1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGOpenCLRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "PatternInit.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Attr.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/OSLog.h"
26#include "clang/Basic/TargetBuiltins.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/CodeGen/CGFunctionInfo.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/InlineAsm.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/IntrinsicsAArch64.h"
36#include "llvm/IR/IntrinsicsAMDGPU.h"
37#include "llvm/IR/IntrinsicsARM.h"
38#include "llvm/IR/IntrinsicsBPF.h"
39#include "llvm/IR/IntrinsicsHexagon.h"
40#include "llvm/IR/IntrinsicsNVPTX.h"
41#include "llvm/IR/IntrinsicsPowerPC.h"
42#include "llvm/IR/IntrinsicsR600.h"
43#include "llvm/IR/IntrinsicsS390.h"
44#include "llvm/IR/IntrinsicsWebAssembly.h"
45#include "llvm/IR/IntrinsicsX86.h"
46#include "llvm/IR/MDBuilder.h"
47#include "llvm/IR/MatrixBuilder.h"
48#include "llvm/Support/ConvertUTF.h"
49#include "llvm/Support/ScopedPrinter.h"
50#include "llvm/Support/X86TargetParser.h"
51#include <sstream>
52
53using namespace clang;
54using namespace CodeGen;
55using namespace llvm;
56
57static
58int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
59  return std::min(High, std::max(Low, Value));
60}
61
62static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
63                             Align AlignmentInBytes) {
64  ConstantInt *Byte;
65  switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
66  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
67    // Nothing to initialize.
68    return;
69  case LangOptions::TrivialAutoVarInitKind::Zero:
70    Byte = CGF.Builder.getInt8(0x00);
71    break;
72  case LangOptions::TrivialAutoVarInitKind::Pattern: {
73    llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
74    Byte = llvm::dyn_cast<llvm::ConstantInt>(
75        initializationPatternFor(CGF.CGM, Int8));
76    break;
77  }
78  }
79  if (CGF.CGM.stopAutoInit())
80    return;
81  CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
82}
83
84/// getBuiltinLibFunction - Given a builtin id for a function like
85/// "__builtin_fabsf", return a Function* for "fabsf".
86llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
87                                                     unsigned BuiltinID) {
88  assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
89
90  // Get the name, skip over the __builtin_ prefix (if necessary).
91  StringRef Name;
92  GlobalDecl D(FD);
93
94  // If the builtin has been declared explicitly with an assembler label,
95  // use the mangled name. This differs from the plain label on platforms
96  // that prefix labels.
97  if (FD->hasAttr<AsmLabelAttr>())
98    Name = getMangledName(D);
99  else
100    Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
101
102  llvm::FunctionType *Ty =
103    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
104
105  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
106}
107
108/// Emit the conversions required to turn the given value into an
109/// integer of the given size.
110static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
111                        QualType T, llvm::IntegerType *IntType) {
112  V = CGF.EmitToMemory(V, T);
113
114  if (V->getType()->isPointerTy())
115    return CGF.Builder.CreatePtrToInt(V, IntType);
116
117  assert(V->getType() == IntType);
118  return V;
119}
120
121static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
122                          QualType T, llvm::Type *ResultType) {
123  V = CGF.EmitFromMemory(V, T);
124
125  if (ResultType->isPointerTy())
126    return CGF.Builder.CreateIntToPtr(V, ResultType);
127
128  assert(V->getType() == ResultType);
129  return V;
130}
131
132/// Utility to insert an atomic instruction based on Intrinsic::ID
133/// and the expression node.
134static Value *MakeBinaryAtomicValue(
135    CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
136    AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
137  QualType T = E->getType();
138  assert(E->getArg(0)->getType()->isPointerType());
139  assert(CGF.getContext().hasSameUnqualifiedType(T,
140                                  E->getArg(0)->getType()->getPointeeType()));
141  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
142
143  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
144  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
145
146  llvm::IntegerType *IntType =
147    llvm::IntegerType::get(CGF.getLLVMContext(),
148                           CGF.getContext().getTypeSize(T));
149  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
150
151  llvm::Value *Args[2];
152  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
153  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
154  llvm::Type *ValueType = Args[1]->getType();
155  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
156
157  llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
158      Kind, Args[0], Args[1], Ordering);
159  return EmitFromInt(CGF, Result, T, ValueType);
160}
161
162static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
163  Value *Val = CGF.EmitScalarExpr(E->getArg(0));
164  Value *Address = CGF.EmitScalarExpr(E->getArg(1));
165
166  // Convert the type of the pointer to a pointer to the stored type.
167  Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
168  Value *BC = CGF.Builder.CreateBitCast(
169      Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
170  LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
171  LV.setNontemporal(true);
172  CGF.EmitStoreOfScalar(Val, LV, false);
173  return nullptr;
174}
175
176static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
177  Value *Address = CGF.EmitScalarExpr(E->getArg(0));
178
179  LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
180  LV.setNontemporal(true);
181  return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
182}
183
184static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
185                               llvm::AtomicRMWInst::BinOp Kind,
186                               const CallExpr *E) {
187  return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
188}
189
190/// Utility to insert an atomic instruction based Intrinsic::ID and
191/// the expression node, where the return value is the result of the
192/// operation.
193static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
194                                   llvm::AtomicRMWInst::BinOp Kind,
195                                   const CallExpr *E,
196                                   Instruction::BinaryOps Op,
197                                   bool Invert = false) {
198  QualType T = E->getType();
199  assert(E->getArg(0)->getType()->isPointerType());
200  assert(CGF.getContext().hasSameUnqualifiedType(T,
201                                  E->getArg(0)->getType()->getPointeeType()));
202  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
203
204  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
205  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
206
207  llvm::IntegerType *IntType =
208    llvm::IntegerType::get(CGF.getLLVMContext(),
209                           CGF.getContext().getTypeSize(T));
210  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
211
212  llvm::Value *Args[2];
213  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
214  llvm::Type *ValueType = Args[1]->getType();
215  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
216  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
217
218  llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
219      Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
220  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
221  if (Invert)
222    Result =
223        CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
224                                llvm::ConstantInt::getAllOnesValue(IntType));
225  Result = EmitFromInt(CGF, Result, T, ValueType);
226  return RValue::get(Result);
227}
228
229/// Utility to insert an atomic cmpxchg instruction.
230///
231/// @param CGF The current codegen function.
232/// @param E   Builtin call expression to convert to cmpxchg.
233///            arg0 - address to operate on
234///            arg1 - value to compare with
235///            arg2 - new value
236/// @param ReturnBool Specifies whether to return success flag of
237///                   cmpxchg result or the old value.
238///
239/// @returns result of cmpxchg, according to ReturnBool
240///
241/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
242/// invoke the function EmitAtomicCmpXchgForMSIntrin.
243static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
244                                     bool ReturnBool) {
245  QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
246  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
247  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
248
249  llvm::IntegerType *IntType = llvm::IntegerType::get(
250      CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
251  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
252
253  Value *Args[3];
254  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
255  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
256  llvm::Type *ValueType = Args[1]->getType();
257  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
258  Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
259
260  Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
261      Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
262      llvm::AtomicOrdering::SequentiallyConsistent);
263  if (ReturnBool)
264    // Extract boolean success flag and zext it to int.
265    return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
266                                  CGF.ConvertType(E->getType()));
267  else
268    // Extract old value and emit it using the same type as compare value.
269    return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
270                       ValueType);
271}
272
273/// This function should be invoked to emit atomic cmpxchg for Microsoft's
274/// _InterlockedCompareExchange* intrinsics which have the following signature:
275/// T _InterlockedCompareExchange(T volatile *Destination,
276///                               T Exchange,
277///                               T Comparand);
278///
279/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
280/// cmpxchg *Destination, Comparand, Exchange.
281/// So we need to swap Comparand and Exchange when invoking
282/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
283/// function MakeAtomicCmpXchgValue since it expects the arguments to be
284/// already swapped.
285
286static
287Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
288    AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
289  assert(E->getArg(0)->getType()->isPointerType());
290  assert(CGF.getContext().hasSameUnqualifiedType(
291      E->getType(), E->getArg(0)->getType()->getPointeeType()));
292  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
293                                                 E->getArg(1)->getType()));
294  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
295                                                 E->getArg(2)->getType()));
296
297  auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
298  auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
299  auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
300
301  // For Release ordering, the failure ordering should be Monotonic.
302  auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
303                         AtomicOrdering::Monotonic :
304                         SuccessOrdering;
305
306  auto *Result = CGF.Builder.CreateAtomicCmpXchg(
307                   Destination, Comparand, Exchange,
308                   SuccessOrdering, FailureOrdering);
309  Result->setVolatile(true);
310  return CGF.Builder.CreateExtractValue(Result, 0);
311}
312
313static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
314    AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
315  assert(E->getArg(0)->getType()->isPointerType());
316
317  auto *IntTy = CGF.ConvertType(E->getType());
318  auto *Result = CGF.Builder.CreateAtomicRMW(
319                   AtomicRMWInst::Add,
320                   CGF.EmitScalarExpr(E->getArg(0)),
321                   ConstantInt::get(IntTy, 1),
322                   Ordering);
323  return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
324}
325
326static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
327    AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
328  assert(E->getArg(0)->getType()->isPointerType());
329
330  auto *IntTy = CGF.ConvertType(E->getType());
331  auto *Result = CGF.Builder.CreateAtomicRMW(
332                   AtomicRMWInst::Sub,
333                   CGF.EmitScalarExpr(E->getArg(0)),
334                   ConstantInt::get(IntTy, 1),
335                   Ordering);
336  return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
337}
338
339// Build a plain volatile load.
340static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
341  Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
342  QualType ElTy = E->getArg(0)->getType()->getPointeeType();
343  CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
344  llvm::Type *ITy =
345      llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
346  Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
347  llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
348  Load->setVolatile(true);
349  return Load;
350}
351
352// Build a plain volatile store.
353static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
354  Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
355  Value *Value = CGF.EmitScalarExpr(E->getArg(1));
356  QualType ElTy = E->getArg(0)->getType()->getPointeeType();
357  CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
358  llvm::Type *ITy =
359      llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
360  Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
361  llvm::StoreInst *Store =
362      CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
363  Store->setVolatile(true);
364  return Store;
365}
366
367// Emit a simple mangled intrinsic that has 1 argument and a return type
368// matching the argument type. Depending on mode, this may be a constrained
369// floating-point intrinsic.
370static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
371                                const CallExpr *E, unsigned IntrinsicID,
372                                unsigned ConstrainedIntrinsicID) {
373  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
374
375  if (CGF.Builder.getIsFPConstrained()) {
376    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
377    return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
378  } else {
379    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380    return CGF.Builder.CreateCall(F, Src0);
381  }
382}
383
384// Emit an intrinsic that has 2 operands of the same type as its result.
385// Depending on mode, this may be a constrained floating-point intrinsic.
386static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
387                                const CallExpr *E, unsigned IntrinsicID,
388                                unsigned ConstrainedIntrinsicID) {
389  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
390  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
391
392  if (CGF.Builder.getIsFPConstrained()) {
393    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
394    return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
395  } else {
396    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
397    return CGF.Builder.CreateCall(F, { Src0, Src1 });
398  }
399}
400
401// Emit an intrinsic that has 3 operands of the same type as its result.
402// Depending on mode, this may be a constrained floating-point intrinsic.
403static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
404                                 const CallExpr *E, unsigned IntrinsicID,
405                                 unsigned ConstrainedIntrinsicID) {
406  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
407  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
408  llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
409
410  if (CGF.Builder.getIsFPConstrained()) {
411    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
412    return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
413  } else {
414    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
415    return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
416  }
417}
418
419// Emit an intrinsic where all operands are of the same type as the result.
420// Depending on mode, this may be a constrained floating-point intrinsic.
421static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
422                                                unsigned IntrinsicID,
423                                                unsigned ConstrainedIntrinsicID,
424                                                llvm::Type *Ty,
425                                                ArrayRef<Value *> Args) {
426  Function *F;
427  if (CGF.Builder.getIsFPConstrained())
428    F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
429  else
430    F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
431
432  if (CGF.Builder.getIsFPConstrained())
433    return CGF.Builder.CreateConstrainedFPCall(F, Args);
434  else
435    return CGF.Builder.CreateCall(F, Args);
436}
437
438// Emit a simple mangled intrinsic that has 1 argument and a return type
439// matching the argument type.
440static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
441                               const CallExpr *E,
442                               unsigned IntrinsicID) {
443  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
444
445  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
446  return CGF.Builder.CreateCall(F, Src0);
447}
448
449// Emit an intrinsic that has 2 operands of the same type as its result.
450static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
451                                const CallExpr *E,
452                                unsigned IntrinsicID) {
453  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
454  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
455
456  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
457  return CGF.Builder.CreateCall(F, { Src0, Src1 });
458}
459
460// Emit an intrinsic that has 3 operands of the same type as its result.
461static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
462                                 const CallExpr *E,
463                                 unsigned IntrinsicID) {
464  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
465  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
466  llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
467
468  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
469  return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
470}
471
472// Emit an intrinsic that has 1 float or double operand, and 1 integer.
473static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
474                               const CallExpr *E,
475                               unsigned IntrinsicID) {
476  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
477  llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
478
479  Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
480  return CGF.Builder.CreateCall(F, {Src0, Src1});
481}
482
483// Emit an intrinsic that has overloaded integer result and fp operand.
484static Value *
485emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
486                                        unsigned IntrinsicID,
487                                        unsigned ConstrainedIntrinsicID) {
488  llvm::Type *ResultType = CGF.ConvertType(E->getType());
489  llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
490
491  if (CGF.Builder.getIsFPConstrained()) {
492    Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
493                                       {ResultType, Src0->getType()});
494    return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
495  } else {
496    Function *F =
497        CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
498    return CGF.Builder.CreateCall(F, Src0);
499  }
500}
501
502/// EmitFAbs - Emit a call to @llvm.fabs().
503static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
504  Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
505  llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
506  Call->setDoesNotAccessMemory();
507  return Call;
508}
509
510/// Emit the computation of the sign bit for a floating point value. Returns
511/// the i1 sign bit value.
512static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
513  LLVMContext &C = CGF.CGM.getLLVMContext();
514
515  llvm::Type *Ty = V->getType();
516  int Width = Ty->getPrimitiveSizeInBits();
517  llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
518  V = CGF.Builder.CreateBitCast(V, IntTy);
519  if (Ty->isPPC_FP128Ty()) {
520    // We want the sign bit of the higher-order double. The bitcast we just
521    // did works as if the double-double was stored to memory and then
522    // read as an i128. The "store" will put the higher-order double in the
523    // lower address in both little- and big-Endian modes, but the "load"
524    // will treat those bits as a different part of the i128: the low bits in
525    // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
526    // we need to shift the high bits down to the low before truncating.
527    Width >>= 1;
528    if (CGF.getTarget().isBigEndian()) {
529      Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
530      V = CGF.Builder.CreateLShr(V, ShiftCst);
531    }
532    // We are truncating value in order to extract the higher-order
533    // double, which we will be using to extract the sign from.
534    IntTy = llvm::IntegerType::get(C, Width);
535    V = CGF.Builder.CreateTrunc(V, IntTy);
536  }
537  Value *Zero = llvm::Constant::getNullValue(IntTy);
538  return CGF.Builder.CreateICmpSLT(V, Zero);
539}
540
541static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
542                              const CallExpr *E, llvm::Constant *calleeValue) {
543  CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
544  return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
545}
546
547/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
548/// depending on IntrinsicID.
549///
550/// \arg CGF The current codegen function.
551/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
552/// \arg X The first argument to the llvm.*.with.overflow.*.
553/// \arg Y The second argument to the llvm.*.with.overflow.*.
554/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
555/// \returns The result (i.e. sum/product) returned by the intrinsic.
556static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
557                                          const llvm::Intrinsic::ID IntrinsicID,
558                                          llvm::Value *X, llvm::Value *Y,
559                                          llvm::Value *&Carry) {
560  // Make sure we have integers of the same width.
561  assert(X->getType() == Y->getType() &&
562         "Arguments must be the same type. (Did you forget to make sure both "
563         "arguments have the same integer width?)");
564
565  Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
566  llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
567  Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
568  return CGF.Builder.CreateExtractValue(Tmp, 0);
569}
570
571static Value *emitRangedBuiltin(CodeGenFunction &CGF,
572                                unsigned IntrinsicID,
573                                int low, int high) {
574    llvm::MDBuilder MDHelper(CGF.getLLVMContext());
575    llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
576    Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
577    llvm::Instruction *Call = CGF.Builder.CreateCall(F);
578    Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
579    return Call;
580}
581
582namespace {
583  struct WidthAndSignedness {
584    unsigned Width;
585    bool Signed;
586  };
587}
588
589static WidthAndSignedness
590getIntegerWidthAndSignedness(const clang::ASTContext &context,
591                             const clang::QualType Type) {
592  assert(Type->isIntegerType() && "Given type is not an integer.");
593  unsigned Width = Type->isBooleanType()  ? 1
594                   : Type->isExtIntType() ? context.getIntWidth(Type)
595                                          : context.getTypeInfo(Type).Width;
596  bool Signed = Type->isSignedIntegerType();
597  return {Width, Signed};
598}
599
600// Given one or more integer types, this function produces an integer type that
601// encompasses them: any value in one of the given types could be expressed in
602// the encompassing type.
603static struct WidthAndSignedness
604EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
605  assert(Types.size() > 0 && "Empty list of types.");
606
607  // If any of the given types is signed, we must return a signed type.
608  bool Signed = false;
609  for (const auto &Type : Types) {
610    Signed |= Type.Signed;
611  }
612
613  // The encompassing type must have a width greater than or equal to the width
614  // of the specified types.  Additionally, if the encompassing type is signed,
615  // its width must be strictly greater than the width of any unsigned types
616  // given.
