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1598         "not a member specialization");
1599  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1600    // If the specialization is declared at namespace scope, then it's a member
1601    // specialization declaration. If it's lexically inside the class
1602    // definition then it was instantiated.
1603    //
1604    // FIXME: This is a hack. There should be a better way to determine this.
1605    // FIXME: What about MS-style explicit specializations declared within a
1606    //        class definition?
1607    return D->getLexicalDeclContext()->isFileContext();
1608  });
1609}
1610
1611/// Determine whether a declaration is visible to name lookup.
1612///
1613/// This routine determines whether the declaration D is visible in the current
1614/// lookup context, taking into account the current template instantiation
1615/// stack. During template instantiation, a declaration is visible if it is
1616/// visible from a module containing any entity on the template instantiation
1617/// path (by instantiating a template, you allow it to see the declarations that
1618/// your module can see, including those later on in your module).
1619bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1620  assert(!D->isUnconditionallyVisible() &&
1621         "should not call this: not in slow case");
1622
1623  Module *DeclModule = SemaRef.getOwningModule(D);
1624  assert(DeclModule && "hidden decl has no owning module");
1625
1626  // If the owning module is visible, the decl is visible.
1627  if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1628    return true;
1629
1630  // Determine whether a decl context is a file context for the purpose of
1631  // visibility. This looks through some (export and linkage spec) transparent
1632  // contexts, but not others (enums).
1633  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1634    return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1635           isa<ExportDecl>(DC);
1636  };
1637
1638  // If this declaration is not at namespace scope
1639  // then it is visible if its lexical parent has a visible definition.
1640  DeclContext *DC = D->getLexicalDeclContext();
1641  if (DC && !IsEffectivelyFileContext(DC)) {
1642    // For a parameter, check whether our current template declaration's
1643    // lexical context is visible, not whether there's some other visible
1644    // definition of it, because parameters aren't "within" the definition.
1645    //
1646    // In C++ we need to check for a visible definition due to ODR merging,
1647    // and in C we must not because each declaration of a function gets its own
1648    // set of declarations for tags in prototype scope.
1649    bool VisibleWithinParent;
1650    if (D->isTemplateParameter()) {
1651      bool SearchDefinitions = true;
1652      if (const auto *DCD = dyn_cast<Decl>(DC)) {
1653        if (const auto *TD = DCD->getDescribedTemplate()) {
1654          TemplateParameterList *TPL = TD->getTemplateParameters();
1655          auto Index = getDepthAndIndex(D).second;
1656          SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1657        }
1658      }
1659      if (SearchDefinitions)
1660        VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1661      else
1662        VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1663    } else if (isa<ParmVarDecl>(D) ||
1664               (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1665      VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1666    else if (D->isModulePrivate()) {
1667      // A module-private declaration is only visible if an enclosing lexical
1668      // parent was merged with another definition in the current module.
1669      VisibleWithinParent = false;
1670      do {
1671        if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1672          VisibleWithinParent = true;
1673          break;
1674        }
1675        DC = DC->getLexicalParent();
1676      } while (!IsEffectivelyFileContext(DC));
1677    } else {
1678      VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1679    }
1680
1681    if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1682        // FIXME: Do something better in this case.
1683        !SemaRef.getLangOpts().ModulesLocalVisibility) {
1684      // Cache the fact that this declaration is implicitly visible because
1685      // its parent has a visible definition.
1686      D->setVisibleDespiteOwningModule();
1687    }
1688    return VisibleWithinParent;
1689  }
1690
1691  return false;
1692}
1693
1694bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1695  // The module might be ordinarily visible. For a module-private query, that
1696  // means it is part of the current module. For any other query, that means it
1697  // is in our visible module set.
1698  if (ModulePrivate) {
1699    if (isInCurrentModule(M, getLangOpts()))
1700      return true;
1701  } else {
1702    if (VisibleModules.isVisible(M))
1703      return true;
1704  }
1705
1706  // Otherwise, it might be visible by virtue of the query being within a
1707  // template instantiation or similar that is permitted to look inside M.
1708
1709  // Find the extra places where we need to look.
1710  const auto &LookupModules = getLookupModules();
1711  if (LookupModules.empty())
1712    return false;
1713
1714  // If our lookup set contains the module, it's visible.
1715  if (LookupModules.count(M))
1716    return true;
1717
1718  // For a module-private query, that's everywhere we get to look.
1719  if (ModulePrivate)
1720    return false;
1721
1722  // Check whether M is transitively exported to an import of the lookup set.
1723  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1724    return LookupM->isModuleVisible(M);
1725  });
1726}
1727
1728bool Sema::isVisibleSlow(const NamedDecl *D) {
1729  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1730}
1731
1732bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1733  // FIXME: If there are both visible and hidden declarations, we need to take
1734  // into account whether redeclaration is possible. Example:
1735  //
1736  // Non-imported module:
1737  //   int f(T);        // #1
1738  // Some TU:
1739  //   static int f(U); // #2, not a redeclaration of #1
1740  //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1741  //                    // with #2 if T == U; neither should be ambiguous.
1742  for (auto *D : R) {
1743    if (isVisible(D))
1744      return true;
1745    assert(D->isExternallyDeclarable() &&
1746           "should not have hidden, non-externally-declarable result here");
1747  }
1748
1749  // This function is called once "New" is essentially complete, but before a
1750  // previous declaration is attached. We can't query the linkage of "New" in
1751  // general, because attaching the previous declaration can change the
1752  // linkage of New to match the previous declaration.
1753  //
1754  // However, because we've just determined that there is no *visible* prior
1755  // declaration, we can compute the linkage here. There are two possibilities:
1756  //
1757  //  * This is not a redeclaration; it's safe to compute the linkage now.
1758  //
1759  //  * This is a redeclaration of a prior declaration that is externally
1760  //    redeclarable. In that case, the linkage of the declaration is not
1761  //    changed by attaching the prior declaration, because both are externally
1762  //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
1763  //
1764  // FIXME: This is subtle and fragile.
1765  return New->isExternallyDeclarable();
1766}
1767
1768/// Retrieve the visible declaration corresponding to D, if any.
1769///
1770/// This routine determines whether the declaration D is visible in the current
1771/// module, with the current imports. If not, it checks whether any
1772/// redeclaration of D is visible, and if so, returns that declaration.
1773///
1774/// \returns D, or a visible previous declaration of D, whichever is more recent
1775/// and visible. If no declaration of D is visible, returns null.
1776static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1777                                     unsigned IDNS) {
1778  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1779
1780  for (auto RD : D->redecls()) {
1781    // Don't bother with extra checks if we already know this one isn't visible.
1782    if (RD == D)
1783      continue;
1784
1785    auto ND = cast<NamedDecl>(RD);
1786    // FIXME: This is wrong in the case where the previous declaration is not
1787    // visible in the same scope as D. This needs to be done much more
1788    // carefully.
1789    if (ND->isInIdentifierNamespace(IDNS) &&
1790        LookupResult::isVisible(SemaRef, ND))
1791      return ND;
1792  }
1793
1794  return nullptr;
1795}
1796
1797bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1798                                     llvm::SmallVectorImpl<Module *> *Modules) {
1799  assert(!isVisible(D) && "not in slow case");
1800  return hasVisibleDeclarationImpl(*this, D, Modules,
1801                                   [](const NamedDecl *) { return true; });
1802}
1803
1804NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1805  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1806    // Namespaces are a bit of a special case: we expect there to be a lot of
1807    // redeclarations of some namespaces, all declarations of a namespace are
1808    // essentially interchangeable, all declarations are found by name lookup
1809    // if any is, and namespaces are never looked up during template
1810    // instantiation. So we benefit from caching the check in this case, and
1811    // it is correct to do so.
1812    auto *Key = ND->getCanonicalDecl();
1813    if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1814      return Acceptable;
1815    auto *Acceptable = isVisible(getSema(), Key)
1816                           ? Key
1817                           : findAcceptableDecl(getSema(), Key, IDNS);
1818    if (Acceptable)
1819      getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1820    return Acceptable;
1821  }
1822
1823  return findAcceptableDecl(getSema(), D, IDNS);
1824}
1825
1826/// Perform unqualified name lookup starting from a given
1827/// scope.
1828///
1829/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1830/// used to find names within the current scope. For example, 'x' in
1831/// @code
1832/// int x;
1833/// int f() {
1834///   return x; // unqualified name look finds 'x' in the global scope
1835/// }
1836/// @endcode
1837///
1838/// Different lookup criteria can find different names. For example, a
1839/// particular scope can have both a struct and a function of the same
1840/// name, and each can be found by certain lookup criteria. For more
1841/// information about lookup criteria, see the documentation for the
1842/// class LookupCriteria.
1843///
1844/// @param S        The scope from which unqualified name lookup will
1845/// begin. If the lookup criteria permits, name lookup may also search
1846/// in the parent scopes.
1847///
1848/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1849/// look up and the lookup kind), and is updated with the results of lookup
1850/// including zero or more declarations and possibly additional information
1851/// used to diagnose ambiguities.
1852///
1853/// @returns \c true if lookup succeeded and false otherwise.
1854bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1855  DeclarationName Name = R.getLookupName();
1856  if (!Name) return false;
1857
1858  LookupNameKind NameKind = R.getLookupKind();
1859
1860  if (!getLangOpts().CPlusPlus) {
1861    // Unqualified name lookup in C/Objective-C is purely lexical, so
1862    // search in the declarations attached to the name.
1863    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1864      // Find the nearest non-transparent declaration scope.
1865      while (!(S->getFlags() & Scope::DeclScope) ||
1866             (S->getEntity() && S->getEntity()->isTransparentContext()))
1867        S = S->getParent();
1868    }
1869
1870    // When performing a scope lookup, we want to find local extern decls.
1871    FindLocalExternScope FindLocals(R);
1872
1873    // Scan up the scope chain looking for a decl that matches this
1874    // identifier that is in the appropriate namespace.  This search
1875    // should not take long, as shadowing of names is uncommon, and
1876    // deep shadowing is extremely uncommon.
1877    bool LeftStartingScope = false;
1878
1879    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1880                                   IEnd = IdResolver.end();
1881         I != IEnd; ++I)
1882      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1883        if (NameKind == LookupRedeclarationWithLinkage) {
1884          // Determine whether this (or a previous) declaration is
1885          // out-of-scope.
1886          if (!LeftStartingScope && !S->isDeclScope(*I))
1887            LeftStartingScope = true;
1888
1889          // If we found something outside of our starting scope that
1890          // does not have linkage, skip it.
1891          if (LeftStartingScope && !((*I)->hasLinkage())) {
1892            R.setShadowed();
1893            continue;
1894          }
1895        }
1896        else if (NameKind == LookupObjCImplicitSelfParam &&
1897                 !isa<ImplicitParamDecl>(*I))
1898          continue;
1899
1900        R.addDecl(D);
1901
1902        // Check whether there are any other declarations with the same name
1903        // and in the same scope.
1904        if (I != IEnd) {
1905          // Find the scope in which this declaration was declared (if it
1906          // actually exists in a Scope).
1907          while (S && !S->isDeclScope(D))
1908            S = S->getParent();
1909
1910          // If the scope containing the declaration is the translation unit,
1911          // then we'll need to perform our checks based on the matching
1912          // DeclContexts rather than matching scopes.
1913          if (S && isNamespaceOrTranslationUnitScope(S))
1914            S = nullptr;
1915
1916          // Compute the DeclContext, if we need it.
1917          DeclContext *DC = nullptr;
1918          if (!S)
1919            DC = (*I)->getDeclContext()->getRedeclContext();
1920
1921          IdentifierResolver::iterator LastI = I;
1922          for (++LastI; LastI != IEnd; ++LastI) {
1923            if (S) {
1924              // Match based on scope.
1925              if (!S->isDeclScope(*LastI))
1926                break;
1927            } else {
1928              // Match based on DeclContext.
1929              DeclContext *LastDC
1930                = (*LastI)->getDeclContext()->getRedeclContext();
1931              if (!LastDC->Equals(DC))
1932                break;
1933            }
1934
1935            // If the declaration is in the right namespace and visible, add it.
1936            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1937              R.addDecl(LastD);
1938          }
1939
1940          R.resolveKind();
1941        }
1942
1943        return true;
1944      }
1945  } else {
1946    // Perform C++ unqualified name lookup.
1947    if (CppLookupName(R, S))
1948      return true;
1949  }
1950
1951  // If we didn't find a use of this identifier, and if the identifier
1952  // corresponds to a compiler builtin, create the decl object for the builtin
1953  // now, injecting it into translation unit scope, and return it.
1954  if (AllowBuiltinCreation && LookupBuiltin(R))
1955    return true;
1956
1957  // If we didn't find a use of this identifier, the ExternalSource
1958  // may be able to handle the situation.
1959  // Note: some lookup failures are expected!
1960  // See e.g. R.isForRedeclaration().
1961  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1962}
1963
1964/// Perform qualified name lookup in the namespaces nominated by
1965/// using directives by the given context.
1966///
1967/// C++98 [namespace.qual]p2:
1968///   Given X::m (where X is a user-declared namespace), or given \::m
1969///   (where X is the global namespace), let S be the set of all
1970///   declarations of m in X and in the transitive closure of all
1971///   namespaces nominated by using-directives in X and its used
1972///   namespaces, except that using-directives are ignored in any
1973///   namespace, including X, directly containing one or more
1974///   declarations of m. No namespace is searched more than once in
1975///   the lookup of a name. If S is the empty set, the program is
1976///   ill-formed. Otherwise, if S has exactly one member, or if the
1977///   context of the reference is a using-declaration
1978///   (namespace.udecl), S is the required set of declarations of
1979///   m. Otherwise if the use of m is not one that allows a unique
1980///   declaration to be chosen from S, the program is ill-formed.
1981///
1982/// C++98 [namespace.qual]p5:
1983///   During the lookup of a qualified namespace member name, if the
1984///   lookup finds more than one declaration of the member, and if one
1985///   declaration introduces a class name or enumeration name and the
1986///   other declarations either introduce the same object, the same
1987///   enumerator or a set of functions, the non-type name hides the
1988///   class or enumeration name if and only if the declarations are
1989///   from the same namespace; otherwise (the declarations are from
1990///   different namespaces), the program is ill-formed.
1991static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1992                                                 DeclContext *StartDC) {
1993  assert(StartDC->isFileContext() && "start context is not a file context");
1994
1995  // We have not yet looked into these namespaces, much less added
1996  // their "using-children" to the queue.
1997  SmallVector<NamespaceDecl*, 8> Queue;
1998
1999  // We have at least added all these contexts to the queue.
2000  llvm::SmallPtrSet<DeclContext*, 8> Visited;
2001  Visited.insert(StartDC);
2002
2003  // We have already looked into the initial namespace; seed the queue
2004  // with its using-children.
2005  for (auto *I : StartDC->using_directives()) {
2006    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2007    if (S.isVisible(I) && Visited.insert(ND).second)
2008      Queue.push_back(ND);
2009  }
2010
2011  // The easiest way to implement the restriction in [namespace.qual]p5
2012  // is to check whether any of the individual results found a tag
2013  // and, if so, to declare an ambiguity if the final result is not
2014  // a tag.
2015  bool FoundTag = false;
2016  bool FoundNonTag = false;
2017
2018  LookupResult LocalR(LookupResult::Temporary, R);
2019
2020  bool Found = false;
2021  while (!Queue.empty()) {
2022    NamespaceDecl *ND = Queue.pop_back_val();
2023
2024    // We go through some convolutions here to avoid copying results
2025    // between LookupResults.
2026    bool UseLocal = !R.empty();
2027    LookupResult &DirectR = UseLocal ? LocalR : R;
2028    bool FoundDirect = LookupDirect(S, DirectR, ND);
2029
2030    if (FoundDirect) {
2031      // First do any local hiding.
2032      DirectR.resolveKind();
2033
2034      // If the local result is a tag, remember that.
