1//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Objective-C code as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGDebugInfo.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/InlineAsm.h"
28using namespace clang;
29using namespace CodeGen;
30
31typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32static TryEmitResult
33tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                   QualType ET,
36                                   RValue Result);
37
38/// Given the address of a variable of pointer type, find the correct
39/// null to store into it.
40static llvm::Constant *getNullForVariable(Address addr) {
41  llvm::Type *type = addr.getElementType();
42  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43}
44
45/// Emits an instance of NSConstantString representing the object.
46llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47{
48  llvm::Constant *C =
49      CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50  // FIXME: This bitcast should just be made an invariant on the Runtime.
51  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52}
53
54/// EmitObjCBoxedExpr - This routine generates code to call
55/// the appropriate expression boxing method. This will either be
56/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57/// or [NSValue valueWithBytes:objCType:].
58///
59llvm::Value *
60CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61  // Generate the correct selector for this literal's concrete type.
62  // Get the method.
63  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64  const Expr *SubExpr = E->getSubExpr();
65
66  if (E->isExpressibleAsConstantInitializer()) {
67    ConstantEmitter ConstEmitter(CGM);
68    return ConstEmitter.tryEmitAbstract(E, E->getType());
69  }
70
71  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
72  Selector Sel = BoxingMethod->getSelector();
73
74  // Generate a reference to the class pointer, which will be the receiver.
75  // Assumes that the method was introduced in the class that should be
76  // messaged (avoids pulling it out of the result type).
77  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80
81  CallArgList Args;
82  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84
85  // ObjCBoxedExpr supports boxing of structs and unions
86  // via [NSValue valueWithBytes:objCType:]
87  const QualType ValueType(SubExpr->getType().getCanonicalType());
88  if (ValueType->isObjCBoxableRecordType()) {
89    // Emit CodeGen for first parameter
90    // and cast value to correct type
91    Address Temporary = CreateMemTemp(SubExpr->getType());
92    EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93    Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94    Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95
96    // Create char array to store type encoding
97    std::string Str;
98    getContext().getObjCEncodingForType(ValueType, Str);
99    llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100
101    // Cast type encoding to correct type
102    const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103    QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104    llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105
106    Args.add(RValue::get(Cast), EncodingQT);
107  } else {
108    Args.add(EmitAnyExpr(SubExpr), ArgQT);
109  }
110
111  RValue result = Runtime.GenerateMessageSend(
112      *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113      Args, ClassDecl, BoxingMethod);
114  return Builder.CreateBitCast(result.getScalarVal(),
115                               ConvertType(E->getType()));
116}
117
118llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119                                    const ObjCMethodDecl *MethodWithObjects) {
120  ASTContext &Context = CGM.getContext();
121  const ObjCDictionaryLiteral *DLE = nullptr;
122  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123  if (!ALE)
124    DLE = cast<ObjCDictionaryLiteral>(E);
125
126  // Optimize empty collections by referencing constants, when available.
127  uint64_t NumElements =
128    ALE ? ALE->getNumElements() : DLE->getNumElements();
129  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130    StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131    QualType IdTy(CGM.getContext().getObjCIdType());
132    llvm::Constant *Constant =
133        CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134    LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135    llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136    cast<llvm::LoadInst>(Ptr)->setMetadata(
137        CGM.getModule().getMDKindID("invariant.load"),
138        llvm::MDNode::get(getLLVMContext(), None));
139    return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140  }
141
142  // Compute the type of the array we're initializing.
143  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144                            NumElements);
145  QualType ElementType = Context.getObjCIdType().withConst();
146  QualType ElementArrayType
147    = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148                                   ArrayType::Normal, /*IndexTypeQuals=*/0);
149
150  // Allocate the temporary array(s).
151  Address Objects = CreateMemTemp(ElementArrayType, "objects");
152  Address Keys = Address::invalid();
153  if (DLE)
154    Keys = CreateMemTemp(ElementArrayType, "keys");
155
156  // In ARC, we may need to do extra work to keep all the keys and
157  // values alive until after the call.
158  SmallVector<llvm::Value *, 16> NeededObjects;
159  bool TrackNeededObjects =
160    (getLangOpts().ObjCAutoRefCount &&
161    CGM.getCodeGenOpts().OptimizationLevel != 0);
162
163  // Perform the actual initialialization of the array(s).
164  for (uint64_t i = 0; i < NumElements; i++) {
165    if (ALE) {
166      // Emit the element and store it to the appropriate array slot.
167      const Expr *Rhs = ALE->getElement(i);
168      LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169                                 ElementType, AlignmentSource::Decl);
170
171      llvm::Value *value = EmitScalarExpr(Rhs);
172      EmitStoreThroughLValue(RValue::get(value), LV, true);
173      if (TrackNeededObjects) {
174        NeededObjects.push_back(value);
175      }
176    } else {
177      // Emit the key and store it to the appropriate array slot.
178      const Expr *Key = DLE->getKeyValueElement(i).Key;
179      LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180                                    ElementType, AlignmentSource::Decl);
181      llvm::Value *keyValue = EmitScalarExpr(Key);
182      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183
184      // Emit the value and store it to the appropriate array slot.
185      const Expr *Value = DLE->getKeyValueElement(i).Value;
186      LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187                                      ElementType, AlignmentSource::Decl);
188      llvm::Value *valueValue = EmitScalarExpr(Value);
189      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190      if (TrackNeededObjects) {
191        NeededObjects.push_back(keyValue);
192        NeededObjects.push_back(valueValue);
193      }
194    }
195  }
196
197  // Generate the argument list.
198  CallArgList Args;
199  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200  const ParmVarDecl *argDecl = *PI++;
201  QualType ArgQT = argDecl->getType().getUnqualifiedType();
202  Args.add(RValue::get(Objects.getPointer()), ArgQT);
203  if (DLE) {
204    argDecl = *PI++;
205    ArgQT = argDecl->getType().getUnqualifiedType();
206    Args.add(RValue::get(Keys.getPointer()), ArgQT);
207  }
208  argDecl = *PI;
209  ArgQT = argDecl->getType().getUnqualifiedType();
210  llvm::Value *Count =
211    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212  Args.add(RValue::get(Count), ArgQT);
213
214  // Generate a reference to the class pointer, which will be the receiver.
215  Selector Sel = MethodWithObjects->getSelector();
216  QualType ResultType = E->getType();
217  const ObjCObjectPointerType *InterfacePointerType
218    = ResultType->getAsObjCInterfacePointerType();
219  ObjCInterfaceDecl *Class
220    = InterfacePointerType->getObjectType()->getInterface();
221  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223
224  // Generate the message send.
225  RValue result = Runtime.GenerateMessageSend(
226      *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227      Receiver, Args, Class, MethodWithObjects);
228
229  // The above message send needs these objects, but in ARC they are
230  // passed in a buffer that is essentially __unsafe_unretained.
231  // Therefore we must prevent the optimizer from releasing them until
232  // after the call.
233  if (TrackNeededObjects) {
234    EmitARCIntrinsicUse(NeededObjects);
235  }
236
237  return Builder.CreateBitCast(result.getScalarVal(),
238                               ConvertType(E->getType()));
239}
240
241llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243}
244
245llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246                                            const ObjCDictionaryLiteral *E) {
247  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248}
249
250/// Emit a selector.
251llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252  // Untyped selector.
253  // Note that this implementation allows for non-constant strings to be passed
254  // as arguments to @selector().  Currently, the only thing preventing this
255  // behaviour is the type checking in the front end.
256  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257}
258
259llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260  // FIXME: This should pass the Decl not the name.
261  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262}
263
264/// Adjust the type of an Objective-C object that doesn't match up due
265/// to type erasure at various points, e.g., related result types or the use
266/// of parameterized classes.
267static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268                                   RValue Result) {
269  if (!ExpT->isObjCRetainableType())
270    return Result;
271
272  // If the converted types are the same, we're done.
273  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274  if (ExpLLVMTy == Result.getScalarVal()->getType())
275    return Result;
276
277  // We have applied a substitution. Cast the rvalue appropriately.
278  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279                                               ExpLLVMTy));
280}
281
282/// Decide whether to extend the lifetime of the receiver of a
283/// returns-inner-pointer message.
284static bool
285shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286  switch (message->getReceiverKind()) {
287
288  // For a normal instance message, we should extend unless the
289  // receiver is loaded from a variable with precise lifetime.
290  case ObjCMessageExpr::Instance: {
291    const Expr *receiver = message->getInstanceReceiver();
292
293    // Look through OVEs.
294    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295      if (opaque->getSourceExpr())
296        receiver = opaque->getSourceExpr()->IgnoreParens();
297    }
298
299    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301    receiver = ice->getSubExpr()->IgnoreParens();
302
303    // Look through OVEs.
304    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305      if (opaque->getSourceExpr())
306        receiver = opaque->getSourceExpr()->IgnoreParens();
307    }
308
309    // Only __strong variables.
310    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311      return true;
312
313    // All ivars and fields have precise lifetime.
314    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315      return false;
316
317    // Otherwise, check for variables.
318    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319    if (!declRef) return true;
320    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321    if (!var) return true;
322
323    // All variables have precise lifetime except local variables with
324    // automatic storage duration that aren't specially marked.
325    return (var->hasLocalStorage() &&
326            !var->hasAttr<ObjCPreciseLifetimeAttr>());
327  }
328
329  case ObjCMessageExpr::Class:
330  case ObjCMessageExpr::SuperClass:
331    // It's never necessary for class objects.
332    return false;
333
334  case ObjCMessageExpr::SuperInstance:
335    // We generally assume that 'self' lives throughout a method call.
336    return false;
337  }
338
339  llvm_unreachable("invalid receiver kind");
340}
341
342/// Given an expression of ObjC pointer type, check whether it was
343/// immediately loaded from an ARC __weak l-value.
344static const Expr *findWeakLValue(const Expr *E) {
345  assert(E->getType()->isObjCRetainableType());
346  E = E->IgnoreParens();
347  if (auto CE = dyn_cast<CastExpr>(E)) {
348    if (CE->getCastKind() == CK_LValueToRValue) {
349      if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350        return CE->getSubExpr();
351    }
352  }
353
354  return nullptr;
355}
356
357/// The ObjC runtime may provide entrypoints that are likely to be faster
358/// than an ordinary message send of the appropriate selector.
359///
360/// The entrypoints are guaranteed to be equivalent to just sending the
361/// corresponding message.  If the entrypoint is implemented naively as just a
362/// message send, using it is a trade-off: it sacrifices a few cycles of
363/// overhead to save a small amount of code.  However, it's possible for
364/// runtimes to detect and special-case classes that use "standard"
365/// behavior; if that's dynamically a large proportion of all objects, using
366/// the entrypoint will also be faster than using a message send.
367///
368/// If the runtime does support a required entrypoint, then this method will
369/// generate a call and return the resulting value.  Otherwise it will return
370/// None and the caller can generate a msgSend instead.
371static Optional<llvm::Value *>
372tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373                                  llvm::Value *Receiver,
374                                  const CallArgList& Args, Selector Sel,
375                                  const ObjCMethodDecl *method,
376                                  bool isClassMessage) {
377  auto &CGM = CGF.CGM;
378  if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379    return None;
380
381  auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382  switch (Sel.getMethodFamily()) {
383  case OMF_alloc:
384    if (isClassMessage &&
385        Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386        ResultType->isObjCObjectPointerType()) {
387        // [Foo alloc] -> objc_alloc(Foo) or
388        // [self alloc] -> objc_alloc(self)
389        if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390          return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391        // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392        // [self allocWithZone:nil] -> objc_allocWithZone(self)
393        if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394            Args.size() == 1 && Args.front().getType()->isPointerType() &&
395            Sel.getNameForSlot(0) == "allocWithZone") {
396          const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397          if (isa<llvm::ConstantPointerNull>(arg))
398            return CGF.EmitObjCAllocWithZone(Receiver,
399                                             CGF.ConvertType(ResultType));
400          return None;
401        }
402    }
403    break;
404
405  case OMF_autorelease:
406    if (ResultType->isObjCObjectPointerType() &&
407        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408        Runtime.shouldUseARCFunctionsForRetainRelease())
409      return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410    break;
411
412  case OMF_retain:
413    if (ResultType->isObjCObjectPointerType() &&
414        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415        Runtime.shouldUseARCFunctionsForRetainRelease())
416      return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417    break;
418
419  case OMF_release:
420    if (ResultType->isVoidType() &&
421        CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422        Runtime.shouldUseARCFunctionsForRetainRelease()) {
423      CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424      return nullptr;
425    }
426    break;
427
428  default:
429    break;
430  }
431  return None;
432}
433
434CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435    CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436    Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437    const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438    bool isClassMessage) {
439  if (Optional<llvm::Value *> SpecializedResult =
440          tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441                                            Sel, Method, isClassMessage)) {
442    return RValue::get(SpecializedResult.getValue());
443  }
444  return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445                             Method);
446}
447
448/// Instead of '[[MyClass alloc] init]', try to generate
449/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
450/// caller side, as well as the optimized objc_alloc.
451static Optional<llvm::Value *>
452tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
453  auto &Runtime = CGF.getLangOpts().ObjCRuntime;
454  if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
455    return None;
456
457  // Match the exact pattern '[[MyClass alloc] init]'.
458  Selector Sel = OME->getSelector();
459  if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
460      !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
461      Sel.getNameForSlot(0) != "init")
462    return None;
463
464  // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
465  // with 'cls' a Class.
466  auto *SubOME =
467      dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
468  if (!SubOME)
469    return None;
470  Selector SubSel = SubOME->getSelector();
471
472  if (!SubOME->getType()->isObjCObjectPointerType() ||
473      !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
474    return None;
475
476  llvm::Value *Receiver = nullptr;
477  switch (SubOME->getReceiverKind()) {
478  case ObjCMessageExpr::Instance:
479    if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
480      return None;
481    Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
482    break;
483
484  case ObjCMessageExpr::Class: {
485    QualType ReceiverType = SubOME->getClassReceiver();
486    const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
487    const ObjCInterfaceDecl *ID = ObjTy->getInterface();
488    assert(ID && "null interface should be impossible here");
489    Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
490    break;
491  }
492  case ObjCMessageExpr::SuperInstance:
493  case ObjCMessageExpr::SuperClass:
494    return None;
495  }
496
497  return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
498}
499
500RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
501                                            ReturnValueSlot Return) {
502  // Only the lookup mechanism and first two arguments of the method
503  // implementation vary between runtimes.  We can get the receiver and
504  // arguments in generic code.
