1//===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides a class for OpenMP runtime code generation specialized to NVPTX
10// targets.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGOpenMPRuntimeNVPTX.h"
15#include "CodeGenFunction.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/DeclOpenMP.h"
18#include "clang/AST/StmtOpenMP.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Basic/Cuda.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/IR/IntrinsicsNVPTX.h"
23
24using namespace clang;
25using namespace CodeGen;
26using namespace llvm::omp;
27
28namespace {
29enum OpenMPRTLFunctionNVPTX {
30  /// Call to void __kmpc_kernel_init(kmp_int32 thread_limit,
31  /// int16_t RequiresOMPRuntime);
32  OMPRTL_NVPTX__kmpc_kernel_init,
33  /// Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
34  OMPRTL_NVPTX__kmpc_kernel_deinit,
35  /// Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
36  /// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
37  OMPRTL_NVPTX__kmpc_spmd_kernel_init,
38  /// Call to void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
39  OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2,
40  /// Call to void __kmpc_kernel_prepare_parallel(void
41  /// *outlined_function);
42  OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
43  /// Call to bool __kmpc_kernel_parallel(void **outlined_function);
44  OMPRTL_NVPTX__kmpc_kernel_parallel,
45  /// Call to void __kmpc_kernel_end_parallel();
46  OMPRTL_NVPTX__kmpc_kernel_end_parallel,
47  /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
48  /// global_tid);
49  OMPRTL_NVPTX__kmpc_serialized_parallel,
50  /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
51  /// global_tid);
52  OMPRTL_NVPTX__kmpc_end_serialized_parallel,
53  /// Call to int32_t __kmpc_shuffle_int32(int32_t element,
54  /// int16_t lane_offset, int16_t warp_size);
55  OMPRTL_NVPTX__kmpc_shuffle_int32,
56  /// Call to int64_t __kmpc_shuffle_int64(int64_t element,
57  /// int16_t lane_offset, int16_t warp_size);
58  OMPRTL_NVPTX__kmpc_shuffle_int64,
59  /// Call to __kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc, kmp_int32
60  /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
61  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
62  /// lane_offset, int16_t shortCircuit),
63  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
64  OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2,
65  /// Call to __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
66  /// global_tid, void *global_buffer, int32_t num_of_records, void*
67  /// reduce_data,
68  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
69  /// lane_offset, int16_t shortCircuit),
70  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
71  /// (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
72  /// void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
73  /// void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
74  /// int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
75  /// *buffer, int idx, void *reduce_data));
76  OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2,
77  /// Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
78  OMPRTL_NVPTX__kmpc_end_reduce_nowait,
79  /// Call to void __kmpc_data_sharing_init_stack();
80  OMPRTL_NVPTX__kmpc_data_sharing_init_stack,
81  /// Call to void __kmpc_data_sharing_init_stack_spmd();
82  OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd,
83  /// Call to void* __kmpc_data_sharing_coalesced_push_stack(size_t size,
84  /// int16_t UseSharedMemory);
85  OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack,
86  /// Call to void* __kmpc_data_sharing_push_stack(size_t size, int16_t
87  /// UseSharedMemory);
88  OMPRTL_NVPTX__kmpc_data_sharing_push_stack,
89  /// Call to void __kmpc_data_sharing_pop_stack(void *a);
90  OMPRTL_NVPTX__kmpc_data_sharing_pop_stack,
91  /// Call to void __kmpc_begin_sharing_variables(void ***args,
92  /// size_t n_args);
93  OMPRTL_NVPTX__kmpc_begin_sharing_variables,
94  /// Call to void __kmpc_end_sharing_variables();
95  OMPRTL_NVPTX__kmpc_end_sharing_variables,
96  /// Call to void __kmpc_get_shared_variables(void ***GlobalArgs)
97  OMPRTL_NVPTX__kmpc_get_shared_variables,
98  /// Call to uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32
99  /// global_tid);
100  OMPRTL_NVPTX__kmpc_parallel_level,
101  /// Call to int8_t __kmpc_is_spmd_exec_mode();
102  OMPRTL_NVPTX__kmpc_is_spmd_exec_mode,
103  /// Call to void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
104  /// const void *buf, size_t size, int16_t is_shared, const void **res);
105  OMPRTL_NVPTX__kmpc_get_team_static_memory,
106  /// Call to void __kmpc_restore_team_static_memory(int16_t
107  /// isSPMDExecutionMode, int16_t is_shared);
108  OMPRTL_NVPTX__kmpc_restore_team_static_memory,
109  /// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
110  OMPRTL__kmpc_barrier,
111  /// Call to void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
112  /// global_tid);
113  OMPRTL__kmpc_barrier_simple_spmd,
114  /// Call to int32_t __kmpc_warp_active_thread_mask(void);
115  OMPRTL_NVPTX__kmpc_warp_active_thread_mask,
116  /// Call to void __kmpc_syncwarp(int32_t Mask);
117  OMPRTL_NVPTX__kmpc_syncwarp,
118};
119
120/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
121class NVPTXActionTy final : public PrePostActionTy {
122  llvm::FunctionCallee EnterCallee = nullptr;
123  ArrayRef<llvm::Value *> EnterArgs;
124  llvm::FunctionCallee ExitCallee = nullptr;
125  ArrayRef<llvm::Value *> ExitArgs;
126  bool Conditional = false;
127  llvm::BasicBlock *ContBlock = nullptr;
128
129public:
130  NVPTXActionTy(llvm::FunctionCallee EnterCallee,
131                ArrayRef<llvm::Value *> EnterArgs,
132                llvm::FunctionCallee ExitCallee,
133                ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
134      : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
135        ExitArgs(ExitArgs), Conditional(Conditional) {}
136  void Enter(CodeGenFunction &CGF) override {
137    llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
138    if (Conditional) {
139      llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
140      auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
141      ContBlock = CGF.createBasicBlock("omp_if.end");
142      // Generate the branch (If-stmt)
143      CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
144      CGF.EmitBlock(ThenBlock);
145    }
146  }
147  void Done(CodeGenFunction &CGF) {
148    // Emit the rest of blocks/branches
149    CGF.EmitBranch(ContBlock);
150    CGF.EmitBlock(ContBlock, true);
151  }
152  void Exit(CodeGenFunction &CGF) override {
153    CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
154  }
155};
156
157/// A class to track the execution mode when codegening directives within
158/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
159/// to the target region and used by containing directives such as 'parallel'
160/// to emit optimized code.
161class ExecutionRuntimeModesRAII {
162private:
163  CGOpenMPRuntimeNVPTX::ExecutionMode SavedExecMode =
164      CGOpenMPRuntimeNVPTX::EM_Unknown;
165  CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode;
166  bool SavedRuntimeMode = false;
167  bool *RuntimeMode = nullptr;
168
169public:
170  /// Constructor for Non-SPMD mode.
171  ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode)
172      : ExecMode(ExecMode) {
173    SavedExecMode = ExecMode;
174    ExecMode = CGOpenMPRuntimeNVPTX::EM_NonSPMD;
175  }
176  /// Constructor for SPMD mode.
177  ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode,
178                            bool &RuntimeMode, bool FullRuntimeMode)
179      : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
180    SavedExecMode = ExecMode;
181    SavedRuntimeMode = RuntimeMode;
182    ExecMode = CGOpenMPRuntimeNVPTX::EM_SPMD;
183    RuntimeMode = FullRuntimeMode;
184  }
185  ~ExecutionRuntimeModesRAII() {
186    ExecMode = SavedExecMode;
187    if (RuntimeMode)
188      *RuntimeMode = SavedRuntimeMode;
189  }
190};
191
192/// GPU Configuration:  This information can be derived from cuda registers,
193/// however, providing compile time constants helps generate more efficient
194/// code.  For all practical purposes this is fine because the configuration
195/// is the same for all known NVPTX architectures.
196enum MachineConfiguration : unsigned {
197  WarpSize = 32,
198  /// Number of bits required to represent a lane identifier, which is
199  /// computed as log_2(WarpSize).
200  LaneIDBits = 5,
201  LaneIDMask = WarpSize - 1,
202
203  /// Global memory alignment for performance.
204  GlobalMemoryAlignment = 128,
205
206  /// Maximal size of the shared memory buffer.
207  SharedMemorySize = 128,
208};
209
210static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
211  RefExpr = RefExpr->IgnoreParens();
212  if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
213    const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
214    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
215      Base = TempASE->getBase()->IgnoreParenImpCasts();
216    RefExpr = Base;
217  } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
218    const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
219    while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
220      Base = TempOASE->getBase()->IgnoreParenImpCasts();
221    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
222      Base = TempASE->getBase()->IgnoreParenImpCasts();
223    RefExpr = Base;
224  }
225  RefExpr = RefExpr->IgnoreParenImpCasts();
226  if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
227    return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
228  const auto *ME = cast<MemberExpr>(RefExpr);
229  return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
230}
231
232
233static RecordDecl *buildRecordForGlobalizedVars(
234    ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
235    ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
236    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
237        &MappedDeclsFields, int BufSize) {
238  using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
239  if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
240    return nullptr;
241  SmallVector<VarsDataTy, 4> GlobalizedVars;
242  for (const ValueDecl *D : EscapedDecls)
243    GlobalizedVars.emplace_back(
244        CharUnits::fromQuantity(std::max(
245            C.getDeclAlign(D).getQuantity(),
246            static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
247        D);
248  for (const ValueDecl *D : EscapedDeclsForTeams)
249    GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
250  llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
251    return L.first > R.first;
252  });
253
254  // Build struct _globalized_locals_ty {
255  //         /*  globalized vars  */[WarSize] align (max(decl_align,
256  //         GlobalMemoryAlignment))
257  //         /*  globalized vars  */ for EscapedDeclsForTeams
258  //       };
259  RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
260  GlobalizedRD->startDefinition();
261  llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
262      EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
263  for (const auto &Pair : GlobalizedVars) {
264    const ValueDecl *VD = Pair.second;
265    QualType Type = VD->getType();
266    if (Type->isLValueReferenceType())
267      Type = C.getPointerType(Type.getNonReferenceType());
268    else
269      Type = Type.getNonReferenceType();
270    SourceLocation Loc = VD->getLocation();
271    FieldDecl *Field;
272    if (SingleEscaped.count(VD)) {
273      Field = FieldDecl::Create(
274          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
275          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
276          /*BW=*/nullptr, /*Mutable=*/false,
277          /*InitStyle=*/ICIS_NoInit);
278      Field->setAccess(AS_public);
279      if (VD->hasAttrs()) {
280        for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
281             E(VD->getAttrs().end());
282             I != E; ++I)
283          Field->addAttr(*I);
284      }
285    } else {
286      llvm::APInt ArraySize(32, BufSize);
287      Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
288                                    0);
289      Field = FieldDecl::Create(
290          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
291          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
292          /*BW=*/nullptr, /*Mutable=*/false,
293          /*InitStyle=*/ICIS_NoInit);
294      Field->setAccess(AS_public);
295      llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
296                                     static_cast<CharUnits::QuantityType>(
297                                         GlobalMemoryAlignment)));
298      Field->addAttr(AlignedAttr::CreateImplicit(
299          C, /*IsAlignmentExpr=*/true,
300          IntegerLiteral::Create(C, Align,
301                                 C.getIntTypeForBitwidth(32, /*Signed=*/0),
302                                 SourceLocation()),
303          {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
304    }
305    GlobalizedRD->addDecl(Field);
306    MappedDeclsFields.try_emplace(VD, Field);
307  }
308  GlobalizedRD->completeDefinition();
309  return GlobalizedRD;
310}
311
312/// Get the list of variables that can escape their declaration context.
313class CheckVarsEscapingDeclContext final
314    : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
315  CodeGenFunction &CGF;
316  llvm::SetVector<const ValueDecl *> EscapedDecls;
317  llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
318  llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
319  RecordDecl *GlobalizedRD = nullptr;
320  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
321  bool AllEscaped = false;
322  bool IsForCombinedParallelRegion = false;
323
324  void markAsEscaped(const ValueDecl *VD) {
325    // Do not globalize declare target variables.
326    if (!isa<VarDecl>(VD) ||
327        OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
328      return;
329    VD = cast<ValueDecl>(VD->getCanonicalDecl());
330    // Use user-specified allocation.
331    if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
332      return;
333    // Variables captured by value must be globalized.
334    if (auto *CSI = CGF.CapturedStmtInfo) {
335      if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
336        // Check if need to capture the variable that was already captured by
337        // value in the outer region.
338        if (!IsForCombinedParallelRegion) {
339          if (!FD->hasAttrs())
340            return;
341          const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
342          if (!Attr)
343            return;
344          if (((Attr->getCaptureKind() != OMPC_map) &&
345               !isOpenMPPrivate(Attr->getCaptureKind())) ||
346              ((Attr->getCaptureKind() == OMPC_map) &&
347               !FD->getType()->isAnyPointerType()))
348            return;
349        }
350        if (!FD->getType()->isReferenceType()) {
351          assert(!VD->getType()->isVariablyModifiedType() &&
352                 "Parameter captured by value with variably modified type");
353          EscapedParameters.insert(VD);
354        } else if (!IsForCombinedParallelRegion) {
355          return;
356        }
357      }
358    }
359    if ((!CGF.CapturedStmtInfo ||
360         (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
361        VD->getType()->isReferenceType())
362      // Do not globalize variables with reference type.
363      return;
364    if (VD->getType()->isVariablyModifiedType())
365      EscapedVariableLengthDecls.insert(VD);
366    else
367      EscapedDecls.insert(VD);
368  }
369
370  void VisitValueDecl(const ValueDecl *VD) {
371    if (VD->getType()->isLValueReferenceType())
372      markAsEscaped(VD);
373    if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
374      if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
375        const bool SavedAllEscaped = AllEscaped;
376        AllEscaped = VD->getType()->isLValueReferenceType();
377        Visit(VarD->getInit());
378        AllEscaped = SavedAllEscaped;
379      }
380    }
381  }
382  void VisitOpenMPCapturedStmt(const CapturedStmt *S,
383                               ArrayRef<OMPClause *> Clauses,
384                               bool IsCombinedParallelRegion) {
385    if (!S)
386      return;
387    for (const CapturedStmt::Capture &C : S->captures()) {
388      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389        const ValueDecl *VD = C.getCapturedVar();
390        bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
391        if (IsCombinedParallelRegion) {
392          // Check if the variable is privatized in the combined construct and
393          // those private copies must be shared in the inner parallel
394          // directive.
395          IsForCombinedParallelRegion = false;
396          for (const OMPClause *C : Clauses) {
397            if (!isOpenMPPrivate(C->getClauseKind()) ||
398                C->getClauseKind() == OMPC_reduction ||
399                C->getClauseKind() == OMPC_linear ||
400                C->getClauseKind() == OMPC_private)
401              continue;
402            ArrayRef<const Expr *> Vars;
403            if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
404              Vars = PC->getVarRefs();
405            else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
406              Vars = PC->getVarRefs();
407            else
408              llvm_unreachable("Unexpected clause.");
409            for (const auto *E : Vars) {
410              const Decl *D =
411                  cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
412              if (D == VD->getCanonicalDecl()) {
413                IsForCombinedParallelRegion = true;
414                break;
415              }
416            }
417            if (IsForCombinedParallelRegion)
418              break;
419          }
420        }
421        markAsEscaped(VD);
422        if (isa<OMPCapturedExprDecl>(VD))
423          VisitValueDecl(VD);
424        IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
425      }
426    }
427  }
428
429  void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
430    assert(!GlobalizedRD &&
431           "Record for globalized variables is built already.");
432    ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
433    if (IsInTTDRegion)
434      EscapedDeclsForTeams = EscapedDecls.getArrayRef();
435    else
436      EscapedDeclsForParallel = EscapedDecls.getArrayRef();
437    GlobalizedRD = ::buildRecordForGlobalizedVars(
438        CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
439        MappedDeclsFields, WarpSize);
440  }
441
442public:
443  CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
444                               ArrayRef<const ValueDecl *> TeamsReductions)
445      : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
446  }
447  virtual ~CheckVarsEscapingDeclContext() = default;
448  void VisitDeclStmt(const DeclStmt *S) {
449    if (!S)
450      return;
451    for (const Decl *D : S->decls())
452      if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
453        VisitValueDecl(VD);
454  }
455  void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
456    if (!D)
457      return;
458    if (!D->hasAssociatedStmt())
459      return;
460    if (const auto *S =
461            dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
462      // Do not analyze directives that do not actually require capturing,
463      // like `omp for` or `omp simd` directives.
464      llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
465      getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
466      if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
467        VisitStmt(S->getCapturedStmt());
468        return;
469      }
470      VisitOpenMPCapturedStmt(
471          S, D->clauses(),
472          CaptureRegions.back() == OMPD_parallel &&
473              isOpenMPDistributeDirective(D->getDirectiveKind()));
474    }
475  }
476  void VisitCapturedStmt(const CapturedStmt *S) {
477    if (!S)
478      return;
479    for (const CapturedStmt::Capture &C : S->captures()) {
480      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
481        const ValueDecl *VD = C.getCapturedVar();
482        markAsEscaped(VD);
483        if (isa<OMPCapturedExprDecl>(VD))
484          VisitValueDecl(VD);
485      }
486    }
487  }
488  void VisitLambdaExpr(const LambdaExpr *E) {
489    if (!E)
490      return;
491    for (const LambdaCapture &C : E->captures()) {
492      if (C.capturesVariable()) {
493        if (C.getCaptureKind() == LCK_ByRef) {
494          const ValueDecl *VD = C.getCapturedVar();
495          markAsEscaped(VD);
496          if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
497            VisitValueDecl(VD);
498        }
499      }
500    }
501  }
502  void VisitBlockExpr(const BlockExpr *E) {
503    if (!E)
504      return;
505    for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
506      if (C.isByRef()) {
507        const VarDecl *VD = C.getVariable();
508        markAsEscaped(VD);
509        if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
510          VisitValueDecl(VD);
511      }
512    }
513  }
514  void VisitCallExpr(const CallExpr *E) {
515    if (!E)
516      return;
517    for (const Expr *Arg : E->arguments()) {
518      if (!Arg)
519        continue;
520      if (Arg->isLValue()) {
521        const bool SavedAllEscaped = AllEscaped;
522        AllEscaped = true;
523        Visit(Arg);
524        AllEscaped = SavedAllEscaped;
525      } else {
526        Visit(Arg);
527      }
528    }
529    Visit(E->getCallee());
530  }
531  void VisitDeclRefExpr(const DeclRefExpr *E) {
532    if (!E)
533      return;
534    const ValueDecl *VD = E->getDecl();
535    if (AllEscaped)
536      markAsEscaped(VD);
537    if (isa<OMPCapturedExprDecl>(VD))
538      VisitValueDecl(VD);
539    else if (const auto *VarD = dyn_cast<VarDecl>(VD))
540      if (VarD->isInitCapture())
541        VisitValueDecl(VD);
542  }
543  void VisitUnaryOperator(const UnaryOperator *E) {
544    if (!E)
545      return;
546    if (E->getOpcode() == UO_AddrOf) {
547      const bool SavedAllEscaped = AllEscaped;
548      AllEscaped = true;
549      Visit(E->getSubExpr());
550      AllEscaped = SavedAllEscaped;
551    } else {
552      Visit(E->getSubExpr());
553    }
554  }
555  void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
556    if (!E)
557      return;
558    if (E->getCastKind() == CK_ArrayToPointerDecay) {
559      const bool SavedAllEscaped = AllEscaped;
560      AllEscaped = true;
561      Visit(E->getSubExpr());
562      AllEscaped = SavedAllEscaped;
563    } else {
564      Visit(E->getSubExpr());
565    }
566  }
567  void VisitExpr(const Expr *E) {
568    if (!E)
569      return;
570    bool SavedAllEscaped = AllEscaped;
571    if (!E->isLValue())
572      AllEscaped = false;
573    for (const Stmt *Child : E->children())
574      if (Child)
575        Visit(Child);
576    AllEscaped = SavedAllEscaped;
577  }
578  void VisitStmt(const Stmt *S) {
579    if (!S)
580      return;
581    for (const Stmt *Child : S->children())
582      if (Child)
583        Visit(Child);
584  }
585
586  /// Returns the record that handles all the escaped local variables and used
587  /// instead of their original storage.
588  const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
589    if (!GlobalizedRD)
590      buildRecordForGlobalizedVars(IsInTTDRegion);
591    return GlobalizedRD;
592  }
593
594  /// Returns the field in the globalized record for the escaped variable.
595  const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
596    assert(GlobalizedRD &&
597           "Record for globalized variables must be generated already.");
598    auto I = MappedDeclsFields.find(VD);
599    if (I == MappedDeclsFields.end())
600      return nullptr;
601    return I->getSecond();
602  }
603
604  /// Returns the list of the escaped local variables/parameters.
605  ArrayRef<const ValueDecl *> getEscapedDecls() const {
606    return EscapedDecls.getArrayRef();
607  }
608
609  /// Checks if the escaped local variable is actually a parameter passed by
610  /// value.
611  const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
612    return EscapedParameters;
613  }
614
615  /// Returns the list of the escaped variables with the variably modified
616  /// types.
617  ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
618    return EscapedVariableLengthDecls.getArrayRef();
619  }
620};
621} // anonymous namespace
622
623/// Get the GPU warp size.
624static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
625  return CGF.EmitRuntimeCall(
626      llvm::Intrinsic::getDeclaration(
627          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
628      "nvptx_warp_size");
629}
630
631/// Get the id of the current thread on the GPU.
632static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
633  return CGF.EmitRuntimeCall(
634      llvm::Intrinsic::getDeclaration(
635          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
636      "nvptx_tid");
637}
638
639/// Get the id of the warp in the block.
640/// We assume that the warp size is 32, which is always the case
641/// on the NVPTX device, to generate more efficient code.
642static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
643  CGBuilderTy &Bld = CGF.Builder;
644  return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
645}
646
647/// Get the id of the current lane in the Warp.
648/// We assume that the warp size is 32, which is always the case
649/// on the NVPTX device, to generate more efficient code.
650static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
651  CGBuilderTy &Bld = CGF.Builder;
652  return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
653                       "nvptx_lane_id");
654}
655
656/// Get the maximum number of threads in a block of the GPU.
657static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
658  return CGF.EmitRuntimeCall(
659      llvm::Intrinsic::getDeclaration(
660          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
661      "nvptx_num_threads");
662}
663
664/// Get the value of the thread_limit clause in the teams directive.
665/// For the 'generic' execution mode, the runtime encodes thread_limit in
666/// the launch parameters, always starting thread_limit+warpSize threads per
667/// CTA. The threads in the last warp are reserved for master execution.