2035      if (DirectR.isSingleTagDecl())
2036        FoundTag = true;
2037      else
2038        FoundNonTag = true;
2039
2040      // Append the local results to the total results if necessary.
2041      if (UseLocal) {
2042        R.addAllDecls(LocalR);
2043        LocalR.clear();
2044      }
2045    }
2046
2047    // If we find names in this namespace, ignore its using directives.
2048    if (FoundDirect) {
2049      Found = true;
2050      continue;
2051    }
2052
2053    for (auto I : ND->using_directives()) {
2054      NamespaceDecl *Nom = I->getNominatedNamespace();
2055      if (S.isVisible(I) && Visited.insert(Nom).second)
2056        Queue.push_back(Nom);
2057    }
2058  }
2059
2060  if (Found) {
2061    if (FoundTag && FoundNonTag)
2062      R.setAmbiguousQualifiedTagHiding();
2063    else
2064      R.resolveKind();
2065  }
2066
2067  return Found;
2068}
2069
2070/// Callback that looks for any member of a class with the given name.
2071static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
2072                            CXXBasePath &Path, DeclarationName Name) {
2073  RecordDecl *BaseRecord = Specifier->getType()->castAs<RecordType>()->getDecl();
2074
2075  Path.Decls = BaseRecord->lookup(Name);
2076  return !Path.Decls.empty();
2077}
2078
2079/// Determine whether the given set of member declarations contains only
2080/// static members, nested types, and enumerators.
2081template<typename InputIterator>
2082static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
2083  Decl *D = (*First)->getUnderlyingDecl();
2084  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
2085    return true;
2086
2087  if (isa<CXXMethodDecl>(D)) {
2088    // Determine whether all of the methods are static.
2089    bool AllMethodsAreStatic = true;
2090    for(; First != Last; ++First) {
2091      D = (*First)->getUnderlyingDecl();
2092
2093      if (!isa<CXXMethodDecl>(D)) {
2094        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
2095        break;
2096      }
2097
2098      if (!cast<CXXMethodDecl>(D)->isStatic()) {
2099        AllMethodsAreStatic = false;
2100        break;
2101      }
2102    }
2103
2104    if (AllMethodsAreStatic)
2105      return true;
2106  }
2107
2108  return false;
2109}
2110
2111/// Perform qualified name lookup into a given context.
2112///
2113/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2114/// names when the context of those names is explicit specified, e.g.,
2115/// "std::vector" or "x->member", or as part of unqualified name lookup.
2116///
2117/// Different lookup criteria can find different names. For example, a
2118/// particular scope can have both a struct and a function of the same
2119/// name, and each can be found by certain lookup criteria. For more
2120/// information about lookup criteria, see the documentation for the
2121/// class LookupCriteria.
2122///
2123/// \param R captures both the lookup criteria and any lookup results found.
2124///
2125/// \param LookupCtx The context in which qualified name lookup will
2126/// search. If the lookup criteria permits, name lookup may also search
2127/// in the parent contexts or (for C++ classes) base classes.
2128///
2129/// \param InUnqualifiedLookup true if this is qualified name lookup that
2130/// occurs as part of unqualified name lookup.
2131///
2132/// \returns true if lookup succeeded, false if it failed.
2133bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2134                               bool InUnqualifiedLookup) {
2135  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2136
2137  if (!R.getLookupName())
2138    return false;
2139
2140  // Make sure that the declaration context is complete.
2141  assert((!isa<TagDecl>(LookupCtx) ||
2142          LookupCtx->isDependentContext() ||
2143          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2144          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2145         "Declaration context must already be complete!");
2146
2147  struct QualifiedLookupInScope {
2148    bool oldVal;
2149    DeclContext *Context;
2150    // Set flag in DeclContext informing debugger that we're looking for qualified name
2151    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2152      oldVal = ctx->setUseQualifiedLookup();
2153    }
2154    ~QualifiedLookupInScope() {
2155      Context->setUseQualifiedLookup(oldVal);
2156    }
2157  } QL(LookupCtx);
2158
2159  if (LookupDirect(*this, R, LookupCtx)) {
2160    R.resolveKind();
2161    if (isa<CXXRecordDecl>(LookupCtx))
2162      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2163    return true;
2164  }
2165
2166  // Don't descend into implied contexts for redeclarations.
2167  // C++98 [namespace.qual]p6:
2168  //   In a declaration for a namespace member in which the
2169  //   declarator-id is a qualified-id, given that the qualified-id
2170  //   for the namespace member has the form
2171  //     nested-name-specifier unqualified-id
2172  //   the unqualified-id shall name a member of the namespace
2173  //   designated by the nested-name-specifier.
2174  // See also [class.mfct]p5 and [class.static.data]p2.
2175  if (R.isForRedeclaration())
2176    return false;
2177
2178  // If this is a namespace, look it up in the implied namespaces.
2179  if (LookupCtx->isFileContext())
2180    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2181
2182  // If this isn't a C++ class, we aren't allowed to look into base
2183  // classes, we're done.
2184  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2185  if (!LookupRec || !LookupRec->getDefinition())
2186    return false;
2187
2188  // If we're performing qualified name lookup into a dependent class,
2189  // then we are actually looking into a current instantiation. If we have any
2190  // dependent base classes, then we either have to delay lookup until
2191  // template instantiation time (at which point all bases will be available)
2192  // or we have to fail.
2193  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2194      LookupRec->hasAnyDependentBases()) {
2195    R.setNotFoundInCurrentInstantiation();
2196    return false;
2197  }
2198
2199  // Perform lookup into our base classes.
2200  CXXBasePaths Paths;
2201  Paths.setOrigin(LookupRec);
2202
2203  // Look for this member in our base classes
2204  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2205                       DeclarationName Name) = nullptr;
2206  switch (R.getLookupKind()) {
2207    case LookupObjCImplicitSelfParam:
2208    case LookupOrdinaryName:
2209    case LookupMemberName:
2210    case LookupRedeclarationWithLinkage:
2211    case LookupLocalFriendName:
2212    case LookupDestructorName:
2213      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2214      break;
2215
2216    case LookupTagName:
2217      BaseCallback = &CXXRecordDecl::FindTagMember;
2218      break;
2219
2220    case LookupAnyName:
2221      BaseCallback = &LookupAnyMember;
2222      break;
2223
2224    case LookupOMPReductionName:
2225      BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2226      break;
2227
2228    case LookupOMPMapperName:
2229      BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2230      break;
2231
2232    case LookupUsingDeclName:
2233      // This lookup is for redeclarations only.
2234
2235    case LookupOperatorName:
2236    case LookupNamespaceName:
2237    case LookupObjCProtocolName:
2238    case LookupLabel:
2239      // These lookups will never find a member in a C++ class (or base class).
2240      return false;
2241
2242    case LookupNestedNameSpecifierName:
2243      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2244      break;
2245  }
2246
2247  DeclarationName Name = R.getLookupName();
2248  if (!LookupRec->lookupInBases(
2249          [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2250            return BaseCallback(Specifier, Path, Name);
2251          },
2252          Paths))
2253    return false;
2254
2255  R.setNamingClass(LookupRec);
2256
2257  // C++ [class.member.lookup]p2:
2258  //   [...] If the resulting set of declarations are not all from
2259  //   sub-objects of the same type, or the set has a nonstatic member
2260  //   and includes members from distinct sub-objects, there is an
2261  //   ambiguity and the program is ill-formed. Otherwise that set is
2262  //   the result of the lookup.
2263  QualType SubobjectType;
2264  int SubobjectNumber = 0;
2265  AccessSpecifier SubobjectAccess = AS_none;
2266
2267  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2268       Path != PathEnd; ++Path) {
2269    const CXXBasePathElement &PathElement = Path->back();
2270
2271    // Pick the best (i.e. most permissive i.e. numerically lowest) access
2272    // across all paths.
2273    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2274
2275    // Determine whether we're looking at a distinct sub-object or not.
2276    if (SubobjectType.isNull()) {
2277      // This is the first subobject we've looked at. Record its type.
2278      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2279      SubobjectNumber = PathElement.SubobjectNumber;
2280      continue;
2281    }
2282
2283    if (SubobjectType
2284                 != Context.getCanonicalType(PathElement.Base->getType())) {
2285      // We found members of the given name in two subobjects of
2286      // different types. If the declaration sets aren't the same, this
2287      // lookup is ambiguous.
2288      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2289        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2290        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2291        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2292
2293        // Get the decl that we should use for deduplicating this lookup.
2294        auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2295          // C++ [temp.local]p3:
2296          //   A lookup that finds an injected-class-name (10.2) can result in
2297          //   an ambiguity in certain cases (for example, if it is found in
2298          //   more than one base class). If all of the injected-class-names
2299          //   that are found refer to specializations of the same class
2300          //   template, and if the name is used as a template-name, the
2301          //   reference refers to the class template itself and not a
2302          //   specialization thereof, and is not ambiguous.
2303          if (R.isTemplateNameLookup())
2304            if (auto *TD = getAsTemplateNameDecl(D))
2305              D = TD;
2306          return D->getUnderlyingDecl()->getCanonicalDecl();
2307        };
2308
2309        while (FirstD != FirstPath->Decls.end() &&
2310               CurrentD != Path->Decls.end()) {
2311          if (GetRepresentativeDecl(*FirstD) !=
2312              GetRepresentativeDecl(*CurrentD))
2313            break;
2314
2315          ++FirstD;
2316          ++CurrentD;
2317        }
2318
2319        if (FirstD == FirstPath->Decls.end() &&
2320            CurrentD == Path->Decls.end())
2321          continue;
2322      }
2323
2324      R.setAmbiguousBaseSubobjectTypes(Paths);
2325      return true;
2326    }
2327
2328    if (SubobjectNumber != PathElement.SubobjectNumber) {
2329      // We have a different subobject of the same type.
2330
2331      // C++ [class.member.lookup]p5:
2332      //   A static member, a nested type or an enumerator defined in
2333      //   a base class T can unambiguously be found even if an object
2334      //   has more than one base class subobject of type T.
2335      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2336        continue;
2337
2338      // We have found a nonstatic member name in multiple, distinct
2339      // subobjects. Name lookup is ambiguous.
2340      R.setAmbiguousBaseSubobjects(Paths);
2341      return true;
2342    }
2343  }
2344
2345  // Lookup in a base class succeeded; return these results.
2346
2347  for (auto *D : Paths.front().Decls) {
2348    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2349                                                    D->getAccess());
2350    R.addDecl(D, AS);
2351  }
2352  R.resolveKind();
2353  return true;
2354}
2355
2356/// Performs qualified name lookup or special type of lookup for
2357/// "__super::" scope specifier.
2358///
2359/// This routine is a convenience overload meant to be called from contexts
2360/// that need to perform a qualified name lookup with an optional C++ scope
2361/// specifier that might require special kind of lookup.
2362///
2363/// \param R captures both the lookup criteria and any lookup results found.
2364///
2365/// \param LookupCtx The context in which qualified name lookup will
2366/// search.
2367///
2368/// \param SS An optional C++ scope-specifier.
2369///
2370/// \returns true if lookup succeeded, false if it failed.
2371bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2372                               CXXScopeSpec &SS) {
2373  auto *NNS = SS.getScopeRep();
2374  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2375    return LookupInSuper(R, NNS->getAsRecordDecl());
2376  else
2377
2378    return LookupQualifiedName(R, LookupCtx);
2379}
2380
2381/// Performs name lookup for a name that was parsed in the
2382/// source code, and may contain a C++ scope specifier.
2383///
2384/// This routine is a convenience routine meant to be called from
2385/// contexts that receive a name and an optional C++ scope specifier
2386/// (e.g., "N::M::x"). It will then perform either qualified or
2387/// unqualified name lookup (with LookupQualifiedName or LookupName,
2388/// respectively) on the given name and return those results. It will
2389/// perform a special type of lookup for "__super::" scope specifier.
2390///
2391/// @param S        The scope from which unqualified name lookup will
2392/// begin.
2393///
2394/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2395///
2396/// @param EnteringContext Indicates whether we are going to enter the
2397/// context of the scope-specifier SS (if present).
2398///
2399/// @returns True if any decls were found (but possibly ambiguous)
2400bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2401                            bool AllowBuiltinCreation, bool EnteringContext) {
2402  if (SS && SS->isInvalid()) {
2403    // When the scope specifier is invalid, don't even look for
2404    // anything.
2405    return false;
2406  }
2407
2408  if (SS && SS->isSet()) {
2409    NestedNameSpecifier *NNS = SS->getScopeRep();
2410    if (NNS->getKind() == NestedNameSpecifier::Super)
2411      return LookupInSuper(R, NNS->getAsRecordDecl());
2412
2413    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2414      // We have resolved the scope specifier to a particular declaration
2415      // contex, and will perform name lookup in that context.
2416      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2417        return false;
2418
2419      R.setContextRange(SS->getRange());
2420      return LookupQualifiedName(R, DC);
2421    }
2422
2423    // We could not resolve the scope specified to a specific declaration
2424    // context, which means that SS refers to an unknown specialization.
2425    // Name lookup can't find anything in this case.
2426    R.setNotFoundInCurrentInstantiation();
2427    R.setContextRange(SS->getRange());
2428    return false;
2429  }
2430
2431  // Perform unqualified name lookup starting in the given scope.
2432  return LookupName(R, S, AllowBuiltinCreation);
2433}
2434
2435/// Perform qualified name lookup into all base classes of the given
2436/// class.
2437///
2438/// \param R captures both the lookup criteria and any lookup results found.
2439///
2440/// \param Class The context in which qualified name lookup will
2441/// search. Name lookup will search in all base classes merging the results.
2442///
2443/// @returns True if any decls were found (but possibly ambiguous)
2444bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2445  // The access-control rules we use here are essentially the rules for
2446  // doing a lookup in Class that just magically skipped the direct
2447  // members of Class itself.  That is, the naming class is Class, and the
2448  // access includes the access of the base.
2449  for (const auto &BaseSpec : Class->bases()) {
2450    CXXRecordDecl *RD = cast<CXXRecordDecl>(
2451        BaseSpec.getType()->castAs<RecordType>()->getDecl());
2452    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2453    Result.setBaseObjectType(Context.getRecordType(Class));
2454    LookupQualifiedName(Result, RD);
2455
2456    // Copy the lookup results into the target, merging the base's access into
2457    // the path access.
2458    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2459      R.addDecl(I.getDecl(),
2460                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2461                                           I.getAccess()));
2462    }
2463
2464    Result.suppressDiagnostics();
2465  }
2466
2467  R.resolveKind();
2468  R.setNamingClass(Class);
2469
2470  return !R.empty();
2471}
2472
2473/// Produce a diagnostic describing the ambiguity that resulted
2474/// from name lookup.
2475///
2476/// \param Result The result of the ambiguous lookup to be diagnosed.
2477void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2478  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2479
2480  DeclarationName Name = Result.getLookupName();
2481  SourceLocation NameLoc = Result.getNameLoc();
2482  SourceRange LookupRange = Result.getContextRange();
2483
2484  switch (Result.getAmbiguityKind()) {
2485  case LookupResult::AmbiguousBaseSubobjects: {
2486    CXXBasePaths *Paths = Result.getBasePaths();
2487    QualType SubobjectType = Paths->front().back().Base->getType();
2488    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2489      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2490      << LookupRange;
2491
2492    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2493    while (isa<CXXMethodDecl>(*Found) &&
2494           cast<CXXMethodDecl>(*Found)->isStatic())
2495      ++Found;
2496
2497    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2498    break;
2499  }
2500
2501  case LookupResult::AmbiguousBaseSubobjectTypes: {
2502    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2503      << Name << LookupRange;
2504
2505    CXXBasePaths *Paths = Result.getBasePaths();
2506    std::set<Decl *> DeclsPrinted;
2507    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2508                                      PathEnd = Paths->end();
2509         Path != PathEnd; ++Path) {
2510      Decl *D = Path->Decls.front();
2511      if (DeclsPrinted.insert(D).second)
2512        Diag(D->getLocation(), diag::note_ambiguous_member_found);
2513    }
2514    break;
2515  }
2516
2517  case LookupResult::AmbiguousTagHiding: {
2518    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2519
2520    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2521
2522    for (auto *D : Result)
2523      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2524        TagDecls.insert(TD);
2525        Diag(TD->getLocation(), diag::note_hidden_tag);
2526      }
2527
2528    for (auto *D : Result)
2529      if (!isa<TagDecl>(D))
2530        Diag(D->getLocation(), diag::note_hiding_object);
2531
2532    // For recovery purposes, go ahead and implement the hiding.
