1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Decl nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCXXABI.h"
15#include "CGCleanup.h"
16#include "CGDebugInfo.h"
17#include "CGOpenCLRuntime.h"
18#include "CGOpenMPRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "PatternInit.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/Decl.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/DeclOpenMP.h"
30#include "clang/Basic/CodeGenOptions.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/CodeGen/CGFunctionInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/Type.h"
40
41using namespace clang;
42using namespace CodeGen;
43
44static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
45              "Clang max alignment greater than what LLVM supports?");
46
47void CodeGenFunction::EmitDecl(const Decl &D) {
48  switch (D.getKind()) {
49  case Decl::BuiltinTemplate:
50  case Decl::TranslationUnit:
51  case Decl::ExternCContext:
52  case Decl::Namespace:
53  case Decl::UnresolvedUsingTypename:
54  case Decl::ClassTemplateSpecialization:
55  case Decl::ClassTemplatePartialSpecialization:
56  case Decl::VarTemplateSpecialization:
57  case Decl::VarTemplatePartialSpecialization:
58  case Decl::TemplateTypeParm:
59  case Decl::UnresolvedUsingValue:
60  case Decl::NonTypeTemplateParm:
61  case Decl::CXXDeductionGuide:
62  case Decl::CXXMethod:
63  case Decl::CXXConstructor:
64  case Decl::CXXDestructor:
65  case Decl::CXXConversion:
66  case Decl::Field:
67  case Decl::MSProperty:
68  case Decl::IndirectField:
69  case Decl::ObjCIvar:
70  case Decl::ObjCAtDefsField:
71  case Decl::ParmVar:
72  case Decl::ImplicitParam:
73  case Decl::ClassTemplate:
74  case Decl::VarTemplate:
75  case Decl::FunctionTemplate:
76  case Decl::TypeAliasTemplate:
77  case Decl::TemplateTemplateParm:
78  case Decl::ObjCMethod:
79  case Decl::ObjCCategory:
80  case Decl::ObjCProtocol:
81  case Decl::ObjCInterface:
82  case Decl::ObjCCategoryImpl:
83  case Decl::ObjCImplementation:
84  case Decl::ObjCProperty:
85  case Decl::ObjCCompatibleAlias:
86  case Decl::PragmaComment:
87  case Decl::PragmaDetectMismatch:
88  case Decl::AccessSpec:
89  case Decl::LinkageSpec:
90  case Decl::Export:
91  case Decl::ObjCPropertyImpl:
92  case Decl::FileScopeAsm:
93  case Decl::Friend:
94  case Decl::FriendTemplate:
95  case Decl::Block:
96  case Decl::Captured:
97  case Decl::ClassScopeFunctionSpecialization:
98  case Decl::UsingShadow:
99  case Decl::ConstructorUsingShadow:
100  case Decl::ObjCTypeParam:
101  case Decl::Binding:
102    llvm_unreachable("Declaration should not be in declstmts!");
103  case Decl::Function:  // void X();
104  case Decl::Record:    // struct/union/class X;
105  case Decl::Enum:      // enum X;
106  case Decl::EnumConstant: // enum ? { X = ? }
107  case Decl::CXXRecord: // struct/union/class X; [C++]
108  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
109  case Decl::Label:        // __label__ x;
110  case Decl::Import:
111  case Decl::MSGuid:    // __declspec(uuid("..."))
112  case Decl::OMPThreadPrivate:
113  case Decl::OMPAllocate:
114  case Decl::OMPCapturedExpr:
115  case Decl::OMPRequires:
116  case Decl::Empty:
117  case Decl::Concept:
118  case Decl::LifetimeExtendedTemporary:
119  case Decl::RequiresExprBody:
120    // None of these decls require codegen support.
121    return;
122
123  case Decl::NamespaceAlias:
124    if (CGDebugInfo *DI = getDebugInfo())
125        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
126    return;
127  case Decl::Using:          // using X; [C++]
128    if (CGDebugInfo *DI = getDebugInfo())
129        DI->EmitUsingDecl(cast<UsingDecl>(D));
130    return;
131  case Decl::UsingPack:
132    for (auto *Using : cast<UsingPackDecl>(D).expansions())
133      EmitDecl(*Using);
134    return;
135  case Decl::UsingDirective: // using namespace X; [C++]
136    if (CGDebugInfo *DI = getDebugInfo())
137      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
138    return;
139  case Decl::Var:
140  case Decl::Decomposition: {
141    const VarDecl &VD = cast<VarDecl>(D);
142    assert(VD.isLocalVarDecl() &&
143           "Should not see file-scope variables inside a function!");
144    EmitVarDecl(VD);
145    if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
146      for (auto *B : DD->bindings())
147        if (auto *HD = B->getHoldingVar())
148          EmitVarDecl(*HD);
149    return;
150  }
151
152  case Decl::OMPDeclareReduction:
153    return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
154
155  case Decl::OMPDeclareMapper:
156    return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
157
158  case Decl::Typedef:      // typedef int X;
159  case Decl::TypeAlias: {  // using X = int; [C++0x]
160    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
161    QualType Ty = TD.getUnderlyingType();
162
163    if (Ty->isVariablyModifiedType())
164      EmitVariablyModifiedType(Ty);
165
166    return;
167  }
168  }
169}
170
171/// EmitVarDecl - This method handles emission of any variable declaration
172/// inside a function, including static vars etc.
173void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
174  if (D.hasExternalStorage())
175    // Don't emit it now, allow it to be emitted lazily on its first use.
176    return;
177
178  // Some function-scope variable does not have static storage but still
179  // needs to be emitted like a static variable, e.g. a function-scope
180  // variable in constant address space in OpenCL.
181  if (D.getStorageDuration() != SD_Automatic) {
182    // Static sampler variables translated to function calls.
183    if (D.getType()->isSamplerT())
184      return;
185
186    llvm::GlobalValue::LinkageTypes Linkage =
187        CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
188
189    // FIXME: We need to force the emission/use of a guard variable for
190    // some variables even if we can constant-evaluate them because
191    // we can't guarantee every translation unit will constant-evaluate them.
192
193    return EmitStaticVarDecl(D, Linkage);
194  }
195
196  if (D.getType().getAddressSpace() == LangAS::opencl_local)
197    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
198
199  assert(D.hasLocalStorage());
200  return EmitAutoVarDecl(D);
201}
202
203static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
204  if (CGM.getLangOpts().CPlusPlus)
205    return CGM.getMangledName(&D).str();
206
207  // If this isn't C++, we don't need a mangled name, just a pretty one.
208  assert(!D.isExternallyVisible() && "name shouldn't matter");
209  std::string ContextName;
210  const DeclContext *DC = D.getDeclContext();
211  if (auto *CD = dyn_cast<CapturedDecl>(DC))
212    DC = cast<DeclContext>(CD->getNonClosureContext());
213  if (const auto *FD = dyn_cast<FunctionDecl>(DC))
214    ContextName = std::string(CGM.getMangledName(FD));
215  else if (const auto *BD = dyn_cast<BlockDecl>(DC))
216    ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
217  else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
218    ContextName = OMD->getSelector().getAsString();
219  else
220    llvm_unreachable("Unknown context for static var decl");
221
222  ContextName += "." + D.getNameAsString();
223  return ContextName;
224}
225
226llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
227    const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
228  // In general, we don't always emit static var decls once before we reference
229  // them. It is possible to reference them before emitting the function that
230  // contains them, and it is possible to emit the containing function multiple
231  // times.
232  if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
233    return ExistingGV;
234
235  QualType Ty = D.getType();
236  assert(Ty->isConstantSizeType() && "VLAs can't be static");
237
238  // Use the label if the variable is renamed with the asm-label extension.
239  std::string Name;
240  if (D.hasAttr<AsmLabelAttr>())
241    Name = std::string(getMangledName(&D));
242  else
243    Name = getStaticDeclName(*this, D);
244
245  llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
246  LangAS AS = GetGlobalVarAddressSpace(&D);
247  unsigned TargetAS = getContext().getTargetAddressSpace(AS);
248
249  // OpenCL variables in local address space and CUDA shared
250  // variables cannot have an initializer.
251  llvm::Constant *Init = nullptr;
252  if (Ty.getAddressSpace() == LangAS::opencl_local ||
253      D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
254    Init = llvm::UndefValue::get(LTy);
255  else
256    Init = EmitNullConstant(Ty);
257
258  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
259      getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
260      nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
261  GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
262
263  if (supportsCOMDAT() && GV->isWeakForLinker())
264    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
265
266  if (D.getTLSKind())
267    setTLSMode(GV, D);
268
269  setGVProperties(GV, &D);
270
271  // Make sure the result is of the correct type.
272  LangAS ExpectedAS = Ty.getAddressSpace();
273  llvm::Constant *Addr = GV;
274  if (AS != ExpectedAS) {
275    Addr = getTargetCodeGenInfo().performAddrSpaceCast(
276        *this, GV, AS, ExpectedAS,
277        LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
278  }
279
280  setStaticLocalDeclAddress(&D, Addr);
281
282  // Ensure that the static local gets initialized by making sure the parent
283  // function gets emitted eventually.
284  const Decl *DC = cast<Decl>(D.getDeclContext());
285
286  // We can't name blocks or captured statements directly, so try to emit their
287  // parents.
288  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
289    DC = DC->getNonClosureContext();
290    // FIXME: Ensure that global blocks get emitted.
291    if (!DC)
292      return Addr;
293  }
294
295  GlobalDecl GD;
296  if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
297    GD = GlobalDecl(CD, Ctor_Base);
298  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
299    GD = GlobalDecl(DD, Dtor_Base);
300  else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
301    GD = GlobalDecl(FD);
302  else {
303    // Don't do anything for Obj-C method decls or global closures. We should
304    // never defer them.
305    assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
306  }
307  if (GD.getDecl()) {
308    // Disable emission of the parent function for the OpenMP device codegen.
309    CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
310    (void)GetAddrOfGlobal(GD);
311  }
312
313  return Addr;
314}
315
316/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
317/// global variable that has already been created for it.  If the initializer
318/// has a different type than GV does, this may free GV and return a different
319/// one.  Otherwise it just returns GV.
320llvm::GlobalVariable *
321CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
322                                               llvm::GlobalVariable *GV) {
323  ConstantEmitter emitter(*this);
324  llvm::Constant *Init = emitter.tryEmitForInitializer(D);
325
326  // If constant emission failed, then this should be a C++ static
327  // initializer.
