1//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements the Declaration portions of the Parser interfaces.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Parse/Parser.h"
14#include "clang/Parse/RAIIObjectsForParser.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/PrettyDeclStackTrace.h"
18#include "clang/Basic/AddressSpaces.h"
19#include "clang/Basic/Attributes.h"
20#include "clang/Basic/CharInfo.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Parse/ParseDiagnostic.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Sema/Scope.h"
26#include "llvm/ADT/Optional.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringSwitch.h"
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// C99 6.7: Declarations.
35//===----------------------------------------------------------------------===//
36
37/// ParseTypeName
38///       type-name: [C99 6.7.6]
39///         specifier-qualifier-list abstract-declarator[opt]
40///
41/// Called type-id in C++.
42TypeResult Parser::ParseTypeName(SourceRange *Range,
43                                 DeclaratorContext Context,
44                                 AccessSpecifier AS,
45                                 Decl **OwnedType,
46                                 ParsedAttributes *Attrs) {
47  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
48  if (DSC == DeclSpecContext::DSC_normal)
49    DSC = DeclSpecContext::DSC_type_specifier;
50
51  // Parse the common declaration-specifiers piece.
52  DeclSpec DS(AttrFactory);
53  if (Attrs)
54    DS.addAttributes(*Attrs);
55  ParseSpecifierQualifierList(DS, AS, DSC);
56  if (OwnedType)
57    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
58
59  // Parse the abstract-declarator, if present.
60  Declarator DeclaratorInfo(DS, Context);
61  ParseDeclarator(DeclaratorInfo);
62  if (Range)
63    *Range = DeclaratorInfo.getSourceRange();
64
65  if (DeclaratorInfo.isInvalidType())
66    return true;
67
68  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
69}
70
71/// Normalizes an attribute name by dropping prefixed and suffixed __.
72static StringRef normalizeAttrName(StringRef Name) {
73  if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
74    return Name.drop_front(2).drop_back(2);
75  return Name;
76}
77
78/// isAttributeLateParsed - Return true if the attribute has arguments that
79/// require late parsing.
80static bool isAttributeLateParsed(const IdentifierInfo &II) {
81#define CLANG_ATTR_LATE_PARSED_LIST
82    return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
83#include "clang/Parse/AttrParserStringSwitches.inc"
84        .Default(false);
85#undef CLANG_ATTR_LATE_PARSED_LIST
86}
87
88/// Check if the a start and end source location expand to the same macro.
89static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
90                                     SourceLocation EndLoc) {
91  if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
92    return false;
93
94  SourceManager &SM = PP.getSourceManager();
95  if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
96    return false;
97
98  bool AttrStartIsInMacro =
99      Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
100  bool AttrEndIsInMacro =
101      Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
102  return AttrStartIsInMacro && AttrEndIsInMacro;
103}
104
105/// ParseGNUAttributes - Parse a non-empty attributes list.
106///
107/// [GNU] attributes:
108///         attribute
109///         attributes attribute
110///
111/// [GNU]  attribute:
112///          '__attribute__' '(' '(' attribute-list ')' ')'
113///
114/// [GNU]  attribute-list:
115///          attrib
116///          attribute_list ',' attrib
117///
118/// [GNU]  attrib:
119///          empty
120///          attrib-name
121///          attrib-name '(' identifier ')'
122///          attrib-name '(' identifier ',' nonempty-expr-list ')'
123///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
124///
125/// [GNU]  attrib-name:
126///          identifier
127///          typespec
128///          typequal
129///          storageclass
130///
131/// Whether an attribute takes an 'identifier' is determined by the
132/// attrib-name. GCC's behavior here is not worth imitating:
133///
134///  * In C mode, if the attribute argument list starts with an identifier
135///    followed by a ',' or an ')', and the identifier doesn't resolve to
136///    a type, it is parsed as an identifier. If the attribute actually
137///    wanted an expression, it's out of luck (but it turns out that no
138///    attributes work that way, because C constant expressions are very
139///    limited).
140///  * In C++ mode, if the attribute argument list starts with an identifier,
141///    and the attribute *wants* an identifier, it is parsed as an identifier.
142///    At block scope, any additional tokens between the identifier and the
143///    ',' or ')' are ignored, otherwise they produce a parse error.
144///
145/// We follow the C++ model, but don't allow junk after the identifier.
146void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
147                                SourceLocation *endLoc,
148                                LateParsedAttrList *LateAttrs,
149                                Declarator *D) {
150  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
151
152  while (Tok.is(tok::kw___attribute)) {
153    SourceLocation AttrTokLoc = ConsumeToken();
154    unsigned OldNumAttrs = attrs.size();
155    unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
156
157    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
158                         "attribute")) {
159      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
160      return;
161    }
162    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
163      SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
164      return;
165    }
166    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
167    do {
168      // Eat preceeding commas to allow __attribute__((,,,foo))
169      while (TryConsumeToken(tok::comma))
170        ;
171
172      // Expect an identifier or declaration specifier (const, int, etc.)
173      if (Tok.isAnnotation())
174        break;
175      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
176      if (!AttrName)
177        break;
178
179      SourceLocation AttrNameLoc = ConsumeToken();
180
181      if (Tok.isNot(tok::l_paren)) {
182        attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
183                     ParsedAttr::AS_GNU);
184        continue;
185      }
186
187      // Handle "parameterized" attributes
188      if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
189        ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
190                              SourceLocation(), ParsedAttr::AS_GNU, D);
191        continue;
192      }
193
194      // Handle attributes with arguments that require late parsing.
195      LateParsedAttribute *LA =
196          new LateParsedAttribute(this, *AttrName, AttrNameLoc);
197      LateAttrs->push_back(LA);
198
199      // Attributes in a class are parsed at the end of the class, along
200      // with other late-parsed declarations.
201      if (!ClassStack.empty() && !LateAttrs->parseSoon())
202        getCurrentClass().LateParsedDeclarations.push_back(LA);
203
204      // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
205      // recursively consumes balanced parens.
206      LA->Toks.push_back(Tok);
207      ConsumeParen();
208      // Consume everything up to and including the matching right parens.
209      ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
210
211      Token Eof;
212      Eof.startToken();
213      Eof.setLocation(Tok.getLocation());
214      LA->Toks.push_back(Eof);
215    } while (Tok.is(tok::comma));
216
217    if (ExpectAndConsume(tok::r_paren))
218      SkipUntil(tok::r_paren, StopAtSemi);
219    SourceLocation Loc = Tok.getLocation();
220    if (ExpectAndConsume(tok::r_paren))
221      SkipUntil(tok::r_paren, StopAtSemi);
222    if (endLoc)
223      *endLoc = Loc;
224
225    // If this was declared in a macro, attach the macro IdentifierInfo to the
226    // parsed attribute.
227    auto &SM = PP.getSourceManager();
228    if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
229        FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
230      CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
231      StringRef FoundName =
232          Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
233      IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
234
235      for (unsigned i = OldNumAttrs; i < attrs.size(); ++i)
236        attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
237
238      if (LateAttrs) {
239        for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
240          (*LateAttrs)[i]->MacroII = MacroII;
241      }
242    }
243  }
244}
245
246/// Determine whether the given attribute has an identifier argument.
247static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
248#define CLANG_ATTR_IDENTIFIER_ARG_LIST
249  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
250#include "clang/Parse/AttrParserStringSwitches.inc"
251           .Default(false);
252#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
253}
254
255/// Determine whether the given attribute has a variadic identifier argument.
256static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
257#define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
258  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
259#include "clang/Parse/AttrParserStringSwitches.inc"
260           .Default(false);
261#undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
262}
263
264/// Determine whether the given attribute treats kw_this as an identifier.
265static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
266#define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
267  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
268#include "clang/Parse/AttrParserStringSwitches.inc"
269           .Default(false);
270#undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
271}
272
273/// Determine whether the given attribute parses a type argument.
274static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
275#define CLANG_ATTR_TYPE_ARG_LIST
276  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
277#include "clang/Parse/AttrParserStringSwitches.inc"
278           .Default(false);
279#undef CLANG_ATTR_TYPE_ARG_LIST
280}
281
282/// Determine whether the given attribute requires parsing its arguments
283/// in an unevaluated context or not.
284static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
285#define CLANG_ATTR_ARG_CONTEXT_LIST
286  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
287#include "clang/Parse/AttrParserStringSwitches.inc"
288           .Default(false);
289#undef CLANG_ATTR_ARG_CONTEXT_LIST
290}
291
292IdentifierLoc *Parser::ParseIdentifierLoc() {
293  assert(Tok.is(tok::identifier) && "expected an identifier");
294  IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
295                                            Tok.getLocation(),
296                                            Tok.getIdentifierInfo());
297  ConsumeToken();
298  return IL;
299}
300
301void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
302                                       SourceLocation AttrNameLoc,
303                                       ParsedAttributes &Attrs,
304                                       SourceLocation *EndLoc,
305                                       IdentifierInfo *ScopeName,
306                                       SourceLocation ScopeLoc,
307                                       ParsedAttr::Syntax Syntax) {
308  BalancedDelimiterTracker Parens(*this, tok::l_paren);
309  Parens.consumeOpen();
310
311  TypeResult T;
312  if (Tok.isNot(tok::r_paren))
313    T = ParseTypeName();
314
315  if (Parens.consumeClose())
316    return;
317
318  if (T.isInvalid())
319    return;
320
321  if (T.isUsable())
322    Attrs.addNewTypeAttr(&AttrName,
323                         SourceRange(AttrNameLoc, Parens.getCloseLocation()),
324                         ScopeName, ScopeLoc, T.get(), Syntax);
325  else
326    Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
327                 ScopeName, ScopeLoc, nullptr, 0, Syntax);
328}
329
330unsigned Parser::ParseAttributeArgsCommon(
331    IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
332    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
333    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
334  // Ignore the left paren location for now.
335  ConsumeParen();
336
337  bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
338  bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
339
340  // Interpret "kw_this" as an identifier if the attributed requests it.
341  if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
342    Tok.setKind(tok::identifier);
343
344  ArgsVector ArgExprs;
345  if (Tok.is(tok::identifier)) {
346    // If this attribute wants an 'identifier' argument, make it so.
347    bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) ||
348                           attributeHasVariadicIdentifierArg(*AttrName);
349    ParsedAttr::Kind AttrKind =
350        ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
351
352    // If we don't know how to parse this attribute, but this is the only
353    // token in this argument, assume it's meant to be an identifier.
354    if (AttrKind == ParsedAttr::UnknownAttribute ||
355        AttrKind == ParsedAttr::IgnoredAttribute) {
356      const Token &Next = NextToken();
357      IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
358    }
359
360    if (IsIdentifierArg)
361      ArgExprs.push_back(ParseIdentifierLoc());
362  }
363
364  ParsedType TheParsedType;
365  if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
366    // Eat the comma.
367    if (!ArgExprs.empty())
368      ConsumeToken();
369
370    // Parse the non-empty comma-separated list of expressions.
371    do {
372      // Interpret "kw_this" as an identifier if the attributed requests it.
373      if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
374        Tok.setKind(tok::identifier);
375
376      ExprResult ArgExpr;
377      if (AttributeIsTypeArgAttr) {
378        TypeResult T = ParseTypeName();
379        if (T.isInvalid()) {
380          SkipUntil(tok::r_paren, StopAtSemi);
381          return 0;
382        }
383        if (T.isUsable())
384          TheParsedType = T.get();
385        break; // FIXME: Multiple type arguments are not implemented.
386      } else if (Tok.is(tok::identifier) &&
387                 attributeHasVariadicIdentifierArg(*AttrName)) {
388        ArgExprs.push_back(ParseIdentifierLoc());
389      } else {
390        bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
391        EnterExpressionEvaluationContext Unevaluated(
392            Actions,
393            Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
394                   : Sema::ExpressionEvaluationContext::ConstantEvaluated);
395
396        ExprResult ArgExpr(
397            Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
398        if (ArgExpr.isInvalid()) {
399          SkipUntil(tok::r_paren, StopAtSemi);
400          return 0;
401        }
402        ArgExprs.push_back(ArgExpr.get());
403      }
404      // Eat the comma, move to the next argument
405    } while (TryConsumeToken(tok::comma));
406  }
407
408  SourceLocation RParen = Tok.getLocation();
409  if (!ExpectAndConsume(tok::r_paren)) {
410    SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
411
412    if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
413      Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
414                           ScopeName, ScopeLoc, TheParsedType, Syntax);
415    } else {
416      Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
417                   ArgExprs.data(), ArgExprs.size(), Syntax);
418    }
419  }
420
421  if (EndLoc)
422    *EndLoc = RParen;
423
424  return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
425}
426
427/// Parse the arguments to a parameterized GNU attribute or
428/// a C++11 attribute in "gnu" namespace.
429void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
430                                   SourceLocation AttrNameLoc,
431                                   ParsedAttributes &Attrs,
432                                   SourceLocation *EndLoc,
433                                   IdentifierInfo *ScopeName,
434                                   SourceLocation ScopeLoc,
435                                   ParsedAttr::Syntax Syntax,
436                                   Declarator *D) {
437
438  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
439
440  ParsedAttr::Kind AttrKind =
441      ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
442
443  if (AttrKind == ParsedAttr::AT_Availability) {
444    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
445                               ScopeLoc, Syntax);
446    return;
447  } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
448    ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
449                                       ScopeName, ScopeLoc, Syntax);
450    return;
451  } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
452    ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
453                                    ScopeName, ScopeLoc, Syntax);
454    return;
455  } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
456    ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
457                                     ScopeName, ScopeLoc, Syntax);
458    return;
459  } else if (attributeIsTypeArgAttr(*AttrName)) {
460    ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
461                              ScopeLoc, Syntax);
462    return;
463  }
464
465  // These may refer to the function arguments, but need to be parsed early to
466  // participate in determining whether it's a redeclaration.
467  llvm::Optional<ParseScope> PrototypeScope;
468  if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
469      D && D->isFunctionDeclarator()) {
470    DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
471    PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
472                                     Scope::FunctionDeclarationScope |
473                                     Scope::DeclScope);
474    for (unsigned i = 0; i != FTI.NumParams; ++i) {
475      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
476      Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
477    }
478  }
479
480  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
481                           ScopeLoc, Syntax);
482}
483
484unsigned Parser::ParseClangAttributeArgs(
485    IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
486    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
487    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
488  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
489
490  ParsedAttr::Kind AttrKind =
491      ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
492
493  switch (AttrKind) {
494  default:
495    return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
496                                    ScopeName, ScopeLoc, Syntax);
497  case ParsedAttr::AT_ExternalSourceSymbol:
498    ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
499                                       ScopeName, ScopeLoc, Syntax);
500    break;
501  case ParsedAttr::AT_Availability:
502    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
503                               ScopeLoc, Syntax);
504    break;
505  case ParsedAttr::AT_ObjCBridgeRelated:
506    ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
507                                    ScopeName, ScopeLoc, Syntax);
508    break;
509  case ParsedAttr::AT_TypeTagForDatatype:
510    ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
511                                     ScopeName, ScopeLoc, Syntax);
512    break;
513  }
514  return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
515}
516
517bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
518                                        SourceLocation AttrNameLoc,
519                                        ParsedAttributes &Attrs) {
520  // If the attribute isn't known, we will not attempt to parse any
521  // arguments.
522  if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
523                    getTargetInfo(), getLangOpts())) {
524    // Eat the left paren, then skip to the ending right paren.
525    ConsumeParen();
526    SkipUntil(tok::r_paren);
527    return false;
528  }
529
530  SourceLocation OpenParenLoc = Tok.getLocation();
531
532  if (AttrName->getName() == "property") {
533    // The property declspec is more complex in that it can take one or two
534    // assignment expressions as a parameter, but the lhs of the assignment
535    // must be named get or put.
536
537    BalancedDelimiterTracker T(*this, tok::l_paren);
538    T.expectAndConsume(diag::err_expected_lparen_after,
539                       AttrName->getNameStart(), tok::r_paren);
540
541    enum AccessorKind {
542      AK_Invalid = -1,
543      AK_Put = 0,
544      AK_Get = 1 // indices into AccessorNames
545    };
546    IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
547    bool HasInvalidAccessor = false;
548
549    // Parse the accessor specifications.
550    while (true) {
551      // Stop if this doesn't look like an accessor spec.
552      if (!Tok.is(tok::identifier)) {
553        // If the user wrote a completely empty list, use a special diagnostic.
554        if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
555            AccessorNames[AK_Put] == nullptr &&
556            AccessorNames[AK_Get] == nullptr) {
557          Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
558          break;
559        }
560
561        Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
562        break;
563      }
564
565      AccessorKind Kind;
566      SourceLocation KindLoc = Tok.getLocation();
567      StringRef KindStr = Tok.getIdentifierInfo()->getName();
568      if (KindStr == "get") {
569        Kind = AK_Get;
570      } else if (KindStr == "put") {
571        Kind = AK_Put;
572
573        // Recover from the common mistake of using 'set' instead of 'put'.
574      } else if (KindStr == "set") {
575        Diag(KindLoc, diag::err_ms_property_has_set_accessor)
576            << FixItHint::CreateReplacement(KindLoc, "put");
577        Kind = AK_Put;
578
579        // Handle the mistake of forgetting the accessor kind by skipping
580        // this accessor.
581      } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
582        Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
583        ConsumeToken();
584        HasInvalidAccessor = true;
585        goto next_property_accessor;
586
587        // Otherwise, complain about the unknown accessor kind.
588      } else {
589        Diag(KindLoc, diag::err_ms_property_unknown_accessor);
590        HasInvalidAccessor = true;
591        Kind = AK_Invalid;
592
593        // Try to keep parsing unless it doesn't look like an accessor spec.
594        if (!NextToken().is(tok::equal))
595          break;
596      }
597
598      // Consume the identifier.
599      ConsumeToken();
600
601      // Consume the '='.
602      if (!TryConsumeToken(tok::equal)) {
603        Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
604            << KindStr;
605        break;
606      }
607
608      // Expect the method name.
609      if (!Tok.is(tok::identifier)) {
610        Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
611        break;
612      }
613
614      if (Kind == AK_Invalid) {
615        // Just drop invalid accessors.
616      } else if (AccessorNames[Kind] != nullptr) {
617        // Complain about the repeated accessor, ignore it, and keep parsing.
618        Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
619      } else {
620        AccessorNames[Kind] = Tok.getIdentifierInfo();
621      }
622      ConsumeToken();
623
624    next_property_accessor:
625      // Keep processing accessors until we run out.
626      if (TryConsumeToken(tok::comma))
627        continue;
628
629      // If we run into the ')', stop without consuming it.
630      if (Tok.is(tok::r_paren))
631        break;
632
633      Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
634      break;
635    }
636
637    // Only add the property attribute if it was well-formed.
638    if (!HasInvalidAccessor)
639      Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
640                               AccessorNames[AK_Get], AccessorNames[AK_Put],
641                               ParsedAttr::AS_Declspec);
642    T.skipToEnd();
643    return !HasInvalidAccessor;
644  }
645
646  unsigned NumArgs =
647      ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
648                               SourceLocation(), ParsedAttr::AS_Declspec);
649
650  // If this attribute's args were parsed, and it was expected to have
651  // arguments but none were provided, emit a diagnostic.
652  if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) {
653    Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
654    return false;
655  }
656  return true;
657}
658
659/// [MS] decl-specifier:
660///             __declspec ( extended-decl-modifier-seq )
661///
662/// [MS] extended-decl-modifier-seq:
663///             extended-decl-modifier[opt]
664///             extended-decl-modifier extended-decl-modifier-seq
665void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
666                                     SourceLocation *End) {
667  assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
668  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
669
670  while (Tok.is(tok::kw___declspec)) {
671    ConsumeToken();
672    BalancedDelimiterTracker T(*this, tok::l_paren);
673    if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
674                           tok::r_paren))
675      return;
676
677    // An empty declspec is perfectly legal and should not warn.  Additionally,
678    // you can specify multiple attributes per declspec.
679    while (Tok.isNot(tok::r_paren)) {
680      // Attribute not present.
681      if (TryConsumeToken(tok::comma))
682        continue;
683
684      // We expect either a well-known identifier or a generic string.  Anything
685      // else is a malformed declspec.
686      bool IsString = Tok.getKind() == tok::string_literal;
687      if (!IsString && Tok.getKind() != tok::identifier &&
688          Tok.getKind() != tok::kw_restrict) {
689        Diag(Tok, diag::err_ms_declspec_type);
690        T.skipToEnd();
691        return;
692      }
693
694      IdentifierInfo *AttrName;
695      SourceLocation AttrNameLoc;
696      if (IsString) {
697        SmallString<8> StrBuffer;
698        bool Invalid = false;
699        StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
700        if (Invalid) {
701          T.skipToEnd();
702          return;
703        }
704        AttrName = PP.getIdentifierInfo(Str);
705        AttrNameLoc = ConsumeStringToken();
706      } else {
707        AttrName = Tok.getIdentifierInfo();
708        AttrNameLoc = ConsumeToken();
709      }
710
711      bool AttrHandled = false;
712
713      // Parse attribute arguments.
714      if (Tok.is(tok::l_paren))
715        AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
716      else if (AttrName->getName() == "property")
717        // The property attribute must have an argument list.
718        Diag(Tok.getLocation(), diag::err_expected_lparen_after)
719            << AttrName->getName();
720
721      if (!AttrHandled)
722        Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
723                     ParsedAttr::AS_Declspec);
724    }
725    T.consumeClose();
726    if (End)
727      *End = T.getCloseLocation();
728  }
729}
730
731void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
732  // Treat these like attributes
733  while (true) {
734    switch (Tok.getKind()) {
735    case tok::kw___fastcall:
736    case tok::kw___stdcall:
737    case tok::kw___thiscall:
738    case tok::kw___regcall:
739    case tok::kw___cdecl:
740    case tok::kw___vectorcall:
741    case tok::kw___ptr64:
742    case tok::kw___w64:
743    case tok::kw___ptr32:
744    case tok::kw___sptr:
745    case tok::kw___uptr: {
746      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
747      SourceLocation AttrNameLoc = ConsumeToken();
748      attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
749                   ParsedAttr::AS_Keyword);
750      break;
751    }
752    default:
753      return;
754    }
755  }
756}
757
758void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
759  SourceLocation StartLoc = Tok.getLocation();
760  SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
761
762  if (EndLoc.isValid()) {
763    SourceRange Range(StartLoc, EndLoc);
764    Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
765  }
766}
767
768SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
769  SourceLocation EndLoc;
770
771  while (true) {
772    switch (Tok.getKind()) {
773    case tok::kw_const:
774    case tok::kw_volatile:
775    case tok::kw___fastcall:
776    case tok::kw___stdcall:
777    case tok::kw___thiscall:
778    case tok::kw___cdecl:
779    case tok::kw___vectorcall:
780    case tok::kw___ptr32:
781    case tok::kw___ptr64:
782    case tok::kw___w64:
783    case tok::kw___unaligned:
784    case tok::kw___sptr:
785    case tok::kw___uptr:
786      EndLoc = ConsumeToken();
787      break;
788    default:
789      return EndLoc;
790    }
791  }
792}
793
794void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
795  // Treat these like attributes
796  while (Tok.is(tok::kw___pascal)) {
797    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
798    SourceLocation AttrNameLoc = ConsumeToken();
799    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
800                 ParsedAttr::AS_Keyword);
801  }
802}
803
804void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
805  // Treat these like attributes
806  while (Tok.is(tok::kw___kernel)) {
807    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
808    SourceLocation AttrNameLoc = ConsumeToken();
809    attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
810                 ParsedAttr::AS_Keyword);
811  }
812}
813
814void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
815  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
816  SourceLocation AttrNameLoc = Tok.getLocation();
817  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
818               ParsedAttr::AS_Keyword);
819}
820
821void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
822  // Treat these like attributes, even though they're type specifiers.
823  while (true) {
824    switch (Tok.getKind()) {
825    case tok::kw__Nonnull:
826    case tok::kw__Nullable:
827    case tok::kw__Null_unspecified: {
828      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
829      SourceLocation AttrNameLoc = ConsumeToken();
830      if (!getLangOpts().ObjC)
831        Diag(AttrNameLoc, diag::ext_nullability)
832          << AttrName;
833      attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
834                   ParsedAttr::AS_Keyword);
835      break;
836    }
837    default:
838      return;
839    }
840  }
841}
842
843static bool VersionNumberSeparator(const char Separator) {
844  return (Separator == '.' || Separator == '_');
845}
846
847/// Parse a version number.
848///
849/// version:
850///   simple-integer
851///   simple-integer '.' simple-integer
852///   simple-integer '_' simple-integer
853///   simple-integer '.' simple-integer '.' simple-integer
854///   simple-integer '_' simple-integer '_' simple-integer
855VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
856  Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
857
858  if (!Tok.is(tok::numeric_constant)) {
859    Diag(Tok, diag::err_expected_version);
860    SkipUntil(tok::comma, tok::r_paren,
861              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
862    return VersionTuple();
863  }
864
865  // Parse the major (and possibly minor and subminor) versions, which
866  // are stored in the numeric constant. We utilize a quirk of the
867  // lexer, which is that it handles something like 1.2.3 as a single
868  // numeric constant, rather than two separate tokens.
869  SmallString<512> Buffer;
870  Buffer.resize(Tok.getLength()+1);
871  const char *ThisTokBegin = &Buffer[0];
872
873  // Get the spelling of the token, which eliminates trigraphs, etc.
874  bool Invalid = false;
875  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
876  if (Invalid)
877    return VersionTuple();
878
879  // Parse the major version.
880  unsigned AfterMajor = 0;
881  unsigned Major = 0;
882  while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
883    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
884    ++AfterMajor;
885  }
886
887  if (AfterMajor == 0) {
888    Diag(Tok, diag::err_expected_version);
889    SkipUntil(tok::comma, tok::r_paren,
890              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
891    return VersionTuple();
892  }
893
894  if (AfterMajor == ActualLength) {
895    ConsumeToken();
896
897    // We only had a single version component.
898    if (Major == 0) {
899      Diag(Tok, diag::err_zero_version);
900      return VersionTuple();
901    }
902
903    return VersionTuple(Major);
904  }
905
906  const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
907  if (!VersionNumberSeparator(AfterMajorSeparator)
908      || (AfterMajor + 1 == ActualLength)) {
909    Diag(Tok, diag::err_expected_version);
910    SkipUntil(tok::comma, tok::r_paren,
911              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
912    return VersionTuple();
913  }
914
915  // Parse the minor version.
916  unsigned AfterMinor = AfterMajor + 1;
917  unsigned Minor = 0;
918  while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
919    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
920    ++AfterMinor;
921  }
922
923  if (AfterMinor == ActualLength) {
924    ConsumeToken();
925
926    // We had major.minor.
927    if (Major == 0 && Minor == 0) {
928      Diag(Tok, diag::err_zero_version);
929      return VersionTuple();
930    }
931
932    return VersionTuple(Major, Minor);
933  }
934
935  const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
936  // If what follows is not a '.' or '_', we have a problem.
937  if (!VersionNumberSeparator(AfterMinorSeparator)) {
938    Diag(Tok, diag::err_expected_version);
939    SkipUntil(tok::comma, tok::r_paren,
940              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
941    return VersionTuple();
942  }
943
944  // Warn if separators, be it '.' or '_', do not match.
945  if (AfterMajorSeparator != AfterMinorSeparator)
946    Diag(Tok, diag::warn_expected_consistent_version_separator);
947
948  // Parse the subminor version.
949  unsigned AfterSubminor = AfterMinor + 1;
950  unsigned Subminor = 0;
951  while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
952    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
953    ++AfterSubminor;
954  }
955
956  if (AfterSubminor != ActualLength) {
957    Diag(Tok, diag::err_expected_version);
958    SkipUntil(tok::comma, tok::r_paren,
959              StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
960    return VersionTuple();
961  }
962  ConsumeToken();
963  return VersionTuple(Major, Minor, Subminor);
964}
965
966/// Parse the contents of the "availability" attribute.
967///
968/// availability-attribute:
969///   'availability' '(' platform ',' opt-strict version-arg-list,
970///                      opt-replacement, opt-message')'
971///
972/// platform:
973///   identifier
974///
975/// opt-strict:
976///   'strict' ','
977///
978/// version-arg-list:
979///   version-arg
980///   version-arg ',' version-arg-list
981///
982/// version-arg:
983///   'introduced' '=' version
984///   'deprecated' '=' version
985///   'obsoleted' = version
986///   'unavailable'
987/// opt-replacement:
988///   'replacement' '=' <string>
989/// opt-message:
990///   'message' '=' <string>
991void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
992                                        SourceLocation AvailabilityLoc,
993                                        ParsedAttributes &attrs,
994                                        SourceLocation *endLoc,
995                                        IdentifierInfo *ScopeName,
996                                        SourceLocation ScopeLoc,
997                                        ParsedAttr::Syntax Syntax) {
998  enum { Introduced, Deprecated, Obsoleted, Unknown };
999  AvailabilityChange Changes[Unknown];
1000  ExprResult MessageExpr, ReplacementExpr;
1001
1002  // Opening '('.
1003  BalancedDelimiterTracker T(*this, tok::l_paren);
1004  if (T.consumeOpen()) {
1005    Diag(Tok, diag::err_expected) << tok::l_paren;
1006    return;
1007  }
1008
1009  // Parse the platform name.
1010  if (Tok.isNot(tok::identifier)) {
1011    Diag(Tok, diag::err_availability_expected_platform);
1012    SkipUntil(tok::r_paren, StopAtSemi);
1013    return;
1014  }
1015  IdentifierLoc *Platform = ParseIdentifierLoc();
1016  if (const IdentifierInfo *const Ident = Platform->Ident) {
1017    // Canonicalize platform name from "macosx" to "macos".
1018    if (Ident->getName() == "macosx")
1019      Platform->Ident = PP.getIdentifierInfo("macos");
1020    // Canonicalize platform name from "macosx_app_extension" to
1021    // "macos_app_extension".
1022    else if (Ident->getName() == "macosx_app_extension")
1023      Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1024    else
1025      Platform->Ident = PP.getIdentifierInfo(
1026          AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1027  }
1028
1029  // Parse the ',' following the platform name.
1030  if (ExpectAndConsume(tok::comma)) {
1031    SkipUntil(tok::r_paren, StopAtSemi);
1032    return;
1033  }
1034
1035  // If we haven't grabbed the pointers for the identifiers
1036  // "introduced", "deprecated", and "obsoleted", do so now.
1037  if (!Ident_introduced) {
1038    Ident_introduced = PP.getIdentifierInfo("introduced");
1039    Ident_deprecated = PP.getIdentifierInfo("deprecated");
1040    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1041    Ident_unavailable = PP.getIdentifierInfo("unavailable");
1042    Ident_message = PP.getIdentifierInfo("message");
1043    Ident_strict = PP.getIdentifierInfo("strict");
1044    Ident_replacement = PP.getIdentifierInfo("replacement");
1045  }
1046
1047  // Parse the optional "strict", the optional "replacement" and the set of
1048  // introductions/deprecations/removals.