617  unsigned Width = 0;
618  for (const auto &Type : Types) {
619    unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
620    if (Width < MinWidth) {
621      Width = MinWidth;
622    }
623  }
624
625  return {Width, Signed};
626}
627
628Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
629  llvm::Type *DestType = Int8PtrTy;
630  if (ArgValue->getType() != DestType)
631    ArgValue =
632        Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
633
634  Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
635  return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
636}
637
638/// Checks if using the result of __builtin_object_size(p, @p From) in place of
639/// __builtin_object_size(p, @p To) is correct
640static bool areBOSTypesCompatible(int From, int To) {
641  // Note: Our __builtin_object_size implementation currently treats Type=0 and
642  // Type=2 identically. Encoding this implementation detail here may make
643  // improving __builtin_object_size difficult in the future, so it's omitted.
644  return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
645}
646
647static llvm::Value *
648getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
649  return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
650}
651
652llvm::Value *
653CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
654                                                 llvm::IntegerType *ResType,
655                                                 llvm::Value *EmittedE,
656                                                 bool IsDynamic) {
657  uint64_t ObjectSize;
658  if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
659    return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
660  return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
661}
662
663/// Returns a Value corresponding to the size of the given expression.
664/// This Value may be either of the following:
665///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
666///     it)
667///   - A call to the @llvm.objectsize intrinsic
668///
669/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
670/// and we wouldn't otherwise try to reference a pass_object_size parameter,
671/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
672llvm::Value *
673CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
674                                       llvm::IntegerType *ResType,
675                                       llvm::Value *EmittedE, bool IsDynamic) {
676  // We need to reference an argument if the pointer is a parameter with the
677  // pass_object_size attribute.
678  if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
679    auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
680    auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
681    if (Param != nullptr && PS != nullptr &&
682        areBOSTypesCompatible(PS->getType(), Type)) {
683      auto Iter = SizeArguments.find(Param);
684      assert(Iter != SizeArguments.end());
685
686      const ImplicitParamDecl *D = Iter->second;
687      auto DIter = LocalDeclMap.find(D);
688      assert(DIter != LocalDeclMap.end());
689
690      return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
691                              getContext().getSizeType(), E->getBeginLoc());
692    }
693  }
694
695  // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
696  // evaluate E for side-effects. In either case, we shouldn't lower to
697  // @llvm.objectsize.
698  if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
699    return getDefaultBuiltinObjectSizeResult(Type, ResType);
700
701  Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
702  assert(Ptr->getType()->isPointerTy() &&
703         "Non-pointer passed to __builtin_object_size?");
704
705  Function *F =
706      CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
707
708  // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
709  Value *Min = Builder.getInt1((Type & 2) != 0);
710  // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
711  Value *NullIsUnknown = Builder.getTrue();
712  Value *Dynamic = Builder.getInt1(IsDynamic);
713  return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
714}
715
716namespace {
717/// A struct to generically describe a bit test intrinsic.
718struct BitTest {
719  enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
720  enum InterlockingKind : uint8_t {
721    Unlocked,
722    Sequential,
723    Acquire,
724    Release,
725    NoFence
726  };
727
728  ActionKind Action;
729  InterlockingKind Interlocking;
730  bool Is64Bit;
731
732  static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
733};
734} // namespace
735
736BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
737  switch (BuiltinID) {
738    // Main portable variants.
739  case Builtin::BI_bittest:
740    return {TestOnly, Unlocked, false};
741  case Builtin::BI_bittestandcomplement:
742    return {Complement, Unlocked, false};
743  case Builtin::BI_bittestandreset:
744    return {Reset, Unlocked, false};
745  case Builtin::BI_bittestandset:
746    return {Set, Unlocked, false};
747  case Builtin::BI_interlockedbittestandreset:
748    return {Reset, Sequential, false};
749  case Builtin::BI_interlockedbittestandset:
750    return {Set, Sequential, false};
751
752    // X86-specific 64-bit variants.
753  case Builtin::BI_bittest64:
754    return {TestOnly, Unlocked, true};
755  case Builtin::BI_bittestandcomplement64:
756    return {Complement, Unlocked, true};
757  case Builtin::BI_bittestandreset64:
758    return {Reset, Unlocked, true};
759  case Builtin::BI_bittestandset64:
760    return {Set, Unlocked, true};
761  case Builtin::BI_interlockedbittestandreset64:
762    return {Reset, Sequential, true};
763  case Builtin::BI_interlockedbittestandset64:
764    return {Set, Sequential, true};
765
766    // ARM/AArch64-specific ordering variants.
767  case Builtin::BI_interlockedbittestandset_acq:
768    return {Set, Acquire, false};
769  case Builtin::BI_interlockedbittestandset_rel:
770    return {Set, Release, false};
771  case Builtin::BI_interlockedbittestandset_nf:
772    return {Set, NoFence, false};
773  case Builtin::BI_interlockedbittestandreset_acq:
774    return {Reset, Acquire, false};
775  case Builtin::BI_interlockedbittestandreset_rel:
776    return {Reset, Release, false};
777  case Builtin::BI_interlockedbittestandreset_nf:
778    return {Reset, NoFence, false};
779  }
780  llvm_unreachable("expected only bittest intrinsics");
781}
782
783static char bitActionToX86BTCode(BitTest::ActionKind A) {
784  switch (A) {
785  case BitTest::TestOnly:   return '\0';
786  case BitTest::Complement: return 'c';
787  case BitTest::Reset:      return 'r';
788  case BitTest::Set:        return 's';
789  }
790  llvm_unreachable("invalid action");
791}
792
793static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
794                                            BitTest BT,
795                                            const CallExpr *E, Value *BitBase,
796                                            Value *BitPos) {
797  char Action = bitActionToX86BTCode(BT.Action);
798  char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
799
800  // Build the assembly.
801  SmallString<64> Asm;
802  raw_svector_ostream AsmOS(Asm);
803  if (BT.Interlocking != BitTest::Unlocked)
804    AsmOS << "lock ";
805  AsmOS << "bt";
806  if (Action)
807    AsmOS << Action;
808  AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
809
810  // Build the constraints. FIXME: We should support immediates when possible.
811  std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
812  llvm::IntegerType *IntType = llvm::IntegerType::get(
813      CGF.getLLVMContext(),
814      CGF.getContext().getTypeSize(E->getArg(1)->getType()));
815  llvm::Type *IntPtrType = IntType->getPointerTo();
816  llvm::FunctionType *FTy =
817      llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
818
819  llvm::InlineAsm *IA =
820      llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
821  return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
822}
823
824static llvm::AtomicOrdering
825getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
826  switch (I) {
827  case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
828  case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
829  case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
830  case BitTest::Release:    return llvm::AtomicOrdering::Release;
831  case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
832  }
833  llvm_unreachable("invalid interlocking");
834}
835
836/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
837/// bits and a bit position and read and optionally modify the bit at that
838/// position. The position index can be arbitrarily large, i.e. it can be larger
839/// than 31 or 63, so we need an indexed load in the general case.
840static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
841                                         unsigned BuiltinID,
842                                         const CallExpr *E) {
843  Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
844  Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
845
846  BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
847
848  // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
849  // indexing operation internally. Use them if possible.
850  if (CGF.getTarget().getTriple().isX86())
851    return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
852
853  // Otherwise, use generic code to load one byte and test the bit. Use all but
854  // the bottom three bits as the array index, and the bottom three bits to form
855  // a mask.
856  // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
857  Value *ByteIndex = CGF.Builder.CreateAShr(
858      BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
859  Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
860  Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
861                                                 ByteIndex, "bittest.byteaddr"),
862                   CharUnits::One());
863  Value *PosLow =
864      CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
865                            llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
866
867  // The updating instructions will need a mask.
868  Value *Mask = nullptr;
869  if (BT.Action != BitTest::TestOnly) {
870    Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
871                                 "bittest.mask");
872  }
873
874  // Check the action and ordering of the interlocked intrinsics.
875  llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
876
877  Value *OldByte = nullptr;
878  if (Ordering != llvm::AtomicOrdering::NotAtomic) {
879    // Emit a combined atomicrmw load/store operation for the interlocked
880    // intrinsics.
881    llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
882    if (BT.Action == BitTest::Reset) {
883      Mask = CGF.Builder.CreateNot(Mask);
884      RMWOp = llvm::AtomicRMWInst::And;
885    }
886    OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
887                                          Ordering);
888  } else {
889    // Emit a plain load for the non-interlocked intrinsics.
890    OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
891    Value *NewByte = nullptr;
892    switch (BT.Action) {
893    case BitTest::TestOnly:
894      // Don't store anything.
895      break;
896    case BitTest::Complement:
897      NewByte = CGF.Builder.CreateXor(OldByte, Mask);
898      break;
899    case BitTest::Reset:
900      NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
901      break;
902    case BitTest::Set:
903      NewByte = CGF.Builder.CreateOr(OldByte, Mask);
904      break;
905    }
906    if (NewByte)
907      CGF.Builder.CreateStore(NewByte, ByteAddr);
908  }
909
910  // However we loaded the old byte, either by plain load or atomicrmw, shift
911  // the bit into the low position and mask it to 0 or 1.
912  Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
913  return CGF.Builder.CreateAnd(
914      ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
915}
916
917namespace {
918enum class MSVCSetJmpKind {
919  _setjmpex,
920  _setjmp3,
921  _setjmp
922};
923}
924
925/// MSVC handles setjmp a bit differently on different platforms. On every
926/// architecture except 32-bit x86, the frame address is passed. On x86, extra
927/// parameters can be passed as variadic arguments, but we always pass none.
928static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
929                               const CallExpr *E) {
930  llvm::Value *Arg1 = nullptr;
931  llvm::Type *Arg1Ty = nullptr;
932  StringRef Name;
933  bool IsVarArg = false;
934  if (SJKind == MSVCSetJmpKind::_setjmp3) {
935    Name = "_setjmp3";
936    Arg1Ty = CGF.Int32Ty;
937    Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
938    IsVarArg = true;
939  } else {
940    Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
941    Arg1Ty = CGF.Int8PtrTy;
942    if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
943      Arg1 = CGF.Builder.CreateCall(
944          CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
945    } else
946      Arg1 = CGF.Builder.CreateCall(
947          CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
948          llvm::ConstantInt::get(CGF.Int32Ty, 0));
949  }
950
951  // Mark the call site and declaration with ReturnsTwice.
952  llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
953  llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
954      CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
955      llvm::Attribute::ReturnsTwice);
956  llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
957      llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
958      ReturnsTwiceAttr, /*Local=*/true);
959
960  llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
961      CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
962  llvm::Value *Args[] = {Buf, Arg1};
963  llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
964  CB->setAttributes(ReturnsTwiceAttr);
965  return RValue::get(CB);
966}
967
968// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
969// we handle them here.
970enum class CodeGenFunction::MSVCIntrin {
971  _BitScanForward,
972  _BitScanReverse,
973  _InterlockedAnd,
974  _InterlockedDecrement,
975  _InterlockedExchange,
976  _InterlockedExchangeAdd,
977  _InterlockedExchangeSub,
978  _InterlockedIncrement,
979  _InterlockedOr,
980  _InterlockedXor,
981  _InterlockedExchangeAdd_acq,
982  _InterlockedExchangeAdd_rel,
983  _InterlockedExchangeAdd_nf,
984  _InterlockedExchange_acq,
985  _InterlockedExchange_rel,
986  _InterlockedExchange_nf,
987  _InterlockedCompareExchange_acq,
988  _InterlockedCompareExchange_rel,
989  _InterlockedCompareExchange_nf,
990  _InterlockedOr_acq,
991  _InterlockedOr_rel,
992  _InterlockedOr_nf,
993  _InterlockedXor_acq,
994  _InterlockedXor_rel,
995  _InterlockedXor_nf,
996  _InterlockedAnd_acq,
997  _InterlockedAnd_rel,
998  _InterlockedAnd_nf,
999  _InterlockedIncrement_acq,
1000  _InterlockedIncrement_rel,
1001  _InterlockedIncrement_nf,
1002  _InterlockedDecrement_acq,
1003  _InterlockedDecrement_rel,
1004  _InterlockedDecrement_nf,
1005  __fastfail,
1006};
1007
1008Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1009                                            const CallExpr *E) {
1010  switch (BuiltinID) {
1011  case MSVCIntrin::_BitScanForward:
1012  case MSVCIntrin::_BitScanReverse: {
1013    Value *ArgValue = EmitScalarExpr(E->getArg(1));
1014
1015    llvm::Type *ArgType = ArgValue->getType();
1016    llvm::Type *IndexType =
1017      EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
1018    llvm::Type *ResultType = ConvertType(E->getType());
1019
1020    Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1021    Value *ResZero = llvm::Constant::getNullValue(ResultType);
1022    Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1023
1024    BasicBlock *Begin = Builder.GetInsertBlock();
1025    BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1026    Builder.SetInsertPoint(End);
1027    PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1028
1029    Builder.SetInsertPoint(Begin);
1030    Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1031    BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1032    Builder.CreateCondBr(IsZero, End, NotZero);
1033    Result->addIncoming(ResZero, Begin);
1034
1035    Builder.SetInsertPoint(NotZero);
1036    Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
1037
1038    if (BuiltinID == MSVCIntrin::_BitScanForward) {
1039      Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1040      Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1041      ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1042      Builder.CreateStore(ZeroCount, IndexAddress, false);
1043    } else {
1044      unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1045      Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1046
1047      Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1048      Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1049      ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1050      Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1051      Builder.CreateStore(Index, IndexAddress, false);
1052    }
1053    Builder.CreateBr(End);
1054    Result->addIncoming(ResOne, NotZero);
1055
1056    Builder.SetInsertPoint(End);
1057    return Result;
1058  }
1059  case MSVCIntrin::_InterlockedAnd:
1060    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1061  case MSVCIntrin::_InterlockedExchange:
1062    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1063  case MSVCIntrin::_InterlockedExchangeAdd:
1064    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1065  case MSVCIntrin::_InterlockedExchangeSub:
1066    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1067  case MSVCIntrin::_InterlockedOr:
1068    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1069  case MSVCIntrin::_InterlockedXor:
1070    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1071  case MSVCIntrin::_InterlockedExchangeAdd_acq:
1072    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1073                                 AtomicOrdering::Acquire);
1074  case MSVCIntrin::_InterlockedExchangeAdd_rel:
1075    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1076                                 AtomicOrdering::Release);
1077  case MSVCIntrin::_InterlockedExchangeAdd_nf:
1078    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1079                                 AtomicOrdering::Monotonic);
1080  case MSVCIntrin::_InterlockedExchange_acq:
1081    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1082                                 AtomicOrdering::Acquire);
1083  case MSVCIntrin::_InterlockedExchange_rel:
1084    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1085                                 AtomicOrdering::Release);
1086  case MSVCIntrin::_InterlockedExchange_nf:
1087    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1088                                 AtomicOrdering::Monotonic);
1089  case MSVCIntrin::_InterlockedCompareExchange_acq:
1090    return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1091  case MSVCIntrin::_InterlockedCompareExchange_rel:
1092    return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1093  case MSVCIntrin::_InterlockedCompareExchange_nf:
1094    return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1095  case MSVCIntrin::_InterlockedOr_acq:
1096    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1097                                 AtomicOrdering::Acquire);
1098  case MSVCIntrin::_InterlockedOr_rel:
1099    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1100                                 AtomicOrdering::Release);
1101  case MSVCIntrin::_InterlockedOr_nf:
1102    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1103                                 AtomicOrdering::Monotonic);
1104  case MSVCIntrin::_InterlockedXor_acq:
1105    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1106                                 AtomicOrdering::Acquire);
1107  case MSVCIntrin::_InterlockedXor_rel:
1108    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1109                                 AtomicOrdering::Release);
1110  case MSVCIntrin::_InterlockedXor_nf:
1111    return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1112                                 AtomicOrdering::Monotonic);
1113  case MSVCIntrin::_InterlockedAnd_acq:
1114    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1115                                 AtomicOrdering::Acquire);
1116  case MSVCIntrin::_InterlockedAnd_rel:
1117    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1118                                 AtomicOrdering::Release);
1119  case MSVCIntrin::_InterlockedAnd_nf:
1120    return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1121                                 AtomicOrdering::Monotonic);
1122  case MSVCIntrin::_InterlockedIncrement_acq:
1123    return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1124  case MSVCIntrin::_InterlockedIncrement_rel:
1125    return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1126  case MSVCIntrin::_InterlockedIncrement_nf:
1127    return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1128  case MSVCIntrin::_InterlockedDecrement_acq:
1129    return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1130  case MSVCIntrin::_InterlockedDecrement_rel:
1131    return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1132  case MSVCIntrin::_InterlockedDecrement_nf:
1133    return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1134
1135  case MSVCIntrin::_InterlockedDecrement:
1136    return EmitAtomicDecrementValue(*this, E);
1137  case MSVCIntrin::_InterlockedIncrement:
1138    return EmitAtomicIncrementValue(*this, E);
1139
1140  case MSVCIntrin::__fastfail: {
1141    // Request immediate process termination from the kernel. The instruction
1142    // sequences to do this are documented on MSDN:
1143    // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1144    llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1145    StringRef Asm, Constraints;
1146    switch (ISA) {
1147    default:
1148      ErrorUnsupported(E, "__fastfail call for this architecture");
1149      break;
1150    case llvm::Triple::x86:
1151    case llvm::Triple::x86_64:
1152      Asm = "int $$0x29";
1153      Constraints = "{cx}";
1154      break;
1155    case llvm::Triple::thumb:
1156      Asm = "udf #251";
1157      Constraints = "{r0}";
1158      break;
1159    case llvm::Triple::aarch64:
1160      Asm = "brk #0xF003";
1161      Constraints = "{w0}";
1162    }
1163    llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1164    llvm::InlineAsm *IA =
1165        llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1166    llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1167        getLLVMContext(), llvm::AttributeList::FunctionIndex,
1168        llvm::Attribute::NoReturn);
1169    llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1170    CI->setAttributes(NoReturnAttr);
1171    return CI;
1172  }
1173  }
1174  llvm_unreachable("Incorrect MSVC intrinsic!");
1175}
1176
1177namespace {
1178// ARC cleanup for __builtin_os_log_format
1179struct CallObjCArcUse final : EHScopeStack::Cleanup {
1180  CallObjCArcUse(llvm::Value *object) : object(object) {}
1181  llvm::Value *object;
1182
1183  void Emit(CodeGenFunction &CGF, Flags flags) override {
1184    CGF.EmitARCIntrinsicUse(object);
1185  }
1186};
1187}
1188
1189Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1190                                                 BuiltinCheckKind Kind) {
1191  assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1192          && "Unsupported builtin check kind");
1193
1194  Value *ArgValue = EmitScalarExpr(E);
1195  if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1196    return ArgValue;
1197
1198  SanitizerScope SanScope(this);
1199  Value *Cond = Builder.CreateICmpNE(
1200      ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1201  EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1202            SanitizerHandler::InvalidBuiltin,
1203            {EmitCheckSourceLocation(E->getExprLoc()),
1204             llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1205            None);
1206  return ArgValue;
1207}
1208
1209/// Get the argument type for arguments to os_log_helper.