668/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
669static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
670                                   bool IsInSPMDExecutionMode = false) {
671  CGBuilderTy &Bld = CGF.Builder;
672  return IsInSPMDExecutionMode
673             ? getNVPTXNumThreads(CGF)
674             : Bld.CreateNUWSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
675                                "thread_limit");
676}
677
678/// Get the thread id of the OMP master thread.
679/// The master thread id is the first thread (lane) of the last warp in the
680/// GPU block.  Warp size is assumed to be some power of 2.
681/// Thread id is 0 indexed.
682/// E.g: If NumThreads is 33, master id is 32.
683///      If NumThreads is 64, master id is 32.
684///      If NumThreads is 1024, master id is 992.
685static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
686  CGBuilderTy &Bld = CGF.Builder;
687  llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
688
689  // We assume that the warp size is a power of 2.
690  llvm::Value *Mask = Bld.CreateNUWSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
691
692  return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)),
693                       Bld.CreateNot(Mask), "master_tid");
694}
695
696CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
697    CodeGenModule &CGM, SourceLocation Loc)
698    : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
699      Loc(Loc) {
700  createWorkerFunction(CGM);
701}
702
703void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
704    CodeGenModule &CGM) {
705  // Create an worker function with no arguments.
706
707  WorkerFn = llvm::Function::Create(
708      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
709      /*placeholder=*/"_worker", &CGM.getModule());
710  CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
711  WorkerFn->setDoesNotRecurse();
712}
713
714CGOpenMPRuntimeNVPTX::ExecutionMode
715CGOpenMPRuntimeNVPTX::getExecutionMode() const {
716  return CurrentExecutionMode;
717}
718
719static CGOpenMPRuntimeNVPTX::DataSharingMode
720getDataSharingMode(CodeGenModule &CGM) {
721  return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeNVPTX::CUDA
722                                          : CGOpenMPRuntimeNVPTX::Generic;
723}
724
725/// Check for inner (nested) SPMD construct, if any
726static bool hasNestedSPMDDirective(ASTContext &Ctx,
727                                   const OMPExecutableDirective &D) {
728  const auto *CS = D.getInnermostCapturedStmt();
729  const auto *Body =
730      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
731  const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
732
733  if (const auto *NestedDir =
734          dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
735    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
736    switch (D.getDirectiveKind()) {
737    case OMPD_target:
738      if (isOpenMPParallelDirective(DKind))
739        return true;
740      if (DKind == OMPD_teams) {
741        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
742            /*IgnoreCaptured=*/true);
743        if (!Body)
744          return false;
745        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
746        if (const auto *NND =
747                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
748          DKind = NND->getDirectiveKind();
749          if (isOpenMPParallelDirective(DKind))
750            return true;
751        }
752      }
753      return false;
754    case OMPD_target_teams:
755      return isOpenMPParallelDirective(DKind);
756    case OMPD_target_simd:
757    case OMPD_target_parallel:
758    case OMPD_target_parallel_for:
759    case OMPD_target_parallel_for_simd:
760    case OMPD_target_teams_distribute:
761    case OMPD_target_teams_distribute_simd:
762    case OMPD_target_teams_distribute_parallel_for:
763    case OMPD_target_teams_distribute_parallel_for_simd:
764    case OMPD_parallel:
765    case OMPD_for:
766    case OMPD_parallel_for:
767    case OMPD_parallel_master:
768    case OMPD_parallel_sections:
769    case OMPD_for_simd:
770    case OMPD_parallel_for_simd:
771    case OMPD_cancel:
772    case OMPD_cancellation_point:
773    case OMPD_ordered:
774    case OMPD_threadprivate:
775    case OMPD_allocate:
776    case OMPD_task:
777    case OMPD_simd:
778    case OMPD_sections:
779    case OMPD_section:
780    case OMPD_single:
781    case OMPD_master:
782    case OMPD_critical:
783    case OMPD_taskyield:
784    case OMPD_barrier:
785    case OMPD_taskwait:
786    case OMPD_taskgroup:
787    case OMPD_atomic:
788    case OMPD_flush:
789    case OMPD_depobj:
790    case OMPD_scan:
791    case OMPD_teams:
792    case OMPD_target_data:
793    case OMPD_target_exit_data:
794    case OMPD_target_enter_data:
795    case OMPD_distribute:
796    case OMPD_distribute_simd:
797    case OMPD_distribute_parallel_for:
798    case OMPD_distribute_parallel_for_simd:
799    case OMPD_teams_distribute:
800    case OMPD_teams_distribute_simd:
801    case OMPD_teams_distribute_parallel_for:
802    case OMPD_teams_distribute_parallel_for_simd:
803    case OMPD_target_update:
804    case OMPD_declare_simd:
805    case OMPD_declare_variant:
806    case OMPD_begin_declare_variant:
807    case OMPD_end_declare_variant:
808    case OMPD_declare_target:
809    case OMPD_end_declare_target:
810    case OMPD_declare_reduction:
811    case OMPD_declare_mapper:
812    case OMPD_taskloop:
813    case OMPD_taskloop_simd:
814    case OMPD_master_taskloop:
815    case OMPD_master_taskloop_simd:
816    case OMPD_parallel_master_taskloop:
817    case OMPD_parallel_master_taskloop_simd:
818    case OMPD_requires:
819    case OMPD_unknown:
820    default:
821      llvm_unreachable("Unexpected directive.");
822    }
823  }
824
825  return false;
826}
827
828static bool supportsSPMDExecutionMode(ASTContext &Ctx,
829                                      const OMPExecutableDirective &D) {
830  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
831  switch (DirectiveKind) {
832  case OMPD_target:
833  case OMPD_target_teams:
834    return hasNestedSPMDDirective(Ctx, D);
835  case OMPD_target_parallel:
836  case OMPD_target_parallel_for:
837  case OMPD_target_parallel_for_simd:
838  case OMPD_target_teams_distribute_parallel_for:
839  case OMPD_target_teams_distribute_parallel_for_simd:
840  case OMPD_target_simd:
841  case OMPD_target_teams_distribute_simd:
842    return true;
843  case OMPD_target_teams_distribute:
844    return false;
845  case OMPD_parallel:
846  case OMPD_for:
847  case OMPD_parallel_for:
848  case OMPD_parallel_master:
849  case OMPD_parallel_sections:
850  case OMPD_for_simd:
851  case OMPD_parallel_for_simd:
852  case OMPD_cancel:
853  case OMPD_cancellation_point:
854  case OMPD_ordered:
855  case OMPD_threadprivate:
856  case OMPD_allocate:
857  case OMPD_task:
858  case OMPD_simd:
859  case OMPD_sections:
860  case OMPD_section:
861  case OMPD_single:
862  case OMPD_master:
863  case OMPD_critical:
864  case OMPD_taskyield:
865  case OMPD_barrier:
866  case OMPD_taskwait:
867  case OMPD_taskgroup:
868  case OMPD_atomic:
869  case OMPD_flush:
870  case OMPD_depobj:
871  case OMPD_scan:
872  case OMPD_teams:
873  case OMPD_target_data:
874  case OMPD_target_exit_data:
875  case OMPD_target_enter_data:
876  case OMPD_distribute:
877  case OMPD_distribute_simd:
878  case OMPD_distribute_parallel_for:
879  case OMPD_distribute_parallel_for_simd:
880  case OMPD_teams_distribute:
881  case OMPD_teams_distribute_simd:
882  case OMPD_teams_distribute_parallel_for:
883  case OMPD_teams_distribute_parallel_for_simd:
884  case OMPD_target_update:
885  case OMPD_declare_simd:
886  case OMPD_declare_variant:
887  case OMPD_begin_declare_variant:
888  case OMPD_end_declare_variant:
889  case OMPD_declare_target:
890  case OMPD_end_declare_target:
891  case OMPD_declare_reduction:
892  case OMPD_declare_mapper:
893  case OMPD_taskloop:
894  case OMPD_taskloop_simd:
895  case OMPD_master_taskloop:
896  case OMPD_master_taskloop_simd:
897  case OMPD_parallel_master_taskloop:
898  case OMPD_parallel_master_taskloop_simd:
899  case OMPD_requires:
900  case OMPD_unknown:
901  default:
902    break;
903  }
904  llvm_unreachable(
905      "Unknown programming model for OpenMP directive on NVPTX target.");
906}
907
908/// Check if the directive is loops based and has schedule clause at all or has
909/// static scheduling.
910static bool hasStaticScheduling(const OMPExecutableDirective &D) {
911  assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
912         isOpenMPLoopDirective(D.getDirectiveKind()) &&
913         "Expected loop-based directive.");
914  return !D.hasClausesOfKind<OMPOrderedClause>() &&
915         (!D.hasClausesOfKind<OMPScheduleClause>() ||
916          llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
917                       [](const OMPScheduleClause *C) {
918                         return C->getScheduleKind() == OMPC_SCHEDULE_static;
919                       }));
920}
921
922/// Check for inner (nested) lightweight runtime construct, if any
923static bool hasNestedLightweightDirective(ASTContext &Ctx,
924                                          const OMPExecutableDirective &D) {
925  assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
926  const auto *CS = D.getInnermostCapturedStmt();
927  const auto *Body =
928      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
929  const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
930
931  if (const auto *NestedDir =
932          dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
933    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
934    switch (D.getDirectiveKind()) {
935    case OMPD_target:
936      if (isOpenMPParallelDirective(DKind) &&
937          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
938          hasStaticScheduling(*NestedDir))
939        return true;
940      if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
941        return true;
942      if (DKind == OMPD_parallel) {
943        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
944            /*IgnoreCaptured=*/true);
945        if (!Body)
946          return false;
947        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
948        if (const auto *NND =
949                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
950          DKind = NND->getDirectiveKind();
951          if (isOpenMPWorksharingDirective(DKind) &&
952              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
953            return true;
954        }
955      } else if (DKind == OMPD_teams) {
956        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
957            /*IgnoreCaptured=*/true);
958        if (!Body)
959          return false;
960        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
961        if (const auto *NND =
962                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
963          DKind = NND->getDirectiveKind();
964          if (isOpenMPParallelDirective(DKind) &&
965              isOpenMPWorksharingDirective(DKind) &&
966              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
967            return true;
968          if (DKind == OMPD_parallel) {
969            Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
970                /*IgnoreCaptured=*/true);
971            if (!Body)
972              return false;
973            ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
974            if (const auto *NND =
975                    dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
976              DKind = NND->getDirectiveKind();
977              if (isOpenMPWorksharingDirective(DKind) &&
978                  isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
979                return true;
980            }
981          }
982        }
983      }
984      return false;
985    case OMPD_target_teams:
986      if (isOpenMPParallelDirective(DKind) &&
987          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
988          hasStaticScheduling(*NestedDir))
989        return true;
990      if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
991        return true;
992      if (DKind == OMPD_parallel) {
993        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
994            /*IgnoreCaptured=*/true);
995        if (!Body)
996          return false;
997        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
998        if (const auto *NND =
999                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
1000          DKind = NND->getDirectiveKind();
1001          if (isOpenMPWorksharingDirective(DKind) &&
1002              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
1003            return true;
1004        }
1005      }
1006      return false;
1007    case OMPD_target_parallel:
1008      if (DKind == OMPD_simd)
1009        return true;
1010      return isOpenMPWorksharingDirective(DKind) &&
1011             isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
1012    case OMPD_target_teams_distribute:
1013    case OMPD_target_simd:
1014    case OMPD_target_parallel_for:
1015    case OMPD_target_parallel_for_simd:
1016    case OMPD_target_teams_distribute_simd:
1017    case OMPD_target_teams_distribute_parallel_for:
1018    case OMPD_target_teams_distribute_parallel_for_simd:
1019    case OMPD_parallel:
1020    case OMPD_for:
1021    case OMPD_parallel_for:
1022    case OMPD_parallel_master:
1023    case OMPD_parallel_sections:
1024    case OMPD_for_simd:
1025    case OMPD_parallel_for_simd:
1026    case OMPD_cancel:
1027    case OMPD_cancellation_point:
1028    case OMPD_ordered:
1029    case OMPD_threadprivate:
1030    case OMPD_allocate:
1031    case OMPD_task:
1032    case OMPD_simd:
1033    case OMPD_sections:
1034    case OMPD_section:
1035    case OMPD_single:
1036    case OMPD_master:
1037    case OMPD_critical:
1038    case OMPD_taskyield:
1039    case OMPD_barrier:
1040    case OMPD_taskwait:
1041    case OMPD_taskgroup:
1042    case OMPD_atomic:
1043    case OMPD_flush:
1044    case OMPD_depobj:
1045    case OMPD_scan:
1046    case OMPD_teams:
1047    case OMPD_target_data:
1048    case OMPD_target_exit_data:
1049    case OMPD_target_enter_data:
1050    case OMPD_distribute:
1051    case OMPD_distribute_simd:
1052    case OMPD_distribute_parallel_for:
1053    case OMPD_distribute_parallel_for_simd:
1054    case OMPD_teams_distribute:
1055    case OMPD_teams_distribute_simd:
1056    case OMPD_teams_distribute_parallel_for:
1057    case OMPD_teams_distribute_parallel_for_simd:
1058    case OMPD_target_update:
1059    case OMPD_declare_simd:
1060    case OMPD_declare_variant:
1061    case OMPD_begin_declare_variant:
1062    case OMPD_end_declare_variant:
1063    case OMPD_declare_target:
1064    case OMPD_end_declare_target:
1065    case OMPD_declare_reduction:
1066    case OMPD_declare_mapper:
1067    case OMPD_taskloop:
1068    case OMPD_taskloop_simd:
1069    case OMPD_master_taskloop:
1070    case OMPD_master_taskloop_simd:
1071    case OMPD_parallel_master_taskloop:
1072    case OMPD_parallel_master_taskloop_simd:
1073    case OMPD_requires:
1074    case OMPD_unknown:
1075    default:
1076      llvm_unreachable("Unexpected directive.");
1077    }
1078  }
1079
1080  return false;
1081}
1082
1083/// Checks if the construct supports lightweight runtime. It must be SPMD
1084/// construct + inner loop-based construct with static scheduling.
1085static bool supportsLightweightRuntime(ASTContext &Ctx,
1086                                       const OMPExecutableDirective &D) {
1087  if (!supportsSPMDExecutionMode(Ctx, D))
1088    return false;
1089  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
1090  switch (DirectiveKind) {
1091  case OMPD_target:
1092  case OMPD_target_teams:
1093  case OMPD_target_parallel:
1094    return hasNestedLightweightDirective(Ctx, D);
1095  case OMPD_target_parallel_for:
1096  case OMPD_target_parallel_for_simd:
1097  case OMPD_target_teams_distribute_parallel_for:
1098  case OMPD_target_teams_distribute_parallel_for_simd:
1099    // (Last|First)-privates must be shared in parallel region.
1100    return hasStaticScheduling(D);
1101  case OMPD_target_simd:
1102  case OMPD_target_teams_distribute_simd:
1103    return true;
1104  case OMPD_target_teams_distribute:
1105    return false;
1106  case OMPD_parallel:
1107  case OMPD_for:
1108  case OMPD_parallel_for:
1109  case OMPD_parallel_master:
1110  case OMPD_parallel_sections:
1111  case OMPD_for_simd:
1112  case OMPD_parallel_for_simd:
1113  case OMPD_cancel:
1114  case OMPD_cancellation_point:
1115  case OMPD_ordered:
1116  case OMPD_threadprivate:
1117  case OMPD_allocate:
1118  case OMPD_task:
1119  case OMPD_simd:
1120  case OMPD_sections:
1121  case OMPD_section:
1122  case OMPD_single:
1123  case OMPD_master:
1124  case OMPD_critical:
1125  case OMPD_taskyield:
1126  case OMPD_barrier:
1127  case OMPD_taskwait:
1128  case OMPD_taskgroup:
1129  case OMPD_atomic:
1130  case OMPD_flush:
1131  case OMPD_depobj:
1132  case OMPD_scan:
1133  case OMPD_teams:
1134  case OMPD_target_data:
1135  case OMPD_target_exit_data:
1136  case OMPD_target_enter_data:
1137  case OMPD_distribute:
1138  case OMPD_distribute_simd:
1139  case OMPD_distribute_parallel_for:
1140  case OMPD_distribute_parallel_for_simd:
1141  case OMPD_teams_distribute:
1142  case OMPD_teams_distribute_simd:
1143  case OMPD_teams_distribute_parallel_for:
1144  case OMPD_teams_distribute_parallel_for_simd:
1145  case OMPD_target_update:
1146  case OMPD_declare_simd:
1147  case OMPD_declare_variant:
1148  case OMPD_begin_declare_variant:
1149  case OMPD_end_declare_variant:
1150  case OMPD_declare_target:
1151  case OMPD_end_declare_target:
1152  case OMPD_declare_reduction:
1153  case OMPD_declare_mapper:
1154  case OMPD_taskloop:
1155  case OMPD_taskloop_simd:
1156  case OMPD_master_taskloop:
1157  case OMPD_master_taskloop_simd:
1158  case OMPD_parallel_master_taskloop:
1159  case OMPD_parallel_master_taskloop_simd:
1160  case OMPD_requires:
1161  case OMPD_unknown:
1162  default:
1163    break;
1164  }
1165  llvm_unreachable(
1166      "Unknown programming model for OpenMP directive on NVPTX target.");
1167}
1168
1169void CGOpenMPRuntimeNVPTX::emitNonSPMDKernel(const OMPExecutableDirective &D,
1170                                             StringRef ParentName,
1171                                             llvm::Function *&OutlinedFn,
1172                                             llvm::Constant *&OutlinedFnID,
1173                                             bool IsOffloadEntry,
1174                                             const RegionCodeGenTy &CodeGen) {
1175  ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1176  EntryFunctionState EST;
1177  WorkerFunctionState WST(CGM, D.getBeginLoc());
1178  Work.clear();
1179  WrapperFunctionsMap.clear();
1180
1181  // Emit target region as a standalone region.
1182  class NVPTXPrePostActionTy : public PrePostActionTy {
1183    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
1184    CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;
1185
1186  public:
1187    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
1188                         CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
1189        : EST(EST), WST(WST) {}
1190    void Enter(CodeGenFunction &CGF) override {
1191      auto &RT =
1192          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
1193      RT.emitNonSPMDEntryHeader(CGF, EST, WST);
1194      // Skip target region initialization.
1195      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1196    }
1197    void Exit(CodeGenFunction &CGF) override {
1198      auto &RT =
1199          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
1200      RT.clearLocThreadIdInsertPt(CGF);
1201      RT.emitNonSPMDEntryFooter(CGF, EST);
1202    }
1203  } Action(EST, WST);
1204  CodeGen.setAction(Action);
1205  IsInTTDRegion = true;
1206  // Reserve place for the globalized memory.
1207  GlobalizedRecords.emplace_back();
1208  if (!KernelStaticGlobalized) {
1209    KernelStaticGlobalized = new llvm::GlobalVariable(
1210        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
1211        llvm::GlobalValue::InternalLinkage,
1212        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
1213        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
1214        llvm::GlobalValue::NotThreadLocal,
1215        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
1216  }
1217  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1218                                   IsOffloadEntry, CodeGen);
1219  IsInTTDRegion = false;
1220
1221  // Now change the name of the worker function to correspond to this target
1222  // region's entry function.
1223  WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));
1224
1225  // Create the worker function
1226  emitWorkerFunction(WST);
1227}
1228
1229// Setup NVPTX threads for master-worker OpenMP scheme.
1230void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
1231                                                  EntryFunctionState &EST,
1232                                                  WorkerFunctionState &WST) {
1233  CGBuilderTy &Bld = CGF.Builder;
1234
1235  llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
1236  llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
1237  llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
1238  EST.ExitBB = CGF.createBasicBlock(".exit");
1239
1240  llvm::Value *IsWorker =
1241      Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
1242  Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
1243
1244  CGF.EmitBlock(WorkerBB);
1245  emitCall(CGF, WST.Loc, WST.WorkerFn);
1246  CGF.EmitBranch(EST.ExitBB);
1247
1248  CGF.EmitBlock(MasterCheckBB);
1249  llvm::Value *IsMaster =
1250      Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
1251  Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
1252
1253  CGF.EmitBlock(MasterBB);
1254  IsInTargetMasterThreadRegion = true;
1255  // SEQUENTIAL (MASTER) REGION START
1256  // First action in sequential region:
1257  // Initialize the state of the OpenMP runtime library on the GPU.
1258  // TODO: Optimize runtime initialization and pass in correct value.
1259  llvm::Value *Args[] = {getThreadLimit(CGF),
1260                         Bld.getInt16(/*RequiresOMPRuntime=*/1)};
1261  CGF.EmitRuntimeCall(
1262      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
1263
1264  // For data sharing, we need to initialize the stack.
1265  CGF.EmitRuntimeCall(
1266      createNVPTXRuntimeFunction(
1267          OMPRTL_NVPTX__kmpc_data_sharing_init_stack));
1268
1269  emitGenericVarsProlog(CGF, WST.Loc);
1270}
1271
1272void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
1273                                                  EntryFunctionState &EST) {
1274  IsInTargetMasterThreadRegion = false;
1275  if (!CGF.HaveInsertPoint())
1276    return;
1277
1278  emitGenericVarsEpilog(CGF);
1279
1280  if (!EST.ExitBB)
1281    EST.ExitBB = CGF.createBasicBlock(".exit");
1282
1283  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
1284  CGF.EmitBranch(TerminateBB);
1285
1286  CGF.EmitBlock(TerminateBB);
1287  // Signal termination condition.
1288  // TODO: Optimize runtime initialization and pass in correct value.
1289  llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
1290  CGF.EmitRuntimeCall(
1291      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args);
1292  // Barrier to terminate worker threads.
1293  syncCTAThreads(CGF);
1294  // Master thread jumps to exit point.
1295  CGF.EmitBranch(EST.ExitBB);
1296
1297  CGF.EmitBlock(EST.ExitBB);
1298  EST.ExitBB = nullptr;
1299}
1300
1301void CGOpenMPRuntimeNVPTX::emitSPMDKernel(const OMPExecutableDirective &D,
1302                                          StringRef ParentName,
1303                                          llvm::Function *&OutlinedFn,
1304                                          llvm::Constant *&OutlinedFnID,
1305                                          bool IsOffloadEntry,
1306                                          const RegionCodeGenTy &CodeGen) {
1307  ExecutionRuntimeModesRAII ModeRAII(
1308      CurrentExecutionMode, RequiresFullRuntime,
1309      CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1310          !supportsLightweightRuntime(CGM.getContext(), D));
1311  EntryFunctionState EST;
1312
1313  // Emit target region as a standalone region.