2533    LookupResult::Filter F = Result.makeFilter();
2534    while (F.hasNext()) {
2535      if (TagDecls.count(F.next()))
2536        F.erase();
2537    }
2538    F.done();
2539    break;
2540  }
2541
2542  case LookupResult::AmbiguousReference: {
2543    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2544
2545    for (auto *D : Result)
2546      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2547    break;
2548  }
2549  }
2550}
2551
2552namespace {
2553  struct AssociatedLookup {
2554    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2555                     Sema::AssociatedNamespaceSet &Namespaces,
2556                     Sema::AssociatedClassSet &Classes)
2557      : S(S), Namespaces(Namespaces), Classes(Classes),
2558        InstantiationLoc(InstantiationLoc) {
2559    }
2560
2561    bool addClassTransitive(CXXRecordDecl *RD) {
2562      Classes.insert(RD);
2563      return ClassesTransitive.insert(RD);
2564    }
2565
2566    Sema &S;
2567    Sema::AssociatedNamespaceSet &Namespaces;
2568    Sema::AssociatedClassSet &Classes;
2569    SourceLocation InstantiationLoc;
2570
2571  private:
2572    Sema::AssociatedClassSet ClassesTransitive;
2573  };
2574} // end anonymous namespace
2575
2576static void
2577addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2578
2579// Given the declaration context \param Ctx of a class, class template or
2580// enumeration, add the associated namespaces to \param Namespaces as described
2581// in [basic.lookup.argdep]p2.
2582static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2583                                      DeclContext *Ctx) {
2584  // The exact wording has been changed in C++14 as a result of
2585  // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2586  // to all language versions since it is possible to return a local type
2587  // from a lambda in C++11.
2588  //
2589  // C++14 [basic.lookup.argdep]p2:
2590  //   If T is a class type [...]. Its associated namespaces are the innermost
2591  //   enclosing namespaces of its associated classes. [...]
2592  //
2593  //   If T is an enumeration type, its associated namespace is the innermost
2594  //   enclosing namespace of its declaration. [...]
2595
2596  // We additionally skip inline namespaces. The innermost non-inline namespace
2597  // contains all names of all its nested inline namespaces anyway, so we can
2598  // replace the entire inline namespace tree with its root.
2599  while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2600    Ctx = Ctx->getParent();
2601
2602  Namespaces.insert(Ctx->getPrimaryContext());
2603}
2604
2605// Add the associated classes and namespaces for argument-dependent
2606// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2607static void
2608addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2609                                  const TemplateArgument &Arg) {
2610  // C++ [basic.lookup.argdep]p2, last bullet:
2611  //   -- [...] ;
2612  switch (Arg.getKind()) {
2613    case TemplateArgument::Null:
2614      break;
2615
2616    case TemplateArgument::Type:
2617      // [...] the namespaces and classes associated with the types of the
2618      // template arguments provided for template type parameters (excluding
2619      // template template parameters)
2620      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2621      break;
2622
2623    case TemplateArgument::Template:
2624    case TemplateArgument::TemplateExpansion: {
2625      // [...] the namespaces in which any template template arguments are
2626      // defined; and the classes in which any member templates used as
2627      // template template arguments are defined.
2628      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2629      if (ClassTemplateDecl *ClassTemplate
2630                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2631        DeclContext *Ctx = ClassTemplate->getDeclContext();
2632        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2633          Result.Classes.insert(EnclosingClass);
2634        // Add the associated namespace for this class.
2635        CollectEnclosingNamespace(Result.Namespaces, Ctx);
2636      }
2637      break;
2638    }
2639
2640    case TemplateArgument::Declaration:
2641    case TemplateArgument::Integral:
2642    case TemplateArgument::Expression:
2643    case TemplateArgument::NullPtr:
2644      // [Note: non-type template arguments do not contribute to the set of
2645      //  associated namespaces. ]
2646      break;
2647
2648    case TemplateArgument::Pack:
2649      for (const auto &P : Arg.pack_elements())
2650        addAssociatedClassesAndNamespaces(Result, P);
2651      break;
2652  }
2653}
2654
2655// Add the associated classes and namespaces for argument-dependent lookup
2656// with an argument of class type (C++ [basic.lookup.argdep]p2).
2657static void
2658addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2659                                  CXXRecordDecl *Class) {
2660
2661  // Just silently ignore anything whose name is __va_list_tag.
2662  if (Class->getDeclName() == Result.S.VAListTagName)
2663    return;
2664
2665  // C++ [basic.lookup.argdep]p2:
2666  //   [...]
2667  //     -- If T is a class type (including unions), its associated
2668  //        classes are: the class itself; the class of which it is a
2669  //        member, if any; and its direct and indirect base classes.
2670  //        Its associated namespaces are the innermost enclosing
2671  //        namespaces of its associated classes.
2672
2673  // Add the class of which it is a member, if any.
2674  DeclContext *Ctx = Class->getDeclContext();
2675  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2676    Result.Classes.insert(EnclosingClass);
2677
2678  // Add the associated namespace for this class.
2679  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2680
2681  // -- If T is a template-id, its associated namespaces and classes are
2682  //    the namespace in which the template is defined; for member
2683  //    templates, the member template's class; the namespaces and classes
2684  //    associated with the types of the template arguments provided for
2685  //    template type parameters (excluding template template parameters); the
2686  //    namespaces in which any template template arguments are defined; and
2687  //    the classes in which any member templates used as template template
2688  //    arguments are defined. [Note: non-type template arguments do not
2689  //    contribute to the set of associated namespaces. ]
2690  if (ClassTemplateSpecializationDecl *Spec
2691        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2692    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2693    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2694      Result.Classes.insert(EnclosingClass);
2695    // Add the associated namespace for this class.
2696    CollectEnclosingNamespace(Result.Namespaces, Ctx);
2697
2698    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2699    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2700      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2701  }
2702
2703  // Add the class itself. If we've already transitively visited this class,
2704  // we don't need to visit base classes.
2705  if (!Result.addClassTransitive(Class))
2706    return;
2707
2708  // Only recurse into base classes for complete types.
2709  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2710                               Result.S.Context.getRecordType(Class)))
2711    return;
2712
2713  // Add direct and indirect base classes along with their associated
2714  // namespaces.
2715  SmallVector<CXXRecordDecl *, 32> Bases;
2716  Bases.push_back(Class);
2717  while (!Bases.empty()) {
2718    // Pop this class off the stack.
2719    Class = Bases.pop_back_val();
2720
2721    // Visit the base classes.
2722    for (const auto &Base : Class->bases()) {
2723      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2724      // In dependent contexts, we do ADL twice, and the first time around,
2725      // the base type might be a dependent TemplateSpecializationType, or a
2726      // TemplateTypeParmType. If that happens, simply ignore it.
2727      // FIXME: If we want to support export, we probably need to add the
2728      // namespace of the template in a TemplateSpecializationType, or even
2729      // the classes and namespaces of known non-dependent arguments.
2730      if (!BaseType)
2731        continue;
2732      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2733      if (Result.addClassTransitive(BaseDecl)) {
2734        // Find the associated namespace for this base class.
2735        DeclContext *BaseCtx = BaseDecl->getDeclContext();
2736        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2737
2738        // Make sure we visit the bases of this base class.
2739        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2740          Bases.push_back(BaseDecl);
2741      }
2742    }
2743  }
2744}
2745
2746// Add the associated classes and namespaces for
2747// argument-dependent lookup with an argument of type T
2748// (C++ [basic.lookup.koenig]p2).
2749static void
2750addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2751  // C++ [basic.lookup.koenig]p2:
2752  //
2753  //   For each argument type T in the function call, there is a set
2754  //   of zero or more associated namespaces and a set of zero or more
2755  //   associated classes to be considered. The sets of namespaces and
2756  //   classes is determined entirely by the types of the function
2757  //   arguments (and the namespace of any template template
2758  //   argument). Typedef names and using-declarations used to specify
2759  //   the types do not contribute to this set. The sets of namespaces
2760  //   and classes are determined in the following way:
2761
2762  SmallVector<const Type *, 16> Queue;
2763  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2764
2765  while (true) {
2766    switch (T->getTypeClass()) {
2767
2768#define TYPE(Class, Base)
2769#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2770#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2771#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2772#define ABSTRACT_TYPE(Class, Base)
2773#include "clang/AST/TypeNodes.inc"
2774      // T is canonical.  We can also ignore dependent types because
2775      // we don't need to do ADL at the definition point, but if we
2776      // wanted to implement template export (or if we find some other
2777      // use for associated classes and namespaces...) this would be
2778      // wrong.
2779      break;
2780
2781    //    -- If T is a pointer to U or an array of U, its associated
2782    //       namespaces and classes are those associated with U.
2783    case Type::Pointer:
2784      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2785      continue;
2786    case Type::ConstantArray:
2787    case Type::IncompleteArray:
2788    case Type::VariableArray:
2789      T = cast<ArrayType>(T)->getElementType().getTypePtr();
2790      continue;
2791
2792    //     -- If T is a fundamental type, its associated sets of
2793    //        namespaces and classes are both empty.
2794    case Type::Builtin:
2795      break;
2796
2797    //     -- If T is a class type (including unions), its associated
2798    //        classes are: the class itself; the class of which it is
2799    //        a member, if any; and its direct and indirect base classes.
2800    //        Its associated namespaces are the innermost enclosing
2801    //        namespaces of its associated classes.
2802    case Type::Record: {
2803      CXXRecordDecl *Class =
2804          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2805      addAssociatedClassesAndNamespaces(Result, Class);
2806      break;
2807    }
2808
2809    //     -- If T is an enumeration type, its associated namespace
2810    //        is the innermost enclosing namespace of its declaration.
2811    //        If it is a class member, its associated class is the
2812    //        member���s class; else it has no associated class.
2813    case Type::Enum: {
2814      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2815
2816      DeclContext *Ctx = Enum->getDeclContext();
2817      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2818        Result.Classes.insert(EnclosingClass);
2819
2820      // Add the associated namespace for this enumeration.
2821      CollectEnclosingNamespace(Result.Namespaces, Ctx);
2822
2823      break;
2824    }
2825
2826    //     -- If T is a function type, its associated namespaces and
2827    //        classes are those associated with the function parameter
2828    //        types and those associated with the return type.
2829    case Type::FunctionProto: {
2830      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2831      for (const auto &Arg : Proto->param_types())
2832        Queue.push_back(Arg.getTypePtr());
2833      // fallthrough
2834      LLVM_FALLTHROUGH;
2835    }
2836    case Type::FunctionNoProto: {
2837      const FunctionType *FnType = cast<FunctionType>(T);
2838      T = FnType->getReturnType().getTypePtr();
2839      continue;
2840    }
2841
2842    //     -- If T is a pointer to a member function of a class X, its
2843    //        associated namespaces and classes are those associated
2844    //        with the function parameter types and return type,
2845    //        together with those associated with X.
2846    //
2847    //     -- If T is a pointer to a data member of class X, its
2848    //        associated namespaces and classes are those associated
2849    //        with the member type together with those associated with
2850    //        X.
2851    case Type::MemberPointer: {
2852      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2853
2854      // Queue up the class type into which this points.
2855      Queue.push_back(MemberPtr->getClass());
2856
2857      // And directly continue with the pointee type.
2858      T = MemberPtr->getPointeeType().getTypePtr();
2859      continue;
2860    }
2861
2862    // As an extension, treat this like a normal pointer.
2863    case Type::BlockPointer:
2864      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2865      continue;
2866
2867    // References aren't covered by the standard, but that's such an
2868    // obvious defect that we cover them anyway.
2869    case Type::LValueReference:
2870    case Type::RValueReference:
2871      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2872      continue;
2873
2874    // These are fundamental types.
2875    case Type::Vector:
2876    case Type::ExtVector:
2877    case Type::ConstantMatrix:
2878    case Type::Complex:
2879    case Type::ExtInt:
2880      break;
2881
2882    // Non-deduced auto types only get here for error cases.
2883    case Type::Auto:
2884    case Type::DeducedTemplateSpecialization:
2885      break;
2886
2887    // If T is an Objective-C object or interface type, or a pointer to an
2888    // object or interface type, the associated namespace is the global
2889    // namespace.
2890    case Type::ObjCObject:
2891    case Type::ObjCInterface:
2892    case Type::ObjCObjectPointer:
2893      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2894      break;
2895
2896    // Atomic types are just wrappers; use the associations of the
2897    // contained type.
2898    case Type::Atomic:
2899      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2900      continue;
2901    case Type::Pipe:
2902      T = cast<PipeType>(T)->getElementType().getTypePtr();
2903      continue;
2904    }
2905
2906    if (Queue.empty())
2907      break;
2908    T = Queue.pop_back_val();
2909  }
2910}
2911
2912/// Find the associated classes and namespaces for
2913/// argument-dependent lookup for a call with the given set of
2914/// arguments.
2915///
2916/// This routine computes the sets of associated classes and associated
2917/// namespaces searched by argument-dependent lookup
2918/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2919void Sema::FindAssociatedClassesAndNamespaces(
2920    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2921    AssociatedNamespaceSet &AssociatedNamespaces,
2922    AssociatedClassSet &AssociatedClasses) {
2923  AssociatedNamespaces.clear();
2924  AssociatedClasses.clear();
2925
2926  AssociatedLookup Result(*this, InstantiationLoc,
2927                          AssociatedNamespaces, AssociatedClasses);
2928
2929  // C++ [basic.lookup.koenig]p2:
2930  //   For each argument type T in the function call, there is a set
2931  //   of zero or more associated namespaces and a set of zero or more
2932  //   associated classes to be considered. The sets of namespaces and
2933  //   classes is determined entirely by the types of the function
2934  //   arguments (and the namespace of any template template
2935  //   argument).
2936  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2937    Expr *Arg = Args[ArgIdx];
2938
2939    if (Arg->getType() != Context.OverloadTy) {
2940      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2941      continue;
2942    }
2943
2944    // [...] In addition, if the argument is the name or address of a
2945    // set of overloaded functions and/or function templates, its
2946    // associated classes and namespaces are the union of those
2947    // associated with each of the members of the set: the namespace
2948    // in which the function or function template is defined and the
2949    // classes and namespaces associated with its (non-dependent)
2950    // parameter types and return type.
2951    OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
2952
2953    for (const NamedDecl *D : OE->decls()) {
2954      // Look through any using declarations to find the underlying function.
2955      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2956
2957      // Add the classes and namespaces associated with the parameter
2958      // types and return type of this function.
2959      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2960    }
2961  }
2962}
2963
2964NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2965                                  SourceLocation Loc,
2966                                  LookupNameKind NameKind,
2967                                  RedeclarationKind Redecl) {
2968  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2969  LookupName(R, S);
2970  return R.getAsSingle<NamedDecl>();
2971}
2972
2973/// Find the protocol with the given name, if any.