1210static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1211  QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1212  return C.getCanonicalType(UnsignedTy);
1213}
1214
1215llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1216    const analyze_os_log::OSLogBufferLayout &Layout,
1217    CharUnits BufferAlignment) {
1218  ASTContext &Ctx = getContext();
1219
1220  llvm::SmallString<64> Name;
1221  {
1222    raw_svector_ostream OS(Name);
1223    OS << "__os_log_helper";
1224    OS << "_" << BufferAlignment.getQuantity();
1225    OS << "_" << int(Layout.getSummaryByte());
1226    OS << "_" << int(Layout.getNumArgsByte());
1227    for (const auto &Item : Layout.Items)
1228      OS << "_" << int(Item.getSizeByte()) << "_"
1229         << int(Item.getDescriptorByte());
1230  }
1231
1232  if (llvm::Function *F = CGM.getModule().getFunction(Name))
1233    return F;
1234
1235  llvm::SmallVector<QualType, 4> ArgTys;
1236  FunctionArgList Args;
1237  Args.push_back(ImplicitParamDecl::Create(
1238      Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1239      ImplicitParamDecl::Other));
1240  ArgTys.emplace_back(Ctx.VoidPtrTy);
1241
1242  for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1243    char Size = Layout.Items[I].getSizeByte();
1244    if (!Size)
1245      continue;
1246
1247    QualType ArgTy = getOSLogArgType(Ctx, Size);
1248    Args.push_back(ImplicitParamDecl::Create(
1249        Ctx, nullptr, SourceLocation(),
1250        &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1251        ImplicitParamDecl::Other));
1252    ArgTys.emplace_back(ArgTy);
1253  }
1254
1255  QualType ReturnTy = Ctx.VoidTy;
1256  QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1257
1258  // The helper function has linkonce_odr linkage to enable the linker to merge
1259  // identical functions. To ensure the merging always happens, 'noinline' is
1260  // attached to the function when compiling with -Oz.
1261  const CGFunctionInfo &FI =
1262      CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1263  llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1264  llvm::Function *Fn = llvm::Function::Create(
1265      FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1266  Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1267  CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1268  CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1269  Fn->setDoesNotThrow();
1270
1271  // Attach 'noinline' at -Oz.
1272  if (CGM.getCodeGenOpts().OptimizeSize == 2)
1273    Fn->addFnAttr(llvm::Attribute::NoInline);
1274
1275  auto NL = ApplyDebugLocation::CreateEmpty(*this);
1276  IdentifierInfo *II = &Ctx.Idents.get(Name);
1277  FunctionDecl *FD = FunctionDecl::Create(
1278      Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1279      FuncionTy, nullptr, SC_PrivateExtern, false, false);
1280  // Avoid generating debug location info for the function.
1281  FD->setImplicit();
1282
1283  StartFunction(FD, ReturnTy, Fn, FI, Args);
1284
1285  // Create a scope with an artificial location for the body of this function.
1286  auto AL = ApplyDebugLocation::CreateArtificial(*this);
1287
1288  CharUnits Offset;
1289  Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1290                  BufferAlignment);
1291  Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1292                      Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1293  Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1294                      Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1295
1296  unsigned I = 1;
1297  for (const auto &Item : Layout.Items) {
1298    Builder.CreateStore(
1299        Builder.getInt8(Item.getDescriptorByte()),
1300        Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1301    Builder.CreateStore(
1302        Builder.getInt8(Item.getSizeByte()),
1303        Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1304
1305    CharUnits Size = Item.size();
1306    if (!Size.getQuantity())
1307      continue;
1308
1309    Address Arg = GetAddrOfLocalVar(Args[I]);
1310    Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1311    Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1312                                 "argDataCast");
1313    Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1314    Offset += Size;
1315    ++I;
1316  }
1317
1318  FinishFunction();
1319
1320  return Fn;
1321}
1322
1323RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1324  assert(E.getNumArgs() >= 2 &&
1325         "__builtin_os_log_format takes at least 2 arguments");
1326  ASTContext &Ctx = getContext();
1327  analyze_os_log::OSLogBufferLayout Layout;
1328  analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1329  Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1330  llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1331
1332  // Ignore argument 1, the format string. It is not currently used.
1333  CallArgList Args;
1334  Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1335
1336  for (const auto &Item : Layout.Items) {
1337    int Size = Item.getSizeByte();
1338    if (!Size)
1339      continue;
1340
1341    llvm::Value *ArgVal;
1342
1343    if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1344      uint64_t Val = 0;
1345      for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1346        Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1347      ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1348    } else if (const Expr *TheExpr = Item.getExpr()) {
1349      ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1350
1351      // If a temporary object that requires destruction after the full
1352      // expression is passed, push a lifetime-extended cleanup to extend its
1353      // lifetime to the end of the enclosing block scope.
1354      auto LifetimeExtendObject = [&](const Expr *E) {
1355        E = E->IgnoreParenCasts();
1356        // Extend lifetimes of objects returned by function calls and message
1357        // sends.
1358
1359        // FIXME: We should do this in other cases in which temporaries are
1360        //        created including arguments of non-ARC types (e.g., C++
1361        //        temporaries).
1362        if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1363          return true;
1364        return false;
1365      };
1366
1367      if (TheExpr->getType()->isObjCRetainableType() &&
1368          getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1369        assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1370               "Only scalar can be a ObjC retainable type");
1371        if (!isa<Constant>(ArgVal)) {
1372          CleanupKind Cleanup = getARCCleanupKind();
1373          QualType Ty = TheExpr->getType();
1374          Address Alloca = Address::invalid();
1375          Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1376          ArgVal = EmitARCRetain(Ty, ArgVal);
1377          Builder.CreateStore(ArgVal, Addr);
1378          pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1379                                      CodeGenFunction::destroyARCStrongPrecise,
1380                                      Cleanup & EHCleanup);
1381
1382          // Push a clang.arc.use call to ensure ARC optimizer knows that the
1383          // argument has to be alive.
1384          if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1385            pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1386        }
1387      }
1388    } else {
1389      ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1390    }
1391
1392    unsigned ArgValSize =
1393        CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1394    llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1395                                                     ArgValSize);
1396    ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1397    CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1398    // If ArgVal has type x86_fp80, zero-extend ArgVal.
1399    ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1400    Args.add(RValue::get(ArgVal), ArgTy);
1401  }
1402
1403  const CGFunctionInfo &FI =
1404      CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1405  llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1406      Layout, BufAddr.getAlignment());
1407  EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1408  return RValue::get(BufAddr.getPointer());
1409}
1410
1411/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1412static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1413                                       WidthAndSignedness Op1Info,
1414                                       WidthAndSignedness Op2Info,
1415                                       WidthAndSignedness ResultInfo) {
1416  return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1417         std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1418         Op1Info.Signed != Op2Info.Signed;
1419}
1420
1421/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1422/// the generic checked-binop irgen.
1423static RValue
1424EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1425                             WidthAndSignedness Op1Info, const clang::Expr *Op2,
1426                             WidthAndSignedness Op2Info,
1427                             const clang::Expr *ResultArg, QualType ResultQTy,
1428                             WidthAndSignedness ResultInfo) {
1429  assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1430                                    Op2Info, ResultInfo) &&
1431         "Not a mixed-sign multipliction we can specialize");
1432
1433  // Emit the signed and unsigned operands.
1434  const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1435  const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1436  llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1437  llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1438  unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1439  unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1440
1441  // One of the operands may be smaller than the other. If so, [s|z]ext it.
1442  if (SignedOpWidth < UnsignedOpWidth)
1443    Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1444  if (UnsignedOpWidth < SignedOpWidth)
1445    Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1446
1447  llvm::Type *OpTy = Signed->getType();
1448  llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1449  Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1450  llvm::Type *ResTy = ResultPtr.getElementType();
1451  unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1452
1453  // Take the absolute value of the signed operand.
1454  llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1455  llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1456  llvm::Value *AbsSigned =
1457      CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1458
1459  // Perform a checked unsigned multiplication.
1460  llvm::Value *UnsignedOverflow;
1461  llvm::Value *UnsignedResult =
1462      EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1463                            Unsigned, UnsignedOverflow);
1464
1465  llvm::Value *Overflow, *Result;
1466  if (ResultInfo.Signed) {
1467    // Signed overflow occurs if the result is greater than INT_MAX or lesser
1468    // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1469    auto IntMax =
1470        llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1471    llvm::Value *MaxResult =
1472        CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1473                              CGF.Builder.CreateZExt(IsNegative, OpTy));
1474    llvm::Value *SignedOverflow =
1475        CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1476    Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1477
1478    // Prepare the signed result (possibly by negating it).
1479    llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1480    llvm::Value *SignedResult =
1481        CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1482    Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1483  } else {
1484    // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1485    llvm::Value *Underflow = CGF.Builder.CreateAnd(
1486        IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1487    Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1488    if (ResultInfo.Width < OpWidth) {
1489      auto IntMax =
1490          llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1491      llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1492          UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1493      Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1494    }
1495
1496    // Negate the product if it would be negative in infinite precision.
1497    Result = CGF.Builder.CreateSelect(
1498        IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1499
1500    Result = CGF.Builder.CreateTrunc(Result, ResTy);
1501  }
1502  assert(Overflow && Result && "Missing overflow or result");
1503
1504  bool isVolatile =
1505      ResultArg->getType()->getPointeeType().isVolatileQualified();
1506  CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1507                          isVolatile);
1508  return RValue::get(Overflow);
1509}
1510
1511static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1512                               Value *&RecordPtr, CharUnits Align,
1513                               llvm::FunctionCallee Func, int Lvl) {
1514  ASTContext &Context = CGF.getContext();
1515  RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1516  std::string Pad = std::string(Lvl * 4, ' ');
1517
1518  Value *GString =
1519      CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1520  Value *Res = CGF.Builder.CreateCall(Func, {GString});
1521
1522  static llvm::DenseMap<QualType, const char *> Types;
1523  if (Types.empty()) {
1524    Types[Context.CharTy] = "%c";
1525    Types[Context.BoolTy] = "%d";
1526    Types[Context.SignedCharTy] = "%hhd";
1527    Types[Context.UnsignedCharTy] = "%hhu";
1528    Types[Context.IntTy] = "%d";
1529    Types[Context.UnsignedIntTy] = "%u";
1530    Types[Context.LongTy] = "%ld";
1531    Types[Context.UnsignedLongTy] = "%lu";
1532    Types[Context.LongLongTy] = "%lld";
1533    Types[Context.UnsignedLongLongTy] = "%llu";
1534    Types[Context.ShortTy] = "%hd";
1535    Types[Context.UnsignedShortTy] = "%hu";
1536    Types[Context.VoidPtrTy] = "%p";
1537    Types[Context.FloatTy] = "%f";
1538    Types[Context.DoubleTy] = "%f";
1539    Types[Context.LongDoubleTy] = "%Lf";
1540    Types[Context.getPointerType(Context.CharTy)] = "%s";
1541    Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1542  }
1543
1544  for (const auto *FD : RD->fields()) {
1545    Value *FieldPtr = RecordPtr;
1546    if (RD->isUnion())
1547      FieldPtr = CGF.Builder.CreatePointerCast(
1548          FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1549    else
1550      FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1551                                             FD->getFieldIndex());
1552
1553    GString = CGF.Builder.CreateGlobalStringPtr(
1554        llvm::Twine(Pad)
1555            .concat(FD->getType().getAsString())
1556            .concat(llvm::Twine(' '))
1557            .concat(FD->getNameAsString())
1558            .concat(" : ")
1559            .str());
1560    Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1561    Res = CGF.Builder.CreateAdd(Res, TmpRes);
1562
1563    QualType CanonicalType =
1564        FD->getType().getUnqualifiedType().getCanonicalType();
1565
1566    // We check whether we are in a recursive type
1567    if (CanonicalType->isRecordType()) {
1568      TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1569      Res = CGF.Builder.CreateAdd(TmpRes, Res);
1570      continue;
1571    }
1572
1573    // We try to determine the best format to print the current field
1574    llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1575                             ? Types[Context.VoidPtrTy]
1576                             : Types[CanonicalType];
1577
1578    Address FieldAddress = Address(FieldPtr, Align);
1579    FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1580
1581    // FIXME Need to handle bitfield here
1582    GString = CGF.Builder.CreateGlobalStringPtr(
1583        Format.concat(llvm::Twine('\n')).str());
1584    TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1585    Res = CGF.Builder.CreateAdd(Res, TmpRes);
1586  }
1587
1588  GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1589  Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1590  Res = CGF.Builder.CreateAdd(Res, TmpRes);
1591  return Res;
1592}
1593
1594static bool
1595TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1596                              llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1597  if (const auto *Arr = Ctx.getAsArrayType(Ty))
1598    Ty = Ctx.getBaseElementType(Arr);
1599
1600  const auto *Record = Ty->getAsCXXRecordDecl();
1601  if (!Record)
1602    return false;
1603
1604  // We've already checked this type, or are in the process of checking it.
1605  if (!Seen.insert(Record).second)
1606    return false;
1607
1608  assert(Record->hasDefinition() &&
1609         "Incomplete types should already be diagnosed");
1610
1611  if (Record->isDynamicClass())
1612    return true;
1613
1614  for (FieldDecl *F : Record->fields()) {
1615    if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1616      return true;
1617  }
1618  return false;
1619}
1620
1621/// Determine if the specified type requires laundering by checking if it is a
1622/// dynamic class type or contains a subobject which is a dynamic class type.
1623static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1624  if (!CGM.getCodeGenOpts().StrictVTablePointers)
1625    return false;
1626  llvm::SmallPtrSet<const Decl *, 16> Seen;
1627  return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1628}
1629
1630RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1631  llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1632  llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1633
1634  // The builtin's shift arg may have a different type than the source arg and
1635  // result, but the LLVM intrinsic uses the same type for all values.
1636  llvm::Type *Ty = Src->getType();
1637  ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1638
1639  // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1640  unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1641  Function *F = CGM.getIntrinsic(IID, Ty);
1642  return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1643}
1644
1645RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1646                                        const CallExpr *E,
1647                                        ReturnValueSlot ReturnValue) {
1648  const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1649  // See if we can constant fold this builtin.  If so, don't emit it at all.
1650  Expr::EvalResult Result;
1651  if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1652      !Result.hasSideEffects()) {
1653    if (Result.Val.isInt())
1654      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1655                                                Result.Val.getInt()));
1656    if (Result.Val.isFloat())
1657      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1658                                               Result.Val.getFloat()));
1659  }
1660
1661  // There are LLVM math intrinsics/instructions corresponding to math library
1662  // functions except the LLVM op will never set errno while the math library
1663  // might. Also, math builtins have the same semantics as their math library
1664  // twins. Thus, we can transform math library and builtin calls to their
1665  // LLVM counterparts if the call is marked 'const' (known to never set errno).