1049  SourceLocation UnavailableLoc, StrictLoc;
1050  do {
1051    if (Tok.isNot(tok::identifier)) {
1052      Diag(Tok, diag::err_availability_expected_change);
1053      SkipUntil(tok::r_paren, StopAtSemi);
1054      return;
1055    }
1056    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1057    SourceLocation KeywordLoc = ConsumeToken();
1058
1059    if (Keyword == Ident_strict) {
1060      if (StrictLoc.isValid()) {
1061        Diag(KeywordLoc, diag::err_availability_redundant)
1062          << Keyword << SourceRange(StrictLoc);
1063      }
1064      StrictLoc = KeywordLoc;
1065      continue;
1066    }
1067
1068    if (Keyword == Ident_unavailable) {
1069      if (UnavailableLoc.isValid()) {
1070        Diag(KeywordLoc, diag::err_availability_redundant)
1071          << Keyword << SourceRange(UnavailableLoc);
1072      }
1073      UnavailableLoc = KeywordLoc;
1074      continue;
1075    }
1076
1077    if (Keyword == Ident_deprecated && Platform->Ident &&
1078        Platform->Ident->isStr("swift")) {
1079      // For swift, we deprecate for all versions.
1080      if (Changes[Deprecated].KeywordLoc.isValid()) {
1081        Diag(KeywordLoc, diag::err_availability_redundant)
1082          << Keyword
1083          << SourceRange(Changes[Deprecated].KeywordLoc);
1084      }
1085
1086      Changes[Deprecated].KeywordLoc = KeywordLoc;
1087      // Use a fake version here.
1088      Changes[Deprecated].Version = VersionTuple(1);
1089      continue;
1090    }
1091
1092    if (Tok.isNot(tok::equal)) {
1093      Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1094      SkipUntil(tok::r_paren, StopAtSemi);
1095      return;
1096    }
1097    ConsumeToken();
1098    if (Keyword == Ident_message || Keyword == Ident_replacement) {
1099      if (Tok.isNot(tok::string_literal)) {
1100        Diag(Tok, diag::err_expected_string_literal)
1101          << /*Source='availability attribute'*/2;
1102        SkipUntil(tok::r_paren, StopAtSemi);
1103        return;
1104      }
1105      if (Keyword == Ident_message)
1106        MessageExpr = ParseStringLiteralExpression();
1107      else
1108        ReplacementExpr = ParseStringLiteralExpression();
1109      // Also reject wide string literals.
1110      if (StringLiteral *MessageStringLiteral =
1111              cast_or_null<StringLiteral>(MessageExpr.get())) {
1112        if (MessageStringLiteral->getCharByteWidth() != 1) {
1113          Diag(MessageStringLiteral->getSourceRange().getBegin(),
1114               diag::err_expected_string_literal)
1115            << /*Source='availability attribute'*/ 2;
1116          SkipUntil(tok::r_paren, StopAtSemi);
1117          return;
1118        }
1119      }
1120      if (Keyword == Ident_message)
1121        break;
1122      else
1123        continue;
1124    }
1125
1126    // Special handling of 'NA' only when applied to introduced or
1127    // deprecated.
1128    if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1129        Tok.is(tok::identifier)) {
1130      IdentifierInfo *NA = Tok.getIdentifierInfo();
1131      if (NA->getName() == "NA") {
1132        ConsumeToken();
1133        if (Keyword == Ident_introduced)
1134          UnavailableLoc = KeywordLoc;
1135        continue;
1136      }
1137    }
1138
1139    SourceRange VersionRange;
1140    VersionTuple Version = ParseVersionTuple(VersionRange);
1141
1142    if (Version.empty()) {
1143      SkipUntil(tok::r_paren, StopAtSemi);
1144      return;
1145    }
1146
1147    unsigned Index;
1148    if (Keyword == Ident_introduced)
1149      Index = Introduced;
1150    else if (Keyword == Ident_deprecated)
1151      Index = Deprecated;
1152    else if (Keyword == Ident_obsoleted)
1153      Index = Obsoleted;
1154    else
1155      Index = Unknown;
1156
1157    if (Index < Unknown) {
1158      if (!Changes[Index].KeywordLoc.isInvalid()) {
1159        Diag(KeywordLoc, diag::err_availability_redundant)
1160          << Keyword
1161          << SourceRange(Changes[Index].KeywordLoc,
1162                         Changes[Index].VersionRange.getEnd());
1163      }
1164
1165      Changes[Index].KeywordLoc = KeywordLoc;
1166      Changes[Index].Version = Version;
1167      Changes[Index].VersionRange = VersionRange;
1168    } else {
1169      Diag(KeywordLoc, diag::err_availability_unknown_change)
1170        << Keyword << VersionRange;
1171    }
1172
1173  } while (TryConsumeToken(tok::comma));
1174
1175  // Closing ')'.
1176  if (T.consumeClose())
1177    return;
1178
1179  if (endLoc)
1180    *endLoc = T.getCloseLocation();
1181
1182  // The 'unavailable' availability cannot be combined with any other
1183  // availability changes. Make sure that hasn't happened.
1184  if (UnavailableLoc.isValid()) {
1185    bool Complained = false;
1186    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1187      if (Changes[Index].KeywordLoc.isValid()) {
1188        if (!Complained) {
1189          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1190            << SourceRange(Changes[Index].KeywordLoc,
1191                           Changes[Index].VersionRange.getEnd());
1192          Complained = true;
1193        }
1194
1195        // Clear out the availability.
1196        Changes[Index] = AvailabilityChange();
1197      }
1198    }
1199  }
1200
1201  // Record this attribute
1202  attrs.addNew(&Availability,
1203               SourceRange(AvailabilityLoc, T.getCloseLocation()),
1204               ScopeName, ScopeLoc,
1205               Platform,
1206               Changes[Introduced],
1207               Changes[Deprecated],
1208               Changes[Obsoleted],
1209               UnavailableLoc, MessageExpr.get(),
1210               Syntax, StrictLoc, ReplacementExpr.get());
1211}
1212
1213/// Parse the contents of the "external_source_symbol" attribute.
1214///
1215/// external-source-symbol-attribute:
1216///   'external_source_symbol' '(' keyword-arg-list ')'
1217///
1218/// keyword-arg-list:
1219///   keyword-arg
1220///   keyword-arg ',' keyword-arg-list
1221///
1222/// keyword-arg:
1223///   'language' '=' <string>
1224///   'defined_in' '=' <string>
1225///   'generated_declaration'
1226void Parser::ParseExternalSourceSymbolAttribute(
1227    IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1228    ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1229    SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
1230  // Opening '('.
1231  BalancedDelimiterTracker T(*this, tok::l_paren);
1232  if (T.expectAndConsume())
1233    return;
1234
1235  // Initialize the pointers for the keyword identifiers when required.
1236  if (!Ident_language) {
1237    Ident_language = PP.getIdentifierInfo("language");
1238    Ident_defined_in = PP.getIdentifierInfo("defined_in");
1239    Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1240  }
1241
1242  ExprResult Language;
1243  bool HasLanguage = false;
1244  ExprResult DefinedInExpr;
1245  bool HasDefinedIn = false;
1246  IdentifierLoc *GeneratedDeclaration = nullptr;
1247
1248  // Parse the language/defined_in/generated_declaration keywords
1249  do {
1250    if (Tok.isNot(tok::identifier)) {
1251      Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1252      SkipUntil(tok::r_paren, StopAtSemi);
1253      return;
1254    }
1255
1256    SourceLocation KeywordLoc = Tok.getLocation();
1257    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1258    if (Keyword == Ident_generated_declaration) {
1259      if (GeneratedDeclaration) {
1260        Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1261        SkipUntil(tok::r_paren, StopAtSemi);
1262        return;
1263      }
1264      GeneratedDeclaration = ParseIdentifierLoc();
1265      continue;
1266    }
1267
1268    if (Keyword != Ident_language && Keyword != Ident_defined_in) {
1269      Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1270      SkipUntil(tok::r_paren, StopAtSemi);
1271      return;
1272    }
1273
1274    ConsumeToken();
1275    if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1276                         Keyword->getName())) {
1277      SkipUntil(tok::r_paren, StopAtSemi);
1278      return;
1279    }
1280
1281    bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
1282    if (Keyword == Ident_language)
1283      HasLanguage = true;
1284    else
1285      HasDefinedIn = true;
1286
1287    if (Tok.isNot(tok::string_literal)) {
1288      Diag(Tok, diag::err_expected_string_literal)
1289          << /*Source='external_source_symbol attribute'*/ 3
1290          << /*language | source container*/ (Keyword != Ident_language);
1291      SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1292      continue;
1293    }
1294    if (Keyword == Ident_language) {
1295      if (HadLanguage) {
1296        Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1297            << Keyword;
1298        ParseStringLiteralExpression();
1299        continue;
1300      }
1301      Language = ParseStringLiteralExpression();
1302    } else {
1303      assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1304      if (HadDefinedIn) {
1305        Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1306            << Keyword;
1307        ParseStringLiteralExpression();
1308        continue;
1309      }
1310      DefinedInExpr = ParseStringLiteralExpression();
1311    }
1312  } while (TryConsumeToken(tok::comma));
1313
1314  // Closing ')'.
1315  if (T.consumeClose())
1316    return;
1317  if (EndLoc)
1318    *EndLoc = T.getCloseLocation();
1319
1320  ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
1321                      GeneratedDeclaration};
1322  Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1323               ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
1324}
1325
1326/// Parse the contents of the "objc_bridge_related" attribute.
1327/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1328/// related_class:
1329///     Identifier
1330///
1331/// opt-class_method:
1332///     Identifier: | <empty>
1333///
1334/// opt-instance_method:
1335///     Identifier | <empty>
1336///
1337void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1338                                SourceLocation ObjCBridgeRelatedLoc,
1339                                ParsedAttributes &attrs,
1340                                SourceLocation *endLoc,
1341                                IdentifierInfo *ScopeName,
1342                                SourceLocation ScopeLoc,
1343                                ParsedAttr::Syntax Syntax) {
1344  // Opening '('.
1345  BalancedDelimiterTracker T(*this, tok::l_paren);
1346  if (T.consumeOpen()) {
1347    Diag(Tok, diag::err_expected) << tok::l_paren;
1348    return;
1349  }
1350
1351  // Parse the related class name.
1352  if (Tok.isNot(tok::identifier)) {
1353    Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1354    SkipUntil(tok::r_paren, StopAtSemi);
1355    return;
1356  }
1357  IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1358  if (ExpectAndConsume(tok::comma)) {
1359    SkipUntil(tok::r_paren, StopAtSemi);
1360    return;
1361  }
1362
1363  // Parse class method name.  It's non-optional in the sense that a trailing
1364  // comma is required, but it can be the empty string, and then we record a
1365  // nullptr.
1366  IdentifierLoc *ClassMethod = nullptr;
1367  if (Tok.is(tok::identifier)) {
1368    ClassMethod = ParseIdentifierLoc();
1369    if (!TryConsumeToken(tok::colon)) {
1370      Diag(Tok, diag::err_objcbridge_related_selector_name);
1371      SkipUntil(tok::r_paren, StopAtSemi);
1372      return;
1373    }
1374  }
1375  if (!TryConsumeToken(tok::comma)) {
1376    if (Tok.is(tok::colon))
1377      Diag(Tok, diag::err_objcbridge_related_selector_name);
1378    else
1379      Diag(Tok, diag::err_expected) << tok::comma;
1380    SkipUntil(tok::r_paren, StopAtSemi);
1381    return;
1382  }
1383
1384  // Parse instance method name.  Also non-optional but empty string is
1385  // permitted.
1386  IdentifierLoc *InstanceMethod = nullptr;
1387  if (Tok.is(tok::identifier))
1388    InstanceMethod = ParseIdentifierLoc();
1389  else if (Tok.isNot(tok::r_paren)) {
1390    Diag(Tok, diag::err_expected) << tok::r_paren;
1391    SkipUntil(tok::r_paren, StopAtSemi);
1392    return;
1393  }
1394
1395  // Closing ')'.
1396  if (T.consumeClose())
1397    return;
1398
1399  if (endLoc)
1400    *endLoc = T.getCloseLocation();
1401
1402  // Record this attribute
1403  attrs.addNew(&ObjCBridgeRelated,
1404               SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1405               ScopeName, ScopeLoc,
1406               RelatedClass,
1407               ClassMethod,
1408               InstanceMethod,
1409               Syntax);
1410}
1411
1412void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1413                                              SourceLocation AttrNameLoc,
1414                                              ParsedAttributes &Attrs,
1415                                              SourceLocation *EndLoc,
1416                                              IdentifierInfo *ScopeName,
1417                                              SourceLocation ScopeLoc,
1418                                              ParsedAttr::Syntax Syntax) {
1419  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1420
1421  BalancedDelimiterTracker T(*this, tok::l_paren);
1422  T.consumeOpen();
1423
1424  if (Tok.isNot(tok::identifier)) {
1425    Diag(Tok, diag::err_expected) << tok::identifier;
1426    T.skipToEnd();
1427    return;
1428  }
1429  IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1430
1431  if (ExpectAndConsume(tok::comma)) {
1432    T.skipToEnd();
1433    return;
1434  }
1435
1436  SourceRange MatchingCTypeRange;
1437  TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1438  if (MatchingCType.isInvalid()) {
1439    T.skipToEnd();
1440    return;
1441  }
1442
1443  bool LayoutCompatible = false;
1444  bool MustBeNull = false;
1445  while (TryConsumeToken(tok::comma)) {
1446    if (Tok.isNot(tok::identifier)) {
1447      Diag(Tok, diag::err_expected) << tok::identifier;
1448      T.skipToEnd();
1449      return;
1450    }
1451    IdentifierInfo *Flag = Tok.getIdentifierInfo();
1452    if (Flag->isStr("layout_compatible"))
1453      LayoutCompatible = true;
1454    else if (Flag->isStr("must_be_null"))
1455      MustBeNull = true;
1456    else {
1457      Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1458      T.skipToEnd();
1459      return;
1460    }
1461    ConsumeToken(); // consume flag
1462  }
1463
1464  if (!T.consumeClose()) {
1465    Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1466                                   ArgumentKind, MatchingCType.get(),
1467                                   LayoutCompatible, MustBeNull, Syntax);
1468  }
1469
1470  if (EndLoc)
1471    *EndLoc = T.getCloseLocation();
1472}
1473
1474/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1475/// of a C++11 attribute-specifier in a location where an attribute is not
1476/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1477/// situation.
1478///
1479/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1480/// this doesn't appear to actually be an attribute-specifier, and the caller
1481/// should try to parse it.
1482bool Parser::DiagnoseProhibitedCXX11Attribute() {
1483  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1484
1485  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1486  case CAK_NotAttributeSpecifier:
1487    // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1488    return false;
1489
1490  case CAK_InvalidAttributeSpecifier:
1491    Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1492    return false;
1493
1494  case CAK_AttributeSpecifier:
1495    // Parse and discard the attributes.
1496    SourceLocation BeginLoc = ConsumeBracket();
1497    ConsumeBracket();
1498    SkipUntil(tok::r_square);
1499    assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1500    SourceLocation EndLoc = ConsumeBracket();
1501    Diag(BeginLoc, diag::err_attributes_not_allowed)
1502      << SourceRange(BeginLoc, EndLoc);
1503    return true;
1504  }
1505  llvm_unreachable("All cases handled above.");
1506}
1507
1508/// We have found the opening square brackets of a C++11
1509/// attribute-specifier in a location where an attribute is not permitted, but
1510/// we know where the attributes ought to be written. Parse them anyway, and
1511/// provide a fixit moving them to the right place.
1512void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1513                                             SourceLocation CorrectLocation) {
1514  assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1515         Tok.is(tok::kw_alignas));
1516
1517  // Consume the attributes.
1518  SourceLocation Loc = Tok.getLocation();
1519  ParseCXX11Attributes(Attrs);
1520  CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1521  // FIXME: use err_attributes_misplaced
1522  Diag(Loc, diag::err_attributes_not_allowed)
1523    << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1524    << FixItHint::CreateRemoval(AttrRange);
1525}
1526
1527void Parser::DiagnoseProhibitedAttributes(
1528    const SourceRange &Range, const SourceLocation CorrectLocation) {
1529  if (CorrectLocation.isValid()) {
1530    CharSourceRange AttrRange(Range, true);
1531    Diag(CorrectLocation, diag::err_attributes_misplaced)
1532        << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1533        << FixItHint::CreateRemoval(AttrRange);
1534  } else
1535    Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range;
1536}
1537
1538void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
1539                                     unsigned DiagID) {
1540  for (const ParsedAttr &AL : Attrs) {
1541    if (!AL.isCXX11Attribute() && !AL.isC2xAttribute())
1542      continue;
1543    if (AL.getKind() == ParsedAttr::UnknownAttribute)
1544      Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL;
1545    else {
1546      Diag(AL.getLoc(), DiagID) << AL;
1547      AL.setInvalid();
1548    }
1549  }
1550}
1551
1552// Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1553// applies to var, not the type Foo.
1554// As an exception to the rule, __declspec(align(...)) before the
1555// class-key affects the type instead of the variable.
1556// Also, Microsoft-style [attributes] seem to affect the type instead of the
1557// variable.
1558// This function moves attributes that should apply to the type off DS to Attrs.
1559void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
1560                                            DeclSpec &DS,
1561                                            Sema::TagUseKind TUK) {
1562  if (TUK == Sema::TUK_Reference)
1563    return;
1564
1565  llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1566
1567  for (ParsedAttr &AL : DS.getAttributes()) {
1568    if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1569         AL.isDeclspecAttribute()) ||
1570        AL.isMicrosoftAttribute())
1571      ToBeMoved.push_back(&AL);
1572  }
1573
1574  for (ParsedAttr *AL : ToBeMoved) {
1575    DS.getAttributes().remove(AL);
1576    Attrs.addAtEnd(AL);
1577  }
1578}
1579
1580/// ParseDeclaration - Parse a full 'declaration', which consists of
1581/// declaration-specifiers, some number of declarators, and a semicolon.
1582/// 'Context' should be a DeclaratorContext value.  This returns the
1583/// location of the semicolon in DeclEnd.
1584///
1585///       declaration: [C99 6.7]
1586///         block-declaration ->
1587///           simple-declaration
1588///           others                   [FIXME]
1589/// [C++]   template-declaration
1590/// [C++]   namespace-definition
1591/// [C++]   using-directive
1592/// [C++]   using-declaration
1593/// [C++11/C11] static_assert-declaration
1594///         others... [FIXME]
1595///
1596Parser::DeclGroupPtrTy
1597Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd,
1598                         ParsedAttributesWithRange &attrs,
1599                         SourceLocation *DeclSpecStart) {
1600  ParenBraceBracketBalancer BalancerRAIIObj(*this);
1601  // Must temporarily exit the objective-c container scope for
1602  // parsing c none objective-c decls.
1603  ObjCDeclContextSwitch ObjCDC(*this);
1604
1605  Decl *SingleDecl = nullptr;
1606  switch (Tok.getKind()) {
1607  case tok::kw_template:
1608  case tok::kw_export:
1609    ProhibitAttributes(attrs);
1610    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs);
1611    break;
1612  case tok::kw_inline:
1613    // Could be the start of an inline namespace. Allowed as an ext in C++03.
1614    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1615      ProhibitAttributes(attrs);
1616      SourceLocation InlineLoc = ConsumeToken();
1617      return ParseNamespace(Context, DeclEnd, InlineLoc);
1618    }
1619    return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
1620                                  DeclSpecStart);
1621  case tok::kw_namespace:
1622    ProhibitAttributes(attrs);
1623    return ParseNamespace(Context, DeclEnd);
1624  case tok::kw_using:
1625    return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1626                                            DeclEnd, attrs);
1627  case tok::kw_static_assert:
1628  case tok::kw__Static_assert:
1629    ProhibitAttributes(attrs);
1630    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1631    break;
1632  default:
1633    return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
1634                                  DeclSpecStart);
1635  }
1636
1637  // This routine returns a DeclGroup, if the thing we parsed only contains a
1638  // single decl, convert it now.
1639  return Actions.ConvertDeclToDeclGroup(SingleDecl);
1640}
1641
1642///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1643///         declaration-specifiers init-declarator-list[opt] ';'
1644/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1645///             init-declarator-list ';'
1646///[C90/C++]init-declarator-list ';'                             [TODO]
1647/// [OMP]   threadprivate-directive
1648/// [OMP]   allocate-directive                                   [TODO]
1649///
1650///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1651///         attribute-specifier-seq[opt] type-specifier-seq declarator
1652///
1653/// If RequireSemi is false, this does not check for a ';' at the end of the
1654/// declaration.  If it is true, it checks for and eats it.
1655///
1656/// If FRI is non-null, we might be parsing a for-range-declaration instead
1657/// of a simple-declaration. If we find that we are, we also parse the
1658/// for-range-initializer, and place it here.
1659///
1660/// DeclSpecStart is used when decl-specifiers are parsed before parsing
1661/// the Declaration. The SourceLocation for this Decl is set to
1662/// DeclSpecStart if DeclSpecStart is non-null.
1663Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
1664    DeclaratorContext Context, SourceLocation &DeclEnd,
1665    ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI,
1666    SourceLocation *DeclSpecStart) {
1667  // Parse the common declaration-specifiers piece.
1668  ParsingDeclSpec DS(*this);
1669
1670  DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1671  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1672
1673  // If we had a free-standing type definition with a missing semicolon, we
1674  // may get this far before the problem becomes obvious.
1675  if (DS.hasTagDefinition() &&
1676      DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1677    return nullptr;
1678
1679  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1680  // declaration-specifiers init-declarator-list[opt] ';'
1681  if (Tok.is(tok::semi)) {
1682    ProhibitAttributes(Attrs);
1683    DeclEnd = Tok.getLocation();
1684    if (RequireSemi) ConsumeToken();
1685    RecordDecl *AnonRecord = nullptr;
1686    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1687                                                       DS, AnonRecord);
1688    DS.complete(TheDecl);
1689    if (AnonRecord) {
1690      Decl* decls[] = {AnonRecord, TheDecl};
1691      return Actions.BuildDeclaratorGroup(decls);
1692    }
1693    return Actions.ConvertDeclToDeclGroup(TheDecl);
1694  }
1695
1696  if (DeclSpecStart)
1697    DS.SetRangeStart(*DeclSpecStart);
1698
1699  DS.takeAttributesFrom(Attrs);
1700  return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1701}
1702
1703/// Returns true if this might be the start of a declarator, or a common typo
1704/// for a declarator.
1705bool Parser::MightBeDeclarator(DeclaratorContext Context) {
1706  switch (Tok.getKind()) {
1707  case tok::annot_cxxscope:
1708  case tok::annot_template_id:
1709  case tok::caret:
1710  case tok::code_completion:
1711  case tok::coloncolon:
1712  case tok::ellipsis:
1713  case tok::kw___attribute:
1714  case tok::kw_operator:
1715  case tok::l_paren:
1716  case tok::star:
1717    return true;
1718
1719  case tok::amp:
1720  case tok::ampamp:
1721    return getLangOpts().CPlusPlus;
1722
1723  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1724    return Context == DeclaratorContext::MemberContext &&
1725           getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square);
1726
1727  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1728    return Context == DeclaratorContext::MemberContext ||
1729           getLangOpts().CPlusPlus;
1730
1731  case tok::identifier:
1732    switch (NextToken().getKind()) {
1733    case tok::code_completion:
1734    case tok::coloncolon:
1735    case tok::comma:
1736    case tok::equal:
1737    case tok::equalequal: // Might be a typo for '='.
1738    case tok::kw_alignas:
1739    case tok::kw_asm:
1740    case tok::kw___attribute:
1741    case tok::l_brace:
1742    case tok::l_paren:
1743    case tok::l_square:
1744    case tok::less:
1745    case tok::r_brace:
1746    case tok::r_paren:
1747    case tok::r_square:
1748    case tok::semi:
1749      return true;
1750
1751    case tok::colon:
1752      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1753      // and in block scope it's probably a label. Inside a class definition,
1754      // this is a bit-field.
1755      return Context == DeclaratorContext::MemberContext ||
1756             (getLangOpts().CPlusPlus &&
1757              Context == DeclaratorContext::FileContext);
1758
1759    case tok::identifier: // Possible virt-specifier.
1760      return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1761
1762    default:
1763      return false;
1764    }
1765
1766  default:
1767    return false;
1768  }
1769}
1770
1771/// Skip until we reach something which seems like a sensible place to pick
1772/// up parsing after a malformed declaration. This will sometimes stop sooner
1773/// than SkipUntil(tok::r_brace) would, but will never stop later.
1774void Parser::SkipMalformedDecl() {
1775  while (true) {
1776    switch (Tok.getKind()) {
1777    case tok::l_brace:
1778      // Skip until matching }, then stop. We've probably skipped over
1779      // a malformed class or function definition or similar.
1780      ConsumeBrace();
1781      SkipUntil(tok::r_brace);
1782      if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1783        // This declaration isn't over yet. Keep skipping.
1784        continue;
1785      }
1786      TryConsumeToken(tok::semi);
1787      return;
1788
1789    case tok::l_square:
1790      ConsumeBracket();
1791      SkipUntil(tok::r_square);
1792      continue;
1793
1794    case tok::l_paren:
1795      ConsumeParen();
1796      SkipUntil(tok::r_paren);
1797      continue;
1798
1799    case tok::r_brace:
1800      return;
1801
1802    case tok::semi:
1803      ConsumeToken();
1804      return;
1805
1806    case tok::kw_inline:
1807      // 'inline namespace' at the start of a line is almost certainly
1808      // a good place to pick back up parsing, except in an Objective-C
1809      // @interface context.
1810      if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1811          (!ParsingInObjCContainer || CurParsedObjCImpl))
1812        return;
1813      break;
1814
1815    case tok::kw_namespace:
1816      // 'namespace' at the start of a line is almost certainly a good
1817      // place to pick back up parsing, except in an Objective-C
1818      // @interface context.
1819      if (Tok.isAtStartOfLine() &&
1820          (!ParsingInObjCContainer || CurParsedObjCImpl))
1821        return;
1822      break;
1823
1824    case tok::at:
1825      // @end is very much like } in Objective-C contexts.
1826      if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1827          ParsingInObjCContainer)
1828        return;
1829      break;
1830
1831    case tok::minus:
1832    case tok::plus:
1833      // - and + probably start new method declarations in Objective-C contexts.
1834      if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1835        return;
1836      break;
1837
1838    case tok::eof:
1839    case tok::annot_module_begin:
1840    case tok::annot_module_end:
1841    case tok::annot_module_include:
1842      return;
1843
1844    default:
1845      break;
1846    }
1847
1848    ConsumeAnyToken();
1849  }
1850}
1851
1852/// ParseDeclGroup - Having concluded that this is either a function
1853/// definition or a group of object declarations, actually parse the
1854/// result.
1855Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1856                                              DeclaratorContext Context,
1857                                              SourceLocation *DeclEnd,
1858                                              ForRangeInit *FRI) {
1859  // Parse the first declarator.
1860  ParsingDeclarator D(*this, DS, Context);
1861  ParseDeclarator(D);
1862
1863  // Bail out if the first declarator didn't seem well-formed.
1864  if (!D.hasName() && !D.mayOmitIdentifier()) {
1865    SkipMalformedDecl();
1866    return nullptr;
1867  }
1868
1869  if (Tok.is(tok::kw_requires))
1870    ParseTrailingRequiresClause(D);
1871
1872  // Save late-parsed attributes for now; they need to be parsed in the
1873  // appropriate function scope after the function Decl has been constructed.
1874  // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1875  LateParsedAttrList LateParsedAttrs(true);
1876  if (D.isFunctionDeclarator()) {
1877    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1878
1879    // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1880    // attribute. If we find the keyword here, tell the user to put it
1881    // at the start instead.
1882    if (Tok.is(tok::kw__Noreturn)) {
1883      SourceLocation Loc = ConsumeToken();
1884      const char *PrevSpec;
1885      unsigned DiagID;
1886
1887      // We can offer a fixit if it's valid to mark this function as _Noreturn
1888      // and we don't have any other declarators in this declaration.
1889      bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1890      MaybeParseGNUAttributes(D, &LateParsedAttrs);
1891      Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
1892
1893      Diag(Loc, diag::err_c11_noreturn_misplaced)
1894          << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1895          << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
1896                    : FixItHint());
1897    }
1898  }
1899
1900  // Check to see if we have a function *definition* which must have a body.
1901  if (D.isFunctionDeclarator()) {
1902    if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) {
1903      Actions.CodeCompleteAfterFunctionEquals(D);
1904      cutOffParsing();
1905      return nullptr;
1906    }
1907    // Look at the next token to make sure that this isn't a function
1908    // declaration.  We have to check this because __attribute__ might be the
1909    // start of a function definition in GCC-extended K&R C.
1910    if (!isDeclarationAfterDeclarator()) {
1911
1912      // Function definitions are only allowed at file scope and in C++ classes.
1913      // The C++ inline method definition case is handled elsewhere, so we only
1914      // need to handle the file scope definition case.
1915      if (Context == DeclaratorContext::FileContext) {
1916        if (isStartOfFunctionDefinition(D)) {
1917          if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1918            Diag(Tok, diag::err_function_declared_typedef);
1919
1920            // Recover by treating the 'typedef' as spurious.
1921            DS.ClearStorageClassSpecs();
1922          }
1923
1924          Decl *TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(),
1925                                                  &LateParsedAttrs);
1926          return Actions.ConvertDeclToDeclGroup(TheDecl);
1927        }
1928
1929        if (isDeclarationSpecifier()) {
1930          // If there is an invalid declaration specifier right after the
1931          // function prototype, then we must be in a missing semicolon case
1932          // where this isn't actually a body.  Just fall through into the code
1933          // that handles it as a prototype, and let the top-level code handle
1934          // the erroneous declspec where it would otherwise expect a comma or
1935          // semicolon.
1936        } else {
1937          Diag(Tok, diag::err_expected_fn_body);
1938          SkipUntil(tok::semi);
1939          return nullptr;
1940        }
1941      } else {
1942        if (Tok.is(tok::l_brace)) {
1943          Diag(Tok, diag::err_function_definition_not_allowed);
1944          SkipMalformedDecl();
1945          return nullptr;
1946        }
1947      }
1948    }
1949  }
1950
1951  if (ParseAsmAttributesAfterDeclarator(D))
1952    return nullptr;
1953
1954  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1955  // must parse and analyze the for-range-initializer before the declaration is
1956  // analyzed.
1957  //
1958  // Handle the Objective-C for-in loop variable similarly, although we
1959  // don't need to parse the container in advance.
1960  if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1961    bool IsForRangeLoop = false;
1962    if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1963      IsForRangeLoop = true;
1964      if (getLangOpts().OpenMP)
1965        Actions.startOpenMPCXXRangeFor();
1966      if (Tok.is(tok::l_brace))
1967        FRI->RangeExpr = ParseBraceInitializer();
1968      else
1969        FRI->RangeExpr = ParseExpression();
1970    }
1971
1972    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1973    if (IsForRangeLoop) {
1974      Actions.ActOnCXXForRangeDecl(ThisDecl);
1975    } else {
1976      // Obj-C for loop
1977      if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
1978        VD->setObjCForDecl(true);
1979    }
1980    Actions.FinalizeDeclaration(ThisDecl);
1981    D.complete(ThisDecl);
1982    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1983  }
1984
1985  SmallVector<Decl *, 8> DeclsInGroup;
1986  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1987      D, ParsedTemplateInfo(), FRI);
1988  if (LateParsedAttrs.size() > 0)
1989    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1990  D.complete(FirstDecl);
1991  if (FirstDecl)
1992    DeclsInGroup.push_back(FirstDecl);
1993
1994  bool ExpectSemi = Context != DeclaratorContext::ForContext;
1995
1996  // If we don't have a comma, it is either the end of the list (a ';') or an
1997  // error, bail out.