328  if (!Init) {
329    if (!getLangOpts().CPlusPlus)
330      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
331    else if (HaveInsertPoint()) {
332      // Since we have a static initializer, this global variable can't
333      // be constant.
334      GV->setConstant(false);
335
336      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
337    }
338    return GV;
339  }
340
341  // The initializer may differ in type from the global. Rewrite
342  // the global to match the initializer.  (We have to do this
343  // because some types, like unions, can't be completely represented
344  // in the LLVM type system.)
345  if (GV->getValueType() != Init->getType()) {
346    llvm::GlobalVariable *OldGV = GV;
347
348    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
349                                  OldGV->isConstant(),
350                                  OldGV->getLinkage(), Init, "",
351                                  /*InsertBefore*/ OldGV,
352                                  OldGV->getThreadLocalMode(),
353                           CGM.getContext().getTargetAddressSpace(D.getType()));
354    GV->setVisibility(OldGV->getVisibility());
355    GV->setDSOLocal(OldGV->isDSOLocal());
356    GV->setComdat(OldGV->getComdat());
357
358    // Steal the name of the old global
359    GV->takeName(OldGV);
360
361    // Replace all uses of the old global with the new global
362    llvm::Constant *NewPtrForOldDecl =
363    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
364    OldGV->replaceAllUsesWith(NewPtrForOldDecl);
365
366    // Erase the old global, since it is no longer used.
367    OldGV->eraseFromParent();
368  }
369
370  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
371  GV->setInitializer(Init);
372
373  emitter.finalize(GV);
374
375  if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
376      HaveInsertPoint()) {
377    // We have a constant initializer, but a nontrivial destructor. We still
378    // need to perform a guarded "initialization" in order to register the
379    // destructor.
380    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
381  }
382
383  return GV;
384}
385
386void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
387                                      llvm::GlobalValue::LinkageTypes Linkage) {
388  // Check to see if we already have a global variable for this
389  // declaration.  This can happen when double-emitting function
390  // bodies, e.g. with complete and base constructors.
391  llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
392  CharUnits alignment = getContext().getDeclAlign(&D);
393
394  // Store into LocalDeclMap before generating initializer to handle
395  // circular references.
396  setAddrOfLocalVar(&D, Address(addr, alignment));
397
398  // We can't have a VLA here, but we can have a pointer to a VLA,
399  // even though that doesn't really make any sense.
400  // Make sure to evaluate VLA bounds now so that we have them for later.
401  if (D.getType()->isVariablyModifiedType())
402    EmitVariablyModifiedType(D.getType());
403
404  // Save the type in case adding the initializer forces a type change.
405  llvm::Type *expectedType = addr->getType();
406
407  llvm::GlobalVariable *var =
408    cast<llvm::GlobalVariable>(addr->stripPointerCasts());
409
410  // CUDA's local and local static __shared__ variables should not
411  // have any non-empty initializers. This is ensured by Sema.
412  // Whatever initializer such variable may have when it gets here is
413  // a no-op and should not be emitted.
414  bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
415                         D.hasAttr<CUDASharedAttr>();
416  // If this value has an initializer, emit it.
417  if (D.getInit() && !isCudaSharedVar)
418    var = AddInitializerToStaticVarDecl(D, var);
419
420  var->setAlignment(alignment.getAsAlign());
421
422  if (D.hasAttr<AnnotateAttr>())
423    CGM.AddGlobalAnnotations(&D, var);
424
425  if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
426    var->addAttribute("bss-section", SA->getName());
427  if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
428    var->addAttribute("data-section", SA->getName());
429  if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
430    var->addAttribute("rodata-section", SA->getName());
431  if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
432    var->addAttribute("relro-section", SA->getName());
433
434  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
435    var->setSection(SA->getName());
436
437  if (D.hasAttr<UsedAttr>())
438    CGM.addUsedGlobal(var);
439
440  // We may have to cast the constant because of the initializer
441  // mismatch above.
442  //
443  // FIXME: It is really dangerous to store this in the map; if anyone
444  // RAUW's the GV uses of this constant will be invalid.
445  llvm::Constant *castedAddr =
446    llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
447  if (var != castedAddr)
448    LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
449  CGM.setStaticLocalDeclAddress(&D, castedAddr);
450
451  CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
452
453  // Emit global variable debug descriptor for static vars.
454  CGDebugInfo *DI = getDebugInfo();
455  if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
456    DI->setLocation(D.getLocation());
457    DI->EmitGlobalVariable(var, &D);
458  }
459}
460
461namespace {
462  struct DestroyObject final : EHScopeStack::Cleanup {
463    DestroyObject(Address addr, QualType type,
464                  CodeGenFunction::Destroyer *destroyer,
465                  bool useEHCleanupForArray)
466      : addr(addr), type(type), destroyer(destroyer),
467        useEHCleanupForArray(useEHCleanupForArray) {}
468
469    Address addr;
470    QualType type;
471    CodeGenFunction::Destroyer *destroyer;
472    bool useEHCleanupForArray;
473
474    void Emit(CodeGenFunction &CGF, Flags flags) override {
475      // Don't use an EH cleanup recursively from an EH cleanup.
476      bool useEHCleanupForArray =
477        flags.isForNormalCleanup() && this->useEHCleanupForArray;
478
479      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
480    }
481  };
482
483  template <class Derived>
484  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
485    DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
486        : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
487
488    llvm::Value *NRVOFlag;
489    Address Loc;
490    QualType Ty;
491
492    void Emit(CodeGenFunction &CGF, Flags flags) override {
493      // Along the exceptions path we always execute the dtor.
494      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
495
496      llvm::BasicBlock *SkipDtorBB = nullptr;
497      if (NRVO) {
498        // If we exited via NRVO, we skip the destructor call.
499        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
500        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
501        llvm::Value *DidNRVO =
502          CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
503        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
504        CGF.EmitBlock(RunDtorBB);
505      }
506
507      static_cast<Derived *>(this)->emitDestructorCall(CGF);
508
509      if (NRVO) CGF.EmitBlock(SkipDtorBB);
510    }
511
512    virtual ~DestroyNRVOVariable() = default;
513  };
514
515  struct DestroyNRVOVariableCXX final
516      : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
517    DestroyNRVOVariableCXX(Address addr, QualType type,
518                           const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
519        : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
520          Dtor(Dtor) {}
521
522    const CXXDestructorDecl *Dtor;
523
524    void emitDestructorCall(CodeGenFunction &CGF) {
525      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
526                                /*ForVirtualBase=*/false,
527                                /*Delegating=*/false, Loc, Ty);
528    }
529  };
530
531  struct DestroyNRVOVariableC final
532      : DestroyNRVOVariable<DestroyNRVOVariableC> {
533    DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
534        : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
535
536    void emitDestructorCall(CodeGenFunction &CGF) {
537      CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
538    }
539  };
540
541  struct CallStackRestore final : EHScopeStack::Cleanup {
542    Address Stack;
543    CallStackRestore(Address Stack) : Stack(Stack) {}
544    void Emit(CodeGenFunction &CGF, Flags flags) override {
545      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
546      llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
547      CGF.Builder.CreateCall(F, V);
548    }
549  };
550
551  struct ExtendGCLifetime final : EHScopeStack::Cleanup {
552    const VarDecl &Var;
553    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
554
555    void Emit(CodeGenFunction &CGF, Flags flags) override {
556      // Compute the address of the local variable, in case it's a
557      // byref or something.
558      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
559                      Var.getType(), VK_LValue, SourceLocation());
560      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
561                                                SourceLocation());
562      CGF.EmitExtendGCLifetime(value);
563    }
564  };
565
566  struct CallCleanupFunction final : EHScopeStack::Cleanup {
567    llvm::Constant *CleanupFn;
568    const CGFunctionInfo &FnInfo;
569    const VarDecl &Var;
570
571    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
572                        const VarDecl *Var)
573      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
574
575    void Emit(CodeGenFunction &CGF, Flags flags) override {
576      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
577                      Var.getType(), VK_LValue, SourceLocation());
578      // Compute the address of the local variable, in case it's a byref
579      // or something.
580      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
581
582      // In some cases, the type of the function argument will be different from
583      // the type of the pointer. An example of this is
584      // void f(void* arg);
585      // __attribute__((cleanup(f))) void *g;
586      //
587      // To fix this we insert a bitcast here.
588      QualType ArgTy = FnInfo.arg_begin()->type;
589      llvm::Value *Arg =
590        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
591
592      CallArgList Args;
593      Args.add(RValue::get(Arg),
594               CGF.getContext().getPointerType(Var.getType()));
595      auto Callee = CGCallee::forDirect(CleanupFn);
596      CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
597    }
598  };
599} // end anonymous namespace
600
601/// EmitAutoVarWithLifetime - Does the setup required for an automatic
602/// variable with lifetime.
603static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
604                                    Address addr,
605                                    Qualifiers::ObjCLifetime lifetime) {
606  switch (lifetime) {
607  case Qualifiers::OCL_None:
608    llvm_unreachable("present but none");
609
610  case Qualifiers::OCL_ExplicitNone:
611    // nothing to do
612    break;
613
614  case Qualifiers::OCL_Strong: {
615    CodeGenFunction::Destroyer *destroyer =
616      (var.hasAttr<ObjCPreciseLifetimeAttr>()
617       ? CodeGenFunction::destroyARCStrongPrecise
618       : CodeGenFunction::destroyARCStrongImprecise);
619
620    CleanupKind cleanupKind = CGF.getARCCleanupKind();
621    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
622                    cleanupKind & EHCleanup);
623    break;
624  }
625  case Qualifiers::OCL_Autoreleasing:
626    // nothing to do
627    break;
628
629  case Qualifiers::OCL_Weak:
630    // __weak objects always get EH cleanups; otherwise, exceptions
631    // could cause really nasty crashes instead of mere leaks.
632    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
633                    CodeGenFunction::destroyARCWeak,
634                    /*useEHCleanup*/ true);
635    break;
636  }
637}
638
639static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
640  if (const Expr *e = dyn_cast<Expr>(s)) {
641    // Skip the most common kinds of expressions that make
642    // hierarchy-walking expensive.
643    s = e = e->IgnoreParenCasts();
644
645    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
646      return (ref->getDecl() == &var);
647    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
648      const BlockDecl *block = be->getBlockDecl();
649      for (const auto &I : block->captures()) {
650        if (I.getVariable() == &var)
651          return true;
652      }
653    }
654  }
655
656  for (const Stmt *SubStmt : s->children())
657    // SubStmt might be null; as in missing decl or conditional of an if-stmt.