1314  class NVPTXPrePostActionTy : public PrePostActionTy {
1315    CGOpenMPRuntimeNVPTX &RT;
1316    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
1317    const OMPExecutableDirective &D;
1318
1319  public:
1320    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
1321                         CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
1322                         const OMPExecutableDirective &D)
1323        : RT(RT), EST(EST), D(D) {}
1324    void Enter(CodeGenFunction &CGF) override {
1325      RT.emitSPMDEntryHeader(CGF, EST, D);
1326      // Skip target region initialization.
1327      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1328    }
1329    void Exit(CodeGenFunction &CGF) override {
1330      RT.clearLocThreadIdInsertPt(CGF);
1331      RT.emitSPMDEntryFooter(CGF, EST);
1332    }
1333  } Action(*this, EST, D);
1334  CodeGen.setAction(Action);
1335  IsInTTDRegion = true;
1336  // Reserve place for the globalized memory.
1337  GlobalizedRecords.emplace_back();
1338  if (!KernelStaticGlobalized) {
1339    KernelStaticGlobalized = new llvm::GlobalVariable(
1340        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
1341        llvm::GlobalValue::InternalLinkage,
1342        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
1343        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
1344        llvm::GlobalValue::NotThreadLocal,
1345        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
1346  }
1347  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1348                                   IsOffloadEntry, CodeGen);
1349  IsInTTDRegion = false;
1350}
1351
1352void CGOpenMPRuntimeNVPTX::emitSPMDEntryHeader(
1353    CodeGenFunction &CGF, EntryFunctionState &EST,
1354    const OMPExecutableDirective &D) {
1355  CGBuilderTy &Bld = CGF.Builder;
1356
1357  // Setup BBs in entry function.
1358  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
1359  EST.ExitBB = CGF.createBasicBlock(".exit");
1360
1361  llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
1362                         /*RequiresOMPRuntime=*/
1363                         Bld.getInt16(RequiresFullRuntime ? 1 : 0),
1364                         /*RequiresDataSharing=*/Bld.getInt16(0)};
1365  CGF.EmitRuntimeCall(
1366      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
1367
1368  if (RequiresFullRuntime) {
1369    // For data sharing, we need to initialize the stack.
1370    CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
1371        OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd));
1372  }
1373
1374  CGF.EmitBranch(ExecuteBB);
1375
1376  CGF.EmitBlock(ExecuteBB);
1377
1378  IsInTargetMasterThreadRegion = true;
1379}
1380
1381void CGOpenMPRuntimeNVPTX::emitSPMDEntryFooter(CodeGenFunction &CGF,
1382                                               EntryFunctionState &EST) {
1383  IsInTargetMasterThreadRegion = false;
1384  if (!CGF.HaveInsertPoint())
1385    return;
1386
1387  if (!EST.ExitBB)
1388    EST.ExitBB = CGF.createBasicBlock(".exit");
1389
1390  llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
1391  CGF.EmitBranch(OMPDeInitBB);
1392
1393  CGF.EmitBlock(OMPDeInitBB);
1394  // DeInitialize the OMP state in the runtime; called by all active threads.
1395  llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
1396                         CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
1397  CGF.EmitRuntimeCall(
1398      createNVPTXRuntimeFunction(
1399          OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2), Args);
1400  CGF.EmitBranch(EST.ExitBB);
1401
1402  CGF.EmitBlock(EST.ExitBB);
1403  EST.ExitBB = nullptr;
1404}
1405
1406// Create a unique global variable to indicate the execution mode of this target
1407// region. The execution mode is either 'generic', or 'spmd' depending on the
1408// target directive. This variable is picked up by the offload library to setup
1409// the device appropriately before kernel launch. If the execution mode is
1410// 'generic', the runtime reserves one warp for the master, otherwise, all
1411// warps participate in parallel work.
1412static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1413                                     bool Mode) {
1414  auto *GVMode =
1415      new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1416                               llvm::GlobalValue::WeakAnyLinkage,
1417                               llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
1418                               Twine(Name, "_exec_mode"));
1419  CGM.addCompilerUsedGlobal(GVMode);
1420}
1421
1422void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
1423  ASTContext &Ctx = CGM.getContext();
1424
1425  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
1426  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
1427                    WST.Loc, WST.Loc);
1428  emitWorkerLoop(CGF, WST);
1429  CGF.FinishFunction();
1430}
1431
1432void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
1433                                          WorkerFunctionState &WST) {
1434  //
1435  // The workers enter this loop and wait for parallel work from the master.
1436  // When the master encounters a parallel region it sets up the work + variable
1437  // arguments, and wakes up the workers.  The workers first check to see if
1438  // they are required for the parallel region, i.e., within the # of requested
1439  // parallel threads.  The activated workers load the variable arguments and
1440  // execute the parallel work.
1441  //
1442
1443  CGBuilderTy &Bld = CGF.Builder;
1444
1445  llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
1446  llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
1447  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
1448  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
1449  llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
1450  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
1451
1452  CGF.EmitBranch(AwaitBB);
1453
1454  // Workers wait for work from master.
1455  CGF.EmitBlock(AwaitBB);
1456  // Wait for parallel work
1457  syncCTAThreads(CGF);
1458
1459  Address WorkFn =
1460      CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
1461  Address ExecStatus =
1462      CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
1463  CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
1464  CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
1465
1466  // TODO: Optimize runtime initialization and pass in correct value.
1467  llvm::Value *Args[] = {WorkFn.getPointer()};
1468  llvm::Value *Ret = CGF.EmitRuntimeCall(
1469      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
1470  Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
1471
1472  // On termination condition (workid == 0), exit loop.
1473  llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
1474  llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
1475  Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
1476
1477  // Activate requested workers.
1478  CGF.EmitBlock(SelectWorkersBB);
1479  llvm::Value *IsActive =
1480      Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
1481  Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
1482
1483  // Signal start of parallel region.
1484  CGF.EmitBlock(ExecuteBB);
1485  // Skip initialization.
1486  setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1487
1488  // Process work items: outlined parallel functions.
1489  for (llvm::Function *W : Work) {
1490    // Try to match this outlined function.
1491    llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
1492
1493    llvm::Value *WorkFnMatch =
1494        Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
1495
1496    llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
1497    llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
1498    Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
1499
1500    // Execute this outlined function.
1501    CGF.EmitBlock(ExecuteFNBB);
1502
1503    // Insert call to work function via shared wrapper. The shared
1504    // wrapper takes two arguments:
1505    //   - the parallelism level;
1506    //   - the thread ID;
1507    emitCall(CGF, WST.Loc, W,
1508             {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
1509
1510    // Go to end of parallel region.
1511    CGF.EmitBranch(TerminateBB);
1512
1513    CGF.EmitBlock(CheckNextBB);
1514  }
1515  // Default case: call to outlined function through pointer if the target
1516  // region makes a declare target call that may contain an orphaned parallel
1517  // directive.
1518  auto *ParallelFnTy =
1519      llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
1520                              /*isVarArg=*/false);
1521  llvm::Value *WorkFnCast =
1522      Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo());
1523  // Insert call to work function via shared wrapper. The shared
1524  // wrapper takes two arguments:
1525  //   - the parallelism level;
1526  //   - the thread ID;
1527  emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast},
1528           {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
1529  // Go to end of parallel region.
1530  CGF.EmitBranch(TerminateBB);
1531
1532  // Signal end of parallel region.
1533  CGF.EmitBlock(TerminateBB);
1534  CGF.EmitRuntimeCall(
1535      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
1536      llvm::None);
1537  CGF.EmitBranch(BarrierBB);
1538
1539  // All active and inactive workers wait at a barrier after parallel region.
1540  CGF.EmitBlock(BarrierBB);
1541  // Barrier after parallel region.
1542  syncCTAThreads(CGF);
1543  CGF.EmitBranch(AwaitBB);
1544
1545  // Exit target region.
1546  CGF.EmitBlock(ExitBB);
1547  // Skip initialization.
1548  clearLocThreadIdInsertPt(CGF);
1549}
1550
1551/// Returns specified OpenMP runtime function for the current OpenMP
1552/// implementation.  Specialized for the NVPTX device.
1553/// \param Function OpenMP runtime function.
1554/// \return Specified function.
1555llvm::FunctionCallee
1556CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
1557  llvm::FunctionCallee RTLFn = nullptr;
1558  switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
1559  case OMPRTL_NVPTX__kmpc_kernel_init: {
1560    // Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t
1561    // RequiresOMPRuntime);
1562    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty};
1563    auto *FnTy =
1564        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1565    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
1566    break;
1567  }
1568  case OMPRTL_NVPTX__kmpc_kernel_deinit: {
1569    // Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
1570    llvm::Type *TypeParams[] = {CGM.Int16Ty};
1571    auto *FnTy =
1572        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1573    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
1574    break;
1575  }
1576  case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
1577    // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
1578    // int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
1579    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
1580    auto *FnTy =
1581        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1582    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
1583    break;
1584  }
1585  case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2: {
1586    // Build void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
1587    llvm::Type *TypeParams[] = {CGM.Int16Ty};
1588    auto *FnTy =
1589        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1590    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit_v2");
1591    break;
1592  }
1593  case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
1594    /// Build void __kmpc_kernel_prepare_parallel(
1595    /// void *outlined_function);
1596    llvm::Type *TypeParams[] = {CGM.Int8PtrTy};
1597    auto *FnTy =
1598        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1599    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
1600    break;
1601  }
1602  case OMPRTL_NVPTX__kmpc_kernel_parallel: {
1603    /// Build bool __kmpc_kernel_parallel(void **outlined_function);
1604    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy};
1605    llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
1606    auto *FnTy =
1607        llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
1608    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
1609    break;
1610  }
1611  case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
1612    /// Build void __kmpc_kernel_end_parallel();
1613    auto *FnTy =
1614        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
1615    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
1616    break;
1617  }
1618  case OMPRTL_NVPTX__kmpc_serialized_parallel: {
1619    // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
1620    // global_tid);
1621    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1622    auto *FnTy =
1623        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1624    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
1625    break;
1626  }
1627  case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
1628    // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
1629    // global_tid);
1630    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1631    auto *FnTy =
1632        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1633    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
1634    break;
1635  }
1636  case OMPRTL_NVPTX__kmpc_shuffle_int32: {
1637    // Build int32_t __kmpc_shuffle_int32(int32_t element,
1638    // int16_t lane_offset, int16_t warp_size);
1639    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
1640    auto *FnTy =
1641        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1642    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
1643    break;
1644  }
1645  case OMPRTL_NVPTX__kmpc_shuffle_int64: {
1646    // Build int64_t __kmpc_shuffle_int64(int64_t element,
1647    // int16_t lane_offset, int16_t warp_size);
1648    llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
1649    auto *FnTy =
1650        llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
1651    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
1652    break;
1653  }
1654  case OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2: {
1655    // Build int32_t kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc,
1656    // kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void*
1657    // reduce_data, void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t
1658    // lane_id, int16_t lane_offset, int16_t Algorithm Version), void
1659    // (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
1660    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
1661                                             CGM.Int16Ty, CGM.Int16Ty};
1662    auto *ShuffleReduceFnTy =
1663        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
1664                                /*isVarArg=*/false);
1665    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
1666    auto *InterWarpCopyFnTy =
1667        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
1668                                /*isVarArg=*/false);
1669    llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
1670                                CGM.Int32Ty,
1671                                CGM.Int32Ty,
1672                                CGM.SizeTy,
1673                                CGM.VoidPtrTy,
1674                                ShuffleReduceFnTy->getPointerTo(),
1675                                InterWarpCopyFnTy->getPointerTo()};
1676    auto *FnTy =
1677        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1678    RTLFn = CGM.CreateRuntimeFunction(
1679        FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait_v2");
1680    break;
1681  }
1682  case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
1683    // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
1684    llvm::Type *TypeParams[] = {CGM.Int32Ty};
1685    auto *FnTy =
1686        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1687    RTLFn = CGM.CreateRuntimeFunction(
1688        FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
1689    break;
1690  }
1691  case OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2: {
1692    // Build int32_t __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
1693    // global_tid, void *global_buffer, int32_t num_of_records, void*
1694    // reduce_data,
1695    // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
1696    // lane_offset, int16_t shortCircuit),
1697    // void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
1698    // (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
1699    // void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
1700    // void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
1701    // int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
1702    // *buffer, int idx, void *reduce_data));
1703    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
1704                                             CGM.Int16Ty, CGM.Int16Ty};
1705    auto *ShuffleReduceFnTy =
1706        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
1707                                /*isVarArg=*/false);
1708    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
1709    auto *InterWarpCopyFnTy =
1710        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
1711                                /*isVarArg=*/false);
1712    llvm::Type *GlobalListTypeParams[] = {CGM.VoidPtrTy, CGM.IntTy,
1713                                          CGM.VoidPtrTy};
1714    auto *GlobalListFnTy =
1715        llvm::FunctionType::get(CGM.VoidTy, GlobalListTypeParams,
1716                                /*isVarArg=*/false);
1717    llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
1718                                CGM.Int32Ty,
1719                                CGM.VoidPtrTy,
1720                                CGM.Int32Ty,
1721                                CGM.VoidPtrTy,
1722                                ShuffleReduceFnTy->getPointerTo(),
1723                                InterWarpCopyFnTy->getPointerTo(),
1724                                GlobalListFnTy->getPointerTo(),
1725                                GlobalListFnTy->getPointerTo(),
1726                                GlobalListFnTy->getPointerTo(),
1727                                GlobalListFnTy->getPointerTo()};
1728    auto *FnTy =
1729        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1730    RTLFn = CGM.CreateRuntimeFunction(
1731        FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait_v2");
1732    break;
1733  }
1734  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack: {
1735    /// Build void __kmpc_data_sharing_init_stack();
1736    auto *FnTy =
1737        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
1738    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack");
1739    break;
1740  }
1741  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd: {
1742    /// Build void __kmpc_data_sharing_init_stack_spmd();
1743    auto *FnTy =
1744        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
1745    RTLFn =
1746        CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack_spmd");
1747    break;
1748  }
1749  case OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack: {
1750    // Build void *__kmpc_data_sharing_coalesced_push_stack(size_t size,
1751    // int16_t UseSharedMemory);
1752    llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
1753    auto *FnTy =
1754        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
1755    RTLFn = CGM.CreateRuntimeFunction(
1756        FnTy, /*Name=*/"__kmpc_data_sharing_coalesced_push_stack");
1757    break;
1758  }
1759  case OMPRTL_NVPTX__kmpc_data_sharing_push_stack: {
1760    // Build void *__kmpc_data_sharing_push_stack(size_t size, int16_t
1761    // UseSharedMemory);
1762    llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
1763    auto *FnTy =
1764        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
1765    RTLFn = CGM.CreateRuntimeFunction(
1766        FnTy, /*Name=*/"__kmpc_data_sharing_push_stack");
1767    break;
1768  }
1769  case OMPRTL_NVPTX__kmpc_data_sharing_pop_stack: {
1770    // Build void __kmpc_data_sharing_pop_stack(void *a);
1771    llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
1772    auto *FnTy =
1773        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1774    RTLFn = CGM.CreateRuntimeFunction(FnTy,
1775                                      /*Name=*/"__kmpc_data_sharing_pop_stack");
1776    break;
1777  }
1778  case OMPRTL_NVPTX__kmpc_begin_sharing_variables: {
1779    /// Build void __kmpc_begin_sharing_variables(void ***args,
1780    /// size_t n_args);
1781    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo(), CGM.SizeTy};
1782    auto *FnTy =
1783        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1784    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_begin_sharing_variables");
1785    break;
1786  }
1787  case OMPRTL_NVPTX__kmpc_end_sharing_variables: {
1788    /// Build void __kmpc_end_sharing_variables();
1789    auto *FnTy =
1790        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
1791    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_sharing_variables");
1792    break;
1793  }
1794  case OMPRTL_NVPTX__kmpc_get_shared_variables: {
1795    /// Build void __kmpc_get_shared_variables(void ***GlobalArgs);
1796    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo()};
1797    auto *FnTy =
1798        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1799    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_shared_variables");
1800    break;
1801  }
1802  case OMPRTL_NVPTX__kmpc_parallel_level: {
1803    // Build uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32 global_tid);
1804    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1805    auto *FnTy =
1806        llvm::FunctionType::get(CGM.Int16Ty, TypeParams, /*isVarArg*/ false);
1807    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_parallel_level");
1808    break;
1809  }
1810  case OMPRTL_NVPTX__kmpc_is_spmd_exec_mode: {
1811    // Build int8_t __kmpc_is_spmd_exec_mode();
1812    auto *FnTy = llvm::FunctionType::get(CGM.Int8Ty, /*isVarArg=*/false);
1813    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_is_spmd_exec_mode");
1814    break;
1815  }
1816  case OMPRTL_NVPTX__kmpc_get_team_static_memory: {
1817    // Build void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
1818    // const void *buf, size_t size, int16_t is_shared, const void **res);
1819    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.VoidPtrTy, CGM.SizeTy,
1820                                CGM.Int16Ty, CGM.VoidPtrPtrTy};
1821    auto *FnTy =
1822        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1823    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_team_static_memory");
1824    break;
1825  }
1826  case OMPRTL_NVPTX__kmpc_restore_team_static_memory: {
1827    // Build void __kmpc_restore_team_static_memory(int16_t isSPMDExecutionMode,
1828    // int16_t is_shared);
1829    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.Int16Ty};
1830    auto *FnTy =
1831        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1832    RTLFn =
1833        CGM.CreateRuntimeFunction(FnTy, "__kmpc_restore_team_static_memory");
1834    break;
1835  }
1836  case OMPRTL__kmpc_barrier: {
1837    // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
1838    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1839    auto *FnTy =
1840        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1841    RTLFn =
1842        CGM.CreateConvergentRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
1843    break;
1844  }
1845  case OMPRTL__kmpc_barrier_simple_spmd: {
1846    // Build void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
1847    // global_tid);
1848    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1849    auto *FnTy =
1850        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1851    RTLFn = CGM.CreateConvergentRuntimeFunction(
1852        FnTy, /*Name*/ "__kmpc_barrier_simple_spmd");
1853    break;
1854  }
1855  case OMPRTL_NVPTX__kmpc_warp_active_thread_mask: {
1856    // Build int32_t __kmpc_warp_active_thread_mask(void);
1857    auto *FnTy =
1858        llvm::FunctionType::get(CGM.Int32Ty, llvm::None, /*isVarArg=*/false);
1859    RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_warp_active_thread_mask");
1860    break;
1861  }
1862  case OMPRTL_NVPTX__kmpc_syncwarp: {
1863    // Build void __kmpc_syncwarp(kmp_int32 Mask);
1864    auto *FnTy =
1865        llvm::FunctionType::get(CGM.VoidTy, CGM.Int32Ty, /*isVarArg=*/false);
1866    RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_syncwarp");
1867    break;
1868  }
1869  }
1870  return RTLFn;
1871}
1872
1873void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
1874                                              llvm::Constant *Addr,
1875                                              uint64_t Size, int32_t,
1876                                              llvm::GlobalValue::LinkageTypes) {
1877  // TODO: Add support for global variables on the device after declare target
1878  // support.
1879  if (!isa<llvm::Function>(Addr))
1880    return;
1881  llvm::Module &M = CGM.getModule();
1882  llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1883
1884  // Get "nvvm.annotations" metadata node
1885  llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1886
1887  llvm::Metadata *MDVals[] = {
1888      llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
1889      llvm::ConstantAsMetadata::get(
1890          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1891  // Append metadata to nvvm.annotations
1892  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1893}
1894
1895void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
1896    const OMPExecutableDirective &D, StringRef ParentName,
1897    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1898    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1899  if (!IsOffloadEntry) // Nothing to do.
1900    return;
1901
1902  assert(!ParentName.empty() && "Invalid target region parent name!");
1903
1904  bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1905  if (Mode)
1906    emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1907                   CodeGen);
1908  else
1909    emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1910                      CodeGen);
1911
1912  setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1913}
1914
1915namespace {
1916LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1917/// Enum for accesseing the reserved_2 field of the ident_t struct.
1918enum ModeFlagsTy : unsigned {
1919  /// Bit set to 1 when in SPMD mode.
1920  KMP_IDENT_SPMD_MODE = 0x01,
1921  /// Bit set to 1 when a simplified runtime is used.
1922  KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1923  LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1924};
1925
1926/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1927static const ModeFlagsTy UndefinedMode =
1928    (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1929} // anonymous namespace
1930
1931unsigned CGOpenMPRuntimeNVPTX::getDefaultLocationReserved2Flags() const {
1932  switch (getExecutionMode()) {
1933  case EM_SPMD:
1934    if (requiresFullRuntime())
1935      return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1936    return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1937  case EM_NonSPMD:
1938    assert(requiresFullRuntime() && "Expected full runtime.");
1939    return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1940  case EM_Unknown:
1941    return UndefinedMode;
1942  }
1943  llvm_unreachable("Unknown flags are requested.");
1944}
1945
1946CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
1947    : CGOpenMPRuntime(CGM, "_", "$") {
1948  if (!CGM.getLangOpts().OpenMPIsDevice)
1949    llvm_unreachable("OpenMP NVPTX can only handle device code.");
1950}
1951
1952void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
1953                                              ProcBindKind ProcBind,
1954                                              SourceLocation Loc) {
1955  // Do nothing in case of SPMD mode and L0 parallel.
1956  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
1957    return;
1958
1959  CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1960}
1961
1962void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
1963                                                llvm::Value *NumThreads,
1964                                                SourceLocation Loc) {
1965  // Do nothing in case of SPMD mode and L0 parallel.
1966  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
1967    return;
1968
1969  CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
1970}
1971
1972void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
1973                                              const Expr *NumTeams,
1974                                              const Expr *ThreadLimit,
1975                                              SourceLocation Loc) {}
1976
1977llvm::Function *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
1978    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1979    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1980  // Emit target region as a standalone region.
1981  class NVPTXPrePostActionTy : public PrePostActionTy {
1982    bool &IsInParallelRegion;
1983    bool PrevIsInParallelRegion;
1984
1985  public:
1986    NVPTXPrePostActionTy(bool &IsInParallelRegion)
1987        : IsInParallelRegion(IsInParallelRegion) {}
1988    void Enter(CodeGenFunction &CGF) override {
1989      PrevIsInParallelRegion = IsInParallelRegion;
1990      IsInParallelRegion = true;
1991    }
1992    void Exit(CodeGenFunction &CGF) override {
1993      IsInParallelRegion = PrevIsInParallelRegion;
1994    }
1995  } Action(IsInParallelRegion);
1996  CodeGen.setAction(Action);
1997  bool PrevIsInTTDRegion = IsInTTDRegion;
1998  IsInTTDRegion = false;
1999  bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
2000  IsInTargetMasterThreadRegion = false;
2001  auto *OutlinedFun =
2002      cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
2003          D, ThreadIDVar, InnermostKind, CodeGen));
2004  if (CGM.getLangOpts().Optimize) {
2005    OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
2006    OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
2007    OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
2008  }
2009  IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
2010  IsInTTDRegion = PrevIsInTTDRegion;
2011  if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD &&
2012      !IsInParallelRegion) {
2013    llvm::Function *WrapperFun =
2014        createParallelDataSharingWrapper(OutlinedFun, D);
2015    WrapperFunctionsMap[OutlinedFun] = WrapperFun;
2016  }
2017
2018  return OutlinedFun;
2019}
2020
2021/// Get list of lastprivate variables from the teams distribute ... or
2022/// teams {distribute ...} directives.