1666  if (FD->hasAttr<ConstAttr>()) {
1667    switch (BuiltinID) {
1668    case Builtin::BIceil:
1669    case Builtin::BIceilf:
1670    case Builtin::BIceill:
1671    case Builtin::BI__builtin_ceil:
1672    case Builtin::BI__builtin_ceilf:
1673    case Builtin::BI__builtin_ceilf16:
1674    case Builtin::BI__builtin_ceill:
1675      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1676                                   Intrinsic::ceil,
1677                                   Intrinsic::experimental_constrained_ceil));
1678
1679    case Builtin::BIcopysign:
1680    case Builtin::BIcopysignf:
1681    case Builtin::BIcopysignl:
1682    case Builtin::BI__builtin_copysign:
1683    case Builtin::BI__builtin_copysignf:
1684    case Builtin::BI__builtin_copysignf16:
1685    case Builtin::BI__builtin_copysignl:
1686    case Builtin::BI__builtin_copysignf128:
1687      return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1688
1689    case Builtin::BIcos:
1690    case Builtin::BIcosf:
1691    case Builtin::BIcosl:
1692    case Builtin::BI__builtin_cos:
1693    case Builtin::BI__builtin_cosf:
1694    case Builtin::BI__builtin_cosf16:
1695    case Builtin::BI__builtin_cosl:
1696      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1697                                   Intrinsic::cos,
1698                                   Intrinsic::experimental_constrained_cos));
1699
1700    case Builtin::BIexp:
1701    case Builtin::BIexpf:
1702    case Builtin::BIexpl:
1703    case Builtin::BI__builtin_exp:
1704    case Builtin::BI__builtin_expf:
1705    case Builtin::BI__builtin_expf16:
1706    case Builtin::BI__builtin_expl:
1707      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1708                                   Intrinsic::exp,
1709                                   Intrinsic::experimental_constrained_exp));
1710
1711    case Builtin::BIexp2:
1712    case Builtin::BIexp2f:
1713    case Builtin::BIexp2l:
1714    case Builtin::BI__builtin_exp2:
1715    case Builtin::BI__builtin_exp2f:
1716    case Builtin::BI__builtin_exp2f16:
1717    case Builtin::BI__builtin_exp2l:
1718      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1719                                   Intrinsic::exp2,
1720                                   Intrinsic::experimental_constrained_exp2));
1721
1722    case Builtin::BIfabs:
1723    case Builtin::BIfabsf:
1724    case Builtin::BIfabsl:
1725    case Builtin::BI__builtin_fabs:
1726    case Builtin::BI__builtin_fabsf:
1727    case Builtin::BI__builtin_fabsf16:
1728    case Builtin::BI__builtin_fabsl:
1729    case Builtin::BI__builtin_fabsf128:
1730      return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1731
1732    case Builtin::BIfloor:
1733    case Builtin::BIfloorf:
1734    case Builtin::BIfloorl:
1735    case Builtin::BI__builtin_floor:
1736    case Builtin::BI__builtin_floorf:
1737    case Builtin::BI__builtin_floorf16:
1738    case Builtin::BI__builtin_floorl:
1739      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1740                                   Intrinsic::floor,
1741                                   Intrinsic::experimental_constrained_floor));
1742
1743    case Builtin::BIfma:
1744    case Builtin::BIfmaf:
1745    case Builtin::BIfmal:
1746    case Builtin::BI__builtin_fma:
1747    case Builtin::BI__builtin_fmaf:
1748    case Builtin::BI__builtin_fmaf16:
1749    case Builtin::BI__builtin_fmal:
1750      return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
1751                                   Intrinsic::fma,
1752                                   Intrinsic::experimental_constrained_fma));
1753
1754    case Builtin::BIfmax:
1755    case Builtin::BIfmaxf:
1756    case Builtin::BIfmaxl:
1757    case Builtin::BI__builtin_fmax:
1758    case Builtin::BI__builtin_fmaxf:
1759    case Builtin::BI__builtin_fmaxf16:
1760    case Builtin::BI__builtin_fmaxl:
1761      return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1762                                   Intrinsic::maxnum,
1763                                   Intrinsic::experimental_constrained_maxnum));
1764
1765    case Builtin::BIfmin:
1766    case Builtin::BIfminf:
1767    case Builtin::BIfminl:
1768    case Builtin::BI__builtin_fmin:
1769    case Builtin::BI__builtin_fminf:
1770    case Builtin::BI__builtin_fminf16:
1771    case Builtin::BI__builtin_fminl:
1772      return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1773                                   Intrinsic::minnum,
1774                                   Intrinsic::experimental_constrained_minnum));
1775
1776    // fmod() is a special-case. It maps to the frem instruction rather than an
1777    // LLVM intrinsic.
1778    case Builtin::BIfmod:
1779    case Builtin::BIfmodf:
1780    case Builtin::BIfmodl:
1781    case Builtin::BI__builtin_fmod:
1782    case Builtin::BI__builtin_fmodf:
1783    case Builtin::BI__builtin_fmodf16:
1784    case Builtin::BI__builtin_fmodl: {
1785      Value *Arg1 = EmitScalarExpr(E->getArg(0));
1786      Value *Arg2 = EmitScalarExpr(E->getArg(1));
1787      return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1788    }
1789
1790    case Builtin::BIlog:
1791    case Builtin::BIlogf:
1792    case Builtin::BIlogl:
1793    case Builtin::BI__builtin_log:
1794    case Builtin::BI__builtin_logf:
1795    case Builtin::BI__builtin_logf16:
1796    case Builtin::BI__builtin_logl:
1797      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1798                                   Intrinsic::log,
1799                                   Intrinsic::experimental_constrained_log));
1800
1801    case Builtin::BIlog10:
1802    case Builtin::BIlog10f:
1803    case Builtin::BIlog10l:
1804    case Builtin::BI__builtin_log10:
1805    case Builtin::BI__builtin_log10f:
1806    case Builtin::BI__builtin_log10f16:
1807    case Builtin::BI__builtin_log10l:
1808      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1809                                   Intrinsic::log10,
1810                                   Intrinsic::experimental_constrained_log10));
1811
1812    case Builtin::BIlog2:
1813    case Builtin::BIlog2f:
1814    case Builtin::BIlog2l:
1815    case Builtin::BI__builtin_log2:
1816    case Builtin::BI__builtin_log2f:
1817    case Builtin::BI__builtin_log2f16:
1818    case Builtin::BI__builtin_log2l:
1819      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1820                                   Intrinsic::log2,
1821                                   Intrinsic::experimental_constrained_log2));
1822
1823    case Builtin::BInearbyint:
1824    case Builtin::BInearbyintf:
1825    case Builtin::BInearbyintl:
1826    case Builtin::BI__builtin_nearbyint:
1827    case Builtin::BI__builtin_nearbyintf:
1828    case Builtin::BI__builtin_nearbyintl:
1829      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1830                                Intrinsic::nearbyint,
1831                                Intrinsic::experimental_constrained_nearbyint));
1832
1833    case Builtin::BIpow:
1834    case Builtin::BIpowf:
1835    case Builtin::BIpowl:
1836    case Builtin::BI__builtin_pow:
1837    case Builtin::BI__builtin_powf:
1838    case Builtin::BI__builtin_powf16:
1839    case Builtin::BI__builtin_powl:
1840      return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1841                                   Intrinsic::pow,
1842                                   Intrinsic::experimental_constrained_pow));
1843
1844    case Builtin::BIrint:
1845    case Builtin::BIrintf:
1846    case Builtin::BIrintl:
1847    case Builtin::BI__builtin_rint:
1848    case Builtin::BI__builtin_rintf:
1849    case Builtin::BI__builtin_rintf16:
1850    case Builtin::BI__builtin_rintl:
1851      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1852                                   Intrinsic::rint,
1853                                   Intrinsic::experimental_constrained_rint));
1854
1855    case Builtin::BIround:
1856    case Builtin::BIroundf:
1857    case Builtin::BIroundl:
1858    case Builtin::BI__builtin_round:
1859    case Builtin::BI__builtin_roundf:
1860    case Builtin::BI__builtin_roundf16:
1861    case Builtin::BI__builtin_roundl:
1862      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1863                                   Intrinsic::round,
1864                                   Intrinsic::experimental_constrained_round));
1865
1866    case Builtin::BIsin:
1867    case Builtin::BIsinf:
1868    case Builtin::BIsinl:
1869    case Builtin::BI__builtin_sin:
1870    case Builtin::BI__builtin_sinf:
1871    case Builtin::BI__builtin_sinf16:
1872    case Builtin::BI__builtin_sinl:
1873      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1874                                   Intrinsic::sin,
1875                                   Intrinsic::experimental_constrained_sin));
1876
1877    case Builtin::BIsqrt:
1878    case Builtin::BIsqrtf:
1879    case Builtin::BIsqrtl:
1880    case Builtin::BI__builtin_sqrt:
1881    case Builtin::BI__builtin_sqrtf:
1882    case Builtin::BI__builtin_sqrtf16:
1883    case Builtin::BI__builtin_sqrtl:
1884      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1885                                   Intrinsic::sqrt,
1886                                   Intrinsic::experimental_constrained_sqrt));
1887
1888    case Builtin::BItrunc:
1889    case Builtin::BItruncf:
1890    case Builtin::BItruncl:
1891    case Builtin::BI__builtin_trunc:
1892    case Builtin::BI__builtin_truncf:
1893    case Builtin::BI__builtin_truncf16:
1894    case Builtin::BI__builtin_truncl:
1895      return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1896                                   Intrinsic::trunc,
1897                                   Intrinsic::experimental_constrained_trunc));
1898
1899    case Builtin::BIlround:
1900    case Builtin::BIlroundf:
1901    case Builtin::BIlroundl:
1902    case Builtin::BI__builtin_lround:
1903    case Builtin::BI__builtin_lroundf:
1904    case Builtin::BI__builtin_lroundl:
1905      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1906          *this, E, Intrinsic::lround,
1907          Intrinsic::experimental_constrained_lround));
1908
1909    case Builtin::BIllround:
1910    case Builtin::BIllroundf:
1911    case Builtin::BIllroundl:
1912    case Builtin::BI__builtin_llround:
1913    case Builtin::BI__builtin_llroundf:
1914    case Builtin::BI__builtin_llroundl:
1915      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1916          *this, E, Intrinsic::llround,
1917          Intrinsic::experimental_constrained_llround));
1918
1919    case Builtin::BIlrint:
1920    case Builtin::BIlrintf:
1921    case Builtin::BIlrintl:
1922    case Builtin::BI__builtin_lrint:
1923    case Builtin::BI__builtin_lrintf:
1924    case Builtin::BI__builtin_lrintl:
1925      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1926          *this, E, Intrinsic::lrint,
1927          Intrinsic::experimental_constrained_lrint));
1928
1929    case Builtin::BIllrint:
1930    case Builtin::BIllrintf:
1931    case Builtin::BIllrintl:
1932    case Builtin::BI__builtin_llrint:
1933    case Builtin::BI__builtin_llrintf:
1934    case Builtin::BI__builtin_llrintl:
1935      return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1936          *this, E, Intrinsic::llrint,
1937          Intrinsic::experimental_constrained_llrint));
1938
1939    default:
1940      break;
1941    }
1942  }
1943
1944  switch (BuiltinID) {
1945  default: break;
1946  case Builtin::BI__builtin___CFStringMakeConstantString:
1947  case Builtin::BI__builtin___NSStringMakeConstantString:
1948    return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1949  case Builtin::BI__builtin_stdarg_start:
1950  case Builtin::BI__builtin_va_start:
1951  case Builtin::BI__va_start:
1952  case Builtin::BI__builtin_va_end:
1953    return RValue::get(
1954        EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1955                           ? EmitScalarExpr(E->getArg(0))
1956                           : EmitVAListRef(E->getArg(0)).getPointer(),
1957                       BuiltinID != Builtin::BI__builtin_va_end));
1958  case Builtin::BI__builtin_va_copy: {
1959    Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1960    Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1961
1962    llvm::Type *Type = Int8PtrTy;
1963
1964    DstPtr = Builder.CreateBitCast(DstPtr, Type);
1965    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1966    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1967                                          {DstPtr, SrcPtr}));
1968  }
1969  case Builtin::BI__builtin_abs:
1970  case Builtin::BI__builtin_labs:
1971  case Builtin::BI__builtin_llabs: {
1972    // X < 0 ? -X : X
1973    // The negation has 'nsw' because abs of INT_MIN is undefined.
1974    Value *ArgValue = EmitScalarExpr(E->getArg(0));
1975    Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1976    Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1977    Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1978    Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1979    return RValue::get(Result);
1980  }
1981  case Builtin::BI__builtin_conj:
1982  case Builtin::BI__builtin_conjf:
1983  case Builtin::BI__builtin_conjl:
1984  case Builtin::BIconj:
1985  case Builtin::BIconjf:
1986  case Builtin::BIconjl: {
1987    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1988    Value *Real = ComplexVal.first;
1989    Value *Imag = ComplexVal.second;
1990    Imag = Builder.CreateFNeg(Imag, "neg");
1991    return RValue::getComplex(std::make_pair(Real, Imag));
1992  }
1993  case Builtin::BI__builtin_creal:
1994  case Builtin::BI__builtin_crealf:
1995  case Builtin::BI__builtin_creall:
1996  case Builtin::BIcreal:
1997  case Builtin::BIcrealf:
1998  case Builtin::BIcreall: {
1999    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2000    return RValue::get(ComplexVal.first);
2001  }
2002
2003  case Builtin::BI__builtin_dump_struct: {
2004    llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2005    llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2006        LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2007
2008    Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2009    CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2010
2011    const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2012    QualType Arg0Type = Arg0->getType()->getPointeeType();
2013
2014    Value *RecordPtr = EmitScalarExpr(Arg0);
2015    Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2016                            {LLVMFuncType, Func}, 0);
2017    return RValue::get(Res);
2018  }
2019
2020  case Builtin::BI__builtin_preserve_access_index: {
2021    // Only enabled preserved access index region when debuginfo
2022    // is available as debuginfo is needed to preserve user-level
2023    // access pattern.
2024    if (!getDebugInfo()) {
2025      CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2026      return RValue::get(EmitScalarExpr(E->getArg(0)));
2027    }
2028
2029    // Nested builtin_preserve_access_index() not supported
2030    if (IsInPreservedAIRegion) {
2031      CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2032      return RValue::get(EmitScalarExpr(E->getArg(0)));
2033    }
2034
2035    IsInPreservedAIRegion = true;
2036    Value *Res = EmitScalarExpr(E->getArg(0));
2037    IsInPreservedAIRegion = false;
2038    return RValue::get(Res);
2039  }
2040
2041  case Builtin::BI__builtin_cimag:
2042  case Builtin::BI__builtin_cimagf:
2043  case Builtin::BI__builtin_cimagl:
2044  case Builtin::BIcimag:
2045  case Builtin::BIcimagf:
2046  case Builtin::BIcimagl: {
2047    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2048    return RValue::get(ComplexVal.second);
2049  }
2050
2051  case Builtin::BI__builtin_clrsb:
2052  case Builtin::BI__builtin_clrsbl:
2053  case Builtin::BI__builtin_clrsbll: {
2054    // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2055    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2056
2057    llvm::Type *ArgType = ArgValue->getType();
2058    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2059
2060    llvm::Type *ResultType = ConvertType(E->getType());
2061    Value *Zero = llvm::Constant::getNullValue(ArgType);
2062    Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2063    Value *Inverse = Builder.CreateNot(ArgValue, "not");
2064    Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2065    Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2066    Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2067    Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2068                                   "cast");
2069    return RValue::get(Result);
2070  }
2071  case Builtin::BI__builtin_ctzs:
2072  case Builtin::BI__builtin_ctz:
2073  case Builtin::BI__builtin_ctzl:
2074  case Builtin::BI__builtin_ctzll: {
2075    Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2076
2077    llvm::Type *ArgType = ArgValue->getType();
2078    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2079
2080    llvm::Type *ResultType = ConvertType(E->getType());
2081    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2082    Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2083    if (Result->getType() != ResultType)
2084      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2085                                     "cast");
2086    return RValue::get(Result);
2087  }
2088  case Builtin::BI__builtin_clzs:
2089  case Builtin::BI__builtin_clz:
2090  case Builtin::BI__builtin_clzl:
2091  case Builtin::BI__builtin_clzll: {
2092    Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2093
2094    llvm::Type *ArgType = ArgValue->getType();
2095    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2096
2097    llvm::Type *ResultType = ConvertType(E->getType());
2098    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2099    Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2100    if (Result->getType() != ResultType)
2101      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2102                                     "cast");
2103    return RValue::get(Result);
2104  }
2105  case Builtin::BI__builtin_ffs:
2106  case Builtin::BI__builtin_ffsl:
2107  case Builtin::BI__builtin_ffsll: {
2108    // ffs(x) -> x ? cttz(x) + 1 : 0
2109    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2110
2111    llvm::Type *ArgType = ArgValue->getType();
2112    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2113
2114    llvm::Type *ResultType = ConvertType(E->getType());
2115    Value *Tmp =
2116        Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2117                          llvm::ConstantInt::get(ArgType, 1));
2118    Value *Zero = llvm::Constant::getNullValue(ArgType);
2119    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2120    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2121    if (Result->getType() != ResultType)
2122      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2123                                     "cast");
2124    return RValue::get(Result);
2125  }
2126  case Builtin::BI__builtin_parity:
2127  case Builtin::BI__builtin_parityl:
2128  case Builtin::BI__builtin_parityll: {
2129    // parity(x) -> ctpop(x) & 1
2130    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2131
2132    llvm::Type *ArgType = ArgValue->getType();
2133    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2134
2135    llvm::Type *ResultType = ConvertType(E->getType());
2136    Value *Tmp = Builder.CreateCall(F, ArgValue);
2137    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2138    if (Result->getType() != ResultType)
2139      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2140                                     "cast");
2141    return RValue::get(Result);
2142  }
2143  case Builtin::BI__lzcnt16:
2144  case Builtin::BI__lzcnt:
2145  case Builtin::BI__lzcnt64: {
2146    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2147
2148    llvm::Type *ArgType = ArgValue->getType();
2149    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2150
2151    llvm::Type *ResultType = ConvertType(E->getType());
2152    Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2153    if (Result->getType() != ResultType)
2154      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2155                                     "cast");
2156    return RValue::get(Result);
2157  }
2158  case Builtin::BI__popcnt16:
2159  case Builtin::BI__popcnt:
2160  case Builtin::BI__popcnt64:
2161  case Builtin::BI__builtin_popcount:
2162  case Builtin::BI__builtin_popcountl:
2163  case Builtin::BI__builtin_popcountll: {
2164    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2165
2166    llvm::Type *ArgType = ArgValue->getType();
2167    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2168
2169    llvm::Type *ResultType = ConvertType(E->getType());
2170    Value *Result = Builder.CreateCall(F, ArgValue);
2171    if (Result->getType() != ResultType)
2172      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2173                                     "cast");
2174    return RValue::get(Result);
2175  }
2176  case Builtin::BI__builtin_unpredictable: {
2177    // Always return the argument of __builtin_unpredictable. LLVM does not
2178    // handle this builtin. Metadata for this builtin should be added directly
2179    // to instructions such as branches or switches that use it.