658    if (SubStmt && isAccessedBy(var, SubStmt))
659      return true;
660
661  return false;
662}
663
664static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
665  if (!decl) return false;
666  if (!isa<VarDecl>(decl)) return false;
667  const VarDecl *var = cast<VarDecl>(decl);
668  return isAccessedBy(*var, e);
669}
670
671static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
672                                   const LValue &destLV, const Expr *init) {
673  bool needsCast = false;
674
675  while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
676    switch (castExpr->getCastKind()) {
677    // Look through casts that don't require representation changes.
678    case CK_NoOp:
679    case CK_BitCast:
680    case CK_BlockPointerToObjCPointerCast:
681      needsCast = true;
682      break;
683
684    // If we find an l-value to r-value cast from a __weak variable,
685    // emit this operation as a copy or move.
686    case CK_LValueToRValue: {
687      const Expr *srcExpr = castExpr->getSubExpr();
688      if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
689        return false;
690
691      // Emit the source l-value.
692      LValue srcLV = CGF.EmitLValue(srcExpr);
693
694      // Handle a formal type change to avoid asserting.
695      auto srcAddr = srcLV.getAddress(CGF);
696      if (needsCast) {
697        srcAddr = CGF.Builder.CreateElementBitCast(
698            srcAddr, destLV.getAddress(CGF).getElementType());
699      }
700
701      // If it was an l-value, use objc_copyWeak.
702      if (srcExpr->getValueKind() == VK_LValue) {
703        CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
704      } else {
705        assert(srcExpr->getValueKind() == VK_XValue);
706        CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
707      }
708      return true;
709    }
710
711    // Stop at anything else.
712    default:
713      return false;
714    }
715
716    init = castExpr->getSubExpr();
717  }
718  return false;
719}
720
721static void drillIntoBlockVariable(CodeGenFunction &CGF,
722                                   LValue &lvalue,
723                                   const VarDecl *var) {
724  lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
725}
726
727void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
728                                           SourceLocation Loc) {
729  if (!SanOpts.has(SanitizerKind::NullabilityAssign))
730    return;
731
732  auto Nullability = LHS.getType()->getNullability(getContext());
733  if (!Nullability || *Nullability != NullabilityKind::NonNull)
734    return;
735
736  // Check if the right hand side of the assignment is nonnull, if the left
737  // hand side must be nonnull.
738  SanitizerScope SanScope(this);
739  llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
740  llvm::Constant *StaticData[] = {
741      EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
742      llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
743      llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
744  EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
745            SanitizerHandler::TypeMismatch, StaticData, RHS);
746}
747
748void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
749                                     LValue lvalue, bool capturedByInit) {
750  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
751  if (!lifetime) {
752    llvm::Value *value = EmitScalarExpr(init);
753    if (capturedByInit)
754      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
755    EmitNullabilityCheck(lvalue, value, init->getExprLoc());
756    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
757    return;
758  }
759
760  if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
761    init = DIE->getExpr();
762
763  // If we're emitting a value with lifetime, we have to do the
764  // initialization *before* we leave the cleanup scopes.
765  if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init))
766    init = EWC->getSubExpr();
767  CodeGenFunction::RunCleanupsScope Scope(*this);
768
769  // We have to maintain the illusion that the variable is
770  // zero-initialized.  If the variable might be accessed in its
771  // initializer, zero-initialize before running the initializer, then
772  // actually perform the initialization with an assign.
773  bool accessedByInit = false;
774  if (lifetime != Qualifiers::OCL_ExplicitNone)
775    accessedByInit = (capturedByInit || isAccessedBy(D, init));
776  if (accessedByInit) {
777    LValue tempLV = lvalue;
778    // Drill down to the __block object if necessary.
779    if (capturedByInit) {
780      // We can use a simple GEP for this because it can't have been
781      // moved yet.
782      tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
783                                              cast<VarDecl>(D),
784                                              /*follow*/ false));
785    }
786
787    auto ty =
788        cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
789    llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
790
791    // If __weak, we want to use a barrier under certain conditions.
792    if (lifetime == Qualifiers::OCL_Weak)
793      EmitARCInitWeak(tempLV.getAddress(*this), zero);
794
795    // Otherwise just do a simple store.
796    else
797      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
798  }
799
800  // Emit the initializer.
801  llvm::Value *value = nullptr;
802
803  switch (lifetime) {
804  case Qualifiers::OCL_None:
805    llvm_unreachable("present but none");
806
807  case Qualifiers::OCL_Strong: {
808    if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
809      value = EmitARCRetainScalarExpr(init);
810      break;
811    }
812    // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
813    // that we omit the retain, and causes non-autoreleased return values to be
814    // immediately released.
815    LLVM_FALLTHROUGH;
816  }
817
818  case Qualifiers::OCL_ExplicitNone:
819    value = EmitARCUnsafeUnretainedScalarExpr(init);
820    break;
821
822  case Qualifiers::OCL_Weak: {
823    // If it's not accessed by the initializer, try to emit the
824    // initialization with a copy or move.
825    if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
826      return;
827    }
828
829    // No way to optimize a producing initializer into this.  It's not
830    // worth optimizing for, because the value will immediately
831    // disappear in the common case.
832    value = EmitScalarExpr(init);
833
834    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
835    if (accessedByInit)
836      EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
837    else
838      EmitARCInitWeak(lvalue.getAddress(*this), value);
839    return;
840  }
841
842  case Qualifiers::OCL_Autoreleasing:
843    value = EmitARCRetainAutoreleaseScalarExpr(init);
844    break;
845  }
846
847  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
848
849  EmitNullabilityCheck(lvalue, value, init->getExprLoc());
850
851  // If the variable might have been accessed by its initializer, we
852  // might have to initialize with a barrier.  We have to do this for
853  // both __weak and __strong, but __weak got filtered out above.
854  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
855    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
856    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
857    EmitARCRelease(oldValue, ARCImpreciseLifetime);
858    return;
859  }
860
861  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
862}
863
864/// Decide whether we can emit the non-zero parts of the specified initializer
865/// with equal or fewer than NumStores scalar stores.
866static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
867                                               unsigned &NumStores) {
868  // Zero and Undef never requires any extra stores.
869  if (isa<llvm::ConstantAggregateZero>(Init) ||
870      isa<llvm::ConstantPointerNull>(Init) ||
871      isa<llvm::UndefValue>(Init))
872    return true;
873  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
874      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
875      isa<llvm::ConstantExpr>(Init))
876    return Init->isNullValue() || NumStores--;
877
878  // See if we can emit each element.
879  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
880    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
881      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
882      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
883        return false;
884    }
885    return true;
886  }
887
888  if (llvm::ConstantDataSequential *CDS =
889        dyn_cast<llvm::ConstantDataSequential>(Init)) {
890    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
891      llvm::Constant *Elt = CDS->getElementAsConstant(i);
892      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
893        return false;
894    }
895    return true;
896  }
897
898  // Anything else is hard and scary.
899  return false;
900}
901
902/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
903/// the scalar stores that would be required.
904static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
905                                        llvm::Constant *Init, Address Loc,
906                                        bool isVolatile, CGBuilderTy &Builder) {
907  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
908         "called emitStoresForInitAfterBZero for zero or undef value.");
909
910  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
911      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
912      isa<llvm::ConstantExpr>(Init)) {
913    Builder.CreateStore(Init, Loc, isVolatile);
914    return;
915  }
916
917  if (llvm::ConstantDataSequential *CDS =
918          dyn_cast<llvm::ConstantDataSequential>(Init)) {
919    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
920      llvm::Constant *Elt = CDS->getElementAsConstant(i);
921
922      // If necessary, get a pointer to the element and emit it.
923      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
924        emitStoresForInitAfterBZero(
925            CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
926            Builder);
927    }
928    return;
929  }
930
931  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
932         "Unknown value type!");
933
934  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
935    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
936
937    // If necessary, get a pointer to the element and emit it.
938    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
939      emitStoresForInitAfterBZero(CGM, Elt,
940                                  Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
941                                  isVolatile, Builder);
942  }
943}
944
945/// Decide whether we should use bzero plus some stores to initialize a local
946/// variable instead of using a memcpy from a constant global.  It is beneficial
947/// to use bzero if the global is all zeros, or mostly zeros and large.
948static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
949                                                 uint64_t GlobalSize) {
950  // If a global is all zeros, always use a bzero.
951  if (isa<llvm::ConstantAggregateZero>(Init)) return true;
952
953  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
954  // do it if it will require 6 or fewer scalar stores.
955  // TODO: Should budget depends on the size?  Avoiding a large global warrants
956  // plopping in more stores.
957  unsigned StoreBudget = 6;
958  uint64_t SizeLimit = 32;
959
960  return GlobalSize > SizeLimit &&
961         canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
962}
963
964/// Decide whether we should use memset to initialize a local variable instead
965/// of using a memcpy from a constant global. Assumes we've already decided to
966/// not user bzero.
967/// FIXME We could be more clever, as we are for bzero above, and generate
968///       memset followed by stores. It's unclear that's worth the effort.
969static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
970                                                uint64_t GlobalSize,
971                                                const llvm::DataLayout &DL) {
972  uint64_t SizeLimit = 32;
973  if (GlobalSize <= SizeLimit)
974    return nullptr;
975  return llvm::isBytewiseValue(Init, DL);
976}
977
978/// Decide whether we want to split a constant structure or array store into a
979/// sequence of its fields' stores. This may cost us code size and compilation
980/// speed, but plays better with store optimizations.
981static bool shouldSplitConstantStore(CodeGenModule &CGM,
982                                     uint64_t GlobalByteSize) {
983  // Don't break things that occupy more than one cacheline.
984  uint64_t ByteSizeLimit = 64;
985  if (CGM.getCodeGenOpts().OptimizationLevel == 0)
986    return false;
987  if (GlobalByteSize <= ByteSizeLimit)
988    return true;
989  return false;
990}
991
992enum class IsPattern { No, Yes };
993
994/// Generate a constant filled with either a pattern or zeroes.
995static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
996                                        llvm::Type *Ty) {
997  if (isPattern == IsPattern::Yes)
998    return initializationPatternFor(CGM, Ty);
999  else
1000    return llvm::Constant::getNullValue(Ty);
1001}
1002
1003static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1004                                        llvm::Constant *constant);
1005
1006/// Helper function for constWithPadding() to deal with padding in structures.