2023static void
2024getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
2025                             llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
2026  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
2027         "expected teams directive.");
2028  const OMPExecutableDirective *Dir = &D;
2029  if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
2030    if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
2031            Ctx,
2032            D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
2033                /*IgnoreCaptured=*/true))) {
2034      Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
2035      if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
2036        Dir = nullptr;
2037    }
2038  }
2039  if (!Dir)
2040    return;
2041  for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
2042    for (const Expr *E : C->getVarRefs())
2043      Vars.push_back(getPrivateItem(E));
2044  }
2045}
2046
2047/// Get list of reduction variables from the teams ... directives.
2048static void
2049getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
2050                      llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
2051  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
2052         "expected teams directive.");
2053  for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
2054    for (const Expr *E : C->privates())
2055      Vars.push_back(getPrivateItem(E));
2056  }
2057}
2058
2059llvm::Function *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
2060    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
2061    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
2062  SourceLocation Loc = D.getBeginLoc();
2063
2064  const RecordDecl *GlobalizedRD = nullptr;
2065  llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
2066  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
2067  // Globalize team reductions variable unconditionally in all modes.
2068  if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
2069    getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
2070  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
2071    getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
2072    if (!LastPrivatesReductions.empty()) {
2073      GlobalizedRD = ::buildRecordForGlobalizedVars(
2074          CGM.getContext(), llvm::None, LastPrivatesReductions,
2075          MappedDeclsFields, WarpSize);
2076    }
2077  } else if (!LastPrivatesReductions.empty()) {
2078    assert(!TeamAndReductions.first &&
2079           "Previous team declaration is not expected.");
2080    TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
2081    std::swap(TeamAndReductions.second, LastPrivatesReductions);
2082  }
2083
2084  // Emit target region as a standalone region.
2085  class NVPTXPrePostActionTy : public PrePostActionTy {
2086    SourceLocation &Loc;
2087    const RecordDecl *GlobalizedRD;
2088    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2089        &MappedDeclsFields;
2090
2091  public:
2092    NVPTXPrePostActionTy(
2093        SourceLocation &Loc, const RecordDecl *GlobalizedRD,
2094        llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2095            &MappedDeclsFields)
2096        : Loc(Loc), GlobalizedRD(GlobalizedRD),
2097          MappedDeclsFields(MappedDeclsFields) {}
2098    void Enter(CodeGenFunction &CGF) override {
2099      auto &Rt =
2100          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
2101      if (GlobalizedRD) {
2102        auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
2103        I->getSecond().GlobalRecord = GlobalizedRD;
2104        I->getSecond().MappedParams =
2105            std::make_unique<CodeGenFunction::OMPMapVars>();
2106        DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
2107        for (const auto &Pair : MappedDeclsFields) {
2108          assert(Pair.getFirst()->isCanonicalDecl() &&
2109                 "Expected canonical declaration");
2110          Data.insert(std::make_pair(Pair.getFirst(),
2111                                     MappedVarData(Pair.getSecond(),
2112                                                   /*IsOnePerTeam=*/true)));
2113        }
2114      }
2115      Rt.emitGenericVarsProlog(CGF, Loc);
2116    }
2117    void Exit(CodeGenFunction &CGF) override {
2118      static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
2119          .emitGenericVarsEpilog(CGF);
2120    }
2121  } Action(Loc, GlobalizedRD, MappedDeclsFields);
2122  CodeGen.setAction(Action);
2123  llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
2124      D, ThreadIDVar, InnermostKind, CodeGen);
2125  if (CGM.getLangOpts().Optimize) {
2126    OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
2127    OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
2128    OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
2129  }
2130
2131  return OutlinedFun;
2132}
2133
2134void CGOpenMPRuntimeNVPTX::emitGenericVarsProlog(CodeGenFunction &CGF,
2135                                                 SourceLocation Loc,
2136                                                 bool WithSPMDCheck) {
2137  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
2138      getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
2139    return;
2140
2141  CGBuilderTy &Bld = CGF.Builder;
2142
2143  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
2144  if (I == FunctionGlobalizedDecls.end())
2145    return;
2146  if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
2147    QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
2148    QualType SecGlobalRecTy;
2149
2150    // Recover pointer to this function's global record. The runtime will
2151    // handle the specifics of the allocation of the memory.
2152    // Use actual memory size of the record including the padding
2153    // for alignment purposes.
2154    unsigned Alignment =
2155        CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
2156    unsigned GlobalRecordSize =
2157        CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
2158    GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
2159
2160    llvm::PointerType *GlobalRecPtrTy =
2161        CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
2162    llvm::Value *GlobalRecCastAddr;
2163    llvm::Value *IsTTD = nullptr;
2164    if (!IsInTTDRegion &&
2165        (WithSPMDCheck ||
2166         getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
2167      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
2168      llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
2169      llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
2170      if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
2171        llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2172        llvm::Value *ThreadID = getThreadID(CGF, Loc);
2173        llvm::Value *PL = CGF.EmitRuntimeCall(
2174            createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
2175            {RTLoc, ThreadID});
2176        IsTTD = Bld.CreateIsNull(PL);
2177      }
2178      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
2179          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
2180      Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
2181      // There is no need to emit line number for unconditional branch.
2182      (void)ApplyDebugLocation::CreateEmpty(CGF);
2183      CGF.EmitBlock(SPMDBB);
2184      Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
2185                               CharUnits::fromQuantity(Alignment));
2186      CGF.EmitBranch(ExitBB);
2187      // There is no need to emit line number for unconditional branch.
2188      (void)ApplyDebugLocation::CreateEmpty(CGF);
2189      CGF.EmitBlock(NonSPMDBB);
2190      llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
2191      if (const RecordDecl *SecGlobalizedVarsRecord =
2192              I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
2193        SecGlobalRecTy =
2194            CGM.getContext().getRecordType(SecGlobalizedVarsRecord);
2195
2196        // Recover pointer to this function's global record. The runtime will
2197        // handle the specifics of the allocation of the memory.
2198        // Use actual memory size of the record including the padding
2199        // for alignment purposes.
2200        unsigned Alignment =
2201            CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
2202        unsigned GlobalRecordSize =
2203            CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
2204        GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
2205        Size = Bld.CreateSelect(
2206            IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
2207      }
2208      // TODO: allow the usage of shared memory to be controlled by
2209      // the user, for now, default to global.
2210      llvm::Value *GlobalRecordSizeArg[] = {
2211          Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
2212      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
2213          createNVPTXRuntimeFunction(
2214              OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
2215          GlobalRecordSizeArg);
2216      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2217          GlobalRecValue, GlobalRecPtrTy);
2218      CGF.EmitBlock(ExitBB);
2219      auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
2220                                /*NumReservedValues=*/2, "_select_stack");
2221      Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
2222      Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
2223      GlobalRecCastAddr = Phi;
2224      I->getSecond().GlobalRecordAddr = Phi;
2225      I->getSecond().IsInSPMDModeFlag = IsSPMD;
2226    } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
2227      assert(GlobalizedRecords.back().Records.size() < 2 &&
2228             "Expected less than 2 globalized records: one for target and one "
2229             "for teams.");
2230      unsigned Offset = 0;
2231      for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
2232        QualType RDTy = CGM.getContext().getRecordType(RD);
2233        unsigned Alignment =
2234            CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
2235        unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
2236        Offset =
2237            llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
2238      }
2239      unsigned Alignment =
2240          CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
2241      Offset = llvm::alignTo(Offset, Alignment);
2242      GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
2243      ++GlobalizedRecords.back().RegionCounter;
2244      if (GlobalizedRecords.back().Records.size() == 1) {
2245        assert(KernelStaticGlobalized &&
2246               "Kernel static pointer must be initialized already.");
2247        auto *UseSharedMemory = new llvm::GlobalVariable(
2248            CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
2249            llvm::GlobalValue::InternalLinkage, nullptr,
2250            "_openmp_static_kernel$is_shared");
2251        UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2252        QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
2253            /*DestWidth=*/16, /*Signed=*/0);
2254        llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
2255            Address(UseSharedMemory,
2256                    CGM.getContext().getTypeAlignInChars(Int16Ty)),
2257            /*Volatile=*/false, Int16Ty, Loc);
2258        auto *StaticGlobalized = new llvm::GlobalVariable(
2259            CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
2260            llvm::GlobalValue::CommonLinkage, nullptr);
2261        auto *RecSize = new llvm::GlobalVariable(
2262            CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
2263            llvm::GlobalValue::InternalLinkage, nullptr,
2264            "_openmp_static_kernel$size");
2265        RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2266        llvm::Value *Ld = CGF.EmitLoadOfScalar(
2267            Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
2268            CGM.getContext().getSizeType(), Loc);
2269        llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2270            KernelStaticGlobalized, CGM.VoidPtrPtrTy);
2271        llvm::Value *GlobalRecordSizeArg[] = {
2272            llvm::ConstantInt::get(
2273                CGM.Int16Ty,
2274                getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
2275            StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
2276        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
2277                                OMPRTL_NVPTX__kmpc_get_team_static_memory),
2278                            GlobalRecordSizeArg);
2279        GlobalizedRecords.back().Buffer = StaticGlobalized;
2280        GlobalizedRecords.back().RecSize = RecSize;
2281        GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
2282        GlobalizedRecords.back().Loc = Loc;
2283      }
2284      assert(KernelStaticGlobalized && "Global address must be set already.");
2285      Address FrameAddr = CGF.EmitLoadOfPointer(
2286          Address(KernelStaticGlobalized, CGM.getPointerAlign()),
2287          CGM.getContext()
2288              .getPointerType(CGM.getContext().VoidPtrTy)
2289              .castAs<PointerType>());
2290      llvm::Value *GlobalRecValue =
2291          Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer();
2292      I->getSecond().GlobalRecordAddr = GlobalRecValue;
2293      I->getSecond().IsInSPMDModeFlag = nullptr;
2294      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2295          GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
2296    } else {
2297      // TODO: allow the usage of shared memory to be controlled by
2298      // the user, for now, default to global.
2299      bool UseSharedMemory =
2300          IsInTTDRegion && GlobalRecordSize <= SharedMemorySize;
2301      llvm::Value *GlobalRecordSizeArg[] = {
2302          llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
2303          CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)};
2304      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
2305          createNVPTXRuntimeFunction(
2306              IsInTTDRegion
2307                  ? OMPRTL_NVPTX__kmpc_data_sharing_push_stack
2308                  : OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
2309          GlobalRecordSizeArg);
2310      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2311          GlobalRecValue, GlobalRecPtrTy);
2312      I->getSecond().GlobalRecordAddr = GlobalRecValue;
2313      I->getSecond().IsInSPMDModeFlag = nullptr;
2314    }
2315    LValue Base =
2316        CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);
2317
2318    // Emit the "global alloca" which is a GEP from the global declaration
2319    // record using the pointer returned by the runtime.
2320    LValue SecBase;
2321    decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
2322    if (IsTTD) {
2323      SecIt = I->getSecond().SecondaryLocalVarData->begin();
2324      llvm::PointerType *SecGlobalRecPtrTy =
2325          CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
2326      SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
2327          Bld.CreatePointerBitCastOrAddrSpaceCast(
2328              I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
2329          SecGlobalRecTy);
2330    }
2331    for (auto &Rec : I->getSecond().LocalVarData) {
2332      bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
2333      llvm::Value *ParValue;
2334      if (EscapedParam) {
2335        const auto *VD = cast<VarDecl>(Rec.first);
2336        LValue ParLVal =
2337            CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
2338        ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
2339      }
2340      LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
2341      // Emit VarAddr basing on lane-id if required.
2342      QualType VarTy;
2343      if (Rec.second.IsOnePerTeam) {
2344        VarTy = Rec.second.FD->getType();
2345      } else {
2346        llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
2347            VarAddr.getAddress(CGF).getPointer(),
2348            {Bld.getInt32(0), getNVPTXLaneID(CGF)});
2349        VarTy =
2350            Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
2351        VarAddr = CGF.MakeAddrLValue(
2352            Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
2353            AlignmentSource::Decl);
2354      }
2355      Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
2356      if (!IsInTTDRegion &&
2357          (WithSPMDCheck ||
2358           getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
2359        assert(I->getSecond().IsInSPMDModeFlag &&
2360               "Expected unknown execution mode or required SPMD check.");
2361        if (IsTTD) {
2362          assert(SecIt->second.IsOnePerTeam &&
2363                 "Secondary glob data must be one per team.");
2364          LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
2365          VarAddr.setAddress(
2366              Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF),
2367                                       VarAddr.getPointer(CGF)),
2368                      VarAddr.getAlignment()));
2369          Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
2370        }
2371        Address GlobalPtr = Rec.second.PrivateAddr;
2372        Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
2373        Rec.second.PrivateAddr = Address(
2374            Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
2375                             LocalAddr.getPointer(), GlobalPtr.getPointer()),
2376            LocalAddr.getAlignment());
2377      }
2378      if (EscapedParam) {
2379        const auto *VD = cast<VarDecl>(Rec.first);
2380        CGF.EmitStoreOfScalar(ParValue, VarAddr);
2381        I->getSecond().MappedParams->setVarAddr(CGF, VD,
2382                                                VarAddr.getAddress(CGF));
2383      }
2384      if (IsTTD)
2385        ++SecIt;
2386    }
2387  }
2388  for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
2389    // Recover pointer to this function's global record. The runtime will
2390    // handle the specifics of the allocation of the memory.
2391    // Use actual memory size of the record including the padding
2392    // for alignment purposes.
2393    CGBuilderTy &Bld = CGF.Builder;
2394    llvm::Value *Size = CGF.getTypeSize(VD->getType());
2395    CharUnits Align = CGM.getContext().getDeclAlign(VD);
2396    Size = Bld.CreateNUWAdd(
2397        Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
2398    llvm::Value *AlignVal =
2399        llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
2400    Size = Bld.CreateUDiv(Size, AlignVal);
2401    Size = Bld.CreateNUWMul(Size, AlignVal);
2402    // TODO: allow the usage of shared memory to be controlled by
2403    // the user, for now, default to global.
2404    llvm::Value *GlobalRecordSizeArg[] = {
2405        Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
2406    llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
2407        createNVPTXRuntimeFunction(
2408            OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
2409        GlobalRecordSizeArg);
2410    llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2411        GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
2412    LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
2413                                     CGM.getContext().getDeclAlign(VD),
2414                                     AlignmentSource::Decl);
2415    I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
2416                                            Base.getAddress(CGF));
2417    I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
2418  }
2419  I->getSecond().MappedParams->apply(CGF);
2420}
2421
2422void CGOpenMPRuntimeNVPTX::emitGenericVarsEpilog(CodeGenFunction &CGF,
2423                                                 bool WithSPMDCheck) {
2424  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
2425      getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
2426    return;
2427
2428  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
2429  if (I != FunctionGlobalizedDecls.end()) {
2430    I->getSecond().MappedParams->restore(CGF);
2431    if (!CGF.HaveInsertPoint())
2432      return;
2433    for (llvm::Value *Addr :
2434         llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
2435      CGF.EmitRuntimeCall(
2436          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
2437          Addr);
2438    }
2439    if (I->getSecond().GlobalRecordAddr) {
2440      if (!IsInTTDRegion &&
2441          (WithSPMDCheck ||
2442           getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
2443        CGBuilderTy &Bld = CGF.Builder;
2444        llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
2445        llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
2446        Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
2447        // There is no need to emit line number for unconditional branch.
2448        (void)ApplyDebugLocation::CreateEmpty(CGF);
2449        CGF.EmitBlock(NonSPMDBB);
2450        CGF.EmitRuntimeCall(
2451            createNVPTXRuntimeFunction(
2452                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
2453            CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
2454        CGF.EmitBlock(ExitBB);
2455      } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
2456        assert(GlobalizedRecords.back().RegionCounter > 0 &&
2457               "region counter must be > 0.");
2458        --GlobalizedRecords.back().RegionCounter;
2459        // Emit the restore function only in the target region.
2460        if (GlobalizedRecords.back().RegionCounter == 0) {
2461          QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
2462              /*DestWidth=*/16, /*Signed=*/0);
2463          llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
2464              Address(GlobalizedRecords.back().UseSharedMemory,
2465                      CGM.getContext().getTypeAlignInChars(Int16Ty)),
2466              /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
2467          llvm::Value *Args[] = {
2468              llvm::ConstantInt::get(
2469                  CGM.Int16Ty,
2470                  getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
2471              IsInSharedMemory};
2472          CGF.EmitRuntimeCall(
2473              createNVPTXRuntimeFunction(
2474                  OMPRTL_NVPTX__kmpc_restore_team_static_memory),
2475              Args);
2476        }
2477      } else {
2478        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
2479                                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
2480                            I->getSecond().GlobalRecordAddr);
2481      }
2482    }
2483  }
2484}
2485
2486void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
2487                                         const OMPExecutableDirective &D,
2488                                         SourceLocation Loc,
2489                                         llvm::Function *OutlinedFn,
2490                                         ArrayRef<llvm::Value *> CapturedVars) {
2491  if (!CGF.HaveInsertPoint())
2492    return;
2493
2494  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2495                                                      /*Name=*/".zero.addr");
2496  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2497  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2498  OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
2499  OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2500  OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2501  emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2502}
2503
2504void CGOpenMPRuntimeNVPTX::emitParallelCall(
2505    CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
2506    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
2507  if (!CGF.HaveInsertPoint())
2508    return;
2509
2510  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
2511    emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
2512  else
2513    emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
2514}
2515
2516void CGOpenMPRuntimeNVPTX::emitNonSPMDParallelCall(
2517    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
2518    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
2519  llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
2520
2521  // Force inline this outlined function at its call site.
2522  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
2523
2524  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2525                                                      /*Name=*/".zero.addr");
2526  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2527  // ThreadId for serialized parallels is 0.
2528  Address ThreadIDAddr = ZeroAddr;
2529  auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr](
2530                       CodeGenFunction &CGF, PrePostActionTy &Action) {
2531    Action.Enter(CGF);
2532
2533    Address ZeroAddr =
2534        CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2535                                         /*Name=*/".bound.zero.addr");
2536    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2537    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2538    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2539    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2540    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2541    emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
2542  };
2543  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
2544                                        PrePostActionTy &) {
2545
2546    RegionCodeGenTy RCG(CodeGen);
2547    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2548    llvm::Value *ThreadID = getThreadID(CGF, Loc);
2549    llvm::Value *Args[] = {RTLoc, ThreadID};
2550
2551    NVPTXActionTy Action(
2552        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
2553        Args,
2554        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
2555        Args);
2556    RCG.setAction(Action);
2557    RCG(CGF);
2558  };
2559
2560  auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF,
2561                                                  PrePostActionTy &Action) {
2562    CGBuilderTy &Bld = CGF.Builder;
2563    llvm::Function *WFn = WrapperFunctionsMap[Fn];
2564    assert(WFn && "Wrapper function does not exist!");
2565    llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
2566
2567    // Prepare for parallel region. Indicate the outlined function.
2568    llvm::Value *Args[] = {ID};
2569    CGF.EmitRuntimeCall(
2570        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
2571        Args);
2572
2573    // Create a private scope that will globalize the arguments
2574    // passed from the outside of the target region.
2575    CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
2576
2577    // There's something to share.
2578    if (!CapturedVars.empty()) {
2579      // Prepare for parallel region. Indicate the outlined function.
2580      Address SharedArgs =
2581          CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs");
2582      llvm::Value *SharedArgsPtr = SharedArgs.getPointer();
2583
2584      llvm::Value *DataSharingArgs[] = {
2585          SharedArgsPtr,
2586          llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
2587      CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
2588                              OMPRTL_NVPTX__kmpc_begin_sharing_variables),
2589                          DataSharingArgs);
2590
2591      // Store variable address in a list of references to pass to workers.
2592      unsigned Idx = 0;
2593      ASTContext &Ctx = CGF.getContext();
2594      Address SharedArgListAddress = CGF.EmitLoadOfPointer(
2595          SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy))
2596                          .castAs<PointerType>());
2597      for (llvm::Value *V : CapturedVars) {
2598        Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
2599        llvm::Value *PtrV;
2600        if (V->getType()->isIntegerTy())
2601          PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
2602        else
2603          PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
2604        CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
2605                              Ctx.getPointerType(Ctx.VoidPtrTy));
2606        ++Idx;
2607      }
2608    }
2609
2610    // Activate workers. This barrier is used by the master to signal
2611    // work for the workers.
2612    syncCTAThreads(CGF);
2613
2614    // OpenMP [2.5, Parallel Construct, p.49]
2615    // There is an implied barrier at the end of a parallel region. After the
2616    // end of a parallel region, only the master thread of the team resumes
2617    // execution of the enclosing task region.
2618    //
2619    // The master waits at this barrier until all workers are done.
2620    syncCTAThreads(CGF);
2621
2622    if (!CapturedVars.empty())
2623      CGF.EmitRuntimeCall(
2624          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_sharing_variables));
2625
2626    // Remember for post-processing in worker loop.
2627    Work.emplace_back(WFn);
2628  };
2629
2630  auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen](
2631                             CodeGenFunction &CGF, PrePostActionTy &Action) {
2632    if (IsInParallelRegion) {
2633      SeqGen(CGF, Action);
2634    } else if (IsInTargetMasterThreadRegion) {
2635      L0ParallelGen(CGF, Action);
2636    } else {
2637      // Check for master and then parallelism:
2638      // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) {
2639      //   Serialized execution.
2640      // } else {
2641      //   Worker call.
2642      // }
2643      CGBuilderTy &Bld = CGF.Builder;
2644      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
2645      llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential");
2646      llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck");
2647      llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
2648      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
2649          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
2650      Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB);
2651      // There is no need to emit line number for unconditional branch.