2974ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2975                                       SourceLocation IdLoc,
2976                                       RedeclarationKind Redecl) {
2977  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2978                             LookupObjCProtocolName, Redecl);
2979  return cast_or_null<ObjCProtocolDecl>(D);
2980}
2981
2982void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2983                                        QualType T1, QualType T2,
2984                                        UnresolvedSetImpl &Functions) {
2985  // C++ [over.match.oper]p3:
2986  //     -- The set of non-member candidates is the result of the
2987  //        unqualified lookup of operator@ in the context of the
2988  //        expression according to the usual rules for name lookup in
2989  //        unqualified function calls (3.4.2) except that all member
2990  //        functions are ignored.
2991  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2992  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2993  LookupName(Operators, S);
2994
2995  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2996  Functions.append(Operators.begin(), Operators.end());
2997}
2998
2999Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3000                                                           CXXSpecialMember SM,
3001                                                           bool ConstArg,
3002                                                           bool VolatileArg,
3003                                                           bool RValueThis,
3004                                                           bool ConstThis,
3005                                                           bool VolatileThis) {
3006  assert(CanDeclareSpecialMemberFunction(RD) &&
3007         "doing special member lookup into record that isn't fully complete");
3008  RD = RD->getDefinition();
3009  if (RValueThis || ConstThis || VolatileThis)
3010    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3011           "constructors and destructors always have unqualified lvalue this");
3012  if (ConstArg || VolatileArg)
3013    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3014           "parameter-less special members can't have qualified arguments");
3015
3016  // FIXME: Get the caller to pass in a location for the lookup.
3017  SourceLocation LookupLoc = RD->getLocation();
3018
3019  llvm::FoldingSetNodeID ID;
3020  ID.AddPointer(RD);
3021  ID.AddInteger(SM);
3022  ID.AddInteger(ConstArg);
3023  ID.AddInteger(VolatileArg);
3024  ID.AddInteger(RValueThis);
3025  ID.AddInteger(ConstThis);
3026  ID.AddInteger(VolatileThis);
3027
3028  void *InsertPoint;
3029  SpecialMemberOverloadResultEntry *Result =
3030    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3031
3032  // This was already cached
3033  if (Result)
3034    return *Result;
3035
3036  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3037  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3038  SpecialMemberCache.InsertNode(Result, InsertPoint);
3039
3040  if (SM == CXXDestructor) {
3041    if (RD->needsImplicitDestructor()) {
3042      runWithSufficientStackSpace(RD->getLocation(), [&] {
3043        DeclareImplicitDestructor(RD);
3044      });
3045    }
3046    CXXDestructorDecl *DD = RD->getDestructor();
3047    Result->setMethod(DD);
3048    Result->setKind(DD && !DD->isDeleted()
3049                        ? SpecialMemberOverloadResult::Success
3050                        : SpecialMemberOverloadResult::NoMemberOrDeleted);
3051    return *Result;
3052  }
3053
3054  // Prepare for overload resolution. Here we construct a synthetic argument
3055  // if necessary and make sure that implicit functions are declared.
3056  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3057  DeclarationName Name;
3058  Expr *Arg = nullptr;
3059  unsigned NumArgs;
3060
3061  QualType ArgType = CanTy;
3062  ExprValueKind VK = VK_LValue;
3063
3064  if (SM == CXXDefaultConstructor) {
3065    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3066    NumArgs = 0;
3067    if (RD->needsImplicitDefaultConstructor()) {
3068      runWithSufficientStackSpace(RD->getLocation(), [&] {
3069        DeclareImplicitDefaultConstructor(RD);
3070      });
3071    }
3072  } else {
3073    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3074      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3075      if (RD->needsImplicitCopyConstructor()) {
3076        runWithSufficientStackSpace(RD->getLocation(), [&] {
3077          DeclareImplicitCopyConstructor(RD);
3078        });
3079      }
3080      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3081        runWithSufficientStackSpace(RD->getLocation(), [&] {
3082          DeclareImplicitMoveConstructor(RD);
3083        });
3084      }
3085    } else {
3086      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3087      if (RD->needsImplicitCopyAssignment()) {
3088        runWithSufficientStackSpace(RD->getLocation(), [&] {
3089          DeclareImplicitCopyAssignment(RD);
3090        });
3091      }
3092      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3093        runWithSufficientStackSpace(RD->getLocation(), [&] {
3094          DeclareImplicitMoveAssignment(RD);
3095        });
3096      }
3097    }
3098
3099    if (ConstArg)
3100      ArgType.addConst();
3101    if (VolatileArg)
3102      ArgType.addVolatile();
3103
3104    // This isn't /really/ specified by the standard, but it's implied
3105    // we should be working from an RValue in the case of move to ensure
3106    // that we prefer to bind to rvalue references, and an LValue in the
3107    // case of copy to ensure we don't bind to rvalue references.
3108    // Possibly an XValue is actually correct in the case of move, but
3109    // there is no semantic difference for class types in this restricted
3110    // case.
3111    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3112      VK = VK_LValue;
3113    else
3114      VK = VK_RValue;
3115  }
3116
3117  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3118
3119  if (SM != CXXDefaultConstructor) {
3120    NumArgs = 1;
3121    Arg = &FakeArg;
3122  }
3123
3124  // Create the object argument
3125  QualType ThisTy = CanTy;
3126  if (ConstThis)
3127    ThisTy.addConst();
3128  if (VolatileThis)
3129    ThisTy.addVolatile();
3130  Expr::Classification Classification =
3131    OpaqueValueExpr(LookupLoc, ThisTy,
3132                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
3133
3134  // Now we perform lookup on the name we computed earlier and do overload
3135  // resolution. Lookup is only performed directly into the class since there
3136  // will always be a (possibly implicit) declaration to shadow any others.
3137  OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3138  DeclContext::lookup_result R = RD->lookup(Name);
3139
3140  if (R.empty()) {
3141    // We might have no default constructor because we have a lambda's closure
3142    // type, rather than because there's some other declared constructor.
3143    // Every class has a copy/move constructor, copy/move assignment, and
3144    // destructor.
3145    assert(SM == CXXDefaultConstructor &&
3146           "lookup for a constructor or assignment operator was empty");
3147    Result->setMethod(nullptr);
3148    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3149    return *Result;
3150  }
3151
3152  // Copy the candidates as our processing of them may load new declarations
3153  // from an external source and invalidate lookup_result.
3154  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3155
3156  for (NamedDecl *CandDecl : Candidates) {
3157    if (CandDecl->isInvalidDecl())
3158      continue;
3159
3160    DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3161    auto CtorInfo = getConstructorInfo(Cand);
3162    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3163      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3164        AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3165                           llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3166      else if (CtorInfo)
3167        AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3168                             llvm::makeArrayRef(&Arg, NumArgs), OCS,
3169                             /*SuppressUserConversions*/ true);
3170      else
3171        AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3172                             /*SuppressUserConversions*/ true);
3173    } else if (FunctionTemplateDecl *Tmpl =
3174                 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3175      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3176        AddMethodTemplateCandidate(
3177            Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3178            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3179      else if (CtorInfo)
3180        AddTemplateOverloadCandidate(
3181            CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3182            llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3183      else
3184        AddTemplateOverloadCandidate(
3185            Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3186    } else {
3187      assert(isa<UsingDecl>(Cand.getDecl()) &&
3188             "illegal Kind of operator = Decl");
3189    }
3190  }
3191
3192  OverloadCandidateSet::iterator Best;
3193  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3194    case OR_Success:
3195      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3196      Result->setKind(SpecialMemberOverloadResult::Success);
3197      break;
3198
3199    case OR_Deleted:
3200      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3201      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3202      break;
3203
3204    case OR_Ambiguous:
3205      Result->setMethod(nullptr);
3206      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3207      break;
3208
3209    case OR_No_Viable_Function:
3210      Result->setMethod(nullptr);
3211      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3212      break;
3213  }
3214
3215  return *Result;
3216}
3217
3218/// Look up the default constructor for the given class.
3219CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3220  SpecialMemberOverloadResult Result =
3221    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3222                        false, false);
3223
3224  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3225}
3226
3227/// Look up the copying constructor for the given class.
3228CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3229                                                   unsigned Quals) {
3230  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3231         "non-const, non-volatile qualifiers for copy ctor arg");
3232  SpecialMemberOverloadResult Result =
3233    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3234                        Quals & Qualifiers::Volatile, false, false, false);
3235
3236  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3237}
3238
3239/// Look up the moving constructor for the given class.
3240CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3241                                                  unsigned Quals) {
3242  SpecialMemberOverloadResult Result =
3243    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3244                        Quals & Qualifiers::Volatile, false, false, false);
3245
3246  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3247}
3248
3249/// Look up the constructors for the given class.
3250DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3251  // If the implicit constructors have not yet been declared, do so now.
3252  if (CanDeclareSpecialMemberFunction(Class)) {
3253    runWithSufficientStackSpace(Class->getLocation(), [&] {
3254      if (Class->needsImplicitDefaultConstructor())
3255        DeclareImplicitDefaultConstructor(Class);
3256      if (Class->needsImplicitCopyConstructor())
3257        DeclareImplicitCopyConstructor(Class);
3258      if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3259        DeclareImplicitMoveConstructor(Class);
3260    });
3261  }
3262
3263  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3264  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3265  return Class->lookup(Name);
3266}
3267
3268/// Look up the copying assignment operator for the given class.
3269CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3270                                             unsigned Quals, bool RValueThis,
3271                                             unsigned ThisQuals) {
3272  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3273         "non-const, non-volatile qualifiers for copy assignment arg");
3274  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3275         "non-const, non-volatile qualifiers for copy assignment this");
3276  SpecialMemberOverloadResult Result =
3277    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3278                        Quals & Qualifiers::Volatile, RValueThis,
3279                        ThisQuals & Qualifiers::Const,
3280                        ThisQuals & Qualifiers::Volatile);
3281
3282  return Result.getMethod();
3283}
3284
3285/// Look up the moving assignment operator for the given class.
3286CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3287                                            unsigned Quals,
3288                                            bool RValueThis,
3289                                            unsigned ThisQuals) {
3290  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3291         "non-const, non-volatile qualifiers for copy assignment this");
3292  SpecialMemberOverloadResult Result =
3293    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3294                        Quals & Qualifiers::Volatile, RValueThis,
3295                        ThisQuals & Qualifiers::Const,
3296                        ThisQuals & Qualifiers::Volatile);
3297
3298  return Result.getMethod();
3299}
3300
3301/// Look for the destructor of the given class.
3302///
3303/// During semantic analysis, this routine should be used in lieu of
3304/// CXXRecordDecl::getDestructor().
3305///
3306/// \returns The destructor for this class.
3307CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3308  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3309                                                     false, false, false,
3310                                                     false, false).getMethod());
3311}
3312
3313/// LookupLiteralOperator - Determine which literal operator should be used for
3314/// a user-defined literal, per C++11 [lex.ext].
3315///
3316/// Normal overload resolution is not used to select which literal operator to
3317/// call for a user-defined literal. Look up the provided literal operator name,
3318/// and filter the results to the appropriate set for the given argument types.
3319Sema::LiteralOperatorLookupResult
3320Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3321                            ArrayRef<QualType> ArgTys,
3322                            bool AllowRaw, bool AllowTemplate,
3323                            bool AllowStringTemplate, bool DiagnoseMissing) {
3324  LookupName(R, S);
3325  assert(R.getResultKind() != LookupResult::Ambiguous &&
3326         "literal operator lookup can't be ambiguous");
3327
3328  // Filter the lookup results appropriately.
3329  LookupResult::Filter F = R.makeFilter();
3330
3331  bool FoundRaw = false;
3332  bool FoundTemplate = false;
3333  bool FoundStringTemplate = false;
3334  bool FoundExactMatch = false;
3335
3336  while (F.hasNext()) {
3337    Decl *D = F.next();
3338    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3339      D = USD->getTargetDecl();
3340
3341    // If the declaration we found is invalid, skip it.
3342    if (D->isInvalidDecl()) {
3343      F.erase();
3344      continue;
3345    }
3346
3347    bool IsRaw = false;
3348    bool IsTemplate = false;
3349    bool IsStringTemplate = false;
3350    bool IsExactMatch = false;
3351
3352    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3353      if (FD->getNumParams() == 1 &&
3354          FD->getParamDecl(0)->getType()->getAs<PointerType>())
3355        IsRaw = true;
3356      else if (FD->getNumParams() == ArgTys.size()) {
3357        IsExactMatch = true;
3358        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3359          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3360          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3361            IsExactMatch = false;
3362            break;
3363          }
3364        }
3365      }
3366    }
3367    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3368      TemplateParameterList *Params = FD->getTemplateParameters();
3369      if (Params->size() == 1)
3370        IsTemplate = true;
3371      else
3372        IsStringTemplate = true;
3373    }
3374
3375    if (IsExactMatch) {
3376      FoundExactMatch = true;
3377      AllowRaw = false;
3378      AllowTemplate = false;
3379      AllowStringTemplate = false;
3380      if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3381        // Go through again and remove the raw and template decls we've
3382        // already found.
3383        F.restart();
3384        FoundRaw = FoundTemplate = FoundStringTemplate = false;
3385      }
3386    } else if (AllowRaw && IsRaw) {
3387      FoundRaw = true;
3388    } else if (AllowTemplate && IsTemplate) {
3389      FoundTemplate = true;
3390    } else if (AllowStringTemplate && IsStringTemplate) {
3391      FoundStringTemplate = true;
3392    } else {
3393      F.erase();
3394    }
3395  }
3396
3397  F.done();
3398
3399  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3400  // parameter type, that is used in preference to a raw literal operator
3401  // or literal operator template.
3402  if (FoundExactMatch)
3403    return LOLR_Cooked;
3404
3405  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3406  // operator template, but not both.
3407  if (FoundRaw && FoundTemplate) {
3408    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3409    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3410      NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3411    return LOLR_Error;
3412  }
3413
3414  if (FoundRaw)
3415    return LOLR_Raw;
3416
3417  if (FoundTemplate)
3418    return LOLR_Template;
3419
3420  if (FoundStringTemplate)
3421    return LOLR_StringTemplate;
3422
3423  // Didn't find anything we could use.
3424  if (DiagnoseMissing) {
3425    Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3426        << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3427        << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3428        << (AllowTemplate || AllowStringTemplate);
3429    return LOLR_Error;
3430  }
3431
3432  return LOLR_ErrorNoDiagnostic;
3433}
3434
3435void ADLResult::insert(NamedDecl *New) {
3436  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3437
3438  // If we haven't yet seen a decl for this key, or the last decl
3439  // was exactly this one, we're done.
3440  if (Old == nullptr || Old == New) {
3441    Old = New;
3442    return;
3443  }
3444
3445  // Otherwise, decide which is a more recent redeclaration.
3446  FunctionDecl *OldFD = Old->getAsFunction();
3447  FunctionDecl *NewFD = New->getAsFunction();
3448
3449  FunctionDecl *Cursor = NewFD;
3450  while (true) {
3451    Cursor = Cursor->getPreviousDecl();
3452
3453    // If we got to the end without finding OldFD, OldFD is the newer
3454    // declaration;  leave things as they are.
3455    if (!Cursor) return;
3456
3457    // If we do find OldFD, then NewFD is newer.
3458    if (Cursor == OldFD) break;
3459
3460    // Otherwise, keep looking.
3461  }
3462
3463  Old = New;
3464}
3465
3466void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3467                                   ArrayRef<Expr *> Args, ADLResult &Result) {
3468  // Find all of the associated namespaces and classes based on the
3469  // arguments we have.
3470  AssociatedNamespaceSet AssociatedNamespaces;
3471  AssociatedClassSet AssociatedClasses;
3472  FindAssociatedClassesAndNamespaces(Loc, Args,
3473                                     AssociatedNamespaces,
3474                                     AssociatedClasses);
3475
3476  // C++ [basic.lookup.argdep]p3:
3477  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3478  //   and let Y be the lookup set produced by argument dependent
3479  //   lookup (defined as follows). If X contains [...] then Y is
3480  //   empty. Otherwise Y is the set of declarations found in the
3481  //   namespaces associated with the argument types as described
3482  //   below. The set of declarations found by the lookup of the name
3483  //   is the union of X and Y.