1007static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1008                                              IsPattern isPattern,
1009                                              llvm::StructType *STy,
1010                                              llvm::Constant *constant) {
1011  const llvm::DataLayout &DL = CGM.getDataLayout();
1012  const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1013  llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1014  unsigned SizeSoFar = 0;
1015  SmallVector<llvm::Constant *, 8> Values;
1016  bool NestedIntact = true;
1017  for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1018    unsigned CurOff = Layout->getElementOffset(i);
1019    if (SizeSoFar < CurOff) {
1020      assert(!STy->isPacked());
1021      auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1022      Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1023    }
1024    llvm::Constant *CurOp;
1025    if (constant->isZeroValue())
1026      CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1027    else
1028      CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1029    auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1030    if (CurOp != NewOp)
1031      NestedIntact = false;
1032    Values.push_back(NewOp);
1033    SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1034  }
1035  unsigned TotalSize = Layout->getSizeInBytes();
1036  if (SizeSoFar < TotalSize) {
1037    auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1038    Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1039  }
1040  if (NestedIntact && Values.size() == STy->getNumElements())
1041    return constant;
1042  return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1043}
1044
1045/// Replace all padding bytes in a given constant with either a pattern byte or
1046/// 0x00.
1047static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1048                                        llvm::Constant *constant) {
1049  llvm::Type *OrigTy = constant->getType();
1050  if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1051    return constStructWithPadding(CGM, isPattern, STy, constant);
1052  if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1053    llvm::SmallVector<llvm::Constant *, 8> Values;
1054    uint64_t Size = ArrayTy->getNumElements();
1055    if (!Size)
1056      return constant;
1057    llvm::Type *ElemTy = ArrayTy->getElementType();
1058    bool ZeroInitializer = constant->isNullValue();
1059    llvm::Constant *OpValue, *PaddedOp;
1060    if (ZeroInitializer) {
1061      OpValue = llvm::Constant::getNullValue(ElemTy);
1062      PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1063    }
1064    for (unsigned Op = 0; Op != Size; ++Op) {
1065      if (!ZeroInitializer) {
1066        OpValue = constant->getAggregateElement(Op);
1067        PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1068      }
1069      Values.push_back(PaddedOp);
1070    }
1071    auto *NewElemTy = Values[0]->getType();
1072    if (NewElemTy == ElemTy)
1073      return constant;
1074    auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1075    return llvm::ConstantArray::get(NewArrayTy, Values);
1076  }
1077  // FIXME: Add handling for tail padding in vectors. Vectors don't
1078  // have padding between or inside elements, but the total amount of
1079  // data can be less than the allocated size.
1080  return constant;
1081}
1082
1083Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1084                                               llvm::Constant *Constant,
1085                                               CharUnits Align) {
1086  auto FunctionName = [&](const DeclContext *DC) -> std::string {
1087    if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1088      if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1089        return CC->getNameAsString();
1090      if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1091        return CD->getNameAsString();
1092      return std::string(getMangledName(FD));
1093    } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1094      return OM->getNameAsString();
1095    } else if (isa<BlockDecl>(DC)) {
1096      return "<block>";
1097    } else if (isa<CapturedDecl>(DC)) {
1098      return "<captured>";
1099    } else {
1100      llvm_unreachable("expected a function or method");
1101    }
1102  };
1103
1104  // Form a simple per-variable cache of these values in case we find we
1105  // want to reuse them.
1106  llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1107  if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1108    auto *Ty = Constant->getType();
1109    bool isConstant = true;
1110    llvm::GlobalVariable *InsertBefore = nullptr;
1111    unsigned AS =
1112        getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1113    std::string Name;
1114    if (D.hasGlobalStorage())
1115      Name = getMangledName(&D).str() + ".const";
1116    else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1117      Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1118    else
1119      llvm_unreachable("local variable has no parent function or method");
1120    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1121        getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1122        Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1123    GV->setAlignment(Align.getAsAlign());
1124    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1125    CacheEntry = GV;
1126  } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1127    CacheEntry->setAlignment(Align.getAsAlign());
1128  }
1129
1130  return Address(CacheEntry, Align);
1131}
1132
1133static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1134                                                const VarDecl &D,
1135                                                CGBuilderTy &Builder,
1136                                                llvm::Constant *Constant,
1137                                                CharUnits Align) {
1138  Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1139  llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1140                                                   SrcPtr.getAddressSpace());
1141  if (SrcPtr.getType() != BP)
1142    SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1143  return SrcPtr;
1144}
1145
1146static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1147                                  Address Loc, bool isVolatile,
1148                                  CGBuilderTy &Builder,
1149                                  llvm::Constant *constant) {
1150  auto *Ty = constant->getType();
1151  uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1152  if (!ConstantSize)
1153    return;
1154
1155  bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1156                          Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1157  if (canDoSingleStore) {
1158    Builder.CreateStore(constant, Loc, isVolatile);
1159    return;
1160  }
1161
1162  auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1163
1164  // If the initializer is all or mostly the same, codegen with bzero / memset
1165  // then do a few stores afterward.
1166  if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1167    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
1168                         isVolatile);
1169
1170    bool valueAlreadyCorrect =
1171        constant->isNullValue() || isa<llvm::UndefValue>(constant);
1172    if (!valueAlreadyCorrect) {
1173      Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1174      emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1175    }
1176    return;
1177  }
1178
1179  // If the initializer is a repeated byte pattern, use memset.
1180  llvm::Value *Pattern =
1181      shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1182  if (Pattern) {
1183    uint64_t Value = 0x00;
1184    if (!isa<llvm::UndefValue>(Pattern)) {
1185      const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1186      assert(AP.getBitWidth() <= 8);
1187      Value = AP.getLimitedValue();
1188    }
1189    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
1190                         isVolatile);
1191    return;
1192  }
1193
1194  // If the initializer is small, use a handful of stores.
1195  if (shouldSplitConstantStore(CGM, ConstantSize)) {
1196    if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1197      // FIXME: handle the case when STy != Loc.getElementType().
1198      if (STy == Loc.getElementType()) {
1199        for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1200          Address EltPtr = Builder.CreateStructGEP(Loc, i);
1201          emitStoresForConstant(
1202              CGM, D, EltPtr, isVolatile, Builder,
1203              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1204        }
1205        return;
1206      }
1207    } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1208      // FIXME: handle the case when ATy != Loc.getElementType().
1209      if (ATy == Loc.getElementType()) {
1210        for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1211          Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1212          emitStoresForConstant(
1213              CGM, D, EltPtr, isVolatile, Builder,
1214              cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1215        }
1216        return;
1217      }
1218    }
1219  }
1220
1221  // Copy from a global.
1222  Builder.CreateMemCpy(Loc,
1223                       createUnnamedGlobalForMemcpyFrom(
1224                           CGM, D, Builder, constant, Loc.getAlignment()),
1225                       SizeVal, isVolatile);
1226}
1227
1228static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1229                                  Address Loc, bool isVolatile,
1230                                  CGBuilderTy &Builder) {
1231  llvm::Type *ElTy = Loc.getElementType();
1232  llvm::Constant *constant =
1233      constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1234  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1235}
1236
1237static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1238                                     Address Loc, bool isVolatile,
1239                                     CGBuilderTy &Builder) {
1240  llvm::Type *ElTy = Loc.getElementType();
1241  llvm::Constant *constant = constWithPadding(
1242      CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1243  assert(!isa<llvm::UndefValue>(constant));
1244  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1245}
1246
1247static bool containsUndef(llvm::Constant *constant) {
1248  auto *Ty = constant->getType();
1249  if (isa<llvm::UndefValue>(constant))
1250    return true;
1251  if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1252    for (llvm::Use &Op : constant->operands())
1253      if (containsUndef(cast<llvm::Constant>(Op)))
1254        return true;
1255  return false;
1256}
1257
1258static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1259                                    llvm::Constant *constant) {
1260  auto *Ty = constant->getType();
1261  if (isa<llvm::UndefValue>(constant))
1262    return patternOrZeroFor(CGM, isPattern, Ty);
1263  if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1264    return constant;
1265  if (!containsUndef(constant))
1266    return constant;
1267  llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1268  for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1269    auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1270    Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1271  }
1272  if (Ty->isStructTy())
1273    return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1274  if (Ty->isArrayTy())
1275    return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1276  assert(Ty->isVectorTy());
1277  return llvm::ConstantVector::get(Values);
1278}
1279
1280/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1281/// variable declaration with auto, register, or no storage class specifier.
1282/// These turn into simple stack objects, or GlobalValues depending on target.
1283void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1284  AutoVarEmission emission = EmitAutoVarAlloca(D);
1285  EmitAutoVarInit(emission);
1286  EmitAutoVarCleanups(emission);
1287}
1288
1289/// Emit a lifetime.begin marker if some criteria are satisfied.
1290/// \return a pointer to the temporary size Value if a marker was emitted, null
1291/// otherwise
1292llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1293                                                llvm::Value *Addr) {
1294  if (!ShouldEmitLifetimeMarkers)
1295    return nullptr;
1296
1297  assert(Addr->getType()->getPointerAddressSpace() ==
1298             CGM.getDataLayout().getAllocaAddrSpace() &&
1299         "Pointer should be in alloca address space");
1300  llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1301  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1302  llvm::CallInst *C =
1303      Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1304  C->setDoesNotThrow();
1305  return SizeV;
1306}
1307
1308void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1309  assert(Addr->getType()->getPointerAddressSpace() ==
1310             CGM.getDataLayout().getAllocaAddrSpace() &&
1311         "Pointer should be in alloca address space");
1312  Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1313  llvm::CallInst *C =
1314      Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1315  C->setDoesNotThrow();
1316}
1317
1318void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1319    CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1320  // For each dimension stores its QualType and corresponding
1321  // size-expression Value.
1322  SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1323  SmallVector<IdentifierInfo *, 4> VLAExprNames;
1324
1325  // Break down the array into individual dimensions.
1326  QualType Type1D = D.getType();
1327  while (getContext().getAsVariableArrayType(Type1D)) {
1328    auto VlaSize = getVLAElements1D(Type1D);
1329    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1330      Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1331    else {
1332      // Generate a locally unique name for the size expression.