2652      (void)ApplyDebugLocation::CreateEmpty(CGF);
2653      CGF.EmitBlock(ParallelCheckBB);
2654      llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2655      llvm::Value *ThreadID = getThreadID(CGF, Loc);
2656      llvm::Value *PL = CGF.EmitRuntimeCall(
2657          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
2658          {RTLoc, ThreadID});
2659      llvm::Value *Res = Bld.CreateIsNotNull(PL);
2660      Bld.CreateCondBr(Res, SeqBB, MasterBB);
2661      CGF.EmitBlock(SeqBB);
2662      SeqGen(CGF, Action);
2663      CGF.EmitBranch(ExitBB);
2664      // There is no need to emit line number for unconditional branch.
2665      (void)ApplyDebugLocation::CreateEmpty(CGF);
2666      CGF.EmitBlock(MasterBB);
2667      L0ParallelGen(CGF, Action);
2668      CGF.EmitBranch(ExitBB);
2669      // There is no need to emit line number for unconditional branch.
2670      (void)ApplyDebugLocation::CreateEmpty(CGF);
2671      // Emit the continuation block for code after the if.
2672      CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2673    }
2674  };
2675
2676  if (IfCond) {
2677    emitIfClause(CGF, IfCond, LNParallelGen, SeqGen);
2678  } else {
2679    CodeGenFunction::RunCleanupsScope Scope(CGF);
2680    RegionCodeGenTy ThenRCG(LNParallelGen);
2681    ThenRCG(CGF);
2682  }
2683}
2684
2685void CGOpenMPRuntimeNVPTX::emitSPMDParallelCall(
2686    CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
2687    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
2688  // Just call the outlined function to execute the parallel region.
2689  // OutlinedFn(&GTid, &zero, CapturedStruct);
2690  //
2691  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2692
2693  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2694                                                      /*Name=*/".zero.addr");
2695  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2696  // ThreadId for serialized parallels is 0.
2697  Address ThreadIDAddr = ZeroAddr;
2698  auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr](
2699                       CodeGenFunction &CGF, PrePostActionTy &Action) {
2700    Action.Enter(CGF);
2701
2702    Address ZeroAddr =
2703        CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2704                                         /*Name=*/".bound.zero.addr");
2705    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2706    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2707    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2708    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2709    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2710    emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2711  };
2712  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
2713                                        PrePostActionTy &) {
2714
2715    RegionCodeGenTy RCG(CodeGen);
2716    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2717    llvm::Value *ThreadID = getThreadID(CGF, Loc);
2718    llvm::Value *Args[] = {RTLoc, ThreadID};
2719
2720    NVPTXActionTy Action(
2721        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
2722        Args,
2723        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
2724        Args);
2725    RCG.setAction(Action);
2726    RCG(CGF);
2727  };
2728
2729  if (IsInTargetMasterThreadRegion) {
2730    // In the worker need to use the real thread id.
2731    ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
2732    RegionCodeGenTy RCG(CodeGen);
2733    RCG(CGF);
2734  } else {
2735    // If we are not in the target region, it is definitely L2 parallelism or
2736    // more, because for SPMD mode we always has L1 parallel level, sowe don't
2737    // need to check for orphaned directives.
2738    RegionCodeGenTy RCG(SeqGen);
2739    RCG(CGF);
2740  }
2741}
2742
2743void CGOpenMPRuntimeNVPTX::syncCTAThreads(CodeGenFunction &CGF) {
2744  // Always emit simple barriers!
2745  if (!CGF.HaveInsertPoint())
2746    return;
2747  // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
2748  // This function does not use parameters, so we can emit just default values.
2749  llvm::Value *Args[] = {
2750      llvm::ConstantPointerNull::get(
2751          cast<llvm::PointerType>(getIdentTyPointerTy())),
2752      llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
2753  llvm::CallInst *Call = CGF.EmitRuntimeCall(
2754      createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier_simple_spmd), Args);
2755  Call->setConvergent();
2756}
2757
2758void CGOpenMPRuntimeNVPTX::emitBarrierCall(CodeGenFunction &CGF,
2759                                           SourceLocation Loc,
2760                                           OpenMPDirectiveKind Kind, bool,
2761                                           bool) {
2762  // Always emit simple barriers!
2763  if (!CGF.HaveInsertPoint())
2764    return;
2765  // Build call __kmpc_cancel_barrier(loc, thread_id);
2766  unsigned Flags = getDefaultFlagsForBarriers(Kind);
2767  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2768                         getThreadID(CGF, Loc)};
2769  llvm::CallInst *Call = CGF.EmitRuntimeCall(
2770      createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier), Args);
2771  Call->setConvergent();
2772}
2773
2774void CGOpenMPRuntimeNVPTX::emitCriticalRegion(
2775    CodeGenFunction &CGF, StringRef CriticalName,
2776    const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
2777    const Expr *Hint) {
2778  llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
2779  llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
2780  llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
2781  llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
2782  llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
2783
2784  // Get the mask of active threads in the warp.
2785  llvm::Value *Mask = CGF.EmitRuntimeCall(
2786      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_warp_active_thread_mask));
2787  // Fetch team-local id of the thread.
2788  llvm::Value *ThreadID = getNVPTXThreadID(CGF);
2789
2790  // Get the width of the team.
2791  llvm::Value *TeamWidth = getNVPTXNumThreads(CGF);
2792
2793  // Initialize the counter variable for the loop.
2794  QualType Int32Ty =
2795      CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
2796  Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
2797  LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
2798  CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
2799                        /*isInit=*/true);
2800
2801  // Block checks if loop counter exceeds upper bound.
2802  CGF.EmitBlock(LoopBB);
2803  llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
2804  llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
2805  CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
2806
2807  // Block tests which single thread should execute region, and which threads
2808  // should go straight to synchronisation point.
2809  CGF.EmitBlock(TestBB);
2810  CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
2811  llvm::Value *CmpThreadToCounter =
2812      CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
2813  CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
2814
2815  // Block emits the body of the critical region.
2816  CGF.EmitBlock(BodyBB);
2817
2818  // Output the critical statement.
2819  CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
2820                                      Hint);
2821
2822  // After the body surrounded by the critical region, the single executing
2823  // thread will jump to the synchronisation point.
2824  // Block waits for all threads in current team to finish then increments the
2825  // counter variable and returns to the loop.
2826  CGF.EmitBlock(SyncBB);
2827  // Reconverge active threads in the warp.
2828  (void)CGF.EmitRuntimeCall(
2829      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_syncwarp), Mask);
2830
2831  llvm::Value *IncCounterVal =
2832      CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
2833  CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
2834  CGF.EmitBranch(LoopBB);
2835
2836  // Block that is reached when  all threads in the team complete the region.
2837  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2838}
2839
2840/// Cast value to the specified type.
2841static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
2842                                    QualType ValTy, QualType CastTy,
2843                                    SourceLocation Loc) {
2844  assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
2845         "Cast type must sized.");
2846  assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
2847         "Val type must sized.");
2848  llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
2849  if (ValTy == CastTy)
2850    return Val;
2851  if (CGF.getContext().getTypeSizeInChars(ValTy) ==
2852      CGF.getContext().getTypeSizeInChars(CastTy))
2853    return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
2854  if (CastTy->isIntegerType() && ValTy->isIntegerType())
2855    return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
2856                                     CastTy->hasSignedIntegerRepresentation());
2857  Address CastItem = CGF.CreateMemTemp(CastTy);
2858  Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2859      CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
2860  CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
2861                        LValueBaseInfo(AlignmentSource::Type),
2862                        TBAAAccessInfo());
2863  return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
2864                              LValueBaseInfo(AlignmentSource::Type),
2865                              TBAAAccessInfo());
2866}
2867
2868/// This function creates calls to one of two shuffle functions to copy
2869/// variables between lanes in a warp.
2870static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
2871                                                 llvm::Value *Elem,
2872                                                 QualType ElemType,
2873                                                 llvm::Value *Offset,
2874                                                 SourceLocation Loc) {
2875  CodeGenModule &CGM = CGF.CGM;
2876  CGBuilderTy &Bld = CGF.Builder;
2877  CGOpenMPRuntimeNVPTX &RT =
2878      *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
2879
2880  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
2881  assert(Size.getQuantity() <= 8 &&
2882         "Unsupported bitwidth in shuffle instruction.");
2883
2884  OpenMPRTLFunctionNVPTX ShuffleFn = Size.getQuantity() <= 4
2885                                         ? OMPRTL_NVPTX__kmpc_shuffle_int32
2886                                         : OMPRTL_NVPTX__kmpc_shuffle_int64;
2887
2888  // Cast all types to 32- or 64-bit values before calling shuffle routines.
2889  QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
2890      Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
2891  llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
2892  llvm::Value *WarpSize =
2893      Bld.CreateIntCast(getNVPTXWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
2894
2895  llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
2896      RT.createNVPTXRuntimeFunction(ShuffleFn), {ElemCast, Offset, WarpSize});
2897
2898  return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
2899}
2900
2901static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
2902                            Address DestAddr, QualType ElemType,
2903                            llvm::Value *Offset, SourceLocation Loc) {
2904  CGBuilderTy &Bld = CGF.Builder;
2905
2906  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
2907  // Create the loop over the big sized data.
2908  // ptr = (void*)Elem;
2909  // ptrEnd = (void*) Elem + 1;
2910  // Step = 8;
2911  // while (ptr + Step < ptrEnd)
2912  //   shuffle((int64_t)*ptr);
2913  // Step = 4;
2914  // while (ptr + Step < ptrEnd)
2915  //   shuffle((int32_t)*ptr);
2916  // ...
2917  Address ElemPtr = DestAddr;
2918  Address Ptr = SrcAddr;
2919  Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
2920      Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
2921  for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
2922    if (Size < CharUnits::fromQuantity(IntSize))
2923      continue;
2924    QualType IntType = CGF.getContext().getIntTypeForBitwidth(
2925        CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
2926        /*Signed=*/1);
2927    llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
2928    Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
2929    ElemPtr =
2930        Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
2931    if (Size.getQuantity() / IntSize > 1) {
2932      llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
2933      llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
2934      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
2935      llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
2936      CGF.EmitBlock(PreCondBB);
2937      llvm::PHINode *PhiSrc =
2938          Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
2939      PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
2940      llvm::PHINode *PhiDest =
2941          Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
2942      PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
2943      Ptr = Address(PhiSrc, Ptr.getAlignment());
2944      ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
2945      llvm::Value *PtrDiff = Bld.CreatePtrDiff(
2946          PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
2947                                   Ptr.getPointer(), CGF.VoidPtrTy));
2948      Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
2949                       ThenBB, ExitBB);
2950      CGF.EmitBlock(ThenBB);
2951      llvm::Value *Res = createRuntimeShuffleFunction(
2952          CGF,
2953          CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
2954                               LValueBaseInfo(AlignmentSource::Type),
2955                               TBAAAccessInfo()),
2956          IntType, Offset, Loc);
2957      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
2958                            LValueBaseInfo(AlignmentSource::Type),
2959                            TBAAAccessInfo());
2960      Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
2961      Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
2962      PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
2963      PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
2964      CGF.EmitBranch(PreCondBB);
2965      CGF.EmitBlock(ExitBB);
2966    } else {
2967      llvm::Value *Res = createRuntimeShuffleFunction(
2968          CGF,
2969          CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
2970                               LValueBaseInfo(AlignmentSource::Type),
2971                               TBAAAccessInfo()),
2972          IntType, Offset, Loc);
2973      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
2974                            LValueBaseInfo(AlignmentSource::Type),
2975                            TBAAAccessInfo());
2976      Ptr = Bld.CreateConstGEP(Ptr, 1);
2977      ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
2978    }
2979    Size = Size % IntSize;
2980  }
2981}
2982
2983namespace {
2984enum CopyAction : unsigned {
2985  // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
2986  // the warp using shuffle instructions.
2987  RemoteLaneToThread,
2988  // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
2989  ThreadCopy,
2990  // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
2991  ThreadToScratchpad,
2992  // ScratchpadToThread: Copy from a scratchpad array in global memory
2993  // containing team-reduced data to a thread's stack.
2994  ScratchpadToThread,
2995};
2996} // namespace
2997
2998struct CopyOptionsTy {
2999  llvm::Value *RemoteLaneOffset;
3000  llvm::Value *ScratchpadIndex;
3001  llvm::Value *ScratchpadWidth;
3002};
3003
3004/// Emit instructions to copy a Reduce list, which contains partially
3005/// aggregated values, in the specified direction.
3006static void emitReductionListCopy(
3007    CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
3008    ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
3009    CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
3010
3011  CodeGenModule &CGM = CGF.CGM;
3012  ASTContext &C = CGM.getContext();
3013  CGBuilderTy &Bld = CGF.Builder;
3014
3015  llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
3016  llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
3017  llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
3018
3019  // Iterates, element-by-element, through the source Reduce list and
3020  // make a copy.
3021  unsigned Idx = 0;
3022  unsigned Size = Privates.size();
3023  for (const Expr *Private : Privates) {
3024    Address SrcElementAddr = Address::invalid();
3025    Address DestElementAddr = Address::invalid();
3026    Address DestElementPtrAddr = Address::invalid();
3027    // Should we shuffle in an element from a remote lane?
3028    bool ShuffleInElement = false;
3029    // Set to true to update the pointer in the dest Reduce list to a
3030    // newly created element.
3031    bool UpdateDestListPtr = false;
3032    // Increment the src or dest pointer to the scratchpad, for each
3033    // new element.
3034    bool IncrScratchpadSrc = false;
3035    bool IncrScratchpadDest = false;
3036
3037    switch (Action) {
3038    case RemoteLaneToThread: {
3039      // Step 1.1: Get the address for the src element in the Reduce list.
3040      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
3041      SrcElementAddr = CGF.EmitLoadOfPointer(
3042          SrcElementPtrAddr,
3043          C.getPointerType(Private->getType())->castAs<PointerType>());
3044
3045      // Step 1.2: Create a temporary to store the element in the destination
3046      // Reduce list.
3047      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
3048      DestElementAddr =
3049          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
3050      ShuffleInElement = true;
3051      UpdateDestListPtr = true;
3052      break;
3053    }
3054    case ThreadCopy: {
3055      // Step 1.1: Get the address for the src element in the Reduce list.
3056      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
3057      SrcElementAddr = CGF.EmitLoadOfPointer(
3058          SrcElementPtrAddr,
3059          C.getPointerType(Private->getType())->castAs<PointerType>());
3060
3061      // Step 1.2: Get the address for dest element.  The destination
3062      // element has already been created on the thread's stack.
3063      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
3064      DestElementAddr = CGF.EmitLoadOfPointer(
3065          DestElementPtrAddr,
3066          C.getPointerType(Private->getType())->castAs<PointerType>());
3067      break;
3068    }
3069    case ThreadToScratchpad: {
3070      // Step 1.1: Get the address for the src element in the Reduce list.
3071      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
3072      SrcElementAddr = CGF.EmitLoadOfPointer(
3073          SrcElementPtrAddr,
3074          C.getPointerType(Private->getType())->castAs<PointerType>());
3075
3076      // Step 1.2: Get the address for dest element:
3077      // address = base + index * ElementSizeInChars.
3078      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
3079      llvm::Value *CurrentOffset =
3080          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
3081      llvm::Value *ScratchPadElemAbsolutePtrVal =
3082          Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
3083      ScratchPadElemAbsolutePtrVal =
3084          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
3085      DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
3086                                C.getTypeAlignInChars(Private->getType()));
3087      IncrScratchpadDest = true;
3088      break;
3089    }
3090    case ScratchpadToThread: {
3091      // Step 1.1: Get the address for the src element in the scratchpad.
3092      // address = base + index * ElementSizeInChars.
3093      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
3094      llvm::Value *CurrentOffset =
3095          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
3096      llvm::Value *ScratchPadElemAbsolutePtrVal =
3097          Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
3098      ScratchPadElemAbsolutePtrVal =
3099          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
3100      SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
3101                               C.getTypeAlignInChars(Private->getType()));
3102      IncrScratchpadSrc = true;
3103
3104      // Step 1.2: Create a temporary to store the element in the destination
3105      // Reduce list.
3106      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
3107      DestElementAddr =
3108          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
3109      UpdateDestListPtr = true;
3110      break;
3111    }
3112    }
3113
3114    // Regardless of src and dest of copy, we emit the load of src
3115    // element as this is required in all directions
3116    SrcElementAddr = Bld.CreateElementBitCast(
3117        SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
3118    DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
3119                                               SrcElementAddr.getElementType());
3120
3121    // Now that all active lanes have read the element in the
3122    // Reduce list, shuffle over the value from the remote lane.
3123    if (ShuffleInElement) {
3124      shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
3125                      RemoteLaneOffset, Private->getExprLoc());
3126    } else {
3127      switch (CGF.getEvaluationKind(Private->getType())) {
3128      case TEK_Scalar: {
3129        llvm::Value *Elem = CGF.EmitLoadOfScalar(
3130            SrcElementAddr, /*Volatile=*/false, Private->getType(),
3131            Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
3132            TBAAAccessInfo());
3133        // Store the source element value to the dest element address.
3134        CGF.EmitStoreOfScalar(
3135            Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
3136            LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
3137        break;
3138      }
3139      case TEK_Complex: {
3140        CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
3141            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
3142            Private->getExprLoc());
3143        CGF.EmitStoreOfComplex(
3144            Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
3145            /*isInit=*/false);
3146        break;
3147      }
3148      case TEK_Aggregate:
3149        CGF.EmitAggregateCopy(
3150            CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
3151            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
3152            Private->getType(), AggValueSlot::DoesNotOverlap);
3153        break;
3154      }
3155    }
3156
3157    // Step 3.1: Modify reference in dest Reduce list as needed.
3158    // Modifying the reference in Reduce list to point to the newly
3159    // created element.  The element is live in the current function
3160    // scope and that of functions it invokes (i.e., reduce_function).
3161    // RemoteReduceData[i] = (void*)&RemoteElem
3162    if (UpdateDestListPtr) {
3163      CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
3164                                DestElementAddr.getPointer(), CGF.VoidPtrTy),
3165                            DestElementPtrAddr, /*Volatile=*/false,
3166                            C.VoidPtrTy);
3167    }
3168
3169    // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
3170    // address of the next element in scratchpad memory, unless we're currently
3171    // processing the last one.  Memory alignment is also taken care of here.
3172    if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
3173      llvm::Value *ScratchpadBasePtr =
3174          IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
3175      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
3176      ScratchpadBasePtr = Bld.CreateNUWAdd(
3177          ScratchpadBasePtr,
3178          Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
3179
3180      // Take care of global memory alignment for performance
3181      ScratchpadBasePtr = Bld.CreateNUWSub(
3182          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
3183      ScratchpadBasePtr = Bld.CreateUDiv(
3184          ScratchpadBasePtr,
3185          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
3186      ScratchpadBasePtr = Bld.CreateNUWAdd(
3187          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
3188      ScratchpadBasePtr = Bld.CreateNUWMul(
3189          ScratchpadBasePtr,
3190          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
3191
3192      if (IncrScratchpadDest)
3193        DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
3194      else /* IncrScratchpadSrc = true */
3195        SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
3196    }
3197
3198    ++Idx;
3199  }
3200}
3201
3202/// This function emits a helper that gathers Reduce lists from the first
3203/// lane of every active warp to lanes in the first warp.
3204///
3205/// void inter_warp_copy_func(void* reduce_data, num_warps)
3206///   shared smem[warp_size];
3207///   For all data entries D in reduce_data:
3208///     sync
3209///     If (I am the first lane in each warp)
3210///       Copy my local D to smem[warp_id]
3211///     sync
3212///     if (I am the first warp)
3213///       Copy smem[thread_id] to my local D
3214static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
3215                                              ArrayRef<const Expr *> Privates,
3216                                              QualType ReductionArrayTy,
3217                                              SourceLocation Loc) {
3218  ASTContext &C = CGM.getContext();
3219  llvm::Module &M = CGM.getModule();
3220
3221  // ReduceList: thread local Reduce list.
3222  // At the stage of the computation when this function is called, partially
3223  // aggregated values reside in the first lane of every active warp.
3224  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3225                                  C.VoidPtrTy, ImplicitParamDecl::Other);
3226  // NumWarps: number of warps active in the parallel region.  This could
3227  // be smaller than 32 (max warps in a CTA) for partial block reduction.
3228  ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3229                                C.getIntTypeForBitwidth(32, /* Signed */ true),
3230                                ImplicitParamDecl::Other);
3231  FunctionArgList Args;
3232  Args.push_back(&ReduceListArg);
3233  Args.push_back(&NumWarpsArg);
3234
3235  const CGFunctionInfo &CGFI =
3236      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3237  auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
3238                                    llvm::GlobalValue::InternalLinkage,
3239                                    "_omp_reduction_inter_warp_copy_func", &M);
3240  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3241  Fn->setDoesNotRecurse();
3242  CodeGenFunction CGF(CGM);
3243  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3244
3245  CGBuilderTy &Bld = CGF.Builder;
3246
3247  // This array is used as a medium to transfer, one reduce element at a time,
3248  // the data from the first lane of every warp to lanes in the first warp
3249  // in order to perform the final step of a reduction in a parallel region
3250  // (reduction across warps).  The array is placed in NVPTX __shared__ memory
3251  // for reduced latency, as well as to have a distinct copy for concurrently
3252  // executing target regions.  The array is declared with common linkage so
3253  // as to be shared across compilation units.
3254  StringRef TransferMediumName =
3255      "__openmp_nvptx_data_transfer_temporary_storage";
3256  llvm::GlobalVariable *TransferMedium =
3257      M.getGlobalVariable(TransferMediumName);
3258  if (!TransferMedium) {
3259    auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
3260    unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
3261    TransferMedium = new llvm::GlobalVariable(
3262        M, Ty, /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
3263        llvm::Constant::getNullValue(Ty), TransferMediumName,
3264        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3265        SharedAddressSpace);
3266    CGM.addCompilerUsedGlobal(TransferMedium);
3267  }
3268
3269  // Get the CUDA thread id of the current OpenMP thread on the GPU.
3270  llvm::Value *ThreadID = getNVPTXThreadID(CGF);
3271  // nvptx_lane_id = nvptx_id % warpsize
3272  llvm::Value *LaneID = getNVPTXLaneID(CGF);
3273  // nvptx_warp_id = nvptx_id / warpsize
3274  llvm::Value *WarpID = getNVPTXWarpID(CGF);
3275
3276  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3277  Address LocalReduceList(
3278      Bld.CreatePointerBitCastOrAddrSpaceCast(
3279          CGF.EmitLoadOfScalar(
3280              AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
3281              LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
3282          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3283      CGF.getPointerAlign());
3284
3285  unsigned Idx = 0;
3286  for (const Expr *Private : Privates) {
3287    //
3288    // Warp master copies reduce element to transfer medium in __shared__
3289    // memory.