1998  SourceLocation CommaLoc;
1999  while (TryConsumeToken(tok::comma, CommaLoc)) {
2000    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2001      // This comma was followed by a line-break and something which can't be
2002      // the start of a declarator. The comma was probably a typo for a
2003      // semicolon.
2004      Diag(CommaLoc, diag::err_expected_semi_declaration)
2005        << FixItHint::CreateReplacement(CommaLoc, ";");
2006      ExpectSemi = false;
2007      break;
2008    }
2009
2010    // Parse the next declarator.
2011    D.clear();
2012    D.setCommaLoc(CommaLoc);
2013
2014    // Accept attributes in an init-declarator.  In the first declarator in a
2015    // declaration, these would be part of the declspec.  In subsequent
2016    // declarators, they become part of the declarator itself, so that they
2017    // don't apply to declarators after *this* one.  Examples:
2018    //    short __attribute__((common)) var;    -> declspec
2019    //    short var __attribute__((common));    -> declarator
2020    //    short x, __attribute__((common)) var;    -> declarator
2021    MaybeParseGNUAttributes(D);
2022
2023    // MSVC parses but ignores qualifiers after the comma as an extension.
2024    if (getLangOpts().MicrosoftExt)
2025      DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2026
2027    ParseDeclarator(D);
2028    if (!D.isInvalidType()) {
2029      // C++2a [dcl.decl]p1
2030      //    init-declarator:
2031      //	      declarator initializer[opt]
2032      //        declarator requires-clause
2033      if (Tok.is(tok::kw_requires))
2034        ParseTrailingRequiresClause(D);
2035      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2036      D.complete(ThisDecl);
2037      if (ThisDecl)
2038        DeclsInGroup.push_back(ThisDecl);
2039    }
2040  }
2041
2042  if (DeclEnd)
2043    *DeclEnd = Tok.getLocation();
2044
2045  if (ExpectSemi &&
2046      ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext
2047                           ? diag::err_invalid_token_after_toplevel_declarator
2048                           : diag::err_expected_semi_declaration)) {
2049    // Okay, there was no semicolon and one was expected.  If we see a
2050    // declaration specifier, just assume it was missing and continue parsing.
2051    // Otherwise things are very confused and we skip to recover.
2052    if (!isDeclarationSpecifier()) {
2053      SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
2054      TryConsumeToken(tok::semi);
2055    }
2056  }
2057
2058  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2059}
2060
2061/// Parse an optional simple-asm-expr and attributes, and attach them to a
2062/// declarator. Returns true on an error.
2063bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2064  // If a simple-asm-expr is present, parse it.
2065  if (Tok.is(tok::kw_asm)) {
2066    SourceLocation Loc;
2067    ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2068    if (AsmLabel.isInvalid()) {
2069      SkipUntil(tok::semi, StopBeforeMatch);
2070      return true;
2071    }
2072
2073    D.setAsmLabel(AsmLabel.get());
2074    D.SetRangeEnd(Loc);
2075  }
2076
2077  MaybeParseGNUAttributes(D);
2078  return false;
2079}
2080
2081/// Parse 'declaration' after parsing 'declaration-specifiers
2082/// declarator'. This method parses the remainder of the declaration
2083/// (including any attributes or initializer, among other things) and
2084/// finalizes the declaration.
2085///
2086///       init-declarator: [C99 6.7]
2087///         declarator
2088///         declarator '=' initializer
2089/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2090/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2091/// [C++]   declarator initializer[opt]
2092///
2093/// [C++] initializer:
2094/// [C++]   '=' initializer-clause
2095/// [C++]   '(' expression-list ')'
2096/// [C++0x] '=' 'default'                                                [TODO]
2097/// [C++0x] '=' 'delete'
2098/// [C++0x] braced-init-list
2099///
2100/// According to the standard grammar, =default and =delete are function
2101/// definitions, but that definitely doesn't fit with the parser here.
2102///
2103Decl *Parser::ParseDeclarationAfterDeclarator(
2104    Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2105  if (ParseAsmAttributesAfterDeclarator(D))
2106    return nullptr;
2107
2108  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2109}
2110
2111Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2112    Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2113  // RAII type used to track whether we're inside an initializer.
2114  struct InitializerScopeRAII {
2115    Parser &P;
2116    Declarator &D;
2117    Decl *ThisDecl;
2118
2119    InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2120        : P(P), D(D), ThisDecl(ThisDecl) {
2121      if (ThisDecl && P.getLangOpts().CPlusPlus) {
2122        Scope *S = nullptr;
2123        if (D.getCXXScopeSpec().isSet()) {
2124          P.EnterScope(0);
2125          S = P.getCurScope();
2126        }
2127        P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2128      }
2129    }
2130    ~InitializerScopeRAII() { pop(); }
2131    void pop() {
2132      if (ThisDecl && P.getLangOpts().CPlusPlus) {
2133        Scope *S = nullptr;
2134        if (D.getCXXScopeSpec().isSet())
2135          S = P.getCurScope();
2136        P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2137        if (S)
2138          P.ExitScope();
2139      }
2140      ThisDecl = nullptr;
2141    }
2142  };
2143
2144  // Inform the current actions module that we just parsed this declarator.
2145  Decl *ThisDecl = nullptr;
2146  switch (TemplateInfo.Kind) {
2147  case ParsedTemplateInfo::NonTemplate:
2148    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2149    break;
2150
2151  case ParsedTemplateInfo::Template:
2152  case ParsedTemplateInfo::ExplicitSpecialization: {
2153    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2154                                               *TemplateInfo.TemplateParams,
2155                                               D);
2156    if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
2157      // Re-direct this decl to refer to the templated decl so that we can
2158      // initialize it.
2159      ThisDecl = VT->getTemplatedDecl();
2160    break;
2161  }
2162  case ParsedTemplateInfo::ExplicitInstantiation: {
2163    if (Tok.is(tok::semi)) {
2164      DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2165          getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2166      if (ThisRes.isInvalid()) {
2167        SkipUntil(tok::semi, StopBeforeMatch);
2168        return nullptr;
2169      }
2170      ThisDecl = ThisRes.get();
2171    } else {
2172      // FIXME: This check should be for a variable template instantiation only.
2173
2174      // Check that this is a valid instantiation
2175      if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2176        // If the declarator-id is not a template-id, issue a diagnostic and
2177        // recover by ignoring the 'template' keyword.
2178        Diag(Tok, diag::err_template_defn_explicit_instantiation)
2179            << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2180        ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2181      } else {
2182        SourceLocation LAngleLoc =
2183            PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2184        Diag(D.getIdentifierLoc(),
2185             diag::err_explicit_instantiation_with_definition)
2186            << SourceRange(TemplateInfo.TemplateLoc)
2187            << FixItHint::CreateInsertion(LAngleLoc, "<>");
2188
2189        // Recover as if it were an explicit specialization.
2190        TemplateParameterLists FakedParamLists;
2191        FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2192            0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2193            LAngleLoc, nullptr));
2194
2195        ThisDecl =
2196            Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2197      }
2198    }
2199    break;
2200    }
2201  }
2202
2203  // Parse declarator '=' initializer.
2204  // If a '==' or '+=' is found, suggest a fixit to '='.
2205  if (isTokenEqualOrEqualTypo()) {
2206    SourceLocation EqualLoc = ConsumeToken();
2207
2208    if (Tok.is(tok::kw_delete)) {
2209      if (D.isFunctionDeclarator())
2210        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2211          << 1 /* delete */;
2212      else
2213        Diag(ConsumeToken(), diag::err_deleted_non_function);
2214    } else if (Tok.is(tok::kw_default)) {
2215      if (D.isFunctionDeclarator())
2216        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2217          << 0 /* default */;
2218      else
2219        Diag(ConsumeToken(), diag::err_default_special_members)
2220            << getLangOpts().CPlusPlus20;
2221    } else {
2222      InitializerScopeRAII InitScope(*this, D, ThisDecl);
2223
2224      if (Tok.is(tok::code_completion)) {
2225        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2226        Actions.FinalizeDeclaration(ThisDecl);
2227        cutOffParsing();
2228        return nullptr;
2229      }
2230
2231      PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2232      ExprResult Init = ParseInitializer();
2233
2234      // If this is the only decl in (possibly) range based for statement,
2235      // our best guess is that the user meant ':' instead of '='.
2236      if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2237        Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2238            << FixItHint::CreateReplacement(EqualLoc, ":");
2239        // We are trying to stop parser from looking for ';' in this for
2240        // statement, therefore preventing spurious errors to be issued.
2241        FRI->ColonLoc = EqualLoc;
2242        Init = ExprError();
2243        FRI->RangeExpr = Init;
2244      }
2245
2246      InitScope.pop();
2247
2248      if (Init.isInvalid()) {
2249        SmallVector<tok::TokenKind, 2> StopTokens;
2250        StopTokens.push_back(tok::comma);
2251        if (D.getContext() == DeclaratorContext::ForContext ||
2252            D.getContext() == DeclaratorContext::InitStmtContext)
2253          StopTokens.push_back(tok::r_paren);
2254        SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2255        Actions.ActOnInitializerError(ThisDecl);
2256      } else
2257        Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2258                                     /*DirectInit=*/false);
2259    }
2260  } else if (Tok.is(tok::l_paren)) {
2261    // Parse C++ direct initializer: '(' expression-list ')'
2262    BalancedDelimiterTracker T(*this, tok::l_paren);
2263    T.consumeOpen();
2264
2265    ExprVector Exprs;
2266    CommaLocsTy CommaLocs;
2267
2268    InitializerScopeRAII InitScope(*this, D, ThisDecl);
2269
2270    auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2271    auto RunSignatureHelp = [&]() {
2272      QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2273          getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2274          ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2275      CalledSignatureHelp = true;
2276      return PreferredType;
2277    };
2278    auto SetPreferredType = [&] {
2279      PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2280    };
2281
2282    llvm::function_ref<void()> ExpressionStarts;
2283    if (ThisVarDecl) {
2284      // ParseExpressionList can sometimes succeed even when ThisDecl is not
2285      // VarDecl. This is an error and it is reported in a call to
2286      // Actions.ActOnInitializerError(). However, we call
2287      // ProduceConstructorSignatureHelp only on VarDecls.
2288      ExpressionStarts = SetPreferredType;
2289    }
2290    if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) {
2291      if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2292        Actions.ProduceConstructorSignatureHelp(
2293            getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2294            ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2295        CalledSignatureHelp = true;
2296      }
2297      Actions.ActOnInitializerError(ThisDecl);
2298      SkipUntil(tok::r_paren, StopAtSemi);
2299    } else {
2300      // Match the ')'.
2301      T.consumeClose();
2302
2303      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2304             "Unexpected number of commas!");
2305
2306      InitScope.pop();
2307
2308      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2309                                                          T.getCloseLocation(),
2310                                                          Exprs);
2311      Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2312                                   /*DirectInit=*/true);
2313    }
2314  } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2315             (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2316    // Parse C++0x braced-init-list.
2317    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2318
2319    InitializerScopeRAII InitScope(*this, D, ThisDecl);
2320
2321    PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2322    ExprResult Init(ParseBraceInitializer());
2323
2324    InitScope.pop();
2325
2326    if (Init.isInvalid()) {
2327      Actions.ActOnInitializerError(ThisDecl);
2328    } else
2329      Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2330
2331  } else {
2332    Actions.ActOnUninitializedDecl(ThisDecl);
2333  }
2334
2335  Actions.FinalizeDeclaration(ThisDecl);
2336
2337  return ThisDecl;
2338}
2339
2340/// ParseSpecifierQualifierList
2341///        specifier-qualifier-list:
2342///          type-specifier specifier-qualifier-list[opt]
2343///          type-qualifier specifier-qualifier-list[opt]
2344/// [GNU]    attributes     specifier-qualifier-list[opt]
2345///
2346void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2347                                         DeclSpecContext DSC) {
2348  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2349  /// parse declaration-specifiers and complain about extra stuff.
2350  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2351  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2352
2353  // Validate declspec for type-name.
2354  unsigned Specs = DS.getParsedSpecifiers();
2355  if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2356    Diag(Tok, diag::err_expected_type);
2357    DS.SetTypeSpecError();
2358  } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2359    Diag(Tok, diag::err_typename_requires_specqual);
2360    if (!DS.hasTypeSpecifier())
2361      DS.SetTypeSpecError();
2362  }
2363
2364  // Issue diagnostic and remove storage class if present.
2365  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2366    if (DS.getStorageClassSpecLoc().isValid())
2367      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2368    else
2369      Diag(DS.getThreadStorageClassSpecLoc(),
2370           diag::err_typename_invalid_storageclass);
2371    DS.ClearStorageClassSpecs();
2372  }
2373
2374  // Issue diagnostic and remove function specifier if present.
2375  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2376    if (DS.isInlineSpecified())
2377      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2378    if (DS.isVirtualSpecified())
2379      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2380    if (DS.hasExplicitSpecifier())
2381      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2382    DS.ClearFunctionSpecs();
2383  }
2384
2385  // Issue diagnostic and remove constexpr specifier if present.
2386  if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2387    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2388        << DS.getConstexprSpecifier();
2389    DS.ClearConstexprSpec();
2390  }
2391}
2392
2393/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2394/// specified token is valid after the identifier in a declarator which
2395/// immediately follows the declspec.  For example, these things are valid:
2396///
2397///      int x   [             4];         // direct-declarator
2398///      int x   (             int y);     // direct-declarator
2399///  int(int x   )                         // direct-declarator
2400///      int x   ;                         // simple-declaration
2401///      int x   =             17;         // init-declarator-list
2402///      int x   ,             y;          // init-declarator-list
2403///      int x   __asm__       ("foo");    // init-declarator-list
2404///      int x   :             4;          // struct-declarator
2405///      int x   {             5};         // C++'0x unified initializers
2406///
2407/// This is not, because 'x' does not immediately follow the declspec (though
2408/// ')' happens to be valid anyway).
2409///    int (x)
2410///
2411static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2412  return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2413                   tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2414                   tok::colon);
2415}
2416
2417/// ParseImplicitInt - This method is called when we have an non-typename
2418/// identifier in a declspec (which normally terminates the decl spec) when
2419/// the declspec has no type specifier.  In this case, the declspec is either
2420/// malformed or is "implicit int" (in K&R and C89).
2421///
2422/// This method handles diagnosing this prettily and returns false if the
2423/// declspec is done being processed.  If it recovers and thinks there may be
2424/// other pieces of declspec after it, it returns true.
2425///
2426bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2427                              const ParsedTemplateInfo &TemplateInfo,
2428                              AccessSpecifier AS, DeclSpecContext DSC,
2429                              ParsedAttributesWithRange &Attrs) {
2430  assert(Tok.is(tok::identifier) && "should have identifier");
2431
2432  SourceLocation Loc = Tok.getLocation();
2433  // If we see an identifier that is not a type name, we normally would
2434  // parse it as the identifier being declared.  However, when a typename
2435  // is typo'd or the definition is not included, this will incorrectly
2436  // parse the typename as the identifier name and fall over misparsing
2437  // later parts of the diagnostic.
2438  //
2439  // As such, we try to do some look-ahead in cases where this would
2440  // otherwise be an "implicit-int" case to see if this is invalid.  For
2441  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2442  // an identifier with implicit int, we'd get a parse error because the
2443  // next token is obviously invalid for a type.  Parse these as a case
2444  // with an invalid type specifier.
2445  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2446
2447  // Since we know that this either implicit int (which is rare) or an
2448  // error, do lookahead to try to do better recovery. This never applies
2449  // within a type specifier. Outside of C++, we allow this even if the
2450  // language doesn't "officially" support implicit int -- we support
2451  // implicit int as an extension in C99 and C11.
2452  if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2453      isValidAfterIdentifierInDeclarator(NextToken())) {
2454    // If this token is valid for implicit int, e.g. "static x = 4", then
2455    // we just avoid eating the identifier, so it will be parsed as the
2456    // identifier in the declarator.
2457    return false;
2458  }
2459
2460  // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
2461  // for incomplete declarations such as `pipe p`.
2462  if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
2463    return false;
2464
2465  if (getLangOpts().CPlusPlus &&
2466      DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2467    // Don't require a type specifier if we have the 'auto' storage class
2468    // specifier in C++98 -- we'll promote it to a type specifier.
2469    if (SS)
2470      AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2471    return false;
2472  }
2473
2474  if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2475      getLangOpts().MSVCCompat) {
2476    // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2477    // Give Sema a chance to recover if we are in a template with dependent base
2478    // classes.
2479    if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2480            *Tok.getIdentifierInfo(), Tok.getLocation(),
2481            DSC == DeclSpecContext::DSC_template_type_arg)) {
2482      const char *PrevSpec;
2483      unsigned DiagID;
2484      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2485                         Actions.getASTContext().getPrintingPolicy());
2486      DS.SetRangeEnd(Tok.getLocation());
2487      ConsumeToken();
2488      return false;
2489    }
2490  }
2491
2492  // Otherwise, if we don't consume this token, we are going to emit an
2493  // error anyway.  Try to recover from various common problems.  Check
2494  // to see if this was a reference to a tag name without a tag specified.
2495  // This is a common problem in C (saying 'foo' instead of 'struct foo').
2496  //
2497  // C++ doesn't need this, and isTagName doesn't take SS.
2498  if (SS == nullptr) {
2499    const char *TagName = nullptr, *FixitTagName = nullptr;
2500    tok::TokenKind TagKind = tok::unknown;
2501
2502    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2503      default: break;
2504      case DeclSpec::TST_enum:
2505        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2506      case DeclSpec::TST_union:
2507        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2508      case DeclSpec::TST_struct:
2509        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2510      case DeclSpec::TST_interface:
2511        TagName="__interface"; FixitTagName = "__interface ";
2512        TagKind=tok::kw___interface;break;
2513      case DeclSpec::TST_class:
2514        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2515    }
2516
2517    if (TagName) {
2518      IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2519      LookupResult R(Actions, TokenName, SourceLocation(),
2520                     Sema::LookupOrdinaryName);
2521
2522      Diag(Loc, diag::err_use_of_tag_name_without_tag)
2523        << TokenName << TagName << getLangOpts().CPlusPlus
2524        << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2525
2526      if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2527        for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2528             I != IEnd; ++I)
2529          Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2530            << TokenName << TagName;
2531      }
2532
2533      // Parse this as a tag as if the missing tag were present.
2534      if (TagKind == tok::kw_enum)
2535        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2536                           DeclSpecContext::DSC_normal);
2537      else
2538        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2539                            /*EnteringContext*/ false,
2540                            DeclSpecContext::DSC_normal, Attrs);
2541      return true;
2542    }
2543  }
2544
2545  // Determine whether this identifier could plausibly be the name of something
2546  // being declared (with a missing type).
2547  if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2548                                DSC == DeclSpecContext::DSC_class)) {
2549    // Look ahead to the next token to try to figure out what this declaration
2550    // was supposed to be.
2551    switch (NextToken().getKind()) {
2552    case tok::l_paren: {
2553      // static x(4); // 'x' is not a type
2554      // x(int n);    // 'x' is not a type
2555      // x (*p)[];    // 'x' is a type
2556      //
2557      // Since we're in an error case, we can afford to perform a tentative
2558      // parse to determine which case we're in.
2559      TentativeParsingAction PA(*this);
2560      ConsumeToken();
2561      TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2562      PA.Revert();
2563
2564      if (TPR != TPResult::False) {
2565        // The identifier is followed by a parenthesized declarator.
2566        // It's supposed to be a type.
2567        break;
2568      }
2569
2570      // If we're in a context where we could be declaring a constructor,
2571      // check whether this is a constructor declaration with a bogus name.
2572      if (DSC == DeclSpecContext::DSC_class ||
2573          (DSC == DeclSpecContext::DSC_top_level && SS)) {
2574        IdentifierInfo *II = Tok.getIdentifierInfo();
2575        if (Actions.isCurrentClassNameTypo(II, SS)) {
2576          Diag(Loc, diag::err_constructor_bad_name)
2577            << Tok.getIdentifierInfo() << II
2578            << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2579          Tok.setIdentifierInfo(II);
2580        }
2581      }
2582      // Fall through.
2583      LLVM_FALLTHROUGH;
2584    }
2585    case tok::comma:
2586    case tok::equal:
2587    case tok::kw_asm:
2588    case tok::l_brace:
2589    case tok::l_square:
2590    case tok::semi:
2591      // This looks like a variable or function declaration. The type is
2592      // probably missing. We're done parsing decl-specifiers.
2593      // But only if we are not in a function prototype scope.
2594      if (getCurScope()->isFunctionPrototypeScope())
2595        break;
2596      if (SS)
2597        AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2598      return false;
2599
2600    default:
2601      // This is probably supposed to be a type. This includes cases like:
2602      //   int f(itn);
2603      //   struct S { unsigned : 4; };
2604      break;
2605    }
2606  }
2607
2608  // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2609  // and attempt to recover.
2610  ParsedType T;
2611  IdentifierInfo *II = Tok.getIdentifierInfo();
2612  bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2613  Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2614                                  IsTemplateName);
2615  if (T) {
2616    // The action has suggested that the type T could be used. Set that as
2617    // the type in the declaration specifiers, consume the would-be type
2618    // name token, and we're done.
2619    const char *PrevSpec;
2620    unsigned DiagID;
2621    DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2622                       Actions.getASTContext().getPrintingPolicy());
2623    DS.SetRangeEnd(Tok.getLocation());
2624    ConsumeToken();
2625    // There may be other declaration specifiers after this.
2626    return true;
2627  } else if (II != Tok.getIdentifierInfo()) {
2628    // If no type was suggested, the correction is to a keyword
2629    Tok.setKind(II->getTokenID());
2630    // There may be other declaration specifiers after this.
2631    return true;
2632  }
2633
2634  // Otherwise, the action had no suggestion for us.  Mark this as an error.
2635  DS.SetTypeSpecError();
2636  DS.SetRangeEnd(Tok.getLocation());
2637  ConsumeToken();
2638
2639  // Eat any following template arguments.
2640  if (IsTemplateName) {
2641    SourceLocation LAngle, RAngle;
2642    TemplateArgList Args;
2643    ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
2644  }
2645
2646  // TODO: Could inject an invalid typedef decl in an enclosing scope to
2647  // avoid rippling error messages on subsequent uses of the same type,
2648  // could be useful if #include was forgotten.
2649  return true;
2650}
2651
2652/// Determine the declaration specifier context from the declarator
2653/// context.
2654///
2655/// \param Context the declarator context, which is one of the
2656/// DeclaratorContext enumerator values.
2657Parser::DeclSpecContext
2658Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
2659  if (Context == DeclaratorContext::MemberContext)
2660    return DeclSpecContext::DSC_class;
2661  if (Context == DeclaratorContext::FileContext)
2662    return DeclSpecContext::DSC_top_level;
2663  if (Context == DeclaratorContext::TemplateParamContext)
2664    return DeclSpecContext::DSC_template_param;
2665  if (Context == DeclaratorContext::TemplateArgContext ||
2666      Context == DeclaratorContext::TemplateTypeArgContext)
2667    return DeclSpecContext::DSC_template_type_arg;
2668  if (Context == DeclaratorContext::TrailingReturnContext ||
2669      Context == DeclaratorContext::TrailingReturnVarContext)
2670    return DeclSpecContext::DSC_trailing;
2671  if (Context == DeclaratorContext::AliasDeclContext ||
2672      Context == DeclaratorContext::AliasTemplateContext)
2673    return DeclSpecContext::DSC_alias_declaration;
2674  return DeclSpecContext::DSC_normal;
2675}
2676
2677/// ParseAlignArgument - Parse the argument to an alignment-specifier.
2678///
2679/// FIXME: Simply returns an alignof() expression if the argument is a
2680/// type. Ideally, the type should be propagated directly into Sema.
2681///
2682/// [C11]   type-id
2683/// [C11]   constant-expression
2684/// [C++0x] type-id ...[opt]
2685/// [C++0x] assignment-expression ...[opt]
2686ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2687                                      SourceLocation &EllipsisLoc) {
2688  ExprResult ER;
2689  if (isTypeIdInParens()) {
2690    SourceLocation TypeLoc = Tok.getLocation();
2691    ParsedType Ty = ParseTypeName().get();
2692    SourceRange TypeRange(Start, Tok.getLocation());
2693    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2694                                               Ty.getAsOpaquePtr(), TypeRange);
2695  } else
2696    ER = ParseConstantExpression();
2697
2698  if (getLangOpts().CPlusPlus11)
2699    TryConsumeToken(tok::ellipsis, EllipsisLoc);
2700
2701  return ER;
2702}
2703
2704/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2705/// attribute to Attrs.
2706///
2707/// alignment-specifier:
2708/// [C11]   '_Alignas' '(' type-id ')'
2709/// [C11]   '_Alignas' '(' constant-expression ')'
2710/// [C++11] 'alignas' '(' type-id ...[opt] ')'
2711/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2712void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2713                                     SourceLocation *EndLoc) {
2714  assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2715         "Not an alignment-specifier!");
2716
2717  IdentifierInfo *KWName = Tok.getIdentifierInfo();
2718  SourceLocation KWLoc = ConsumeToken();
2719
2720  BalancedDelimiterTracker T(*this, tok::l_paren);
2721  if (T.expectAndConsume())
2722    return;
2723
2724  SourceLocation EllipsisLoc;
2725  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2726  if (ArgExpr.isInvalid()) {
2727    T.skipToEnd();
2728    return;
2729  }
2730
2731  T.consumeClose();
2732  if (EndLoc)
2733    *EndLoc = T.getCloseLocation();
2734
2735  ArgsVector ArgExprs;
2736  ArgExprs.push_back(ArgExpr.get());
2737  Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2738               ParsedAttr::AS_Keyword, EllipsisLoc);
2739}
2740
2741ExprResult Parser::ParseExtIntegerArgument() {
2742  assert(Tok.is(tok::kw__ExtInt) && "Not an extended int type");
2743  ConsumeToken();
2744
2745  BalancedDelimiterTracker T(*this, tok::l_paren);
2746  if (T.expectAndConsume())
2747    return ExprError();
2748
2749  ExprResult ER = ParseConstantExpression();
2750  if (ER.isInvalid()) {
2751    T.skipToEnd();
2752    return ExprError();
2753  }
2754
2755  if(T.consumeClose())
2756    return ExprError();
2757  return ER;
2758}
2759
2760/// Determine whether we're looking at something that might be a declarator
2761/// in a simple-declaration. If it can't possibly be a declarator, maybe
2762/// diagnose a missing semicolon after a prior tag definition in the decl
2763/// specifier.
2764///
2765/// \return \c true if an error occurred and this can't be any kind of
2766/// declaration.
2767bool
2768Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2769                                              DeclSpecContext DSContext,
2770                                              LateParsedAttrList *LateAttrs) {
2771  assert(DS.hasTagDefinition() && "shouldn't call this");
2772
2773  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2774                          DSContext == DeclSpecContext::DSC_top_level);
2775
2776  if (getLangOpts().CPlusPlus &&
2777      Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2778                  tok::annot_template_id) &&
2779      TryAnnotateCXXScopeToken(EnteringContext)) {
2780    SkipMalformedDecl();
2781    return true;
2782  }
2783
2784  bool HasScope = Tok.is(tok::annot_cxxscope);
2785  // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2786  Token AfterScope = HasScope ? NextToken() : Tok;
2787
2788  // Determine whether the following tokens could possibly be a
2789  // declarator.
2790  bool MightBeDeclarator = true;
2791  if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2792    // A declarator-id can't start with 'typename'.
2793    MightBeDeclarator = false;
2794  } else if (AfterScope.is(tok::annot_template_id)) {
2795    // If we have a type expressed as a template-id, this cannot be a
2796    // declarator-id (such a type cannot be redeclared in a simple-declaration).
2797    TemplateIdAnnotation *Annot =
2798        static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2799    if (Annot->Kind == TNK_Type_template)
2800      MightBeDeclarator = false;
2801  } else if (AfterScope.is(tok::identifier)) {
2802    const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2803
2804    // These tokens cannot come after the declarator-id in a
2805    // simple-declaration, and are likely to come after a type-specifier.
2806    if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2807                     tok::annot_cxxscope, tok::coloncolon)) {
2808      // Missing a semicolon.
2809      MightBeDeclarator = false;
2810    } else if (HasScope) {
2811      // If the declarator-id has a scope specifier, it must redeclare a
2812      // previously-declared entity. If that's a type (and this is not a
2813      // typedef), that's an error.
2814      CXXScopeSpec SS;
2815      Actions.RestoreNestedNameSpecifierAnnotation(
2816          Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2817      IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2818      Sema::NameClassification Classification = Actions.ClassifyName(
2819          getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2820          /*CCC=*/nullptr);
2821      switch (Classification.getKind()) {
2822      case Sema::NC_Error:
2823        SkipMalformedDecl();
2824        return true;
2825
2826      case Sema::NC_Keyword:
2827        llvm_unreachable("typo correction is not possible here");
2828
2829      case Sema::NC_Type:
2830      case Sema::NC_TypeTemplate:
2831      case Sema::NC_UndeclaredNonType:
2832      case Sema::NC_UndeclaredTemplate:
2833        // Not a previously-declared non-type entity.
2834        MightBeDeclarator = false;
2835        break;
2836
2837      case Sema::NC_Unknown:
2838      case Sema::NC_NonType:
2839      case Sema::NC_DependentNonType:
2840      case Sema::NC_ContextIndependentExpr:
2841      case Sema::NC_VarTemplate:
2842      case Sema::NC_FunctionTemplate:
2843      case Sema::NC_Concept:
2844        // Might be a redeclaration of a prior entity.
2845        break;
2846      }
2847    }
2848  }
2849
2850  if (MightBeDeclarator)
2851    return false;
2852
2853  const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2854  Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
2855       diag::err_expected_after)
2856      << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2857
2858  // Try to recover from the typo, by dropping the tag definition and parsing
2859  // the problematic tokens as a type.
2860  //
2861  // FIXME: Split the DeclSpec into pieces for the standalone
2862  // declaration and pieces for the following declaration, instead
2863  // of assuming that all the other pieces attach to new declaration,
2864  // and call ParsedFreeStandingDeclSpec as appropriate.
2865  DS.ClearTypeSpecType();
2866  ParsedTemplateInfo NotATemplate;
2867  ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2868  return false;
2869}
2870
2871// Choose the apprpriate diagnostic error for why fixed point types are
2872// disabled, set the previous specifier, and mark as invalid.