1333      Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1334      SmallString<12> Buffer;
1335      StringRef NameRef = Name.toStringRef(Buffer);
1336      auto &Ident = getContext().Idents.getOwn(NameRef);
1337      VLAExprNames.push_back(&Ident);
1338      auto SizeExprAddr =
1339          CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1340      Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1341      Dimensions.emplace_back(SizeExprAddr.getPointer(),
1342                              Type1D.getUnqualifiedType());
1343    }
1344    Type1D = VlaSize.Type;
1345  }
1346
1347  if (!EmitDebugInfo)
1348    return;
1349
1350  // Register each dimension's size-expression with a DILocalVariable,
1351  // so that it can be used by CGDebugInfo when instantiating a DISubrange
1352  // to describe this array.
1353  unsigned NameIdx = 0;
1354  for (auto &VlaSize : Dimensions) {
1355    llvm::Metadata *MD;
1356    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1357      MD = llvm::ConstantAsMetadata::get(C);
1358    else {
1359      // Create an artificial VarDecl to generate debug info for.
1360      IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1361      auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1362      auto QT = getContext().getIntTypeForBitwidth(
1363          VlaExprTy->getScalarSizeInBits(), false);
1364      auto *ArtificialDecl = VarDecl::Create(
1365          getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1366          D.getLocation(), D.getLocation(), NameIdent, QT,
1367          getContext().CreateTypeSourceInfo(QT), SC_Auto);
1368      ArtificialDecl->setImplicit();
1369
1370      MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1371                                         Builder);
1372    }
1373    assert(MD && "No Size expression debug node created");
1374    DI->registerVLASizeExpression(VlaSize.Type, MD);
1375  }
1376}
1377
1378/// EmitAutoVarAlloca - Emit the alloca and debug information for a
1379/// local variable.  Does not emit initialization or destruction.
1380CodeGenFunction::AutoVarEmission
1381CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1382  QualType Ty = D.getType();
1383  assert(
1384      Ty.getAddressSpace() == LangAS::Default ||
1385      (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1386
1387  AutoVarEmission emission(D);
1388
1389  bool isEscapingByRef = D.isEscapingByref();
1390  emission.IsEscapingByRef = isEscapingByRef;
1391
1392  CharUnits alignment = getContext().getDeclAlign(&D);
1393
1394  // If the type is variably-modified, emit all the VLA sizes for it.
1395  if (Ty->isVariablyModifiedType())
1396    EmitVariablyModifiedType(Ty);
1397
1398  auto *DI = getDebugInfo();
1399  bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1400
1401  Address address = Address::invalid();
1402  Address AllocaAddr = Address::invalid();
1403  Address OpenMPLocalAddr = Address::invalid();
1404  if (CGM.getLangOpts().OpenMPIRBuilder)
1405    OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1406  else
1407    OpenMPLocalAddr =
1408        getLangOpts().OpenMP
1409            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1410            : Address::invalid();
1411
1412  bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1413
1414  if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1415    address = OpenMPLocalAddr;
1416  } else if (Ty->isConstantSizeType()) {
1417    // If this value is an array or struct with a statically determinable
1418    // constant initializer, there are optimizations we can do.
1419    //
1420    // TODO: We should constant-evaluate the initializer of any variable,
1421    // as long as it is initialized by a constant expression. Currently,
1422    // isConstantInitializer produces wrong answers for structs with
1423    // reference or bitfield members, and a few other cases, and checking
1424    // for POD-ness protects us from some of these.
1425    if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1426        (D.isConstexpr() ||
1427         ((Ty.isPODType(getContext()) ||
1428           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1429          D.getInit()->isConstantInitializer(getContext(), false)))) {
1430
1431      // If the variable's a const type, and it's neither an NRVO
1432      // candidate nor a __block variable and has no mutable members,
1433      // emit it as a global instead.
1434      // Exception is if a variable is located in non-constant address space
1435      // in OpenCL.
1436      if ((!getLangOpts().OpenCL ||
1437           Ty.getAddressSpace() == LangAS::opencl_constant) &&
1438          (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1439           !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1440        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1441
1442        // Signal this condition to later callbacks.
1443        emission.Addr = Address::invalid();
1444        assert(emission.wasEmittedAsGlobal());
1445        return emission;
1446      }
1447
1448      // Otherwise, tell the initialization code that we're in this case.
1449      emission.IsConstantAggregate = true;
1450    }
1451
1452    // A normal fixed sized variable becomes an alloca in the entry block,
1453    // unless:
1454    // - it's an NRVO variable.
1455    // - we are compiling OpenMP and it's an OpenMP local variable.
1456    if (NRVO) {
1457      // The named return value optimization: allocate this variable in the
1458      // return slot, so that we can elide the copy when returning this
1459      // variable (C++0x [class.copy]p34).
1460      address = ReturnValue;
1461
1462      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1463        const auto *RD = RecordTy->getDecl();
1464        const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1465        if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1466            RD->isNonTrivialToPrimitiveDestroy()) {
1467          // Create a flag that is used to indicate when the NRVO was applied
1468          // to this variable. Set it to zero to indicate that NRVO was not
1469          // applied.
1470          llvm::Value *Zero = Builder.getFalse();
1471          Address NRVOFlag =
1472            CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1473          EnsureInsertPoint();
1474          Builder.CreateStore(Zero, NRVOFlag);
1475
1476          // Record the NRVO flag for this variable.
1477          NRVOFlags[&D] = NRVOFlag.getPointer();
1478          emission.NRVOFlag = NRVOFlag.getPointer();
1479        }
1480      }
1481    } else {
1482      CharUnits allocaAlignment;
1483      llvm::Type *allocaTy;
1484      if (isEscapingByRef) {
1485        auto &byrefInfo = getBlockByrefInfo(&D);
1486        allocaTy = byrefInfo.Type;
1487        allocaAlignment = byrefInfo.ByrefAlignment;
1488      } else {
1489        allocaTy = ConvertTypeForMem(Ty);
1490        allocaAlignment = alignment;
1491      }
1492
1493      // Create the alloca.  Note that we set the name separately from
1494      // building the instruction so that it's there even in no-asserts
1495      // builds.
1496      address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1497                                 /*ArraySize=*/nullptr, &AllocaAddr);
1498
1499      // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1500      // the catch parameter starts in the catchpad instruction, and we can't
1501      // insert code in those basic blocks.
1502      bool IsMSCatchParam =
1503          D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1504
1505      // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1506      // if we don't have a valid insertion point (?).
1507      if (HaveInsertPoint() && !IsMSCatchParam) {
1508        // If there's a jump into the lifetime of this variable, its lifetime
1509        // gets broken up into several regions in IR, which requires more work
1510        // to handle correctly. For now, just omit the intrinsics; this is a
1511        // rare case, and it's better to just be conservatively correct.
1512        // PR28267.
1513        //
1514        // We have to do this in all language modes if there's a jump past the
1515        // declaration. We also have to do it in C if there's a jump to an
1516        // earlier point in the current block because non-VLA lifetimes begin as
1517        // soon as the containing block is entered, not when its variables
1518        // actually come into scope; suppressing the lifetime annotations
1519        // completely in this case is unnecessarily pessimistic, but again, this
1520        // is rare.
1521        if (!Bypasses.IsBypassed(&D) &&
1522            !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1523          llvm::TypeSize size =
1524              CGM.getDataLayout().getTypeAllocSize(allocaTy);
1525          emission.SizeForLifetimeMarkers =
1526              size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
1527                                : EmitLifetimeStart(size.getFixedSize(),
1528                                                    AllocaAddr.getPointer());
1529        }
1530      } else {
1531        assert(!emission.useLifetimeMarkers());
1532      }
1533    }
1534  } else {
1535    EnsureInsertPoint();
1536
1537    if (!DidCallStackSave) {
1538      // Save the stack.
1539      Address Stack =
1540        CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1541
1542      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1543      llvm::Value *V = Builder.CreateCall(F);
1544      Builder.CreateStore(V, Stack);
1545
1546      DidCallStackSave = true;
1547
1548      // Push a cleanup block and restore the stack there.
1549      // FIXME: in general circumstances, this should be an EH cleanup.
1550      pushStackRestore(NormalCleanup, Stack);
1551    }
1552
1553    auto VlaSize = getVLASize(Ty);
1554    llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1555
1556    // Allocate memory for the array.
1557    address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1558                               &AllocaAddr);
1559
1560    // If we have debug info enabled, properly describe the VLA dimensions for
1561    // this type by registering the vla size expression for each of the
1562    // dimensions.
1563    EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1564  }
1565
1566  setAddrOfLocalVar(&D, address);
1567  emission.Addr = address;
1568  emission.AllocaAddr = AllocaAddr;
1569
1570  // Emit debug info for local var declaration.
1571  if (EmitDebugInfo && HaveInsertPoint()) {
1572    Address DebugAddr = address;
1573    bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1574    DI->setLocation(D.getLocation());
1575
1576    // If NRVO, use a pointer to the return address.
1577    if (UsePointerValue)
1578      DebugAddr = ReturnValuePointer;
1579
1580    (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1581                                        UsePointerValue);
1582  }
1583
1584  if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1585    EmitVarAnnotations(&D, address.getPointer());
1586
1587  // Make sure we call @llvm.lifetime.end.
1588  if (emission.useLifetimeMarkers())
1589    EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1590                                         emission.getOriginalAllocatedAddress(),
1591                                         emission.getSizeForLifetimeMarkers());
1592
1593  return emission;
1594}
1595
1596static bool isCapturedBy(const VarDecl &, const Expr *);
1597
1598/// Determines whether the given __block variable is potentially
1599/// captured by the given statement.
1600static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1601  if (const Expr *E = dyn_cast<Expr>(S))
1602    return isCapturedBy(Var, E);
1603  for (const Stmt *SubStmt : S->children())
1604    if (isCapturedBy(Var, SubStmt))
1605      return true;
1606  return false;
1607}
1608
1609/// Determines whether the given __block variable is potentially
1610/// captured by the given expression.
1611static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1612  // Skip the most common kinds of expressions that make
1613  // hierarchy-walking expensive.
1614  E = E->IgnoreParenCasts();
1615
1616  if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1617    const BlockDecl *Block = BE->getBlockDecl();
1618    for (const auto &I : Block->captures()) {
1619      if (I.getVariable() == &Var)
1620        return true;
1621    }
1622
1623    // No need to walk into the subexpressions.