505
506  bool isDelegateInit = E->isDelegateInitCall();
507
508  const ObjCMethodDecl *method = E->getMethodDecl();
509
510  // If the method is -retain, and the receiver's being loaded from
511  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
512  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
513      method->getMethodFamily() == OMF_retain) {
514    if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
515      LValue lvalue = EmitLValue(lvalueExpr);
516      llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
517      return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
518    }
519  }
520
521  if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
522    return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
523
524  // We don't retain the receiver in delegate init calls, and this is
525  // safe because the receiver value is always loaded from 'self',
526  // which we zero out.  We don't want to Block_copy block receivers,
527  // though.
528  bool retainSelf =
529    (!isDelegateInit &&
530     CGM.getLangOpts().ObjCAutoRefCount &&
531     method &&
532     method->hasAttr<NSConsumesSelfAttr>());
533
534  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
535  bool isSuperMessage = false;
536  bool isClassMessage = false;
537  ObjCInterfaceDecl *OID = nullptr;
538  // Find the receiver
539  QualType ReceiverType;
540  llvm::Value *Receiver = nullptr;
541  switch (E->getReceiverKind()) {
542  case ObjCMessageExpr::Instance:
543    ReceiverType = E->getInstanceReceiver()->getType();
544    isClassMessage = ReceiverType->isObjCClassType();
545    if (retainSelf) {
546      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
547                                                   E->getInstanceReceiver());
548      Receiver = ter.getPointer();
549      if (ter.getInt()) retainSelf = false;
550    } else
551      Receiver = EmitScalarExpr(E->getInstanceReceiver());
552    break;
553
554  case ObjCMessageExpr::Class: {
555    ReceiverType = E->getClassReceiver();
556    OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
557    assert(OID && "Invalid Objective-C class message send");
558    Receiver = Runtime.GetClass(*this, OID);
559    isClassMessage = true;
560    break;
561  }
562
563  case ObjCMessageExpr::SuperInstance:
564    ReceiverType = E->getSuperType();
565    Receiver = LoadObjCSelf();
566    isSuperMessage = true;
567    break;
568
569  case ObjCMessageExpr::SuperClass:
570    ReceiverType = E->getSuperType();
571    Receiver = LoadObjCSelf();
572    isSuperMessage = true;
573    isClassMessage = true;
574    break;
575  }
576
577  if (retainSelf)
578    Receiver = EmitARCRetainNonBlock(Receiver);
579
580  // In ARC, we sometimes want to "extend the lifetime"
581  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
582  // messages.
583  if (getLangOpts().ObjCAutoRefCount && method &&
584      method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
585      shouldExtendReceiverForInnerPointerMessage(E))
586    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
587
588  QualType ResultType = method ? method->getReturnType() : E->getType();
589
590  CallArgList Args;
591  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
592
593  // For delegate init calls in ARC, do an unsafe store of null into
594  // self.  This represents the call taking direct ownership of that
595  // value.  We have to do this after emitting the other call
596  // arguments because they might also reference self, but we don't
597  // have to worry about any of them modifying self because that would
598  // be an undefined read and write of an object in unordered
599  // expressions.
600  if (isDelegateInit) {
601    assert(getLangOpts().ObjCAutoRefCount &&
602           "delegate init calls should only be marked in ARC");
603
604    // Do an unsafe store of null into self.
605    Address selfAddr =
606      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
607    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
608  }
609
610  RValue result;
611  if (isSuperMessage) {
612    // super is only valid in an Objective-C method
613    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
614    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
615    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
616                                              E->getSelector(),
617                                              OMD->getClassInterface(),
618                                              isCategoryImpl,
619                                              Receiver,
620                                              isClassMessage,
621                                              Args,
622                                              method);
623  } else {
624    // Call runtime methods directly if we can.
625    result = Runtime.GeneratePossiblySpecializedMessageSend(
626        *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
627        method, isClassMessage);
628  }
629
630  // For delegate init calls in ARC, implicitly store the result of
631  // the call back into self.  This takes ownership of the value.
632  if (isDelegateInit) {
633    Address selfAddr =
634      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
635    llvm::Value *newSelf = result.getScalarVal();
636
637    // The delegate return type isn't necessarily a matching type; in
638    // fact, it's quite likely to be 'id'.
639    llvm::Type *selfTy = selfAddr.getElementType();
640    newSelf = Builder.CreateBitCast(newSelf, selfTy);
641
642    Builder.CreateStore(newSelf, selfAddr);
643  }
644
645  return AdjustObjCObjectType(*this, E->getType(), result);
646}
647
648namespace {
649struct FinishARCDealloc final : EHScopeStack::Cleanup {
650  void Emit(CodeGenFunction &CGF, Flags flags) override {
651    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
652
653    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
654    const ObjCInterfaceDecl *iface = impl->getClassInterface();
655    if (!iface->getSuperClass()) return;
656
657    bool isCategory = isa<ObjCCategoryImplDecl>(impl);
658
659    // Call [super dealloc] if we have a superclass.
660    llvm::Value *self = CGF.LoadObjCSelf();
661
662    CallArgList args;
663    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
664                                                      CGF.getContext().VoidTy,
665                                                      method->getSelector(),
666                                                      iface,
667                                                      isCategory,
668                                                      self,
669                                                      /*is class msg*/ false,
670                                                      args,
671                                                      method);
672  }
673};
674}
675
676/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
677/// the LLVM function and sets the other context used by
678/// CodeGenFunction.
679void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
680                                      const ObjCContainerDecl *CD) {
681  SourceLocation StartLoc = OMD->getBeginLoc();
682  FunctionArgList args;
683  // Check if we should generate debug info for this method.
684  if (OMD->hasAttr<NoDebugAttr>())
685    DebugInfo = nullptr; // disable debug info indefinitely for this function
686
687  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
688
689  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
690  if (OMD->isDirectMethod()) {
691    Fn->setVisibility(llvm::Function::HiddenVisibility);
692    CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
693    CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
694  } else {
695    CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
696  }
697
698  args.push_back(OMD->getSelfDecl());
699  args.push_back(OMD->getCmdDecl());
700
701  args.append(OMD->param_begin(), OMD->param_end());
702
703  CurGD = OMD;
704  CurEHLocation = OMD->getEndLoc();
705
706  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
707                OMD->getLocation(), StartLoc);
708
709  if (OMD->isDirectMethod()) {
710    // This function is a direct call, it has to implement a nil check
711    // on entry.
712    //
713    // TODO: possibly have several entry points to elide the check
714    CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
715  }
716
717  // In ARC, certain methods get an extra cleanup.
718  if (CGM.getLangOpts().ObjCAutoRefCount &&
719      OMD->isInstanceMethod() &&
720      OMD->getSelector().isUnarySelector()) {
721    const IdentifierInfo *ident =
722      OMD->getSelector().getIdentifierInfoForSlot(0);
723    if (ident->isStr("dealloc"))
724      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
725  }
726}
727
728static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
729                                              LValue lvalue, QualType type);
730
731/// Generate an Objective-C method.  An Objective-C method is a C function with
732/// its pointer, name, and types registered in the class structure.
733void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
734  StartObjCMethod(OMD, OMD->getClassInterface());
735  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
736  assert(isa<CompoundStmt>(OMD->getBody()));
737  incrementProfileCounter(OMD->getBody());
738  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
739  FinishFunction(OMD->getBodyRBrace());
740}
741
742/// emitStructGetterCall - Call the runtime function to load a property
743/// into the return value slot.
744static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
745                                 bool isAtomic, bool hasStrong) {
746  ASTContext &Context = CGF.getContext();
747
748  Address src =
749      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
750          .getAddress(CGF);
751
752  // objc_copyStruct (ReturnValue, &structIvar,
753  //                  sizeof (Type of Ivar), isAtomic, false);
754  CallArgList args;
755
756  Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
757  args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
758
759  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
760  args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
761
762  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
763  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
764  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
765  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
766
767  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
768  CGCallee callee = CGCallee::forDirect(fn);
769  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
770               callee, ReturnValueSlot(), args);
771}
772
773/// Determine whether the given architecture supports unaligned atomic
774/// accesses.  They don't have to be fast, just faster than a function
775/// call and a mutex.
776static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
777  // FIXME: Allow unaligned atomic load/store on x86.  (It is not
778  // currently supported by the backend.)
779  return 0;
780}
781
782/// Return the maximum size that permits atomic accesses for the given
783/// architecture.
784static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
785                                        llvm::Triple::ArchType arch) {
786  // ARM has 8-byte atomic accesses, but it's not clear whether we
787  // want to rely on them here.
788
789  // In the default case, just assume that any size up to a pointer is
790  // fine given adequate alignment.
791  return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
792}
793
794namespace {
795  class PropertyImplStrategy {
796  public:
797    enum StrategyKind {
798      /// The 'native' strategy is to use the architecture's provided
799      /// reads and writes.
800      Native,
801
802      /// Use objc_setProperty and objc_getProperty.
803      GetSetProperty,
804
805      /// Use objc_setProperty for the setter, but use expression
806      /// evaluation for the getter.
807      SetPropertyAndExpressionGet,
808
809      /// Use objc_copyStruct.
810      CopyStruct,
811
812      /// The 'expression' strategy is to emit normal assignment or
813      /// lvalue-to-rvalue expressions.
814      Expression
815    };
816
817    StrategyKind getKind() const { return StrategyKind(Kind); }
818
819    bool hasStrongMember() const { return HasStrong; }
820    bool isAtomic() const { return IsAtomic; }
821    bool isCopy() const { return IsCopy; }
822
823    CharUnits getIvarSize() const { return IvarSize; }
824    CharUnits getIvarAlignment() const { return IvarAlignment; }
825
826    PropertyImplStrategy(CodeGenModule &CGM,
827                         const ObjCPropertyImplDecl *propImpl);
828
829  private:
830    unsigned Kind : 8;
831    unsigned IsAtomic : 1;
832    unsigned IsCopy : 1;
833    unsigned HasStrong : 1;
834
835    CharUnits IvarSize;
836    CharUnits IvarAlignment;
837  };
838}
839
840/// Pick an implementation strategy for the given property synthesis.
841PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
842                                     const ObjCPropertyImplDecl *propImpl) {
843  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
844  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
845
846  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
847  IsAtomic = prop->isAtomic();
848  HasStrong = false; // doesn't matter here.
849
850  // Evaluate the ivar's size and alignment.
851  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
852  QualType ivarType = ivar->getType();
853  std::tie(IvarSize, IvarAlignment) =
854      CGM.getContext().getTypeInfoInChars(ivarType);
855
856  // If we have a copy property, we always have to use getProperty/setProperty.
857  // TODO: we could actually use setProperty and an expression for non-atomics.
858  if (IsCopy) {
859    Kind = GetSetProperty;
860    return;
861  }
862
863  // Handle retain.
864  if (setterKind == ObjCPropertyDecl::Retain) {
865    // In GC-only, there's nothing special that needs to be done.
866    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
867      // fallthrough
868
869    // In ARC, if the property is non-atomic, use expression emission,
870    // which translates to objc_storeStrong.  This isn't required, but
871    // it's slightly nicer.
872    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
873      // Using standard expression emission for the setter is only
874      // acceptable if the ivar is __strong, which won't be true if
875      // the property is annotated with __attribute__((NSObject)).
876      // TODO: falling all the way back to objc_setProperty here is
877      // just laziness, though;  we could still use objc_storeStrong
878      // if we hacked it right.
879      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
880        Kind = Expression;
881      else
882        Kind = SetPropertyAndExpressionGet;
883      return;
884
885    // Otherwise, we need to at least use setProperty.  However, if
886    // the property isn't atomic, we can use normal expression
887    // emission for the getter.
888    } else if (!IsAtomic) {
889      Kind = SetPropertyAndExpressionGet;
890      return;
891
892    // Otherwise, we have to use both setProperty and getProperty.
893    } else {
894      Kind = GetSetProperty;
895      return;
896    }
897  }
898
899  // If we're not atomic, just use expression accesses.
900  if (!IsAtomic) {
901    Kind = Expression;
902    return;
903  }
904
905  // Properties on bitfield ivars need to be emitted using expression
906  // accesses even if they're nominally atomic.
907  if (ivar->isBitField()) {
908    Kind = Expression;
909    return;
910  }
911
912  // GC-qualified or ARC-qualified ivars need to be emitted as
913  // expressions.  This actually works out to being atomic anyway,
914  // except for ARC __strong, but that should trigger the above code.
915  if (ivarType.hasNonTrivialObjCLifetime() ||
916      (CGM.getLangOpts().getGC() &&
917       CGM.getContext().getObjCGCAttrKind(ivarType))) {
918    Kind = Expression;
919    return;
920  }
921
922  // Compute whether the ivar has strong members.
923  if (CGM.getLangOpts().getGC())
924    if (const RecordType *recordType = ivarType->getAs<RecordType>())
925      HasStrong = recordType->getDecl()->hasObjectMember();
926
927  // We can never access structs with object members with a native
928  // access, because we need to use write barriers.  This is what
929  // objc_copyStruct is for.
930  if (HasStrong) {
931    Kind = CopyStruct;
932    return;
933  }
934
935  // Otherwise, this is target-dependent and based on the size and
936  // alignment of the ivar.
937
938  // If the size of the ivar is not a power of two, give up.  We don't
939  // want to get into the business of doing compare-and-swaps.
940  if (!IvarSize.isPowerOfTwo()) {
941    Kind = CopyStruct;
942    return;
943  }
944
945  llvm::Triple::ArchType arch =
946    CGM.getTarget().getTriple().getArch();
947
948  // Most architectures require memory to fit within a single cache
949  // line, so the alignment has to be at least the size of the access.
950  // Otherwise we have to grab a lock.
951  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
952    Kind = CopyStruct;
953    return;
954  }
955
956  // If the ivar's size exceeds the architecture's maximum atomic
957  // access size, we have to use CopyStruct.
958  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
959    Kind = CopyStruct;
960    return;
961  }
962
963  // Otherwise, we can use native loads and stores.
964  Kind = Native;
965}
966
967/// Generate an Objective-C property getter function.
968///
969/// The given Decl must be an ObjCImplementationDecl. \@synthesize
970/// is illegal within a category.
971void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
972                                         const ObjCPropertyImplDecl *PID) {
973  llvm::Constant *AtomicHelperFn =
974      CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
975  ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
976  assert(OMD && "Invalid call to generate getter (empty method)");
977  StartObjCMethod(OMD, IMP->getClassInterface());
978
979  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
980
981  FinishFunction(OMD->getEndLoc());
982}
983
984static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
985  const Expr *getter = propImpl->getGetterCXXConstructor();
986  if (!getter) return true;
987
988  // Sema only makes only of these when the ivar has a C++ class type,
989  // so the form is pretty constrained.