2873static void SetupFixedPointError(const LangOptions &LangOpts,
2874                                 const char *&PrevSpec, unsigned &DiagID,
2875                                 bool &isInvalid) {
2876  assert(!LangOpts.FixedPoint);
2877  DiagID = diag::err_fixed_point_not_enabled;
2878  PrevSpec = "";  // Not used by diagnostic
2879  isInvalid = true;
2880}
2881
2882/// ParseDeclarationSpecifiers
2883///       declaration-specifiers: [C99 6.7]
2884///         storage-class-specifier declaration-specifiers[opt]
2885///         type-specifier declaration-specifiers[opt]
2886/// [C99]   function-specifier declaration-specifiers[opt]
2887/// [C11]   alignment-specifier declaration-specifiers[opt]
2888/// [GNU]   attributes declaration-specifiers[opt]
2889/// [Clang] '__module_private__' declaration-specifiers[opt]
2890/// [ObjC1] '__kindof' declaration-specifiers[opt]
2891///
2892///       storage-class-specifier: [C99 6.7.1]
2893///         'typedef'
2894///         'extern'
2895///         'static'
2896///         'auto'
2897///         'register'
2898/// [C++]   'mutable'
2899/// [C++11] 'thread_local'
2900/// [C11]   '_Thread_local'
2901/// [GNU]   '__thread'
2902///       function-specifier: [C99 6.7.4]
2903/// [C99]   'inline'
2904/// [C++]   'virtual'
2905/// [C++]   'explicit'
2906/// [OpenCL] '__kernel'
2907///       'friend': [C++ dcl.friend]
2908///       'constexpr': [C++0x dcl.constexpr]
2909void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2910                                        const ParsedTemplateInfo &TemplateInfo,
2911                                        AccessSpecifier AS,
2912                                        DeclSpecContext DSContext,
2913                                        LateParsedAttrList *LateAttrs) {
2914  if (DS.getSourceRange().isInvalid()) {
2915    // Start the range at the current token but make the end of the range
2916    // invalid.  This will make the entire range invalid unless we successfully
2917    // consume a token.
2918    DS.SetRangeStart(Tok.getLocation());
2919    DS.SetRangeEnd(SourceLocation());
2920  }
2921
2922  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2923                          DSContext == DeclSpecContext::DSC_top_level);
2924  bool AttrsLastTime = false;
2925  ParsedAttributesWithRange attrs(AttrFactory);
2926  // We use Sema's policy to get bool macros right.
2927  PrintingPolicy Policy = Actions.getPrintingPolicy();
2928  while (1) {
2929    bool isInvalid = false;
2930    bool isStorageClass = false;
2931    const char *PrevSpec = nullptr;
2932    unsigned DiagID = 0;
2933
2934    // This value needs to be set to the location of the last token if the last
2935    // token of the specifier is already consumed.
2936    SourceLocation ConsumedEnd;
2937
2938    // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
2939    // implementation for VS2013 uses _Atomic as an identifier for one of the
2940    // classes in <atomic>.
2941    //
2942    // A typedef declaration containing _Atomic<...> is among the places where
2943    // the class is used.  If we are currently parsing such a declaration, treat
2944    // the token as an identifier.
2945    if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
2946        DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
2947        !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
2948      Tok.setKind(tok::identifier);
2949
2950    SourceLocation Loc = Tok.getLocation();
2951
2952    switch (Tok.getKind()) {
2953    default:
2954    DoneWithDeclSpec:
2955      if (!AttrsLastTime)
2956        ProhibitAttributes(attrs);
2957      else {
2958        // Reject C++11 attributes that appertain to decl specifiers as
2959        // we don't support any C++11 attributes that appertain to decl
2960        // specifiers. This also conforms to what g++ 4.8 is doing.
2961        ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr);
2962
2963        DS.takeAttributesFrom(attrs);
2964      }
2965
2966      // If this is not a declaration specifier token, we're done reading decl
2967      // specifiers.  First verify that DeclSpec's are consistent.
2968      DS.Finish(Actions, Policy);
2969      return;
2970
2971    case tok::l_square:
2972    case tok::kw_alignas:
2973      if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier())
2974        goto DoneWithDeclSpec;
2975
2976      ProhibitAttributes(attrs);
2977      // FIXME: It would be good to recover by accepting the attributes,
2978      //        but attempting to do that now would cause serious
2979      //        madness in terms of diagnostics.
2980      attrs.clear();
2981      attrs.Range = SourceRange();
2982
2983      ParseCXX11Attributes(attrs);
2984      AttrsLastTime = true;
2985      continue;
2986
2987    case tok::code_completion: {
2988      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2989      if (DS.hasTypeSpecifier()) {
2990        bool AllowNonIdentifiers
2991          = (getCurScope()->getFlags() & (Scope::ControlScope |
2992                                          Scope::BlockScope |
2993                                          Scope::TemplateParamScope |
2994                                          Scope::FunctionPrototypeScope |
2995                                          Scope::AtCatchScope)) == 0;
2996        bool AllowNestedNameSpecifiers
2997          = DSContext == DeclSpecContext::DSC_top_level ||
2998            (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
2999
3000        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
3001                                     AllowNonIdentifiers,
3002                                     AllowNestedNameSpecifiers);
3003        return cutOffParsing();
3004      }
3005
3006      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3007        CCC = Sema::PCC_LocalDeclarationSpecifiers;
3008      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3009        CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3010                                                      : Sema::PCC_Template;
3011      else if (DSContext == DeclSpecContext::DSC_class)
3012        CCC = Sema::PCC_Class;
3013      else if (CurParsedObjCImpl)
3014        CCC = Sema::PCC_ObjCImplementation;
3015
3016      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3017      return cutOffParsing();
3018    }
3019
3020    case tok::coloncolon: // ::foo::bar
3021      // C++ scope specifier.  Annotate and loop, or bail out on error.
3022      if (TryAnnotateCXXScopeToken(EnteringContext)) {
3023        if (!DS.hasTypeSpecifier())
3024          DS.SetTypeSpecError();
3025        goto DoneWithDeclSpec;
3026      }
3027      if (Tok.is(tok::coloncolon)) // ::new or ::delete
3028        goto DoneWithDeclSpec;
3029      continue;
3030
3031    case tok::annot_cxxscope: {
3032      if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3033        goto DoneWithDeclSpec;
3034
3035      CXXScopeSpec SS;
3036      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3037                                                   Tok.getAnnotationRange(),
3038                                                   SS);
3039
3040      // We are looking for a qualified typename.
3041      Token Next = NextToken();
3042
3043      TemplateIdAnnotation *TemplateId = Next.is(tok::annot_template_id)
3044                                             ? takeTemplateIdAnnotation(Next)
3045                                             : nullptr;
3046      if (TemplateId && TemplateId->hasInvalidName()) {
3047        // We found something like 'T::U<Args> x', but U is not a template.
3048        // Assume it was supposed to be a type.
3049        DS.SetTypeSpecError();
3050        ConsumeAnnotationToken();
3051        break;
3052      }
3053
3054      if (TemplateId && TemplateId->Kind == TNK_Type_template) {
3055        // We have a qualified template-id, e.g., N::A<int>
3056
3057        // If this would be a valid constructor declaration with template
3058        // arguments, we will reject the attempt to form an invalid type-id
3059        // referring to the injected-class-name when we annotate the token,
3060        // per C++ [class.qual]p2.
3061        //
3062        // To improve diagnostics for this case, parse the declaration as a
3063        // constructor (and reject the extra template arguments later).
3064        if ((DSContext == DeclSpecContext::DSC_top_level ||
3065             DSContext == DeclSpecContext::DSC_class) &&
3066            TemplateId->Name &&
3067            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3068            isConstructorDeclarator(/*Unqualified=*/false)) {
3069          // The user meant this to be an out-of-line constructor
3070          // definition, but template arguments are not allowed
3071          // there.  Just allow this as a constructor; we'll
3072          // complain about it later.
3073          goto DoneWithDeclSpec;
3074        }
3075
3076        DS.getTypeSpecScope() = SS;
3077        ConsumeAnnotationToken(); // The C++ scope.
3078        assert(Tok.is(tok::annot_template_id) &&
3079               "ParseOptionalCXXScopeSpecifier not working");
3080        AnnotateTemplateIdTokenAsType(SS);
3081        continue;
3082      }
3083
3084      if (TemplateId && TemplateId->Kind == TNK_Concept_template &&
3085          GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype)) {
3086        DS.getTypeSpecScope() = SS;
3087        // This is a qualified placeholder-specifier, e.g., ::C<int> auto ...
3088        // Consume the scope annotation and continue to consume the template-id
3089        // as a placeholder-specifier.
3090        ConsumeAnnotationToken();
3091        continue;
3092      }
3093
3094      if (Next.is(tok::annot_typename)) {
3095        DS.getTypeSpecScope() = SS;
3096        ConsumeAnnotationToken(); // The C++ scope.
3097        TypeResult T = getTypeAnnotation(Tok);
3098        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3099                                       Tok.getAnnotationEndLoc(),
3100                                       PrevSpec, DiagID, T, Policy);
3101        if (isInvalid)
3102          break;
3103        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3104        ConsumeAnnotationToken(); // The typename
3105      }
3106
3107      if (Next.isNot(tok::identifier))
3108        goto DoneWithDeclSpec;
3109
3110      // Check whether this is a constructor declaration. If we're in a
3111      // context where the identifier could be a class name, and it has the
3112      // shape of a constructor declaration, process it as one.
3113      if ((DSContext == DeclSpecContext::DSC_top_level ||
3114           DSContext == DeclSpecContext::DSC_class) &&
3115          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3116                                     &SS) &&
3117          isConstructorDeclarator(/*Unqualified*/ false))
3118        goto DoneWithDeclSpec;
3119
3120      ParsedType TypeRep =
3121          Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
3122                              getCurScope(), &SS, false, false, nullptr,
3123                              /*IsCtorOrDtorName=*/false,
3124                              /*WantNontrivialTypeSourceInfo=*/true,
3125                              isClassTemplateDeductionContext(DSContext));
3126
3127      // If the referenced identifier is not a type, then this declspec is
3128      // erroneous: We already checked about that it has no type specifier, and
3129      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3130      // typename.
3131      if (!TypeRep) {
3132        if (TryAnnotateTypeConstraint())
3133          goto DoneWithDeclSpec;
3134        if (Tok.isNot(tok::annot_cxxscope) ||
3135            NextToken().isNot(tok::identifier))
3136          continue;
3137        // Eat the scope spec so the identifier is current.
3138        ConsumeAnnotationToken();
3139        ParsedAttributesWithRange Attrs(AttrFactory);
3140        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3141          if (!Attrs.empty()) {
3142            AttrsLastTime = true;
3143            attrs.takeAllFrom(Attrs);
3144          }
3145          continue;
3146        }
3147        goto DoneWithDeclSpec;
3148      }
3149
3150      DS.getTypeSpecScope() = SS;
3151      ConsumeAnnotationToken(); // The C++ scope.
3152
3153      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3154                                     DiagID, TypeRep, Policy);
3155      if (isInvalid)
3156        break;
3157
3158      DS.SetRangeEnd(Tok.getLocation());
3159      ConsumeToken(); // The typename.
3160
3161      continue;
3162    }
3163
3164    case tok::annot_typename: {
3165      // If we've previously seen a tag definition, we were almost surely
3166      // missing a semicolon after it.
3167      if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3168        goto DoneWithDeclSpec;
3169
3170      TypeResult T = getTypeAnnotation(Tok);
3171      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3172                                     DiagID, T, Policy);
3173      if (isInvalid)
3174        break;
3175
3176      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3177      ConsumeAnnotationToken(); // The typename
3178
3179      continue;
3180    }
3181
3182    case tok::kw___is_signed:
3183      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3184      // typically treats it as a trait. If we see __is_signed as it appears
3185      // in libstdc++, e.g.,
3186      //
3187      //   static const bool __is_signed;
3188      //
3189      // then treat __is_signed as an identifier rather than as a keyword.
3190      if (DS.getTypeSpecType() == TST_bool &&
3191          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3192          DS.getStorageClassSpec() == DeclSpec::SCS_static)
3193        TryKeywordIdentFallback(true);
3194
3195      // We're done with the declaration-specifiers.
3196      goto DoneWithDeclSpec;
3197
3198      // typedef-name
3199    case tok::kw___super:
3200    case tok::kw_decltype:
3201    case tok::identifier: {
3202      // This identifier can only be a typedef name if we haven't already seen
3203      // a type-specifier.  Without this check we misparse:
3204      //  typedef int X; struct Y { short X; };  as 'short int'.
3205      if (DS.hasTypeSpecifier())
3206        goto DoneWithDeclSpec;
3207
3208      // If the token is an identifier named "__declspec" and Microsoft
3209      // extensions are not enabled, it is likely that there will be cascading
3210      // parse errors if this really is a __declspec attribute. Attempt to
3211      // recognize that scenario and recover gracefully.
3212      if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3213          Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3214        Diag(Loc, diag::err_ms_attributes_not_enabled);
3215
3216        // The next token should be an open paren. If it is, eat the entire
3217        // attribute declaration and continue.
3218        if (NextToken().is(tok::l_paren)) {
3219          // Consume the __declspec identifier.
3220          ConsumeToken();
3221
3222          // Eat the parens and everything between them.
3223          BalancedDelimiterTracker T(*this, tok::l_paren);
3224          if (T.consumeOpen()) {
3225            assert(false && "Not a left paren?");
3226            return;
3227          }
3228          T.skipToEnd();
3229          continue;
3230        }
3231      }
3232
3233      // In C++, check to see if this is a scope specifier like foo::bar::, if
3234      // so handle it as such.  This is important for ctor parsing.
3235      if (getLangOpts().CPlusPlus) {
3236        if (TryAnnotateCXXScopeToken(EnteringContext)) {
3237          DS.SetTypeSpecError();
3238          goto DoneWithDeclSpec;
3239        }
3240        if (!Tok.is(tok::identifier))
3241          continue;
3242      }
3243
3244      // Check for need to substitute AltiVec keyword tokens.
3245      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3246        break;
3247
3248      // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3249      //                allow the use of a typedef name as a type specifier.
3250      if (DS.isTypeAltiVecVector())
3251        goto DoneWithDeclSpec;
3252
3253      if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3254          isObjCInstancetype()) {
3255        ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3256        assert(TypeRep);
3257        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3258                                       DiagID, TypeRep, Policy);
3259        if (isInvalid)
3260          break;
3261
3262        DS.SetRangeEnd(Loc);
3263        ConsumeToken();
3264        continue;
3265      }
3266
3267      // If we're in a context where the identifier could be a class name,
3268      // check whether this is a constructor declaration.
3269      if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3270          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3271          isConstructorDeclarator(/*Unqualified*/true))
3272        goto DoneWithDeclSpec;
3273
3274      ParsedType TypeRep = Actions.getTypeName(
3275          *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3276          false, false, nullptr, false, false,
3277          isClassTemplateDeductionContext(DSContext));
3278
3279      // If this is not a typedef name, don't parse it as part of the declspec,
3280      // it must be an implicit int or an error.
3281      if (!TypeRep) {
3282        if (TryAnnotateTypeConstraint())
3283          goto DoneWithDeclSpec;
3284        if (Tok.isNot(tok::identifier))
3285          continue;
3286        ParsedAttributesWithRange Attrs(AttrFactory);
3287        if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3288          if (!Attrs.empty()) {
3289            AttrsLastTime = true;
3290            attrs.takeAllFrom(Attrs);
3291          }
3292          continue;
3293        }
3294        goto DoneWithDeclSpec;
3295      }
3296
3297      // Likewise, if this is a context where the identifier could be a template
3298      // name, check whether this is a deduction guide declaration.
3299      if (getLangOpts().CPlusPlus17 &&
3300          (DSContext == DeclSpecContext::DSC_class ||
3301           DSContext == DeclSpecContext::DSC_top_level) &&
3302          Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3303                                       Tok.getLocation()) &&
3304          isConstructorDeclarator(/*Unqualified*/ true,
3305                                  /*DeductionGuide*/ true))
3306        goto DoneWithDeclSpec;
3307
3308      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3309                                     DiagID, TypeRep, Policy);
3310      if (isInvalid)
3311        break;
3312
3313      DS.SetRangeEnd(Tok.getLocation());
3314      ConsumeToken(); // The identifier
3315
3316      // Objective-C supports type arguments and protocol references
3317      // following an Objective-C object or object pointer
3318      // type. Handle either one of them.
3319      if (Tok.is(tok::less) && getLangOpts().ObjC) {
3320        SourceLocation NewEndLoc;
3321        TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3322                                  Loc, TypeRep, /*consumeLastToken=*/true,
3323                                  NewEndLoc);
3324        if (NewTypeRep.isUsable()) {
3325          DS.UpdateTypeRep(NewTypeRep.get());
3326          DS.SetRangeEnd(NewEndLoc);
3327        }
3328      }
3329
3330      // Need to support trailing type qualifiers (e.g. "id<p> const").
3331      // If a type specifier follows, it will be diagnosed elsewhere.
3332      continue;
3333    }
3334
3335      // type-name or placeholder-specifier
3336    case tok::annot_template_id: {
3337      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3338
3339      if (TemplateId->hasInvalidName()) {
3340        DS.SetTypeSpecError();
3341        break;
3342      }
3343
3344      if (TemplateId->Kind == TNK_Concept_template) {
3345        // If we've already diagnosed that this type-constraint has invalid
3346        // arguemnts, drop it and just form 'auto' or 'decltype(auto)'.
3347        if (TemplateId->hasInvalidArgs())
3348          TemplateId = nullptr;
3349
3350        if (NextToken().is(tok::identifier)) {
3351          Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto)
3352              << FixItHint::CreateInsertion(NextToken().getLocation(), "auto");
3353          // Attempt to continue as if 'auto' was placed here.
3354          isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
3355                                         TemplateId, Policy);
3356          break;
3357        }
3358        if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype))
3359            goto DoneWithDeclSpec;
3360        ConsumeAnnotationToken();
3361        SourceLocation AutoLoc = Tok.getLocation();
3362        if (TryConsumeToken(tok::kw_decltype)) {
3363          BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3364          if (Tracker.consumeOpen()) {
3365            // Something like `void foo(Iterator decltype i)`
3366            Diag(Tok, diag::err_expected) << tok::l_paren;
3367          } else {
3368            if (!TryConsumeToken(tok::kw_auto)) {
3369              // Something like `void foo(Iterator decltype(int) i)`
3370              Tracker.skipToEnd();
3371              Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto)
3372                << FixItHint::CreateReplacement(SourceRange(AutoLoc,
3373                                                            Tok.getLocation()),
3374                                                "auto");
3375            } else {
3376              Tracker.consumeClose();
3377            }
3378          }
3379          ConsumedEnd = Tok.getLocation();
3380          // Even if something went wrong above, continue as if we've seen
3381          // `decltype(auto)`.
3382          isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec,
3383                                         DiagID, TemplateId, Policy);
3384        } else {
3385          isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
3386                                         TemplateId, Policy);
3387        }
3388        break;
3389      }
3390
3391      if (TemplateId->Kind != TNK_Type_template &&
3392          TemplateId->Kind != TNK_Undeclared_template) {
3393        // This template-id does not refer to a type name, so we're
3394        // done with the type-specifiers.
3395        goto DoneWithDeclSpec;
3396      }
3397
3398      // If we're in a context where the template-id could be a
3399      // constructor name or specialization, check whether this is a
3400      // constructor declaration.
3401      if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3402          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3403          isConstructorDeclarator(/*Unqualified=*/true))
3404        goto DoneWithDeclSpec;
3405
3406      // Turn the template-id annotation token into a type annotation
3407      // token, then try again to parse it as a type-specifier.
3408      CXXScopeSpec SS;
3409      AnnotateTemplateIdTokenAsType(SS);
3410      continue;
3411    }
3412
3413    // GNU attributes support.
3414    case tok::kw___attribute:
3415      ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3416      continue;
3417
3418    // Microsoft declspec support.
3419    case tok::kw___declspec:
3420      ParseMicrosoftDeclSpecs(DS.getAttributes());
3421      continue;
3422
3423    // Microsoft single token adornments.
3424    case tok::kw___forceinline: {
3425      isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3426      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3427      SourceLocation AttrNameLoc = Tok.getLocation();
3428      DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3429                                nullptr, 0, ParsedAttr::AS_Keyword);
3430      break;
3431    }
3432
3433    case tok::kw___unaligned:
3434      isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3435                                 getLangOpts());
3436      break;
3437
3438    case tok::kw___sptr:
3439    case tok::kw___uptr:
3440    case tok::kw___ptr64:
3441    case tok::kw___ptr32:
3442    case tok::kw___w64:
3443    case tok::kw___cdecl:
3444    case tok::kw___stdcall:
3445    case tok::kw___fastcall:
3446    case tok::kw___thiscall:
3447    case tok::kw___regcall:
3448    case tok::kw___vectorcall:
3449      ParseMicrosoftTypeAttributes(DS.getAttributes());
3450      continue;
3451
3452    // Borland single token adornments.
3453    case tok::kw___pascal:
3454      ParseBorlandTypeAttributes(DS.getAttributes());
3455      continue;
3456
3457    // OpenCL single token adornments.
3458    case tok::kw___kernel:
3459      ParseOpenCLKernelAttributes(DS.getAttributes());
3460      continue;
3461
3462    // Nullability type specifiers.
3463    case tok::kw__Nonnull:
3464    case tok::kw__Nullable:
3465    case tok::kw__Null_unspecified:
3466      ParseNullabilityTypeSpecifiers(DS.getAttributes());
3467      continue;
3468
3469    // Objective-C 'kindof' types.
3470    case tok::kw___kindof:
3471      DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3472                                nullptr, 0, ParsedAttr::AS_Keyword);
3473      (void)ConsumeToken();
3474      continue;
3475
3476    // storage-class-specifier
3477    case tok::kw_typedef:
3478      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3479                                         PrevSpec, DiagID, Policy);
3480      isStorageClass = true;
3481      break;
3482    case tok::kw_extern:
3483      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3484        Diag(Tok, diag::ext_thread_before) << "extern";
3485      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3486                                         PrevSpec, DiagID, Policy);
3487      isStorageClass = true;
3488      break;
3489    case tok::kw___private_extern__:
3490      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3491                                         Loc, PrevSpec, DiagID, Policy);
3492      isStorageClass = true;
3493      break;
3494    case tok::kw_static:
3495      if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3496        Diag(Tok, diag::ext_thread_before) << "static";
3497      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3498                                         PrevSpec, DiagID, Policy);
3499      isStorageClass = true;
3500      break;
3501    case tok::kw_auto:
3502      if (getLangOpts().CPlusPlus11) {
3503        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3504          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3505                                             PrevSpec, DiagID, Policy);
3506          if (!isInvalid)
3507            Diag(Tok, diag::ext_auto_storage_class)
3508              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3509        } else
3510          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3511                                         DiagID, Policy);
3512      } else
3513        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3514                                           PrevSpec, DiagID, Policy);
3515      isStorageClass = true;
3516      break;
3517    case tok::kw___auto_type:
3518      Diag(Tok, diag::ext_auto_type);
3519      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3520                                     DiagID, Policy);
3521      break;
3522    case tok::kw_register:
3523      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3524                                         PrevSpec, DiagID, Policy);
3525      isStorageClass = true;
3526      break;
3527    case tok::kw_mutable:
3528      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3529                                         PrevSpec, DiagID, Policy);
3530      isStorageClass = true;
3531      break;
3532    case tok::kw___thread:
3533      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3534                                               PrevSpec, DiagID);
3535      isStorageClass = true;
3536      break;
3537    case tok::kw_thread_local:
3538      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3539                                               PrevSpec, DiagID);
3540      isStorageClass = true;
3541      break;
3542    case tok::kw__Thread_local:
3543      if (!getLangOpts().C11)
3544        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3545      isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3546                                               Loc, PrevSpec, DiagID);
3547      isStorageClass = true;
3548      break;
3549
3550    // function-specifier
3551    case tok::kw_inline:
3552      isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3553      break;
3554    case tok::kw_virtual:
3555      // C++ for OpenCL does not allow virtual function qualifier, to avoid
3556      // function pointers restricted in OpenCL v2.0 s6.9.a.
3557      if (getLangOpts().OpenCLCPlusPlus) {
3558        DiagID = diag::err_openclcxx_virtual_function;
3559        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3560        isInvalid = true;
3561      }
3562      else {
3563        isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3564      }
3565      break;
3566    case tok::kw_explicit: {
3567      SourceLocation ExplicitLoc = Loc;
3568      SourceLocation CloseParenLoc;
3569      ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
3570      ConsumedEnd = ExplicitLoc;
3571      ConsumeToken(); // kw_explicit
3572      if (Tok.is(tok::l_paren)) {
3573        if (getLangOpts().CPlusPlus20 || isExplicitBool() == TPResult::True) {
3574          Diag(Tok.getLocation(), getLangOpts().CPlusPlus20
3575                                      ? diag::warn_cxx17_compat_explicit_bool
3576                                      : diag::ext_explicit_bool);
3577
3578          ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
3579          BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3580          Tracker.consumeOpen();
3581          ExplicitExpr = ParseConstantExpression();
3582          ConsumedEnd = Tok.getLocation();
3583          if (ExplicitExpr.isUsable()) {
3584            CloseParenLoc = Tok.getLocation();
3585            Tracker.consumeClose();
3586            ExplicitSpec =
3587                Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
3588          } else
3589            Tracker.skipToEnd();
3590        } else {
3591          Diag(Tok.getLocation(), diag::warn_cxx20_compat_explicit_bool);
3592        }
3593      }
3594      isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
3595                                             ExplicitSpec, CloseParenLoc);
3596      break;
3597    }
3598    case tok::kw__Noreturn:
3599      if (!getLangOpts().C11)
3600        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3601      isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3602      break;
3603
3604    // alignment-specifier
3605    case tok::kw__Alignas:
3606      if (!getLangOpts().C11)
3607        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3608      ParseAlignmentSpecifier(DS.getAttributes());
3609      continue;
3610
3611    // friend
3612    case tok::kw_friend:
3613      if (DSContext == DeclSpecContext::DSC_class)
3614        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3615      else {
3616        PrevSpec = ""; // not actually used by the diagnostic
3617        DiagID = diag::err_friend_invalid_in_context;
3618        isInvalid = true;
3619      }
3620      break;
3621
3622    // Modules
3623    case tok::kw___module_private__:
3624      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3625      break;
3626
3627    // constexpr, consteval, constinit specifiers
3628    case tok::kw_constexpr:
3629      isInvalid = DS.SetConstexprSpec(CSK_constexpr, Loc, PrevSpec, DiagID);
3630      break;
3631    case tok::kw_consteval:
3632      isInvalid = DS.SetConstexprSpec(CSK_consteval, Loc, PrevSpec, DiagID);
3633      break;
3634    case tok::kw_constinit:
3635      isInvalid = DS.SetConstexprSpec(CSK_constinit, Loc, PrevSpec, DiagID);
3636      break;
3637
3638    // type-specifier
3639    case tok::kw_short:
3640      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3641                                      DiagID, Policy);
3642      break;
3643    case tok::kw_long:
3644      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3645        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3646                                        DiagID, Policy);
3647      else
3648        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3649                                        DiagID, Policy);
3650      break;
3651    case tok::kw___int64:
3652        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3653                                        DiagID, Policy);
3654      break;
3655    case tok::kw_signed:
3656      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3657                                     DiagID);
3658      break;
3659    case tok::kw_unsigned:
3660      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3661                                     DiagID);
3662      break;
3663    case tok::kw__Complex:
3664      if (!getLangOpts().C99)
3665        Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3666      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3667                                        DiagID);
3668      break;
3669    case tok::kw__Imaginary:
3670      if (!getLangOpts().C99)
3671        Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3672      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3673                                        DiagID);
3674      break;
3675    case tok::kw_void:
3676      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3677                                     DiagID, Policy);
3678      break;
3679    case tok::kw_char:
3680      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3681                                     DiagID, Policy);
3682      break;
3683    case tok::kw_int:
3684      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3685                                     DiagID, Policy);
3686      break;
3687    case tok::kw__ExtInt: {
3688      ExprResult ER = ParseExtIntegerArgument();
3689      if (ER.isInvalid())
3690        continue;
3691      isInvalid = DS.SetExtIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
3692      ConsumedEnd = PrevTokLocation;
3693      break;
3694    }
3695    case tok::kw___int128:
3696      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3697                                     DiagID, Policy);
3698      break;
3699    case tok::kw_half:
3700      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3701                                     DiagID, Policy);
3702      break;
3703    case tok::kw___bf16:
3704      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec,
3705                                     DiagID, Policy);
3706      break;
3707    case tok::kw_float:
3708      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3709                                     DiagID, Policy);
3710      break;
3711    case tok::kw_double:
3712      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3713                                     DiagID, Policy);
3714      break;
3715    case tok::kw__Float16:
3716      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
3717                                     DiagID, Policy);
3718      break;
3719    case tok::kw__Accum:
3720      if (!getLangOpts().FixedPoint) {
3721        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3722      } else {
3723        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec,
3724                                       DiagID, Policy);
3725      }
3726      break;
3727    case tok::kw__Fract:
3728      if (!getLangOpts().FixedPoint) {
3729        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3730      } else {
3731        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec,
3732                                       DiagID, Policy);
3733      }
3734      break;
3735    case tok::kw__Sat:
3736      if (!getLangOpts().FixedPoint) {
3737        SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3738      } else {
3739        isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
3740      }
3741      break;
3742    case tok::kw___float128:
3743      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3744                                     DiagID, Policy);
3745      break;
3746    case tok::kw_wchar_t:
3747      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3748                                     DiagID, Policy);
3749      break;
3750    case tok::kw_char8_t:
3751      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
3752                                     DiagID, Policy);
3753      break;
3754    case tok::kw_char16_t:
3755      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3756                                     DiagID, Policy);
3757      break;
3758    case tok::kw_char32_t:
3759      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3760                                     DiagID, Policy);
3761      break;
3762    case tok::kw_bool:
3763    case tok::kw__Bool:
3764      if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
3765        Diag(Tok, diag::ext_c99_feature) << Tok.getName();
3766
3767      if (Tok.is(tok::kw_bool) &&
3768          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3769          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3770        PrevSpec = ""; // Not used by the diagnostic.
3771        DiagID = diag::err_bool_redeclaration;
3772        // For better error recovery.
3773        Tok.setKind(tok::identifier);
3774        isInvalid = true;
3775      } else {
3776        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3777                                       DiagID, Policy);
3778      }
3779      break;
3780    case tok::kw__Decimal32:
3781      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3782                                     DiagID, Policy);
3783      break;
3784    case tok::kw__Decimal64:
3785      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3786                                     DiagID, Policy);
3787      break;
3788    case tok::kw__Decimal128:
3789      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3790                                     DiagID, Policy);
3791      break;
3792    case tok::kw___vector:
3793      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3794      break;
3795    case tok::kw___pixel:
3796      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3797      break;
3798    case tok::kw___bool:
3799      isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3800      break;
3801    case tok::kw_pipe:
3802      if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200 &&
3803                                    !getLangOpts().OpenCLCPlusPlus)) {
3804        // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3805        // support the "pipe" word as identifier.