1624    return false;
1625  }
1626
1627  if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1628    const CompoundStmt *CS = SE->getSubStmt();
1629    for (const auto *BI : CS->body())
1630      if (const auto *BIE = dyn_cast<Expr>(BI)) {
1631        if (isCapturedBy(Var, BIE))
1632          return true;
1633      }
1634      else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1635          // special case declarations
1636          for (const auto *I : DS->decls()) {
1637              if (const auto *VD = dyn_cast<VarDecl>((I))) {
1638                const Expr *Init = VD->getInit();
1639                if (Init && isCapturedBy(Var, Init))
1640                  return true;
1641              }
1642          }
1643      }
1644      else
1645        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1646        // Later, provide code to poke into statements for capture analysis.
1647        return true;
1648    return false;
1649  }
1650
1651  for (const Stmt *SubStmt : E->children())
1652    if (isCapturedBy(Var, SubStmt))
1653      return true;
1654
1655  return false;
1656}
1657
1658/// Determine whether the given initializer is trivial in the sense
1659/// that it requires no code to be generated.
1660bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1661  if (!Init)
1662    return true;
1663
1664  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1665    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1666      if (Constructor->isTrivial() &&
1667          Constructor->isDefaultConstructor() &&
1668          !Construct->requiresZeroInitialization())
1669        return true;
1670
1671  return false;
1672}
1673
1674void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1675                                                      const VarDecl &D,
1676                                                      Address Loc) {
1677  auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1678  CharUnits Size = getContext().getTypeSizeInChars(type);
1679  bool isVolatile = type.isVolatileQualified();
1680  if (!Size.isZero()) {
1681    switch (trivialAutoVarInit) {
1682    case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1683      llvm_unreachable("Uninitialized handled by caller");
1684    case LangOptions::TrivialAutoVarInitKind::Zero:
1685      if (CGM.stopAutoInit())
1686        return;
1687      emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1688      break;
1689    case LangOptions::TrivialAutoVarInitKind::Pattern:
1690      if (CGM.stopAutoInit())
1691        return;
1692      emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1693      break;
1694    }
1695    return;
1696  }
1697
1698  // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1699  // them, so emit a memcpy with the VLA size to initialize each element.
1700  // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1701  // will catch that code, but there exists code which generates zero-sized
1702  // VLAs. Be nice and initialize whatever they requested.
1703  const auto *VlaType = getContext().getAsVariableArrayType(type);
1704  if (!VlaType)
1705    return;
1706  auto VlaSize = getVLASize(VlaType);
1707  auto SizeVal = VlaSize.NumElts;
1708  CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1709  switch (trivialAutoVarInit) {
1710  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1711    llvm_unreachable("Uninitialized handled by caller");
1712
1713  case LangOptions::TrivialAutoVarInitKind::Zero:
1714    if (CGM.stopAutoInit())
1715      return;
1716    if (!EltSize.isOne())
1717      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1718    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1719                         isVolatile);
1720    break;
1721
1722  case LangOptions::TrivialAutoVarInitKind::Pattern: {
1723    if (CGM.stopAutoInit())
1724      return;
1725    llvm::Type *ElTy = Loc.getElementType();
1726    llvm::Constant *Constant = constWithPadding(
1727        CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1728    CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1729    llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1730    llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1731    llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1732    llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1733        SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1734        "vla.iszerosized");
1735    Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1736    EmitBlock(SetupBB);
1737    if (!EltSize.isOne())
1738      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1739    llvm::Value *BaseSizeInChars =
1740        llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1741    Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1742    llvm::Value *End =
1743        Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1744    llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1745    EmitBlock(LoopBB);
1746    llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1747    Cur->addIncoming(Begin.getPointer(), OriginBB);
1748    CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1749    Builder.CreateMemCpy(Address(Cur, CurAlign),
1750                         createUnnamedGlobalForMemcpyFrom(
1751                             CGM, D, Builder, Constant, ConstantAlign),
1752                         BaseSizeInChars, isVolatile);
1753    llvm::Value *Next =
1754        Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1755    llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1756    Builder.CreateCondBr(Done, ContBB, LoopBB);
1757    Cur->addIncoming(Next, LoopBB);
1758    EmitBlock(ContBB);
1759  } break;
1760  }
1761}
1762
1763void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1764  assert(emission.Variable && "emission was not valid!");
1765
1766  // If this was emitted as a global constant, we're done.
1767  if (emission.wasEmittedAsGlobal()) return;
1768
1769  const VarDecl &D = *emission.Variable;
1770  auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1771  QualType type = D.getType();
1772
1773  // If this local has an initializer, emit it now.
1774  const Expr *Init = D.getInit();
1775
1776  // If we are at an unreachable point, we don't need to emit the initializer
1777  // unless it contains a label.
1778  if (!HaveInsertPoint()) {
1779    if (!Init || !ContainsLabel(Init)) return;
1780    EnsureInsertPoint();
1781  }
1782
1783  // Initialize the structure of a __block variable.
1784  if (emission.IsEscapingByRef)
1785    emitByrefStructureInit(emission);
1786
1787  // Initialize the variable here if it doesn't have a initializer and it is a
1788  // C struct that is non-trivial to initialize or an array containing such a
1789  // struct.
1790  if (!Init &&
1791      type.isNonTrivialToPrimitiveDefaultInitialize() ==
1792          QualType::PDIK_Struct) {
1793    LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1794    if (emission.IsEscapingByRef)
1795      drillIntoBlockVariable(*this, Dst, &D);
1796    defaultInitNonTrivialCStructVar(Dst);
1797    return;
1798  }
1799
1800  // Check whether this is a byref variable that's potentially
1801  // captured and moved by its own initializer.  If so, we'll need to
1802  // emit the initializer first, then copy into the variable.
1803  bool capturedByInit =
1804      Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1805
1806  bool locIsByrefHeader = !capturedByInit;
1807  const Address Loc =
1808      locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1809
1810  // Note: constexpr already initializes everything correctly.
1811  LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1812      (D.isConstexpr()
1813           ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1814           : (D.getAttr<UninitializedAttr>()
1815                  ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1816                  : getContext().getLangOpts().getTrivialAutoVarInit()));
1817
1818  auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1819    if (trivialAutoVarInit ==
1820        LangOptions::TrivialAutoVarInitKind::Uninitialized)
1821      return;
1822
1823    // Only initialize a __block's storage: we always initialize the header.
1824    if (emission.IsEscapingByRef && !locIsByrefHeader)
1825      Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1826
1827    return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1828  };
1829
1830  if (isTrivialInitializer(Init))
1831    return initializeWhatIsTechnicallyUninitialized(Loc);
1832
1833  llvm::Constant *constant = nullptr;
1834  if (emission.IsConstantAggregate ||
1835      D.mightBeUsableInConstantExpressions(getContext())) {
1836    assert(!capturedByInit && "constant init contains a capturing block?");
1837    constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1838    if (constant && !constant->isZeroValue() &&
1839        (trivialAutoVarInit !=
1840         LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1841      IsPattern isPattern =
1842          (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1843              ? IsPattern::Yes
1844              : IsPattern::No;
1845      // C guarantees that brace-init with fewer initializers than members in
1846      // the aggregate will initialize the rest of the aggregate as-if it were
1847      // static initialization. In turn static initialization guarantees that
1848      // padding is initialized to zero bits. We could instead pattern-init if D
1849      // has any ImplicitValueInitExpr, but that seems to be unintuitive
1850      // behavior.
1851      constant = constWithPadding(CGM, IsPattern::No,
1852                                  replaceUndef(CGM, isPattern, constant));
1853    }
1854  }
1855
1856  if (!constant) {
1857    initializeWhatIsTechnicallyUninitialized(Loc);
1858    LValue lv = MakeAddrLValue(Loc, type);
1859    lv.setNonGC(true);
1860    return EmitExprAsInit(Init, &D, lv, capturedByInit);
1861  }
1862
1863  if (!emission.IsConstantAggregate) {
1864    // For simple scalar/complex initialization, store the value directly.
1865    LValue lv = MakeAddrLValue(Loc, type);
1866    lv.setNonGC(true);
1867    return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1868  }
1869
1870  llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1871  emitStoresForConstant(
1872      CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1873      type.isVolatileQualified(), Builder, constant);
1874}
1875
1876/// Emit an expression as an initializer for an object (variable, field, etc.)
1877/// at the given location.  The expression is not necessarily the normal
1878/// initializer for the object, and the address is not necessarily
1879/// its normal location.
1880///
1881/// \param init the initializing expression
1882/// \param D the object to act as if we're initializing
1883/// \param lvalue the lvalue to initialize
1884/// \param capturedByInit true if \p D is a __block variable
1885///   whose address is potentially changed by the initializer
1886void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1887                                     LValue lvalue, bool capturedByInit) {
1888  QualType type = D->getType();
1889
1890  if (type->isReferenceType()) {
1891    RValue rvalue = EmitReferenceBindingToExpr(init);
1892    if (capturedByInit)
1893      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1894    EmitStoreThroughLValue(rvalue, lvalue, true);
1895    return;
1896  }
1897  switch (getEvaluationKind(type)) {
1898  case TEK_Scalar:
1899    EmitScalarInit(init, D, lvalue, capturedByInit);
1900    return;
1901  case TEK_Complex: {
1902    ComplexPairTy complex = EmitComplexExpr(init);
1903    if (capturedByInit)
1904      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1905    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1906    return;
1907  }
1908  case TEK_Aggregate:
1909    if (type->isAtomicType()) {
1910      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1911    } else {
1912      AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1913      if (isa<VarDecl>(D))
1914        Overlap = AggValueSlot::DoesNotOverlap;
1915      else if (auto *FD = dyn_cast<FieldDecl>(D))
1916        Overlap = getOverlapForFieldInit(FD);
1917      // TODO: how can we delay here if D is captured by its initializer?
1918      EmitAggExpr(init, AggValueSlot::forLValue(
1919                            lvalue, *this, AggValueSlot::IsDestructed,
1920                            AggValueSlot::DoesNotNeedGCBarriers,
1921                            AggValueSlot::IsNotAliased, Overlap));
1922    }
1923    return;
1924  }
1925  llvm_unreachable("bad evaluation kind");
1926}
1927
1928/// Enter a destroy cleanup for the given local variable.
1929void CodeGenFunction::emitAutoVarTypeCleanup(
1930                            const CodeGenFunction::AutoVarEmission &emission,
1931                            QualType::DestructionKind dtorKind) {
1932  assert(dtorKind != QualType::DK_none);
1933
1934  // Note that for __block variables, we want to destroy the
1935  // original stack object, not the possibly forwarded object.