990
991  // If the property has a reference type, we might just be binding a
992  // reference, in which case the result will be a gl-value.  We should
993  // treat this as a non-trivial operation.
994  if (getter->isGLValue())
995    return false;
996
997  // If we selected a trivial copy-constructor, we're okay.
998  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
999    return (construct->getConstructor()->isTrivial());
1000
1001  // The constructor might require cleanups (in which case it's never
1002  // trivial).
1003  assert(isa<ExprWithCleanups>(getter));
1004  return false;
1005}
1006
1007/// emitCPPObjectAtomicGetterCall - Call the runtime function to
1008/// copy the ivar into the resturn slot.
1009static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1010                                          llvm::Value *returnAddr,
1011                                          ObjCIvarDecl *ivar,
1012                                          llvm::Constant *AtomicHelperFn) {
1013  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1014  //                           AtomicHelperFn);
1015  CallArgList args;
1016
1017  // The 1st argument is the return Slot.
1018  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1019
1020  // The 2nd argument is the address of the ivar.
1021  llvm::Value *ivarAddr =
1022      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1023          .getPointer(CGF);
1024  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1025  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1026
1027  // Third argument is the helper function.
1028  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1029
1030  llvm::FunctionCallee copyCppAtomicObjectFn =
1031      CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1032  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1033  CGF.EmitCall(
1034      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1035               callee, ReturnValueSlot(), args);
1036}
1037
1038void
1039CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1040                                        const ObjCPropertyImplDecl *propImpl,
1041                                        const ObjCMethodDecl *GetterMethodDecl,
1042                                        llvm::Constant *AtomicHelperFn) {
1043  // If there's a non-trivial 'get' expression, we just have to emit that.
1044  if (!hasTrivialGetExpr(propImpl)) {
1045    if (!AtomicHelperFn) {
1046      auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1047                                     propImpl->getGetterCXXConstructor(),
1048                                     /* NRVOCandidate=*/nullptr);
1049      EmitReturnStmt(*ret);
1050    }
1051    else {
1052      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1053      emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1054                                    ivar, AtomicHelperFn);
1055    }
1056    return;
1057  }
1058
1059  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1060  QualType propType = prop->getType();
1061  ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1062
1063  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1064
1065  // Pick an implementation strategy.
1066  PropertyImplStrategy strategy(CGM, propImpl);
1067  switch (strategy.getKind()) {
1068  case PropertyImplStrategy::Native: {
1069    // We don't need to do anything for a zero-size struct.
1070    if (strategy.getIvarSize().isZero())
1071      return;
1072
1073    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1074
1075    // Currently, all atomic accesses have to be through integer
1076    // types, so there's no point in trying to pick a prettier type.
1077    uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1078    llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1079    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1080
1081    // Perform an atomic load.  This does not impose ordering constraints.
1082    Address ivarAddr = LV.getAddress(*this);
1083    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1084    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1085    load->setAtomic(llvm::AtomicOrdering::Unordered);
1086
1087    // Store that value into the return address.  Doing this with a
1088    // bitcast is likely to produce some pretty ugly IR, but it's not
1089    // the *most* terrible thing in the world.
1090    llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1091    uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1092    llvm::Value *ivarVal = load;
1093    if (ivarSize > retTySize) {
1094      llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1095      ivarVal = Builder.CreateTrunc(load, newTy);
1096      bitcastType = newTy->getPointerTo();
1097    }
1098    Builder.CreateStore(ivarVal,
1099                        Builder.CreateBitCast(ReturnValue, bitcastType));
1100
1101    // Make sure we don't do an autorelease.
1102    AutoreleaseResult = false;
1103    return;
1104  }
1105
1106  case PropertyImplStrategy::GetSetProperty: {
1107    llvm::FunctionCallee getPropertyFn =
1108        CGM.getObjCRuntime().GetPropertyGetFunction();
1109    if (!getPropertyFn) {
1110      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1111      return;
1112    }
1113    CGCallee callee = CGCallee::forDirect(getPropertyFn);
1114
1115    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1116    // FIXME: Can't this be simpler? This might even be worse than the
1117    // corresponding gcc code.
1118    llvm::Value *cmd =
1119      Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1120    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1121    llvm::Value *ivarOffset =
1122      EmitIvarOffset(classImpl->getClassInterface(), ivar);
1123
1124    CallArgList args;
1125    args.add(RValue::get(self), getContext().getObjCIdType());
1126    args.add(RValue::get(cmd), getContext().getObjCSelType());
1127    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1128    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1129             getContext().BoolTy);
1130
1131    // FIXME: We shouldn't need to get the function info here, the
1132    // runtime already should have computed it to build the function.
1133    llvm::CallBase *CallInstruction;
1134    RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1135                             getContext().getObjCIdType(), args),
1136                         callee, ReturnValueSlot(), args, &CallInstruction);
1137    if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1138      call->setTailCall();
1139
1140    // We need to fix the type here. Ivars with copy & retain are
1141    // always objects so we don't need to worry about complex or
1142    // aggregates.
1143    RV = RValue::get(Builder.CreateBitCast(
1144        RV.getScalarVal(),
1145        getTypes().ConvertType(getterMethod->getReturnType())));
1146
1147    EmitReturnOfRValue(RV, propType);
1148
1149    // objc_getProperty does an autorelease, so we should suppress ours.
1150    AutoreleaseResult = false;
1151
1152    return;
1153  }
1154
1155  case PropertyImplStrategy::CopyStruct:
1156    emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1157                         strategy.hasStrongMember());
1158    return;
1159
1160  case PropertyImplStrategy::Expression:
1161  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1162    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1163
1164    QualType ivarType = ivar->getType();
1165    switch (getEvaluationKind(ivarType)) {
1166    case TEK_Complex: {
1167      ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1168      EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1169                         /*init*/ true);
1170      return;
1171    }
1172    case TEK_Aggregate: {
1173      // The return value slot is guaranteed to not be aliased, but
1174      // that's not necessarily the same as "on the stack", so
1175      // we still potentially need objc_memmove_collectable.
1176      EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1177                        /* Src= */ LV, ivarType, getOverlapForReturnValue());
1178      return;
1179    }
1180    case TEK_Scalar: {
1181      llvm::Value *value;
1182      if (propType->isReferenceType()) {
1183        value = LV.getAddress(*this).getPointer();
1184      } else {
1185        // We want to load and autoreleaseReturnValue ARC __weak ivars.
1186        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1187          if (getLangOpts().ObjCAutoRefCount) {
1188            value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1189          } else {
1190            value = EmitARCLoadWeak(LV.getAddress(*this));
1191          }
1192
1193        // Otherwise we want to do a simple load, suppressing the
1194        // final autorelease.
1195        } else {
1196          value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1197          AutoreleaseResult = false;
1198        }
1199
1200        value = Builder.CreateBitCast(
1201            value, ConvertType(GetterMethodDecl->getReturnType()));
1202      }
1203
1204      EmitReturnOfRValue(RValue::get(value), propType);
1205      return;
1206    }
1207    }
1208    llvm_unreachable("bad evaluation kind");
1209  }
1210
1211  }
1212  llvm_unreachable("bad @property implementation strategy!");
1213}
1214
1215/// emitStructSetterCall - Call the runtime function to store the value
1216/// from the first formal parameter into the given ivar.
1217static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1218                                 ObjCIvarDecl *ivar) {
1219  // objc_copyStruct (&structIvar, &Arg,
1220  //                  sizeof (struct something), true, false);
1221  CallArgList args;
1222
1223  // The first argument is the address of the ivar.
1224  llvm::Value *ivarAddr =
1225      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1226          .getPointer(CGF);
1227  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1228  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1229
1230  // The second argument is the address of the parameter variable.
1231  ParmVarDecl *argVar = *OMD->param_begin();
1232  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1233                     argVar->getType().getNonReferenceType(), VK_LValue,
1234                     SourceLocation());
1235  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1236  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1237  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1238
1239  // The third argument is the sizeof the type.
1240  llvm::Value *size =
1241    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1242  args.add(RValue::get(size), CGF.getContext().getSizeType());
1243
1244  // The fourth argument is the 'isAtomic' flag.
1245  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1246
1247  // The fifth argument is the 'hasStrong' flag.
1248  // FIXME: should this really always be false?
1249  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1250
1251  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1252  CGCallee callee = CGCallee::forDirect(fn);
1253  CGF.EmitCall(
1254      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1255               callee, ReturnValueSlot(), args);
1256}
1257
1258/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1259/// the value from the first formal parameter into the given ivar, using
1260/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1261static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1262                                          ObjCMethodDecl *OMD,
1263                                          ObjCIvarDecl *ivar,
1264                                          llvm::Constant *AtomicHelperFn) {
1265  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1266  //                           AtomicHelperFn);
1267  CallArgList args;
1268
1269  // The first argument is the address of the ivar.
1270  llvm::Value *ivarAddr =
1271      CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1272          .getPointer(CGF);
1273  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1274  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1275
1276  // The second argument is the address of the parameter variable.
1277  ParmVarDecl *argVar = *OMD->param_begin();
1278  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1279                     argVar->getType().getNonReferenceType(), VK_LValue,
1280                     SourceLocation());
1281  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1282  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1283  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1284
1285  // Third argument is the helper function.
1286  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1287
1288  llvm::FunctionCallee fn =
1289      CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1290  CGCallee callee = CGCallee::forDirect(fn);
1291  CGF.EmitCall(
1292      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1293               callee, ReturnValueSlot(), args);
1294}
1295
1296
1297static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1298  Expr *setter = PID->getSetterCXXAssignment();
1299  if (!setter) return true;
1300
1301  // Sema only makes only of these when the ivar has a C++ class type,
1302  // so the form is pretty constrained.
1303
1304  // An operator call is trivial if the function it calls is trivial.
1305  // This also implies that there's nothing non-trivial going on with
1306  // the arguments, because operator= can only be trivial if it's a
1307  // synthesized assignment operator and therefore both parameters are
1308  // references.
1309  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1310    if (const FunctionDecl *callee
1311          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1312      if (callee->isTrivial())
1313        return true;
1314    return false;
1315  }
1316
1317  assert(isa<ExprWithCleanups>(setter));
1318  return false;
1319}
1320
1321static bool UseOptimizedSetter(CodeGenModule &CGM) {
1322  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1323    return false;
1324  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1325}
1326
1327void
1328CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1329                                        const ObjCPropertyImplDecl *propImpl,
1330                                        llvm::Constant *AtomicHelperFn) {
1331  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1332  ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1333
1334  // Just use the setter expression if Sema gave us one and it's
1335  // non-trivial.
1336  if (!hasTrivialSetExpr(propImpl)) {
1337    if (!AtomicHelperFn)
1338      // If non-atomic, assignment is called directly.
1339      EmitStmt(propImpl->getSetterCXXAssignment());
1340    else
1341      // If atomic, assignment is called via a locking api.
1342      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1343                                    AtomicHelperFn);
1344    return;
1345  }
1346
1347  PropertyImplStrategy strategy(CGM, propImpl);
1348  switch (strategy.getKind()) {
1349  case PropertyImplStrategy::Native: {
1350    // We don't need to do anything for a zero-size struct.
1351    if (strategy.getIvarSize().isZero())
1352      return;
1353
1354    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1355
1356    LValue ivarLValue =
1357      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1358    Address ivarAddr = ivarLValue.getAddress(*this);
1359
1360    // Currently, all atomic accesses have to be through integer
1361    // types, so there's no point in trying to pick a prettier type.
1362    llvm::Type *bitcastType =
1363      llvm::Type::getIntNTy(getLLVMContext(),
1364                            getContext().toBits(strategy.getIvarSize()));
1365
1366    // Cast both arguments to the chosen operation type.
1367    argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1368    ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1369
1370    // This bitcast load is likely to cause some nasty IR.
1371    llvm::Value *load = Builder.CreateLoad(argAddr);
1372
1373    // Perform an atomic store.  There are no memory ordering requirements.
1374    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1375    store->setAtomic(llvm::AtomicOrdering::Unordered);
1376    return;
1377  }
1378
1379  case PropertyImplStrategy::GetSetProperty:
1380  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1381
1382    llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1383    llvm::FunctionCallee setPropertyFn = nullptr;
1384    if (UseOptimizedSetter(CGM)) {
1385      // 10.8 and iOS 6.0 code and GC is off
1386      setOptimizedPropertyFn =
1387          CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1388              strategy.isAtomic(), strategy.isCopy());
1389      if (!setOptimizedPropertyFn) {
1390        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1391        return;
1392      }
1393    }
1394    else {
1395      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1396      if (!setPropertyFn) {
1397        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1398        return;
1399      }
1400    }
1401
1402    // Emit objc_setProperty((id) self, _cmd, offset, arg,
1403    //                       <is-atomic>, <is-copy>).
1404    llvm::Value *cmd =
1405      Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1406    llvm::Value *self =
1407      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1408    llvm::Value *ivarOffset =
1409      EmitIvarOffset(classImpl->getClassInterface(), ivar);
1410    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1411    llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1412    arg = Builder.CreateBitCast(arg, VoidPtrTy);
1413
1414    CallArgList args;
1415    args.add(RValue::get(self), getContext().getObjCIdType());
1416    args.add(RValue::get(cmd), getContext().getObjCSelType());
1417    if (setOptimizedPropertyFn) {
1418      args.add(RValue::get(arg), getContext().getObjCIdType());
1419      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1420      CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1421      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1422               callee, ReturnValueSlot(), args);
1423    } else {
1424      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1425      args.add(RValue::get(arg), getContext().getObjCIdType());
1426      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1427               getContext().BoolTy);
1428      args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1429               getContext().BoolTy);
1430      // FIXME: We shouldn't need to get the function info here, the runtime
1431      // already should have computed it to build the function.
1432      CGCallee callee = CGCallee::forDirect(setPropertyFn);
1433      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1434               callee, ReturnValueSlot(), args);
1435    }
1436
1437    return;
1438  }
1439
1440  case PropertyImplStrategy::CopyStruct:
1441    emitStructSetterCall(*this, setterMethod, ivar);
1442    return;
1443
1444  case PropertyImplStrategy::Expression:
1445    break;
1446  }
1447
1448  // Otherwise, fake up some ASTs and emit a normal assignment.
1449  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1450  DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1451                   VK_LValue, SourceLocation());
1452  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1453                            selfDecl->getType(), CK_LValueToRValue, &self,
1454                            VK_RValue);
1455  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1456                          SourceLocation(), SourceLocation(),
1457                          &selfLoad, true, true);
1458
1459  ParmVarDecl *argDecl = *setterMethod->param_begin();
1460  QualType argType = argDecl->getType().getNonReferenceType();
1461  DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1462                  SourceLocation());
1463  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1464                           argType.getUnqualifiedType(), CK_LValueToRValue,
1465                           &arg, VK_RValue);
1466
1467  // The property type can differ from the ivar type in some situations with
1468  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1469  // The following absurdity is just to ensure well-formed IR.