3290    //
3291    unsigned RealTySize =
3292        C.getTypeSizeInChars(Private->getType())
3293            .alignTo(C.getTypeAlignInChars(Private->getType()))
3294            .getQuantity();
3295    for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
3296      unsigned NumIters = RealTySize / TySize;
3297      if (NumIters == 0)
3298        continue;
3299      QualType CType = C.getIntTypeForBitwidth(
3300          C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
3301      llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
3302      CharUnits Align = CharUnits::fromQuantity(TySize);
3303      llvm::Value *Cnt = nullptr;
3304      Address CntAddr = Address::invalid();
3305      llvm::BasicBlock *PrecondBB = nullptr;
3306      llvm::BasicBlock *ExitBB = nullptr;
3307      if (NumIters > 1) {
3308        CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
3309        CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
3310                              /*Volatile=*/false, C.IntTy);
3311        PrecondBB = CGF.createBasicBlock("precond");
3312        ExitBB = CGF.createBasicBlock("exit");
3313        llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
3314        // There is no need to emit line number for unconditional branch.
3315        (void)ApplyDebugLocation::CreateEmpty(CGF);
3316        CGF.EmitBlock(PrecondBB);
3317        Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
3318        llvm::Value *Cmp =
3319            Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
3320        Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
3321        CGF.EmitBlock(BodyBB);
3322      }
3323      // kmpc_barrier.
3324      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
3325                                             /*EmitChecks=*/false,
3326                                             /*ForceSimpleCall=*/true);
3327      llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
3328      llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
3329      llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
3330
3331      // if (lane_id == 0)
3332      llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
3333      Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
3334      CGF.EmitBlock(ThenBB);
3335
3336      // Reduce element = LocalReduceList[i]
3337      Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3338      llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
3339          ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
3340      // elemptr = ((CopyType*)(elemptrptr)) + I
3341      Address ElemPtr = Address(ElemPtrPtr, Align);
3342      ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
3343      if (NumIters > 1) {
3344        ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
3345                          ElemPtr.getAlignment());
3346      }
3347
3348      // Get pointer to location in transfer medium.
3349      // MediumPtr = &medium[warp_id]
3350      llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
3351          TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
3352      Address MediumPtr(MediumPtrVal, Align);
3353      // Casting to actual data type.
3354      // MediumPtr = (CopyType*)MediumPtrAddr;
3355      MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
3356
3357      // elem = *elemptr
3358      //*MediumPtr = elem
3359      llvm::Value *Elem = CGF.EmitLoadOfScalar(
3360          ElemPtr, /*Volatile=*/false, CType, Loc,
3361          LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
3362      // Store the source element value to the dest element address.
3363      CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
3364                            LValueBaseInfo(AlignmentSource::Type),
3365                            TBAAAccessInfo());
3366
3367      Bld.CreateBr(MergeBB);
3368
3369      CGF.EmitBlock(ElseBB);
3370      Bld.CreateBr(MergeBB);
3371
3372      CGF.EmitBlock(MergeBB);
3373
3374      // kmpc_barrier.
3375      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
3376                                             /*EmitChecks=*/false,
3377                                             /*ForceSimpleCall=*/true);
3378
3379      //
3380      // Warp 0 copies reduce element from transfer medium.
3381      //
3382      llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
3383      llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
3384      llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
3385
3386      Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
3387      llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
3388          AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
3389
3390      // Up to 32 threads in warp 0 are active.
3391      llvm::Value *IsActiveThread =
3392          Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
3393      Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
3394
3395      CGF.EmitBlock(W0ThenBB);
3396
3397      // SrcMediumPtr = &medium[tid]
3398      llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
3399          TransferMedium,
3400          {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
3401      Address SrcMediumPtr(SrcMediumPtrVal, Align);
3402      // SrcMediumVal = *SrcMediumPtr;
3403      SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
3404
3405      // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
3406      Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3407      llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
3408          TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
3409      Address TargetElemPtr = Address(TargetElemPtrVal, Align);
3410      TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
3411      if (NumIters > 1) {
3412        TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
3413                                TargetElemPtr.getAlignment());
3414      }
3415
3416      // *TargetElemPtr = SrcMediumVal;
3417      llvm::Value *SrcMediumValue =
3418          CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
3419      CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
3420                            CType);
3421      Bld.CreateBr(W0MergeBB);
3422
3423      CGF.EmitBlock(W0ElseBB);
3424      Bld.CreateBr(W0MergeBB);
3425
3426      CGF.EmitBlock(W0MergeBB);
3427
3428      if (NumIters > 1) {
3429        Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
3430        CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
3431        CGF.EmitBranch(PrecondBB);
3432        (void)ApplyDebugLocation::CreateEmpty(CGF);
3433        CGF.EmitBlock(ExitBB);
3434      }
3435      RealTySize %= TySize;
3436    }
3437    ++Idx;
3438  }
3439
3440  CGF.FinishFunction();
3441  return Fn;
3442}
3443
3444/// Emit a helper that reduces data across two OpenMP threads (lanes)
3445/// in the same warp.  It uses shuffle instructions to copy over data from
3446/// a remote lane's stack.  The reduction algorithm performed is specified
3447/// by the fourth parameter.
3448///
3449/// Algorithm Versions.
3450/// Full Warp Reduce (argument value 0):
3451///   This algorithm assumes that all 32 lanes are active and gathers
3452///   data from these 32 lanes, producing a single resultant value.
3453/// Contiguous Partial Warp Reduce (argument value 1):
3454///   This algorithm assumes that only a *contiguous* subset of lanes
3455///   are active.  This happens for the last warp in a parallel region
3456///   when the user specified num_threads is not an integer multiple of
3457///   32.  This contiguous subset always starts with the zeroth lane.
3458/// Partial Warp Reduce (argument value 2):
3459///   This algorithm gathers data from any number of lanes at any position.
3460/// All reduced values are stored in the lowest possible lane.  The set
3461/// of problems every algorithm addresses is a super set of those
3462/// addressable by algorithms with a lower version number.  Overhead
3463/// increases as algorithm version increases.
3464///
3465/// Terminology
3466/// Reduce element:
3467///   Reduce element refers to the individual data field with primitive
3468///   data types to be combined and reduced across threads.
3469/// Reduce list:
3470///   Reduce list refers to a collection of local, thread-private
3471///   reduce elements.
3472/// Remote Reduce list:
3473///   Remote Reduce list refers to a collection of remote (relative to
3474///   the current thread) reduce elements.
3475///
3476/// We distinguish between three states of threads that are important to
3477/// the implementation of this function.
3478/// Alive threads:
3479///   Threads in a warp executing the SIMT instruction, as distinguished from
3480///   threads that are inactive due to divergent control flow.
3481/// Active threads:
3482///   The minimal set of threads that has to be alive upon entry to this
3483///   function.  The computation is correct iff active threads are alive.
3484///   Some threads are alive but they are not active because they do not
3485///   contribute to the computation in any useful manner.  Turning them off
3486///   may introduce control flow overheads without any tangible benefits.
3487/// Effective threads:
3488///   In order to comply with the argument requirements of the shuffle
3489///   function, we must keep all lanes holding data alive.  But at most
3490///   half of them perform value aggregation; we refer to this half of
3491///   threads as effective. The other half is simply handing off their
3492///   data.
3493///
3494/// Procedure
3495/// Value shuffle:
3496///   In this step active threads transfer data from higher lane positions
3497///   in the warp to lower lane positions, creating Remote Reduce list.
3498/// Value aggregation:
3499///   In this step, effective threads combine their thread local Reduce list
3500///   with Remote Reduce list and store the result in the thread local
3501///   Reduce list.
3502/// Value copy:
3503///   In this step, we deal with the assumption made by algorithm 2
3504///   (i.e. contiguity assumption).  When we have an odd number of lanes
3505///   active, say 2k+1, only k threads will be effective and therefore k
3506///   new values will be produced.  However, the Reduce list owned by the
3507///   (2k+1)th thread is ignored in the value aggregation.  Therefore
3508///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
3509///   that the contiguity assumption still holds.
3510static llvm::Function *emitShuffleAndReduceFunction(
3511    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3512    QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
3513  ASTContext &C = CGM.getContext();
3514
3515  // Thread local Reduce list used to host the values of data to be reduced.
3516  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3517                                  C.VoidPtrTy, ImplicitParamDecl::Other);
3518  // Current lane id; could be logical.
3519  ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
3520                              ImplicitParamDecl::Other);
3521  // Offset of the remote source lane relative to the current lane.
3522  ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3523                                        C.ShortTy, ImplicitParamDecl::Other);
3524  // Algorithm version.  This is expected to be known at compile time.
3525  ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3526                               C.ShortTy, ImplicitParamDecl::Other);
3527  FunctionArgList Args;
3528  Args.push_back(&ReduceListArg);
3529  Args.push_back(&LaneIDArg);
3530  Args.push_back(&RemoteLaneOffsetArg);
3531  Args.push_back(&AlgoVerArg);
3532
3533  const CGFunctionInfo &CGFI =
3534      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3535  auto *Fn = llvm::Function::Create(
3536      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3537      "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
3538  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3539  Fn->setDoesNotRecurse();
3540  if (CGM.getLangOpts().Optimize) {
3541    Fn->removeFnAttr(llvm::Attribute::NoInline);
3542    Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
3543    Fn->addFnAttr(llvm::Attribute::AlwaysInline);
3544  }
3545
3546  CodeGenFunction CGF(CGM);
3547  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3548
3549  CGBuilderTy &Bld = CGF.Builder;
3550
3551  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3552  Address LocalReduceList(
3553      Bld.CreatePointerBitCastOrAddrSpaceCast(
3554          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3555                               C.VoidPtrTy, SourceLocation()),
3556          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3557      CGF.getPointerAlign());
3558
3559  Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
3560  llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
3561      AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
3562
3563  Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
3564  llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
3565      AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
3566
3567  Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
3568  llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
3569      AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
3570
3571  // Create a local thread-private variable to host the Reduce list
3572  // from a remote lane.
3573  Address RemoteReduceList =
3574      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
3575
3576  // This loop iterates through the list of reduce elements and copies,
3577  // element by element, from a remote lane in the warp to RemoteReduceList,
3578  // hosted on the thread's stack.
3579  emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
3580                        LocalReduceList, RemoteReduceList,
3581                        {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
3582                         /*ScratchpadIndex=*/nullptr,
3583                         /*ScratchpadWidth=*/nullptr});
3584
3585  // The actions to be performed on the Remote Reduce list is dependent
3586  // on the algorithm version.
3587  //
3588  //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
3589  //  LaneId % 2 == 0 && Offset > 0):
3590  //    do the reduction value aggregation
3591  //
3592  //  The thread local variable Reduce list is mutated in place to host the
3593  //  reduced data, which is the aggregated value produced from local and
3594  //  remote lanes.
3595  //
3596  //  Note that AlgoVer is expected to be a constant integer known at compile
3597  //  time.
3598  //  When AlgoVer==0, the first conjunction evaluates to true, making
3599  //    the entire predicate true during compile time.
3600  //  When AlgoVer==1, the second conjunction has only the second part to be
3601  //    evaluated during runtime.  Other conjunctions evaluates to false
3602  //    during compile time.
3603  //  When AlgoVer==2, the third conjunction has only the second part to be
3604  //    evaluated during runtime.  Other conjunctions evaluates to false
3605  //    during compile time.
3606  llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
3607
3608  llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
3609  llvm::Value *CondAlgo1 = Bld.CreateAnd(
3610      Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
3611
3612  llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
3613  llvm::Value *CondAlgo2 = Bld.CreateAnd(
3614      Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
3615  CondAlgo2 = Bld.CreateAnd(
3616      CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
3617
3618  llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
3619  CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
3620
3621  llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
3622  llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
3623  llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
3624  Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
3625
3626  CGF.EmitBlock(ThenBB);
3627  // reduce_function(LocalReduceList, RemoteReduceList)
3628  llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3629      LocalReduceList.getPointer(), CGF.VoidPtrTy);
3630  llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3631      RemoteReduceList.getPointer(), CGF.VoidPtrTy);
3632  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3633      CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
3634  Bld.CreateBr(MergeBB);
3635
3636  CGF.EmitBlock(ElseBB);
3637  Bld.CreateBr(MergeBB);
3638
3639  CGF.EmitBlock(MergeBB);
3640
3641  // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
3642  // Reduce list.
3643  Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
3644  llvm::Value *CondCopy = Bld.CreateAnd(
3645      Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
3646
3647  llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
3648  llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
3649  llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
3650  Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
3651
3652  CGF.EmitBlock(CpyThenBB);
3653  emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
3654                        RemoteReduceList, LocalReduceList);
3655  Bld.CreateBr(CpyMergeBB);
3656
3657  CGF.EmitBlock(CpyElseBB);
3658  Bld.CreateBr(CpyMergeBB);
3659
3660  CGF.EmitBlock(CpyMergeBB);
3661
3662  CGF.FinishFunction();
3663  return Fn;
3664}
3665
3666/// This function emits a helper that copies all the reduction variables from
3667/// the team into the provided global buffer for the reduction variables.
3668///
3669/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
3670///   For all data entries D in reduce_data:
3671///     Copy local D to buffer.D[Idx]
3672static llvm::Value *emitListToGlobalCopyFunction(
3673    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3674    QualType ReductionArrayTy, SourceLocation Loc,
3675    const RecordDecl *TeamReductionRec,
3676    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3677        &VarFieldMap) {
3678  ASTContext &C = CGM.getContext();
3679
3680  // Buffer: global reduction buffer.
3681  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3682                              C.VoidPtrTy, ImplicitParamDecl::Other);
3683  // Idx: index of the buffer.
3684  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3685                           ImplicitParamDecl::Other);
3686  // ReduceList: thread local Reduce list.
3687  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3688                                  C.VoidPtrTy, ImplicitParamDecl::Other);
3689  FunctionArgList Args;
3690  Args.push_back(&BufferArg);
3691  Args.push_back(&IdxArg);
3692  Args.push_back(&ReduceListArg);
3693
3694  const CGFunctionInfo &CGFI =
3695      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3696  auto *Fn = llvm::Function::Create(
3697      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3698      "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
3699  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3700  Fn->setDoesNotRecurse();
3701  CodeGenFunction CGF(CGM);
3702  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3703
3704  CGBuilderTy &Bld = CGF.Builder;
3705
3706  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3707  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3708  Address LocalReduceList(
3709      Bld.CreatePointerBitCastOrAddrSpaceCast(
3710          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3711                               C.VoidPtrTy, Loc),
3712          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3713      CGF.getPointerAlign());
3714  QualType StaticTy = C.getRecordType(TeamReductionRec);
3715  llvm::Type *LLVMReductionsBufferTy =
3716      CGM.getTypes().ConvertTypeForMem(StaticTy);
3717  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3718      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3719      LLVMReductionsBufferTy->getPointerTo());
3720  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3721                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3722                                              /*Volatile=*/false, C.IntTy,
3723                                              Loc)};
3724  unsigned Idx = 0;
3725  for (const Expr *Private : Privates) {
3726    // Reduce element = LocalReduceList[i]
3727    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3728    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
3729        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
3730    // elemptr = ((CopyType*)(elemptrptr)) + I
3731    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3732        ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
3733    Address ElemPtr =
3734        Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
3735    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
3736    // Global = Buffer.VD[Idx];
3737    const FieldDecl *FD = VarFieldMap.lookup(VD);
3738    LValue GlobLVal = CGF.EmitLValueForField(
3739        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3740    llvm::Value *BufferPtr =
3741        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
3742    GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
3743    switch (CGF.getEvaluationKind(Private->getType())) {
3744    case TEK_Scalar: {
3745      llvm::Value *V = CGF.EmitLoadOfScalar(
3746          ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
3747          LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
3748      CGF.EmitStoreOfScalar(V, GlobLVal);
3749      break;
3750    }
3751    case TEK_Complex: {
3752      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
3753          CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
3754      CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
3755      break;
3756    }
3757    case TEK_Aggregate:
3758      CGF.EmitAggregateCopy(GlobLVal,
3759                            CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3760                            Private->getType(), AggValueSlot::DoesNotOverlap);
3761      break;
3762    }
3763    ++Idx;
3764  }
3765
3766  CGF.FinishFunction();
3767  return Fn;
3768}
3769
3770/// This function emits a helper that reduces all the reduction variables from
3771/// the team into the provided global buffer for the reduction variables.
3772///
3773/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
3774///  void *GlobPtrs[];
3775///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
3776///  ...
3777///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
3778///  reduce_function(GlobPtrs, reduce_data);
3779static llvm::Value *emitListToGlobalReduceFunction(
3780    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3781    QualType ReductionArrayTy, SourceLocation Loc,
3782    const RecordDecl *TeamReductionRec,
3783    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3784        &VarFieldMap,
3785    llvm::Function *ReduceFn) {
3786  ASTContext &C = CGM.getContext();
3787
3788  // Buffer: global reduction buffer.
3789  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3790                              C.VoidPtrTy, ImplicitParamDecl::Other);
3791  // Idx: index of the buffer.
3792  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3793                           ImplicitParamDecl::Other);
3794  // ReduceList: thread local Reduce list.
3795  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3796                                  C.VoidPtrTy, ImplicitParamDecl::Other);
3797  FunctionArgList Args;
3798  Args.push_back(&BufferArg);
3799  Args.push_back(&IdxArg);
3800  Args.push_back(&ReduceListArg);
3801
3802  const CGFunctionInfo &CGFI =
3803      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3804  auto *Fn = llvm::Function::Create(
3805      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3806      "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
3807  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3808  Fn->setDoesNotRecurse();
3809  CodeGenFunction CGF(CGM);
3810  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3811
3812  CGBuilderTy &Bld = CGF.Builder;
3813
3814  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3815  QualType StaticTy = C.getRecordType(TeamReductionRec);
3816  llvm::Type *LLVMReductionsBufferTy =
3817      CGM.getTypes().ConvertTypeForMem(StaticTy);
3818  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3819      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3820      LLVMReductionsBufferTy->getPointerTo());
3821
3822  // 1. Build a list of reduction variables.
3823  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3824  Address ReductionList =
3825      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3826  auto IPriv = Privates.begin();
3827  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3828                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3829                                              /*Volatile=*/false, C.IntTy,
3830                                              Loc)};
3831  unsigned Idx = 0;
3832  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
3833    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3834    // Global = Buffer.VD[Idx];
3835    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
3836    const FieldDecl *FD = VarFieldMap.lookup(VD);
3837    LValue GlobLVal = CGF.EmitLValueForField(
3838        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3839    llvm::Value *BufferPtr =
3840        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
3841    llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
3842    CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
3843    if ((*IPriv)->getType()->isVariablyModifiedType()) {
3844      // Store array size.
3845      ++Idx;
3846      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3847      llvm::Value *Size = CGF.Builder.CreateIntCast(
3848          CGF.getVLASize(
3849                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3850              .NumElts,
3851          CGF.SizeTy, /*isSigned=*/false);
3852      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3853                              Elem);
3854    }
3855  }
3856
3857  // Call reduce_function(GlobalReduceList, ReduceList)
3858  llvm::Value *GlobalReduceList =
3859      CGF.EmitCastToVoidPtr(ReductionList.getPointer());
3860  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3861  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
3862      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
3863  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3864      CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
3865  CGF.FinishFunction();
3866  return Fn;
3867}
3868
3869/// This function emits a helper that copies all the reduction variables from
3870/// the team into the provided global buffer for the reduction variables.
3871///
3872/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
3873///   For all data entries D in reduce_data:
3874///     Copy buffer.D[Idx] to local D;
3875static llvm::Value *emitGlobalToListCopyFunction(
3876    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3877    QualType ReductionArrayTy, SourceLocation Loc,
3878    const RecordDecl *TeamReductionRec,
3879    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3880        &VarFieldMap) {
3881  ASTContext &C = CGM.getContext();
3882
3883  // Buffer: global reduction buffer.
3884  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3885                              C.VoidPtrTy, ImplicitParamDecl::Other);
3886  // Idx: index of the buffer.
3887  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3888                           ImplicitParamDecl::Other);
3889  // ReduceList: thread local Reduce list.
3890  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3891                                  C.VoidPtrTy, ImplicitParamDecl::Other);
3892  FunctionArgList Args;
3893  Args.push_back(&BufferArg);
3894  Args.push_back(&IdxArg);
3895  Args.push_back(&ReduceListArg);
3896
3897  const CGFunctionInfo &CGFI =
3898      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3899  auto *Fn = llvm::Function::Create(
3900      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3901      "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
3902  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3903  Fn->setDoesNotRecurse();
3904  CodeGenFunction CGF(CGM);
3905  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3906
3907  CGBuilderTy &Bld = CGF.Builder;
3908
3909  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3910  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3911  Address LocalReduceList(
3912      Bld.CreatePointerBitCastOrAddrSpaceCast(
3913          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3914                               C.VoidPtrTy, Loc),
3915          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3916      CGF.getPointerAlign());
3917  QualType StaticTy = C.getRecordType(TeamReductionRec);
3918  llvm::Type *LLVMReductionsBufferTy =
3919      CGM.getTypes().ConvertTypeForMem(StaticTy);
3920  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3921      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3922      LLVMReductionsBufferTy->getPointerTo());
3923
3924  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3925                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3926                                              /*Volatile=*/false, C.IntTy,
3927                                              Loc)};
3928  unsigned Idx = 0;
3929  for (const Expr *Private : Privates) {
3930    // Reduce element = LocalReduceList[i]
3931    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3932    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
3933        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
3934    // elemptr = ((CopyType*)(elemptrptr)) + I
3935    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3936        ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
3937    Address ElemPtr =
3938        Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
3939    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
3940    // Global = Buffer.VD[Idx];
3941    const FieldDecl *FD = VarFieldMap.lookup(VD);
3942    LValue GlobLVal = CGF.EmitLValueForField(
3943        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3944    llvm::Value *BufferPtr =
3945        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
3946    GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
3947    switch (CGF.getEvaluationKind(Private->getType())) {
3948    case TEK_Scalar: {
3949      llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
3950      CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
3951                            LValueBaseInfo(AlignmentSource::Type),
3952                            TBAAAccessInfo());
3953      break;
3954    }
3955    case TEK_Complex: {
3956      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
3957      CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3958                             /*isInit=*/false);
3959      break;
3960    }
3961    case TEK_Aggregate:
3962      CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3963                            GlobLVal, Private->getType(),
3964                            AggValueSlot::DoesNotOverlap);
3965      break;
3966    }
3967    ++Idx;
3968  }
3969
3970  CGF.FinishFunction();
3971  return Fn;
3972}
3973
3974/// This function emits a helper that reduces all the reduction variables from
3975/// the team into the provided global buffer for the reduction variables.
3976///
3977/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
3978///  void *GlobPtrs[];
3979///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
3980///  ...