2180    return RValue::get(EmitScalarExpr(E->getArg(0)));
2181  }
2182  case Builtin::BI__builtin_expect: {
2183    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2184    llvm::Type *ArgType = ArgValue->getType();
2185
2186    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2187    // Don't generate llvm.expect on -O0 as the backend won't use it for
2188    // anything.
2189    // Note, we still IRGen ExpectedValue because it could have side-effects.
2190    if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2191      return RValue::get(ArgValue);
2192
2193    Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2194    Value *Result =
2195        Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2196    return RValue::get(Result);
2197  }
2198  case Builtin::BI__builtin_expect_with_probability: {
2199    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2200    llvm::Type *ArgType = ArgValue->getType();
2201
2202    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2203    llvm::APFloat Probability(0.0);
2204    const Expr *ProbArg = E->getArg(2);
2205    bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2206    assert(EvalSucceed && "probability should be able to evaluate as float");
2207    (void)EvalSucceed;
2208    bool LoseInfo = false;
2209    Probability.convert(llvm::APFloat::IEEEdouble(),
2210                        llvm::RoundingMode::Dynamic, &LoseInfo);
2211    llvm::Type *Ty = ConvertType(ProbArg->getType());
2212    Constant *Confidence = ConstantFP::get(Ty, Probability);
2213    // Don't generate llvm.expect.with.probability on -O0 as the backend
2214    // won't use it for anything.
2215    // Note, we still IRGen ExpectedValue because it could have side-effects.
2216    if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2217      return RValue::get(ArgValue);
2218
2219    Function *FnExpect =
2220        CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2221    Value *Result = Builder.CreateCall(
2222        FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2223    return RValue::get(Result);
2224  }
2225  case Builtin::BI__builtin_assume_aligned: {
2226    const Expr *Ptr = E->getArg(0);
2227    Value *PtrValue = EmitScalarExpr(Ptr);
2228    Value *OffsetValue =
2229      (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2230
2231    Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2232    ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2233    if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2234      AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2235                                     llvm::Value::MaximumAlignment);
2236
2237    emitAlignmentAssumption(PtrValue, Ptr,
2238                            /*The expr loc is sufficient.*/ SourceLocation(),
2239                            AlignmentCI, OffsetValue);
2240    return RValue::get(PtrValue);
2241  }
2242  case Builtin::BI__assume:
2243  case Builtin::BI__builtin_assume: {
2244    if (E->getArg(0)->HasSideEffects(getContext()))
2245      return RValue::get(nullptr);
2246
2247    Value *ArgValue = EmitScalarExpr(E->getArg(0));
2248    Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2249    return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2250  }
2251  case Builtin::BI__builtin_bswap16:
2252  case Builtin::BI__builtin_bswap32:
2253  case Builtin::BI__builtin_bswap64: {
2254    return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2255  }
2256  case Builtin::BI__builtin_bitreverse8:
2257  case Builtin::BI__builtin_bitreverse16:
2258  case Builtin::BI__builtin_bitreverse32:
2259  case Builtin::BI__builtin_bitreverse64: {
2260    return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2261  }
2262  case Builtin::BI__builtin_rotateleft8:
2263  case Builtin::BI__builtin_rotateleft16:
2264  case Builtin::BI__builtin_rotateleft32:
2265  case Builtin::BI__builtin_rotateleft64:
2266  case Builtin::BI_rotl8: // Microsoft variants of rotate left
2267  case Builtin::BI_rotl16:
2268  case Builtin::BI_rotl:
2269  case Builtin::BI_lrotl:
2270  case Builtin::BI_rotl64:
2271    return emitRotate(E, false);
2272
2273  case Builtin::BI__builtin_rotateright8:
2274  case Builtin::BI__builtin_rotateright16:
2275  case Builtin::BI__builtin_rotateright32:
2276  case Builtin::BI__builtin_rotateright64:
2277  case Builtin::BI_rotr8: // Microsoft variants of rotate right
2278  case Builtin::BI_rotr16:
2279  case Builtin::BI_rotr:
2280  case Builtin::BI_lrotr:
2281  case Builtin::BI_rotr64:
2282    return emitRotate(E, true);
2283
2284  case Builtin::BI__builtin_constant_p: {
2285    llvm::Type *ResultType = ConvertType(E->getType());
2286
2287    const Expr *Arg = E->getArg(0);
2288    QualType ArgType = Arg->getType();
2289    // FIXME: The allowance for Obj-C pointers and block pointers is historical
2290    // and likely a mistake.
2291    if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2292        !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2293      // Per the GCC documentation, only numeric constants are recognized after
2294      // inlining.
2295      return RValue::get(ConstantInt::get(ResultType, 0));
2296
2297    if (Arg->HasSideEffects(getContext()))
2298      // The argument is unevaluated, so be conservative if it might have
2299      // side-effects.
2300      return RValue::get(ConstantInt::get(ResultType, 0));
2301
2302    Value *ArgValue = EmitScalarExpr(Arg);
2303    if (ArgType->isObjCObjectPointerType()) {
2304      // Convert Objective-C objects to id because we cannot distinguish between
2305      // LLVM types for Obj-C classes as they are opaque.
2306      ArgType = CGM.getContext().getObjCIdType();
2307      ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2308    }
2309    Function *F =
2310        CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2311    Value *Result = Builder.CreateCall(F, ArgValue);
2312    if (Result->getType() != ResultType)
2313      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2314    return RValue::get(Result);
2315  }
2316  case Builtin::BI__builtin_dynamic_object_size:
2317  case Builtin::BI__builtin_object_size: {
2318    unsigned Type =
2319        E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2320    auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2321
2322    // We pass this builtin onto the optimizer so that it can figure out the
2323    // object size in more complex cases.
2324    bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2325    return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2326                                             /*EmittedE=*/nullptr, IsDynamic));
2327  }
2328  case Builtin::BI__builtin_prefetch: {
2329    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2330    // FIXME: Technically these constants should of type 'int', yes?
2331    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2332      llvm::ConstantInt::get(Int32Ty, 0);
2333    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2334      llvm::ConstantInt::get(Int32Ty, 3);
2335    Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2336    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2337    return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2338  }
2339  case Builtin::BI__builtin_readcyclecounter: {
2340    Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2341    return RValue::get(Builder.CreateCall(F));
2342  }
2343  case Builtin::BI__builtin___clear_cache: {
2344    Value *Begin = EmitScalarExpr(E->getArg(0));
2345    Value *End = EmitScalarExpr(E->getArg(1));
2346    Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2347    return RValue::get(Builder.CreateCall(F, {Begin, End}));
2348  }
2349  case Builtin::BI__builtin_trap:
2350    return RValue::get(EmitTrapCall(Intrinsic::trap));
2351  case Builtin::BI__debugbreak:
2352    return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2353  case Builtin::BI__builtin_unreachable: {
2354    EmitUnreachable(E->getExprLoc());
2355
2356    // We do need to preserve an insertion point.
2357    EmitBlock(createBasicBlock("unreachable.cont"));
2358
2359    return RValue::get(nullptr);
2360  }
2361
2362  case Builtin::BI__builtin_powi:
2363  case Builtin::BI__builtin_powif:
2364  case Builtin::BI__builtin_powil:
2365    return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2366        *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2367
2368  case Builtin::BI__builtin_isgreater:
2369  case Builtin::BI__builtin_isgreaterequal:
2370  case Builtin::BI__builtin_isless:
2371  case Builtin::BI__builtin_islessequal:
2372  case Builtin::BI__builtin_islessgreater:
2373  case Builtin::BI__builtin_isunordered: {
2374    // Ordered comparisons: we know the arguments to these are matching scalar
2375    // floating point values.
2376    Value *LHS = EmitScalarExpr(E->getArg(0));
2377    Value *RHS = EmitScalarExpr(E->getArg(1));
2378
2379    switch (BuiltinID) {
2380    default: llvm_unreachable("Unknown ordered comparison");
2381    case Builtin::BI__builtin_isgreater:
2382      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2383      break;
2384    case Builtin::BI__builtin_isgreaterequal:
2385      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2386      break;
2387    case Builtin::BI__builtin_isless:
2388      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2389      break;
2390    case Builtin::BI__builtin_islessequal:
2391      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2392      break;
2393    case Builtin::BI__builtin_islessgreater:
2394      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2395      break;
2396    case Builtin::BI__builtin_isunordered:
2397      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2398      break;
2399    }
2400    // ZExt bool to int type.
2401    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2402  }
2403  case Builtin::BI__builtin_isnan: {
2404    Value *V = EmitScalarExpr(E->getArg(0));
2405    V = Builder.CreateFCmpUNO(V, V, "cmp");
2406    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2407  }
2408
2409  case Builtin::BI__builtin_matrix_transpose: {
2410    const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2411    Value *MatValue = EmitScalarExpr(E->getArg(0));
2412    MatrixBuilder<CGBuilderTy> MB(Builder);
2413    Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
2414                                             MatrixTy->getNumColumns());
2415    return RValue::get(Result);
2416  }
2417
2418  case Builtin::BI__builtin_matrix_column_major_load: {
2419    MatrixBuilder<CGBuilderTy> MB(Builder);
2420    // Emit everything that isn't dependent on the first parameter type
2421    Value *Stride = EmitScalarExpr(E->getArg(3));
2422    const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
2423    auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
2424    assert(PtrTy && "arg0 must be of pointer type");
2425    bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2426
2427    Address Src = EmitPointerWithAlignment(E->getArg(0));
2428    EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
2429                        E->getArg(0)->getExprLoc(), FD, 0);
2430    Value *Result = MB.CreateColumnMajorLoad(
2431        Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
2432        IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
2433        "matrix");
2434    return RValue::get(Result);
2435  }
2436
2437  case Builtin::BI__builtin_matrix_column_major_store: {
2438    MatrixBuilder<CGBuilderTy> MB(Builder);
2439    Value *Matrix = EmitScalarExpr(E->getArg(0));
2440    Address Dst = EmitPointerWithAlignment(E->getArg(1));
2441    Value *Stride = EmitScalarExpr(E->getArg(2));
2442
2443    const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2444    auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
2445    assert(PtrTy && "arg1 must be of pointer type");
2446    bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2447
2448    EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
2449                        E->getArg(1)->getExprLoc(), FD, 0);
2450    Value *Result = MB.CreateColumnMajorStore(
2451        Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
2452        Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
2453    return RValue::get(Result);
2454  }
2455
2456  case Builtin::BIfinite:
2457  case Builtin::BI__finite:
2458  case Builtin::BIfinitef:
2459  case Builtin::BI__finitef:
2460  case Builtin::BIfinitel:
2461  case Builtin::BI__finitel:
2462  case Builtin::BI__builtin_isinf:
2463  case Builtin::BI__builtin_isfinite: {
2464    // isinf(x)    --> fabs(x) == infinity
2465    // isfinite(x) --> fabs(x) != infinity
2466    // x != NaN via the ordered compare in either case.
2467    Value *V = EmitScalarExpr(E->getArg(0));
2468    Value *Fabs = EmitFAbs(*this, V);
2469    Constant *Infinity = ConstantFP::getInfinity(V->getType());
2470    CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2471                                  ? CmpInst::FCMP_OEQ
2472                                  : CmpInst::FCMP_ONE;
2473    Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2474    return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2475  }
2476
2477  case Builtin::BI__builtin_isinf_sign: {
2478    // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2479    Value *Arg = EmitScalarExpr(E->getArg(0));
2480    Value *AbsArg = EmitFAbs(*this, Arg);
2481    Value *IsInf = Builder.CreateFCmpOEQ(
2482        AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2483    Value *IsNeg = EmitSignBit(*this, Arg);
2484
2485    llvm::Type *IntTy = ConvertType(E->getType());
2486    Value *Zero = Constant::getNullValue(IntTy);
2487    Value *One = ConstantInt::get(IntTy, 1);
2488    Value *NegativeOne = ConstantInt::get(IntTy, -1);
2489    Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2490    Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2491    return RValue::get(Result);
2492  }
2493
2494  case Builtin::BI__builtin_isnormal: {
2495    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2496    Value *V = EmitScalarExpr(E->getArg(0));
2497    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2498
2499    Value *Abs = EmitFAbs(*this, V);
2500    Value *IsLessThanInf =
2501      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2502    APFloat Smallest = APFloat::getSmallestNormalized(
2503                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2504    Value *IsNormal =
2505      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2506                            "isnormal");
2507    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2508    V = Builder.CreateAnd(V, IsNormal, "and");
2509    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2510  }
2511
2512  case Builtin::BI__builtin_flt_rounds: {
2513    Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2514
2515    llvm::Type *ResultType = ConvertType(E->getType());
2516    Value *Result = Builder.CreateCall(F);
2517    if (Result->getType() != ResultType)
2518      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2519                                     "cast");
2520    return RValue::get(Result);
2521  }
2522
2523  case Builtin::BI__builtin_fpclassify: {
2524    Value *V = EmitScalarExpr(E->getArg(5));
2525    llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2526
2527    // Create Result
2528    BasicBlock *Begin = Builder.GetInsertBlock();
2529    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2530    Builder.SetInsertPoint(End);
2531    PHINode *Result =
2532      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2533                        "fpclassify_result");
2534
2535    // if (V==0) return FP_ZERO
2536    Builder.SetInsertPoint(Begin);
2537    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2538                                          "iszero");
2539    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2540    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2541    Builder.CreateCondBr(IsZero, End, NotZero);
2542    Result->addIncoming(ZeroLiteral, Begin);
2543
2544    // if (V != V) return FP_NAN
2545    Builder.SetInsertPoint(NotZero);
2546    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2547    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2548    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2549    Builder.CreateCondBr(IsNan, End, NotNan);
2550    Result->addIncoming(NanLiteral, NotZero);
2551
2552    // if (fabs(V) == infinity) return FP_INFINITY
2553    Builder.SetInsertPoint(NotNan);
2554    Value *VAbs = EmitFAbs(*this, V);
2555    Value *IsInf =
2556      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2557                            "isinf");
2558    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2559    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2560    Builder.CreateCondBr(IsInf, End, NotInf);
2561    Result->addIncoming(InfLiteral, NotNan);
2562
2563    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2564    Builder.SetInsertPoint(NotInf);
2565    APFloat Smallest = APFloat::getSmallestNormalized(
2566        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2567    Value *IsNormal =
2568      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2569                            "isnormal");
2570    Value *NormalResult =
2571      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2572                           EmitScalarExpr(E->getArg(3)));
2573    Builder.CreateBr(End);
2574    Result->addIncoming(NormalResult, NotInf);
2575
2576    // return Result
2577    Builder.SetInsertPoint(End);
2578    return RValue::get(Result);
2579  }
2580
2581  case Builtin::BIalloca:
2582  case Builtin::BI_alloca:
2583  case Builtin::BI__builtin_alloca: {
2584    Value *Size = EmitScalarExpr(E->getArg(0));
2585    const TargetInfo &TI = getContext().getTargetInfo();
2586    // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2587    const Align SuitableAlignmentInBytes =
2588        CGM.getContext()
2589            .toCharUnitsFromBits(TI.getSuitableAlign())
2590            .getAsAlign();
2591    AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2592    AI->setAlignment(SuitableAlignmentInBytes);
2593    initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2594    return RValue::get(AI);
2595  }
2596
2597  case Builtin::BI__builtin_alloca_with_align: {
2598    Value *Size = EmitScalarExpr(E->getArg(0));
2599    Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2600    auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2601    unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2602    const Align AlignmentInBytes =
2603        CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
2604    AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2605    AI->setAlignment(AlignmentInBytes);
2606    initializeAlloca(*this, AI, Size, AlignmentInBytes);
2607    return RValue::get(AI);
2608  }
2609
2610  case Builtin::BIbzero:
2611  case Builtin::BI__builtin_bzero: {
2612    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2613    Value *SizeVal = EmitScalarExpr(E->getArg(1));
2614    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2615                        E->getArg(0)->getExprLoc(), FD, 0);
2616    Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2617    return RValue::get(nullptr);
2618  }
2619  case Builtin::BImemcpy:
2620  case Builtin::BI__builtin_memcpy:
2621  case Builtin::BImempcpy:
2622  case Builtin::BI__builtin_mempcpy: {
2623    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2624    Address Src = EmitPointerWithAlignment(E->getArg(1));
2625    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2626    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2627                        E->getArg(0)->getExprLoc(), FD, 0);
2628    EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2629                        E->getArg(1)->getExprLoc(), FD, 1);
2630    Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2631    if (BuiltinID == Builtin::BImempcpy ||
2632        BuiltinID == Builtin::BI__builtin_mempcpy)
2633      return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal));
2634    else
2635      return RValue::get(Dest.getPointer());
2636  }
2637
2638  case Builtin::BI__builtin_memcpy_inline: {
2639    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2640    Address Src = EmitPointerWithAlignment(E->getArg(1));
2641    uint64_t Size =
2642        E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
2643    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2644                        E->getArg(0)->getExprLoc(), FD, 0);
2645    EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2646                        E->getArg(1)->getExprLoc(), FD, 1);
2647    Builder.CreateMemCpyInline(Dest, Src, Size);
2648    return RValue::get(nullptr);
2649  }
2650
2651  case Builtin::BI__builtin_char_memchr:
2652    BuiltinID = Builtin::BI__builtin_memchr;
2653    break;
2654
2655  case Builtin::BI__builtin___memcpy_chk: {
2656    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2657    Expr::EvalResult SizeResult, DstSizeResult;
2658    if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2659        !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2660      break;
2661    llvm::APSInt Size = SizeResult.Val.getInt();
2662    llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2663    if (Size.ugt(DstSize))
2664      break;
2665    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2666    Address Src = EmitPointerWithAlignment(E->getArg(1));
2667    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2668    Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2669    return RValue::get(Dest.getPointer());
2670  }
2671
2672  case Builtin::BI__builtin_objc_memmove_collectable: {
2673    Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2674    Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2675    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2676    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2677                                                  DestAddr, SrcAddr, SizeVal);
2678    return RValue::get(DestAddr.getPointer());
2679  }
2680
2681  case Builtin::BI__builtin___memmove_chk: {
2682    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2683    Expr::EvalResult SizeResult, DstSizeResult;
2684    if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2685        !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2686      break;
2687    llvm::APSInt Size = SizeResult.Val.getInt();
2688    llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2689    if (Size.ugt(DstSize))
2690      break;
2691    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2692    Address Src = EmitPointerWithAlignment(E->getArg(1));
2693    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2694    Builder.CreateMemMove(Dest, Src, SizeVal, false);
2695    return RValue::get(Dest.getPointer());
2696  }
2697
2698  case Builtin::BImemmove:
2699  case Builtin::BI__builtin_memmove: {
2700    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2701    Address Src = EmitPointerWithAlignment(E->getArg(1));
2702    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2703    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2704                        E->getArg(0)->getExprLoc(), FD, 0);
2705    EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2706                        E->getArg(1)->getExprLoc(), FD, 1);
2707    Builder.CreateMemMove(Dest, Src, SizeVal, false);
2708    return RValue::get(Dest.getPointer());
2709  }
2710  case Builtin::BImemset:
2711  case Builtin::BI__builtin_memset: {
2712    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2713    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2714                                         Builder.getInt8Ty());
2715    Value *SizeVal = EmitScalarExpr(E->getArg(2));
2716    EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2717                        E->getArg(0)->getExprLoc(), FD, 0);
2718    Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2719    return RValue::get(Dest.getPointer());
2720  }
2721  case Builtin::BI__builtin___memset_chk: {
2722    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2723    Expr::EvalResult SizeResult, DstSizeResult;
2724    if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2725        !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2726      break;
2727    llvm::APSInt Size = SizeResult.Val.getInt();
2728    llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2729    if (Size.ugt(DstSize))
2730      break;
2731    Address Dest = EmitPointerWithAlignment(E->getArg(0));
2732    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2733                                         Builder.getInt8Ty());
2734    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2735    Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2736    return RValue::get(Dest.getPointer());
2737  }
2738  case Builtin::BI__builtin_wmemcmp: {
2739    // The MSVC runtime library does not provide a definition of wmemcmp, so we
2740    // need an inline implementation.