1470  CastKind argCK = CK_NoOp;
1471  if (ivarRef.getType()->isObjCObjectPointerType()) {
1472    if (argLoad.getType()->isObjCObjectPointerType())
1473      argCK = CK_BitCast;
1474    else if (argLoad.getType()->isBlockPointerType())
1475      argCK = CK_BlockPointerToObjCPointerCast;
1476    else
1477      argCK = CK_CPointerToObjCPointerCast;
1478  } else if (ivarRef.getType()->isBlockPointerType()) {
1479     if (argLoad.getType()->isBlockPointerType())
1480      argCK = CK_BitCast;
1481    else
1482      argCK = CK_AnyPointerToBlockPointerCast;
1483  } else if (ivarRef.getType()->isPointerType()) {
1484    argCK = CK_BitCast;
1485  }
1486  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1487                           ivarRef.getType(), argCK, &argLoad,
1488                           VK_RValue);
1489  Expr *finalArg = &argLoad;
1490  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1491                                           argLoad.getType()))
1492    finalArg = &argCast;
1493
1494  BinaryOperator *assign = BinaryOperator::Create(
1495      getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), VK_RValue,
1496      OK_Ordinary, SourceLocation(), FPOptionsOverride());
1497  EmitStmt(assign);
1498}
1499
1500/// Generate an Objective-C property setter function.
1501///
1502/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1503/// is illegal within a category.
1504void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1505                                         const ObjCPropertyImplDecl *PID) {
1506  llvm::Constant *AtomicHelperFn =
1507      CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1508  ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1509  assert(OMD && "Invalid call to generate setter (empty method)");
1510  StartObjCMethod(OMD, IMP->getClassInterface());
1511
1512  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1513
1514  FinishFunction(OMD->getEndLoc());
1515}
1516
1517namespace {
1518  struct DestroyIvar final : EHScopeStack::Cleanup {
1519  private:
1520    llvm::Value *addr;
1521    const ObjCIvarDecl *ivar;
1522    CodeGenFunction::Destroyer *destroyer;
1523    bool useEHCleanupForArray;
1524  public:
1525    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1526                CodeGenFunction::Destroyer *destroyer,
1527                bool useEHCleanupForArray)
1528      : addr(addr), ivar(ivar), destroyer(destroyer),
1529        useEHCleanupForArray(useEHCleanupForArray) {}
1530
1531    void Emit(CodeGenFunction &CGF, Flags flags) override {
1532      LValue lvalue
1533        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1534      CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1535                      flags.isForNormalCleanup() && useEHCleanupForArray);
1536    }
1537  };
1538}
1539
1540/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1541static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1542                                      Address addr,
1543                                      QualType type) {
1544  llvm::Value *null = getNullForVariable(addr);
1545  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1546}
1547
1548static void emitCXXDestructMethod(CodeGenFunction &CGF,
1549                                  ObjCImplementationDecl *impl) {
1550  CodeGenFunction::RunCleanupsScope scope(CGF);
1551
1552  llvm::Value *self = CGF.LoadObjCSelf();
1553
1554  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1555  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1556       ivar; ivar = ivar->getNextIvar()) {
1557    QualType type = ivar->getType();
1558
1559    // Check whether the ivar is a destructible type.
1560    QualType::DestructionKind dtorKind = type.isDestructedType();
1561    if (!dtorKind) continue;
1562
1563    CodeGenFunction::Destroyer *destroyer = nullptr;
1564
1565    // Use a call to objc_storeStrong to destroy strong ivars, for the
1566    // general benefit of the tools.
1567    if (dtorKind == QualType::DK_objc_strong_lifetime) {
1568      destroyer = destroyARCStrongWithStore;
1569
1570    // Otherwise use the default for the destruction kind.
1571    } else {
1572      destroyer = CGF.getDestroyer(dtorKind);
1573    }
1574
1575    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1576
1577    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1578                                         cleanupKind & EHCleanup);
1579  }
1580
1581  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1582}
1583
1584void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1585                                                 ObjCMethodDecl *MD,
1586                                                 bool ctor) {
1587  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1588  StartObjCMethod(MD, IMP->getClassInterface());
1589
1590  // Emit .cxx_construct.
1591  if (ctor) {
1592    // Suppress the final autorelease in ARC.
1593    AutoreleaseResult = false;
1594
1595    for (const auto *IvarInit : IMP->inits()) {
1596      FieldDecl *Field = IvarInit->getAnyMember();
1597      ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1598      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1599                                    LoadObjCSelf(), Ivar, 0);
1600      EmitAggExpr(IvarInit->getInit(),
1601                  AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1602                                          AggValueSlot::DoesNotNeedGCBarriers,
1603                                          AggValueSlot::IsNotAliased,
1604                                          AggValueSlot::DoesNotOverlap));
1605    }
1606    // constructor returns 'self'.
1607    CodeGenTypes &Types = CGM.getTypes();
1608    QualType IdTy(CGM.getContext().getObjCIdType());
1609    llvm::Value *SelfAsId =
1610      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1611    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1612
1613  // Emit .cxx_destruct.
1614  } else {
1615    emitCXXDestructMethod(*this, IMP);
1616  }
1617  FinishFunction();
1618}
1619
1620llvm::Value *CodeGenFunction::LoadObjCSelf() {
1621  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1622  DeclRefExpr DRE(getContext(), Self,
1623                  /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1624                  Self->getType(), VK_LValue, SourceLocation());
1625  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1626}
1627
1628QualType CodeGenFunction::TypeOfSelfObject() {
1629  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1630  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1631  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1632    getContext().getCanonicalType(selfDecl->getType()));
1633  return PTy->getPointeeType();
1634}
1635
1636void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1637  llvm::FunctionCallee EnumerationMutationFnPtr =
1638      CGM.getObjCRuntime().EnumerationMutationFunction();
1639  if (!EnumerationMutationFnPtr) {
1640    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1641    return;
1642  }
1643  CGCallee EnumerationMutationFn =
1644    CGCallee::forDirect(EnumerationMutationFnPtr);
1645
1646  CGDebugInfo *DI = getDebugInfo();
1647  if (DI)
1648    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1649
1650  RunCleanupsScope ForScope(*this);
1651
1652  // The local variable comes into scope immediately.
1653  AutoVarEmission variable = AutoVarEmission::invalid();
1654  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1655    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1656
1657  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1658
1659  // Fast enumeration state.
1660  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1661  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1662  EmitNullInitialization(StatePtr, StateTy);
1663
1664  // Number of elements in the items array.
1665  static const unsigned NumItems = 16;
1666
1667  // Fetch the countByEnumeratingWithState:objects:count: selector.
1668  IdentifierInfo *II[] = {
1669    &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1670    &CGM.getContext().Idents.get("objects"),
1671    &CGM.getContext().Idents.get("count")
1672  };
1673  Selector FastEnumSel =
1674    CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1675
1676  QualType ItemsTy =
1677    getContext().getConstantArrayType(getContext().getObjCIdType(),
1678                                      llvm::APInt(32, NumItems), nullptr,
1679                                      ArrayType::Normal, 0);
1680  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1681
1682  // Emit the collection pointer.  In ARC, we do a retain.
1683  llvm::Value *Collection;
1684  if (getLangOpts().ObjCAutoRefCount) {
1685    Collection = EmitARCRetainScalarExpr(S.getCollection());
1686
1687    // Enter a cleanup to do the release.
1688    EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1689  } else {
1690    Collection = EmitScalarExpr(S.getCollection());
1691  }
1692
1693  // The 'continue' label needs to appear within the cleanup for the
1694  // collection object.
1695  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1696
1697  // Send it our message:
1698  CallArgList Args;
1699
1700  // The first argument is a temporary of the enumeration-state type.
1701  Args.add(RValue::get(StatePtr.getPointer()),
1702           getContext().getPointerType(StateTy));
1703
1704  // The second argument is a temporary array with space for NumItems
1705  // pointers.  We'll actually be loading elements from the array
1706  // pointer written into the control state; this buffer is so that
1707  // collections that *aren't* backed by arrays can still queue up
1708  // batches of elements.
1709  Args.add(RValue::get(ItemsPtr.getPointer()),
1710           getContext().getPointerType(ItemsTy));
1711
1712  // The third argument is the capacity of that temporary array.
1713  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1714  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1715  Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1716
1717  // Start the enumeration.
1718  RValue CountRV =
1719      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1720                                               getContext().getNSUIntegerType(),
1721                                               FastEnumSel, Collection, Args);
1722
1723  // The initial number of objects that were returned in the buffer.
1724  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1725
1726  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1727  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1728
1729  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1730
1731  // If the limit pointer was zero to begin with, the collection is
1732  // empty; skip all this. Set the branch weight assuming this has the same
1733  // probability of exiting the loop as any other loop exit.
1734  uint64_t EntryCount = getCurrentProfileCount();
1735  Builder.CreateCondBr(
1736      Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1737      LoopInitBB,
1738      createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1739
1740  // Otherwise, initialize the loop.
1741  EmitBlock(LoopInitBB);
1742
1743  // Save the initial mutations value.  This is the value at an
1744  // address that was written into the state object by
1745  // countByEnumeratingWithState:objects:count:.
1746  Address StateMutationsPtrPtr =
1747      Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1748  llvm::Value *StateMutationsPtr
1749    = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1750
1751  llvm::Value *initialMutations =
1752    Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1753                              "forcoll.initial-mutations");
1754
1755  // Start looping.  This is the point we return to whenever we have a
1756  // fresh, non-empty batch of objects.
1757  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1758  EmitBlock(LoopBodyBB);
1759
1760  // The current index into the buffer.
1761  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1762  index->addIncoming(zero, LoopInitBB);
1763
1764  // The current buffer size.
1765  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1766  count->addIncoming(initialBufferLimit, LoopInitBB);
1767
1768  incrementProfileCounter(&S);
1769
1770  // Check whether the mutations value has changed from where it was
1771  // at start.  StateMutationsPtr should actually be invariant between
1772  // refreshes.
1773  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1774  llvm::Value *currentMutations
1775    = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1776                                "statemutations");
1777
1778  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1779  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1780
1781  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1782                       WasNotMutatedBB, WasMutatedBB);
1783
1784  // If so, call the enumeration-mutation function.
1785  EmitBlock(WasMutatedBB);
1786  llvm::Value *V =
1787    Builder.CreateBitCast(Collection,
1788                          ConvertType(getContext().getObjCIdType()));
1789  CallArgList Args2;
1790  Args2.add(RValue::get(V), getContext().getObjCIdType());
1791  // FIXME: We shouldn't need to get the function info here, the runtime already
1792  // should have computed it to build the function.
1793  EmitCall(
1794          CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1795           EnumerationMutationFn, ReturnValueSlot(), Args2);
1796
1797  // Otherwise, or if the mutation function returns, just continue.
1798  EmitBlock(WasNotMutatedBB);
1799
1800  // Initialize the element variable.
1801  RunCleanupsScope elementVariableScope(*this);
1802  bool elementIsVariable;
1803  LValue elementLValue;
1804  QualType elementType;
1805  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1806    // Initialize the variable, in case it's a __block variable or something.
1807    EmitAutoVarInit(variable);
1808
1809    const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1810    DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1811                        D->getType(), VK_LValue, SourceLocation());
1812    elementLValue = EmitLValue(&tempDRE);
1813    elementType = D->getType();
1814    elementIsVariable = true;
1815
1816    if (D->isARCPseudoStrong())
1817      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1818  } else {
1819    elementLValue = LValue(); // suppress warning
1820    elementType = cast<Expr>(S.getElement())->getType();
1821    elementIsVariable = false;
1822  }
1823  llvm::Type *convertedElementType = ConvertType(elementType);
1824
1825  // Fetch the buffer out of the enumeration state.
1826  // TODO: this pointer should actually be invariant between
1827  // refreshes, which would help us do certain loop optimizations.
1828  Address StateItemsPtr =
1829      Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1830  llvm::Value *EnumStateItems =
1831    Builder.CreateLoad(StateItemsPtr, "stateitems");
1832
1833  // Fetch the value at the current index from the buffer.
1834  llvm::Value *CurrentItemPtr =
1835    Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1836  llvm::Value *CurrentItem =
1837    Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1838
1839  if (SanOpts.has(SanitizerKind::ObjCCast)) {
1840    // Before using an item from the collection, check that the implicit cast
1841    // from id to the element type is valid. This is done with instrumentation
1842    // roughly corresponding to:
1843    //
1844    //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1845    const ObjCObjectPointerType *ObjPtrTy =
1846        elementType->getAsObjCInterfacePointerType();
1847    const ObjCInterfaceType *InterfaceTy =
1848        ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1849    if (InterfaceTy) {
1850      SanitizerScope SanScope(this);
1851      auto &C = CGM.getContext();
1852      assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1853      Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1854      CallArgList IsKindOfClassArgs;
1855      llvm::Value *Cls =
1856          CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1857      IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1858      llvm::Value *IsClass =
1859          CGM.getObjCRuntime()
1860              .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1861                                   IsKindOfClassSel, CurrentItem,
1862                                   IsKindOfClassArgs)
1863              .getScalarVal();
1864      llvm::Constant *StaticData[] = {
1865          EmitCheckSourceLocation(S.getBeginLoc()),
1866          EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1867      EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1868                SanitizerHandler::InvalidObjCCast,
1869                ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1870    }
1871  }
1872
1873  // Cast that value to the right type.
1874  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1875                                      "currentitem");
1876
1877  // Make sure we have an l-value.  Yes, this gets evaluated every
1878  // time through the loop.
1879  if (!elementIsVariable) {
1880    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1881    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1882  } else {
1883    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1884                           /*isInit*/ true);
1885  }
1886
1887  // If we do have an element variable, this assignment is the end of
1888  // its initialization.
1889  if (elementIsVariable)
1890    EmitAutoVarCleanups(variable);
1891
1892  // Perform the loop body, setting up break and continue labels.
1893  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1894  {
1895    RunCleanupsScope Scope(*this);
1896    EmitStmt(S.getBody());
1897  }
1898  BreakContinueStack.pop_back();
1899
1900  // Destroy the element variable now.
1901  elementVariableScope.ForceCleanup();
1902
1903  // Check whether there are more elements.
1904  EmitBlock(AfterBody.getBlock());
1905
1906  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1907
1908  // First we check in the local buffer.
1909  llvm::Value *indexPlusOne =
1910      Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1911
1912  // If we haven't overrun the buffer yet, we can continue.