3981///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
3982///  reduce_function(reduce_data, GlobPtrs);
3983static llvm::Value *emitGlobalToListReduceFunction(
3984    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3985    QualType ReductionArrayTy, SourceLocation Loc,
3986    const RecordDecl *TeamReductionRec,
3987    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3988        &VarFieldMap,
3989    llvm::Function *ReduceFn) {
3990  ASTContext &C = CGM.getContext();
3991
3992  // Buffer: global reduction buffer.
3993  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3994                              C.VoidPtrTy, ImplicitParamDecl::Other);
3995  // Idx: index of the buffer.
3996  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3997                           ImplicitParamDecl::Other);
3998  // ReduceList: thread local Reduce list.
3999  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4000                                  C.VoidPtrTy, ImplicitParamDecl::Other);
4001  FunctionArgList Args;
4002  Args.push_back(&BufferArg);
4003  Args.push_back(&IdxArg);
4004  Args.push_back(&ReduceListArg);
4005
4006  const CGFunctionInfo &CGFI =
4007      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4008  auto *Fn = llvm::Function::Create(
4009      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
4010      "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
4011  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
4012  Fn->setDoesNotRecurse();
4013  CodeGenFunction CGF(CGM);
4014  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
4015
4016  CGBuilderTy &Bld = CGF.Builder;
4017
4018  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
4019  QualType StaticTy = C.getRecordType(TeamReductionRec);
4020  llvm::Type *LLVMReductionsBufferTy =
4021      CGM.getTypes().ConvertTypeForMem(StaticTy);
4022  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
4023      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
4024      LLVMReductionsBufferTy->getPointerTo());
4025
4026  // 1. Build a list of reduction variables.
4027  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
4028  Address ReductionList =
4029      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
4030  auto IPriv = Privates.begin();
4031  llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
4032                         CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
4033                                              /*Volatile=*/false, C.IntTy,
4034                                              Loc)};
4035  unsigned Idx = 0;
4036  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
4037    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
4038    // Global = Buffer.VD[Idx];
4039    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
4040    const FieldDecl *FD = VarFieldMap.lookup(VD);
4041    LValue GlobLVal = CGF.EmitLValueForField(
4042        CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
4043    llvm::Value *BufferPtr =
4044        Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
4045    llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
4046    CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
4047    if ((*IPriv)->getType()->isVariablyModifiedType()) {
4048      // Store array size.
4049      ++Idx;
4050      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
4051      llvm::Value *Size = CGF.Builder.CreateIntCast(
4052          CGF.getVLASize(
4053                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
4054              .NumElts,
4055          CGF.SizeTy, /*isSigned=*/false);
4056      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
4057                              Elem);
4058    }
4059  }
4060
4061  // Call reduce_function(ReduceList, GlobalReduceList)
4062  llvm::Value *GlobalReduceList =
4063      CGF.EmitCastToVoidPtr(ReductionList.getPointer());
4064  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
4065  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
4066      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
4067  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
4068      CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
4069  CGF.FinishFunction();
4070  return Fn;
4071}
4072
4073///
4074/// Design of OpenMP reductions on the GPU
4075///
4076/// Consider a typical OpenMP program with one or more reduction
4077/// clauses:
4078///
4079/// float foo;
4080/// double bar;
4081/// #pragma omp target teams distribute parallel for \
4082///             reduction(+:foo) reduction(*:bar)
4083/// for (int i = 0; i < N; i++) {
4084///   foo += A[i]; bar *= B[i];
4085/// }
4086///
4087/// where 'foo' and 'bar' are reduced across all OpenMP threads in
4088/// all teams.  In our OpenMP implementation on the NVPTX device an
4089/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
4090/// within a team are mapped to CUDA threads within a threadblock.
4091/// Our goal is to efficiently aggregate values across all OpenMP
4092/// threads such that:
4093///
4094///   - the compiler and runtime are logically concise, and
4095///   - the reduction is performed efficiently in a hierarchical
4096///     manner as follows: within OpenMP threads in the same warp,
4097///     across warps in a threadblock, and finally across teams on
4098///     the NVPTX device.
4099///
4100/// Introduction to Decoupling
4101///
4102/// We would like to decouple the compiler and the runtime so that the
4103/// latter is ignorant of the reduction variables (number, data types)
4104/// and the reduction operators.  This allows a simpler interface
4105/// and implementation while still attaining good performance.
4106///
4107/// Pseudocode for the aforementioned OpenMP program generated by the
4108/// compiler is as follows:
4109///
4110/// 1. Create private copies of reduction variables on each OpenMP
4111///    thread: 'foo_private', 'bar_private'
4112/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
4113///    to it and writes the result in 'foo_private' and 'bar_private'
4114///    respectively.
4115/// 3. Call the OpenMP runtime on the GPU to reduce within a team
4116///    and store the result on the team master:
4117///
4118///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
4119///        reduceData, shuffleReduceFn, interWarpCpyFn)
4120///
4121///     where:
4122///       struct ReduceData {
4123///         double *foo;
4124///         double *bar;
4125///       } reduceData
4126///       reduceData.foo = &foo_private
4127///       reduceData.bar = &bar_private
4128///
4129///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
4130///     auxiliary functions generated by the compiler that operate on
4131///     variables of type 'ReduceData'.  They aid the runtime perform
4132///     algorithmic steps in a data agnostic manner.
4133///
4134///     'shuffleReduceFn' is a pointer to a function that reduces data
4135///     of type 'ReduceData' across two OpenMP threads (lanes) in the
4136///     same warp.  It takes the following arguments as input:
4137///
4138///     a. variable of type 'ReduceData' on the calling lane,
4139///     b. its lane_id,
4140///     c. an offset relative to the current lane_id to generate a
4141///        remote_lane_id.  The remote lane contains the second
4142///        variable of type 'ReduceData' that is to be reduced.
4143///     d. an algorithm version parameter determining which reduction
4144///        algorithm to use.
4145///
4146///     'shuffleReduceFn' retrieves data from the remote lane using
4147///     efficient GPU shuffle intrinsics and reduces, using the
4148///     algorithm specified by the 4th parameter, the two operands
4149///     element-wise.  The result is written to the first operand.
4150///
4151///     Different reduction algorithms are implemented in different
4152///     runtime functions, all calling 'shuffleReduceFn' to perform
4153///     the essential reduction step.  Therefore, based on the 4th
4154///     parameter, this function behaves slightly differently to
4155///     cooperate with the runtime to ensure correctness under
4156///     different circumstances.
4157///
4158///     'InterWarpCpyFn' is a pointer to a function that transfers
4159///     reduced variables across warps.  It tunnels, through CUDA
4160///     shared memory, the thread-private data of type 'ReduceData'
4161///     from lane 0 of each warp to a lane in the first warp.
4162/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
4163///    The last team writes the global reduced value to memory.
4164///
4165///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
4166///             reduceData, shuffleReduceFn, interWarpCpyFn,
4167///             scratchpadCopyFn, loadAndReduceFn)
4168///
4169///     'scratchpadCopyFn' is a helper that stores reduced
4170///     data from the team master to a scratchpad array in
4171///     global memory.
4172///
4173///     'loadAndReduceFn' is a helper that loads data from
4174///     the scratchpad array and reduces it with the input
4175///     operand.
4176///
4177///     These compiler generated functions hide address
4178///     calculation and alignment information from the runtime.
4179/// 5. if ret == 1:
4180///     The team master of the last team stores the reduced
4181///     result to the globals in memory.
4182///     foo += reduceData.foo; bar *= reduceData.bar
4183///
4184///
4185/// Warp Reduction Algorithms
4186///
4187/// On the warp level, we have three algorithms implemented in the
4188/// OpenMP runtime depending on the number of active lanes:
4189///
4190/// Full Warp Reduction
4191///
4192/// The reduce algorithm within a warp where all lanes are active
4193/// is implemented in the runtime as follows:
4194///
4195/// full_warp_reduce(void *reduce_data,
4196///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
4197///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
4198///     ShuffleReduceFn(reduce_data, 0, offset, 0);
4199/// }
4200///
4201/// The algorithm completes in log(2, WARPSIZE) steps.
4202///
4203/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
4204/// not used therefore we save instructions by not retrieving lane_id
4205/// from the corresponding special registers.  The 4th parameter, which
4206/// represents the version of the algorithm being used, is set to 0 to
4207/// signify full warp reduction.
4208///
4209/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
4210///
4211/// #reduce_elem refers to an element in the local lane's data structure
4212/// #remote_elem is retrieved from a remote lane
4213/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
4214/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
4215///
4216/// Contiguous Partial Warp Reduction
4217///
4218/// This reduce algorithm is used within a warp where only the first
4219/// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
4220/// number of OpenMP threads in a parallel region is not a multiple of
4221/// WARPSIZE.  The algorithm is implemented in the runtime as follows:
4222///
4223/// void
4224/// contiguous_partial_reduce(void *reduce_data,
4225///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
4226///                           int size, int lane_id) {
4227///   int curr_size;
4228///   int offset;
4229///   curr_size = size;
4230///   mask = curr_size/2;
4231///   while (offset>0) {
4232///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
4233///     curr_size = (curr_size+1)/2;
4234///     offset = curr_size/2;
4235///   }
4236/// }
4237///
4238/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
4239///
4240/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
4241/// if (lane_id < offset)
4242///     reduce_elem = reduce_elem REDUCE_OP remote_elem
4243/// else
4244///     reduce_elem = remote_elem
4245///
4246/// This algorithm assumes that the data to be reduced are located in a
4247/// contiguous subset of lanes starting from the first.  When there is
4248/// an odd number of active lanes, the data in the last lane is not
4249/// aggregated with any other lane's dat but is instead copied over.
4250///
4251/// Dispersed Partial Warp Reduction
4252///
4253/// This algorithm is used within a warp when any discontiguous subset of
4254/// lanes are active.  It is used to implement the reduction operation
4255/// across lanes in an OpenMP simd region or in a nested parallel region.
4256///
4257/// void
4258/// dispersed_partial_reduce(void *reduce_data,
4259///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
4260///   int size, remote_id;
4261///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
4262///   do {
4263///       remote_id = next_active_lane_id_right_after_me();
4264///       # the above function returns 0 of no active lane
4265///       # is present right after the current lane.
4266///       size = number_of_active_lanes_in_this_warp();
4267///       logical_lane_id /= 2;
4268///       ShuffleReduceFn(reduce_data, logical_lane_id,
4269///                       remote_id-1-threadIdx.x, 2);
4270///   } while (logical_lane_id % 2 == 0 && size > 1);
4271/// }
4272///
4273/// There is no assumption made about the initial state of the reduction.
4274/// Any number of lanes (>=1) could be active at any position.  The reduction
4275/// result is returned in the first active lane.
4276///
4277/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
4278///
4279/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
4280/// if (lane_id % 2 == 0 && offset > 0)
4281///     reduce_elem = reduce_elem REDUCE_OP remote_elem
4282/// else
4283///     reduce_elem = remote_elem
4284///
4285///
4286/// Intra-Team Reduction
4287///
4288/// This function, as implemented in the runtime call
4289/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
4290/// threads in a team.  It first reduces within a warp using the
4291/// aforementioned algorithms.  We then proceed to gather all such
4292/// reduced values at the first warp.
4293///
4294/// The runtime makes use of the function 'InterWarpCpyFn', which copies
4295/// data from each of the "warp master" (zeroth lane of each warp, where
4296/// warp-reduced data is held) to the zeroth warp.  This step reduces (in
4297/// a mathematical sense) the problem of reduction across warp masters in
4298/// a block to the problem of warp reduction.
4299///
4300///
4301/// Inter-Team Reduction
4302///
4303/// Once a team has reduced its data to a single value, it is stored in
4304/// a global scratchpad array.  Since each team has a distinct slot, this
4305/// can be done without locking.
4306///
4307/// The last team to write to the scratchpad array proceeds to reduce the
4308/// scratchpad array.  One or more workers in the last team use the helper
4309/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
4310/// the k'th worker reduces every k'th element.
4311///
4312/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
4313/// reduce across workers and compute a globally reduced value.
4314///
4315void CGOpenMPRuntimeNVPTX::emitReduction(
4316    CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
4317    ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
4318    ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
4319  if (!CGF.HaveInsertPoint())
4320    return;
4321
4322  bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
4323#ifndef NDEBUG
4324  bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
4325#endif
4326
4327  if (Options.SimpleReduction) {
4328    assert(!TeamsReduction && !ParallelReduction &&
4329           "Invalid reduction selection in emitReduction.");
4330    CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
4331                                   ReductionOps, Options);
4332    return;
4333  }
4334
4335  assert((TeamsReduction || ParallelReduction) &&
4336         "Invalid reduction selection in emitReduction.");
4337
4338  // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
4339  // RedList, shuffle_reduce_func, interwarp_copy_func);
4340  // or
4341  // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
4342  llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
4343  llvm::Value *ThreadId = getThreadID(CGF, Loc);
4344
4345  llvm::Value *Res;
4346  ASTContext &C = CGM.getContext();
4347  // 1. Build a list of reduction variables.
4348  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
4349  auto Size = RHSExprs.size();
4350  for (const Expr *E : Privates) {
4351    if (E->getType()->isVariablyModifiedType())
4352      // Reserve place for array size.
4353      ++Size;
4354  }
4355  llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
4356  QualType ReductionArrayTy =
4357      C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
4358                             /*IndexTypeQuals=*/0);
4359  Address ReductionList =
4360      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
4361  auto IPriv = Privates.begin();
4362  unsigned Idx = 0;
4363  for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
4364    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
4365    CGF.Builder.CreateStore(
4366        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4367            CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
4368        Elem);
4369    if ((*IPriv)->getType()->isVariablyModifiedType()) {
4370      // Store array size.
4371      ++Idx;
4372      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
4373      llvm::Value *Size = CGF.Builder.CreateIntCast(
4374          CGF.getVLASize(
4375                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
4376              .NumElts,
4377          CGF.SizeTy, /*isSigned=*/false);
4378      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
4379                              Elem);
4380    }
4381  }
4382
4383  llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4384      ReductionList.getPointer(), CGF.VoidPtrTy);
4385  llvm::Function *ReductionFn = emitReductionFunction(
4386      Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
4387      LHSExprs, RHSExprs, ReductionOps);
4388  llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
4389  llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
4390      CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
4391  llvm::Value *InterWarpCopyFn =
4392      emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
4393
4394  if (ParallelReduction) {
4395    llvm::Value *Args[] = {RTLoc,
4396                           ThreadId,
4397                           CGF.Builder.getInt32(RHSExprs.size()),
4398                           ReductionArrayTySize,
4399                           RL,
4400                           ShuffleAndReduceFn,
4401                           InterWarpCopyFn};
4402
4403    Res = CGF.EmitRuntimeCall(
4404        createNVPTXRuntimeFunction(
4405            OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2),
4406        Args);
4407  } else {
4408    assert(TeamsReduction && "expected teams reduction.");
4409    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
4410    llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
4411    int Cnt = 0;
4412    for (const Expr *DRE : Privates) {
4413      PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
4414      ++Cnt;
4415    }
4416    const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
4417        CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
4418        C.getLangOpts().OpenMPCUDAReductionBufNum);
4419    TeamsReductions.push_back(TeamReductionRec);
4420    if (!KernelTeamsReductionPtr) {
4421      KernelTeamsReductionPtr = new llvm::GlobalVariable(
4422          CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
4423          llvm::GlobalValue::InternalLinkage, nullptr,
4424          "_openmp_teams_reductions_buffer_$_$ptr");
4425    }
4426    llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
4427        Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
4428        /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
4429    llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
4430        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
4431    llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
4432        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
4433        ReductionFn);
4434    llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
4435        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
4436    llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
4437        CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
4438        ReductionFn);
4439
4440    llvm::Value *Args[] = {
4441        RTLoc,
4442        ThreadId,
4443        GlobalBufferPtr,
4444        CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
4445        RL,
4446        ShuffleAndReduceFn,
4447        InterWarpCopyFn,
4448        GlobalToBufferCpyFn,
4449        GlobalToBufferRedFn,
4450        BufferToGlobalCpyFn,
4451        BufferToGlobalRedFn};
4452
4453    Res = CGF.EmitRuntimeCall(
4454        createNVPTXRuntimeFunction(
4455            OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2),
4456        Args);
4457  }
4458
4459  // 5. Build if (res == 1)
4460  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
4461  llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
4462  llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
4463      Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
4464  CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
4465
4466  // 6. Build then branch: where we have reduced values in the master
4467  //    thread in each team.
4468  //    __kmpc_end_reduce{_nowait}(<gtid>);
4469  //    break;
4470  CGF.EmitBlock(ThenBB);
4471
4472  // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
4473  auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
4474                    this](CodeGenFunction &CGF, PrePostActionTy &Action) {
4475    auto IPriv = Privates.begin();
4476    auto ILHS = LHSExprs.begin();
4477    auto IRHS = RHSExprs.begin();
4478    for (const Expr *E : ReductionOps) {
4479      emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
4480                                  cast<DeclRefExpr>(*IRHS));
4481      ++IPriv;
4482      ++ILHS;
4483      ++IRHS;
4484    }
4485  };
4486  llvm::Value *EndArgs[] = {ThreadId};
4487  RegionCodeGenTy RCG(CodeGen);
4488  NVPTXActionTy Action(
4489      nullptr, llvm::None,
4490      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
4491      EndArgs);
4492  RCG.setAction(Action);
4493  RCG(CGF);
4494  // There is no need to emit line number for unconditional branch.
4495  (void)ApplyDebugLocation::CreateEmpty(CGF);
4496  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
4497}
4498
4499const VarDecl *
4500CGOpenMPRuntimeNVPTX::translateParameter(const FieldDecl *FD,
4501                                         const VarDecl *NativeParam) const {
4502  if (!NativeParam->getType()->isReferenceType())
4503    return NativeParam;
4504  QualType ArgType = NativeParam->getType();
4505  QualifierCollector QC;
4506  const Type *NonQualTy = QC.strip(ArgType);
4507  QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
4508  if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
4509    if (Attr->getCaptureKind() == OMPC_map) {
4510      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
4511                                                        LangAS::opencl_global);
4512    } else if (Attr->getCaptureKind() == OMPC_firstprivate &&
4513               PointeeTy.isConstant(CGM.getContext())) {
4514      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
4515                                                        LangAS::opencl_generic);
4516    }
4517  }
4518  ArgType = CGM.getContext().getPointerType(PointeeTy);
4519  QC.addRestrict();
4520  enum { NVPTX_local_addr = 5 };
4521  QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
4522  ArgType = QC.apply(CGM.getContext(), ArgType);
4523  if (isa<ImplicitParamDecl>(NativeParam))
4524    return ImplicitParamDecl::Create(
4525        CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
4526        NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
4527  return ParmVarDecl::Create(
4528      CGM.getContext(),
4529      const_cast<DeclContext *>(NativeParam->getDeclContext()),
4530      NativeParam->getBeginLoc(), NativeParam->getLocation(),
4531      NativeParam->getIdentifier(), ArgType,
4532      /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
4533}
4534
4535Address
4536CGOpenMPRuntimeNVPTX::getParameterAddress(CodeGenFunction &CGF,
4537                                          const VarDecl *NativeParam,
4538                                          const VarDecl *TargetParam) const {
4539  assert(NativeParam != TargetParam &&
4540         NativeParam->getType()->isReferenceType() &&
4541         "Native arg must not be the same as target arg.");
4542  Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
4543  QualType NativeParamType = NativeParam->getType();
4544  QualifierCollector QC;
4545  const Type *NonQualTy = QC.strip(NativeParamType);
4546  QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
4547  unsigned NativePointeeAddrSpace =
4548      CGF.getContext().getTargetAddressSpace(NativePointeeTy);
4549  QualType TargetTy = TargetParam->getType();
4550  llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
4551      LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
4552  // First cast to generic.
4553  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4554      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
4555                      /*AddrSpace=*/0));
4556  // Cast from generic to native address space.
4557  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4558      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
4559                      NativePointeeAddrSpace));
4560  Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
4561  CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
4562                        NativeParamType);
4563  return NativeParamAddr;
4564}
4565
4566void CGOpenMPRuntimeNVPTX::emitOutlinedFunctionCall(
4567    CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
4568    ArrayRef<llvm::Value *> Args) const {
4569  SmallVector<llvm::Value *, 4> TargetArgs;
4570  TargetArgs.reserve(Args.size());
4571  auto *FnType = OutlinedFn.getFunctionType();
4572  for (unsigned I = 0, E = Args.size(); I < E; ++I) {
4573    if (FnType->isVarArg() && FnType->getNumParams() <= I) {
4574      TargetArgs.append(std::next(Args.begin(), I), Args.end());
4575      break;
4576    }
4577    llvm::Type *TargetType = FnType->getParamType(I);
4578    llvm::Value *NativeArg = Args[I];
4579    if (!TargetType->isPointerTy()) {
4580      TargetArgs.emplace_back(NativeArg);
4581      continue;
4582    }
4583    llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4584        NativeArg,
4585        NativeArg->getType()->getPointerElementType()->getPointerTo());
4586    TargetArgs.emplace_back(
4587        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
4588  }
4589  CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
4590}
4591
4592/// Emit function which wraps the outline parallel region
4593/// and controls the arguments which are passed to this function.
4594/// The wrapper ensures that the outlined function is called
4595/// with the correct arguments when data is shared.
4596llvm::Function *CGOpenMPRuntimeNVPTX::createParallelDataSharingWrapper(
4597    llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
4598  ASTContext &Ctx = CGM.getContext();
4599  const auto &CS = *D.getCapturedStmt(OMPD_parallel);
4600
4601  // Create a function that takes as argument the source thread.
4602  FunctionArgList WrapperArgs;
4603  QualType Int16QTy =
4604      Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
4605  QualType Int32QTy =
4606      Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
4607  ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
4608                                     /*Id=*/nullptr, Int16QTy,
4609                                     ImplicitParamDecl::Other);
4610  ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
4611                               /*Id=*/nullptr, Int32QTy,
4612                               ImplicitParamDecl::Other);
4613  WrapperArgs.emplace_back(&ParallelLevelArg);
4614  WrapperArgs.emplace_back(&WrapperArg);
4615
4616  const CGFunctionInfo &CGFI =
4617      CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
4618
4619  auto *Fn = llvm::Function::Create(
4620      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
4621      Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
4622  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
4623  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
4624  Fn->setDoesNotRecurse();
4625
4626  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
4627  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
4628                    D.getBeginLoc(), D.getBeginLoc());
4629
4630  const auto *RD = CS.getCapturedRecordDecl();
4631  auto CurField = RD->field_begin();
4632
4633  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
4634                                                      /*Name=*/".zero.addr");
4635  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
4636  // Get the array of arguments.