3484  //
3485  // Here, we compute Y and add its members to the overloaded
3486  // candidate set.
3487  for (auto *NS : AssociatedNamespaces) {
3488    //   When considering an associated namespace, the lookup is the
3489    //   same as the lookup performed when the associated namespace is
3490    //   used as a qualifier (3.4.3.2) except that:
3491    //
3492    //     -- Any using-directives in the associated namespace are
3493    //        ignored.
3494    //
3495    //     -- Any namespace-scope friend functions declared in
3496    //        associated classes are visible within their respective
3497    //        namespaces even if they are not visible during an ordinary
3498    //        lookup (11.4).
3499    DeclContext::lookup_result R = NS->lookup(Name);
3500    for (auto *D : R) {
3501      auto *Underlying = D;
3502      if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3503        Underlying = USD->getTargetDecl();
3504
3505      if (!isa<FunctionDecl>(Underlying) &&
3506          !isa<FunctionTemplateDecl>(Underlying))
3507        continue;
3508
3509      // The declaration is visible to argument-dependent lookup if either
3510      // it's ordinarily visible or declared as a friend in an associated
3511      // class.
3512      bool Visible = false;
3513      for (D = D->getMostRecentDecl(); D;
3514           D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3515        if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3516          if (isVisible(D)) {
3517            Visible = true;
3518            break;
3519          }
3520        } else if (D->getFriendObjectKind()) {
3521          auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3522          if (AssociatedClasses.count(RD) && isVisible(D)) {
3523            Visible = true;
3524            break;
3525          }
3526        }
3527      }
3528
3529      // FIXME: Preserve D as the FoundDecl.
3530      if (Visible)
3531        Result.insert(Underlying);
3532    }
3533  }
3534}
3535
3536//----------------------------------------------------------------------------
3537// Search for all visible declarations.
3538//----------------------------------------------------------------------------
3539VisibleDeclConsumer::~VisibleDeclConsumer() { }
3540
3541bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3542
3543namespace {
3544
3545class ShadowContextRAII;
3546
3547class VisibleDeclsRecord {
3548public:
3549  /// An entry in the shadow map, which is optimized to store a
3550  /// single declaration (the common case) but can also store a list
3551  /// of declarations.
3552  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3553
3554private:
3555  /// A mapping from declaration names to the declarations that have
3556  /// this name within a particular scope.
3557  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3558
3559  /// A list of shadow maps, which is used to model name hiding.
3560  std::list<ShadowMap> ShadowMaps;
3561
3562  /// The declaration contexts we have already visited.
3563  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3564
3565  friend class ShadowContextRAII;
3566
3567public:
3568  /// Determine whether we have already visited this context
3569  /// (and, if not, note that we are going to visit that context now).
3570  bool visitedContext(DeclContext *Ctx) {
3571    return !VisitedContexts.insert(Ctx).second;
3572  }
3573
3574  bool alreadyVisitedContext(DeclContext *Ctx) {
3575    return VisitedContexts.count(Ctx);
3576  }
3577
3578  /// Determine whether the given declaration is hidden in the
3579  /// current scope.
3580  ///
3581  /// \returns the declaration that hides the given declaration, or
3582  /// NULL if no such declaration exists.
3583  NamedDecl *checkHidden(NamedDecl *ND);
3584
3585  /// Add a declaration to the current shadow map.
3586  void add(NamedDecl *ND) {
3587    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3588  }
3589};
3590
3591/// RAII object that records when we've entered a shadow context.
3592class ShadowContextRAII {
3593  VisibleDeclsRecord &Visible;
3594
3595  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3596
3597public:
3598  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3599    Visible.ShadowMaps.emplace_back();
3600  }
3601
3602  ~ShadowContextRAII() {
3603    Visible.ShadowMaps.pop_back();
3604  }
3605};
3606
3607} // end anonymous namespace
3608
3609NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3610  unsigned IDNS = ND->getIdentifierNamespace();
3611  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3612  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3613       SM != SMEnd; ++SM) {
3614    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3615    if (Pos == SM->end())
3616      continue;
3617
3618    for (auto *D : Pos->second) {
3619      // A tag declaration does not hide a non-tag declaration.
3620      if (D->hasTagIdentifierNamespace() &&
3621          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3622                   Decl::IDNS_ObjCProtocol)))
3623        continue;
3624
3625      // Protocols are in distinct namespaces from everything else.
3626      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3627           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3628          D->getIdentifierNamespace() != IDNS)
3629        continue;
3630
3631      // Functions and function templates in the same scope overload
3632      // rather than hide.  FIXME: Look for hiding based on function
3633      // signatures!
3634      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3635          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3636          SM == ShadowMaps.rbegin())
3637        continue;
3638
3639      // A shadow declaration that's created by a resolved using declaration
3640      // is not hidden by the same using declaration.
3641      if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3642          cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3643        continue;
3644
3645      // We've found a declaration that hides this one.
3646      return D;
3647    }
3648  }
3649
3650  return nullptr;
3651}
3652
3653namespace {
3654class LookupVisibleHelper {
3655public:
3656  LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
3657                      bool LoadExternal)
3658      : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
3659        LoadExternal(LoadExternal) {}
3660
3661  void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
3662                          bool IncludeGlobalScope) {
3663    // Determine the set of using directives available during
3664    // unqualified name lookup.
3665    Scope *Initial = S;
3666    UnqualUsingDirectiveSet UDirs(SemaRef);
3667    if (SemaRef.getLangOpts().CPlusPlus) {
3668      // Find the first namespace or translation-unit scope.
3669      while (S && !isNamespaceOrTranslationUnitScope(S))
3670        S = S->getParent();
3671
3672      UDirs.visitScopeChain(Initial, S);
3673    }
3674    UDirs.done();
3675
3676    // Look for visible declarations.
3677    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3678    Result.setAllowHidden(Consumer.includeHiddenDecls());
3679    if (!IncludeGlobalScope)
3680      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3681    ShadowContextRAII Shadow(Visited);
3682    lookupInScope(Initial, Result, UDirs);
3683  }
3684
3685  void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
3686                          Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
3687    LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
3688    Result.setAllowHidden(Consumer.includeHiddenDecls());
3689    if (!IncludeGlobalScope)
3690      Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
3691
3692    ShadowContextRAII Shadow(Visited);
3693    lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
3694                        /*InBaseClass=*/false);
3695  }
3696
3697private:
3698  void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
3699                           bool QualifiedNameLookup, bool InBaseClass) {
3700    if (!Ctx)
3701      return;
3702
3703    // Make sure we don't visit the same context twice.
3704    if (Visited.visitedContext(Ctx->getPrimaryContext()))
3705      return;
3706
3707    Consumer.EnteredContext(Ctx);
3708
3709    // Outside C++, lookup results for the TU live on identifiers.
3710    if (isa<TranslationUnitDecl>(Ctx) &&
3711        !Result.getSema().getLangOpts().CPlusPlus) {
3712      auto &S = Result.getSema();
3713      auto &Idents = S.Context.Idents;
3714
3715      // Ensure all external identifiers are in the identifier table.
3716      if (LoadExternal)
3717        if (IdentifierInfoLookup *External =
3718                Idents.getExternalIdentifierLookup()) {
3719          std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3720          for (StringRef Name = Iter->Next(); !Name.empty();
3721               Name = Iter->Next())
3722            Idents.get(Name);
3723        }
3724
3725      // Walk all lookup results in the TU for each identifier.
3726      for (const auto &Ident : Idents) {
3727        for (auto I = S.IdResolver.begin(Ident.getValue()),
3728                  E = S.IdResolver.end();
3729             I != E; ++I) {
3730          if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3731            if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3732              Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3733              Visited.add(ND);
3734            }
3735          }
3736        }
3737      }
3738
3739      return;
3740    }
3741
3742    if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3743      Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3744
3745    // We sometimes skip loading namespace-level results (they tend to be huge).
3746    bool Load = LoadExternal ||
3747                !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3748    // Enumerate all of the results in this context.
3749    for (DeclContextLookupResult R :
3750         Load ? Ctx->lookups()
3751              : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3752      for (auto *D : R) {
3753        if (auto *ND = Result.getAcceptableDecl(D)) {
3754          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3755          Visited.add(ND);
3756        }
3757      }
3758    }
3759
3760    // Traverse using directives for qualified name lookup.
3761    if (QualifiedNameLookup) {
3762      ShadowContextRAII Shadow(Visited);
3763      for (auto I : Ctx->using_directives()) {
3764        if (!Result.getSema().isVisible(I))
3765          continue;
3766        lookupInDeclContext(I->getNominatedNamespace(), Result,
3767                            QualifiedNameLookup, InBaseClass);
3768      }
3769    }
3770
3771    // Traverse the contexts of inherited C++ classes.
3772    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3773      if (!Record->hasDefinition())
3774        return;
3775
3776      for (const auto &B : Record->bases()) {
3777        QualType BaseType = B.getType();
3778
3779        RecordDecl *RD;
3780        if (BaseType->isDependentType()) {
3781          if (!IncludeDependentBases) {
3782            // Don't look into dependent bases, because name lookup can't look
3783            // there anyway.
3784            continue;
3785          }
3786          const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3787          if (!TST)
3788            continue;
3789          TemplateName TN = TST->getTemplateName();
3790          const auto *TD =
3791              dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3792          if (!TD)
3793            continue;
3794          RD = TD->getTemplatedDecl();
3795        } else {
3796          const auto *Record = BaseType->getAs<RecordType>();
3797          if (!Record)
3798            continue;
3799          RD = Record->getDecl();
3800        }
3801
3802        // FIXME: It would be nice to be able to determine whether referencing
3803        // a particular member would be ambiguous. For example, given
3804        //
3805        //   struct A { int member; };
3806        //   struct B { int member; };
3807        //   struct C : A, B { };
3808        //
3809        //   void f(C *c) { c->### }
3810        //
3811        // accessing 'member' would result in an ambiguity. However, we
3812        // could be smart enough to qualify the member with the base
3813        // class, e.g.,
3814        //
3815        //   c->B::member
3816        //
3817        // or
3818        //
3819        //   c->A::member
3820
3821        // Find results in this base class (and its bases).
3822        ShadowContextRAII Shadow(Visited);
3823        lookupInDeclContext(RD, Result, QualifiedNameLookup,
3824                            /*InBaseClass=*/true);
3825      }
3826    }
3827
3828    // Traverse the contexts of Objective-C classes.
3829    if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3830      // Traverse categories.
3831      for (auto *Cat : IFace->visible_categories()) {
3832        ShadowContextRAII Shadow(Visited);
3833        lookupInDeclContext(Cat, Result, QualifiedNameLookup,
3834                            /*InBaseClass=*/false);
3835      }
3836
3837      // Traverse protocols.
3838      for (auto *I : IFace->all_referenced_protocols()) {
3839        ShadowContextRAII Shadow(Visited);
3840        lookupInDeclContext(I, Result, QualifiedNameLookup,
3841                            /*InBaseClass=*/false);
3842      }
3843
3844      // Traverse the superclass.
3845      if (IFace->getSuperClass()) {
3846        ShadowContextRAII Shadow(Visited);
3847        lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
3848                            /*InBaseClass=*/true);
3849      }
3850
3851      // If there is an implementation, traverse it. We do this to find
3852      // synthesized ivars.
3853      if (IFace->getImplementation()) {
3854        ShadowContextRAII Shadow(Visited);
3855        lookupInDeclContext(IFace->getImplementation(), Result,
3856                            QualifiedNameLookup, InBaseClass);
3857      }
3858    } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3859      for (auto *I : Protocol->protocols()) {
3860        ShadowContextRAII Shadow(Visited);
3861        lookupInDeclContext(I, Result, QualifiedNameLookup,
3862                            /*InBaseClass=*/false);
3863      }
3864    } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3865      for (auto *I : Category->protocols()) {
3866        ShadowContextRAII Shadow(Visited);
3867        lookupInDeclContext(I, Result, QualifiedNameLookup,
3868                            /*InBaseClass=*/false);
3869      }
3870
3871      // If there is an implementation, traverse it.
3872      if (Category->getImplementation()) {
3873        ShadowContextRAII Shadow(Visited);
3874        lookupInDeclContext(Category->getImplementation(), Result,
3875                            QualifiedNameLookup, /*InBaseClass=*/true);
3876      }
3877    }
3878  }
3879
3880  void lookupInScope(Scope *S, LookupResult &Result,
3881                     UnqualUsingDirectiveSet &UDirs) {
3882    // No clients run in this mode and it's not supported. Please add tests and
3883    // remove the assertion if you start relying on it.
3884    assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
3885
3886    if (!S)
3887      return;
3888
3889    if (!S->getEntity() ||
3890        (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
3891        (S->getEntity())->isFunctionOrMethod()) {
3892      FindLocalExternScope FindLocals(Result);
3893      // Walk through the declarations in this Scope. The consumer might add new
3894      // decls to the scope as part of deserialization, so make a copy first.
3895      SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3896      for (Decl *D : ScopeDecls) {
3897        if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3898          if ((ND = Result.getAcceptableDecl(ND))) {
3899            Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3900            Visited.add(ND);
3901          }
3902      }
3903    }
3904
3905    DeclContext *Entity = S->getLookupEntity();
3906    if (Entity) {
3907      // Look into this scope's declaration context, along with any of its
3908      // parent lookup contexts (e.g., enclosing classes), up to the point
3909      // where we hit the context stored in the next outer scope.
3910      DeclContext *OuterCtx = findOuterContext(S);
3911
3912      for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3913           Ctx = Ctx->getLookupParent()) {
3914        if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3915          if (Method->isInstanceMethod()) {
3916            // For instance methods, look for ivars in the method's interface.
3917            LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3918                                    Result.getNameLoc(),
3919                                    Sema::LookupMemberName);
3920            if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3921              lookupInDeclContext(IFace, IvarResult,
3922                                  /*QualifiedNameLookup=*/false,
3923                                  /*InBaseClass=*/false);
3924            }
3925          }
3926
3927          // We've already performed all of the name lookup that we need
3928          // to for Objective-C methods; the next context will be the
3929          // outer scope.
3930          break;
3931        }
3932
3933        if (Ctx->isFunctionOrMethod())
3934          continue;
3935
3936        lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
3937                            /*InBaseClass=*/false);
3938      }
3939    } else if (!S->getParent()) {
3940      // Look into the translation unit scope. We walk through the translation
3941      // unit's declaration context, because the Scope itself won't have all of
3942      // the declarations if we loaded a precompiled header.
3943      // FIXME: We would like the translation unit's Scope object to point to
3944      // the translation unit, so we don't need this special "if" branch.
3945      // However, doing so would force the normal C++ name-lookup code to look
3946      // into the translation unit decl when the IdentifierInfo chains would
3947      // suffice. Once we fix that problem (which is part of a more general
3948      // "don't look in DeclContexts unless we have to" optimization), we can
3949      // eliminate this.
3950      Entity = Result.getSema().Context.getTranslationUnitDecl();
3951      lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
3952                          /*InBaseClass=*/false);
3953    }
3954
3955    if (Entity) {
3956      // Lookup visible declarations in any namespaces found by using
3957      // directives.
3958      for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3959        lookupInDeclContext(
3960            const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
3961            /*QualifiedNameLookup=*/false,
3962            /*InBaseClass=*/false);
3963    }
3964
3965    // Lookup names in the parent scope.