1913  // Set the branch weights based on the simplifying assumption that this is
1914  // like a while-loop, i.e., ignoring that the false branch fetches more
1915  // elements and then returns to the loop.
1916  Builder.CreateCondBr(
1917      Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1918      createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1919
1920  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1921  count->addIncoming(count, AfterBody.getBlock());
1922
1923  // Otherwise, we have to fetch more elements.
1924  EmitBlock(FetchMoreBB);
1925
1926  CountRV =
1927      CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1928                                               getContext().getNSUIntegerType(),
1929                                               FastEnumSel, Collection, Args);
1930
1931  // If we got a zero count, we're done.
1932  llvm::Value *refetchCount = CountRV.getScalarVal();
1933
1934  // (note that the message send might split FetchMoreBB)
1935  index->addIncoming(zero, Builder.GetInsertBlock());
1936  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1937
1938  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1939                       EmptyBB, LoopBodyBB);
1940
1941  // No more elements.
1942  EmitBlock(EmptyBB);
1943
1944  if (!elementIsVariable) {
1945    // If the element was not a declaration, set it to be null.
1946
1947    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1948    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1949    EmitStoreThroughLValue(RValue::get(null), elementLValue);
1950  }
1951
1952  if (DI)
1953    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1954
1955  ForScope.ForceCleanup();
1956  EmitBlock(LoopEnd.getBlock());
1957}
1958
1959void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1960  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1961}
1962
1963void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1964  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1965}
1966
1967void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1968                                              const ObjCAtSynchronizedStmt &S) {
1969  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1970}
1971
1972namespace {
1973  struct CallObjCRelease final : EHScopeStack::Cleanup {
1974    CallObjCRelease(llvm::Value *object) : object(object) {}
1975    llvm::Value *object;
1976
1977    void Emit(CodeGenFunction &CGF, Flags flags) override {
1978      // Releases at the end of the full-expression are imprecise.
1979      CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1980    }
1981  };
1982}
1983
1984/// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1985/// release at the end of the full-expression.
1986llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1987                                                    llvm::Value *object) {
1988  // If we're in a conditional branch, we need to make the cleanup
1989  // conditional.
1990  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1991  return object;
1992}
1993
1994llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1995                                                           llvm::Value *value) {
1996  return EmitARCRetainAutorelease(type, value);
1997}
1998
1999/// Given a number of pointers, inform the optimizer that they're
2000/// being intrinsically used up until this point in the program.
2001void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2002  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2003  if (!fn)
2004    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2005
2006  // This isn't really a "runtime" function, but as an intrinsic it
2007  // doesn't really matter as long as we align things up.
2008  EmitNounwindRuntimeCall(fn, values);
2009}
2010
2011static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2012  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2013    // If the target runtime doesn't naturally support ARC, emit weak
2014    // references to the runtime support library.  We don't really
2015    // permit this to fail, but we need a particular relocation style.
2016    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2017        !CGM.getTriple().isOSBinFormatCOFF()) {
2018      F->setLinkage(llvm::Function::ExternalWeakLinkage);
2019    }
2020  }
2021}
2022
2023static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2024                                         llvm::FunctionCallee RTF) {
2025  setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2026}
2027
2028/// Perform an operation having the signature
2029///   i8* (i8*)
2030/// where a null input causes a no-op and returns null.
2031static llvm::Value *emitARCValueOperation(
2032    CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2033    llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2034    llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2035  if (isa<llvm::ConstantPointerNull>(value))
2036    return value;
2037
2038  if (!fn) {
2039    fn = CGF.CGM.getIntrinsic(IntID);
2040    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2041  }
2042
2043  // Cast the argument to 'id'.
2044  llvm::Type *origType = returnType ? returnType : value->getType();
2045  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2046
2047  // Call the function.
2048  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2049  call->setTailCallKind(tailKind);
2050
2051  // Cast the result back to the original type.
2052  return CGF.Builder.CreateBitCast(call, origType);
2053}
2054
2055/// Perform an operation having the following signature:
2056///   i8* (i8**)
2057static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2058                                         llvm::Function *&fn,
2059                                         llvm::Intrinsic::ID IntID) {
2060  if (!fn) {
2061    fn = CGF.CGM.getIntrinsic(IntID);
2062    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2063  }
2064
2065  // Cast the argument to 'id*'.
2066  llvm::Type *origType = addr.getElementType();
2067  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2068
2069  // Call the function.
2070  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2071
2072  // Cast the result back to a dereference of the original type.
2073  if (origType != CGF.Int8PtrTy)
2074    result = CGF.Builder.CreateBitCast(result, origType);
2075
2076  return result;
2077}
2078
2079/// Perform an operation having the following signature:
2080///   i8* (i8**, i8*)
2081static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2082                                          llvm::Value *value,
2083                                          llvm::Function *&fn,
2084                                          llvm::Intrinsic::ID IntID,
2085                                          bool ignored) {
2086  assert(addr.getElementType() == value->getType());
2087
2088  if (!fn) {
2089    fn = CGF.CGM.getIntrinsic(IntID);
2090    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2091  }
2092
2093  llvm::Type *origType = value->getType();
2094
2095  llvm::Value *args[] = {
2096    CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2097    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2098  };
2099  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2100
2101  if (ignored) return nullptr;
2102
2103  return CGF.Builder.CreateBitCast(result, origType);
2104}
2105
2106/// Perform an operation having the following signature:
2107///   void (i8**, i8**)
2108static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2109                                 llvm::Function *&fn,
2110                                 llvm::Intrinsic::ID IntID) {
2111  assert(dst.getType() == src.getType());
2112
2113  if (!fn) {
2114    fn = CGF.CGM.getIntrinsic(IntID);
2115    setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2116  }
2117
2118  llvm::Value *args[] = {
2119    CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2120    CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2121  };
2122  CGF.EmitNounwindRuntimeCall(fn, args);
2123}
2124
2125/// Perform an operation having the signature
2126///   i8* (i8*)
2127/// where a null input causes a no-op and returns null.
2128static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2129                                           llvm::Value *value,
2130                                           llvm::Type *returnType,
2131                                           llvm::FunctionCallee &fn,
2132                                           StringRef fnName) {
2133  if (isa<llvm::ConstantPointerNull>(value))
2134    return value;
2135
2136  if (!fn) {
2137    llvm::FunctionType *fnType =
2138      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2139    fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2140
2141    // We have Native ARC, so set nonlazybind attribute for performance
2142    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2143      if (fnName == "objc_retain")
2144        f->addFnAttr(llvm::Attribute::NonLazyBind);
2145  }
2146
2147  // Cast the argument to 'id'.
2148  llvm::Type *origType = returnType ? returnType : value->getType();
2149  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2150
2151  // Call the function.
2152  llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2153
2154  // Cast the result back to the original type.
2155  return CGF.Builder.CreateBitCast(Inst, origType);
2156}
2157
2158/// Produce the code to do a retain.  Based on the type, calls one of:
2159///   call i8* \@objc_retain(i8* %value)
2160///   call i8* \@objc_retainBlock(i8* %value)
2161llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2162  if (type->isBlockPointerType())
2163    return EmitARCRetainBlock(value, /*mandatory*/ false);
2164  else
2165    return EmitARCRetainNonBlock(value);
2166}
2167
2168/// Retain the given object, with normal retain semantics.
2169///   call i8* \@objc_retain(i8* %value)
2170llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2171  return emitARCValueOperation(*this, value, nullptr,
2172                               CGM.getObjCEntrypoints().objc_retain,
2173                               llvm::Intrinsic::objc_retain);
2174}
2175
2176/// Retain the given block, with _Block_copy semantics.
2177///   call i8* \@objc_retainBlock(i8* %value)
2178///
2179/// \param mandatory - If false, emit the call with metadata
2180/// indicating that it's okay for the optimizer to eliminate this call
2181/// if it can prove that the block never escapes except down the stack.
2182llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2183                                                 bool mandatory) {
2184  llvm::Value *result
2185    = emitARCValueOperation(*this, value, nullptr,
2186                            CGM.getObjCEntrypoints().objc_retainBlock,
2187                            llvm::Intrinsic::objc_retainBlock);
2188
2189  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2190  // tell the optimizer that it doesn't need to do this copy if the
2191  // block doesn't escape, where being passed as an argument doesn't
2192  // count as escaping.
2193  if (!mandatory && isa<llvm::Instruction>(result)) {
2194    llvm::CallInst *call
2195      = cast<llvm::CallInst>(result->stripPointerCasts());
2196    assert(call->getCalledOperand() ==
2197           CGM.getObjCEntrypoints().objc_retainBlock);
2198
2199    call->setMetadata("clang.arc.copy_on_escape",
2200                      llvm::MDNode::get(Builder.getContext(), None));
2201  }
2202
2203  return result;
2204}
2205
2206static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2207  // Fetch the void(void) inline asm which marks that we're going to
2208  // do something with the autoreleased return value.
2209  llvm::InlineAsm *&marker
2210    = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2211  if (!marker) {
2212    StringRef assembly
2213      = CGF.CGM.getTargetCodeGenInfo()
2214           .getARCRetainAutoreleasedReturnValueMarker();
2215
2216    // If we have an empty assembly string, there's nothing to do.
2217    if (assembly.empty()) {
2218
2219    // Otherwise, at -O0, build an inline asm that we're going to call
2220    // in a moment.
2221    } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2222      llvm::FunctionType *type =
2223        llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2224
2225      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2226
2227    // If we're at -O1 and above, we don't want to litter the code
2228    // with this marker yet, so leave a breadcrumb for the ARC
2229    // optimizer to pick up.
2230    } else {
2231      const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2232      if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2233        auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2234        CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2235      }
2236    }
2237  }
2238
2239  // Call the marker asm if we made one, which we do only at -O0.
2240  if (marker)
2241    CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2242}
2243
2244/// Retain the given object which is the result of a function call.
2245///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2246///
2247/// Yes, this function name is one character away from a different
2248/// call with completely different semantics.
2249llvm::Value *
2250CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2251  emitAutoreleasedReturnValueMarker(*this);
2252  llvm::CallInst::TailCallKind tailKind =
2253      CGM.getTargetCodeGenInfo()
2254              .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2255          ? llvm::CallInst::TCK_NoTail
2256          : llvm::CallInst::TCK_None;
2257  return emitARCValueOperation(
2258      *this, value, nullptr,
2259      CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2260      llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2261}
2262
2263/// Claim a possibly-autoreleased return value at +0.  This is only
2264/// valid to do in contexts which do not rely on the retain to keep
2265/// the object valid for all of its uses; for example, when
2266/// the value is ignored, or when it is being assigned to an
2267/// __unsafe_unretained variable.
2268///
2269///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2270llvm::Value *
2271CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2272  emitAutoreleasedReturnValueMarker(*this);
2273  return emitARCValueOperation(*this, value, nullptr,
2274              CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2275                     llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2276}
2277
2278/// Release the given object.
2279///   call void \@objc_release(i8* %value)
2280void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2281                                     ARCPreciseLifetime_t precise) {
2282  if (isa<llvm::ConstantPointerNull>(value)) return;
2283
2284  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2285  if (!fn) {
2286    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2287    setARCRuntimeFunctionLinkage(CGM, fn);
2288  }
2289
2290  // Cast the argument to 'id'.
2291  value = Builder.CreateBitCast(value, Int8PtrTy);
2292
2293  // Call objc_release.
2294  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2295
2296  if (precise == ARCImpreciseLifetime) {
2297    call->setMetadata("clang.imprecise_release",
2298                      llvm::MDNode::get(Builder.getContext(), None));
2299  }
2300}
2301
2302/// Destroy a __strong variable.
2303///
2304/// At -O0, emit a call to store 'null' into the address;
2305/// instrumenting tools prefer this because the address is exposed,
2306/// but it's relatively cumbersome to optimize.
2307///
2308/// At -O1 and above, just load and call objc_release.
2309///
2310///   call void \@objc_storeStrong(i8** %addr, i8* null)
2311void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2312                                           ARCPreciseLifetime_t precise) {
2313  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2314    llvm::Value *null = getNullForVariable(addr);
2315    EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2316    return;
2317  }
2318
2319  llvm::Value *value = Builder.CreateLoad(addr);
2320  EmitARCRelease(value, precise);
2321}
2322
2323/// Store into a strong object.  Always calls this:
2324///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2325llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2326                                                     llvm::Value *value,
2327                                                     bool ignored) {
2328  assert(addr.getElementType() == value->getType());
2329
2330  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2331  if (!fn) {
2332    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2333    setARCRuntimeFunctionLinkage(CGM, fn);
2334  }
2335
2336  llvm::Value *args[] = {
2337    Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2338    Builder.CreateBitCast(value, Int8PtrTy)
2339  };
2340  EmitNounwindRuntimeCall(fn, args);
2341
2342  if (ignored) return nullptr;
2343  return value;
2344}
2345
2346/// Store into a strong object.  Sometimes calls this:
2347///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2348/// Other times, breaks it down into components.
2349llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2350                                                 llvm::Value *newValue,
2351                                                 bool ignored) {
2352  QualType type = dst.getType();
2353  bool isBlock = type->isBlockPointerType();
2354
2355  // Use a store barrier at -O0 unless this is a block type or the
2356  // lvalue is inadequately aligned.
2357  if (shouldUseFusedARCCalls() &&
2358      !isBlock &&
2359      (dst.getAlignment().isZero() ||
2360       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2361    return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2362  }
2363
2364  // Otherwise, split it out.
2365
2366  // Retain the new value.
2367  newValue = EmitARCRetain(type, newValue);
2368
2369  // Read the old value.
2370  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2371
2372  // Store.  We do this before the release so that any deallocs won't
2373  // see the old value.
2374  EmitStoreOfScalar(newValue, dst);
2375
2376  // Finally, release the old value.
2377  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2378
2379  return newValue;
2380}
2381
2382/// Autorelease the given object.
2383///   call i8* \@objc_autorelease(i8* %value)
2384llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2385  return emitARCValueOperation(*this, value, nullptr,
2386                               CGM.getObjCEntrypoints().objc_autorelease,
2387                               llvm::Intrinsic::objc_autorelease);
2388}
2389
2390/// Autorelease the given object.
2391///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2392llvm::Value *
2393CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2394  return emitARCValueOperation(*this, value, nullptr,
2395                            CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2396                               llvm::Intrinsic::objc_autoreleaseReturnValue,
2397                               llvm::CallInst::TCK_Tail);
2398}
2399
2400/// Do a fused retain/autorelease of the given object.
2401///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2402llvm::Value *
2403CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2404  return emitARCValueOperation(*this, value, nullptr,
2405                     CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2406                             llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2407                               llvm::CallInst::TCK_Tail);
2408}
2409
2410/// Do a fused retain/autorelease of the given object.