1936  Address addr = emission.getObjectAddress(*this);
1937
1938  const VarDecl *var = emission.Variable;
1939  QualType type = var->getType();
1940
1941  CleanupKind cleanupKind = NormalAndEHCleanup;
1942  CodeGenFunction::Destroyer *destroyer = nullptr;
1943
1944  switch (dtorKind) {
1945  case QualType::DK_none:
1946    llvm_unreachable("no cleanup for trivially-destructible variable");
1947
1948  case QualType::DK_cxx_destructor:
1949    // If there's an NRVO flag on the emission, we need a different
1950    // cleanup.
1951    if (emission.NRVOFlag) {
1952      assert(!type->isArrayType());
1953      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1954      EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1955                                                  emission.NRVOFlag);
1956      return;
1957    }
1958    break;
1959
1960  case QualType::DK_objc_strong_lifetime:
1961    // Suppress cleanups for pseudo-strong variables.
1962    if (var->isARCPseudoStrong()) return;
1963
1964    // Otherwise, consider whether to use an EH cleanup or not.
1965    cleanupKind = getARCCleanupKind();
1966
1967    // Use the imprecise destroyer by default.
1968    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1969      destroyer = CodeGenFunction::destroyARCStrongImprecise;
1970    break;
1971
1972  case QualType::DK_objc_weak_lifetime:
1973    break;
1974
1975  case QualType::DK_nontrivial_c_struct:
1976    destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1977    if (emission.NRVOFlag) {
1978      assert(!type->isArrayType());
1979      EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1980                                                emission.NRVOFlag, type);
1981      return;
1982    }
1983    break;
1984  }
1985
1986  // If we haven't chosen a more specific destroyer, use the default.
1987  if (!destroyer) destroyer = getDestroyer(dtorKind);
1988
1989  // Use an EH cleanup in array destructors iff the destructor itself
1990  // is being pushed as an EH cleanup.
1991  bool useEHCleanup = (cleanupKind & EHCleanup);
1992  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1993                                     useEHCleanup);
1994}
1995
1996void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1997  assert(emission.Variable && "emission was not valid!");
1998
1999  // If this was emitted as a global constant, we're done.
2000  if (emission.wasEmittedAsGlobal()) return;
2001
2002  // If we don't have an insertion point, we're done.  Sema prevents
2003  // us from jumping into any of these scopes anyway.
2004  if (!HaveInsertPoint()) return;
2005
2006  const VarDecl &D = *emission.Variable;
2007
2008  // Check the type for a cleanup.
2009  if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2010    emitAutoVarTypeCleanup(emission, dtorKind);
2011
2012  // In GC mode, honor objc_precise_lifetime.
2013  if (getLangOpts().getGC() != LangOptions::NonGC &&
2014      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2015    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2016  }
2017
2018  // Handle the cleanup attribute.
2019  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2020    const FunctionDecl *FD = CA->getFunctionDecl();
2021
2022    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2023    assert(F && "Could not find function!");
2024
2025    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2026    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2027  }
2028
2029  // If this is a block variable, call _Block_object_destroy
2030  // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2031  // mode.
2032  if (emission.IsEscapingByRef &&
2033      CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2034    BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2035    if (emission.Variable->getType().isObjCGCWeak())
2036      Flags |= BLOCK_FIELD_IS_WEAK;
2037    enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2038                      /*LoadBlockVarAddr*/ false,
2039                      cxxDestructorCanThrow(emission.Variable->getType()));
2040  }
2041}
2042
2043CodeGenFunction::Destroyer *
2044CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2045  switch (kind) {
2046  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2047  case QualType::DK_cxx_destructor:
2048    return destroyCXXObject;
2049  case QualType::DK_objc_strong_lifetime:
2050    return destroyARCStrongPrecise;
2051  case QualType::DK_objc_weak_lifetime:
2052    return destroyARCWeak;
2053  case QualType::DK_nontrivial_c_struct:
2054    return destroyNonTrivialCStruct;
2055  }
2056  llvm_unreachable("Unknown DestructionKind");
2057}
2058
2059/// pushEHDestroy - Push the standard destructor for the given type as
2060/// an EH-only cleanup.
2061void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2062                                    Address addr, QualType type) {
2063  assert(dtorKind && "cannot push destructor for trivial type");
2064  assert(needsEHCleanup(dtorKind));
2065
2066  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2067}
2068
2069/// pushDestroy - Push the standard destructor for the given type as
2070/// at least a normal cleanup.
2071void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2072                                  Address addr, QualType type) {
2073  assert(dtorKind && "cannot push destructor for trivial type");
2074
2075  CleanupKind cleanupKind = getCleanupKind(dtorKind);
2076  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2077              cleanupKind & EHCleanup);
2078}
2079
2080void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2081                                  QualType type, Destroyer *destroyer,
2082                                  bool useEHCleanupForArray) {
2083  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2084                                     destroyer, useEHCleanupForArray);
2085}
2086
2087void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2088  EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2089}
2090
2091void CodeGenFunction::pushLifetimeExtendedDestroy(
2092    CleanupKind cleanupKind, Address addr, QualType type,
2093    Destroyer *destroyer, bool useEHCleanupForArray) {
2094  // Push an EH-only cleanup for the object now.
2095  // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2096  // around in case a temporary's destructor throws an exception.
2097  if (cleanupKind & EHCleanup)
2098    EHStack.pushCleanup<DestroyObject>(
2099        static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2100        destroyer, useEHCleanupForArray);
2101
2102  // Remember that we need to push a full cleanup for the object at the
2103  // end of the full-expression.
2104  pushCleanupAfterFullExpr<DestroyObject>(
2105      cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2106}
2107
2108/// emitDestroy - Immediately perform the destruction of the given
2109/// object.
2110///
2111/// \param addr - the address of the object; a type*
2112/// \param type - the type of the object; if an array type, all
2113///   objects are destroyed in reverse order
2114/// \param destroyer - the function to call to destroy individual
2115///   elements
2116/// \param useEHCleanupForArray - whether an EH cleanup should be
2117///   used when destroying array elements, in case one of the
2118///   destructions throws an exception
2119void CodeGenFunction::emitDestroy(Address addr, QualType type,
2120                                  Destroyer *destroyer,
2121                                  bool useEHCleanupForArray) {
2122  const ArrayType *arrayType = getContext().getAsArrayType(type);
2123  if (!arrayType)
2124    return destroyer(*this, addr, type);
2125
2126  llvm::Value *length = emitArrayLength(arrayType, type, addr);
2127
2128  CharUnits elementAlign =
2129    addr.getAlignment()
2130        .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2131
2132  // Normally we have to check whether the array is zero-length.
2133  bool checkZeroLength = true;
2134
2135  // But if the array length is constant, we can suppress that.
2136  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2137    // ...and if it's constant zero, we can just skip the entire thing.
2138    if (constLength->isZero()) return;
2139    checkZeroLength = false;
2140  }
2141
2142  llvm::Value *begin = addr.getPointer();
2143  llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2144  emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2145                   checkZeroLength, useEHCleanupForArray);
2146}
2147
2148/// emitArrayDestroy - Destroys all the elements of the given array,
2149/// beginning from last to first.  The array cannot be zero-length.
2150///
2151/// \param begin - a type* denoting the first element of the array
2152/// \param end - a type* denoting one past the end of the array
2153/// \param elementType - the element type of the array
2154/// \param destroyer - the function to call to destroy elements
2155/// \param useEHCleanup - whether to push an EH cleanup to destroy
2156///   the remaining elements in case the destruction of a single
2157///   element throws
2158void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2159                                       llvm::Value *end,
2160                                       QualType elementType,
2161                                       CharUnits elementAlign,
2162                                       Destroyer *destroyer,
2163                                       bool checkZeroLength,
2164                                       bool useEHCleanup) {
2165  assert(!elementType->isArrayType());
2166
2167  // The basic structure here is a do-while loop, because we don't
2168  // need to check for the zero-element case.
2169  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2170  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2171
2172  if (checkZeroLength) {
2173    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2174                                                "arraydestroy.isempty");
2175    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2176  }
2177
2178  // Enter the loop body, making that address the current address.
2179  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2180  EmitBlock(bodyBB);
2181  llvm::PHINode *elementPast =
2182    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2183  elementPast->addIncoming(end, entryBB);
2184
2185  // Shift the address back by one element.
2186  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2187  llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2188                                                   "arraydestroy.element");
2189
2190  if (useEHCleanup)
2191    pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2192                                   destroyer);
2193
2194  // Perform the actual destruction there.
2195  destroyer(*this, Address(element, elementAlign), elementType);
2196
2197  if (useEHCleanup)
2198    PopCleanupBlock();
2199
2200  // Check whether we've reached the end.
2201  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2202  Builder.CreateCondBr(done, doneBB, bodyBB);
2203  elementPast->addIncoming(element, Builder.GetInsertBlock());
2204
2205  // Done.
2206  EmitBlock(doneBB);
2207}
2208
2209/// Perform partial array destruction as if in an EH cleanup.  Unlike
2210/// emitArrayDestroy, the element type here may still be an array type.
2211static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2212                                    llvm::Value *begin, llvm::Value *end,
2213                                    QualType type, CharUnits elementAlign,
2214                                    CodeGenFunction::Destroyer *destroyer) {
2215  // If the element type is itself an array, drill down.
2216  unsigned arrayDepth = 0;
2217  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2218    // VLAs don't require a GEP index to walk into.
2219    if (!isa<VariableArrayType>(arrayType))
2220      arrayDepth++;
2221    type = arrayType->getElementType();
2222  }
2223
2224  if (arrayDepth) {
2225    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2226
2227    SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2228    begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2229    end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2230  }
2231
2232  // Destroy the array.  We don't ever need an EH cleanup because we
2233  // assume that we're in an EH cleanup ourselves, so a throwing
2234  // destructor causes an immediate terminate.
2235  CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2236                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2237}
2238
2239namespace {
2240  /// RegularPartialArrayDestroy - a cleanup which performs a partial
2241  /// array destroy where the end pointer is regularly determined and
2242  /// does not need to be loaded from a local.