2741    if (!getTarget().getTriple().isOSMSVCRT())
2742      break;
2743
2744    llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2745
2746    Value *Dst = EmitScalarExpr(E->getArg(0));
2747    Value *Src = EmitScalarExpr(E->getArg(1));
2748    Value *Size = EmitScalarExpr(E->getArg(2));
2749
2750    BasicBlock *Entry = Builder.GetInsertBlock();
2751    BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2752    BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2753    BasicBlock *Next = createBasicBlock("wmemcmp.next");
2754    BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2755    Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2756    Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2757
2758    EmitBlock(CmpGT);
2759    PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2760    DstPhi->addIncoming(Dst, Entry);
2761    PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2762    SrcPhi->addIncoming(Src, Entry);
2763    PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2764    SizePhi->addIncoming(Size, Entry);
2765    CharUnits WCharAlign =
2766        getContext().getTypeAlignInChars(getContext().WCharTy);
2767    Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2768    Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2769    Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2770    Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2771
2772    EmitBlock(CmpLT);
2773    Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2774    Builder.CreateCondBr(DstLtSrc, Exit, Next);
2775
2776    EmitBlock(Next);
2777    Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2778    Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2779    Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2780    Value *NextSizeEq0 =
2781        Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2782    Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2783    DstPhi->addIncoming(NextDst, Next);
2784    SrcPhi->addIncoming(NextSrc, Next);
2785    SizePhi->addIncoming(NextSize, Next);
2786
2787    EmitBlock(Exit);
2788    PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2789    Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2790    Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2791    Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2792    Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2793    return RValue::get(Ret);
2794  }
2795  case Builtin::BI__builtin_dwarf_cfa: {
2796    // The offset in bytes from the first argument to the CFA.
2797    //
2798    // Why on earth is this in the frontend?  Is there any reason at
2799    // all that the backend can't reasonably determine this while
2800    // lowering llvm.eh.dwarf.cfa()?
2801    //
2802    // TODO: If there's a satisfactory reason, add a target hook for
2803    // this instead of hard-coding 0, which is correct for most targets.
2804    int32_t Offset = 0;
2805
2806    Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2807    return RValue::get(Builder.CreateCall(F,
2808                                      llvm::ConstantInt::get(Int32Ty, Offset)));
2809  }
2810  case Builtin::BI__builtin_return_address: {
2811    Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2812                                                   getContext().UnsignedIntTy);
2813    Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2814    return RValue::get(Builder.CreateCall(F, Depth));
2815  }
2816  case Builtin::BI_ReturnAddress: {
2817    Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2818    return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2819  }
2820  case Builtin::BI__builtin_frame_address: {
2821    Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2822                                                   getContext().UnsignedIntTy);
2823    Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
2824    return RValue::get(Builder.CreateCall(F, Depth));
2825  }
2826  case Builtin::BI__builtin_extract_return_addr: {
2827    Value *Address = EmitScalarExpr(E->getArg(0));
2828    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2829    return RValue::get(Result);
2830  }
2831  case Builtin::BI__builtin_frob_return_addr: {
2832    Value *Address = EmitScalarExpr(E->getArg(0));
2833    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2834    return RValue::get(Result);
2835  }
2836  case Builtin::BI__builtin_dwarf_sp_column: {
2837    llvm::IntegerType *Ty
2838      = cast<llvm::IntegerType>(ConvertType(E->getType()));
2839    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2840    if (Column == -1) {
2841      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2842      return RValue::get(llvm::UndefValue::get(Ty));
2843    }
2844    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2845  }
2846  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2847    Value *Address = EmitScalarExpr(E->getArg(0));
2848    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2849      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2850    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2851  }
2852  case Builtin::BI__builtin_eh_return: {
2853    Value *Int = EmitScalarExpr(E->getArg(0));
2854    Value *Ptr = EmitScalarExpr(E->getArg(1));
2855
2856    llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2857    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
2858           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
2859    Function *F =
2860        CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2861                                                    : Intrinsic::eh_return_i64);
2862    Builder.CreateCall(F, {Int, Ptr});
2863    Builder.CreateUnreachable();
2864
2865    // We do need to preserve an insertion point.
2866    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2867
2868    return RValue::get(nullptr);
2869  }
2870  case Builtin::BI__builtin_unwind_init: {
2871    Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2872    return RValue::get(Builder.CreateCall(F));
2873  }
2874  case Builtin::BI__builtin_extend_pointer: {
2875    // Extends a pointer to the size of an _Unwind_Word, which is
2876    // uint64_t on all platforms.  Generally this gets poked into a
2877    // register and eventually used as an address, so if the
2878    // addressing registers are wider than pointers and the platform
2879    // doesn't implicitly ignore high-order bits when doing
2880    // addressing, we need to make sure we zext / sext based on
2881    // the platform's expectations.
2882    //
2883    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2884
2885    // Cast the pointer to intptr_t.
2886    Value *Ptr = EmitScalarExpr(E->getArg(0));
2887    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2888
2889    // If that's 64 bits, we're done.
2890    if (IntPtrTy->getBitWidth() == 64)
2891      return RValue::get(Result);
2892
2893    // Otherwise, ask the codegen data what to do.
2894    if (getTargetHooks().extendPointerWithSExt())
2895      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2896    else
2897      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2898  }
2899  case Builtin::BI__builtin_setjmp: {
2900    // Buffer is a void**.
2901    Address Buf = EmitPointerWithAlignment(E->getArg(0));
2902
2903    // Store the frame pointer to the setjmp buffer.
2904    Value *FrameAddr = Builder.CreateCall(
2905        CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
2906        ConstantInt::get(Int32Ty, 0));
2907    Builder.CreateStore(FrameAddr, Buf);
2908
2909    // Store the stack pointer to the setjmp buffer.
2910    Value *StackAddr =
2911        Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2912    Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2913    Builder.CreateStore(StackAddr, StackSaveSlot);
2914
2915    // Call LLVM's EH setjmp, which is lightweight.
2916    Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2917    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2918    return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2919  }
2920  case Builtin::BI__builtin_longjmp: {
2921    Value *Buf = EmitScalarExpr(E->getArg(0));
2922    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2923
2924    // Call LLVM's EH longjmp, which is lightweight.
2925    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2926
2927    // longjmp doesn't return; mark this as unreachable.
2928    Builder.CreateUnreachable();
2929
2930    // We do need to preserve an insertion point.
2931    EmitBlock(createBasicBlock("longjmp.cont"));
2932
2933    return RValue::get(nullptr);
2934  }
2935  case Builtin::BI__builtin_launder: {
2936    const Expr *Arg = E->getArg(0);
2937    QualType ArgTy = Arg->getType()->getPointeeType();
2938    Value *Ptr = EmitScalarExpr(Arg);
2939    if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2940      Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2941
2942    return RValue::get(Ptr);
2943  }
2944  case Builtin::BI__sync_fetch_and_add:
2945  case Builtin::BI__sync_fetch_and_sub:
2946  case Builtin::BI__sync_fetch_and_or:
2947  case Builtin::BI__sync_fetch_and_and:
2948  case Builtin::BI__sync_fetch_and_xor:
2949  case Builtin::BI__sync_fetch_and_nand:
2950  case Builtin::BI__sync_add_and_fetch:
2951  case Builtin::BI__sync_sub_and_fetch:
2952  case Builtin::BI__sync_and_and_fetch:
2953  case Builtin::BI__sync_or_and_fetch:
2954  case Builtin::BI__sync_xor_and_fetch:
2955  case Builtin::BI__sync_nand_and_fetch:
2956  case Builtin::BI__sync_val_compare_and_swap:
2957  case Builtin::BI__sync_bool_compare_and_swap:
2958  case Builtin::BI__sync_lock_test_and_set:
2959  case Builtin::BI__sync_lock_release:
2960  case Builtin::BI__sync_swap:
2961    llvm_unreachable("Shouldn't make it through sema");
2962  case Builtin::BI__sync_fetch_and_add_1:
2963  case Builtin::BI__sync_fetch_and_add_2:
2964  case Builtin::BI__sync_fetch_and_add_4:
2965  case Builtin::BI__sync_fetch_and_add_8:
2966  case Builtin::BI__sync_fetch_and_add_16:
2967    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2968  case Builtin::BI__sync_fetch_and_sub_1:
2969  case Builtin::BI__sync_fetch_and_sub_2:
2970  case Builtin::BI__sync_fetch_and_sub_4:
2971  case Builtin::BI__sync_fetch_and_sub_8:
2972  case Builtin::BI__sync_fetch_and_sub_16:
2973    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2974  case Builtin::BI__sync_fetch_and_or_1:
2975  case Builtin::BI__sync_fetch_and_or_2:
2976  case Builtin::BI__sync_fetch_and_or_4:
2977  case Builtin::BI__sync_fetch_and_or_8:
2978  case Builtin::BI__sync_fetch_and_or_16:
2979    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2980  case Builtin::BI__sync_fetch_and_and_1:
2981  case Builtin::BI__sync_fetch_and_and_2:
2982  case Builtin::BI__sync_fetch_and_and_4:
2983  case Builtin::BI__sync_fetch_and_and_8:
2984  case Builtin::BI__sync_fetch_and_and_16:
2985    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2986  case Builtin::BI__sync_fetch_and_xor_1:
2987  case Builtin::BI__sync_fetch_and_xor_2:
2988  case Builtin::BI__sync_fetch_and_xor_4:
2989  case Builtin::BI__sync_fetch_and_xor_8:
2990  case Builtin::BI__sync_fetch_and_xor_16:
2991    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2992  case Builtin::BI__sync_fetch_and_nand_1:
2993  case Builtin::BI__sync_fetch_and_nand_2:
2994  case Builtin::BI__sync_fetch_and_nand_4:
2995  case Builtin::BI__sync_fetch_and_nand_8:
2996  case Builtin::BI__sync_fetch_and_nand_16:
2997    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2998
2999  // Clang extensions: not overloaded yet.
3000  case Builtin::BI__sync_fetch_and_min:
3001    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3002  case Builtin::BI__sync_fetch_and_max:
3003    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3004  case Builtin::BI__sync_fetch_and_umin:
3005    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3006  case Builtin::BI__sync_fetch_and_umax:
3007    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3008
3009  case Builtin::BI__sync_add_and_fetch_1:
3010  case Builtin::BI__sync_add_and_fetch_2:
3011  case Builtin::BI__sync_add_and_fetch_4:
3012  case Builtin::BI__sync_add_and_fetch_8:
3013  case Builtin::BI__sync_add_and_fetch_16:
3014    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3015                                llvm::Instruction::Add);
3016  case Builtin::BI__sync_sub_and_fetch_1:
3017  case Builtin::BI__sync_sub_and_fetch_2:
3018  case Builtin::BI__sync_sub_and_fetch_4:
3019  case Builtin::BI__sync_sub_and_fetch_8:
3020  case Builtin::BI__sync_sub_and_fetch_16:
3021    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3022                                llvm::Instruction::Sub);
3023  case Builtin::BI__sync_and_and_fetch_1:
3024  case Builtin::BI__sync_and_and_fetch_2:
3025  case Builtin::BI__sync_and_and_fetch_4:
3026  case Builtin::BI__sync_and_and_fetch_8:
3027  case Builtin::BI__sync_and_and_fetch_16:
3028    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3029                                llvm::Instruction::And);
3030  case Builtin::BI__sync_or_and_fetch_1:
3031  case Builtin::BI__sync_or_and_fetch_2:
3032  case Builtin::BI__sync_or_and_fetch_4:
3033  case Builtin::BI__sync_or_and_fetch_8:
3034  case Builtin::BI__sync_or_and_fetch_16:
3035    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3036                                llvm::Instruction::Or);
3037  case Builtin::BI__sync_xor_and_fetch_1:
3038  case Builtin::BI__sync_xor_and_fetch_2:
3039  case Builtin::BI__sync_xor_and_fetch_4:
3040  case Builtin::BI__sync_xor_and_fetch_8:
3041  case Builtin::BI__sync_xor_and_fetch_16:
3042    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3043                                llvm::Instruction::Xor);
3044  case Builtin::BI__sync_nand_and_fetch_1:
3045  case Builtin::BI__sync_nand_and_fetch_2:
3046  case Builtin::BI__sync_nand_and_fetch_4:
3047  case Builtin::BI__sync_nand_and_fetch_8:
3048  case Builtin::BI__sync_nand_and_fetch_16:
3049    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3050                                llvm::Instruction::And, true);
3051
3052  case Builtin::BI__sync_val_compare_and_swap_1:
3053  case Builtin::BI__sync_val_compare_and_swap_2:
3054  case Builtin::BI__sync_val_compare_and_swap_4:
3055  case Builtin::BI__sync_val_compare_and_swap_8:
3056  case Builtin::BI__sync_val_compare_and_swap_16:
3057    return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3058
3059  case Builtin::BI__sync_bool_compare_and_swap_1:
3060  case Builtin::BI__sync_bool_compare_and_swap_2:
3061  case Builtin::BI__sync_bool_compare_and_swap_4:
3062  case Builtin::BI__sync_bool_compare_and_swap_8:
3063  case Builtin::BI__sync_bool_compare_and_swap_16:
3064    return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3065
3066  case Builtin::BI__sync_swap_1:
3067  case Builtin::BI__sync_swap_2:
3068  case Builtin::BI__sync_swap_4:
3069  case Builtin::BI__sync_swap_8:
3070  case Builtin::BI__sync_swap_16:
3071    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3072
3073  case Builtin::BI__sync_lock_test_and_set_1:
3074  case Builtin::BI__sync_lock_test_and_set_2:
3075  case Builtin::BI__sync_lock_test_and_set_4:
3076  case Builtin::BI__sync_lock_test_and_set_8:
3077  case Builtin::BI__sync_lock_test_and_set_16:
3078    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3079
3080  case Builtin::BI__sync_lock_release_1:
3081  case Builtin::BI__sync_lock_release_2:
3082  case Builtin::BI__sync_lock_release_4:
3083  case Builtin::BI__sync_lock_release_8:
3084  case Builtin::BI__sync_lock_release_16: {
3085    Value *Ptr = EmitScalarExpr(E->getArg(0));
3086    QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3087    CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3088    llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3089                                             StoreSize.getQuantity() * 8);
3090    Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3091    llvm::StoreInst *Store =
3092      Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3093                                 StoreSize);
3094    Store->setAtomic(llvm::AtomicOrdering::Release);
3095    return RValue::get(nullptr);
3096  }
3097
3098  case Builtin::BI__sync_synchronize: {
3099    // We assume this is supposed to correspond to a C++0x-style
3100    // sequentially-consistent fence (i.e. this is only usable for
3101    // synchronization, not device I/O or anything like that). This intrinsic
3102    // is really badly designed in the sense that in theory, there isn't
3103    // any way to safely use it... but in practice, it mostly works
3104    // to use it with non-atomic loads and stores to get acquire/release
3105    // semantics.
3106    Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3107    return RValue::get(nullptr);
3108  }
3109
3110  case Builtin::BI__builtin_nontemporal_load:
3111    return RValue::get(EmitNontemporalLoad(*this, E));
3112  case Builtin::BI__builtin_nontemporal_store:
3113    return RValue::get(EmitNontemporalStore(*this, E));
3114  case Builtin::BI__c11_atomic_is_lock_free:
3115  case Builtin::BI__atomic_is_lock_free: {
3116    // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3117    // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3118    // _Atomic(T) is always properly-aligned.
3119    const char *LibCallName = "__atomic_is_lock_free";
3120    CallArgList Args;
3121    Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3122             getContext().getSizeType());
3123    if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3124      Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3125               getContext().VoidPtrTy);
3126    else
3127      Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3128               getContext().VoidPtrTy);
3129    const CGFunctionInfo &FuncInfo =
3130        CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3131    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3132    llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3133    return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3134                    ReturnValueSlot(), Args);
3135  }
3136
3137  case Builtin::BI__atomic_test_and_set: {
3138    // Look at the argument type to determine whether this is a volatile
3139    // operation. The parameter type is always volatile.