2411///   call i8* \@objc_retainAutorelease(i8* %value)
2412/// or
2413///   %retain = call i8* \@objc_retainBlock(i8* %value)
2414///   call i8* \@objc_autorelease(i8* %retain)
2415llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2416                                                       llvm::Value *value) {
2417  if (!type->isBlockPointerType())
2418    return EmitARCRetainAutoreleaseNonBlock(value);
2419
2420  if (isa<llvm::ConstantPointerNull>(value)) return value;
2421
2422  llvm::Type *origType = value->getType();
2423  value = Builder.CreateBitCast(value, Int8PtrTy);
2424  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2425  value = EmitARCAutorelease(value);
2426  return Builder.CreateBitCast(value, origType);
2427}
2428
2429/// Do a fused retain/autorelease of the given object.
2430///   call i8* \@objc_retainAutorelease(i8* %value)
2431llvm::Value *
2432CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2433  return emitARCValueOperation(*this, value, nullptr,
2434                               CGM.getObjCEntrypoints().objc_retainAutorelease,
2435                               llvm::Intrinsic::objc_retainAutorelease);
2436}
2437
2438/// i8* \@objc_loadWeak(i8** %addr)
2439/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2440llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2441  return emitARCLoadOperation(*this, addr,
2442                              CGM.getObjCEntrypoints().objc_loadWeak,
2443                              llvm::Intrinsic::objc_loadWeak);
2444}
2445
2446/// i8* \@objc_loadWeakRetained(i8** %addr)
2447llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2448  return emitARCLoadOperation(*this, addr,
2449                              CGM.getObjCEntrypoints().objc_loadWeakRetained,
2450                              llvm::Intrinsic::objc_loadWeakRetained);
2451}
2452
2453/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2454/// Returns %value.
2455llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2456                                               llvm::Value *value,
2457                                               bool ignored) {
2458  return emitARCStoreOperation(*this, addr, value,
2459                               CGM.getObjCEntrypoints().objc_storeWeak,
2460                               llvm::Intrinsic::objc_storeWeak, ignored);
2461}
2462
2463/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2464/// Returns %value.  %addr is known to not have a current weak entry.
2465/// Essentially equivalent to:
2466///   *addr = nil; objc_storeWeak(addr, value);
2467void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2468  // If we're initializing to null, just write null to memory; no need
2469  // to get the runtime involved.  But don't do this if optimization
2470  // is enabled, because accounting for this would make the optimizer
2471  // much more complicated.
2472  if (isa<llvm::ConstantPointerNull>(value) &&
2473      CGM.getCodeGenOpts().OptimizationLevel == 0) {
2474    Builder.CreateStore(value, addr);
2475    return;
2476  }
2477
2478  emitARCStoreOperation(*this, addr, value,
2479                        CGM.getObjCEntrypoints().objc_initWeak,
2480                        llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2481}
2482
2483/// void \@objc_destroyWeak(i8** %addr)
2484/// Essentially objc_storeWeak(addr, nil).
2485void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2486  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2487  if (!fn) {
2488    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2489    setARCRuntimeFunctionLinkage(CGM, fn);
2490  }
2491
2492  // Cast the argument to 'id*'.
2493  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2494
2495  EmitNounwindRuntimeCall(fn, addr.getPointer());
2496}
2497
2498/// void \@objc_moveWeak(i8** %dest, i8** %src)
2499/// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2500/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2501void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2502  emitARCCopyOperation(*this, dst, src,
2503                       CGM.getObjCEntrypoints().objc_moveWeak,
2504                       llvm::Intrinsic::objc_moveWeak);
2505}
2506
2507/// void \@objc_copyWeak(i8** %dest, i8** %src)
2508/// Disregards the current value in %dest.  Essentially
2509///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2510void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2511  emitARCCopyOperation(*this, dst, src,
2512                       CGM.getObjCEntrypoints().objc_copyWeak,
2513                       llvm::Intrinsic::objc_copyWeak);
2514}
2515
2516void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2517                                            Address SrcAddr) {
2518  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2519  Object = EmitObjCConsumeObject(Ty, Object);
2520  EmitARCStoreWeak(DstAddr, Object, false);
2521}
2522
2523void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2524                                            Address SrcAddr) {
2525  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2526  Object = EmitObjCConsumeObject(Ty, Object);
2527  EmitARCStoreWeak(DstAddr, Object, false);
2528  EmitARCDestroyWeak(SrcAddr);
2529}
2530
2531/// Produce the code to do a objc_autoreleasepool_push.
2532///   call i8* \@objc_autoreleasePoolPush(void)
2533llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2534  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2535  if (!fn) {
2536    fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2537    setARCRuntimeFunctionLinkage(CGM, fn);
2538  }
2539
2540  return EmitNounwindRuntimeCall(fn);
2541}
2542
2543/// Produce the code to do a primitive release.
2544///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2545void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2546  assert(value->getType() == Int8PtrTy);
2547
2548  if (getInvokeDest()) {
2549    // Call the runtime method not the intrinsic if we are handling exceptions
2550    llvm::FunctionCallee &fn =
2551        CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2552    if (!fn) {
2553      llvm::FunctionType *fnType =
2554        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2555      fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2556      setARCRuntimeFunctionLinkage(CGM, fn);
2557    }
2558
2559    // objc_autoreleasePoolPop can throw.
2560    EmitRuntimeCallOrInvoke(fn, value);
2561  } else {
2562    llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2563    if (!fn) {
2564      fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2565      setARCRuntimeFunctionLinkage(CGM, fn);
2566    }
2567
2568    EmitRuntimeCall(fn, value);
2569  }
2570}
2571
2572/// Produce the code to do an MRR version objc_autoreleasepool_push.
2573/// Which is: [[NSAutoreleasePool alloc] init];
2574/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2575/// init is declared as: - (id) init; in its NSObject super class.
2576///
2577llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2578  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2579  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2580  // [NSAutoreleasePool alloc]
2581  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2582  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2583  CallArgList Args;
2584  RValue AllocRV =
2585    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2586                                getContext().getObjCIdType(),
2587                                AllocSel, Receiver, Args);
2588
2589  // [Receiver init]
2590  Receiver = AllocRV.getScalarVal();
2591  II = &CGM.getContext().Idents.get("init");
2592  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2593  RValue InitRV =
2594    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2595                                getContext().getObjCIdType(),
2596                                InitSel, Receiver, Args);
2597  return InitRV.getScalarVal();
2598}
2599
2600/// Allocate the given objc object.
2601///   call i8* \@objc_alloc(i8* %value)
2602llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2603                                            llvm::Type *resultType) {
2604  return emitObjCValueOperation(*this, value, resultType,
2605                                CGM.getObjCEntrypoints().objc_alloc,
2606                                "objc_alloc");
2607}
2608
2609/// Allocate the given objc object.
2610///   call i8* \@objc_allocWithZone(i8* %value)
2611llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2612                                                    llvm::Type *resultType) {
2613  return emitObjCValueOperation(*this, value, resultType,
2614                                CGM.getObjCEntrypoints().objc_allocWithZone,
2615                                "objc_allocWithZone");
2616}
2617
2618llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2619                                                llvm::Type *resultType) {
2620  return emitObjCValueOperation(*this, value, resultType,
2621                                CGM.getObjCEntrypoints().objc_alloc_init,
2622                                "objc_alloc_init");
2623}
2624
2625/// Produce the code to do a primitive release.
2626/// [tmp drain];
2627void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2628  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2629  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2630  CallArgList Args;
2631  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2632                              getContext().VoidTy, DrainSel, Arg, Args);
2633}
2634
2635void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2636                                              Address addr,
2637                                              QualType type) {
2638  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2639}
2640
2641void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2642                                                Address addr,
2643                                                QualType type) {
2644  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2645}
2646
2647void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2648                                     Address addr,
2649                                     QualType type) {
2650  CGF.EmitARCDestroyWeak(addr);
2651}
2652
2653void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2654                                          QualType type) {
2655  llvm::Value *value = CGF.Builder.CreateLoad(addr);
2656  CGF.EmitARCIntrinsicUse(value);
2657}
2658
2659/// Autorelease the given object.
2660///   call i8* \@objc_autorelease(i8* %value)
2661llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2662                                                  llvm::Type *returnType) {
2663  return emitObjCValueOperation(
2664      *this, value, returnType,
2665      CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2666      "objc_autorelease");
2667}
2668
2669/// Retain the given object, with normal retain semantics.
2670///   call i8* \@objc_retain(i8* %value)
2671llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2672                                                     llvm::Type *returnType) {
2673  return emitObjCValueOperation(
2674      *this, value, returnType,
2675      CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2676}
2677
2678/// Release the given object.
2679///   call void \@objc_release(i8* %value)
2680void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2681                                      ARCPreciseLifetime_t precise) {
2682  if (isa<llvm::ConstantPointerNull>(value)) return;
2683
2684  llvm::FunctionCallee &fn =
2685      CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2686  if (!fn) {
2687    llvm::FunctionType *fnType =
2688        llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2689    fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2690    setARCRuntimeFunctionLinkage(CGM, fn);
2691    // We have Native ARC, so set nonlazybind attribute for performance
2692    if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2693      f->addFnAttr(llvm::Attribute::NonLazyBind);
2694  }
2695
2696  // Cast the argument to 'id'.
2697  value = Builder.CreateBitCast(value, Int8PtrTy);
2698
2699  // Call objc_release.
2700  llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2701
2702  if (precise == ARCImpreciseLifetime) {
2703    call->setMetadata("clang.imprecise_release",
2704                      llvm::MDNode::get(Builder.getContext(), None));
2705  }
2706}
2707
2708namespace {
2709  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2710    llvm::Value *Token;
2711
2712    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2713
2714    void Emit(CodeGenFunction &CGF, Flags flags) override {
2715      CGF.EmitObjCAutoreleasePoolPop(Token);
2716    }
2717  };
2718  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2719    llvm::Value *Token;
2720
2721    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2722
2723    void Emit(CodeGenFunction &CGF, Flags flags) override {
2724      CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2725    }
2726  };
2727}
2728
2729void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2730  if (CGM.getLangOpts().ObjCAutoRefCount)
2731    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2732  else
2733    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2734}
2735
2736static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2737  switch (lifetime) {
2738  case Qualifiers::OCL_None:
2739  case Qualifiers::OCL_ExplicitNone:
2740  case Qualifiers::OCL_Strong:
2741  case Qualifiers::OCL_Autoreleasing:
2742    return true;
2743
2744  case Qualifiers::OCL_Weak:
2745    return false;
2746  }
2747
2748  llvm_unreachable("impossible lifetime!");
2749}
2750
2751static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2752                                                  LValue lvalue,
2753                                                  QualType type) {
2754  llvm::Value *result;
2755  bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2756  if (shouldRetain) {
2757    result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2758  } else {
2759    assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2760    result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2761  }
2762  return TryEmitResult(result, !shouldRetain);
2763}
2764
2765static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2766                                                  const Expr *e) {
2767  e = e->IgnoreParens();
2768  QualType type = e->getType();
2769
2770  // If we're loading retained from a __strong xvalue, we can avoid
2771  // an extra retain/release pair by zeroing out the source of this
2772  // "move" operation.
2773  if (e->isXValue() &&
2774      !type.isConstQualified() &&
2775      type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2776    // Emit the lvalue.
2777    LValue lv = CGF.EmitLValue(e);
2778
2779    // Load the object pointer.
2780    llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2781                                               SourceLocation()).getScalarVal();
2782
2783    // Set the source pointer to NULL.
2784    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2785
2786    return TryEmitResult(result, true);
2787  }
2788
2789  // As a very special optimization, in ARC++, if the l-value is the
2790  // result of a non-volatile assignment, do a simple retain of the
2791  // result of the call to objc_storeWeak instead of reloading.
2792  if (CGF.getLangOpts().CPlusPlus &&
2793      !type.isVolatileQualified() &&
2794      type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2795      isa<BinaryOperator>(e) &&
2796      cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2797    return TryEmitResult(CGF.EmitScalarExpr(e), false);
2798
2799  // Try to emit code for scalar constant instead of emitting LValue and
2800  // loading it because we are not guaranteed to have an l-value. One of such
2801  // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2802  if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2803    auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2804    if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2805      return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2806                           !shouldRetainObjCLifetime(type.getObjCLifetime()));
2807  }
2808
2809  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2810}
2811
2812typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2813                                         llvm::Value *value)>
2814  ValueTransform;
2815
2816/// Insert code immediately after a call.
2817static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2818                                              llvm::Value *value,
2819                                              ValueTransform doAfterCall,
2820                                              ValueTransform doFallback) {
2821  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2822    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2823
2824    // Place the retain immediately following the call.
2825    CGF.Builder.SetInsertPoint(call->getParent(),
2826                               ++llvm::BasicBlock::iterator(call));
2827    value = doAfterCall(CGF, value);
2828
2829    CGF.Builder.restoreIP(ip);
2830    return value;
2831  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2832    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2833
2834    // Place the retain at the beginning of the normal destination block.
2835    llvm::BasicBlock *BB = invoke->getNormalDest();
2836    CGF.Builder.SetInsertPoint(BB, BB->begin());
2837    value = doAfterCall(CGF, value);
2838
2839    CGF.Builder.restoreIP(ip);
2840    return value;
2841
2842  // Bitcasts can arise because of related-result returns.  Rewrite
2843  // the operand.
2844  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2845    llvm::Value *operand = bitcast->getOperand(0);
2846    operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2847    bitcast->setOperand(0, operand);
2848    return bitcast;
2849
2850  // Generic fall-back case.
2851  } else {
2852    // Retain using the non-block variant: we never need to do a copy
2853    // of a block that's been returned to us.
2854    return doFallback(CGF, value);
2855  }
2856}
2857
2858/// Given that the given expression is some sort of call (which does
2859/// not return retained), emit a retain following it.
2860static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2861                                            const Expr *e) {
2862  llvm::Value *value = CGF.EmitScalarExpr(e);
2863  return emitARCOperationAfterCall(CGF, value,
2864           [](CodeGenFunction &CGF, llvm::Value *value) {
2865             return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2866           },
2867           [](CodeGenFunction &CGF, llvm::Value *value) {
2868             return CGF.EmitARCRetainNonBlock(value);
2869           });
2870}
2871
2872/// Given that the given expression is some sort of call (which does
2873/// not return retained), perform an unsafeClaim following it.