3806        Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3807        goto DoneWithDeclSpec;
3808      }
3809      isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3810      break;
3811#define GENERIC_IMAGE_TYPE(ImgType, Id) \
3812  case tok::kw_##ImgType##_t: \
3813    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3814                                   DiagID, Policy); \
3815    break;
3816#include "clang/Basic/OpenCLImageTypes.def"
3817    case tok::kw___unknown_anytype:
3818      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3819                                     PrevSpec, DiagID, Policy);
3820      break;
3821
3822    // class-specifier:
3823    case tok::kw_class:
3824    case tok::kw_struct:
3825    case tok::kw___interface:
3826    case tok::kw_union: {
3827      tok::TokenKind Kind = Tok.getKind();
3828      ConsumeToken();
3829
3830      // These are attributes following class specifiers.
3831      // To produce better diagnostic, we parse them when
3832      // parsing class specifier.
3833      ParsedAttributesWithRange Attributes(AttrFactory);
3834      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3835                          EnteringContext, DSContext, Attributes);
3836
3837      // If there are attributes following class specifier,
3838      // take them over and handle them here.
3839      if (!Attributes.empty()) {
3840        AttrsLastTime = true;
3841        attrs.takeAllFrom(Attributes);
3842      }
3843      continue;
3844    }
3845
3846    // enum-specifier:
3847    case tok::kw_enum:
3848      ConsumeToken();
3849      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3850      continue;
3851
3852    // cv-qualifier:
3853    case tok::kw_const:
3854      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3855                                 getLangOpts());
3856      break;
3857    case tok::kw_volatile:
3858      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3859                                 getLangOpts());
3860      break;
3861    case tok::kw_restrict:
3862      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3863                                 getLangOpts());
3864      break;
3865
3866    // C++ typename-specifier:
3867    case tok::kw_typename:
3868      if (TryAnnotateTypeOrScopeToken()) {
3869        DS.SetTypeSpecError();
3870        goto DoneWithDeclSpec;
3871      }
3872      if (!Tok.is(tok::kw_typename))
3873        continue;
3874      break;
3875
3876    // GNU typeof support.
3877    case tok::kw_typeof:
3878      ParseTypeofSpecifier(DS);
3879      continue;
3880
3881    case tok::annot_decltype:
3882      ParseDecltypeSpecifier(DS);
3883      continue;
3884
3885    case tok::annot_pragma_pack:
3886      HandlePragmaPack();
3887      continue;
3888
3889    case tok::annot_pragma_ms_pragma:
3890      HandlePragmaMSPragma();
3891      continue;
3892
3893    case tok::annot_pragma_ms_vtordisp:
3894      HandlePragmaMSVtorDisp();
3895      continue;
3896
3897    case tok::annot_pragma_ms_pointers_to_members:
3898      HandlePragmaMSPointersToMembers();
3899      continue;
3900
3901    case tok::kw___underlying_type:
3902      ParseUnderlyingTypeSpecifier(DS);
3903      continue;
3904
3905    case tok::kw__Atomic:
3906      // C11 6.7.2.4/4:
3907      //   If the _Atomic keyword is immediately followed by a left parenthesis,
3908      //   it is interpreted as a type specifier (with a type name), not as a
3909      //   type qualifier.
3910      if (!getLangOpts().C11)
3911        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3912
3913      if (NextToken().is(tok::l_paren)) {
3914        ParseAtomicSpecifier(DS);
3915        continue;
3916      }
3917      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3918                                 getLangOpts());
3919      break;
3920
3921    // OpenCL address space qualifiers:
3922    case tok::kw___generic:
3923      // generic address space is introduced only in OpenCL v2.0
3924      // see OpenCL C Spec v2.0 s6.5.5
3925      if (Actions.getLangOpts().OpenCLVersion < 200 &&
3926          !Actions.getLangOpts().OpenCLCPlusPlus) {
3927        DiagID = diag::err_opencl_unknown_type_specifier;
3928        PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3929        isInvalid = true;
3930        break;
3931      }
3932      LLVM_FALLTHROUGH;
3933    case tok::kw_private:
3934      // It's fine (but redundant) to check this for __generic on the
3935      // fallthrough path; we only form the __generic token in OpenCL mode.
3936      if (!getLangOpts().OpenCL)
3937        goto DoneWithDeclSpec;
3938      LLVM_FALLTHROUGH;
3939    case tok::kw___private:
3940    case tok::kw___global:
3941    case tok::kw___local:
3942    case tok::kw___constant:
3943    // OpenCL access qualifiers:
3944    case tok::kw___read_only:
3945    case tok::kw___write_only:
3946    case tok::kw___read_write:
3947      ParseOpenCLQualifiers(DS.getAttributes());
3948      break;
3949
3950    case tok::less:
3951      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3952      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3953      // but we support it.
3954      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
3955        goto DoneWithDeclSpec;
3956
3957      SourceLocation StartLoc = Tok.getLocation();
3958      SourceLocation EndLoc;
3959      TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3960      if (Type.isUsable()) {
3961        if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3962                               PrevSpec, DiagID, Type.get(),
3963                               Actions.getASTContext().getPrintingPolicy()))
3964          Diag(StartLoc, DiagID) << PrevSpec;
3965
3966        DS.SetRangeEnd(EndLoc);
3967      } else {
3968        DS.SetTypeSpecError();
3969      }
3970
3971      // Need to support trailing type qualifiers (e.g. "id<p> const").
3972      // If a type specifier follows, it will be diagnosed elsewhere.
3973      continue;
3974    }
3975
3976    DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
3977
3978    // If the specifier wasn't legal, issue a diagnostic.
3979    if (isInvalid) {
3980      assert(PrevSpec && "Method did not return previous specifier!");
3981      assert(DiagID);
3982
3983      if (DiagID == diag::ext_duplicate_declspec ||
3984          DiagID == diag::ext_warn_duplicate_declspec ||
3985          DiagID == diag::err_duplicate_declspec)
3986        Diag(Loc, DiagID) << PrevSpec
3987                          << FixItHint::CreateRemoval(
3988                                 SourceRange(Loc, DS.getEndLoc()));
3989      else if (DiagID == diag::err_opencl_unknown_type_specifier) {
3990        Diag(Loc, DiagID) << getLangOpts().OpenCLCPlusPlus
3991                          << getLangOpts().getOpenCLVersionTuple().getAsString()
3992                          << PrevSpec << isStorageClass;
3993      } else
3994        Diag(Loc, DiagID) << PrevSpec;
3995    }
3996
3997    if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
3998      // After an error the next token can be an annotation token.
3999      ConsumeAnyToken();
4000
4001    AttrsLastTime = false;
4002  }
4003}
4004
4005/// ParseStructDeclaration - Parse a struct declaration without the terminating
4006/// semicolon.
4007///
4008/// Note that a struct declaration refers to a declaration in a struct,
4009/// not to the declaration of a struct.
4010///
4011///       struct-declaration:
4012/// [C2x]   attributes-specifier-seq[opt]
4013///           specifier-qualifier-list struct-declarator-list
4014/// [GNU]   __extension__ struct-declaration
4015/// [GNU]   specifier-qualifier-list
4016///       struct-declarator-list:
4017///         struct-declarator
4018///         struct-declarator-list ',' struct-declarator
4019/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
4020///       struct-declarator:
4021///         declarator
4022/// [GNU]   declarator attributes[opt]
4023///         declarator[opt] ':' constant-expression
4024/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
4025///
4026void Parser::ParseStructDeclaration(
4027    ParsingDeclSpec &DS,
4028    llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
4029
4030  if (Tok.is(tok::kw___extension__)) {
4031    // __extension__ silences extension warnings in the subexpression.
4032    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
4033    ConsumeToken();
4034    return ParseStructDeclaration(DS, FieldsCallback);
4035  }
4036
4037  // Parse leading attributes.
4038  ParsedAttributesWithRange Attrs(AttrFactory);
4039  MaybeParseCXX11Attributes(Attrs);
4040  DS.takeAttributesFrom(Attrs);
4041
4042  // Parse the common specifier-qualifiers-list piece.
4043  ParseSpecifierQualifierList(DS);
4044
4045  // If there are no declarators, this is a free-standing declaration
4046  // specifier. Let the actions module cope with it.
4047  if (Tok.is(tok::semi)) {
4048    RecordDecl *AnonRecord = nullptr;
4049    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
4050                                                       DS, AnonRecord);
4051    assert(!AnonRecord && "Did not expect anonymous struct or union here");
4052    DS.complete(TheDecl);
4053    return;
4054  }
4055
4056  // Read struct-declarators until we find the semicolon.
4057  bool FirstDeclarator = true;
4058  SourceLocation CommaLoc;
4059  while (1) {
4060    ParsingFieldDeclarator DeclaratorInfo(*this, DS);
4061    DeclaratorInfo.D.setCommaLoc(CommaLoc);
4062
4063    // Attributes are only allowed here on successive declarators.
4064    if (!FirstDeclarator)
4065      MaybeParseGNUAttributes(DeclaratorInfo.D);
4066
4067    /// struct-declarator: declarator
4068    /// struct-declarator: declarator[opt] ':' constant-expression
4069    if (Tok.isNot(tok::colon)) {
4070      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4071      ColonProtectionRAIIObject X(*this);
4072      ParseDeclarator(DeclaratorInfo.D);
4073    } else
4074      DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4075
4076    if (TryConsumeToken(tok::colon)) {
4077      ExprResult Res(ParseConstantExpression());
4078      if (Res.isInvalid())
4079        SkipUntil(tok::semi, StopBeforeMatch);
4080      else
4081        DeclaratorInfo.BitfieldSize = Res.get();
4082    }
4083
4084    // If attributes exist after the declarator, parse them.
4085    MaybeParseGNUAttributes(DeclaratorInfo.D);
4086
4087    // We're done with this declarator;  invoke the callback.
4088    FieldsCallback(DeclaratorInfo);
4089
4090    // If we don't have a comma, it is either the end of the list (a ';')
4091    // or an error, bail out.
4092    if (!TryConsumeToken(tok::comma, CommaLoc))
4093      return;
4094
4095    FirstDeclarator = false;
4096  }
4097}
4098
4099/// ParseStructUnionBody
4100///       struct-contents:
4101///         struct-declaration-list
4102/// [EXT]   empty
4103/// [GNU]   "struct-declaration-list" without terminatoring ';'
4104///       struct-declaration-list:
4105///         struct-declaration
4106///         struct-declaration-list struct-declaration
4107/// [OBC]   '@' 'defs' '(' class-name ')'
4108///
4109void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
4110                                  DeclSpec::TST TagType, RecordDecl *TagDecl) {
4111  PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
4112                                      "parsing struct/union body");
4113  assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
4114
4115  BalancedDelimiterTracker T(*this, tok::l_brace);
4116  if (T.consumeOpen())
4117    return;
4118
4119  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
4120  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
4121
4122  // While we still have something to read, read the declarations in the struct.
4123  while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
4124         Tok.isNot(tok::eof)) {
4125    // Each iteration of this loop reads one struct-declaration.
4126
4127    // Check for extraneous top-level semicolon.
4128    if (Tok.is(tok::semi)) {
4129      ConsumeExtraSemi(InsideStruct, TagType);
4130      continue;
4131    }
4132
4133    // Parse _Static_assert declaration.
4134    if (Tok.is(tok::kw__Static_assert)) {
4135      SourceLocation DeclEnd;
4136      ParseStaticAssertDeclaration(DeclEnd);
4137      continue;
4138    }
4139
4140    if (Tok.is(tok::annot_pragma_pack)) {
4141      HandlePragmaPack();
4142      continue;
4143    }
4144
4145    if (Tok.is(tok::annot_pragma_align)) {
4146      HandlePragmaAlign();
4147      continue;
4148    }
4149
4150    if (Tok.is(tok::annot_pragma_openmp)) {
4151      // Result can be ignored, because it must be always empty.
4152      AccessSpecifier AS = AS_none;
4153      ParsedAttributesWithRange Attrs(AttrFactory);
4154      (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4155      continue;
4156    }
4157
4158    if (tok::isPragmaAnnotation(Tok.getKind())) {
4159      Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
4160          << DeclSpec::getSpecifierName(
4161                 TagType, Actions.getASTContext().getPrintingPolicy());
4162      ConsumeAnnotationToken();
4163      continue;
4164    }
4165
4166    if (!Tok.is(tok::at)) {
4167      auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4168        // Install the declarator into the current TagDecl.
4169        Decl *Field =
4170            Actions.ActOnField(getCurScope(), TagDecl,
4171                               FD.D.getDeclSpec().getSourceRange().getBegin(),
4172                               FD.D, FD.BitfieldSize);
4173        FD.complete(Field);
4174      };
4175
4176      // Parse all the comma separated declarators.
4177      ParsingDeclSpec DS(*this);
4178      ParseStructDeclaration(DS, CFieldCallback);
4179    } else { // Handle @defs
4180      ConsumeToken();
4181      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4182        Diag(Tok, diag::err_unexpected_at);
4183        SkipUntil(tok::semi);
4184        continue;
4185      }
4186      ConsumeToken();
4187      ExpectAndConsume(tok::l_paren);
4188      if (!Tok.is(tok::identifier)) {
4189        Diag(Tok, diag::err_expected) << tok::identifier;
4190        SkipUntil(tok::semi);
4191        continue;
4192      }
4193      SmallVector<Decl *, 16> Fields;
4194      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4195                        Tok.getIdentifierInfo(), Fields);
4196      ConsumeToken();
4197      ExpectAndConsume(tok::r_paren);
4198    }
4199
4200    if (TryConsumeToken(tok::semi))
4201      continue;
4202
4203    if (Tok.is(tok::r_brace)) {
4204      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4205      break;
4206    }
4207
4208    ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4209    // Skip to end of block or statement to avoid ext-warning on extra ';'.
4210    SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4211    // If we stopped at a ';', eat it.
4212    TryConsumeToken(tok::semi);
4213  }
4214
4215  T.consumeClose();
4216
4217  ParsedAttributes attrs(AttrFactory);
4218  // If attributes exist after struct contents, parse them.
4219  MaybeParseGNUAttributes(attrs);
4220
4221  SmallVector<Decl *, 32> FieldDecls(TagDecl->field_begin(),
4222                                     TagDecl->field_end());
4223
4224  Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4225                      T.getOpenLocation(), T.getCloseLocation(), attrs);
4226  StructScope.Exit();
4227  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4228}
4229
4230/// ParseEnumSpecifier
4231///       enum-specifier: [C99 6.7.2.2]
4232///         'enum' identifier[opt] '{' enumerator-list '}'
4233///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4234/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4235///                                                 '}' attributes[opt]
4236/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4237///                                                 '}'
4238///         'enum' identifier
4239/// [GNU]   'enum' attributes[opt] identifier
4240///
4241/// [C++11] enum-head '{' enumerator-list[opt] '}'
4242/// [C++11] enum-head '{' enumerator-list ','  '}'
4243///
4244///       enum-head: [C++11]
4245///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4246///         enum-key attribute-specifier-seq[opt] nested-name-specifier
4247///             identifier enum-base[opt]
4248///
4249///       enum-key: [C++11]
4250///         'enum'
4251///         'enum' 'class'
4252///         'enum' 'struct'
4253///
4254///       enum-base: [C++11]
4255///         ':' type-specifier-seq
4256///
4257/// [C++] elaborated-type-specifier:
4258/// [C++]   'enum' nested-name-specifier[opt] identifier
4259///
4260void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4261                                const ParsedTemplateInfo &TemplateInfo,
4262                                AccessSpecifier AS, DeclSpecContext DSC) {
4263  // Parse the tag portion of this.
4264  if (Tok.is(tok::code_completion)) {
4265    // Code completion for an enum name.
4266    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4267    return cutOffParsing();
4268  }
4269
4270  // If attributes exist after tag, parse them.
4271  ParsedAttributesWithRange attrs(AttrFactory);
4272  MaybeParseGNUAttributes(attrs);
4273  MaybeParseCXX11Attributes(attrs);
4274  MaybeParseMicrosoftDeclSpecs(attrs);
4275
4276  SourceLocation ScopedEnumKWLoc;
4277  bool IsScopedUsingClassTag = false;
4278
4279  // In C++11, recognize 'enum class' and 'enum struct'.
4280  if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
4281    Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4282                                        : diag::ext_scoped_enum);
4283    IsScopedUsingClassTag = Tok.is(tok::kw_class);
4284    ScopedEnumKWLoc = ConsumeToken();
4285
4286    // Attributes are not allowed between these keywords.  Diagnose,
4287    // but then just treat them like they appeared in the right place.
4288    ProhibitAttributes(attrs);
4289
4290    // They are allowed afterwards, though.
4291    MaybeParseGNUAttributes(attrs);
4292    MaybeParseCXX11Attributes(attrs);
4293    MaybeParseMicrosoftDeclSpecs(attrs);
4294  }
4295
4296  // C++11 [temp.explicit]p12:
4297  //   The usual access controls do not apply to names used to specify
4298  //   explicit instantiations.
4299  // We extend this to also cover explicit specializations.  Note that
4300  // we don't suppress if this turns out to be an elaborated type
4301  // specifier.
4302  bool shouldDelayDiagsInTag =
4303    (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4304     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4305  SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4306
4307  // Determine whether this declaration is permitted to have an enum-base.
4308  AllowDefiningTypeSpec AllowEnumSpecifier =
4309      isDefiningTypeSpecifierContext(DSC);
4310  bool CanBeOpaqueEnumDeclaration =
4311      DS.isEmpty() && isOpaqueEnumDeclarationContext(DSC);
4312  bool CanHaveEnumBase = (getLangOpts().CPlusPlus11 || getLangOpts().ObjC ||
4313                          getLangOpts().MicrosoftExt) &&
4314                         (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes ||
4315                          CanBeOpaqueEnumDeclaration);
4316
4317  CXXScopeSpec &SS = DS.getTypeSpecScope();
4318  if (getLangOpts().CPlusPlus) {
4319    // "enum foo : bar;" is not a potential typo for "enum foo::bar;".
4320    ColonProtectionRAIIObject X(*this);
4321
4322    CXXScopeSpec Spec;
4323    if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr,
4324                                       /*ObjectHadErrors=*/false,
4325                                       /*EnteringContext=*/true))
4326      return;
4327
4328    if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4329      Diag(Tok, diag::err_expected) << tok::identifier;
4330      if (Tok.isNot(tok::l_brace)) {
4331        // Has no name and is not a definition.
4332        // Skip the rest of this declarator, up until the comma or semicolon.
4333        SkipUntil(tok::comma, StopAtSemi);
4334        return;
4335      }
4336    }
4337
4338    SS = Spec;
4339  }
4340
4341  // Must have either 'enum name' or 'enum {...}' or (rarely) 'enum : T { ... }'.
4342  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4343      Tok.isNot(tok::colon)) {
4344    Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4345
4346    // Skip the rest of this declarator, up until the comma or semicolon.
4347    SkipUntil(tok::comma, StopAtSemi);
4348    return;
4349  }
4350
4351  // If an identifier is present, consume and remember it.
4352  IdentifierInfo *Name = nullptr;
4353  SourceLocation NameLoc;
4354  if (Tok.is(tok::identifier)) {
4355    Name = Tok.getIdentifierInfo();
4356    NameLoc = ConsumeToken();
4357  }
4358
4359  if (!Name && ScopedEnumKWLoc.isValid()) {
4360    // C++0x 7.2p2: The optional identifier shall not be omitted in the
4361    // declaration of a scoped enumeration.
4362    Diag(Tok, diag::err_scoped_enum_missing_identifier);
4363    ScopedEnumKWLoc = SourceLocation();
4364    IsScopedUsingClassTag = false;
4365  }
4366
4367  // Okay, end the suppression area.  We'll decide whether to emit the
4368  // diagnostics in a second.
4369  if (shouldDelayDiagsInTag)
4370    diagsFromTag.done();
4371
4372  TypeResult BaseType;
4373  SourceRange BaseRange;
4374
4375  bool CanBeBitfield = (getCurScope()->getFlags() & Scope::ClassScope) &&
4376                       ScopedEnumKWLoc.isInvalid() && Name;
4377
4378  // Parse the fixed underlying type.
4379  if (Tok.is(tok::colon)) {
4380    // This might be an enum-base or part of some unrelated enclosing context.
4381    //
4382    // 'enum E : base' is permitted in two circumstances:
4383    //
4384    // 1) As a defining-type-specifier, when followed by '{'.
4385    // 2) As the sole constituent of a complete declaration -- when DS is empty
4386    //    and the next token is ';'.
4387    //
4388    // The restriction to defining-type-specifiers is important to allow parsing
4389    //   a ? new enum E : int{}
4390    //   _Generic(a, enum E : int{})
4391    // properly.
4392    //
4393    // One additional consideration applies:
4394    //
4395    // C++ [dcl.enum]p1:
4396    //   A ':' following "enum nested-name-specifier[opt] identifier" within
4397    //   the decl-specifier-seq of a member-declaration is parsed as part of
4398    //   an enum-base.
4399    //
4400    // Other language modes supporting enumerations with fixed underlying types
4401    // do not have clear rules on this, so we disambiguate to determine whether
4402    // the tokens form a bit-field width or an enum-base.
4403
4404    if (CanBeBitfield && !isEnumBase(CanBeOpaqueEnumDeclaration)) {
4405      // Outside C++11, do not interpret the tokens as an enum-base if they do
4406      // not make sense as one. In C++11, it's an error if this happens.
4407      if (getLangOpts().CPlusPlus11)
4408        Diag(Tok.getLocation(), diag::err_anonymous_enum_bitfield);
4409    } else if (CanHaveEnumBase || !ColonIsSacred) {
4410      SourceLocation ColonLoc = ConsumeToken();
4411
4412      // Parse a type-specifier-seq as a type. We can't just ParseTypeName here,
4413      // because under -fms-extensions,
4414      //   enum E : int *p;
4415      // declares 'enum E : int; E *p;' not 'enum E : int*; E p;'.
4416      DeclSpec DS(AttrFactory);
4417      ParseSpecifierQualifierList(DS, AS, DeclSpecContext::DSC_type_specifier);
4418      Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
4419      BaseType = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
4420
4421      BaseRange = SourceRange(ColonLoc, DeclaratorInfo.getSourceRange().getEnd());
4422
4423      if (!getLangOpts().ObjC) {
4424        if (getLangOpts().CPlusPlus11)
4425          Diag(ColonLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type)
4426              << BaseRange;
4427        else if (getLangOpts().CPlusPlus)
4428          Diag(ColonLoc, diag::ext_cxx11_enum_fixed_underlying_type)
4429              << BaseRange;
4430        else if (getLangOpts().MicrosoftExt)
4431          Diag(ColonLoc, diag::ext_ms_c_enum_fixed_underlying_type)
4432              << BaseRange;
4433        else
4434          Diag(ColonLoc, diag::ext_clang_c_enum_fixed_underlying_type)
4435              << BaseRange;
4436      }
4437    }
4438  }
4439
4440  // There are four options here.  If we have 'friend enum foo;' then this is a
4441  // friend declaration, and cannot have an accompanying definition. If we have
4442  // 'enum foo;', then this is a forward declaration.  If we have
4443  // 'enum foo {...' then this is a definition. Otherwise we have something
4444  // like 'enum foo xyz', a reference.
4445  //
4446  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4447  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
4448  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
4449  //
4450  Sema::TagUseKind TUK;
4451  if (AllowEnumSpecifier == AllowDefiningTypeSpec::No)
4452    TUK = Sema::TUK_Reference;
4453  else if (Tok.is(tok::l_brace)) {
4454    if (DS.isFriendSpecified()) {
4455      Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4456        << SourceRange(DS.getFriendSpecLoc());
4457      ConsumeBrace();
4458      SkipUntil(tok::r_brace, StopAtSemi);
4459      // Discard any other definition-only pieces.
4460      attrs.clear();
4461      ScopedEnumKWLoc = SourceLocation();
4462      IsScopedUsingClassTag = false;
4463      BaseType = TypeResult();
4464      TUK = Sema::TUK_Friend;
4465    } else {
4466      TUK = Sema::TUK_Definition;
4467    }
4468  } else if (!isTypeSpecifier(DSC) &&
4469             (Tok.is(tok::semi) ||
4470              (Tok.isAtStartOfLine() &&
4471               !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4472    // An opaque-enum-declaration is required to be standalone (no preceding or
4473    // following tokens in the declaration). Sema enforces this separately by
4474    // diagnosing anything else in the DeclSpec.
4475    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
4476    if (Tok.isNot(tok::semi)) {
4477      // A semicolon was missing after this declaration. Diagnose and recover.
4478      ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4479      PP.EnterToken(Tok, /*IsReinject=*/true);
4480      Tok.setKind(tok::semi);
4481    }
4482  } else {
4483    TUK = Sema::TUK_Reference;
4484  }
4485
4486  bool IsElaboratedTypeSpecifier =
4487      TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend;
4488
4489  // If this is an elaborated type specifier nested in a larger declaration,
4490  // and we delayed diagnostics before, just merge them into the current pool.
4491  if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4492    diagsFromTag.redelay();
4493  }
4494
4495  MultiTemplateParamsArg TParams;
4496  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4497      TUK != Sema::TUK_Reference) {
4498    if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4499      // Skip the rest of this declarator, up until the comma or semicolon.
4500      Diag(Tok, diag::err_enum_template);
4501      SkipUntil(tok::comma, StopAtSemi);
4502      return;
4503    }
4504
4505    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4506      // Enumerations can't be explicitly instantiated.
4507      DS.SetTypeSpecError();
4508      Diag(StartLoc, diag::err_explicit_instantiation_enum);
4509      return;
4510    }
4511
4512    assert(TemplateInfo.TemplateParams && "no template parameters");
4513    TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4514                                     TemplateInfo.TemplateParams->size());
4515  }
4516
4517  if (!Name && TUK != Sema::TUK_Definition) {
4518    Diag(Tok, diag::err_enumerator_unnamed_no_def);
4519
4520    // Skip the rest of this declarator, up until the comma or semicolon.
4521    SkipUntil(tok::comma, StopAtSemi);
4522    return;
4523  }
4524
4525  // An elaborated-type-specifier has a much more constrained grammar:
4526  //
4527  //   'enum' nested-name-specifier[opt] identifier
4528  //
4529  // If we parsed any other bits, reject them now.
4530  //
4531  // MSVC and (for now at least) Objective-C permit a full enum-specifier
4532  // or opaque-enum-declaration anywhere.
4533  if (IsElaboratedTypeSpecifier && !getLangOpts().MicrosoftExt &&
4534      !getLangOpts().ObjC) {
4535    ProhibitAttributes(attrs);
4536    if (BaseType.isUsable())
4537      Diag(BaseRange.getBegin(), diag::ext_enum_base_in_type_specifier)
4538          << (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes) << BaseRange;
4539    else if (ScopedEnumKWLoc.isValid())
4540      Diag(ScopedEnumKWLoc, diag::ext_elaborated_enum_class)
4541        << FixItHint::CreateRemoval(ScopedEnumKWLoc) << IsScopedUsingClassTag;
4542  }
4543
4544  stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
4545
4546  Sema::SkipBodyInfo SkipBody;
4547  if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4548      NextToken().is(tok::identifier))
4549    SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4550                                              NextToken().getIdentifierInfo(),
4551                                              NextToken().getLocation());
4552
4553  bool Owned = false;
4554  bool IsDependent = false;
4555  const char *PrevSpec = nullptr;
4556  unsigned DiagID;
4557  Decl *TagDecl = Actions.ActOnTag(
4558      getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc,
4559      attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent,
4560      ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType,
4561      DSC == DeclSpecContext::DSC_type_specifier,
4562      DSC == DeclSpecContext::DSC_template_param ||
4563          DSC == DeclSpecContext::DSC_template_type_arg,
4564      &SkipBody);
4565
4566  if (SkipBody.ShouldSkip) {
4567    assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4568
4569    BalancedDelimiterTracker T(*this, tok::l_brace);
4570    T.consumeOpen();
4571    T.skipToEnd();
4572
4573    if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4574                           NameLoc.isValid() ? NameLoc : StartLoc,
4575                           PrevSpec, DiagID, TagDecl, Owned,
4576                           Actions.getASTContext().getPrintingPolicy()))
4577      Diag(StartLoc, DiagID) << PrevSpec;
4578    return;
4579  }
4580
4581  if (IsDependent) {
4582    // This enum has a dependent nested-name-specifier. Handle it as a
4583    // dependent tag.
4584    if (!Name) {
4585      DS.SetTypeSpecError();
4586      Diag(Tok, diag::err_expected_type_name_after_typename);
4587      return;
4588    }
4589
4590    TypeResult Type = Actions.ActOnDependentTag(
4591        getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4592    if (Type.isInvalid()) {
4593      DS.SetTypeSpecError();
4594      return;
4595    }
4596
4597    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4598                           NameLoc.isValid() ? NameLoc : StartLoc,
4599                           PrevSpec, DiagID, Type.get(),
4600                           Actions.getASTContext().getPrintingPolicy()))
4601      Diag(StartLoc, DiagID) << PrevSpec;
4602
4603    return;
4604  }
4605
4606  if (!TagDecl) {
4607    // The action failed to produce an enumeration tag. If this is a
4608    // definition, consume the entire definition.
4609    if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4610      ConsumeBrace();
4611      SkipUntil(tok::r_brace, StopAtSemi);
4612    }
4613
4614    DS.SetTypeSpecError();
4615    return;
4616  }
4617
4618  if (Tok.is(tok::l_brace) && TUK == Sema::TUK_Definition) {
4619    Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
4620    ParseEnumBody(StartLoc, D);
4621    if (SkipBody.CheckSameAsPrevious &&
4622        !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) {
4623      DS.SetTypeSpecError();
4624      return;
4625    }
4626  }
4627
4628  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4629                         NameLoc.isValid() ? NameLoc : StartLoc,
4630                         PrevSpec, DiagID, TagDecl, Owned,
4631                         Actions.getASTContext().getPrintingPolicy()))
4632    Diag(StartLoc, DiagID) << PrevSpec;
4633}
4634
4635/// ParseEnumBody - Parse a {} enclosed enumerator-list.
4636///       enumerator-list:
4637///         enumerator
4638///         enumerator-list ',' enumerator
4639///       enumerator:
4640///         enumeration-constant attributes[opt]
4641///         enumeration-constant attributes[opt] '=' constant-expression
4642///       enumeration-constant:
4643///         identifier
4644///
4645void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4646  // Enter the scope of the enum body and start the definition.
4647  ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4648  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4649
4650  BalancedDelimiterTracker T(*this, tok::l_brace);
4651  T.consumeOpen();
4652
4653  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4654  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4655    Diag(Tok, diag::err_empty_enum);
4656
4657  SmallVector<Decl *, 32> EnumConstantDecls;
4658  SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4659
4660  Decl *LastEnumConstDecl = nullptr;
4661
4662  // Parse the enumerator-list.
4663  while (Tok.isNot(tok::r_brace)) {
4664    // Parse enumerator. If failed, try skipping till the start of the next
4665    // enumerator definition.
4666    if (Tok.isNot(tok::identifier)) {
4667      Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4668      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4669          TryConsumeToken(tok::comma))
4670        continue;
4671      break;
4672    }
4673    IdentifierInfo *Ident = Tok.getIdentifierInfo();
4674    SourceLocation IdentLoc = ConsumeToken();
4675
4676    // If attributes exist after the enumerator, parse them.