3966    ShadowContextRAII Shadow(Visited);
3967    lookupInScope(S->getParent(), Result, UDirs);
3968  }
3969
3970private:
3971  VisibleDeclsRecord Visited;
3972  VisibleDeclConsumer &Consumer;
3973  bool IncludeDependentBases;
3974  bool LoadExternal;
3975};
3976} // namespace
3977
3978void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3979                              VisibleDeclConsumer &Consumer,
3980                              bool IncludeGlobalScope, bool LoadExternal) {
3981  LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
3982                        LoadExternal);
3983  H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
3984}
3985
3986void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3987                              VisibleDeclConsumer &Consumer,
3988                              bool IncludeGlobalScope,
3989                              bool IncludeDependentBases, bool LoadExternal) {
3990  LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
3991  H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
3992}
3993
3994/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3995/// If GnuLabelLoc is a valid source location, then this is a definition
3996/// of an __label__ label name, otherwise it is a normal label definition
3997/// or use.
3998LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3999                                     SourceLocation GnuLabelLoc) {
4000  // Do a lookup to see if we have a label with this name already.
4001  NamedDecl *Res = nullptr;
4002
4003  if (GnuLabelLoc.isValid()) {
4004    // Local label definitions always shadow existing labels.
4005    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4006    Scope *S = CurScope;
4007    PushOnScopeChains(Res, S, true);
4008    return cast<LabelDecl>(Res);
4009  }
4010
4011  // Not a GNU local label.
4012  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4013  // If we found a label, check to see if it is in the same context as us.
4014  // When in a Block, we don't want to reuse a label in an enclosing function.
4015  if (Res && Res->getDeclContext() != CurContext)
4016    Res = nullptr;
4017  if (!Res) {
4018    // If not forward referenced or defined already, create the backing decl.
4019    Res = LabelDecl::Create(Context, CurContext, Loc, II);
4020    Scope *S = CurScope->getFnParent();
4021    assert(S && "Not in a function?");
4022    PushOnScopeChains(Res, S, true);
4023  }
4024  return cast<LabelDecl>(Res);
4025}
4026
4027//===----------------------------------------------------------------------===//
4028// Typo correction
4029//===----------------------------------------------------------------------===//
4030
4031static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4032                              TypoCorrection &Candidate) {
4033  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4034  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4035}
4036
4037static void LookupPotentialTypoResult(Sema &SemaRef,
4038                                      LookupResult &Res,
4039                                      IdentifierInfo *Name,
4040                                      Scope *S, CXXScopeSpec *SS,
4041                                      DeclContext *MemberContext,
4042                                      bool EnteringContext,
4043                                      bool isObjCIvarLookup,
4044                                      bool FindHidden);
4045
4046/// Check whether the declarations found for a typo correction are
4047/// visible. Set the correction's RequiresImport flag to true if none of the
4048/// declarations are visible, false otherwise.
4049static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4050  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4051
4052  for (/**/; DI != DE; ++DI)
4053    if (!LookupResult::isVisible(SemaRef, *DI))
4054      break;
4055  // No filtering needed if all decls are visible.
4056  if (DI == DE) {
4057    TC.setRequiresImport(false);
4058    return;
4059  }
4060
4061  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4062  bool AnyVisibleDecls = !NewDecls.empty();
4063
4064  for (/**/; DI != DE; ++DI) {
4065    if (LookupResult::isVisible(SemaRef, *DI)) {
4066      if (!AnyVisibleDecls) {
4067        // Found a visible decl, discard all hidden ones.
4068        AnyVisibleDecls = true;
4069        NewDecls.clear();
4070      }
4071      NewDecls.push_back(*DI);
4072    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4073      NewDecls.push_back(*DI);
4074  }
4075
4076  if (NewDecls.empty())
4077    TC = TypoCorrection();
4078  else {
4079    TC.setCorrectionDecls(NewDecls);
4080    TC.setRequiresImport(!AnyVisibleDecls);
4081  }
4082}
4083
4084// Fill the supplied vector with the IdentifierInfo pointers for each piece of
4085// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4086// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4087static void getNestedNameSpecifierIdentifiers(
4088    NestedNameSpecifier *NNS,
4089    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4090  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4091    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4092  else
4093    Identifiers.clear();
4094
4095  const IdentifierInfo *II = nullptr;
4096
4097  switch (NNS->getKind()) {
4098  case NestedNameSpecifier::Identifier:
4099    II = NNS->getAsIdentifier();
4100    break;
4101
4102  case NestedNameSpecifier::Namespace:
4103    if (NNS->getAsNamespace()->isAnonymousNamespace())
4104      return;
4105    II = NNS->getAsNamespace()->getIdentifier();
4106    break;
4107
4108  case NestedNameSpecifier::NamespaceAlias:
4109    II = NNS->getAsNamespaceAlias()->getIdentifier();
4110    break;
4111
4112  case NestedNameSpecifier::TypeSpecWithTemplate:
4113  case NestedNameSpecifier::TypeSpec:
4114    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4115    break;
4116
4117  case NestedNameSpecifier::Global:
4118  case NestedNameSpecifier::Super:
4119    return;
4120  }
4121
4122  if (II)
4123    Identifiers.push_back(II);
4124}
4125
4126void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4127                                       DeclContext *Ctx, bool InBaseClass) {
4128  // Don't consider hidden names for typo correction.
4129  if (Hiding)
4130    return;
4131
4132  // Only consider entities with identifiers for names, ignoring
4133  // special names (constructors, overloaded operators, selectors,
4134  // etc.).
4135  IdentifierInfo *Name = ND->getIdentifier();
4136  if (!Name)
4137    return;
4138
4139  // Only consider visible declarations and declarations from modules with
4140  // names that exactly match.
4141  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4142    return;
4143
4144  FoundName(Name->getName());
4145}
4146
4147void TypoCorrectionConsumer::FoundName(StringRef Name) {
4148  // Compute the edit distance between the typo and the name of this
4149  // entity, and add the identifier to the list of results.
4150  addName(Name, nullptr);
4151}
4152
4153void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4154  // Compute the edit distance between the typo and this keyword,
4155  // and add the keyword to the list of results.
4156  addName(Keyword, nullptr, nullptr, true);
4157}
4158
4159void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4160                                     NestedNameSpecifier *NNS, bool isKeyword) {
4161  // Use a simple length-based heuristic to determine the minimum possible
4162  // edit distance. If the minimum isn't good enough, bail out early.
4163  StringRef TypoStr = Typo->getName();
4164  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4165  if (MinED && TypoStr.size() / MinED < 3)
4166    return;
4167
4168  // Compute an upper bound on the allowable edit distance, so that the
4169  // edit-distance algorithm can short-circuit.
4170  unsigned UpperBound = (TypoStr.size() + 2) / 3;
4171  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4172  if (ED > UpperBound) return;
4173
4174  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4175  if (isKeyword) TC.makeKeyword();
4176  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4177  addCorrection(TC);
4178}
4179
4180static const unsigned MaxTypoDistanceResultSets = 5;
4181
4182void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4183  StringRef TypoStr = Typo->getName();
4184  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4185
4186  // For very short typos, ignore potential corrections that have a different
4187  // base identifier from the typo or which have a normalized edit distance
4188  // longer than the typo itself.
4189  if (TypoStr.size() < 3 &&
4190      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4191    return;
4192
4193  // If the correction is resolved but is not viable, ignore it.
4194  if (Correction.isResolved()) {
4195    checkCorrectionVisibility(SemaRef, Correction);
4196    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4197      return;
4198  }
4199
4200  TypoResultList &CList =
4201      CorrectionResults[Correction.getEditDistance(false)][Name];
4202
4203  if (!CList.empty() && !CList.back().isResolved())
4204    CList.pop_back();
4205  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4206    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4207    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4208         RI != RIEnd; ++RI) {
4209      // If the Correction refers to a decl already in the result list,
4210      // replace the existing result if the string representation of Correction
4211      // comes before the current result alphabetically, then stop as there is
4212      // nothing more to be done to add Correction to the candidate set.
4213      if (RI->getCorrectionDecl() == NewND) {
4214        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4215          *RI = Correction;
4216        return;
4217      }
4218    }
4219  }
4220  if (CList.empty() || Correction.isResolved())
4221    CList.push_back(Correction);
4222
4223  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4224    CorrectionResults.erase(std::prev(CorrectionResults.end()));
4225}
4226
4227void TypoCorrectionConsumer::addNamespaces(
4228    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4229  SearchNamespaces = true;
4230
4231  for (auto KNPair : KnownNamespaces)
4232    Namespaces.addNameSpecifier(KNPair.first);
4233
4234  bool SSIsTemplate = false;
4235  if (NestedNameSpecifier *NNS =
4236          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4237    if (const Type *T = NNS->getAsType())
4238      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4239  }
4240  // Do not transform this into an iterator-based loop. The loop body can
4241  // trigger the creation of further types (through lazy deserialization) and
4242  // invalid iterators into this list.
4243  auto &Types = SemaRef.getASTContext().getTypes();
4244  for (unsigned I = 0; I != Types.size(); ++I) {
4245    const auto *TI = Types[I];
4246    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4247      CD = CD->getCanonicalDecl();
4248      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4249          !CD->isUnion() && CD->getIdentifier() &&
4250          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4251          (CD->isBeingDefined() || CD->isCompleteDefinition()))
4252        Namespaces.addNameSpecifier(CD);
4253    }
4254  }
4255}
4256
4257const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4258  if (++CurrentTCIndex < ValidatedCorrections.size())
4259    return ValidatedCorrections[CurrentTCIndex];
4260
4261  CurrentTCIndex = ValidatedCorrections.size();
4262  while (!CorrectionResults.empty()) {
4263    auto DI = CorrectionResults.begin();
4264    if (DI->second.empty()) {
4265      CorrectionResults.erase(DI);
4266      continue;
4267    }
4268
4269    auto RI = DI->second.begin();
4270    if (RI->second.empty()) {
4271      DI->second.erase(RI);
4272      performQualifiedLookups();
4273      continue;
4274    }
4275
4276    TypoCorrection TC = RI->second.pop_back_val();
4277    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4278      ValidatedCorrections.push_back(TC);
4279      return ValidatedCorrections[CurrentTCIndex];
4280    }
4281  }
4282  return ValidatedCorrections[0];  // The empty correction.
4283}
4284
4285bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4286  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4287  DeclContext *TempMemberContext = MemberContext;
4288  CXXScopeSpec *TempSS = SS.get();
4289retry_lookup:
4290  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4291                            EnteringContext,
4292                            CorrectionValidator->IsObjCIvarLookup,
4293                            Name == Typo && !Candidate.WillReplaceSpecifier());
4294  switch (Result.getResultKind()) {
4295  case LookupResult::NotFound:
4296  case LookupResult::NotFoundInCurrentInstantiation:
4297  case LookupResult::FoundUnresolvedValue:
4298    if (TempSS) {
4299      // Immediately retry the lookup without the given CXXScopeSpec
4300      TempSS = nullptr;
4301      Candidate.WillReplaceSpecifier(true);
4302      goto retry_lookup;
4303    }
4304    if (TempMemberContext) {
4305      if (SS && !TempSS)
4306        TempSS = SS.get();
4307      TempMemberContext = nullptr;
4308      goto retry_lookup;
4309    }
4310    if (SearchNamespaces)
4311      QualifiedResults.push_back(Candidate);
4312    break;
4313
4314  case LookupResult::Ambiguous:
4315    // We don't deal with ambiguities.
4316    break;
4317
4318  case LookupResult::Found:
4319  case LookupResult::FoundOverloaded:
4320    // Store all of the Decls for overloaded symbols
4321    for (auto *TRD : Result)
4322      Candidate.addCorrectionDecl(TRD);
4323    checkCorrectionVisibility(SemaRef, Candidate);
4324    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4325      if (SearchNamespaces)
4326        QualifiedResults.push_back(Candidate);
4327      break;
4328    }
4329    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4330    return true;
4331  }
4332  return false;
4333}
4334
4335void TypoCorrectionConsumer::performQualifiedLookups() {
4336  unsigned TypoLen = Typo->getName().size();
4337  for (const TypoCorrection &QR : QualifiedResults) {
4338    for (const auto &NSI : Namespaces) {
4339      DeclContext *Ctx = NSI.DeclCtx;
4340      const Type *NSType = NSI.NameSpecifier->getAsType();
4341
4342      // If the current NestedNameSpecifier refers to a class and the
4343      // current correction candidate is the name of that class, then skip
4344      // it as it is unlikely a qualified version of the class' constructor
4345      // is an appropriate correction.
4346      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4347                                           nullptr) {
4348        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4349          continue;
4350      }
4351
4352      TypoCorrection TC(QR);
4353      TC.ClearCorrectionDecls();
4354      TC.setCorrectionSpecifier(NSI.NameSpecifier);
4355      TC.setQualifierDistance(NSI.EditDistance);
4356      TC.setCallbackDistance(0); // Reset the callback distance
4357
4358      // If the current correction candidate and namespace combination are
4359      // too far away from the original typo based on the normalized edit
4360      // distance, then skip performing a qualified name lookup.
4361      unsigned TmpED = TC.getEditDistance(true);
4362      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4363          TypoLen / TmpED < 3)
4364        continue;
4365
4366      Result.clear();
4367      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4368      if (!SemaRef.LookupQualifiedName(Result, Ctx))
4369        continue;
4370
4371      // Any corrections added below will be validated in subsequent
4372      // iterations of the main while() loop over the Consumer's contents.
4373      switch (Result.getResultKind()) {
4374      case LookupResult::Found:
4375      case LookupResult::FoundOverloaded: {
4376        if (SS && SS->isValid()) {
4377          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4378          std::string OldQualified;
4379          llvm::raw_string_ostream OldOStream(OldQualified);
4380          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4381          OldOStream << Typo->getName();
4382          // If correction candidate would be an identical written qualified
4383          // identifier, then the existing CXXScopeSpec probably included a
4384          // typedef that didn't get accounted for properly.
4385          if (OldOStream.str() == NewQualified)
4386            break;
4387        }
4388        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4389             TRD != TRDEnd; ++TRD) {
4390          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4391                                        NSType ? NSType->getAsCXXRecordDecl()
4392                                               : nullptr,
4393                                        TRD.getPair()) == Sema::AR_accessible)
4394            TC.addCorrectionDecl(*TRD);
4395        }
4396        if (TC.isResolved()) {
4397          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4398          addCorrection(TC);
4399        }
4400        break;
4401      }
4402      case LookupResult::NotFound:
4403      case LookupResult::NotFoundInCurrentInstantiation:
4404      case LookupResult::Ambiguous:
4405      case LookupResult::FoundUnresolvedValue:
4406        break;
4407      }
4408    }
4409  }
4410  QualifiedResults.clear();
4411}
4412
4413TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4414    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4415    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4416  if (NestedNameSpecifier *NNS =
4417          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4418    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4419    NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4420
4421    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4422  }
4423  // Build the list of identifiers that would be used for an absolute
4424  // (from the global context) NestedNameSpecifier referring to the current
4425  // context.
4426  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4427    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4428      CurContextIdentifiers.push_back(ND->getIdentifier());
4429  }
4430
4431  // Add the global context as a NestedNameSpecifier
4432  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4433                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
4434  DistanceMap[1].push_back(SI);
4435}
4436
4437auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4438    DeclContext *Start) -> DeclContextList {
4439  assert(Start && "Building a context chain from a null context");
4440  DeclContextList Chain;
4441  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4442       DC = DC->getLookupParent()) {
4443    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4444    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4445        !(ND && ND->isAnonymousNamespace()))
4446      Chain.push_back(DC->getPrimaryContext());
4447  }
4448  return Chain;
4449}
4450
4451unsigned
4452TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4453    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4454  unsigned NumSpecifiers = 0;
4455  for (DeclContext *C : llvm::reverse(DeclChain)) {
4456    if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4457      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4458      ++NumSpecifiers;
4459    } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4460      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4461                                        RD->getTypeForDecl());
4462      ++NumSpecifiers;
4463    }
4464  }
4465  return NumSpecifiers;
4466}
4467
4468void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4469    DeclContext *Ctx) {
4470  NestedNameSpecifier *NNS = nullptr;
4471  unsigned NumSpecifiers = 0;
4472  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4473  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4474
4475  // Eliminate common elements from the two DeclContext chains.