2874static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2875                                                 const Expr *e) {
2876  llvm::Value *value = CGF.EmitScalarExpr(e);
2877  return emitARCOperationAfterCall(CGF, value,
2878           [](CodeGenFunction &CGF, llvm::Value *value) {
2879             return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2880           },
2881           [](CodeGenFunction &CGF, llvm::Value *value) {
2882             return value;
2883           });
2884}
2885
2886llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2887                                                      bool allowUnsafeClaim) {
2888  if (allowUnsafeClaim &&
2889      CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2890    return emitARCUnsafeClaimCallResult(*this, E);
2891  } else {
2892    llvm::Value *value = emitARCRetainCallResult(*this, E);
2893    return EmitObjCConsumeObject(E->getType(), value);
2894  }
2895}
2896
2897/// Determine whether it might be important to emit a separate
2898/// objc_retain_block on the result of the given expression, or
2899/// whether it's okay to just emit it in a +1 context.
2900static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2901  assert(e->getType()->isBlockPointerType());
2902  e = e->IgnoreParens();
2903
2904  // For future goodness, emit block expressions directly in +1
2905  // contexts if we can.
2906  if (isa<BlockExpr>(e))
2907    return false;
2908
2909  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2910    switch (cast->getCastKind()) {
2911    // Emitting these operations in +1 contexts is goodness.
2912    case CK_LValueToRValue:
2913    case CK_ARCReclaimReturnedObject:
2914    case CK_ARCConsumeObject:
2915    case CK_ARCProduceObject:
2916      return false;
2917
2918    // These operations preserve a block type.
2919    case CK_NoOp:
2920    case CK_BitCast:
2921      return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2922
2923    // These operations are known to be bad (or haven't been considered).
2924    case CK_AnyPointerToBlockPointerCast:
2925    default:
2926      return true;
2927    }
2928  }
2929
2930  return true;
2931}
2932
2933namespace {
2934/// A CRTP base class for emitting expressions of retainable object
2935/// pointer type in ARC.
2936template <typename Impl, typename Result> class ARCExprEmitter {
2937protected:
2938  CodeGenFunction &CGF;
2939  Impl &asImpl() { return *static_cast<Impl*>(this); }
2940
2941  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2942
2943public:
2944  Result visit(const Expr *e);
2945  Result visitCastExpr(const CastExpr *e);
2946  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2947  Result visitBlockExpr(const BlockExpr *e);
2948  Result visitBinaryOperator(const BinaryOperator *e);
2949  Result visitBinAssign(const BinaryOperator *e);
2950  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2951  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2952  Result visitBinAssignWeak(const BinaryOperator *e);
2953  Result visitBinAssignStrong(const BinaryOperator *e);
2954
2955  // Minimal implementation:
2956  //   Result visitLValueToRValue(const Expr *e)
2957  //   Result visitConsumeObject(const Expr *e)
2958  //   Result visitExtendBlockObject(const Expr *e)
2959  //   Result visitReclaimReturnedObject(const Expr *e)
2960  //   Result visitCall(const Expr *e)
2961  //   Result visitExpr(const Expr *e)
2962  //
2963  //   Result emitBitCast(Result result, llvm::Type *resultType)
2964  //   llvm::Value *getValueOfResult(Result result)
2965};
2966}
2967
2968/// Try to emit a PseudoObjectExpr under special ARC rules.
2969///
2970/// This massively duplicates emitPseudoObjectRValue.
2971template <typename Impl, typename Result>
2972Result
2973ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2974  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2975
2976  // Find the result expression.
2977  const Expr *resultExpr = E->getResultExpr();
2978  assert(resultExpr);
2979  Result result;
2980
2981  for (PseudoObjectExpr::const_semantics_iterator
2982         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2983    const Expr *semantic = *i;
2984
2985    // If this semantic expression is an opaque value, bind it
2986    // to the result of its source expression.
2987    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2988      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2989      OVMA opaqueData;
2990
2991      // If this semantic is the result of the pseudo-object
2992      // expression, try to evaluate the source as +1.
2993      if (ov == resultExpr) {
2994        assert(!OVMA::shouldBindAsLValue(ov));
2995        result = asImpl().visit(ov->getSourceExpr());
2996        opaqueData = OVMA::bind(CGF, ov,
2997                            RValue::get(asImpl().getValueOfResult(result)));
2998
2999      // Otherwise, just bind it.
3000      } else {
3001        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3002      }
3003      opaques.push_back(opaqueData);
3004
3005    // Otherwise, if the expression is the result, evaluate it
3006    // and remember the result.
3007    } else if (semantic == resultExpr) {
3008      result = asImpl().visit(semantic);
3009
3010    // Otherwise, evaluate the expression in an ignored context.
3011    } else {
3012      CGF.EmitIgnoredExpr(semantic);
3013    }
3014  }
3015
3016  // Unbind all the opaques now.
3017  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3018    opaques[i].unbind(CGF);
3019
3020  return result;
3021}
3022
3023template <typename Impl, typename Result>
3024Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3025  // The default implementation just forwards the expression to visitExpr.
3026  return asImpl().visitExpr(e);
3027}
3028
3029template <typename Impl, typename Result>
3030Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3031  switch (e->getCastKind()) {
3032
3033  // No-op casts don't change the type, so we just ignore them.
3034  case CK_NoOp:
3035    return asImpl().visit(e->getSubExpr());
3036
3037  // These casts can change the type.
3038  case CK_CPointerToObjCPointerCast:
3039  case CK_BlockPointerToObjCPointerCast:
3040  case CK_AnyPointerToBlockPointerCast:
3041  case CK_BitCast: {
3042    llvm::Type *resultType = CGF.ConvertType(e->getType());
3043    assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3044    Result result = asImpl().visit(e->getSubExpr());
3045    return asImpl().emitBitCast(result, resultType);
3046  }
3047
3048  // Handle some casts specially.
3049  case CK_LValueToRValue:
3050    return asImpl().visitLValueToRValue(e->getSubExpr());
3051  case CK_ARCConsumeObject:
3052    return asImpl().visitConsumeObject(e->getSubExpr());
3053  case CK_ARCExtendBlockObject:
3054    return asImpl().visitExtendBlockObject(e->getSubExpr());
3055  case CK_ARCReclaimReturnedObject:
3056    return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3057
3058  // Otherwise, use the default logic.
3059  default:
3060    return asImpl().visitExpr(e);
3061  }
3062}
3063
3064template <typename Impl, typename Result>
3065Result
3066ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3067  switch (e->getOpcode()) {
3068  case BO_Comma:
3069    CGF.EmitIgnoredExpr(e->getLHS());
3070    CGF.EnsureInsertPoint();
3071    return asImpl().visit(e->getRHS());
3072
3073  case BO_Assign:
3074    return asImpl().visitBinAssign(e);
3075
3076  default:
3077    return asImpl().visitExpr(e);
3078  }
3079}
3080
3081template <typename Impl, typename Result>
3082Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3083  switch (e->getLHS()->getType().getObjCLifetime()) {
3084  case Qualifiers::OCL_ExplicitNone:
3085    return asImpl().visitBinAssignUnsafeUnretained(e);
3086
3087  case Qualifiers::OCL_Weak:
3088    return asImpl().visitBinAssignWeak(e);
3089
3090  case Qualifiers::OCL_Autoreleasing:
3091    return asImpl().visitBinAssignAutoreleasing(e);
3092
3093  case Qualifiers::OCL_Strong:
3094    return asImpl().visitBinAssignStrong(e);
3095
3096  case Qualifiers::OCL_None:
3097    return asImpl().visitExpr(e);
3098  }
3099  llvm_unreachable("bad ObjC ownership qualifier");
3100}
3101
3102/// The default rule for __unsafe_unretained emits the RHS recursively,
3103/// stores into the unsafe variable, and propagates the result outward.
3104template <typename Impl, typename Result>
3105Result ARCExprEmitter<Impl,Result>::
3106                    visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3107  // Recursively emit the RHS.
3108  // For __block safety, do this before emitting the LHS.
3109  Result result = asImpl().visit(e->getRHS());
3110
3111  // Perform the store.
3112  LValue lvalue =
3113    CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3114  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3115                             lvalue);
3116
3117  return result;
3118}
3119
3120template <typename Impl, typename Result>
3121Result
3122ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3123  return asImpl().visitExpr(e);
3124}
3125
3126template <typename Impl, typename Result>
3127Result
3128ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3129  return asImpl().visitExpr(e);
3130}
3131
3132template <typename Impl, typename Result>
3133Result
3134ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3135  return asImpl().visitExpr(e);
3136}
3137
3138/// The general expression-emission logic.
3139template <typename Impl, typename Result>
3140Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3141  // We should *never* see a nested full-expression here, because if
3142  // we fail to emit at +1, our caller must not retain after we close
3143  // out the full-expression.  This isn't as important in the unsafe
3144  // emitter.
3145  assert(!isa<ExprWithCleanups>(e));
3146
3147  // Look through parens, __extension__, generic selection, etc.
3148  e = e->IgnoreParens();
3149
3150  // Handle certain kinds of casts.
3151  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3152    return asImpl().visitCastExpr(ce);
3153
3154  // Handle the comma operator.
3155  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3156    return asImpl().visitBinaryOperator(op);
3157
3158  // TODO: handle conditional operators here
3159
3160  // For calls and message sends, use the retained-call logic.
3161  // Delegate inits are a special case in that they're the only
3162  // returns-retained expression that *isn't* surrounded by
3163  // a consume.
3164  } else if (isa<CallExpr>(e) ||
3165             (isa<ObjCMessageExpr>(e) &&
3166              !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3167    return asImpl().visitCall(e);
3168
3169  // Look through pseudo-object expressions.
3170  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3171    return asImpl().visitPseudoObjectExpr(pseudo);
3172  } else if (auto *be = dyn_cast<BlockExpr>(e))
3173    return asImpl().visitBlockExpr(be);
3174
3175  return asImpl().visitExpr(e);
3176}
3177
3178namespace {
3179
3180/// An emitter for +1 results.
3181struct ARCRetainExprEmitter :
3182  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3183
3184  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3185
3186  llvm::Value *getValueOfResult(TryEmitResult result) {
3187    return result.getPointer();
3188  }
3189
3190  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3191    llvm::Value *value = result.getPointer();
3192    value = CGF.Builder.CreateBitCast(value, resultType);
3193    result.setPointer(value);
3194    return result;
3195  }
3196
3197  TryEmitResult visitLValueToRValue(const Expr *e) {
3198    return tryEmitARCRetainLoadOfScalar(CGF, e);
3199  }
3200
3201  /// For consumptions, just emit the subexpression and thus elide
3202  /// the retain/release pair.
3203  TryEmitResult visitConsumeObject(const Expr *e) {
3204    llvm::Value *result = CGF.EmitScalarExpr(e);
3205    return TryEmitResult(result, true);
3206  }
3207
3208  TryEmitResult visitBlockExpr(const BlockExpr *e) {
3209    TryEmitResult result = visitExpr(e);
3210    // Avoid the block-retain if this is a block literal that doesn't need to be
3211    // copied to the heap.
3212    if (e->getBlockDecl()->canAvoidCopyToHeap())
3213      result.setInt(true);
3214    return result;
3215  }
3216
3217  /// Block extends are net +0.  Naively, we could just recurse on
3218  /// the subexpression, but actually we need to ensure that the
3219  /// value is copied as a block, so there's a little filter here.
3220  TryEmitResult visitExtendBlockObject(const Expr *e) {
3221    llvm::Value *result; // will be a +0 value
3222
3223    // If we can't safely assume the sub-expression will produce a
3224    // block-copied value, emit the sub-expression at +0.
3225    if (shouldEmitSeparateBlockRetain(e)) {
3226      result = CGF.EmitScalarExpr(e);
3227
3228    // Otherwise, try to emit the sub-expression at +1 recursively.
3229    } else {
3230      TryEmitResult subresult = asImpl().visit(e);
3231
3232      // If that produced a retained value, just use that.
3233      if (subresult.getInt()) {
3234        return subresult;
3235      }
3236
3237      // Otherwise it's +0.
3238      result = subresult.getPointer();
3239    }
3240
3241    // Retain the object as a block.
3242    result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3243    return TryEmitResult(result, true);
3244  }
3245
3246  /// For reclaims, emit the subexpression as a retained call and
3247  /// skip the consumption.
3248  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3249    llvm::Value *result = emitARCRetainCallResult(CGF, e);
3250    return TryEmitResult(result, true);
3251  }
3252
3253  /// When we have an undecorated call, retroactively do a claim.
3254  TryEmitResult visitCall(const Expr *e) {
3255    llvm::Value *result = emitARCRetainCallResult(CGF, e);
3256    return TryEmitResult(result, true);
3257  }
3258
3259  // TODO: maybe special-case visitBinAssignWeak?
3260
3261  TryEmitResult visitExpr(const Expr *e) {
3262    // We didn't find an obvious production, so emit what we've got and
3263    // tell the caller that we didn't manage to retain.
3264    llvm::Value *result = CGF.EmitScalarExpr(e);
3265    return TryEmitResult(result, false);
3266  }
3267};
3268}
3269
3270static TryEmitResult
3271tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3272  return ARCRetainExprEmitter(CGF).visit(e);
3273}
3274
3275static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3276                                                LValue lvalue,
3277                                                QualType type) {
3278  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3279  llvm::Value *value = result.getPointer();
3280  if (!result.getInt())
3281    value = CGF.EmitARCRetain(type, value);
3282  return value;
3283}
3284
3285/// EmitARCRetainScalarExpr - Semantically equivalent to
3286/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3287/// best-effort attempt to peephole expressions that naturally produce
3288/// retained objects.
3289llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3290  // The retain needs to happen within the full-expression.
3291  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3292    RunCleanupsScope scope(*this);
3293    return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3294  }
3295
3296  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3297  llvm::Value *value = result.getPointer();
3298  if (!result.getInt())
3299    value = EmitARCRetain(e->getType(), value);
3300  return value;
3301}
3302
3303llvm::Value *
3304CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3305  // The retain needs to happen within the full-expression.
3306  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3307    RunCleanupsScope scope(*this);
3308    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3309  }
3310
3311  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3312  llvm::Value *value = result.getPointer();
3313  if (result.getInt())
3314    value = EmitARCAutorelease(value);
3315  else
3316    value = EmitARCRetainAutorelease(e->getType(), value);
3317  return value;
3318}
3319
3320llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3321  llvm::Value *result;
3322  bool doRetain;
3323
3324  if (shouldEmitSeparateBlockRetain(e)) {
3325    result = EmitScalarExpr(e);
3326    doRetain = true;
3327  } else {
3328    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3329    result = subresult.getPointer();
3330    doRetain = !subresult.getInt();
3331  }
3332
3333  if (doRetain)
3334    result = EmitARCRetainBlock(result, /*mandatory*/ true);
3335  return EmitObjCConsumeObject(e->getType(), result);
3336}
3337
3338llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3339  // In ARC, retain and autorelease the expression.