4677    ParsedAttributesWithRange attrs(AttrFactory);
4678    MaybeParseGNUAttributes(attrs);
4679    ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4680    if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) {
4681      if (getLangOpts().CPlusPlus)
4682        Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
4683                                    ? diag::warn_cxx14_compat_ns_enum_attribute
4684                                    : diag::ext_ns_enum_attribute)
4685            << 1 /*enumerator*/;
4686      ParseCXX11Attributes(attrs);
4687    }
4688
4689    SourceLocation EqualLoc;
4690    ExprResult AssignedVal;
4691    EnumAvailabilityDiags.emplace_back(*this);
4692
4693    EnterExpressionEvaluationContext ConstantEvaluated(
4694        Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4695    if (TryConsumeToken(tok::equal, EqualLoc)) {
4696      AssignedVal = ParseConstantExpressionInExprEvalContext();
4697      if (AssignedVal.isInvalid())
4698        SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4699    }
4700
4701    // Install the enumerator constant into EnumDecl.
4702    Decl *EnumConstDecl = Actions.ActOnEnumConstant(
4703        getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
4704        EqualLoc, AssignedVal.get());
4705    EnumAvailabilityDiags.back().done();
4706
4707    EnumConstantDecls.push_back(EnumConstDecl);
4708    LastEnumConstDecl = EnumConstDecl;
4709
4710    if (Tok.is(tok::identifier)) {
4711      // We're missing a comma between enumerators.
4712      SourceLocation Loc = getEndOfPreviousToken();
4713      Diag(Loc, diag::err_enumerator_list_missing_comma)
4714        << FixItHint::CreateInsertion(Loc, ", ");
4715      continue;
4716    }
4717
4718    // Emumerator definition must be finished, only comma or r_brace are
4719    // allowed here.
4720    SourceLocation CommaLoc;
4721    if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4722      if (EqualLoc.isValid())
4723        Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4724                                                           << tok::comma;
4725      else
4726        Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4727      if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4728        if (TryConsumeToken(tok::comma, CommaLoc))
4729          continue;
4730      } else {
4731        break;
4732      }
4733    }
4734
4735    // If comma is followed by r_brace, emit appropriate warning.
4736    if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4737      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4738        Diag(CommaLoc, getLangOpts().CPlusPlus ?
4739               diag::ext_enumerator_list_comma_cxx :
4740               diag::ext_enumerator_list_comma_c)
4741          << FixItHint::CreateRemoval(CommaLoc);
4742      else if (getLangOpts().CPlusPlus11)
4743        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4744          << FixItHint::CreateRemoval(CommaLoc);
4745      break;
4746    }
4747  }
4748
4749  // Eat the }.
4750  T.consumeClose();
4751
4752  // If attributes exist after the identifier list, parse them.
4753  ParsedAttributes attrs(AttrFactory);
4754  MaybeParseGNUAttributes(attrs);
4755
4756  Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
4757                        getCurScope(), attrs);
4758
4759  // Now handle enum constant availability diagnostics.
4760  assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4761  for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4762    ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
4763    EnumAvailabilityDiags[i].redelay();
4764    PD.complete(EnumConstantDecls[i]);
4765  }
4766
4767  EnumScope.Exit();
4768  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
4769
4770  // The next token must be valid after an enum definition. If not, a ';'
4771  // was probably forgotten.
4772  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4773  if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4774    ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4775    // Push this token back into the preprocessor and change our current token
4776    // to ';' so that the rest of the code recovers as though there were an
4777    // ';' after the definition.
4778    PP.EnterToken(Tok, /*IsReinject=*/true);
4779    Tok.setKind(tok::semi);
4780  }
4781}
4782
4783/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4784/// is definitely a type-specifier.  Return false if it isn't part of a type
4785/// specifier or if we're not sure.
4786bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4787  switch (Tok.getKind()) {
4788  default: return false;
4789    // type-specifiers
4790  case tok::kw_short:
4791  case tok::kw_long:
4792  case tok::kw___int64:
4793  case tok::kw___int128:
4794  case tok::kw_signed:
4795  case tok::kw_unsigned:
4796  case tok::kw__Complex:
4797  case tok::kw__Imaginary:
4798  case tok::kw_void:
4799  case tok::kw_char:
4800  case tok::kw_wchar_t:
4801  case tok::kw_char8_t:
4802  case tok::kw_char16_t:
4803  case tok::kw_char32_t:
4804  case tok::kw_int:
4805  case tok::kw__ExtInt:
4806  case tok::kw___bf16:
4807  case tok::kw_half:
4808  case tok::kw_float:
4809  case tok::kw_double:
4810  case tok::kw__Accum:
4811  case tok::kw__Fract:
4812  case tok::kw__Float16:
4813  case tok::kw___float128:
4814  case tok::kw_bool:
4815  case tok::kw__Bool:
4816  case tok::kw__Decimal32:
4817  case tok::kw__Decimal64:
4818  case tok::kw__Decimal128:
4819  case tok::kw___vector:
4820#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4821#include "clang/Basic/OpenCLImageTypes.def"
4822
4823    // struct-or-union-specifier (C99) or class-specifier (C++)
4824  case tok::kw_class:
4825  case tok::kw_struct:
4826  case tok::kw___interface:
4827  case tok::kw_union:
4828    // enum-specifier
4829  case tok::kw_enum:
4830
4831    // typedef-name
4832  case tok::annot_typename:
4833    return true;
4834  }
4835}
4836
4837/// isTypeSpecifierQualifier - Return true if the current token could be the
4838/// start of a specifier-qualifier-list.
4839bool Parser::isTypeSpecifierQualifier() {
4840  switch (Tok.getKind()) {
4841  default: return false;
4842
4843  case tok::identifier:   // foo::bar
4844    if (TryAltiVecVectorToken())
4845      return true;
4846    LLVM_FALLTHROUGH;
4847  case tok::kw_typename:  // typename T::type
4848    // Annotate typenames and C++ scope specifiers.  If we get one, just
4849    // recurse to handle whatever we get.
4850    if (TryAnnotateTypeOrScopeToken())
4851      return true;
4852    if (Tok.is(tok::identifier))
4853      return false;
4854    return isTypeSpecifierQualifier();
4855
4856  case tok::coloncolon:   // ::foo::bar
4857    if (NextToken().is(tok::kw_new) ||    // ::new
4858        NextToken().is(tok::kw_delete))   // ::delete
4859      return false;
4860
4861    if (TryAnnotateTypeOrScopeToken())
4862      return true;
4863    return isTypeSpecifierQualifier();
4864
4865    // GNU attributes support.
4866  case tok::kw___attribute:
4867    // GNU typeof support.
4868  case tok::kw_typeof:
4869
4870    // type-specifiers
4871  case tok::kw_short:
4872  case tok::kw_long:
4873  case tok::kw___int64:
4874  case tok::kw___int128:
4875  case tok::kw_signed:
4876  case tok::kw_unsigned:
4877  case tok::kw__Complex:
4878  case tok::kw__Imaginary:
4879  case tok::kw_void:
4880  case tok::kw_char:
4881  case tok::kw_wchar_t:
4882  case tok::kw_char8_t:
4883  case tok::kw_char16_t:
4884  case tok::kw_char32_t:
4885  case tok::kw_int:
4886  case tok::kw__ExtInt:
4887  case tok::kw_half:
4888  case tok::kw___bf16:
4889  case tok::kw_float:
4890  case tok::kw_double:
4891  case tok::kw__Accum:
4892  case tok::kw__Fract:
4893  case tok::kw__Float16:
4894  case tok::kw___float128:
4895  case tok::kw_bool:
4896  case tok::kw__Bool:
4897  case tok::kw__Decimal32:
4898  case tok::kw__Decimal64:
4899  case tok::kw__Decimal128:
4900  case tok::kw___vector:
4901#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4902#include "clang/Basic/OpenCLImageTypes.def"
4903
4904    // struct-or-union-specifier (C99) or class-specifier (C++)
4905  case tok::kw_class:
4906  case tok::kw_struct:
4907  case tok::kw___interface:
4908  case tok::kw_union:
4909    // enum-specifier
4910  case tok::kw_enum:
4911
4912    // type-qualifier
4913  case tok::kw_const:
4914  case tok::kw_volatile:
4915  case tok::kw_restrict:
4916  case tok::kw__Sat:
4917
4918    // Debugger support.
4919  case tok::kw___unknown_anytype:
4920
4921    // typedef-name
4922  case tok::annot_typename:
4923    return true;
4924
4925    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4926  case tok::less:
4927    return getLangOpts().ObjC;
4928
4929  case tok::kw___cdecl:
4930  case tok::kw___stdcall:
4931  case tok::kw___fastcall:
4932  case tok::kw___thiscall:
4933  case tok::kw___regcall:
4934  case tok::kw___vectorcall:
4935  case tok::kw___w64:
4936  case tok::kw___ptr64:
4937  case tok::kw___ptr32:
4938  case tok::kw___pascal:
4939  case tok::kw___unaligned:
4940
4941  case tok::kw__Nonnull:
4942  case tok::kw__Nullable:
4943  case tok::kw__Null_unspecified:
4944
4945  case tok::kw___kindof:
4946
4947  case tok::kw___private:
4948  case tok::kw___local:
4949  case tok::kw___global:
4950  case tok::kw___constant:
4951  case tok::kw___generic:
4952  case tok::kw___read_only:
4953  case tok::kw___read_write:
4954  case tok::kw___write_only:
4955    return true;
4956
4957  case tok::kw_private:
4958    return getLangOpts().OpenCL;
4959
4960  // C11 _Atomic
4961  case tok::kw__Atomic:
4962    return true;
4963  }
4964}
4965
4966/// isDeclarationSpecifier() - Return true if the current token is part of a
4967/// declaration specifier.
4968///
4969/// \param DisambiguatingWithExpression True to indicate that the purpose of
4970/// this check is to disambiguate between an expression and a declaration.
4971bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4972  switch (Tok.getKind()) {
4973  default: return false;
4974
4975  case tok::kw_pipe:
4976    return (getLangOpts().OpenCL && getLangOpts().OpenCLVersion >= 200) ||
4977           getLangOpts().OpenCLCPlusPlus;
4978
4979  case tok::identifier:   // foo::bar
4980    // Unfortunate hack to support "Class.factoryMethod" notation.
4981    if (getLangOpts().ObjC && NextToken().is(tok::period))
4982      return false;
4983    if (TryAltiVecVectorToken())
4984      return true;
4985    LLVM_FALLTHROUGH;
4986  case tok::kw_decltype: // decltype(T())::type
4987  case tok::kw_typename: // typename T::type
4988    // Annotate typenames and C++ scope specifiers.  If we get one, just
4989    // recurse to handle whatever we get.
4990    if (TryAnnotateTypeOrScopeToken())
4991      return true;
4992    if (TryAnnotateTypeConstraint())
4993      return true;
4994    if (Tok.is(tok::identifier))
4995      return false;
4996
4997    // If we're in Objective-C and we have an Objective-C class type followed
4998    // by an identifier and then either ':' or ']', in a place where an
4999    // expression is permitted, then this is probably a class message send
5000    // missing the initial '['. In this case, we won't consider this to be
5001    // the start of a declaration.
5002    if (DisambiguatingWithExpression &&
5003        isStartOfObjCClassMessageMissingOpenBracket())
5004      return false;
5005
5006    return isDeclarationSpecifier();
5007
5008  case tok::coloncolon:   // ::foo::bar
5009    if (NextToken().is(tok::kw_new) ||    // ::new
5010        NextToken().is(tok::kw_delete))   // ::delete
5011      return false;
5012
5013    // Annotate typenames and C++ scope specifiers.  If we get one, just
5014    // recurse to handle whatever we get.
5015    if (TryAnnotateTypeOrScopeToken())
5016      return true;
5017    return isDeclarationSpecifier();
5018
5019    // storage-class-specifier
5020  case tok::kw_typedef:
5021  case tok::kw_extern:
5022  case tok::kw___private_extern__:
5023  case tok::kw_static:
5024  case tok::kw_auto:
5025  case tok::kw___auto_type:
5026  case tok::kw_register:
5027  case tok::kw___thread:
5028  case tok::kw_thread_local:
5029  case tok::kw__Thread_local:
5030
5031    // Modules
5032  case tok::kw___module_private__:
5033
5034    // Debugger support
5035  case tok::kw___unknown_anytype:
5036
5037    // type-specifiers
5038  case tok::kw_short:
5039  case tok::kw_long:
5040  case tok::kw___int64:
5041  case tok::kw___int128:
5042  case tok::kw_signed:
5043  case tok::kw_unsigned:
5044  case tok::kw__Complex:
5045  case tok::kw__Imaginary:
5046  case tok::kw_void:
5047  case tok::kw_char:
5048  case tok::kw_wchar_t:
5049  case tok::kw_char8_t:
5050  case tok::kw_char16_t:
5051  case tok::kw_char32_t:
5052
5053  case tok::kw_int:
5054  case tok::kw__ExtInt:
5055  case tok::kw_half:
5056  case tok::kw___bf16:
5057  case tok::kw_float:
5058  case tok::kw_double:
5059  case tok::kw__Accum:
5060  case tok::kw__Fract:
5061  case tok::kw__Float16:
5062  case tok::kw___float128:
5063  case tok::kw_bool:
5064  case tok::kw__Bool:
5065  case tok::kw__Decimal32:
5066  case tok::kw__Decimal64:
5067  case tok::kw__Decimal128:
5068  case tok::kw___vector:
5069
5070    // struct-or-union-specifier (C99) or class-specifier (C++)
5071  case tok::kw_class:
5072  case tok::kw_struct:
5073  case tok::kw_union:
5074  case tok::kw___interface:
5075    // enum-specifier
5076  case tok::kw_enum:
5077
5078    // type-qualifier
5079  case tok::kw_const:
5080  case tok::kw_volatile:
5081  case tok::kw_restrict:
5082  case tok::kw__Sat:
5083
5084    // function-specifier
5085  case tok::kw_inline:
5086  case tok::kw_virtual:
5087  case tok::kw_explicit:
5088  case tok::kw__Noreturn:
5089
5090    // alignment-specifier
5091  case tok::kw__Alignas:
5092
5093    // friend keyword.
5094  case tok::kw_friend:
5095
5096    // static_assert-declaration
5097  case tok::kw__Static_assert:
5098
5099    // GNU typeof support.
5100  case tok::kw_typeof:
5101
5102    // GNU attributes.
5103  case tok::kw___attribute:
5104
5105    // C++11 decltype and constexpr.
5106  case tok::annot_decltype:
5107  case tok::kw_constexpr:
5108
5109    // C++20 consteval and constinit.
5110  case tok::kw_consteval:
5111  case tok::kw_constinit:
5112
5113    // C11 _Atomic
5114  case tok::kw__Atomic:
5115    return true;
5116
5117    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5118  case tok::less:
5119    return getLangOpts().ObjC;
5120
5121    // typedef-name
5122  case tok::annot_typename:
5123    return !DisambiguatingWithExpression ||
5124           !isStartOfObjCClassMessageMissingOpenBracket();
5125
5126    // placeholder-type-specifier
5127  case tok::annot_template_id: {
5128    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
5129    if (TemplateId->hasInvalidName())
5130      return true;
5131    // FIXME: What about type templates that have only been annotated as
5132    // annot_template_id, not as annot_typename?
5133    return isTypeConstraintAnnotation() &&
5134           (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype));
5135  }
5136
5137  case tok::annot_cxxscope: {
5138    TemplateIdAnnotation *TemplateId =
5139        NextToken().is(tok::annot_template_id)
5140            ? takeTemplateIdAnnotation(NextToken())
5141            : nullptr;
5142    if (TemplateId && TemplateId->hasInvalidName())
5143      return true;
5144    // FIXME: What about type templates that have only been annotated as
5145    // annot_template_id, not as annot_typename?
5146    if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint())
5147      return true;
5148    return isTypeConstraintAnnotation() &&
5149        GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype);
5150  }
5151
5152  case tok::kw___declspec:
5153  case tok::kw___cdecl:
5154  case tok::kw___stdcall:
5155  case tok::kw___fastcall:
5156  case tok::kw___thiscall:
5157  case tok::kw___regcall:
5158  case tok::kw___vectorcall:
5159  case tok::kw___w64:
5160  case tok::kw___sptr:
5161  case tok::kw___uptr:
5162  case tok::kw___ptr64:
5163  case tok::kw___ptr32:
5164  case tok::kw___forceinline:
5165  case tok::kw___pascal:
5166  case tok::kw___unaligned:
5167
5168  case tok::kw__Nonnull:
5169  case tok::kw__Nullable:
5170  case tok::kw__Null_unspecified:
5171
5172  case tok::kw___kindof:
5173
5174  case tok::kw___private:
5175  case tok::kw___local:
5176  case tok::kw___global:
5177  case tok::kw___constant:
5178  case tok::kw___generic:
5179  case tok::kw___read_only:
5180  case tok::kw___read_write:
5181  case tok::kw___write_only:
5182#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5183#include "clang/Basic/OpenCLImageTypes.def"
5184
5185    return true;
5186
5187  case tok::kw_private:
5188    return getLangOpts().OpenCL;
5189  }
5190}
5191
5192bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) {
5193  TentativeParsingAction TPA(*this);
5194
5195  // Parse the C++ scope specifier.
5196  CXXScopeSpec SS;
5197  if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
5198                                     /*ObjectHadErrors=*/false,
5199                                     /*EnteringContext=*/true)) {
5200    TPA.Revert();
5201    return false;
5202  }
5203
5204  // Parse the constructor name.
5205  if (Tok.is(tok::identifier)) {
5206    // We already know that we have a constructor name; just consume
5207    // the token.
5208    ConsumeToken();
5209  } else if (Tok.is(tok::annot_template_id)) {
5210    ConsumeAnnotationToken();
5211  } else {
5212    TPA.Revert();
5213    return false;
5214  }
5215
5216  // There may be attributes here, appertaining to the constructor name or type
5217  // we just stepped past.
5218  SkipCXX11Attributes();
5219
5220  // Current class name must be followed by a left parenthesis.
5221  if (Tok.isNot(tok::l_paren)) {
5222    TPA.Revert();
5223    return false;
5224  }
5225  ConsumeParen();
5226
5227  // A right parenthesis, or ellipsis followed by a right parenthesis signals
5228  // that we have a constructor.
5229  if (Tok.is(tok::r_paren) ||
5230      (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5231    TPA.Revert();
5232    return true;
5233  }
5234
5235  // A C++11 attribute here signals that we have a constructor, and is an
5236  // attribute on the first constructor parameter.
5237  if (getLangOpts().CPlusPlus11 &&
5238      isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5239                                /*OuterMightBeMessageSend*/ true)) {
5240    TPA.Revert();
5241    return true;
5242  }
5243
5244  // If we need to, enter the specified scope.
5245  DeclaratorScopeObj DeclScopeObj(*this, SS);
5246  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5247    DeclScopeObj.EnterDeclaratorScope();
5248
5249  // Optionally skip Microsoft attributes.
5250  ParsedAttributes Attrs(AttrFactory);
5251  MaybeParseMicrosoftAttributes(Attrs);
5252
5253  // Check whether the next token(s) are part of a declaration
5254  // specifier, in which case we have the start of a parameter and,
5255  // therefore, we know that this is a constructor.
5256  bool IsConstructor = false;
5257  if (isDeclarationSpecifier())
5258    IsConstructor = true;
5259  else if (Tok.is(tok::identifier) ||
5260           (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5261    // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5262    // This might be a parenthesized member name, but is more likely to
5263    // be a constructor declaration with an invalid argument type. Keep
5264    // looking.
5265    if (Tok.is(tok::annot_cxxscope))
5266      ConsumeAnnotationToken();
5267    ConsumeToken();
5268
5269    // If this is not a constructor, we must be parsing a declarator,
5270    // which must have one of the following syntactic forms (see the
5271    // grammar extract at the start of ParseDirectDeclarator):
5272    switch (Tok.getKind()) {
5273    case tok::l_paren:
5274      // C(X   (   int));
5275    case tok::l_square:
5276      // C(X   [   5]);
5277      // C(X   [   [attribute]]);
5278    case tok::coloncolon:
5279      // C(X   ::   Y);
5280      // C(X   ::   *p);
5281      // Assume this isn't a constructor, rather than assuming it's a
5282      // constructor with an unnamed parameter of an ill-formed type.
5283      break;
5284
5285    case tok::r_paren:
5286      // C(X   )
5287
5288      // Skip past the right-paren and any following attributes to get to
5289      // the function body or trailing-return-type.
5290      ConsumeParen();
5291      SkipCXX11Attributes();
5292
5293      if (DeductionGuide) {
5294        // C(X) -> ... is a deduction guide.
5295        IsConstructor = Tok.is(tok::arrow);
5296        break;
5297      }
5298      if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5299        // Assume these were meant to be constructors:
5300        //   C(X)   :    (the name of a bit-field cannot be parenthesized).
5301        //   C(X)   try  (this is otherwise ill-formed).
5302        IsConstructor = true;
5303      }
5304      if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5305        // If we have a constructor name within the class definition,
5306        // assume these were meant to be constructors:
5307        //   C(X)   {
5308        //   C(X)   ;
5309        // ... because otherwise we would be declaring a non-static data
5310        // member that is ill-formed because it's of the same type as its
5311        // surrounding class.
5312        //
5313        // FIXME: We can actually do this whether or not the name is qualified,
5314        // because if it is qualified in this context it must be being used as
5315        // a constructor name.
5316        // currently, so we're somewhat conservative here.
5317        IsConstructor = IsUnqualified;
5318      }
5319      break;
5320
5321    default:
5322      IsConstructor = true;
5323      break;
5324    }
5325  }
5326
5327  TPA.Revert();
5328  return IsConstructor;
5329}
5330
5331/// ParseTypeQualifierListOpt
5332///          type-qualifier-list: [C99 6.7.5]
5333///            type-qualifier
5334/// [vendor]   attributes
5335///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5336///            type-qualifier-list type-qualifier
5337/// [vendor]   type-qualifier-list attributes
5338///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5339/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
5340///              [ only if AttReqs & AR_CXX11AttributesParsed ]
5341/// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
5342/// AttrRequirements bitmask values.
5343void Parser::ParseTypeQualifierListOpt(
5344    DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
5345    bool IdentifierRequired,
5346    Optional<llvm::function_ref<void()>> CodeCompletionHandler) {
5347  if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) &&
5348      isCXX11AttributeSpecifier()) {
5349    ParsedAttributesWithRange attrs(AttrFactory);
5350    ParseCXX11Attributes(attrs);
5351    DS.takeAttributesFrom(attrs);
5352  }
5353
5354  SourceLocation EndLoc;
5355
5356  while (1) {
5357    bool isInvalid = false;
5358    const char *PrevSpec = nullptr;
5359    unsigned DiagID = 0;
5360    SourceLocation Loc = Tok.getLocation();
5361
5362    switch (Tok.getKind()) {
5363    case tok::code_completion:
5364      if (CodeCompletionHandler)
5365        (*CodeCompletionHandler)();
5366      else
5367        Actions.CodeCompleteTypeQualifiers(DS);
5368      return cutOffParsing();
5369
5370    case tok::kw_const:
5371      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
5372                                 getLangOpts());
5373      break;
5374    case tok::kw_volatile:
5375      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
5376                                 getLangOpts());
5377      break;
5378    case tok::kw_restrict:
5379      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
5380                                 getLangOpts());
5381      break;
5382    case tok::kw__Atomic:
5383      if (!AtomicAllowed)
5384        goto DoneWithTypeQuals;
5385      if (!getLangOpts().C11)
5386        Diag(Tok, diag::ext_c11_feature) << Tok.getName();
5387      isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
5388                                 getLangOpts());
5389      break;
5390
5391    // OpenCL qualifiers:
5392    case tok::kw_private:
5393      if (!getLangOpts().OpenCL)
5394        goto DoneWithTypeQuals;
5395      LLVM_FALLTHROUGH;
5396    case tok::kw___private:
5397    case tok::kw___global:
5398    case tok::kw___local:
5399    case tok::kw___constant:
5400    case tok::kw___generic:
5401    case tok::kw___read_only:
5402    case tok::kw___write_only:
5403    case tok::kw___read_write:
5404      ParseOpenCLQualifiers(DS.getAttributes());
5405      break;
5406
5407    case tok::kw___unaligned:
5408      isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
5409                                 getLangOpts());
5410      break;
5411    case tok::kw___uptr:
5412      // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
5413      // with the MS modifier keyword.
5414      if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
5415          IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
5416        if (TryKeywordIdentFallback(false))
5417          continue;
5418      }
5419      LLVM_FALLTHROUGH;
5420    case tok::kw___sptr:
5421    case tok::kw___w64:
5422    case tok::kw___ptr64:
5423    case tok::kw___ptr32:
5424    case tok::kw___cdecl:
5425    case tok::kw___stdcall:
5426    case tok::kw___fastcall:
5427    case tok::kw___thiscall:
5428    case tok::kw___regcall:
5429    case tok::kw___vectorcall:
5430      if (AttrReqs & AR_DeclspecAttributesParsed) {
5431        ParseMicrosoftTypeAttributes(DS.getAttributes());
5432        continue;
5433      }
5434      goto DoneWithTypeQuals;
5435    case tok::kw___pascal:
5436      if (AttrReqs & AR_VendorAttributesParsed) {
5437        ParseBorlandTypeAttributes(DS.getAttributes());
5438        continue;
5439      }
5440      goto DoneWithTypeQuals;
5441
5442    // Nullability type specifiers.
5443    case tok::kw__Nonnull:
5444    case tok::kw__Nullable:
5445    case tok::kw__Null_unspecified:
5446      ParseNullabilityTypeSpecifiers(DS.getAttributes());
5447      continue;
5448
5449    // Objective-C 'kindof' types.
5450    case tok::kw___kindof:
5451      DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
5452                                nullptr, 0, ParsedAttr::AS_Keyword);
5453      (void)ConsumeToken();
5454      continue;
5455
5456    case tok::kw___attribute:
5457      if (AttrReqs & AR_GNUAttributesParsedAndRejected)
5458        // When GNU attributes are expressly forbidden, diagnose their usage.
5459        Diag(Tok, diag::err_attributes_not_allowed);
5460
5461      // Parse the attributes even if they are rejected to ensure that error
5462      // recovery is graceful.
5463      if (AttrReqs & AR_GNUAttributesParsed ||
5464          AttrReqs & AR_GNUAttributesParsedAndRejected) {
5465        ParseGNUAttributes(DS.getAttributes());
5466        continue; // do *not* consume the next token!
5467      }
5468      // otherwise, FALL THROUGH!
5469      LLVM_FALLTHROUGH;
5470    default:
5471      DoneWithTypeQuals:
5472      // If this is not a type-qualifier token, we're done reading type
5473      // qualifiers.  First verify that DeclSpec's are consistent.
5474      DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
5475      if (EndLoc.isValid())
5476        DS.SetRangeEnd(EndLoc);
5477      return;
5478    }
5479
5480    // If the specifier combination wasn't legal, issue a diagnostic.
5481    if (isInvalid) {
5482      assert(PrevSpec && "Method did not return previous specifier!");
5483      Diag(Tok, DiagID) << PrevSpec;
5484    }
5485    EndLoc = ConsumeToken();
5486  }
5487}
5488
5489/// ParseDeclarator - Parse and verify a newly-initialized declarator.
5490///
5491void Parser::ParseDeclarator(Declarator &D) {
5492  /// This implements the 'declarator' production in the C grammar, then checks
5493  /// for well-formedness and issues diagnostics.
5494  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5495}
5496
5497static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
5498                               DeclaratorContext TheContext) {
5499  if (Kind == tok::star || Kind == tok::caret)
5500    return true;
5501
5502  if (Kind == tok::kw_pipe &&
5503      ((Lang.OpenCL && Lang.OpenCLVersion >= 200) || Lang.OpenCLCPlusPlus))
5504    return true;
5505
5506  if (!Lang.CPlusPlus)
5507    return false;
5508
5509  if (Kind == tok::amp)
5510    return true;
5511
5512  // We parse rvalue refs in C++03, because otherwise the errors are scary.
5513  // But we must not parse them in conversion-type-ids and new-type-ids, since
5514  // those can be legitimately followed by a && operator.
5515  // (The same thing can in theory happen after a trailing-return-type, but
5516  // since those are a C++11 feature, there is no rejects-valid issue there.)
5517  if (Kind == tok::ampamp)
5518    return Lang.CPlusPlus11 ||
5519           (TheContext != DeclaratorContext::ConversionIdContext &&
5520            TheContext != DeclaratorContext::CXXNewContext);
5521
5522  return false;
5523}
5524
5525// Indicates whether the given declarator is a pipe declarator.
5526static bool isPipeDeclerator(const Declarator &D) {
5527  const unsigned NumTypes = D.getNumTypeObjects();
5528
5529  for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
5530    if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
5531      return true;
5532
5533  return false;
5534}
5535
5536/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
5537/// is parsed by the function passed to it. Pass null, and the direct-declarator
5538/// isn't parsed at all, making this function effectively parse the C++
5539/// ptr-operator production.
5540///
5541/// If the grammar of this construct is extended, matching changes must also be
5542/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
5543/// isConstructorDeclarator.
5544///
5545///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
5546/// [C]     pointer[opt] direct-declarator
5547/// [C++]   direct-declarator
5548/// [C++]   ptr-operator declarator
5549///
5550///       pointer: [C99 6.7.5]
5551///         '*' type-qualifier-list[opt]
5552///         '*' type-qualifier-list[opt] pointer
5553///
5554///       ptr-operator:
5555///         '*' cv-qualifier-seq[opt]
5556///         '&'
5557/// [C++0x] '&&'
5558/// [GNU]   '&' restrict[opt] attributes[opt]
5559/// [GNU?]  '&&' restrict[opt] attributes[opt]
5560///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
5561void Parser::ParseDeclaratorInternal(Declarator &D,
5562                                     DirectDeclParseFunction DirectDeclParser) {
5563  if (Diags.hasAllExtensionsSilenced())
5564    D.setExtension();
5565
5566  // C++ member pointers start with a '::' or a nested-name.
5567  // Member pointers get special handling, since there's no place for the
5568  // scope spec in the generic path below.
5569  if (getLangOpts().CPlusPlus &&
5570      (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5571       (Tok.is(tok::identifier) &&
5572        (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5573       Tok.is(tok::annot_cxxscope))) {
5574    bool EnteringContext =
5575        D.getContext() == DeclaratorContext::FileContext ||
5576        D.getContext() == DeclaratorContext::MemberContext;
5577    CXXScopeSpec SS;
5578    ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
5579                                   /*ObjectHadErrors=*/false, EnteringContext);
5580
5581    if (SS.isNotEmpty()) {
5582      if (Tok.isNot(tok::star)) {
5583        // The scope spec really belongs to the direct-declarator.
5584        if (D.mayHaveIdentifier())
5585          D.getCXXScopeSpec() = SS;
5586        else
5587          AnnotateScopeToken(SS, true);
5588
5589        if (DirectDeclParser)
5590          (this->*DirectDeclParser)(D);
5591        return;
5592      }
5593
5594      SourceLocation StarLoc = ConsumeToken();
5595      D.SetRangeEnd(StarLoc);
5596      DeclSpec DS(AttrFactory);
5597      ParseTypeQualifierListOpt(DS);
5598      D.ExtendWithDeclSpec(DS);
5599
5600      // Recurse to parse whatever is left.