4476  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4477    if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4478      break;
4479    NamespaceDeclChain.pop_back();
4480  }
4481
4482  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4483  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4484
4485  // Add an explicit leading '::' specifier if needed.
4486  if (NamespaceDeclChain.empty()) {
4487    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4488    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4489    NumSpecifiers =
4490        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4491  } else if (NamedDecl *ND =
4492                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4493    IdentifierInfo *Name = ND->getIdentifier();
4494    bool SameNameSpecifier = false;
4495    if (std::find(CurNameSpecifierIdentifiers.begin(),
4496                  CurNameSpecifierIdentifiers.end(),
4497                  Name) != CurNameSpecifierIdentifiers.end()) {
4498      std::string NewNameSpecifier;
4499      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4500      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4501      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4502      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4503      SpecifierOStream.flush();
4504      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4505    }
4506    if (SameNameSpecifier || llvm::find(CurContextIdentifiers, Name) !=
4507                                 CurContextIdentifiers.end()) {
4508      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4509      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4510      NumSpecifiers =
4511          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4512    }
4513  }
4514
4515  // If the built NestedNameSpecifier would be replacing an existing
4516  // NestedNameSpecifier, use the number of component identifiers that
4517  // would need to be changed as the edit distance instead of the number
4518  // of components in the built NestedNameSpecifier.
4519  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4520    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4521    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4522    NumSpecifiers = llvm::ComputeEditDistance(
4523        llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4524        llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4525  }
4526
4527  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4528  DistanceMap[NumSpecifiers].push_back(SI);
4529}
4530
4531/// Perform name lookup for a possible result for typo correction.
4532static void LookupPotentialTypoResult(Sema &SemaRef,
4533                                      LookupResult &Res,
4534                                      IdentifierInfo *Name,
4535                                      Scope *S, CXXScopeSpec *SS,
4536                                      DeclContext *MemberContext,
4537                                      bool EnteringContext,
4538                                      bool isObjCIvarLookup,
4539                                      bool FindHidden) {
4540  Res.suppressDiagnostics();
4541  Res.clear();
4542  Res.setLookupName(Name);
4543  Res.setAllowHidden(FindHidden);
4544  if (MemberContext) {
4545    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4546      if (isObjCIvarLookup) {
4547        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4548          Res.addDecl(Ivar);
4549          Res.resolveKind();
4550          return;
4551        }
4552      }
4553
4554      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4555              Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4556        Res.addDecl(Prop);
4557        Res.resolveKind();
4558        return;
4559      }
4560    }
4561
4562    SemaRef.LookupQualifiedName(Res, MemberContext);
4563    return;
4564  }
4565
4566  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4567                           EnteringContext);
4568
4569  // Fake ivar lookup; this should really be part of
4570  // LookupParsedName.
4571  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4572    if (Method->isInstanceMethod() && Method->getClassInterface() &&
4573        (Res.empty() ||
4574         (Res.isSingleResult() &&
4575          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4576       if (ObjCIvarDecl *IV
4577             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4578         Res.addDecl(IV);
4579         Res.resolveKind();
4580       }
4581     }
4582  }
4583}
4584
4585/// Add keywords to the consumer as possible typo corrections.
4586static void AddKeywordsToConsumer(Sema &SemaRef,
4587                                  TypoCorrectionConsumer &Consumer,
4588                                  Scope *S, CorrectionCandidateCallback &CCC,
4589                                  bool AfterNestedNameSpecifier) {
4590  if (AfterNestedNameSpecifier) {
4591    // For 'X::', we know exactly which keywords can appear next.
4592    Consumer.addKeywordResult("template");
4593    if (CCC.WantExpressionKeywords)
4594      Consumer.addKeywordResult("operator");
4595    return;
4596  }
4597
4598  if (CCC.WantObjCSuper)
4599    Consumer.addKeywordResult("super");
4600
4601  if (CCC.WantTypeSpecifiers) {
4602    // Add type-specifier keywords to the set of results.
4603    static const char *const CTypeSpecs[] = {
4604      "char", "const", "double", "enum", "float", "int", "long", "short",
4605      "signed", "struct", "union", "unsigned", "void", "volatile",
4606      "_Complex", "_Imaginary",
4607      // storage-specifiers as well
4608      "extern", "inline", "static", "typedef"
4609    };
4610
4611    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4612    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4613      Consumer.addKeywordResult(CTypeSpecs[I]);
4614
4615    if (SemaRef.getLangOpts().C99)
4616      Consumer.addKeywordResult("restrict");
4617    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4618      Consumer.addKeywordResult("bool");
4619    else if (SemaRef.getLangOpts().C99)
4620      Consumer.addKeywordResult("_Bool");
4621
4622    if (SemaRef.getLangOpts().CPlusPlus) {
4623      Consumer.addKeywordResult("class");
4624      Consumer.addKeywordResult("typename");
4625      Consumer.addKeywordResult("wchar_t");
4626
4627      if (SemaRef.getLangOpts().CPlusPlus11) {
4628        Consumer.addKeywordResult("char16_t");
4629        Consumer.addKeywordResult("char32_t");
4630        Consumer.addKeywordResult("constexpr");
4631        Consumer.addKeywordResult("decltype");
4632        Consumer.addKeywordResult("thread_local");
4633      }
4634    }
4635
4636    if (SemaRef.getLangOpts().GNUKeywords)
4637      Consumer.addKeywordResult("typeof");
4638  } else if (CCC.WantFunctionLikeCasts) {
4639    static const char *const CastableTypeSpecs[] = {
4640      "char", "double", "float", "int", "long", "short",
4641      "signed", "unsigned", "void"
4642    };
4643    for (auto *kw : CastableTypeSpecs)
4644      Consumer.addKeywordResult(kw);
4645  }
4646
4647  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4648    Consumer.addKeywordResult("const_cast");
4649    Consumer.addKeywordResult("dynamic_cast");
4650    Consumer.addKeywordResult("reinterpret_cast");
4651    Consumer.addKeywordResult("static_cast");
4652  }
4653
4654  if (CCC.WantExpressionKeywords) {
4655    Consumer.addKeywordResult("sizeof");
4656    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4657      Consumer.addKeywordResult("false");
4658      Consumer.addKeywordResult("true");
4659    }
4660
4661    if (SemaRef.getLangOpts().CPlusPlus) {
4662      static const char *const CXXExprs[] = {
4663        "delete", "new", "operator", "throw", "typeid"
4664      };
4665      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4666      for (unsigned I = 0; I != NumCXXExprs; ++I)
4667        Consumer.addKeywordResult(CXXExprs[I]);
4668
4669      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4670          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4671        Consumer.addKeywordResult("this");
4672
4673      if (SemaRef.getLangOpts().CPlusPlus11) {
4674        Consumer.addKeywordResult("alignof");
4675        Consumer.addKeywordResult("nullptr");
4676      }
4677    }
4678
4679    if (SemaRef.getLangOpts().C11) {
4680      // FIXME: We should not suggest _Alignof if the alignof macro
4681      // is present.
4682      Consumer.addKeywordResult("_Alignof");
4683    }
4684  }
4685
4686  if (CCC.WantRemainingKeywords) {
4687    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4688      // Statements.
4689      static const char *const CStmts[] = {
4690        "do", "else", "for", "goto", "if", "return", "switch", "while" };
4691      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4692      for (unsigned I = 0; I != NumCStmts; ++I)
4693        Consumer.addKeywordResult(CStmts[I]);
4694
4695      if (SemaRef.getLangOpts().CPlusPlus) {
4696        Consumer.addKeywordResult("catch");
4697        Consumer.addKeywordResult("try");
4698      }
4699
4700      if (S && S->getBreakParent())
4701        Consumer.addKeywordResult("break");
4702
4703      if (S && S->getContinueParent())
4704        Consumer.addKeywordResult("continue");
4705
4706      if (SemaRef.getCurFunction() &&
4707          !SemaRef.getCurFunction()->SwitchStack.empty()) {
4708        Consumer.addKeywordResult("case");
4709        Consumer.addKeywordResult("default");
4710      }
4711    } else {
4712      if (SemaRef.getLangOpts().CPlusPlus) {
4713        Consumer.addKeywordResult("namespace");
4714        Consumer.addKeywordResult("template");
4715      }
4716
4717      if (S && S->isClassScope()) {
4718        Consumer.addKeywordResult("explicit");
4719        Consumer.addKeywordResult("friend");
4720        Consumer.addKeywordResult("mutable");
4721        Consumer.addKeywordResult("private");
4722        Consumer.addKeywordResult("protected");
4723        Consumer.addKeywordResult("public");
4724        Consumer.addKeywordResult("virtual");
4725      }
4726    }
4727
4728    if (SemaRef.getLangOpts().CPlusPlus) {
4729      Consumer.addKeywordResult("using");
4730
4731      if (SemaRef.getLangOpts().CPlusPlus11)
4732        Consumer.addKeywordResult("static_assert");
4733    }
4734  }
4735}
4736
4737std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4738    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4739    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
4740    DeclContext *MemberContext, bool EnteringContext,
4741    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4742
4743  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4744      DisableTypoCorrection)
4745    return nullptr;
4746
4747  // In Microsoft mode, don't perform typo correction in a template member
4748  // function dependent context because it interferes with the "lookup into
4749  // dependent bases of class templates" feature.
4750  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4751      isa<CXXMethodDecl>(CurContext))
4752    return nullptr;
4753
4754  // We only attempt to correct typos for identifiers.
4755  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4756  if (!Typo)
4757    return nullptr;
4758
4759  // If the scope specifier itself was invalid, don't try to correct
4760  // typos.
4761  if (SS && SS->isInvalid())
4762    return nullptr;
4763
4764  // Never try to correct typos during any kind of code synthesis.
4765  if (!CodeSynthesisContexts.empty())
4766    return nullptr;
4767
4768  // Don't try to correct 'super'.
4769  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4770    return nullptr;
4771
4772  // Abort if typo correction already failed for this specific typo.
4773  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4774  if (locs != TypoCorrectionFailures.end() &&
4775      locs->second.count(TypoName.getLoc()))
4776    return nullptr;
4777
4778  // Don't try to correct the identifier "vector" when in AltiVec mode.
4779  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4780  // remove this workaround.
4781  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4782    return nullptr;
4783
4784  // Provide a stop gap for files that are just seriously broken.  Trying
4785  // to correct all typos can turn into a HUGE performance penalty, causing
4786  // some files to take minutes to get rejected by the parser.
4787  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4788  if (Limit && TyposCorrected >= Limit)
4789    return nullptr;
4790  ++TyposCorrected;
4791
4792  // If we're handling a missing symbol error, using modules, and the
4793  // special search all modules option is used, look for a missing import.
4794  if (ErrorRecovery && getLangOpts().Modules &&
4795      getLangOpts().ModulesSearchAll) {
4796    // The following has the side effect of loading the missing module.
4797    getModuleLoader().lookupMissingImports(Typo->getName(),
4798                                           TypoName.getBeginLoc());
4799  }
4800
4801  // Extend the lifetime of the callback. We delayed this until here
4802  // to avoid allocations in the hot path (which is where no typo correction
4803  // occurs). Note that CorrectionCandidateCallback is polymorphic and
4804  // initially stack-allocated.
4805  std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
4806  auto Consumer = std::make_unique<TypoCorrectionConsumer>(
4807      *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
4808      EnteringContext);
4809
4810  // Perform name lookup to find visible, similarly-named entities.
4811  bool IsUnqualifiedLookup = false;
4812  DeclContext *QualifiedDC = MemberContext;
4813  if (MemberContext) {
4814    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4815
4816    // Look in qualified interfaces.
4817    if (OPT) {
4818      for (auto *I : OPT->quals())
4819        LookupVisibleDecls(I, LookupKind, *Consumer);
4820    }
4821  } else if (SS && SS->isSet()) {
4822    QualifiedDC = computeDeclContext(*SS, EnteringContext);
4823    if (!QualifiedDC)
4824      return nullptr;
4825
4826    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4827  } else {
4828    IsUnqualifiedLookup = true;
4829  }
4830
4831  // Determine whether we are going to search in the various namespaces for
4832  // corrections.
4833  bool SearchNamespaces
4834    = getLangOpts().CPlusPlus &&
4835      (IsUnqualifiedLookup || (SS && SS->isSet()));
4836
4837  if (IsUnqualifiedLookup || SearchNamespaces) {
4838    // For unqualified lookup, look through all of the names that we have
4839    // seen in this translation unit.
4840    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4841    for (const auto &I : Context.Idents)
4842      Consumer->FoundName(I.getKey());
4843
4844    // Walk through identifiers in external identifier sources.
4845    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4846    if (IdentifierInfoLookup *External
4847                            = Context.Idents.getExternalIdentifierLookup()) {
4848      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4849      do {
4850        StringRef Name = Iter->Next();
4851        if (Name.empty())
4852          break;
4853
4854        Consumer->FoundName(Name);
4855      } while (true);
4856    }
4857  }
4858
4859  AddKeywordsToConsumer(*this, *Consumer, S,
4860                        *Consumer->getCorrectionValidator(),
4861                        SS && SS->isNotEmpty());
4862
4863  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4864  // to search those namespaces.
4865  if (SearchNamespaces) {
4866    // Load any externally-known namespaces.
4867    if (ExternalSource && !LoadedExternalKnownNamespaces) {
4868      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4869      LoadedExternalKnownNamespaces = true;
4870      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4871      for (auto *N : ExternalKnownNamespaces)
4872        KnownNamespaces[N] = true;
4873    }
4874
4875    Consumer->addNamespaces(KnownNamespaces);
4876  }
4877
4878  return Consumer;
4879}
4880
4881/// Try to "correct" a typo in the source code by finding
4882/// visible declarations whose names are similar to the name that was
4883/// present in the source code.
4884///
4885/// \param TypoName the \c DeclarationNameInfo structure that contains
4886/// the name that was present in the source code along with its location.
4887///
4888/// \param LookupKind the name-lookup criteria used to search for the name.
4889///
4890/// \param S the scope in which name lookup occurs.
4891///
4892/// \param SS the nested-name-specifier that precedes the name we're
4893/// looking for, if present.
4894///
4895/// \param CCC A CorrectionCandidateCallback object that provides further
4896/// validation of typo correction candidates. It also provides flags for
4897/// determining the set of keywords permitted.
4898///
4899/// \param MemberContext if non-NULL, the context in which to look for
4900/// a member access expression.
4901///
4902/// \param EnteringContext whether we're entering the context described by
4903/// the nested-name-specifier SS.
4904///
4905/// \param OPT when non-NULL, the search for visible declarations will
4906/// also walk the protocols in the qualified interfaces of \p OPT.
4907///
4908/// \returns a \c TypoCorrection containing the corrected name if the typo
4909/// along with information such as the \c NamedDecl where the corrected name
4910/// was declared, and any additional \c NestedNameSpecifier needed to access
4911/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4912TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4913                                 Sema::LookupNameKind LookupKind,
4914                                 Scope *S, CXXScopeSpec *SS,
4915                                 CorrectionCandidateCallback &CCC,
4916                                 CorrectTypoKind Mode,
4917                                 DeclContext *MemberContext,
4918                                 bool EnteringContext,
4919                                 const ObjCObjectPointerType *OPT,
4920                                 bool RecordFailure) {
4921  // Always let the ExternalSource have the first chance at correction, even
4922  // if we would otherwise have given up.
4923  if (ExternalSource) {
4924    if (TypoCorrection Correction =
4925            ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
4926                                        MemberContext, EnteringContext, OPT))
4927      return Correction;
4928  }
4929
4930  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4931  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4932  // some instances of CTC_Unknown, while WantRemainingKeywords is true
4933  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4934  bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
4935
4936  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4937  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
4938                                             MemberContext, EnteringContext,
4939                                             OPT, Mode == CTK_ErrorRecovery);
4940
4941  if (!Consumer)
4942    return TypoCorrection();
4943
4944  // If we haven't found anything, we're done.