3340  if (getLangOpts().ObjCAutoRefCount) {
3341    // Do so before running any cleanups for the full-expression.
3342    // EmitARCRetainAutoreleaseScalarExpr does this for us.
3343    return EmitARCRetainAutoreleaseScalarExpr(expr);
3344  }
3345
3346  // Otherwise, use the normal scalar-expression emission.  The
3347  // exception machinery doesn't do anything special with the
3348  // exception like retaining it, so there's no safety associated with
3349  // only running cleanups after the throw has started, and when it
3350  // matters it tends to be substantially inferior code.
3351  return EmitScalarExpr(expr);
3352}
3353
3354namespace {
3355
3356/// An emitter for assigning into an __unsafe_unretained context.
3357struct ARCUnsafeUnretainedExprEmitter :
3358  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3359
3360  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3361
3362  llvm::Value *getValueOfResult(llvm::Value *value) {
3363    return value;
3364  }
3365
3366  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3367    return CGF.Builder.CreateBitCast(value, resultType);
3368  }
3369
3370  llvm::Value *visitLValueToRValue(const Expr *e) {
3371    return CGF.EmitScalarExpr(e);
3372  }
3373
3374  /// For consumptions, just emit the subexpression and perform the
3375  /// consumption like normal.
3376  llvm::Value *visitConsumeObject(const Expr *e) {
3377    llvm::Value *value = CGF.EmitScalarExpr(e);
3378    return CGF.EmitObjCConsumeObject(e->getType(), value);
3379  }
3380
3381  /// No special logic for block extensions.  (This probably can't
3382  /// actually happen in this emitter, though.)
3383  llvm::Value *visitExtendBlockObject(const Expr *e) {
3384    return CGF.EmitARCExtendBlockObject(e);
3385  }
3386
3387  /// For reclaims, perform an unsafeClaim if that's enabled.
3388  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3389    return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3390  }
3391
3392  /// When we have an undecorated call, just emit it without adding
3393  /// the unsafeClaim.
3394  llvm::Value *visitCall(const Expr *e) {
3395    return CGF.EmitScalarExpr(e);
3396  }
3397
3398  /// Just do normal scalar emission in the default case.
3399  llvm::Value *visitExpr(const Expr *e) {
3400    return CGF.EmitScalarExpr(e);
3401  }
3402};
3403}
3404
3405static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3406                                                      const Expr *e) {
3407  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3408}
3409
3410/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3411/// immediately releasing the resut of EmitARCRetainScalarExpr, but
3412/// avoiding any spurious retains, including by performing reclaims
3413/// with objc_unsafeClaimAutoreleasedReturnValue.
3414llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3415  // Look through full-expressions.
3416  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3417    RunCleanupsScope scope(*this);
3418    return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3419  }
3420
3421  return emitARCUnsafeUnretainedScalarExpr(*this, e);
3422}
3423
3424std::pair<LValue,llvm::Value*>
3425CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3426                                              bool ignored) {
3427  // Evaluate the RHS first.  If we're ignoring the result, assume
3428  // that we can emit at an unsafe +0.
3429  llvm::Value *value;
3430  if (ignored) {
3431    value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3432  } else {
3433    value = EmitScalarExpr(e->getRHS());
3434  }
3435
3436  // Emit the LHS and perform the store.
3437  LValue lvalue = EmitLValue(e->getLHS());
3438  EmitStoreOfScalar(value, lvalue);
3439
3440  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3441}
3442
3443std::pair<LValue,llvm::Value*>
3444CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3445                                    bool ignored) {
3446  // Evaluate the RHS first.
3447  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3448  llvm::Value *value = result.getPointer();
3449
3450  bool hasImmediateRetain = result.getInt();
3451
3452  // If we didn't emit a retained object, and the l-value is of block
3453  // type, then we need to emit the block-retain immediately in case
3454  // it invalidates the l-value.
3455  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3456    value = EmitARCRetainBlock(value, /*mandatory*/ false);
3457    hasImmediateRetain = true;
3458  }
3459
3460  LValue lvalue = EmitLValue(e->getLHS());
3461
3462  // If the RHS was emitted retained, expand this.
3463  if (hasImmediateRetain) {
3464    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3465    EmitStoreOfScalar(value, lvalue);
3466    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3467  } else {
3468    value = EmitARCStoreStrong(lvalue, value, ignored);
3469  }
3470
3471  return std::pair<LValue,llvm::Value*>(lvalue, value);
3472}
3473
3474std::pair<LValue,llvm::Value*>
3475CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3476  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3477  LValue lvalue = EmitLValue(e->getLHS());
3478
3479  EmitStoreOfScalar(value, lvalue);
3480
3481  return std::pair<LValue,llvm::Value*>(lvalue, value);
3482}
3483
3484void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3485                                          const ObjCAutoreleasePoolStmt &ARPS) {
3486  const Stmt *subStmt = ARPS.getSubStmt();
3487  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3488
3489  CGDebugInfo *DI = getDebugInfo();
3490  if (DI)
3491    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3492
3493  // Keep track of the current cleanup stack depth.
3494  RunCleanupsScope Scope(*this);
3495  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3496    llvm::Value *token = EmitObjCAutoreleasePoolPush();
3497    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3498  } else {
3499    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3500    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3501  }
3502
3503  for (const auto *I : S.body())
3504    EmitStmt(I);
3505
3506  if (DI)
3507    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3508}
3509
3510/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3511/// make sure it survives garbage collection until this point.
3512void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3513  // We just use an inline assembly.
3514  llvm::FunctionType *extenderType
3515    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3516  llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3517                                                   /* assembly */ "",
3518                                                   /* constraints */ "r",
3519                                                   /* side effects */ true);
3520
3521  object = Builder.CreateBitCast(object, VoidPtrTy);
3522  EmitNounwindRuntimeCall(extender, object);
3523}
3524
3525/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3526/// non-trivial copy assignment function, produce following helper function.
3527/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3528///
3529llvm::Constant *
3530CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3531                                        const ObjCPropertyImplDecl *PID) {
3532  if (!getLangOpts().CPlusPlus ||
3533      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3534    return nullptr;
3535  QualType Ty = PID->getPropertyIvarDecl()->getType();
3536  if (!Ty->isRecordType())
3537    return nullptr;
3538  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3539  if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3540    return nullptr;
3541  llvm::Constant *HelperFn = nullptr;
3542  if (hasTrivialSetExpr(PID))
3543    return nullptr;
3544  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3545  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3546    return HelperFn;
3547
3548  ASTContext &C = getContext();
3549  IdentifierInfo *II
3550    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3551
3552  QualType ReturnTy = C.VoidTy;
3553  QualType DestTy = C.getPointerType(Ty);
3554  QualType SrcTy = Ty;
3555  SrcTy.addConst();
3556  SrcTy = C.getPointerType(SrcTy);
3557
3558  SmallVector<QualType, 2> ArgTys;
3559  ArgTys.push_back(DestTy);
3560  ArgTys.push_back(SrcTy);
3561  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3562
3563  FunctionDecl *FD = FunctionDecl::Create(
3564      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3565      FunctionTy, nullptr, SC_Static, false, false);
3566
3567  FunctionArgList args;
3568  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3569                            ImplicitParamDecl::Other);
3570  args.push_back(&DstDecl);
3571  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3572                            ImplicitParamDecl::Other);
3573  args.push_back(&SrcDecl);
3574
3575  const CGFunctionInfo &FI =
3576      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3577
3578  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3579
3580  llvm::Function *Fn =
3581    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3582                           "__assign_helper_atomic_property_",
3583                           &CGM.getModule());
3584
3585  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3586
3587  StartFunction(FD, ReturnTy, Fn, FI, args);
3588
3589  DeclRefExpr DstExpr(C, &DstDecl, false, DestTy, VK_RValue, SourceLocation());
3590  UnaryOperator *DST = UnaryOperator::Create(
3591      C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3592      SourceLocation(), false, FPOptionsOverride());
3593
3594  DeclRefExpr SrcExpr(C, &SrcDecl, false, SrcTy, VK_RValue, SourceLocation());
3595  UnaryOperator *SRC = UnaryOperator::Create(
3596      C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3597      SourceLocation(), false, FPOptionsOverride());
3598
3599  Expr *Args[2] = {DST, SRC};
3600  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3601  CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3602      C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3603      VK_LValue, SourceLocation(), FPOptionsOverride());
3604
3605  EmitStmt(TheCall);
3606
3607  FinishFunction();
3608  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3609  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3610  return HelperFn;
3611}
3612
3613llvm::Constant *
3614CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3615                                            const ObjCPropertyImplDecl *PID) {
3616  if (!getLangOpts().CPlusPlus ||
3617      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3618    return nullptr;
3619  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3620  QualType Ty = PD->getType();
3621  if (!Ty->isRecordType())
3622    return nullptr;
3623  if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3624    return nullptr;
3625  llvm::Constant *HelperFn = nullptr;
3626  if (hasTrivialGetExpr(PID))
3627    return nullptr;
3628  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3629  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3630    return HelperFn;
3631
3632  ASTContext &C = getContext();
3633  IdentifierInfo *II =
3634      &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3635
3636  QualType ReturnTy = C.VoidTy;
3637  QualType DestTy = C.getPointerType(Ty);
3638  QualType SrcTy = Ty;
3639  SrcTy.addConst();
3640  SrcTy = C.getPointerType(SrcTy);
3641
3642  SmallVector<QualType, 2> ArgTys;
3643  ArgTys.push_back(DestTy);
3644  ArgTys.push_back(SrcTy);
3645  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3646
3647  FunctionDecl *FD = FunctionDecl::Create(
3648      C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3649      FunctionTy, nullptr, SC_Static, false, false);
3650
3651  FunctionArgList args;
3652  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3653                            ImplicitParamDecl::Other);
3654  args.push_back(&DstDecl);
3655  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3656                            ImplicitParamDecl::Other);
3657  args.push_back(&SrcDecl);
3658
3659  const CGFunctionInfo &FI =
3660      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3661
3662  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3663
3664  llvm::Function *Fn = llvm::Function::Create(
3665      LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3666      &CGM.getModule());
3667
3668  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3669
3670  StartFunction(FD, ReturnTy, Fn, FI, args);
3671
3672  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3673                      SourceLocation());
3674
3675  UnaryOperator *SRC = UnaryOperator::Create(
3676      C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3677      SourceLocation(), false, FPOptionsOverride());
3678
3679  CXXConstructExpr *CXXConstExpr =
3680    cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3681
3682  SmallVector<Expr*, 4> ConstructorArgs;
3683  ConstructorArgs.push_back(SRC);
3684  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3685                         CXXConstExpr->arg_end());
3686
3687  CXXConstructExpr *TheCXXConstructExpr =
3688    CXXConstructExpr::Create(C, Ty, SourceLocation(),
3689                             CXXConstExpr->getConstructor(),
3690                             CXXConstExpr->isElidable(),
3691                             ConstructorArgs,
3692                             CXXConstExpr->hadMultipleCandidates(),
3693                             CXXConstExpr->isListInitialization(),
3694                             CXXConstExpr->isStdInitListInitialization(),
3695                             CXXConstExpr->requiresZeroInitialization(),
3696                             CXXConstExpr->getConstructionKind(),
3697                             SourceRange());
3698
3699  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3700                      SourceLocation());
3701
3702  RValue DV = EmitAnyExpr(&DstExpr);
3703  CharUnits Alignment
3704    = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3705  EmitAggExpr(TheCXXConstructExpr,
3706              AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3707                                    Qualifiers(),
3708                                    AggValueSlot::IsDestructed,
3709                                    AggValueSlot::DoesNotNeedGCBarriers,
3710                                    AggValueSlot::IsNotAliased,
3711                                    AggValueSlot::DoesNotOverlap));
3712
3713  FinishFunction();
3714  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3715  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3716  return HelperFn;
3717}
3718
3719llvm::Value *
3720CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3721  // Get selectors for retain/autorelease.
3722  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3723  Selector CopySelector =
3724      getContext().Selectors.getNullarySelector(CopyID);
3725  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3726  Selector AutoreleaseSelector =
3727      getContext().Selectors.getNullarySelector(AutoreleaseID);
3728
3729  // Emit calls to retain/autorelease.
3730  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3731  llvm::Value *Val = Block;
3732  RValue Result;
3733  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3734                                       Ty, CopySelector,
3735                                       Val, CallArgList(), nullptr, nullptr);
3736  Val = Result.getScalarVal();
3737  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3738                                       Ty, AutoreleaseSelector,
3739                                       Val, CallArgList(), nullptr, nullptr);
3740  Val = Result.getScalarVal();
3741  return Val;
3742}
3743
3744llvm::Value *
3745CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3746  assert(Args.size() == 3 && "Expected 3 argument here!");
3747
3748  if (!CGM.IsOSVersionAtLeastFn) {
3749    llvm::FunctionType *FTy =
3750        llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3751    CGM.IsOSVersionAtLeastFn =
3752        CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3753  }
3754
3755  llvm::Value *CallRes =
3756      EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3757
3758  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3759}
3760
3761void CodeGenModule::emitAtAvailableLinkGuard() {
3762  if (!IsOSVersionAtLeastFn)
3763    return;
3764  // @available requires CoreFoundation only on Darwin.
3765  if (!Target.getTriple().isOSDarwin())
3766    return;
3767  // Add -framework CoreFoundation to the linker commands. We still want to
3768  // emit the core foundation reference down below because otherwise if
3769  // CoreFoundation is not used in the code, the linker won't link the
3770  // framework.
3771  auto &Context = getLLVMContext();
3772  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3773                             llvm::MDString::get(Context, "CoreFoundation")};
3774  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3775  // Emit a reference to a symbol from CoreFoundation to ensure that
3776  // CoreFoundation is linked into the final binary.
3777  llvm::FunctionType *FTy =
3778      llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3779  llvm::FunctionCallee CFFunc =
3780      CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3781
3782  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3783  llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3784      CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3785      llvm::AttributeList(), /*Local=*/true);
3786  llvm::Function *CFLinkCheckFunc =
3787      cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3788  if (CFLinkCheckFunc->empty()) {
3789    CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3790    CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3791    CodeGenFunction CGF(*this);
3792    CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3793    CGF.EmitNounwindRuntimeCall(CFFunc,
3794                                llvm::Constant::getNullValue(VoidPtrTy));
3795    CGF.Builder.CreateUnreachable();
3796    addCompilerUsedGlobal(CFLinkCheckFunc);
3797  }
3798}
3799
3800CGObjCRuntime::~CGObjCRuntime() {}
3801