5601      ParseDeclaratorInternal(D, DirectDeclParser);
5602
5603      // Sema will have to catch (syntactically invalid) pointers into global
5604      // scope. It has to catch pointers into namespace scope anyway.
5605      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
5606                        SS, DS.getTypeQualifiers(), StarLoc, DS.getEndLoc()),
5607                    std::move(DS.getAttributes()),
5608                    /* Don't replace range end. */ SourceLocation());
5609      return;
5610    }
5611  }
5612
5613  tok::TokenKind Kind = Tok.getKind();
5614
5615  if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5616    DeclSpec DS(AttrFactory);
5617    ParseTypeQualifierListOpt(DS);
5618
5619    D.AddTypeInfo(
5620        DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
5621        std::move(DS.getAttributes()), SourceLocation());
5622  }
5623
5624  // Not a pointer, C++ reference, or block.
5625  if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5626    if (DirectDeclParser)
5627      (this->*DirectDeclParser)(D);
5628    return;
5629  }
5630
5631  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5632  // '&&' -> rvalue reference
5633  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
5634  D.SetRangeEnd(Loc);
5635
5636  if (Kind == tok::star || Kind == tok::caret) {
5637    // Is a pointer.
5638    DeclSpec DS(AttrFactory);
5639
5640    // GNU attributes are not allowed here in a new-type-id, but Declspec and
5641    // C++11 attributes are allowed.
5642    unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5643                    ((D.getContext() != DeclaratorContext::CXXNewContext)
5644                         ? AR_GNUAttributesParsed
5645                         : AR_GNUAttributesParsedAndRejected);
5646    ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5647    D.ExtendWithDeclSpec(DS);
5648
5649    // Recursively parse the declarator.
5650    ParseDeclaratorInternal(D, DirectDeclParser);
5651    if (Kind == tok::star)
5652      // Remember that we parsed a pointer type, and remember the type-quals.
5653      D.AddTypeInfo(DeclaratorChunk::getPointer(
5654                        DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
5655                        DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
5656                        DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
5657                    std::move(DS.getAttributes()), SourceLocation());
5658    else
5659      // Remember that we parsed a Block type, and remember the type-quals.
5660      D.AddTypeInfo(
5661          DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
5662          std::move(DS.getAttributes()), SourceLocation());
5663  } else {
5664    // Is a reference
5665    DeclSpec DS(AttrFactory);
5666
5667    // Complain about rvalue references in C++03, but then go on and build
5668    // the declarator.
5669    if (Kind == tok::ampamp)
5670      Diag(Loc, getLangOpts().CPlusPlus11 ?
5671           diag::warn_cxx98_compat_rvalue_reference :
5672           diag::ext_rvalue_reference);
5673
5674    // GNU-style and C++11 attributes are allowed here, as is restrict.
5675    ParseTypeQualifierListOpt(DS);
5676    D.ExtendWithDeclSpec(DS);
5677
5678    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5679    // cv-qualifiers are introduced through the use of a typedef or of a
5680    // template type argument, in which case the cv-qualifiers are ignored.
5681    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
5682      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5683        Diag(DS.getConstSpecLoc(),
5684             diag::err_invalid_reference_qualifier_application) << "const";
5685      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5686        Diag(DS.getVolatileSpecLoc(),
5687             diag::err_invalid_reference_qualifier_application) << "volatile";
5688      // 'restrict' is permitted as an extension.
5689      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5690        Diag(DS.getAtomicSpecLoc(),
5691             diag::err_invalid_reference_qualifier_application) << "_Atomic";
5692    }
5693
5694    // Recursively parse the declarator.
5695    ParseDeclaratorInternal(D, DirectDeclParser);
5696
5697    if (D.getNumTypeObjects() > 0) {
5698      // C++ [dcl.ref]p4: There shall be no references to references.
5699      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5700      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5701        if (const IdentifierInfo *II = D.getIdentifier())
5702          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5703           << II;
5704        else
5705          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5706            << "type name";
5707
5708        // Once we've complained about the reference-to-reference, we
5709        // can go ahead and build the (technically ill-formed)
5710        // declarator: reference collapsing will take care of it.
5711      }
5712    }
5713
5714    // Remember that we parsed a reference type.
5715    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
5716                                                Kind == tok::amp),
5717                  std::move(DS.getAttributes()), SourceLocation());
5718  }
5719}
5720
5721// When correcting from misplaced brackets before the identifier, the location
5722// is saved inside the declarator so that other diagnostic messages can use
5723// them.  This extracts and returns that location, or returns the provided
5724// location if a stored location does not exist.
5725static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
5726                                                SourceLocation Loc) {
5727  if (D.getName().StartLocation.isInvalid() &&
5728      D.getName().EndLocation.isValid())
5729    return D.getName().EndLocation;
5730
5731  return Loc;
5732}
5733
5734/// ParseDirectDeclarator
5735///       direct-declarator: [C99 6.7.5]
5736/// [C99]   identifier
5737///         '(' declarator ')'
5738/// [GNU]   '(' attributes declarator ')'
5739/// [C90]   direct-declarator '[' constant-expression[opt] ']'
5740/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5741/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5742/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5743/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5744/// [C++11] direct-declarator '[' constant-expression[opt] ']'
5745///                    attribute-specifier-seq[opt]
5746///         direct-declarator '(' parameter-type-list ')'
5747///         direct-declarator '(' identifier-list[opt] ')'
5748/// [GNU]   direct-declarator '(' parameter-forward-declarations
5749///                    parameter-type-list[opt] ')'
5750/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
5751///                    cv-qualifier-seq[opt] exception-specification[opt]
5752/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5753///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5754///                    ref-qualifier[opt] exception-specification[opt]
5755/// [C++]   declarator-id
5756/// [C++11] declarator-id attribute-specifier-seq[opt]
5757///
5758///       declarator-id: [C++ 8]
5759///         '...'[opt] id-expression
5760///         '::'[opt] nested-name-specifier[opt] type-name
5761///
5762///       id-expression: [C++ 5.1]
5763///         unqualified-id
5764///         qualified-id
5765///
5766///       unqualified-id: [C++ 5.1]
5767///         identifier
5768///         operator-function-id
5769///         conversion-function-id
5770///          '~' class-name
5771///         template-id
5772///
5773/// C++17 adds the following, which we also handle here:
5774///
5775///       simple-declaration:
5776///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
5777///
5778/// Note, any additional constructs added here may need corresponding changes
5779/// in isConstructorDeclarator.
5780void Parser::ParseDirectDeclarator(Declarator &D) {
5781  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5782
5783  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5784    // This might be a C++17 structured binding.
5785    if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
5786        D.getCXXScopeSpec().isEmpty())
5787      return ParseDecompositionDeclarator(D);
5788
5789    // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5790    // this context it is a bitfield. Also in range-based for statement colon
5791    // may delimit for-range-declaration.
5792    ColonProtectionRAIIObject X(
5793        *this, D.getContext() == DeclaratorContext::MemberContext ||
5794                   (D.getContext() == DeclaratorContext::ForContext &&
5795                    getLangOpts().CPlusPlus11));
5796
5797    // ParseDeclaratorInternal might already have parsed the scope.
5798    if (D.getCXXScopeSpec().isEmpty()) {
5799      bool EnteringContext =
5800          D.getContext() == DeclaratorContext::FileContext ||
5801          D.getContext() == DeclaratorContext::MemberContext;
5802      ParseOptionalCXXScopeSpecifier(
5803          D.getCXXScopeSpec(), /*ObjectType=*/nullptr,
5804          /*ObjectHadErrors=*/false, EnteringContext);
5805    }
5806
5807    if (D.getCXXScopeSpec().isValid()) {
5808      if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5809                                             D.getCXXScopeSpec()))
5810        // Change the declaration context for name lookup, until this function
5811        // is exited (and the declarator has been parsed).
5812        DeclScopeObj.EnterDeclaratorScope();
5813      else if (getObjCDeclContext()) {
5814        // Ensure that we don't interpret the next token as an identifier when
5815        // dealing with declarations in an Objective-C container.
5816        D.SetIdentifier(nullptr, Tok.getLocation());
5817        D.setInvalidType(true);
5818        ConsumeToken();
5819        goto PastIdentifier;
5820      }
5821    }
5822
5823    // C++0x [dcl.fct]p14:
5824    //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
5825    //   parameter-declaration-clause without a preceding comma. In this case,
5826    //   the ellipsis is parsed as part of the abstract-declarator if the type
5827    //   of the parameter either names a template parameter pack that has not
5828    //   been expanded or contains auto; otherwise, it is parsed as part of the
5829    //   parameter-declaration-clause.
5830    if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5831        !((D.getContext() == DeclaratorContext::PrototypeContext ||
5832           D.getContext() == DeclaratorContext::LambdaExprParameterContext ||
5833           D.getContext() == DeclaratorContext::BlockLiteralContext) &&
5834          NextToken().is(tok::r_paren) &&
5835          !D.hasGroupingParens() &&
5836          !Actions.containsUnexpandedParameterPacks(D) &&
5837          D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5838      SourceLocation EllipsisLoc = ConsumeToken();
5839      if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5840        // The ellipsis was put in the wrong place. Recover, and explain to
5841        // the user what they should have done.
5842        ParseDeclarator(D);
5843        if (EllipsisLoc.isValid())
5844          DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5845        return;
5846      } else
5847        D.setEllipsisLoc(EllipsisLoc);
5848
5849      // The ellipsis can't be followed by a parenthesized declarator. We
5850      // check for that in ParseParenDeclarator, after we have disambiguated
5851      // the l_paren token.
5852    }
5853
5854    if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5855                    tok::tilde)) {
5856      // We found something that indicates the start of an unqualified-id.
5857      // Parse that unqualified-id.
5858      bool AllowConstructorName;
5859      bool AllowDeductionGuide;
5860      if (D.getDeclSpec().hasTypeSpecifier()) {
5861        AllowConstructorName = false;
5862        AllowDeductionGuide = false;
5863      } else if (D.getCXXScopeSpec().isSet()) {
5864        AllowConstructorName =
5865          (D.getContext() == DeclaratorContext::FileContext ||
5866           D.getContext() == DeclaratorContext::MemberContext);
5867        AllowDeductionGuide = false;
5868      } else {
5869        AllowConstructorName =
5870            (D.getContext() == DeclaratorContext::MemberContext);
5871        AllowDeductionGuide =
5872          (D.getContext() == DeclaratorContext::FileContext ||
5873           D.getContext() == DeclaratorContext::MemberContext);
5874      }
5875
5876      bool HadScope = D.getCXXScopeSpec().isValid();
5877      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
5878                             /*ObjectType=*/nullptr,
5879                             /*ObjectHadErrors=*/false,
5880                             /*EnteringContext=*/true,
5881                             /*AllowDestructorName=*/true, AllowConstructorName,
5882                             AllowDeductionGuide, nullptr, D.getName()) ||
5883          // Once we're past the identifier, if the scope was bad, mark the
5884          // whole declarator bad.
5885          D.getCXXScopeSpec().isInvalid()) {
5886        D.SetIdentifier(nullptr, Tok.getLocation());
5887        D.setInvalidType(true);
5888      } else {
5889        // ParseUnqualifiedId might have parsed a scope specifier during error
5890        // recovery. If it did so, enter that scope.
5891        if (!HadScope && D.getCXXScopeSpec().isValid() &&
5892            Actions.ShouldEnterDeclaratorScope(getCurScope(),
5893                                               D.getCXXScopeSpec()))
5894          DeclScopeObj.EnterDeclaratorScope();
5895
5896        // Parsed the unqualified-id; update range information and move along.
5897        if (D.getSourceRange().getBegin().isInvalid())
5898          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5899        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5900      }
5901      goto PastIdentifier;
5902    }
5903
5904    if (D.getCXXScopeSpec().isNotEmpty()) {
5905      // We have a scope specifier but no following unqualified-id.
5906      Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5907           diag::err_expected_unqualified_id)
5908          << /*C++*/1;
5909      D.SetIdentifier(nullptr, Tok.getLocation());
5910      goto PastIdentifier;
5911    }
5912  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5913    assert(!getLangOpts().CPlusPlus &&
5914           "There's a C++-specific check for tok::identifier above");
5915    assert(Tok.getIdentifierInfo() && "Not an identifier?");
5916    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5917    D.SetRangeEnd(Tok.getLocation());
5918    ConsumeToken();
5919    goto PastIdentifier;
5920  } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
5921    // We're not allowed an identifier here, but we got one. Try to figure out
5922    // if the user was trying to attach a name to the type, or whether the name
5923    // is some unrelated trailing syntax.
5924    bool DiagnoseIdentifier = false;
5925    if (D.hasGroupingParens())
5926      // An identifier within parens is unlikely to be intended to be anything
5927      // other than a name being "declared".
5928      DiagnoseIdentifier = true;
5929    else if (D.getContext() == DeclaratorContext::TemplateArgContext)
5930      // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
5931      DiagnoseIdentifier =
5932          NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
5933    else if (D.getContext() == DeclaratorContext::AliasDeclContext ||
5934             D.getContext() == DeclaratorContext::AliasTemplateContext)
5935      // The most likely error is that the ';' was forgotten.
5936      DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
5937    else if ((D.getContext() == DeclaratorContext::TrailingReturnContext ||
5938              D.getContext() == DeclaratorContext::TrailingReturnVarContext) &&
5939             !isCXX11VirtSpecifier(Tok))
5940      DiagnoseIdentifier = NextToken().isOneOf(
5941          tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
5942    if (DiagnoseIdentifier) {
5943      Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5944        << FixItHint::CreateRemoval(Tok.getLocation());
5945      D.SetIdentifier(nullptr, Tok.getLocation());
5946      ConsumeToken();
5947      goto PastIdentifier;
5948    }
5949  }
5950
5951  if (Tok.is(tok::l_paren)) {
5952    // If this might be an abstract-declarator followed by a direct-initializer,
5953    // check whether this is a valid declarator chunk. If it can't be, assume
5954    // that it's an initializer instead.
5955    if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
5956      RevertingTentativeParsingAction PA(*this);
5957      if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) ==
5958              TPResult::False) {
5959        D.SetIdentifier(nullptr, Tok.getLocation());
5960        goto PastIdentifier;
5961      }
5962    }
5963
5964    // direct-declarator: '(' declarator ')'
5965    // direct-declarator: '(' attributes declarator ')'
5966    // Example: 'char (*X)'   or 'int (*XX)(void)'
5967    ParseParenDeclarator(D);
5968
5969    // If the declarator was parenthesized, we entered the declarator
5970    // scope when parsing the parenthesized declarator, then exited
5971    // the scope already. Re-enter the scope, if we need to.
5972    if (D.getCXXScopeSpec().isSet()) {
5973      // If there was an error parsing parenthesized declarator, declarator
5974      // scope may have been entered before. Don't do it again.
5975      if (!D.isInvalidType() &&
5976          Actions.ShouldEnterDeclaratorScope(getCurScope(),
5977                                             D.getCXXScopeSpec()))
5978        // Change the declaration context for name lookup, until this function
5979        // is exited (and the declarator has been parsed).
5980        DeclScopeObj.EnterDeclaratorScope();
5981    }
5982  } else if (D.mayOmitIdentifier()) {
5983    // This could be something simple like "int" (in which case the declarator
5984    // portion is empty), if an abstract-declarator is allowed.
5985    D.SetIdentifier(nullptr, Tok.getLocation());
5986
5987    // The grammar for abstract-pack-declarator does not allow grouping parens.
5988    // FIXME: Revisit this once core issue 1488 is resolved.
5989    if (D.hasEllipsis() && D.hasGroupingParens())
5990      Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5991           diag::ext_abstract_pack_declarator_parens);
5992  } else {
5993    if (Tok.getKind() == tok::annot_pragma_parser_crash)
5994      LLVM_BUILTIN_TRAP;
5995    if (Tok.is(tok::l_square))
5996      return ParseMisplacedBracketDeclarator(D);
5997    if (D.getContext() == DeclaratorContext::MemberContext) {
5998      // Objective-C++: Detect C++ keywords and try to prevent further errors by
5999      // treating these keyword as valid member names.
6000      if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
6001          Tok.getIdentifierInfo() &&
6002          Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
6003        Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6004             diag::err_expected_member_name_or_semi_objcxx_keyword)
6005            << Tok.getIdentifierInfo()
6006            << (D.getDeclSpec().isEmpty() ? SourceRange()
6007                                          : D.getDeclSpec().getSourceRange());
6008        D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
6009        D.SetRangeEnd(Tok.getLocation());
6010        ConsumeToken();
6011        goto PastIdentifier;
6012      }
6013      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6014           diag::err_expected_member_name_or_semi)
6015          << (D.getDeclSpec().isEmpty() ? SourceRange()
6016                                        : D.getDeclSpec().getSourceRange());
6017    } else if (getLangOpts().CPlusPlus) {
6018      if (Tok.isOneOf(tok::period, tok::arrow))
6019        Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
6020      else {
6021        SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
6022        if (Tok.isAtStartOfLine() && Loc.isValid())
6023          Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
6024              << getLangOpts().CPlusPlus;
6025        else
6026          Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6027               diag::err_expected_unqualified_id)
6028              << getLangOpts().CPlusPlus;
6029      }
6030    } else {
6031      Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6032           diag::err_expected_either)
6033          << tok::identifier << tok::l_paren;
6034    }
6035    D.SetIdentifier(nullptr, Tok.getLocation());
6036    D.setInvalidType(true);
6037  }
6038
6039 PastIdentifier:
6040  assert(D.isPastIdentifier() &&
6041         "Haven't past the location of the identifier yet?");
6042
6043  // Don't parse attributes unless we have parsed an unparenthesized name.
6044  if (D.hasName() && !D.getNumTypeObjects())
6045    MaybeParseCXX11Attributes(D);
6046
6047  while (1) {
6048    if (Tok.is(tok::l_paren)) {
6049      bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration();
6050      // Enter function-declaration scope, limiting any declarators to the
6051      // function prototype scope, including parameter declarators.
6052      ParseScope PrototypeScope(this,
6053                                Scope::FunctionPrototypeScope|Scope::DeclScope|
6054                                (IsFunctionDeclaration
6055                                   ? Scope::FunctionDeclarationScope : 0));
6056
6057      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
6058      // In such a case, check if we actually have a function declarator; if it
6059      // is not, the declarator has been fully parsed.
6060      bool IsAmbiguous = false;
6061      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
6062        // The name of the declarator, if any, is tentatively declared within
6063        // a possible direct initializer.
6064        TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
6065        bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
6066        TentativelyDeclaredIdentifiers.pop_back();
6067        if (!IsFunctionDecl)
6068          break;
6069      }
6070      ParsedAttributes attrs(AttrFactory);
6071      BalancedDelimiterTracker T(*this, tok::l_paren);
6072      T.consumeOpen();
6073      if (IsFunctionDeclaration)
6074        Actions.ActOnStartFunctionDeclarationDeclarator(D,
6075                                                        TemplateParameterDepth);
6076      ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
6077      if (IsFunctionDeclaration)
6078        Actions.ActOnFinishFunctionDeclarationDeclarator(D);
6079      PrototypeScope.Exit();
6080    } else if (Tok.is(tok::l_square)) {
6081      ParseBracketDeclarator(D);
6082    } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) {
6083      // This declarator is declaring a function, but the requires clause is
6084      // in the wrong place:
6085      //   void (f() requires true);
6086      // instead of
6087      //   void f() requires true;
6088      // or
6089      //   void (f()) requires true;
6090      Diag(Tok, diag::err_requires_clause_inside_parens);
6091      ConsumeToken();
6092      ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr(
6093         ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
6094      if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() &&
6095          !D.hasTrailingRequiresClause())
6096        // We're already ill-formed if we got here but we'll accept it anyway.
6097        D.setTrailingRequiresClause(TrailingRequiresClause.get());
6098    } else {
6099      break;
6100    }
6101  }
6102}
6103
6104void Parser::ParseDecompositionDeclarator(Declarator &D) {
6105  assert(Tok.is(tok::l_square));
6106
6107  // If this doesn't look like a structured binding, maybe it's a misplaced
6108  // array declarator.
6109  // FIXME: Consume the l_square first so we don't need extra lookahead for
6110  // this.
6111  if (!(NextToken().is(tok::identifier) &&
6112        GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
6113      !(NextToken().is(tok::r_square) &&
6114        GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
6115    return ParseMisplacedBracketDeclarator(D);
6116
6117  BalancedDelimiterTracker T(*this, tok::l_square);
6118  T.consumeOpen();
6119
6120  SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
6121  while (Tok.isNot(tok::r_square)) {
6122    if (!Bindings.empty()) {
6123      if (Tok.is(tok::comma))
6124        ConsumeToken();
6125      else {
6126        if (Tok.is(tok::identifier)) {
6127          SourceLocation EndLoc = getEndOfPreviousToken();
6128          Diag(EndLoc, diag::err_expected)
6129              << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
6130        } else {
6131          Diag(Tok, diag::err_expected_comma_or_rsquare);
6132        }
6133
6134        SkipUntil(tok::r_square, tok::comma, tok::identifier,
6135                  StopAtSemi | StopBeforeMatch);
6136        if (Tok.is(tok::comma))
6137          ConsumeToken();
6138        else if (Tok.isNot(tok::identifier))
6139          break;
6140      }
6141    }
6142
6143    if (Tok.isNot(tok::identifier)) {
6144      Diag(Tok, diag::err_expected) << tok::identifier;
6145      break;
6146    }
6147
6148    Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
6149    ConsumeToken();
6150  }
6151
6152  if (Tok.isNot(tok::r_square))
6153    // We've already diagnosed a problem here.
6154    T.skipToEnd();
6155  else {
6156    // C++17 does not allow the identifier-list in a structured binding
6157    // to be empty.
6158    if (Bindings.empty())
6159      Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
6160
6161    T.consumeClose();
6162  }
6163
6164  return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
6165                                    T.getCloseLocation());
6166}
6167
6168/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
6169/// only called before the identifier, so these are most likely just grouping
6170/// parens for precedence.  If we find that these are actually function
6171/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
6172///
6173///       direct-declarator:
6174///         '(' declarator ')'
6175/// [GNU]   '(' attributes declarator ')'
6176///         direct-declarator '(' parameter-type-list ')'
6177///         direct-declarator '(' identifier-list[opt] ')'
6178/// [GNU]   direct-declarator '(' parameter-forward-declarations
6179///                    parameter-type-list[opt] ')'
6180///
6181void Parser::ParseParenDeclarator(Declarator &D) {
6182  BalancedDelimiterTracker T(*this, tok::l_paren);
6183  T.consumeOpen();
6184
6185  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
6186
6187  // Eat any attributes before we look at whether this is a grouping or function
6188  // declarator paren.  If this is a grouping paren, the attribute applies to
6189  // the type being built up, for example:
6190  //     int (__attribute__(()) *x)(long y)
6191  // If this ends up not being a grouping paren, the attribute applies to the
6192  // first argument, for example:
6193  //     int (__attribute__(()) int x)
6194  // In either case, we need to eat any attributes to be able to determine what
6195  // sort of paren this is.
6196  //
6197  ParsedAttributes attrs(AttrFactory);
6198  bool RequiresArg = false;
6199  if (Tok.is(tok::kw___attribute)) {
6200    ParseGNUAttributes(attrs);
6201
6202    // We require that the argument list (if this is a non-grouping paren) be
6203    // present even if the attribute list was empty.
6204    RequiresArg = true;
6205  }
6206
6207  // Eat any Microsoft extensions.
6208  ParseMicrosoftTypeAttributes(attrs);
6209
6210  // Eat any Borland extensions.
6211  if  (Tok.is(tok::kw___pascal))
6212    ParseBorlandTypeAttributes(attrs);
6213
6214  // If we haven't past the identifier yet (or where the identifier would be
6215  // stored, if this is an abstract declarator), then this is probably just
6216  // grouping parens. However, if this could be an abstract-declarator, then
6217  // this could also be the start of function arguments (consider 'void()').
6218  bool isGrouping;
6219
6220  if (!D.mayOmitIdentifier()) {
6221    // If this can't be an abstract-declarator, this *must* be a grouping
6222    // paren, because we haven't seen the identifier yet.
6223    isGrouping = true;
6224  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
6225             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
6226              NextToken().is(tok::r_paren)) || // C++ int(...)
6227             isDeclarationSpecifier() ||       // 'int(int)' is a function.
6228             isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
6229    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
6230    // considered to be a type, not a K&R identifier-list.
6231    isGrouping = false;
6232  } else {
6233    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
6234    isGrouping = true;
6235  }
6236
6237  // If this is a grouping paren, handle:
6238  // direct-declarator: '(' declarator ')'
6239  // direct-declarator: '(' attributes declarator ')'
6240  if (isGrouping) {
6241    SourceLocation EllipsisLoc = D.getEllipsisLoc();
6242    D.setEllipsisLoc(SourceLocation());
6243
6244    bool hadGroupingParens = D.hasGroupingParens();
6245    D.setGroupingParens(true);
6246    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6247    // Match the ')'.
6248    T.consumeClose();
6249    D.AddTypeInfo(
6250        DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
6251        std::move(attrs), T.getCloseLocation());
6252
6253    D.setGroupingParens(hadGroupingParens);
6254
6255    // An ellipsis cannot be placed outside parentheses.
6256    if (EllipsisLoc.isValid())
6257      DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6258
6259    return;
6260  }
6261
6262  // Okay, if this wasn't a grouping paren, it must be the start of a function
6263  // argument list.  Recognize that this declarator will never have an
6264  // identifier (and remember where it would have been), then call into
6265  // ParseFunctionDeclarator to handle of argument list.
6266  D.SetIdentifier(nullptr, Tok.getLocation());
6267
6268  // Enter function-declaration scope, limiting any declarators to the
6269  // function prototype scope, including parameter declarators.
6270  ParseScope PrototypeScope(this,
6271                            Scope::FunctionPrototypeScope | Scope::DeclScope |
6272                            (D.isFunctionDeclaratorAFunctionDeclaration()
6273                               ? Scope::FunctionDeclarationScope : 0));
6274  ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
6275  PrototypeScope.Exit();
6276}
6277
6278void Parser::InitCXXThisScopeForDeclaratorIfRelevant(
6279    const Declarator &D, const DeclSpec &DS,
6280    llvm::Optional<Sema::CXXThisScopeRAII> &ThisScope) {
6281  // C++11 [expr.prim.general]p3:
6282  //   If a declaration declares a member function or member function
6283  //   template of a class X, the expression this is a prvalue of type
6284  //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
6285  //   and the end of the function-definition, member-declarator, or
6286  //   declarator.
6287  // FIXME: currently, "static" case isn't handled correctly.
6288  bool IsCXX11MemberFunction = getLangOpts().CPlusPlus11 &&
6289        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6290        (D.getContext() == DeclaratorContext::MemberContext
6291         ? !D.getDeclSpec().isFriendSpecified()
6292         : D.getContext() == DeclaratorContext::FileContext &&
6293           D.getCXXScopeSpec().isValid() &&
6294           Actions.CurContext->isRecord());
6295  if (!IsCXX11MemberFunction)
6296    return;
6297
6298  Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
6299  if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
6300    Q.addConst();
6301  // FIXME: Collect C++ address spaces.
6302  // If there are multiple different address spaces, the source is invalid.
6303  // Carry on using the first addr space for the qualifiers of 'this'.
6304  // The diagnostic will be given later while creating the function
6305  // prototype for the method.
6306  if (getLangOpts().OpenCLCPlusPlus) {
6307    for (ParsedAttr &attr : DS.getAttributes()) {
6308      LangAS ASIdx = attr.asOpenCLLangAS();
6309      if (ASIdx != LangAS::Default) {
6310        Q.addAddressSpace(ASIdx);
6311        break;
6312      }
6313    }
6314  }
6315  ThisScope.emplace(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
6316                    IsCXX11MemberFunction);
6317}
6318
6319/// ParseFunctionDeclarator - We are after the identifier and have parsed the
6320/// declarator D up to a paren, which indicates that we are parsing function
6321/// arguments.
6322///
6323/// If FirstArgAttrs is non-null, then the caller parsed those arguments
6324/// immediately after the open paren - they should be considered to be the
6325/// first argument of a parameter.
6326///
6327/// If RequiresArg is true, then the first argument of the function is required
6328/// to be present and required to not be an identifier list.
6329///
6330/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
6331/// (C++11) ref-qualifier[opt], exception-specification[opt],
6332/// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and
6333/// (C++2a) the trailing requires-clause.
6334///
6335/// [C++11] exception-specification:
6336///           dynamic-exception-specification
6337///           noexcept-specification
6338///
6339void Parser::ParseFunctionDeclarator(Declarator &D,
6340                                     ParsedAttributes &FirstArgAttrs,
6341                                     BalancedDelimiterTracker &Tracker,
6342                                     bool IsAmbiguous,
6343                                     bool RequiresArg) {
6344  assert(getCurScope()->isFunctionPrototypeScope() &&
6345         "Should call from a Function scope");
6346  // lparen is already consumed!
6347  assert(D.isPastIdentifier() && "Should not call before identifier!");
6348
6349  // This should be true when the function has typed arguments.
6350  // Otherwise, it is treated as a K&R-style function.
6351  bool HasProto = false;
6352  // Build up an array of information about the parsed arguments.
6353  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
6354  // Remember where we see an ellipsis, if any.
6355  SourceLocation EllipsisLoc;
6356
6357  DeclSpec DS(AttrFactory);
6358  bool RefQualifierIsLValueRef = true;
6359  SourceLocation RefQualifierLoc;
6360  ExceptionSpecificationType ESpecType = EST_None;
6361  SourceRange ESpecRange;
6362  SmallVector<ParsedType, 2> DynamicExceptions;
6363  SmallVector<SourceRange, 2> DynamicExceptionRanges;
6364  ExprResult NoexceptExpr;
6365  CachedTokens *ExceptionSpecTokens = nullptr;
6366  ParsedAttributesWithRange FnAttrs(AttrFactory);
6367  TypeResult TrailingReturnType;
6368
6369  /* LocalEndLoc is the end location for the local FunctionTypeLoc.
6370     EndLoc is the end location for the function declarator.
6371     They differ for trailing return types. */
6372  SourceLocation StartLoc, LocalEndLoc, EndLoc;
6373  SourceLocation LParenLoc, RParenLoc;
6374  LParenLoc = Tracker.getOpenLocation();
6375  StartLoc = LParenLoc;
6376
6377  if (isFunctionDeclaratorIdentifierList()) {
6378    if (RequiresArg)
6379      Diag(Tok, diag::err_argument_required_after_attribute);
6380
6381    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
6382
6383    Tracker.consumeClose();
6384    RParenLoc = Tracker.getCloseLocation();
6385    LocalEndLoc = RParenLoc;
6386    EndLoc = RParenLoc;
6387
6388    // If there are attributes following the identifier list, parse them and
6389    // prohibit them.