4637  SmallVector<llvm::Value *, 8> Args;
4638
4639  Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
4640  Args.emplace_back(ZeroAddr.getPointer());
4641
4642  CGBuilderTy &Bld = CGF.Builder;
4643  auto CI = CS.capture_begin();
4644
4645  // Use global memory for data sharing.
4646  // Handle passing of global args to workers.
4647  Address GlobalArgs =
4648      CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
4649  llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
4650  llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
4651  CGF.EmitRuntimeCall(
4652      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_get_shared_variables),
4653      DataSharingArgs);
4654
4655  // Retrieve the shared variables from the list of references returned
4656  // by the runtime. Pass the variables to the outlined function.
4657  Address SharedArgListAddress = Address::invalid();
4658  if (CS.capture_size() > 0 ||
4659      isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
4660    SharedArgListAddress = CGF.EmitLoadOfPointer(
4661        GlobalArgs, CGF.getContext()
4662                        .getPointerType(CGF.getContext().getPointerType(
4663                            CGF.getContext().VoidPtrTy))
4664                        .castAs<PointerType>());
4665  }
4666  unsigned Idx = 0;
4667  if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
4668    Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
4669    Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4670        Src, CGF.SizeTy->getPointerTo());
4671    llvm::Value *LB = CGF.EmitLoadOfScalar(
4672        TypedAddress,
4673        /*Volatile=*/false,
4674        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
4675        cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
4676    Args.emplace_back(LB);
4677    ++Idx;
4678    Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
4679    TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4680        Src, CGF.SizeTy->getPointerTo());
4681    llvm::Value *UB = CGF.EmitLoadOfScalar(
4682        TypedAddress,
4683        /*Volatile=*/false,
4684        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
4685        cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
4686    Args.emplace_back(UB);
4687    ++Idx;
4688  }
4689  if (CS.capture_size() > 0) {
4690    ASTContext &CGFContext = CGF.getContext();
4691    for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
4692      QualType ElemTy = CurField->getType();
4693      Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
4694      Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4695          Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
4696      llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
4697                                              /*Volatile=*/false,
4698                                              CGFContext.getPointerType(ElemTy),
4699                                              CI->getLocation());
4700      if (CI->capturesVariableByCopy() &&
4701          !CI->getCapturedVar()->getType()->isAnyPointerType()) {
4702        Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
4703                              CI->getLocation());
4704      }
4705      Args.emplace_back(Arg);
4706    }
4707  }
4708
4709  emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
4710  CGF.FinishFunction();
4711  return Fn;
4712}
4713
4714void CGOpenMPRuntimeNVPTX::emitFunctionProlog(CodeGenFunction &CGF,
4715                                              const Decl *D) {
4716  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
4717    return;
4718
4719  assert(D && "Expected function or captured|block decl.");
4720  assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
4721         "Function is registered already.");
4722  assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
4723         "Team is set but not processed.");
4724  const Stmt *Body = nullptr;
4725  bool NeedToDelayGlobalization = false;
4726  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4727    Body = FD->getBody();
4728  } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
4729    Body = BD->getBody();
4730  } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
4731    Body = CD->getBody();
4732    NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
4733    if (NeedToDelayGlobalization &&
4734        getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
4735      return;
4736  }
4737  if (!Body)
4738    return;
4739  CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
4740  VarChecker.Visit(Body);
4741  const RecordDecl *GlobalizedVarsRecord =
4742      VarChecker.getGlobalizedRecord(IsInTTDRegion);
4743  TeamAndReductions.first = nullptr;
4744  TeamAndReductions.second.clear();
4745  ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
4746      VarChecker.getEscapedVariableLengthDecls();
4747  if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
4748    return;
4749  auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
4750  I->getSecond().MappedParams =
4751      std::make_unique<CodeGenFunction::OMPMapVars>();
4752  I->getSecond().GlobalRecord = GlobalizedVarsRecord;
4753  I->getSecond().EscapedParameters.insert(
4754      VarChecker.getEscapedParameters().begin(),
4755      VarChecker.getEscapedParameters().end());
4756  I->getSecond().EscapedVariableLengthDecls.append(
4757      EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
4758  DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
4759  for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
4760    assert(VD->isCanonicalDecl() && "Expected canonical declaration");
4761    const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
4762    Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
4763  }
4764  if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
4765    CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
4766    VarChecker.Visit(Body);
4767    I->getSecond().SecondaryGlobalRecord =
4768        VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
4769    I->getSecond().SecondaryLocalVarData.emplace();
4770    DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
4771    for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
4772      assert(VD->isCanonicalDecl() && "Expected canonical declaration");
4773      const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
4774      Data.insert(
4775          std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
4776    }
4777  }
4778  if (!NeedToDelayGlobalization) {
4779    emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
4780    struct GlobalizationScope final : EHScopeStack::Cleanup {
4781      GlobalizationScope() = default;
4782
4783      void Emit(CodeGenFunction &CGF, Flags flags) override {
4784        static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
4785            .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
4786      }
4787    };
4788    CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
4789  }
4790}
4791
4792Address CGOpenMPRuntimeNVPTX::getAddressOfLocalVariable(CodeGenFunction &CGF,
4793                                                        const VarDecl *VD) {
4794  if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
4795    const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
4796    auto AS = LangAS::Default;
4797    switch (A->getAllocatorType()) {
4798      // Use the default allocator here as by default local vars are
4799      // threadlocal.
4800    case OMPAllocateDeclAttr::OMPNullMemAlloc:
4801    case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
4802    case OMPAllocateDeclAttr::OMPThreadMemAlloc:
4803    case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
4804    case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
4805      // Follow the user decision - use default allocation.
4806      return Address::invalid();
4807    case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
4808      // TODO: implement aupport for user-defined allocators.
4809      return Address::invalid();
4810    case OMPAllocateDeclAttr::OMPConstMemAlloc:
4811      AS = LangAS::cuda_constant;
4812      break;
4813    case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
4814      AS = LangAS::cuda_shared;
4815      break;
4816    case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
4817    case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
4818      break;
4819    }
4820    llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
4821    auto *GV = new llvm::GlobalVariable(
4822        CGM.getModule(), VarTy, /*isConstant=*/false,
4823        llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
4824        VD->getName(),
4825        /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
4826        CGM.getContext().getTargetAddressSpace(AS));
4827    CharUnits Align = CGM.getContext().getDeclAlign(VD);
4828    GV->setAlignment(Align.getAsAlign());
4829    return Address(
4830        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4831            GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
4832                    VD->getType().getAddressSpace()))),
4833        Align);
4834  }
4835
4836  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
4837    return Address::invalid();
4838
4839  VD = VD->getCanonicalDecl();
4840  auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
4841  if (I == FunctionGlobalizedDecls.end())
4842    return Address::invalid();
4843  auto VDI = I->getSecond().LocalVarData.find(VD);
4844  if (VDI != I->getSecond().LocalVarData.end())
4845    return VDI->second.PrivateAddr;
4846  if (VD->hasAttrs()) {
4847    for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
4848         E(VD->attr_end());
4849         IT != E; ++IT) {
4850      auto VDI = I->getSecond().LocalVarData.find(
4851          cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
4852              ->getCanonicalDecl());
4853      if (VDI != I->getSecond().LocalVarData.end())
4854        return VDI->second.PrivateAddr;
4855    }
4856  }
4857
4858  return Address::invalid();
4859}
4860
4861void CGOpenMPRuntimeNVPTX::functionFinished(CodeGenFunction &CGF) {
4862  FunctionGlobalizedDecls.erase(CGF.CurFn);
4863  CGOpenMPRuntime::functionFinished(CGF);
4864}
4865
4866void CGOpenMPRuntimeNVPTX::getDefaultDistScheduleAndChunk(
4867    CodeGenFunction &CGF, const OMPLoopDirective &S,
4868    OpenMPDistScheduleClauseKind &ScheduleKind,
4869    llvm::Value *&Chunk) const {
4870  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
4871    ScheduleKind = OMPC_DIST_SCHEDULE_static;
4872    Chunk = CGF.EmitScalarConversion(getNVPTXNumThreads(CGF),
4873        CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4874        S.getIterationVariable()->getType(), S.getBeginLoc());
4875    return;
4876  }
4877  CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
4878      CGF, S, ScheduleKind, Chunk);
4879}
4880
4881void CGOpenMPRuntimeNVPTX::getDefaultScheduleAndChunk(
4882    CodeGenFunction &CGF, const OMPLoopDirective &S,
4883    OpenMPScheduleClauseKind &ScheduleKind,
4884    const Expr *&ChunkExpr) const {
4885  ScheduleKind = OMPC_SCHEDULE_static;
4886  // Chunk size is 1 in this case.
4887  llvm::APInt ChunkSize(32, 1);
4888  ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
4889      CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4890      SourceLocation());
4891}
4892
4893void CGOpenMPRuntimeNVPTX::adjustTargetSpecificDataForLambdas(
4894    CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
4895  assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
4896         " Expected target-based directive.");
4897  const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
4898  for (const CapturedStmt::Capture &C : CS->captures()) {
4899    // Capture variables captured by reference in lambdas for target-based
4900    // directives.
4901    if (!C.capturesVariable())
4902      continue;
4903    const VarDecl *VD = C.getCapturedVar();
4904    const auto *RD = VD->getType()
4905                         .getCanonicalType()
4906                         .getNonReferenceType()
4907                         ->getAsCXXRecordDecl();
4908    if (!RD || !RD->isLambda())
4909      continue;
4910    Address VDAddr = CGF.GetAddrOfLocalVar(VD);
4911    LValue VDLVal;
4912    if (VD->getType().getCanonicalType()->isReferenceType())
4913      VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
4914    else
4915      VDLVal = CGF.MakeAddrLValue(
4916          VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
4917    llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
4918    FieldDecl *ThisCapture = nullptr;
4919    RD->getCaptureFields(Captures, ThisCapture);
4920    if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
4921      LValue ThisLVal =
4922          CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
4923      llvm::Value *CXXThis = CGF.LoadCXXThis();
4924      CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
4925    }
4926    for (const LambdaCapture &LC : RD->captures()) {
4927      if (LC.getCaptureKind() != LCK_ByRef)
4928        continue;
4929      const VarDecl *VD = LC.getCapturedVar();
4930      if (!CS->capturesVariable(VD))
4931        continue;
4932      auto It = Captures.find(VD);
4933      assert(It != Captures.end() && "Found lambda capture without field.");
4934      LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
4935      Address VDAddr = CGF.GetAddrOfLocalVar(VD);
4936      if (VD->getType().getCanonicalType()->isReferenceType())
4937        VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
4938                                               VD->getType().getCanonicalType())
4939                     .getAddress(CGF);
4940      CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
4941    }
4942  }
4943}
4944
4945unsigned CGOpenMPRuntimeNVPTX::getDefaultFirstprivateAddressSpace() const {
4946  return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
4947}
4948
4949bool CGOpenMPRuntimeNVPTX::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
4950                                                            LangAS &AS) {
4951  if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
4952    return false;
4953  const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
4954  switch(A->getAllocatorType()) {
4955  case OMPAllocateDeclAttr::OMPNullMemAlloc:
4956  case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
4957  // Not supported, fallback to the default mem space.
4958  case OMPAllocateDeclAttr::OMPThreadMemAlloc:
4959  case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
4960  case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
4961  case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
4962  case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
4963    AS = LangAS::Default;
4964    return true;
4965  case OMPAllocateDeclAttr::OMPConstMemAlloc:
4966    AS = LangAS::cuda_constant;
4967    return true;
4968  case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
4969    AS = LangAS::cuda_shared;
4970    return true;
4971  case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
4972    llvm_unreachable("Expected predefined allocator for the variables with the "
4973                     "static storage.");
4974  }
4975  return false;
4976}
4977
4978// Get current CudaArch and ignore any unknown values
4979static CudaArch getCudaArch(CodeGenModule &CGM) {
4980  if (!CGM.getTarget().hasFeature("ptx"))
4981    return CudaArch::UNKNOWN;
4982  for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
4983    if (Feature.getValue()) {
4984      CudaArch Arch = StringToCudaArch(Feature.getKey());
4985      if (Arch != CudaArch::UNKNOWN)
4986        return Arch;
4987    }
4988  }
4989  return CudaArch::UNKNOWN;
4990}
4991
4992/// Check to see if target architecture supports unified addressing which is
4993/// a restriction for OpenMP requires clause "unified_shared_memory".
4994void CGOpenMPRuntimeNVPTX::processRequiresDirective(
4995    const OMPRequiresDecl *D) {
4996  for (const OMPClause *Clause : D->clauselists()) {
4997    if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
4998      CudaArch Arch = getCudaArch(CGM);
4999      switch (Arch) {
5000      case CudaArch::SM_20:
5001      case CudaArch::SM_21:
5002      case CudaArch::SM_30:
5003      case CudaArch::SM_32:
5004      case CudaArch::SM_35:
5005      case CudaArch::SM_37:
5006      case CudaArch::SM_50:
5007      case CudaArch::SM_52:
5008      case CudaArch::SM_53:
5009      case CudaArch::SM_60:
5010      case CudaArch::SM_61:
5011      case CudaArch::SM_62: {
5012        SmallString<256> Buffer;
5013        llvm::raw_svector_ostream Out(Buffer);
5014        Out << "Target architecture " << CudaArchToString(Arch)
5015            << " does not support unified addressing";
5016        CGM.Error(Clause->getBeginLoc(), Out.str());
5017        return;
5018      }
5019      case CudaArch::SM_70:
5020      case CudaArch::SM_72:
5021      case CudaArch::SM_75:
5022      case CudaArch::SM_80:
5023      case CudaArch::GFX600:
5024      case CudaArch::GFX601:
5025      case CudaArch::GFX700:
5026      case CudaArch::GFX701:
5027      case CudaArch::GFX702:
5028      case CudaArch::GFX703:
5029      case CudaArch::GFX704:
5030      case CudaArch::GFX801:
5031      case CudaArch::GFX802:
5032      case CudaArch::GFX803:
5033      case CudaArch::GFX810:
5034      case CudaArch::GFX900:
5035      case CudaArch::GFX902:
5036      case CudaArch::GFX904:
5037      case CudaArch::GFX906:
5038      case CudaArch::GFX908:
5039      case CudaArch::GFX909:
5040      case CudaArch::GFX1010:
5041      case CudaArch::GFX1011:
5042      case CudaArch::GFX1012:
5043      case CudaArch::GFX1030:
5044      case CudaArch::UNKNOWN:
5045        break;
5046      case CudaArch::LAST:
5047        llvm_unreachable("Unexpected Cuda arch.");
5048      }
5049    }
5050  }
5051  CGOpenMPRuntime::processRequiresDirective(D);
5052}
5053
5054/// Get number of SMs and number of blocks per SM.
5055static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
5056  std::pair<unsigned, unsigned> Data;
5057  if (CGM.getLangOpts().OpenMPCUDANumSMs)
5058    Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
5059  if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
5060    Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
5061  if (Data.first && Data.second)
5062    return Data;
5063  switch (getCudaArch(CGM)) {
5064  case CudaArch::SM_20:
5065  case CudaArch::SM_21:
5066  case CudaArch::SM_30:
5067  case CudaArch::SM_32:
5068  case CudaArch::SM_35:
5069  case CudaArch::SM_37:
5070  case CudaArch::SM_50:
5071  case CudaArch::SM_52:
5072  case CudaArch::SM_53:
5073    return {16, 16};
5074  case CudaArch::SM_60:
5075  case CudaArch::SM_61:
5076  case CudaArch::SM_62:
5077    return {56, 32};
5078  case CudaArch::SM_70:
5079  case CudaArch::SM_72:
5080  case CudaArch::SM_75:
5081  case CudaArch::SM_80:
5082    return {84, 32};
5083  case CudaArch::GFX600:
5084  case CudaArch::GFX601:
5085  case CudaArch::GFX700:
5086  case CudaArch::GFX701:
5087  case CudaArch::GFX702:
5088  case CudaArch::GFX703:
5089  case CudaArch::GFX704:
5090  case CudaArch::GFX801:
5091  case CudaArch::GFX802:
5092  case CudaArch::GFX803:
5093  case CudaArch::GFX810:
5094  case CudaArch::GFX900:
5095  case CudaArch::GFX902:
5096  case CudaArch::GFX904:
5097  case CudaArch::GFX906:
5098  case CudaArch::GFX908:
5099  case CudaArch::GFX909:
5100  case CudaArch::GFX1010:
5101  case CudaArch::GFX1011:
5102  case CudaArch::GFX1012:
5103  case CudaArch::GFX1030:
5104  case CudaArch::UNKNOWN:
5105    break;
5106  case CudaArch::LAST:
5107    llvm_unreachable("Unexpected Cuda arch.");
5108  }
5109  llvm_unreachable("Unexpected NVPTX target without ptx feature.");
5110}
5111
5112void CGOpenMPRuntimeNVPTX::clear() {
5113  if (!GlobalizedRecords.empty() &&
5114      !CGM.getLangOpts().OpenMPCUDATargetParallel) {
5115    ASTContext &C = CGM.getContext();
5116    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
5117    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
5118    RecordDecl *StaticRD = C.buildImplicitRecord(
5119        "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
5120    StaticRD->startDefinition();
5121    RecordDecl *SharedStaticRD = C.buildImplicitRecord(
5122        "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
5123    SharedStaticRD->startDefinition();
5124    for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
5125      if (Records.Records.empty())
5126        continue;
5127      unsigned Size = 0;
5128      unsigned RecAlignment = 0;
5129      for (const RecordDecl *RD : Records.Records) {
5130        QualType RDTy = C.getRecordType(RD);
5131        unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
5132        RecAlignment = std::max(RecAlignment, Alignment);
5133        unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
5134        Size =
5135            llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
5136      }
5137      Size = llvm::alignTo(Size, RecAlignment);
5138      llvm::APInt ArySize(/*numBits=*/64, Size);
5139      QualType SubTy = C.getConstantArrayType(
5140          C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
5141      const bool UseSharedMemory = Size <= SharedMemorySize;
5142      auto *Field =
5143          FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
5144                            SourceLocation(), SourceLocation(), nullptr, SubTy,
5145                            C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
5146                            /*BW=*/nullptr, /*Mutable=*/false,
5147                            /*InitStyle=*/ICIS_NoInit);
5148      Field->setAccess(AS_public);
5149      if (UseSharedMemory) {
5150        SharedStaticRD->addDecl(Field);
5151        SharedRecs.push_back(&Records);
5152      } else {
5153        StaticRD->addDecl(Field);
5154        GlobalRecs.push_back(&Records);
5155      }
5156      Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
5157      Records.UseSharedMemory->setInitializer(
5158          llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
5159    }
5160    // Allocate SharedMemorySize buffer for the shared memory.
5161    // FIXME: nvlink does not handle weak linkage correctly (object with the
5162    // different size are reported as erroneous).
5163    // Restore this code as sson as nvlink is fixed.
5164    if (!SharedStaticRD->field_empty()) {
5165      llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
5166      QualType SubTy = C.getConstantArrayType(
5167          C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
5168      auto *Field = FieldDecl::Create(
5169          C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
5170          C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
5171          /*BW=*/nullptr, /*Mutable=*/false,
5172          /*InitStyle=*/ICIS_NoInit);
5173      Field->setAccess(AS_public);
5174      SharedStaticRD->addDecl(Field);
5175    }
5176    SharedStaticRD->completeDefinition();
5177    if (!SharedStaticRD->field_empty()) {
5178      QualType StaticTy = C.getRecordType(SharedStaticRD);
5179      llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
5180      auto *GV = new llvm::GlobalVariable(
5181          CGM.getModule(), LLVMStaticTy,
5182          /*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
5183          llvm::Constant::getNullValue(LLVMStaticTy),
5184          "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
5185          llvm::GlobalValue::NotThreadLocal,
5186          C.getTargetAddressSpace(LangAS::cuda_shared));
5187      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
5188          GV, CGM.VoidPtrTy);
5189      for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
5190        Rec->Buffer->replaceAllUsesWith(Replacement);
5191        Rec->Buffer->eraseFromParent();
5192      }
5193    }
5194    StaticRD->completeDefinition();
5195    if (!StaticRD->field_empty()) {
5196      QualType StaticTy = C.getRecordType(StaticRD);
5197      std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
5198      llvm::APInt Size1(32, SMsBlockPerSM.second);
5199      QualType Arr1Ty =
5200          C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal,
5201                                 /*IndexTypeQuals=*/0);
5202      llvm::APInt Size2(32, SMsBlockPerSM.first);
5203      QualType Arr2Ty =
5204          C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal,
5205                                 /*IndexTypeQuals=*/0);
5206      llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
5207      // FIXME: nvlink does not handle weak linkage correctly (object with the
5208      // different size are reported as erroneous).
5209      // Restore CommonLinkage as soon as nvlink is fixed.
5210      auto *GV = new llvm::GlobalVariable(
5211          CGM.getModule(), LLVMArr2Ty,
5212          /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
5213          llvm::Constant::getNullValue(LLVMArr2Ty),
5214          "_openmp_static_glob_rd_$_");
5215      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
5216          GV, CGM.VoidPtrTy);
5217      for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
5218        Rec->Buffer->replaceAllUsesWith(Replacement);
5219        Rec->Buffer->eraseFromParent();
5220      }
5221    }
5222  }
5223  if (!TeamsReductions.empty()) {
5224    ASTContext &C = CGM.getContext();
5225    RecordDecl *StaticRD = C.buildImplicitRecord(
5226        "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
5227    StaticRD->startDefinition();
5228    for (const RecordDecl *TeamReductionRec : TeamsReductions) {
5229      QualType RecTy = C.getRecordType(TeamReductionRec);
5230      auto *Field = FieldDecl::Create(
5231          C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
5232          C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
5233          /*BW=*/nullptr, /*Mutable=*/false,
5234          /*InitStyle=*/ICIS_NoInit);
5235      Field->setAccess(AS_public);
5236      StaticRD->addDecl(Field);
5237    }
5238    StaticRD->completeDefinition();
5239    QualType StaticTy = C.getRecordType(StaticRD);
5240    llvm::Type *LLVMReductionsBufferTy =
5241        CGM.getTypes().ConvertTypeForMem(StaticTy);
5242    // FIXME: nvlink does not handle weak linkage correctly (object with the
5243    // different size are reported as erroneous).
5244    // Restore CommonLinkage as soon as nvlink is fixed.
5245    auto *GV = new llvm::GlobalVariable(
5246        CGM.getModule(), LLVMReductionsBufferTy,
5247        /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
5248        llvm::Constant::getNullValue(LLVMReductionsBufferTy),
5249        "_openmp_teams_reductions_buffer_$_");
5250    KernelTeamsReductionPtr->setInitializer(
5251        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5252                                                             CGM.VoidPtrTy));
5253  }
5254  CGOpenMPRuntime::clear();
5255}
5256