4945  if (Consumer->empty())
4946    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4947
4948  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4949  // is not more that about a third of the length of the typo's identifier.
4950  unsigned ED = Consumer->getBestEditDistance(true);
4951  unsigned TypoLen = Typo->getName().size();
4952  if (ED > 0 && TypoLen / ED < 3)
4953    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4954
4955  TypoCorrection BestTC = Consumer->getNextCorrection();
4956  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4957  if (!BestTC)
4958    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4959
4960  ED = BestTC.getEditDistance();
4961
4962  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4963    // If this was an unqualified lookup and we believe the callback
4964    // object wouldn't have filtered out possible corrections, note
4965    // that no correction was found.
4966    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4967  }
4968
4969  // If only a single name remains, return that result.
4970  if (!SecondBestTC ||
4971      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4972    const TypoCorrection &Result = BestTC;
4973
4974    // Don't correct to a keyword that's the same as the typo; the keyword
4975    // wasn't actually in scope.
4976    if (ED == 0 && Result.isKeyword())
4977      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4978
4979    TypoCorrection TC = Result;
4980    TC.setCorrectionRange(SS, TypoName);
4981    checkCorrectionVisibility(*this, TC);
4982    return TC;
4983  } else if (SecondBestTC && ObjCMessageReceiver) {
4984    // Prefer 'super' when we're completing in a message-receiver
4985    // context.
4986
4987    if (BestTC.getCorrection().getAsString() != "super") {
4988      if (SecondBestTC.getCorrection().getAsString() == "super")
4989        BestTC = SecondBestTC;
4990      else if ((*Consumer)["super"].front().isKeyword())
4991        BestTC = (*Consumer)["super"].front();
4992    }
4993    // Don't correct to a keyword that's the same as the typo; the keyword
4994    // wasn't actually in scope.
4995    if (BestTC.getEditDistance() == 0 ||
4996        BestTC.getCorrection().getAsString() != "super")
4997      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4998
4999    BestTC.setCorrectionRange(SS, TypoName);
5000    return BestTC;
5001  }
5002
5003  // Record the failure's location if needed and return an empty correction. If
5004  // this was an unqualified lookup and we believe the callback object did not
5005  // filter out possible corrections, also cache the failure for the typo.
5006  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5007}
5008
5009/// Try to "correct" a typo in the source code by finding
5010/// visible declarations whose names are similar to the name that was
5011/// present in the source code.
5012///
5013/// \param TypoName the \c DeclarationNameInfo structure that contains
5014/// the name that was present in the source code along with its location.
5015///
5016/// \param LookupKind the name-lookup criteria used to search for the name.
5017///
5018/// \param S the scope in which name lookup occurs.
5019///
5020/// \param SS the nested-name-specifier that precedes the name we're
5021/// looking for, if present.
5022///
5023/// \param CCC A CorrectionCandidateCallback object that provides further
5024/// validation of typo correction candidates. It also provides flags for
5025/// determining the set of keywords permitted.
5026///
5027/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5028/// diagnostics when the actual typo correction is attempted.
5029///
5030/// \param TRC A TypoRecoveryCallback functor that will be used to build an
5031/// Expr from a typo correction candidate.
5032///
5033/// \param MemberContext if non-NULL, the context in which to look for
5034/// a member access expression.
5035///
5036/// \param EnteringContext whether we're entering the context described by
5037/// the nested-name-specifier SS.
5038///
5039/// \param OPT when non-NULL, the search for visible declarations will
5040/// also walk the protocols in the qualified interfaces of \p OPT.
5041///
5042/// \returns a new \c TypoExpr that will later be replaced in the AST with an
5043/// Expr representing the result of performing typo correction, or nullptr if
5044/// typo correction is not possible. If nullptr is returned, no diagnostics will
5045/// be emitted and it is the responsibility of the caller to emit any that are
5046/// needed.
5047TypoExpr *Sema::CorrectTypoDelayed(
5048    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5049    Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5050    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5051    DeclContext *MemberContext, bool EnteringContext,
5052    const ObjCObjectPointerType *OPT) {
5053  auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5054                                             MemberContext, EnteringContext,
5055                                             OPT, Mode == CTK_ErrorRecovery);
5056
5057  // Give the external sema source a chance to correct the typo.
5058  TypoCorrection ExternalTypo;
5059  if (ExternalSource && Consumer) {
5060    ExternalTypo = ExternalSource->CorrectTypo(
5061        TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5062        MemberContext, EnteringContext, OPT);
5063    if (ExternalTypo)
5064      Consumer->addCorrection(ExternalTypo);
5065  }
5066
5067  if (!Consumer || Consumer->empty())
5068    return nullptr;
5069
5070  // Make sure the best edit distance (prior to adding any namespace qualifiers)
5071  // is not more that about a third of the length of the typo's identifier.
5072  unsigned ED = Consumer->getBestEditDistance(true);
5073  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5074  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5075    return nullptr;
5076  ExprEvalContexts.back().NumTypos++;
5077  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5078                           TypoName.getLoc());
5079}
5080
5081void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5082  if (!CDecl) return;
5083
5084  if (isKeyword())
5085    CorrectionDecls.clear();
5086
5087  CorrectionDecls.push_back(CDecl);
5088
5089  if (!CorrectionName)
5090    CorrectionName = CDecl->getDeclName();
5091}
5092
5093std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5094  if (CorrectionNameSpec) {
5095    std::string tmpBuffer;
5096    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5097    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5098    PrefixOStream << CorrectionName;
5099    return PrefixOStream.str();
5100  }
5101
5102  return CorrectionName.getAsString();
5103}
5104
5105bool CorrectionCandidateCallback::ValidateCandidate(
5106    const TypoCorrection &candidate) {
5107  if (!candidate.isResolved())
5108    return true;
5109
5110  if (candidate.isKeyword())
5111    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5112           WantRemainingKeywords || WantObjCSuper;
5113
5114  bool HasNonType = false;
5115  bool HasStaticMethod = false;
5116  bool HasNonStaticMethod = false;
5117  for (Decl *D : candidate) {
5118    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5119      D = FTD->getTemplatedDecl();
5120    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5121      if (Method->isStatic())
5122        HasStaticMethod = true;
5123      else
5124        HasNonStaticMethod = true;
5125    }
5126    if (!isa<TypeDecl>(D))
5127      HasNonType = true;
5128  }
5129
5130  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5131      !candidate.getCorrectionSpecifier())
5132    return false;
5133
5134  return WantTypeSpecifiers || HasNonType;
5135}
5136
5137FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5138                                             bool HasExplicitTemplateArgs,
5139                                             MemberExpr *ME)
5140    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5141      CurContext(SemaRef.CurContext), MemberFn(ME) {
5142  WantTypeSpecifiers = false;
5143  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5144                          !HasExplicitTemplateArgs && NumArgs == 1;
5145  WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5146  WantRemainingKeywords = false;
5147}
5148
5149bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5150  if (!candidate.getCorrectionDecl())
5151    return candidate.isKeyword();
5152
5153  for (auto *C : candidate) {
5154    FunctionDecl *FD = nullptr;
5155    NamedDecl *ND = C->getUnderlyingDecl();
5156    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5157      FD = FTD->getTemplatedDecl();
5158    if (!HasExplicitTemplateArgs && !FD) {
5159      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5160        // If the Decl is neither a function nor a template function,
5161        // determine if it is a pointer or reference to a function. If so,
5162        // check against the number of arguments expected for the pointee.
5163        QualType ValType = cast<ValueDecl>(ND)->getType();
5164        if (ValType.isNull())
5165          continue;
5166        if (ValType->isAnyPointerType() || ValType->isReferenceType())
5167          ValType = ValType->getPointeeType();
5168        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5169          if (FPT->getNumParams() == NumArgs)
5170            return true;
5171      }
5172    }
5173
5174    // A typo for a function-style cast can look like a function call in C++.
5175    if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5176                                 : isa<TypeDecl>(ND)) &&
5177        CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5178      // Only a class or class template can take two or more arguments.
5179      return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5180
5181    // Skip the current candidate if it is not a FunctionDecl or does not accept
5182    // the current number of arguments.
5183    if (!FD || !(FD->getNumParams() >= NumArgs &&
5184                 FD->getMinRequiredArguments() <= NumArgs))
5185      continue;
5186
5187    // If the current candidate is a non-static C++ method, skip the candidate
5188    // unless the method being corrected--or the current DeclContext, if the
5189    // function being corrected is not a method--is a method in the same class
5190    // or a descendent class of the candidate's parent class.
5191    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5192      if (MemberFn || !MD->isStatic()) {
5193        CXXMethodDecl *CurMD =
5194            MemberFn
5195                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5196                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5197        CXXRecordDecl *CurRD =
5198            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5199        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5200        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5201          continue;
5202      }
5203    }
5204    return true;
5205  }
5206  return false;
5207}
5208
5209void Sema::diagnoseTypo(const TypoCorrection &Correction,
5210                        const PartialDiagnostic &TypoDiag,
5211                        bool ErrorRecovery) {
5212  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5213               ErrorRecovery);
5214}
5215
5216/// Find which declaration we should import to provide the definition of
5217/// the given declaration.
5218static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5219  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5220    return VD->getDefinition();
5221  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5222    return FD->getDefinition();
5223  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5224    return TD->getDefinition();
5225  // The first definition for this ObjCInterfaceDecl might be in the TU
5226  // and not associated with any module. Use the one we know to be complete
5227  // and have just seen in a module.
5228  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5229    return ID;
5230  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5231    return PD->getDefinition();
5232  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5233    if (NamedDecl *TTD = TD->getTemplatedDecl())
5234      return getDefinitionToImport(TTD);
5235  return nullptr;
5236}
5237
5238void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5239                                 MissingImportKind MIK, bool Recover) {
5240  // Suggest importing a module providing the definition of this entity, if
5241  // possible.
5242  NamedDecl *Def = getDefinitionToImport(Decl);
5243  if (!Def)
5244    Def = Decl;
5245
5246  Module *Owner = getOwningModule(Def);
5247  assert(Owner && "definition of hidden declaration is not in a module");
5248
5249  llvm::SmallVector<Module*, 8> OwningModules;
5250  OwningModules.push_back(Owner);
5251  auto Merged = Context.getModulesWithMergedDefinition(Def);
5252  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5253
5254  diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5255                        Recover);
5256}
5257
5258/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5259/// suggesting the addition of a #include of the specified file.
5260static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5261                                          llvm::StringRef IncludingFile) {
5262  bool IsSystem = false;
5263  auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5264      E, IncludingFile, &IsSystem);
5265  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5266}
5267
5268void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5269                                 SourceLocation DeclLoc,
5270                                 ArrayRef<Module *> Modules,
5271                                 MissingImportKind MIK, bool Recover) {
5272  assert(!Modules.empty());
5273
5274  auto NotePrevious = [&] {
5275    // FIXME: Suppress the note backtrace even under
5276    // -fdiagnostics-show-note-include-stack. We don't care how this
5277    // declaration was previously reached.
5278    Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5279  };
5280
5281  // Weed out duplicates from module list.
5282  llvm::SmallVector<Module*, 8> UniqueModules;
5283  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5284  for (auto *M : Modules) {
5285    if (M->Kind == Module::GlobalModuleFragment)
5286      continue;
5287    if (UniqueModuleSet.insert(M).second)
5288      UniqueModules.push_back(M);
5289  }
5290
5291  // Try to find a suitable header-name to #include.
5292  std::string HeaderName;
5293  if (const FileEntry *Header =
5294          PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5295    if (const FileEntry *FE =
5296            SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5297      HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5298  }
5299
5300  // If we have a #include we should suggest, or if all definition locations
5301  // were in global module fragments, don't suggest an import.
5302  if (!HeaderName.empty() || UniqueModules.empty()) {
5303    // FIXME: Find a smart place to suggest inserting a #include, and add
5304    // a FixItHint there.
5305    Diag(UseLoc, diag::err_module_unimported_use_header)
5306        << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5307    // Produce a note showing where the entity was declared.
5308    NotePrevious();
5309    if (Recover)
5310      createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5311    return;
5312  }
5313
5314  Modules = UniqueModules;
5315
5316  if (Modules.size() > 1) {
5317    std::string ModuleList;
5318    unsigned N = 0;
5319    for (Module *M : Modules) {
5320      ModuleList += "\n        ";
5321      if (++N == 5 && N != Modules.size()) {
5322        ModuleList += "[...]";
5323        break;
5324      }
5325      ModuleList += M->getFullModuleName();
5326    }
5327
5328    Diag(UseLoc, diag::err_module_unimported_use_multiple)
5329      << (int)MIK << Decl << ModuleList;
5330  } else {
5331    // FIXME: Add a FixItHint that imports the corresponding module.
5332    Diag(UseLoc, diag::err_module_unimported_use)
5333      << (int)MIK << Decl << Modules[0]->getFullModuleName();
5334  }
5335
5336  NotePrevious();
5337
5338  // Try to recover by implicitly importing this module.
5339  if (Recover)
5340    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5341}
5342
5343/// Diagnose a successfully-corrected typo. Separated from the correction
5344/// itself to allow external validation of the result, etc.
5345///
5346/// \param Correction The result of performing typo correction.
5347/// \param TypoDiag The diagnostic to produce. This will have the corrected
5348///        string added to it (and usually also a fixit).
5349/// \param PrevNote A note to use when indicating the location of the entity to
5350///        which we are correcting. Will have the correction string added to it.
5351/// \param ErrorRecovery If \c true (the default), the caller is going to
5352///        recover from the typo as if the corrected string had been typed.
5353///        In this case, \c PDiag must be an error, and we will attach a fixit
5354///        to it.
5355void Sema::diagnoseTypo(const TypoCorrection &Correction,
5356                        const PartialDiagnostic &TypoDiag,
5357                        const PartialDiagnostic &PrevNote,
5358                        bool ErrorRecovery) {
5359  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5360  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5361  FixItHint FixTypo = FixItHint::CreateReplacement(
5362      Correction.getCorrectionRange(), CorrectedStr);
5363
5364  // Maybe we're just missing a module import.
5365  if (Correction.requiresImport()) {
5366    NamedDecl *Decl = Correction.getFoundDecl();
5367    assert(Decl && "import required but no declaration to import");
5368
5369    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5370                          MissingImportKind::Declaration, ErrorRecovery);
5371    return;
5372  }
5373
5374  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5375    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5376
5377  NamedDecl *ChosenDecl =
5378      Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5379  if (PrevNote.getDiagID() && ChosenDecl)
5380    Diag(ChosenDecl->getLocation(), PrevNote)
5381      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5382
5383  // Add any extra diagnostics.
5384  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5385    Diag(Correction.getCorrectionRange().getBegin(), PD);
5386}
5387
5388TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5389                                  TypoDiagnosticGenerator TDG,
5390                                  TypoRecoveryCallback TRC,
5391                                  SourceLocation TypoLoc) {
5392  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5393  auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5394  auto &State = DelayedTypos[TE];
5395  State.Consumer = std::move(TCC);
5396  State.DiagHandler = std::move(TDG);
5397  State.RecoveryHandler = std::move(TRC);
5398  if (TE)
5399    TypoExprs.push_back(TE);
5400  return TE;
5401}
5402
5403const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5404  auto Entry = DelayedTypos.find(TE);
5405  assert(Entry != DelayedTypos.end() &&
5406         "Failed to get the state for a TypoExpr!");
5407  return Entry->second;
5408}
5409
5410void Sema::clearDelayedTypo(TypoExpr *TE) {
5411  DelayedTypos.erase(TE);
5412}
5413
5414void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5415  DeclarationNameInfo Name(II, IILoc);
5416  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5417  R.suppressDiagnostics();
5418  R.setHideTags(false);
5419  LookupName(R, S);
5420  R.dump();
5421}
5422