6390    MaybeParseCXX11Attributes(FnAttrs);
6391    ProhibitAttributes(FnAttrs);
6392  } else {
6393    if (Tok.isNot(tok::r_paren))
6394      ParseParameterDeclarationClause(D.getContext(), FirstArgAttrs, ParamInfo,
6395                                      EllipsisLoc);
6396    else if (RequiresArg)
6397      Diag(Tok, diag::err_argument_required_after_attribute);
6398
6399    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus
6400                                || getLangOpts().OpenCL;
6401
6402    // If we have the closing ')', eat it.
6403    Tracker.consumeClose();
6404    RParenLoc = Tracker.getCloseLocation();
6405    LocalEndLoc = RParenLoc;
6406    EndLoc = RParenLoc;
6407
6408    if (getLangOpts().CPlusPlus) {
6409      // FIXME: Accept these components in any order, and produce fixits to
6410      // correct the order if the user gets it wrong. Ideally we should deal
6411      // with the pure-specifier in the same way.
6412
6413      // Parse cv-qualifier-seq[opt].
6414      ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
6415                                /*AtomicAllowed*/ false,
6416                                /*IdentifierRequired=*/false,
6417                                llvm::function_ref<void()>([&]() {
6418                                  Actions.CodeCompleteFunctionQualifiers(DS, D);
6419                                }));
6420      if (!DS.getSourceRange().getEnd().isInvalid()) {
6421        EndLoc = DS.getSourceRange().getEnd();
6422      }
6423
6424      // Parse ref-qualifier[opt].
6425      if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
6426        EndLoc = RefQualifierLoc;
6427
6428      llvm::Optional<Sema::CXXThisScopeRAII> ThisScope;
6429      InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope);
6430
6431      // Parse exception-specification[opt].
6432      bool Delayed = D.isFirstDeclarationOfMember() &&
6433                     D.isFunctionDeclaratorAFunctionDeclaration();
6434      if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
6435          GetLookAheadToken(0).is(tok::kw_noexcept) &&
6436          GetLookAheadToken(1).is(tok::l_paren) &&
6437          GetLookAheadToken(2).is(tok::kw_noexcept) &&
6438          GetLookAheadToken(3).is(tok::l_paren) &&
6439          GetLookAheadToken(4).is(tok::identifier) &&
6440          GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
6441        // HACK: We've got an exception-specification
6442        //   noexcept(noexcept(swap(...)))
6443        // or
6444        //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
6445        // on a 'swap' member function. This is a libstdc++ bug; the lookup
6446        // for 'swap' will only find the function we're currently declaring,
6447        // whereas it expects to find a non-member swap through ADL. Turn off
6448        // delayed parsing to give it a chance to find what it expects.
6449        Delayed = false;
6450      }
6451      ESpecType = tryParseExceptionSpecification(Delayed,
6452                                                 ESpecRange,
6453                                                 DynamicExceptions,
6454                                                 DynamicExceptionRanges,
6455                                                 NoexceptExpr,
6456                                                 ExceptionSpecTokens);
6457      if (ESpecType != EST_None)
6458        EndLoc = ESpecRange.getEnd();
6459
6460      // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
6461      // after the exception-specification.
6462      MaybeParseCXX11Attributes(FnAttrs);
6463
6464      // Parse trailing-return-type[opt].
6465      LocalEndLoc = EndLoc;
6466      if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
6467        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
6468        if (D.getDeclSpec().getTypeSpecType() == TST_auto)
6469          StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
6470        LocalEndLoc = Tok.getLocation();
6471        SourceRange Range;
6472        TrailingReturnType =
6473            ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
6474        EndLoc = Range.getEnd();
6475      }
6476    } else if (standardAttributesAllowed()) {
6477      MaybeParseCXX11Attributes(FnAttrs);
6478    }
6479  }
6480
6481  // Collect non-parameter declarations from the prototype if this is a function
6482  // declaration. They will be moved into the scope of the function. Only do
6483  // this in C and not C++, where the decls will continue to live in the
6484  // surrounding context.
6485  SmallVector<NamedDecl *, 0> DeclsInPrototype;
6486  if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope &&
6487      !getLangOpts().CPlusPlus) {
6488    for (Decl *D : getCurScope()->decls()) {
6489      NamedDecl *ND = dyn_cast<NamedDecl>(D);
6490      if (!ND || isa<ParmVarDecl>(ND))
6491        continue;
6492      DeclsInPrototype.push_back(ND);
6493    }
6494  }
6495
6496  // Remember that we parsed a function type, and remember the attributes.
6497  D.AddTypeInfo(DeclaratorChunk::getFunction(
6498                    HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
6499                    ParamInfo.size(), EllipsisLoc, RParenLoc,
6500                    RefQualifierIsLValueRef, RefQualifierLoc,
6501                    /*MutableLoc=*/SourceLocation(),
6502                    ESpecType, ESpecRange, DynamicExceptions.data(),
6503                    DynamicExceptionRanges.data(), DynamicExceptions.size(),
6504                    NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
6505                    ExceptionSpecTokens, DeclsInPrototype, StartLoc,
6506                    LocalEndLoc, D, TrailingReturnType, &DS),
6507                std::move(FnAttrs), EndLoc);
6508}
6509
6510/// ParseRefQualifier - Parses a member function ref-qualifier. Returns
6511/// true if a ref-qualifier is found.
6512bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
6513                               SourceLocation &RefQualifierLoc) {
6514  if (Tok.isOneOf(tok::amp, tok::ampamp)) {
6515    Diag(Tok, getLangOpts().CPlusPlus11 ?
6516         diag::warn_cxx98_compat_ref_qualifier :
6517         diag::ext_ref_qualifier);
6518
6519    RefQualifierIsLValueRef = Tok.is(tok::amp);
6520    RefQualifierLoc = ConsumeToken();
6521    return true;
6522  }
6523  return false;
6524}
6525
6526/// isFunctionDeclaratorIdentifierList - This parameter list may have an
6527/// identifier list form for a K&R-style function:  void foo(a,b,c)
6528///
6529/// Note that identifier-lists are only allowed for normal declarators, not for
6530/// abstract-declarators.
6531bool Parser::isFunctionDeclaratorIdentifierList() {
6532  return !getLangOpts().CPlusPlus
6533         && Tok.is(tok::identifier)
6534         && !TryAltiVecVectorToken()
6535         // K&R identifier lists can't have typedefs as identifiers, per C99
6536         // 6.7.5.3p11.
6537         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
6538         // Identifier lists follow a really simple grammar: the identifiers can
6539         // be followed *only* by a ", identifier" or ")".  However, K&R
6540         // identifier lists are really rare in the brave new modern world, and
6541         // it is very common for someone to typo a type in a non-K&R style
6542         // list.  If we are presented with something like: "void foo(intptr x,
6543         // float y)", we don't want to start parsing the function declarator as
6544         // though it is a K&R style declarator just because intptr is an
6545         // invalid type.
6546         //
6547         // To handle this, we check to see if the token after the first
6548         // identifier is a "," or ")".  Only then do we parse it as an
6549         // identifier list.
6550         && (!Tok.is(tok::eof) &&
6551             (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
6552}
6553
6554/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
6555/// we found a K&R-style identifier list instead of a typed parameter list.
6556///
6557/// After returning, ParamInfo will hold the parsed parameters.
6558///
6559///       identifier-list: [C99 6.7.5]
6560///         identifier
6561///         identifier-list ',' identifier
6562///
6563void Parser::ParseFunctionDeclaratorIdentifierList(
6564       Declarator &D,
6565       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
6566  // If there was no identifier specified for the declarator, either we are in
6567  // an abstract-declarator, or we are in a parameter declarator which was found
6568  // to be abstract.  In abstract-declarators, identifier lists are not valid:
6569  // diagnose this.
6570  if (!D.getIdentifier())
6571    Diag(Tok, diag::ext_ident_list_in_param);
6572
6573  // Maintain an efficient lookup of params we have seen so far.
6574  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
6575
6576  do {
6577    // If this isn't an identifier, report the error and skip until ')'.
6578    if (Tok.isNot(tok::identifier)) {
6579      Diag(Tok, diag::err_expected) << tok::identifier;
6580      SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
6581      // Forget we parsed anything.
6582      ParamInfo.clear();
6583      return;
6584    }
6585
6586    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
6587
6588    // Reject 'typedef int y; int test(x, y)', but continue parsing.
6589    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
6590      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
6591
6592    // Verify that the argument identifier has not already been mentioned.
6593    if (!ParamsSoFar.insert(ParmII).second) {
6594      Diag(Tok, diag::err_param_redefinition) << ParmII;
6595    } else {
6596      // Remember this identifier in ParamInfo.
6597      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6598                                                     Tok.getLocation(),
6599                                                     nullptr));
6600    }
6601
6602    // Eat the identifier.
6603    ConsumeToken();
6604    // The list continues if we see a comma.
6605  } while (TryConsumeToken(tok::comma));
6606}
6607
6608/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
6609/// after the opening parenthesis. This function will not parse a K&R-style
6610/// identifier list.
6611///
6612/// DeclContext is the context of the declarator being parsed.  If FirstArgAttrs
6613/// is non-null, then the caller parsed those attributes immediately after the
6614/// open paren - they should be considered to be part of the first parameter.
6615///
6616/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
6617/// be the location of the ellipsis, if any was parsed.
6618///
6619///       parameter-type-list: [C99 6.7.5]
6620///         parameter-list
6621///         parameter-list ',' '...'
6622/// [C++]   parameter-list '...'
6623///
6624///       parameter-list: [C99 6.7.5]
6625///         parameter-declaration
6626///         parameter-list ',' parameter-declaration
6627///
6628///       parameter-declaration: [C99 6.7.5]
6629///         declaration-specifiers declarator
6630/// [C++]   declaration-specifiers declarator '=' assignment-expression
6631/// [C++11]                                       initializer-clause
6632/// [GNU]   declaration-specifiers declarator attributes
6633///         declaration-specifiers abstract-declarator[opt]
6634/// [C++]   declaration-specifiers abstract-declarator[opt]
6635///           '=' assignment-expression
6636/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
6637/// [C++11] attribute-specifier-seq parameter-declaration
6638///
6639void Parser::ParseParameterDeclarationClause(
6640       DeclaratorContext DeclaratorCtx,
6641       ParsedAttributes &FirstArgAttrs,
6642       SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
6643       SourceLocation &EllipsisLoc) {
6644
6645  // Avoid exceeding the maximum function scope depth.
6646  // See https://bugs.llvm.org/show_bug.cgi?id=19607
6647  // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with
6648  // getFunctionPrototypeDepth() - 1.
6649  if (getCurScope()->getFunctionPrototypeDepth() - 1 >
6650      ParmVarDecl::getMaxFunctionScopeDepth()) {
6651    Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded)
6652        << ParmVarDecl::getMaxFunctionScopeDepth();
6653    cutOffParsing();
6654    return;
6655  }
6656
6657  do {
6658    // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
6659    // before deciding this was a parameter-declaration-clause.
6660    if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
6661      break;
6662
6663    // Parse the declaration-specifiers.
6664    // Just use the ParsingDeclaration "scope" of the declarator.
6665    DeclSpec DS(AttrFactory);
6666
6667    // Parse any C++11 attributes.
6668    MaybeParseCXX11Attributes(DS.getAttributes());
6669
6670    // Skip any Microsoft attributes before a param.
6671    MaybeParseMicrosoftAttributes(DS.getAttributes());
6672
6673    SourceLocation DSStart = Tok.getLocation();
6674
6675    // If the caller parsed attributes for the first argument, add them now.
6676    // Take them so that we only apply the attributes to the first parameter.
6677    // FIXME: If we can leave the attributes in the token stream somehow, we can
6678    // get rid of a parameter (FirstArgAttrs) and this statement. It might be
6679    // too much hassle.
6680    DS.takeAttributesFrom(FirstArgAttrs);
6681
6682    ParseDeclarationSpecifiers(DS);
6683
6684
6685    // Parse the declarator.  This is "PrototypeContext" or
6686    // "LambdaExprParameterContext", because we must accept either
6687    // 'declarator' or 'abstract-declarator' here.
6688    Declarator ParmDeclarator(
6689        DS, DeclaratorCtx == DeclaratorContext::RequiresExprContext
6690                ? DeclaratorContext::RequiresExprContext
6691                : DeclaratorCtx == DeclaratorContext::LambdaExprContext
6692                      ? DeclaratorContext::LambdaExprParameterContext
6693                      : DeclaratorContext::PrototypeContext);
6694    ParseDeclarator(ParmDeclarator);
6695
6696    // Parse GNU attributes, if present.
6697    MaybeParseGNUAttributes(ParmDeclarator);
6698
6699    if (Tok.is(tok::kw_requires)) {
6700      // User tried to define a requires clause in a parameter declaration,
6701      // which is surely not a function declaration.
6702      // void f(int (*g)(int, int) requires true);
6703      Diag(Tok,
6704           diag::err_requires_clause_on_declarator_not_declaring_a_function);
6705      ConsumeToken();
6706      Actions.CorrectDelayedTyposInExpr(
6707         ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
6708    }
6709
6710    // Remember this parsed parameter in ParamInfo.
6711    IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
6712
6713    // DefArgToks is used when the parsing of default arguments needs
6714    // to be delayed.
6715    std::unique_ptr<CachedTokens> DefArgToks;
6716
6717    // If no parameter was specified, verify that *something* was specified,
6718    // otherwise we have a missing type and identifier.
6719    if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
6720        ParmDeclarator.getNumTypeObjects() == 0) {
6721      // Completely missing, emit error.
6722      Diag(DSStart, diag::err_missing_param);
6723    } else {
6724      // Otherwise, we have something.  Add it and let semantic analysis try
6725      // to grok it and add the result to the ParamInfo we are building.
6726
6727      // Last chance to recover from a misplaced ellipsis in an attempted
6728      // parameter pack declaration.
6729      if (Tok.is(tok::ellipsis) &&
6730          (NextToken().isNot(tok::r_paren) ||
6731           (!ParmDeclarator.getEllipsisLoc().isValid() &&
6732            !Actions.isUnexpandedParameterPackPermitted())) &&
6733          Actions.containsUnexpandedParameterPacks(ParmDeclarator))
6734        DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
6735
6736      // Now we are at the point where declarator parsing is finished.
6737      //
6738      // Try to catch keywords in place of the identifier in a declarator, and
6739      // in particular the common case where:
6740      //   1 identifier comes at the end of the declarator
6741      //   2 if the identifier is dropped, the declarator is valid but anonymous
6742      //     (no identifier)
6743      //   3 declarator parsing succeeds, and then we have a trailing keyword,
6744      //     which is never valid in a param list (e.g. missing a ',')
6745      // And we can't handle this in ParseDeclarator because in general keywords
6746      // may be allowed to follow the declarator. (And in some cases there'd be
6747      // better recovery like inserting punctuation). ParseDeclarator is just
6748      // treating this as an anonymous parameter, and fortunately at this point
6749      // we've already almost done that.
6750      //
6751      // We care about case 1) where the declarator type should be known, and
6752      // the identifier should be null.
6753      if (!ParmDeclarator.isInvalidType() && !ParmDeclarator.hasName()) {
6754        if (Tok.getIdentifierInfo() &&
6755            Tok.getIdentifierInfo()->isKeyword(getLangOpts())) {
6756          Diag(Tok, diag::err_keyword_as_parameter) << PP.getSpelling(Tok);
6757          // Consume the keyword.
6758          ConsumeToken();
6759        }
6760      }
6761      // Inform the actions module about the parameter declarator, so it gets
6762      // added to the current scope.
6763      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
6764      // Parse the default argument, if any. We parse the default
6765      // arguments in all dialects; the semantic analysis in
6766      // ActOnParamDefaultArgument will reject the default argument in
6767      // C.
6768      if (Tok.is(tok::equal)) {
6769        SourceLocation EqualLoc = Tok.getLocation();
6770
6771        // Parse the default argument
6772        if (DeclaratorCtx == DeclaratorContext::MemberContext) {
6773          // If we're inside a class definition, cache the tokens
6774          // corresponding to the default argument. We'll actually parse
6775          // them when we see the end of the class definition.
6776          DefArgToks.reset(new CachedTokens);
6777
6778          SourceLocation ArgStartLoc = NextToken().getLocation();
6779          if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
6780            DefArgToks.reset();
6781            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6782          } else {
6783            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
6784                                                      ArgStartLoc);
6785          }
6786        } else {
6787          // Consume the '='.
6788          ConsumeToken();
6789
6790          // The argument isn't actually potentially evaluated unless it is
6791          // used.
6792          EnterExpressionEvaluationContext Eval(
6793              Actions,
6794              Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
6795              Param);
6796
6797          ExprResult DefArgResult;
6798          if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
6799            Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
6800            DefArgResult = ParseBraceInitializer();
6801          } else
6802            DefArgResult = ParseAssignmentExpression();
6803          DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
6804          if (DefArgResult.isInvalid()) {
6805            Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
6806            SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
6807          } else {
6808            // Inform the actions module about the default argument
6809            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
6810                                              DefArgResult.get());
6811          }
6812        }
6813      }
6814
6815      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6816                                          ParmDeclarator.getIdentifierLoc(),
6817                                          Param, std::move(DefArgToks)));
6818    }
6819
6820    if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
6821      if (!getLangOpts().CPlusPlus) {
6822        // We have ellipsis without a preceding ',', which is ill-formed
6823        // in C. Complain and provide the fix.
6824        Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
6825            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6826      } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
6827                 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
6828        // It looks like this was supposed to be a parameter pack. Warn and
6829        // point out where the ellipsis should have gone.
6830        SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
6831        Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
6832          << ParmEllipsis.isValid() << ParmEllipsis;
6833        if (ParmEllipsis.isValid()) {
6834          Diag(ParmEllipsis,
6835               diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
6836        } else {
6837          Diag(ParmDeclarator.getIdentifierLoc(),
6838               diag::note_misplaced_ellipsis_vararg_add_ellipsis)
6839            << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
6840                                          "...")
6841            << !ParmDeclarator.hasName();
6842        }
6843        Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
6844          << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6845      }
6846
6847      // We can't have any more parameters after an ellipsis.
6848      break;
6849    }
6850
6851    // If the next token is a comma, consume it and keep reading arguments.
6852  } while (TryConsumeToken(tok::comma));
6853}
6854
6855/// [C90]   direct-declarator '[' constant-expression[opt] ']'
6856/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6857/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6858/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6859/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6860/// [C++11] direct-declarator '[' constant-expression[opt] ']'
6861///                           attribute-specifier-seq[opt]
6862void Parser::ParseBracketDeclarator(Declarator &D) {
6863  if (CheckProhibitedCXX11Attribute())
6864    return;
6865
6866  BalancedDelimiterTracker T(*this, tok::l_square);
6867  T.consumeOpen();
6868
6869  // C array syntax has many features, but by-far the most common is [] and [4].
6870  // This code does a fast path to handle some of the most obvious cases.
6871  if (Tok.getKind() == tok::r_square) {
6872    T.consumeClose();
6873    ParsedAttributes attrs(AttrFactory);
6874    MaybeParseCXX11Attributes(attrs);
6875
6876    // Remember that we parsed the empty array type.
6877    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
6878                                            T.getOpenLocation(),
6879                                            T.getCloseLocation()),
6880                  std::move(attrs), T.getCloseLocation());
6881    return;
6882  } else if (Tok.getKind() == tok::numeric_constant &&
6883             GetLookAheadToken(1).is(tok::r_square)) {
6884    // [4] is very common.  Parse the numeric constant expression.
6885    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
6886    ConsumeToken();
6887
6888    T.consumeClose();
6889    ParsedAttributes attrs(AttrFactory);
6890    MaybeParseCXX11Attributes(attrs);
6891
6892    // Remember that we parsed a array type, and remember its features.
6893    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
6894                                            T.getOpenLocation(),
6895                                            T.getCloseLocation()),
6896                  std::move(attrs), T.getCloseLocation());
6897    return;
6898  } else if (Tok.getKind() == tok::code_completion) {
6899    Actions.CodeCompleteBracketDeclarator(getCurScope());
6900    return cutOffParsing();
6901  }
6902
6903  // If valid, this location is the position where we read the 'static' keyword.
6904  SourceLocation StaticLoc;
6905  TryConsumeToken(tok::kw_static, StaticLoc);
6906
6907  // If there is a type-qualifier-list, read it now.
6908  // Type qualifiers in an array subscript are a C99 feature.
6909  DeclSpec DS(AttrFactory);
6910  ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
6911
6912  // If we haven't already read 'static', check to see if there is one after the
6913  // type-qualifier-list.
6914  if (!StaticLoc.isValid())
6915    TryConsumeToken(tok::kw_static, StaticLoc);
6916
6917  // Handle "direct-declarator [ type-qual-list[opt] * ]".
6918  bool isStar = false;
6919  ExprResult NumElements;
6920
6921  // Handle the case where we have '[*]' as the array size.  However, a leading
6922  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
6923  // the token after the star is a ']'.  Since stars in arrays are
6924  // infrequent, use of lookahead is not costly here.
6925  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
6926    ConsumeToken();  // Eat the '*'.
6927
6928    if (StaticLoc.isValid()) {
6929      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
6930      StaticLoc = SourceLocation();  // Drop the static.
6931    }
6932    isStar = true;
6933  } else if (Tok.isNot(tok::r_square)) {
6934    // Note, in C89, this production uses the constant-expr production instead
6935    // of assignment-expr.  The only difference is that assignment-expr allows
6936    // things like '=' and '*='.  Sema rejects these in C89 mode because they
6937    // are not i-c-e's, so we don't need to distinguish between the two here.
6938
6939    // Parse the constant-expression or assignment-expression now (depending
6940    // on dialect).
6941    if (getLangOpts().CPlusPlus) {
6942      NumElements = ParseConstantExpression();
6943    } else {
6944      EnterExpressionEvaluationContext Unevaluated(
6945          Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6946      NumElements =
6947          Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
6948    }
6949  } else {
6950    if (StaticLoc.isValid()) {
6951      Diag(StaticLoc, diag::err_unspecified_size_with_static);
6952      StaticLoc = SourceLocation();  // Drop the static.
6953    }
6954  }
6955
6956  // If there was an error parsing the assignment-expression, recover.
6957  if (NumElements.isInvalid()) {
6958    D.setInvalidType(true);
6959    // If the expression was invalid, skip it.
6960    SkipUntil(tok::r_square, StopAtSemi);
6961    return;
6962  }
6963
6964  T.consumeClose();
6965
6966  MaybeParseCXX11Attributes(DS.getAttributes());
6967
6968  // Remember that we parsed a array type, and remember its features.
6969  D.AddTypeInfo(
6970      DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
6971                                isStar, NumElements.get(), T.getOpenLocation(),
6972                                T.getCloseLocation()),
6973      std::move(DS.getAttributes()), T.getCloseLocation());
6974}
6975
6976/// Diagnose brackets before an identifier.
6977void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
6978  assert(Tok.is(tok::l_square) && "Missing opening bracket");
6979  assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
6980
6981  SourceLocation StartBracketLoc = Tok.getLocation();
6982  Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
6983
6984  while (Tok.is(tok::l_square)) {
6985    ParseBracketDeclarator(TempDeclarator);
6986  }
6987
6988  // Stuff the location of the start of the brackets into the Declarator.
6989  // The diagnostics from ParseDirectDeclarator will make more sense if
6990  // they use this location instead.
6991  if (Tok.is(tok::semi))
6992    D.getName().EndLocation = StartBracketLoc;
6993
6994  SourceLocation SuggestParenLoc = Tok.getLocation();
6995
6996  // Now that the brackets are removed, try parsing the declarator again.
6997  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6998
6999  // Something went wrong parsing the brackets, in which case,
7000  // ParseBracketDeclarator has emitted an error, and we don't need to emit
7001  // one here.
7002  if (TempDeclarator.getNumTypeObjects() == 0)
7003    return;
7004
7005  // Determine if parens will need to be suggested in the diagnostic.
7006  bool NeedParens = false;
7007  if (D.getNumTypeObjects() != 0) {
7008    switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
7009    case DeclaratorChunk::Pointer:
7010    case DeclaratorChunk::Reference:
7011    case DeclaratorChunk::BlockPointer:
7012    case DeclaratorChunk::MemberPointer:
7013    case DeclaratorChunk::Pipe:
7014      NeedParens = true;
7015      break;
7016    case DeclaratorChunk::Array:
7017    case DeclaratorChunk::Function:
7018    case DeclaratorChunk::Paren:
7019      break;
7020    }
7021  }
7022
7023  if (NeedParens) {
7024    // Create a DeclaratorChunk for the inserted parens.
7025    SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7026    D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
7027                  SourceLocation());
7028  }
7029
7030  // Adding back the bracket info to the end of the Declarator.
7031  for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
7032    const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
7033    D.AddTypeInfo(Chunk, SourceLocation());
7034  }
7035
7036  // The missing identifier would have been diagnosed in ParseDirectDeclarator.
7037  // If parentheses are required, always suggest them.
7038  if (!D.getIdentifier() && !NeedParens)
7039    return;
7040
7041  SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
7042
7043  // Generate the move bracket error message.
7044  SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
7045  SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7046
7047  if (NeedParens) {
7048    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7049        << getLangOpts().CPlusPlus
7050        << FixItHint::CreateInsertion(SuggestParenLoc, "(")
7051        << FixItHint::CreateInsertion(EndLoc, ")")
7052        << FixItHint::CreateInsertionFromRange(
7053               EndLoc, CharSourceRange(BracketRange, true))
7054        << FixItHint::CreateRemoval(BracketRange);
7055  } else {
7056    Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7057        << getLangOpts().CPlusPlus
7058        << FixItHint::CreateInsertionFromRange(
7059               EndLoc, CharSourceRange(BracketRange, true))
7060        << FixItHint::CreateRemoval(BracketRange);
7061  }
7062}
7063
7064/// [GNU]   typeof-specifier:
7065///           typeof ( expressions )
7066///           typeof ( type-name )
7067/// [GNU/C++] typeof unary-expression
7068///
7069void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
7070  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
7071  Token OpTok = Tok;
7072  SourceLocation StartLoc = ConsumeToken();
7073
7074  const bool hasParens = Tok.is(tok::l_paren);
7075
7076  EnterExpressionEvaluationContext Unevaluated(
7077      Actions, Sema::ExpressionEvaluationContext::Unevaluated,
7078      Sema::ReuseLambdaContextDecl);
7079
7080  bool isCastExpr;
7081  ParsedType CastTy;
7082  SourceRange CastRange;
7083  ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
7084      ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
7085  if (hasParens)
7086    DS.setTypeofParensRange(CastRange);
7087
7088  if (CastRange.getEnd().isInvalid())
7089    // FIXME: Not accurate, the range gets one token more than it should.
7090    DS.SetRangeEnd(Tok.getLocation());
7091  else
7092    DS.SetRangeEnd(CastRange.getEnd());
7093
7094  if (isCastExpr) {
7095    if (!CastTy) {
7096      DS.SetTypeSpecError();
7097      return;
7098    }
7099
7100    const char *PrevSpec = nullptr;
7101    unsigned DiagID;
7102    // Check for duplicate type specifiers (e.g. "int typeof(int)").
7103    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
7104                           DiagID, CastTy,
7105                           Actions.getASTContext().getPrintingPolicy()))
7106      Diag(StartLoc, DiagID) << PrevSpec;
7107    return;
7108  }
7109
7110  // If we get here, the operand to the typeof was an expression.
7111  if (Operand.isInvalid()) {
7112    DS.SetTypeSpecError();
7113    return;
7114  }
7115
7116  // We might need to transform the operand if it is potentially evaluated.
7117  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
7118  if (Operand.isInvalid()) {
7119    DS.SetTypeSpecError();
7120    return;
7121  }
7122
7123  const char *PrevSpec = nullptr;
7124  unsigned DiagID;
7125  // Check for duplicate type specifiers (e.g. "int typeof(int)").
7126  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
7127                         DiagID, Operand.get(),
7128                         Actions.getASTContext().getPrintingPolicy()))
7129    Diag(StartLoc, DiagID) << PrevSpec;
7130}
7131
7132/// [C11]   atomic-specifier:
7133///           _Atomic ( type-name )
7134///
7135void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
7136  assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
7137         "Not an atomic specifier");
7138
7139  SourceLocation StartLoc = ConsumeToken();
7140  BalancedDelimiterTracker T(*this, tok::l_paren);
7141  if (T.consumeOpen())
7142    return;
7143
7144  TypeResult Result = ParseTypeName();
7145  if (Result.isInvalid()) {
7146    SkipUntil(tok::r_paren, StopAtSemi);
7147    return;
7148  }
7149
7150  // Match the ')'
7151  T.consumeClose();
7152
7153  if (T.getCloseLocation().isInvalid())
7154    return;
7155
7156  DS.setTypeofParensRange(T.getRange());
7157  DS.SetRangeEnd(T.getCloseLocation());
7158
7159  const char *PrevSpec = nullptr;
7160  unsigned DiagID;
7161  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
7162                         DiagID, Result.get(),
7163                         Actions.getASTContext().getPrintingPolicy()))
7164    Diag(StartLoc, DiagID) << PrevSpec;
7165}
7166
7167/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
7168/// from TryAltiVecVectorToken.
7169bool Parser::TryAltiVecVectorTokenOutOfLine() {
7170  Token Next = NextToken();
7171  switch (Next.getKind()) {
7172  default: return false;
7173  case tok::kw_short:
7174  case tok::kw_long:
7175  case tok::kw_signed:
7176  case tok::kw_unsigned:
7177  case tok::kw_void:
7178  case tok::kw_char:
7179  case tok::kw_int:
7180  case tok::kw_float:
7181  case tok::kw_double:
7182  case tok::kw_bool:
7183  case tok::kw___bool:
7184  case tok::kw___pixel:
7185    Tok.setKind(tok::kw___vector);
7186    return true;
7187  case tok::identifier:
7188    if (Next.getIdentifierInfo() == Ident_pixel) {
7189      Tok.setKind(tok::kw___vector);
7190      return true;
7191    }
7192    if (Next.getIdentifierInfo() == Ident_bool) {
7193      Tok.setKind(tok::kw___vector);
7194      return true;
7195    }
7196    return false;
7197  }
7198}
7199
7200bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
7201                                      const char *&PrevSpec, unsigned &DiagID,
7202                                      bool &isInvalid) {
7203  const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
7204  if (Tok.getIdentifierInfo() == Ident_vector) {
7205    Token Next = NextToken();
7206    switch (Next.getKind()) {
7207    case tok::kw_short:
7208    case tok::kw_long:
7209    case tok::kw_signed:
7210    case tok::kw_unsigned:
7211    case tok::kw_void:
7212    case tok::kw_char:
7213    case tok::kw_int:
7214    case tok::kw_float:
7215    case tok::kw_double:
7216    case tok::kw_bool:
7217    case tok::kw___bool:
7218    case tok::kw___pixel:
7219      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
7220      return true;
7221    case tok::identifier:
7222      if (Next.getIdentifierInfo() == Ident_pixel) {
7223        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7224        return true;
7225      }
7226      if (Next.getIdentifierInfo() == Ident_bool) {
7227        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
7228        return true;
7229      }
7230      break;
7231    default:
7232      break;
7233    }
7234  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
7235             DS.isTypeAltiVecVector()) {
7236    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
7237    return true;
7238  } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
7239             DS.isTypeAltiVecVector()) {
7240    isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
7241    return true;
7242  }
7243  return false;
7244}
7245