3140    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3141    bool Volatile =
3142        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3143
3144    Value *Ptr = EmitScalarExpr(E->getArg(0));
3145    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3146    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3147    Value *NewVal = Builder.getInt8(1);
3148    Value *Order = EmitScalarExpr(E->getArg(1));
3149    if (isa<llvm::ConstantInt>(Order)) {
3150      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3151      AtomicRMWInst *Result = nullptr;
3152      switch (ord) {
3153      case 0:  // memory_order_relaxed
3154      default: // invalid order
3155        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3156                                         llvm::AtomicOrdering::Monotonic);
3157        break;
3158      case 1: // memory_order_consume
3159      case 2: // memory_order_acquire
3160        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3161                                         llvm::AtomicOrdering::Acquire);
3162        break;
3163      case 3: // memory_order_release
3164        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3165                                         llvm::AtomicOrdering::Release);
3166        break;
3167      case 4: // memory_order_acq_rel
3168
3169        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3170                                         llvm::AtomicOrdering::AcquireRelease);
3171        break;
3172      case 5: // memory_order_seq_cst
3173        Result = Builder.CreateAtomicRMW(
3174            llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3175            llvm::AtomicOrdering::SequentiallyConsistent);
3176        break;
3177      }
3178      Result->setVolatile(Volatile);
3179      return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3180    }
3181
3182    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3183
3184    llvm::BasicBlock *BBs[5] = {
3185      createBasicBlock("monotonic", CurFn),
3186      createBasicBlock("acquire", CurFn),
3187      createBasicBlock("release", CurFn),
3188      createBasicBlock("acqrel", CurFn),
3189      createBasicBlock("seqcst", CurFn)
3190    };
3191    llvm::AtomicOrdering Orders[5] = {
3192        llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3193        llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3194        llvm::AtomicOrdering::SequentiallyConsistent};
3195
3196    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3197    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3198
3199    Builder.SetInsertPoint(ContBB);
3200    PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3201
3202    for (unsigned i = 0; i < 5; ++i) {
3203      Builder.SetInsertPoint(BBs[i]);
3204      AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3205                                                   Ptr, NewVal, Orders[i]);
3206      RMW->setVolatile(Volatile);
3207      Result->addIncoming(RMW, BBs[i]);
3208      Builder.CreateBr(ContBB);
3209    }
3210
3211    SI->addCase(Builder.getInt32(0), BBs[0]);
3212    SI->addCase(Builder.getInt32(1), BBs[1]);
3213    SI->addCase(Builder.getInt32(2), BBs[1]);
3214    SI->addCase(Builder.getInt32(3), BBs[2]);
3215    SI->addCase(Builder.getInt32(4), BBs[3]);
3216    SI->addCase(Builder.getInt32(5), BBs[4]);
3217
3218    Builder.SetInsertPoint(ContBB);
3219    return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3220  }
3221
3222  case Builtin::BI__atomic_clear: {
3223    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3224    bool Volatile =
3225        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3226
3227    Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3228    unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3229    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3230    Value *NewVal = Builder.getInt8(0);
3231    Value *Order = EmitScalarExpr(E->getArg(1));
3232    if (isa<llvm::ConstantInt>(Order)) {
3233      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3234      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3235      switch (ord) {
3236      case 0:  // memory_order_relaxed
3237      default: // invalid order
3238        Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3239        break;
3240      case 3:  // memory_order_release
3241        Store->setOrdering(llvm::AtomicOrdering::Release);
3242        break;
3243      case 5:  // memory_order_seq_cst
3244        Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3245        break;
3246      }
3247      return RValue::get(nullptr);
3248    }
3249
3250    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3251
3252    llvm::BasicBlock *BBs[3] = {
3253      createBasicBlock("monotonic", CurFn),
3254      createBasicBlock("release", CurFn),
3255      createBasicBlock("seqcst", CurFn)
3256    };
3257    llvm::AtomicOrdering Orders[3] = {
3258        llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3259        llvm::AtomicOrdering::SequentiallyConsistent};
3260
3261    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3262    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3263
3264    for (unsigned i = 0; i < 3; ++i) {
3265      Builder.SetInsertPoint(BBs[i]);
3266      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3267      Store->setOrdering(Orders[i]);
3268      Builder.CreateBr(ContBB);
3269    }
3270
3271    SI->addCase(Builder.getInt32(0), BBs[0]);
3272    SI->addCase(Builder.getInt32(3), BBs[1]);
3273    SI->addCase(Builder.getInt32(5), BBs[2]);
3274
3275    Builder.SetInsertPoint(ContBB);
3276    return RValue::get(nullptr);
3277  }
3278
3279  case Builtin::BI__atomic_thread_fence:
3280  case Builtin::BI__atomic_signal_fence:
3281  case Builtin::BI__c11_atomic_thread_fence:
3282  case Builtin::BI__c11_atomic_signal_fence: {
3283    llvm::SyncScope::ID SSID;
3284    if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3285        BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3286      SSID = llvm::SyncScope::SingleThread;
3287    else
3288      SSID = llvm::SyncScope::System;
3289    Value *Order = EmitScalarExpr(E->getArg(0));
3290    if (isa<llvm::ConstantInt>(Order)) {
3291      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3292      switch (ord) {
3293      case 0:  // memory_order_relaxed
3294      default: // invalid order
3295        break;
3296      case 1:  // memory_order_consume
3297      case 2:  // memory_order_acquire
3298        Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3299        break;
3300      case 3:  // memory_order_release
3301        Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3302        break;
3303      case 4:  // memory_order_acq_rel
3304        Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3305        break;
3306      case 5:  // memory_order_seq_cst
3307        Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3308        break;
3309      }
3310      return RValue::get(nullptr);
3311    }
3312
3313    llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3314    AcquireBB = createBasicBlock("acquire", CurFn);
3315    ReleaseBB = createBasicBlock("release", CurFn);
3316    AcqRelBB = createBasicBlock("acqrel", CurFn);
3317    SeqCstBB = createBasicBlock("seqcst", CurFn);
3318    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3319
3320    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3321    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3322
3323    Builder.SetInsertPoint(AcquireBB);
3324    Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3325    Builder.CreateBr(ContBB);
3326    SI->addCase(Builder.getInt32(1), AcquireBB);
3327    SI->addCase(Builder.getInt32(2), AcquireBB);
3328
3329    Builder.SetInsertPoint(ReleaseBB);
3330    Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3331    Builder.CreateBr(ContBB);
3332    SI->addCase(Builder.getInt32(3), ReleaseBB);
3333
3334    Builder.SetInsertPoint(AcqRelBB);
3335    Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3336    Builder.CreateBr(ContBB);
3337    SI->addCase(Builder.getInt32(4), AcqRelBB);
3338
3339    Builder.SetInsertPoint(SeqCstBB);
3340    Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3341    Builder.CreateBr(ContBB);
3342    SI->addCase(Builder.getInt32(5), SeqCstBB);
3343
3344    Builder.SetInsertPoint(ContBB);
3345    return RValue::get(nullptr);
3346  }
3347
3348  case Builtin::BI__builtin_signbit:
3349  case Builtin::BI__builtin_signbitf:
3350  case Builtin::BI__builtin_signbitl: {
3351    return RValue::get(
3352        Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3353                           ConvertType(E->getType())));
3354  }
3355  case Builtin::BI__warn_memset_zero_len:
3356    return RValue::getIgnored();
3357  case Builtin::BI__annotation: {
3358    // Re-encode each wide string to UTF8 and make an MDString.
3359    SmallVector<Metadata *, 1> Strings;
3360    for (const Expr *Arg : E->arguments()) {
3361      const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3362      assert(Str->getCharByteWidth() == 2);
3363      StringRef WideBytes = Str->getBytes();
3364      std::string StrUtf8;
3365      if (!convertUTF16ToUTF8String(
3366              makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3367        CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3368        continue;
3369      }
3370      Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3371    }
3372
3373    // Build and MDTuple of MDStrings and emit the intrinsic call.
3374    llvm::Function *F =
3375        CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3376    MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3377    Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3378    return RValue::getIgnored();
3379  }
3380  case Builtin::BI__builtin_annotation: {
3381    llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3382    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3383                                      AnnVal->getType());
3384
3385    // Get the annotation string, go through casts. Sema requires this to be a
3386    // non-wide string literal, potentially casted, so the cast<> is safe.
3387    const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3388    StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3389    return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3390  }
3391  case Builtin::BI__builtin_addcb:
3392  case Builtin::BI__builtin_addcs:
3393  case Builtin::BI__builtin_addc:
3394  case Builtin::BI__builtin_addcl:
3395  case Builtin::BI__builtin_addcll:
3396  case Builtin::BI__builtin_subcb:
3397  case Builtin::BI__builtin_subcs:
3398  case Builtin::BI__builtin_subc:
3399  case Builtin::BI__builtin_subcl:
3400  case Builtin::BI__builtin_subcll: {
3401
3402    // We translate all of these builtins from expressions of the form:
3403    //   int x = ..., y = ..., carryin = ..., carryout, result;
3404    //   result = __builtin_addc(x, y, carryin, &carryout);
3405    //
3406    // to LLVM IR of the form:
3407    //
3408    //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3409    //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3410    //   %carry1 = extractvalue {i32, i1} %tmp1, 1
3411    //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3412    //                                                       i32 %carryin)
3413    //   %result = extractvalue {i32, i1} %tmp2, 0
3414    //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3415    //   %tmp3 = or i1 %carry1, %carry2
3416    //   %tmp4 = zext i1 %tmp3 to i32
3417    //   store i32 %tmp4, i32* %carryout
3418
3419    // Scalarize our inputs.
3420    llvm::Value *X = EmitScalarExpr(E->getArg(0));
3421    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3422    llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3423    Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3424
3425    // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3426    llvm::Intrinsic::ID IntrinsicId;
3427    switch (BuiltinID) {
3428    default: llvm_unreachable("Unknown multiprecision builtin id.");
3429    case Builtin::BI__builtin_addcb:
3430    case Builtin::BI__builtin_addcs:
3431    case Builtin::BI__builtin_addc:
3432    case Builtin::BI__builtin_addcl:
3433    case Builtin::BI__builtin_addcll:
3434      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3435      break;
3436    case Builtin::BI__builtin_subcb:
3437    case Builtin::BI__builtin_subcs:
3438    case Builtin::BI__builtin_subc:
3439    case Builtin::BI__builtin_subcl:
3440    case Builtin::BI__builtin_subcll:
3441      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3442      break;
3443    }
3444
3445    // Construct our resulting LLVM IR expression.
3446    llvm::Value *Carry1;
3447    llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3448                                              X, Y, Carry1);
3449    llvm::Value *Carry2;
3450    llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3451                                              Sum1, Carryin, Carry2);
3452    llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3453                                               X->getType());
3454    Builder.CreateStore(CarryOut, CarryOutPtr);
3455    return RValue::get(Sum2);
3456  }
3457
3458  case Builtin::BI__builtin_add_overflow:
3459  case Builtin::BI__builtin_sub_overflow:
3460  case Builtin::BI__builtin_mul_overflow: {
3461    const clang::Expr *LeftArg = E->getArg(0);
3462    const clang::Expr *RightArg = E->getArg(1);
3463    const clang::Expr *ResultArg = E->getArg(2);
3464
3465    clang::QualType ResultQTy =
3466        ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3467
3468    WidthAndSignedness LeftInfo =
3469        getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3470    WidthAndSignedness RightInfo =
3471        getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3472    WidthAndSignedness ResultInfo =
3473        getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3474
3475    // Handle mixed-sign multiplication as a special case, because adding
3476    // runtime or backend support for our generic irgen would be too expensive.
3477    if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3478      return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3479                                          RightInfo, ResultArg, ResultQTy,
3480                                          ResultInfo);
3481
3482    WidthAndSignedness EncompassingInfo =
3483        EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3484
3485    llvm::Type *EncompassingLLVMTy =
3486        llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3487
3488    llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3489
3490    llvm::Intrinsic::ID IntrinsicId;
3491    switch (BuiltinID) {
3492    default:
3493      llvm_unreachable("Unknown overflow builtin id.");
3494    case Builtin::BI__builtin_add_overflow:
3495      IntrinsicId = EncompassingInfo.Signed
3496                        ? llvm::Intrinsic::sadd_with_overflow
3497                        : llvm::Intrinsic::uadd_with_overflow;
3498      break;
3499    case Builtin::BI__builtin_sub_overflow:
3500      IntrinsicId = EncompassingInfo.Signed
3501                        ? llvm::Intrinsic::ssub_with_overflow
3502                        : llvm::Intrinsic::usub_with_overflow;
3503      break;
3504    case Builtin::BI__builtin_mul_overflow:
3505      IntrinsicId = EncompassingInfo.Signed
3506                        ? llvm::Intrinsic::smul_with_overflow
3507                        : llvm::Intrinsic::umul_with_overflow;
3508      break;
3509    }
3510
3511    llvm::Value *Left = EmitScalarExpr(LeftArg);
3512    llvm::Value *Right = EmitScalarExpr(RightArg);
3513    Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3514
3515    // Extend each operand to the encompassing type.
3516    Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3517    Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3518
3519    // Perform the operation on the extended values.
3520    llvm::Value *Overflow, *Result;
3521    Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3522
3523    if (EncompassingInfo.Width > ResultInfo.Width) {
3524      // The encompassing type is wider than the result type, so we need to
3525      // truncate it.
3526      llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3527
3528      // To see if the truncation caused an overflow, we will extend
3529      // the result and then compare it to the original result.
3530      llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3531          ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3532      llvm::Value *TruncationOverflow =
3533          Builder.CreateICmpNE(Result, ResultTruncExt);
3534
3535      Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3536      Result = ResultTrunc;
3537    }
3538
3539    // Finally, store the result using the pointer.
3540    bool isVolatile =
3541      ResultArg->getType()->getPointeeType().isVolatileQualified();
3542    Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3543
3544    return RValue::get(Overflow);
3545  }
3546
3547  case Builtin::BI__builtin_uadd_overflow:
3548  case Builtin::BI__builtin_uaddl_overflow:
3549  case Builtin::BI__builtin_uaddll_overflow:
3550  case Builtin::BI__builtin_usub_overflow:
3551  case Builtin::BI__builtin_usubl_overflow:
3552  case Builtin::BI__builtin_usubll_overflow:
3553  case Builtin::BI__builtin_umul_overflow:
3554  case Builtin::BI__builtin_umull_overflow:
3555  case Builtin::BI__builtin_umulll_overflow:
3556  case Builtin::BI__builtin_sadd_overflow:
3557  case Builtin::BI__builtin_saddl_overflow:
3558  case Builtin::BI__builtin_saddll_overflow:
3559  case Builtin::BI__builtin_ssub_overflow:
3560  case Builtin::BI__builtin_ssubl_overflow:
3561  case Builtin::BI__builtin_ssubll_overflow:
3562  case Builtin::BI__builtin_smul_overflow:
3563  case Builtin::BI__builtin_smull_overflow:
3564  case Builtin::BI__builtin_smulll_overflow: {
3565
3566    // We translate all of these builtins directly to the relevant llvm IR node.
3567
3568    // Scalarize our inputs.
3569    llvm::Value *X = EmitScalarExpr(E->getArg(0));
3570    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3571    Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3572
3573    // Decide which of the overflow intrinsics we are lowering to:
3574    llvm::Intrinsic::ID IntrinsicId;
3575    switch (BuiltinID) {
3576    default: llvm_unreachable("Unknown overflow builtin id.");
3577    case Builtin::BI__builtin_uadd_overflow:
3578    case Builtin::BI__builtin_uaddl_overflow:
3579    case Builtin::BI__builtin_uaddll_overflow:
3580      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3581      break;
3582    case Builtin::BI__builtin_usub_overflow:
3583    case Builtin::BI__builtin_usubl_overflow:
3584    case Builtin::BI__builtin_usubll_overflow:
3585      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3586      break;
3587    case Builtin::BI__builtin_umul_overflow:
3588    case Builtin::BI__builtin_umull_overflow:
3589    case Builtin::BI__builtin_umulll_overflow:
3590      IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3591      break;
3592    case Builtin::BI__builtin_sadd_overflow:
3593    case Builtin::BI__builtin_saddl_overflow:
3594    case Builtin::BI__builtin_saddll_overflow:
3595      IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3596      break;
3597    case Builtin::BI__builtin_ssub_overflow:
3598    case Builtin::BI__builtin_ssubl_overflow:
3599    case Builtin::BI__builtin_ssubll_overflow:
3600      IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3601      break;
3602    case Builtin::BI__builtin_smul_overflow:
3603    case Builtin::BI__builtin_smull_overflow:
3604    case Builtin::BI__builtin_smulll_overflow:
3605      IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3606      break;
3607    }
3608
3609
3610    llvm::Value *Carry;
3611    llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3612    Builder.CreateStore(Sum, SumOutPtr);
3613
3614    return RValue::get(Carry);
3615  }
3616  case Builtin::BI__builtin_addressof:
3617    return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
3618  case Builtin::BI__builtin_operator_new:
3619    return EmitBuiltinNewDeleteCall(
3620        E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3621  case Builtin::BI__builtin_operator_delete:
3622    return EmitBuiltinNewDeleteCall(
3623        E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3624
3625  case Builtin::BI__builtin_is_aligned:
3626    return EmitBuiltinIsAligned(E);
3627  case Builtin::BI__builtin_align_up:
3628    return EmitBuiltinAlignTo(E, true);
3629  case Builtin::BI__builtin_align_down:
3630    return EmitBuiltinAlignTo(E, false);
3631
3632  case Builtin::BI__noop:
3633    // __noop always evaluates to an integer literal zero.