2243  class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2244    llvm::Value *ArrayBegin;
2245    llvm::Value *ArrayEnd;
2246    QualType ElementType;
2247    CodeGenFunction::Destroyer *Destroyer;
2248    CharUnits ElementAlign;
2249  public:
2250    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2251                               QualType elementType, CharUnits elementAlign,
2252                               CodeGenFunction::Destroyer *destroyer)
2253      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2254        ElementType(elementType), Destroyer(destroyer),
2255        ElementAlign(elementAlign) {}
2256
2257    void Emit(CodeGenFunction &CGF, Flags flags) override {
2258      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2259                              ElementType, ElementAlign, Destroyer);
2260    }
2261  };
2262
2263  /// IrregularPartialArrayDestroy - a cleanup which performs a
2264  /// partial array destroy where the end pointer is irregularly
2265  /// determined and must be loaded from a local.
2266  class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2267    llvm::Value *ArrayBegin;
2268    Address ArrayEndPointer;
2269    QualType ElementType;
2270    CodeGenFunction::Destroyer *Destroyer;
2271    CharUnits ElementAlign;
2272  public:
2273    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2274                                 Address arrayEndPointer,
2275                                 QualType elementType,
2276                                 CharUnits elementAlign,
2277                                 CodeGenFunction::Destroyer *destroyer)
2278      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2279        ElementType(elementType), Destroyer(destroyer),
2280        ElementAlign(elementAlign) {}
2281
2282    void Emit(CodeGenFunction &CGF, Flags flags) override {
2283      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2284      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2285                              ElementType, ElementAlign, Destroyer);
2286    }
2287  };
2288} // end anonymous namespace
2289
2290/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2291/// already-constructed elements of the given array.  The cleanup
2292/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2293///
2294/// \param elementType - the immediate element type of the array;
2295///   possibly still an array type
2296void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2297                                                       Address arrayEndPointer,
2298                                                       QualType elementType,
2299                                                       CharUnits elementAlign,
2300                                                       Destroyer *destroyer) {
2301  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2302                                                    arrayBegin, arrayEndPointer,
2303                                                    elementType, elementAlign,
2304                                                    destroyer);
2305}
2306
2307/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2308/// already-constructed elements of the given array.  The cleanup
2309/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2310///
2311/// \param elementType - the immediate element type of the array;
2312///   possibly still an array type
2313void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2314                                                     llvm::Value *arrayEnd,
2315                                                     QualType elementType,
2316                                                     CharUnits elementAlign,
2317                                                     Destroyer *destroyer) {
2318  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2319                                                  arrayBegin, arrayEnd,
2320                                                  elementType, elementAlign,
2321                                                  destroyer);
2322}
2323
2324/// Lazily declare the @llvm.lifetime.start intrinsic.
2325llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2326  if (LifetimeStartFn)
2327    return LifetimeStartFn;
2328  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2329    llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2330  return LifetimeStartFn;
2331}
2332
2333/// Lazily declare the @llvm.lifetime.end intrinsic.
2334llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2335  if (LifetimeEndFn)
2336    return LifetimeEndFn;
2337  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2338    llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2339  return LifetimeEndFn;
2340}
2341
2342namespace {
2343  /// A cleanup to perform a release of an object at the end of a
2344  /// function.  This is used to balance out the incoming +1 of a
2345  /// ns_consumed argument when we can't reasonably do that just by
2346  /// not doing the initial retain for a __block argument.
2347  struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2348    ConsumeARCParameter(llvm::Value *param,
2349                        ARCPreciseLifetime_t precise)
2350      : Param(param), Precise(precise) {}
2351
2352    llvm::Value *Param;
2353    ARCPreciseLifetime_t Precise;
2354
2355    void Emit(CodeGenFunction &CGF, Flags flags) override {
2356      CGF.EmitARCRelease(Param, Precise);
2357    }
2358  };
2359} // end anonymous namespace
2360
2361/// Emit an alloca (or GlobalValue depending on target)
2362/// for the specified parameter and set up LocalDeclMap.
2363void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2364                                   unsigned ArgNo) {
2365  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2366  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2367         "Invalid argument to EmitParmDecl");
2368
2369  Arg.getAnyValue()->setName(D.getName());
2370
2371  QualType Ty = D.getType();
2372
2373  // Use better IR generation for certain implicit parameters.
2374  if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2375    // The only implicit argument a block has is its literal.
2376    // This may be passed as an inalloca'ed value on Windows x86.
2377    if (BlockInfo) {
2378      llvm::Value *V = Arg.isIndirect()
2379                           ? Builder.CreateLoad(Arg.getIndirectAddress())
2380                           : Arg.getDirectValue();
2381      setBlockContextParameter(IPD, ArgNo, V);
2382      return;
2383    }
2384  }
2385
2386  Address DeclPtr = Address::invalid();
2387  bool DoStore = false;
2388  bool IsScalar = hasScalarEvaluationKind(Ty);
2389  // If we already have a pointer to the argument, reuse the input pointer.
2390  if (Arg.isIndirect()) {
2391    DeclPtr = Arg.getIndirectAddress();
2392    // If we have a prettier pointer type at this point, bitcast to that.
2393    unsigned AS = DeclPtr.getType()->getAddressSpace();
2394    llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2395    if (DeclPtr.getType() != IRTy)
2396      DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2397    // Indirect argument is in alloca address space, which may be different
2398    // from the default address space.
2399    auto AllocaAS = CGM.getASTAllocaAddressSpace();
2400    auto *V = DeclPtr.getPointer();
2401    auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2402    auto DestLangAS =
2403        getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2404    if (SrcLangAS != DestLangAS) {
2405      assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2406             CGM.getDataLayout().getAllocaAddrSpace());
2407      auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2408      auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2409      DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2410                            *this, V, SrcLangAS, DestLangAS, T, true),
2411                        DeclPtr.getAlignment());
2412    }
2413
2414    // Push a destructor cleanup for this parameter if the ABI requires it.
2415    // Don't push a cleanup in a thunk for a method that will also emit a
2416    // cleanup.
2417    if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2418        Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2419      if (QualType::DestructionKind DtorKind =
2420              D.needsDestruction(getContext())) {
2421        assert((DtorKind == QualType::DK_cxx_destructor ||
2422                DtorKind == QualType::DK_nontrivial_c_struct) &&
2423               "unexpected destructor type");
2424        pushDestroy(DtorKind, DeclPtr, Ty);
2425        CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2426            EHStack.stable_begin();
2427      }
2428    }
2429  } else {
2430    // Check if the parameter address is controlled by OpenMP runtime.
2431    Address OpenMPLocalAddr =
2432        getLangOpts().OpenMP
2433            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2434            : Address::invalid();
2435    if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2436      DeclPtr = OpenMPLocalAddr;
2437    } else {
2438      // Otherwise, create a temporary to hold the value.
2439      DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2440                              D.getName() + ".addr");
2441    }
2442    DoStore = true;
2443  }
2444
2445  llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2446
2447  LValue lv = MakeAddrLValue(DeclPtr, Ty);
2448  if (IsScalar) {
2449    Qualifiers qs = Ty.getQualifiers();
2450    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2451      // We honor __attribute__((ns_consumed)) for types with lifetime.
2452      // For __strong, it's handled by just skipping the initial retain;
2453      // otherwise we have to balance out the initial +1 with an extra
2454      // cleanup to do the release at the end of the function.
2455      bool isConsumed = D.hasAttr<NSConsumedAttr>();
2456
2457      // If a parameter is pseudo-strong then we can omit the implicit retain.
2458      if (D.isARCPseudoStrong()) {
2459        assert(lt == Qualifiers::OCL_Strong &&
2460               "pseudo-strong variable isn't strong?");
2461        assert(qs.hasConst() && "pseudo-strong variable should be const!");
2462        lt = Qualifiers::OCL_ExplicitNone;
2463      }
2464
2465      // Load objects passed indirectly.
2466      if (Arg.isIndirect() && !ArgVal)
2467        ArgVal = Builder.CreateLoad(DeclPtr);
2468
2469      if (lt == Qualifiers::OCL_Strong) {
2470        if (!isConsumed) {
2471          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2472            // use objc_storeStrong(&dest, value) for retaining the
2473            // object. But first, store a null into 'dest' because
2474            // objc_storeStrong attempts to release its old value.
2475            llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2476            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2477            EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2478            DoStore = false;
2479          }
2480          else
2481          // Don't use objc_retainBlock for block pointers, because we
2482          // don't want to Block_copy something just because we got it
2483          // as a parameter.
2484            ArgVal = EmitARCRetainNonBlock(ArgVal);
2485        }
2486      } else {
2487        // Push the cleanup for a consumed parameter.
2488        if (isConsumed) {
2489          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2490                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
2491          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2492                                                   precise);
2493        }
2494
2495        if (lt == Qualifiers::OCL_Weak) {
2496          EmitARCInitWeak(DeclPtr, ArgVal);
2497          DoStore = false; // The weak init is a store, no need to do two.
2498        }
2499      }
2500
2501      // Enter the cleanup scope.
2502      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2503    }
2504  }
2505
2506  // Store the initial value into the alloca.
2507  if (DoStore)
2508    EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2509
2510  setAddrOfLocalVar(&D, DeclPtr);
2511
2512  // Emit debug info for param declarations in non-thunk functions.
2513  if (CGDebugInfo *DI = getDebugInfo()) {
2514    if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2515      DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2516    }
2517  }
2518
2519  if (D.hasAttr<AnnotateAttr>())
2520    EmitVarAnnotations(&D, DeclPtr.getPointer());
2521
2522  // We can only check return value nullability if all arguments to the
2523  // function satisfy their nullability preconditions. This makes it necessary
2524  // to emit null checks for args in the function body itself.
2525  if (requiresReturnValueNullabilityCheck()) {
2526    auto Nullability = Ty->getNullability(getContext());
2527    if (Nullability && *Nullability == NullabilityKind::NonNull) {
2528      SanitizerScope SanScope(this);
2529      RetValNullabilityPrecondition =
2530          Builder.CreateAnd(RetValNullabilityPrecondition,
2531                            Builder.CreateIsNotNull(Arg.getAnyValue()));
2532    }
2533  }
2534}
2535
2536void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2537                                            CodeGenFunction *CGF) {
2538  if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2539    return;
2540  getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2541}
2542
2543void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2544                                         CodeGenFunction *CGF) {
2545  if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2546      (!LangOpts.EmitAllDecls && !D->isUsed()))
2547    return;
2548  getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2549}
2550
2551void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2552  getOpenMPRuntime().processRequiresDirective(D);
2553}
2554