3634    return RValue::get(ConstantInt::get(IntTy, 0));
3635  case Builtin::BI__builtin_call_with_static_chain: {
3636    const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3637    const Expr *Chain = E->getArg(1);
3638    return EmitCall(Call->getCallee()->getType(),
3639                    EmitCallee(Call->getCallee()), Call, ReturnValue,
3640                    EmitScalarExpr(Chain));
3641  }
3642  case Builtin::BI_InterlockedExchange8:
3643  case Builtin::BI_InterlockedExchange16:
3644  case Builtin::BI_InterlockedExchange:
3645  case Builtin::BI_InterlockedExchangePointer:
3646    return RValue::get(
3647        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3648  case Builtin::BI_InterlockedCompareExchangePointer:
3649  case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3650    llvm::Type *RTy;
3651    llvm::IntegerType *IntType =
3652      IntegerType::get(getLLVMContext(),
3653                       getContext().getTypeSize(E->getType()));
3654    llvm::Type *IntPtrType = IntType->getPointerTo();
3655
3656    llvm::Value *Destination =
3657      Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3658
3659    llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3660    RTy = Exchange->getType();
3661    Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3662
3663    llvm::Value *Comparand =
3664      Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3665
3666    auto Ordering =
3667      BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3668      AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3669
3670    auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3671                                              Ordering, Ordering);
3672    Result->setVolatile(true);
3673
3674    return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3675                                                                         0),
3676                                              RTy));
3677  }
3678  case Builtin::BI_InterlockedCompareExchange8:
3679  case Builtin::BI_InterlockedCompareExchange16:
3680  case Builtin::BI_InterlockedCompareExchange:
3681  case Builtin::BI_InterlockedCompareExchange64:
3682    return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3683  case Builtin::BI_InterlockedIncrement16:
3684  case Builtin::BI_InterlockedIncrement:
3685    return RValue::get(
3686        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3687  case Builtin::BI_InterlockedDecrement16:
3688  case Builtin::BI_InterlockedDecrement:
3689    return RValue::get(
3690        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3691  case Builtin::BI_InterlockedAnd8:
3692  case Builtin::BI_InterlockedAnd16:
3693  case Builtin::BI_InterlockedAnd:
3694    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3695  case Builtin::BI_InterlockedExchangeAdd8:
3696  case Builtin::BI_InterlockedExchangeAdd16:
3697  case Builtin::BI_InterlockedExchangeAdd:
3698    return RValue::get(
3699        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3700  case Builtin::BI_InterlockedExchangeSub8:
3701  case Builtin::BI_InterlockedExchangeSub16:
3702  case Builtin::BI_InterlockedExchangeSub:
3703    return RValue::get(
3704        EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3705  case Builtin::BI_InterlockedOr8:
3706  case Builtin::BI_InterlockedOr16:
3707  case Builtin::BI_InterlockedOr:
3708    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3709  case Builtin::BI_InterlockedXor8:
3710  case Builtin::BI_InterlockedXor16:
3711  case Builtin::BI_InterlockedXor:
3712    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3713
3714  case Builtin::BI_bittest64:
3715  case Builtin::BI_bittest:
3716  case Builtin::BI_bittestandcomplement64:
3717  case Builtin::BI_bittestandcomplement:
3718  case Builtin::BI_bittestandreset64:
3719  case Builtin::BI_bittestandreset:
3720  case Builtin::BI_bittestandset64:
3721  case Builtin::BI_bittestandset:
3722  case Builtin::BI_interlockedbittestandreset:
3723  case Builtin::BI_interlockedbittestandreset64:
3724  case Builtin::BI_interlockedbittestandset64:
3725  case Builtin::BI_interlockedbittestandset:
3726  case Builtin::BI_interlockedbittestandset_acq:
3727  case Builtin::BI_interlockedbittestandset_rel:
3728  case Builtin::BI_interlockedbittestandset_nf:
3729  case Builtin::BI_interlockedbittestandreset_acq:
3730  case Builtin::BI_interlockedbittestandreset_rel:
3731  case Builtin::BI_interlockedbittestandreset_nf:
3732    return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3733
3734    // These builtins exist to emit regular volatile loads and stores not
3735    // affected by the -fms-volatile setting.
3736  case Builtin::BI__iso_volatile_load8:
3737  case Builtin::BI__iso_volatile_load16:
3738  case Builtin::BI__iso_volatile_load32:
3739  case Builtin::BI__iso_volatile_load64:
3740    return RValue::get(EmitISOVolatileLoad(*this, E));
3741  case Builtin::BI__iso_volatile_store8:
3742  case Builtin::BI__iso_volatile_store16:
3743  case Builtin::BI__iso_volatile_store32:
3744  case Builtin::BI__iso_volatile_store64:
3745    return RValue::get(EmitISOVolatileStore(*this, E));
3746
3747  case Builtin::BI__exception_code:
3748  case Builtin::BI_exception_code:
3749    return RValue::get(EmitSEHExceptionCode());
3750  case Builtin::BI__exception_info:
3751  case Builtin::BI_exception_info:
3752    return RValue::get(EmitSEHExceptionInfo());
3753  case Builtin::BI__abnormal_termination:
3754  case Builtin::BI_abnormal_termination:
3755    return RValue::get(EmitSEHAbnormalTermination());
3756  case Builtin::BI_setjmpex:
3757    if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
3758        E->getArg(0)->getType()->isPointerType())
3759      return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3760    break;
3761  case Builtin::BI_setjmp:
3762    if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
3763        E->getArg(0)->getType()->isPointerType()) {
3764      if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3765        return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3766      else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3767        return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3768      return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3769    }
3770    break;
3771
3772  case Builtin::BI__GetExceptionInfo: {
3773    if (llvm::GlobalVariable *GV =
3774            CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3775      return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3776    break;
3777  }
3778
3779  case Builtin::BI__fastfail:
3780    return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3781
3782  case Builtin::BI__builtin_coro_size: {
3783    auto & Context = getContext();
3784    auto SizeTy = Context.getSizeType();
3785    auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3786    Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3787    return RValue::get(Builder.CreateCall(F));
3788  }
3789
3790  case Builtin::BI__builtin_coro_id:
3791    return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3792  case Builtin::BI__builtin_coro_promise:
3793    return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3794  case Builtin::BI__builtin_coro_resume:
3795    return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3796  case Builtin::BI__builtin_coro_frame:
3797    return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3798  case Builtin::BI__builtin_coro_noop:
3799    return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3800  case Builtin::BI__builtin_coro_free:
3801    return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3802  case Builtin::BI__builtin_coro_destroy:
3803    return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3804  case Builtin::BI__builtin_coro_done:
3805    return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3806  case Builtin::BI__builtin_coro_alloc:
3807    return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3808  case Builtin::BI__builtin_coro_begin:
3809    return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3810  case Builtin::BI__builtin_coro_end:
3811    return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3812  case Builtin::BI__builtin_coro_suspend:
3813    return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3814  case Builtin::BI__builtin_coro_param:
3815    return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3816
3817  // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3818  case Builtin::BIread_pipe:
3819  case Builtin::BIwrite_pipe: {
3820    Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3821          *Arg1 = EmitScalarExpr(E->getArg(1));
3822    CGOpenCLRuntime OpenCLRT(CGM);
3823    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3824    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3825
3826    // Type of the generic packet parameter.
3827    unsigned GenericAS =
3828        getContext().getTargetAddressSpace(LangAS::opencl_generic);
3829    llvm::Type *I8PTy = llvm::PointerType::get(
3830        llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3831
3832    // Testing which overloaded version we should generate the call for.
3833    if (2U == E->getNumArgs()) {
3834      const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3835                                                             : "__write_pipe_2";
3836      // Creating a generic function type to be able to call with any builtin or
3837      // user defined type.
3838      llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3839      llvm::FunctionType *FTy = llvm::FunctionType::get(
3840          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3841      Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3842      return RValue::get(
3843          Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3844                             {Arg0, BCast, PacketSize, PacketAlign}));
3845    } else {
3846      assert(4 == E->getNumArgs() &&
3847             "Illegal number of parameters to pipe function");
3848      const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3849                                                             : "__write_pipe_4";
3850
3851      llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3852                              Int32Ty, Int32Ty};
3853      Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3854            *Arg3 = EmitScalarExpr(E->getArg(3));
3855      llvm::FunctionType *FTy = llvm::FunctionType::get(
3856          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3857      Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3858      // We know the third argument is an integer type, but we may need to cast
3859      // it to i32.
3860      if (Arg2->getType() != Int32Ty)
3861        Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3862      return RValue::get(Builder.CreateCall(
3863          CGM.CreateRuntimeFunction(FTy, Name),
3864          {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3865    }
3866  }
3867  // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3868  // functions
3869  case Builtin::BIreserve_read_pipe:
3870  case Builtin::BIreserve_write_pipe:
3871  case Builtin::BIwork_group_reserve_read_pipe:
3872  case Builtin::BIwork_group_reserve_write_pipe:
3873  case Builtin::BIsub_group_reserve_read_pipe:
3874  case Builtin::BIsub_group_reserve_write_pipe: {
3875    // Composing the mangled name for the function.
3876    const char *Name;
3877    if (BuiltinID == Builtin::BIreserve_read_pipe)
3878      Name = "__reserve_read_pipe";
3879    else if (BuiltinID == Builtin::BIreserve_write_pipe)
3880      Name = "__reserve_write_pipe";
3881    else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3882      Name = "__work_group_reserve_read_pipe";
3883    else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3884      Name = "__work_group_reserve_write_pipe";
3885    else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3886      Name = "__sub_group_reserve_read_pipe";
3887    else
3888      Name = "__sub_group_reserve_write_pipe";
3889
3890    Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3891          *Arg1 = EmitScalarExpr(E->getArg(1));
3892    llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3893    CGOpenCLRuntime OpenCLRT(CGM);
3894    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3895    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3896
3897    // Building the generic function prototype.
3898    llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3899    llvm::FunctionType *FTy = llvm::FunctionType::get(
3900        ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3901    // We know the second argument is an integer type, but we may need to cast
3902    // it to i32.
3903    if (Arg1->getType() != Int32Ty)
3904      Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3905    return RValue::get(
3906        Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3907                           {Arg0, Arg1, PacketSize, PacketAlign}));
3908  }
3909  // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3910  // functions
3911  case Builtin::BIcommit_read_pipe:
3912  case Builtin::BIcommit_write_pipe:
3913  case Builtin::BIwork_group_commit_read_pipe:
3914  case Builtin::BIwork_group_commit_write_pipe:
3915  case Builtin::BIsub_group_commit_read_pipe:
3916  case Builtin::BIsub_group_commit_write_pipe: {
3917    const char *Name;
3918    if (BuiltinID == Builtin::BIcommit_read_pipe)
3919      Name = "__commit_read_pipe";
3920    else if (BuiltinID == Builtin::BIcommit_write_pipe)
3921      Name = "__commit_write_pipe";
3922    else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3923      Name = "__work_group_commit_read_pipe";
3924    else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3925      Name = "__work_group_commit_write_pipe";
3926    else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3927      Name = "__sub_group_commit_read_pipe";
3928    else
3929      Name = "__sub_group_commit_write_pipe";
3930
3931    Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3932          *Arg1 = EmitScalarExpr(E->getArg(1));
3933    CGOpenCLRuntime OpenCLRT(CGM);
3934    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3935    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3936
3937    // Building the generic function prototype.
3938    llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3939    llvm::FunctionType *FTy =
3940        llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3941                                llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3942
3943    return RValue::get(
3944        Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3945                           {Arg0, Arg1, PacketSize, PacketAlign}));
3946  }
3947  // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3948  case Builtin::BIget_pipe_num_packets:
3949  case Builtin::BIget_pipe_max_packets: {
3950    const char *BaseName;
3951    const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
3952    if (BuiltinID == Builtin::BIget_pipe_num_packets)
3953      BaseName = "__get_pipe_num_packets";
3954    else
3955      BaseName = "__get_pipe_max_packets";
3956    std::string Name = std::string(BaseName) +
3957                       std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3958
3959    // Building the generic function prototype.
3960    Value *Arg0 = EmitScalarExpr(E->getArg(0));
3961    CGOpenCLRuntime OpenCLRT(CGM);
3962    Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3963    Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3964    llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3965    llvm::FunctionType *FTy = llvm::FunctionType::get(
3966        Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3967
3968    return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3969                                          {Arg0, PacketSize, PacketAlign}));
3970  }
3971
3972  // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3973  case Builtin::BIto_global:
3974  case Builtin::BIto_local:
3975  case Builtin::BIto_private: {
3976    auto Arg0 = EmitScalarExpr(E->getArg(0));
3977    auto NewArgT = llvm::PointerType::get(Int8Ty,
3978      CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3979    auto NewRetT = llvm::PointerType::get(Int8Ty,
3980      CGM.getContext().getTargetAddressSpace(
3981        E->getType()->getPointeeType().getAddressSpace()));
3982    auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3983    llvm::Value *NewArg;
3984    if (Arg0->getType()->getPointerAddressSpace() !=
3985        NewArgT->getPointerAddressSpace())
3986      NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3987    else
3988      NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3989    auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3990    auto NewCall =
3991        Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3992    return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3993      ConvertType(E->getType())));
3994  }
3995
3996  // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3997  // It contains four different overload formats specified in Table 6.13.17.1.
3998  case Builtin::BIenqueue_kernel: {
3999    StringRef Name; // Generated function call name
4000    unsigned NumArgs = E->getNumArgs();
4001
4002    llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4003    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4004        getContext().getTargetAddressSpace(LangAS::opencl_generic));
4005
4006    llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4007    llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4008    LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4009    llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4010    llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4011
4012    if (NumArgs == 4) {
4013      // The most basic form of the call with parameters:
4014      // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4015      Name = "__enqueue_kernel_basic";
4016      llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4017                              GenericVoidPtrTy};
4018      llvm::FunctionType *FTy = llvm::FunctionType::get(
4019          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4020
4021      auto Info =
4022          CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4023      llvm::Value *Kernel =
4024          Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4025      llvm::Value *Block =
4026          Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4027
4028      AttrBuilder B;
4029      B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4030      llvm::AttributeList ByValAttrSet =
4031          llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4032
4033      auto RTCall =
4034          Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4035                             {Queue, Flags, Range, Kernel, Block});
4036      RTCall->setAttributes(ByValAttrSet);
4037      return RValue::get(RTCall);
4038    }
4039    assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4040
4041    // Create a temporary array to hold the sizes of local pointer arguments
4042    // for the block. \p First is the position of the first size argument.
4043    auto CreateArrayForSizeVar = [=](unsigned First)
4044        -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4045      llvm::APInt ArraySize(32, NumArgs - First);
4046      QualType SizeArrayTy = getContext().getConstantArrayType(
4047          getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4048          /*IndexTypeQuals=*/0);
4049      auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4050      llvm::Value *TmpPtr = Tmp.getPointer();
4051      llvm::Value *TmpSize = EmitLifetimeStart(
4052          CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4053      llvm::Value *ElemPtr;
4054      // Each of the following arguments specifies the size of the corresponding
4055      // argument passed to the enqueued block.
4056      auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4057      for (unsigned I = First; I < NumArgs; ++I) {
4058        auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4059        auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
4060        if (I == First)
4061          ElemPtr = GEP;
4062        auto *V =
4063            Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4064        Builder.CreateAlignedStore(
4065            V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4066      }
4067      return std::tie(ElemPtr, TmpSize, TmpPtr);
4068    };
4069
4070    // Could have events and/or varargs.
4071    if (E->getArg(3)->getType()->isBlockPointerType()) {
4072      // No events passed, but has variadic arguments.
4073      Name = "__enqueue_kernel_varargs";
4074      auto Info =
4075          CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4076      llvm::Value *Kernel =
4077          Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4078      auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4079      llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4080      std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4081
4082      // Create a vector of the arguments, as well as a constant value to
4083      // express to the runtime the number of variadic arguments.
4084      llvm::Value *const Args[] = {Queue,  Flags,
4085                                   Range,  Kernel,
4086                                   Block,  ConstantInt::get(IntTy, NumArgs - 4),
4087                                   ElemPtr};
4088      llvm::Type *const ArgTys[] = {
4089          QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4090          GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4091
4092      llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4093      auto Call = RValue::get(
4094          Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4095      if (TmpSize)
4096        EmitLifetimeEnd(TmpSize, TmpPtr);
4097      return Call;
4098    }
4099    // Any calls now have event arguments passed.
4100    if (NumArgs >= 7) {
4101      llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4102      llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4103          CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4104
4105      llvm::Value *NumEvents =
4106          Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4107
4108      // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4109      // to be a null pointer constant (including `0` literal), we can take it
4110      // into account and emit null pointer directly.
4111      llvm::Value *EventWaitList = nullptr;
4112      if (E->getArg(4)->isNullPointerConstant(
4113              getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4114        EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4115      } else {
4116        EventWaitList = E->getArg(4)->getType()->isArrayType()
4117                        ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4118                        : EmitScalarExpr(E->getArg(4));
4119        // Convert to generic address space.
4120        EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4121      }
4122      llvm::Value *EventRet = nullptr;
4123      if (E->getArg(5)->isNullPointerConstant(
4124              getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4125        EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4126      } else {
4127        EventRet =
4128            Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4129      }
4130
4131      auto Info =
4132          CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4133      llvm::Value *Kernel =
4134          Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4135      llvm::Value *Block =
4136          Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4137
4138      std::vector<llvm::Type *> ArgTys = {
4139          QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4140          EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4141
4142      std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4143                                         NumEvents, EventWaitList, EventRet,
4144                                         Kernel,    Block};
4145
4146      if (NumArgs == 7) {
4147        // Has events but no variadics.
4148        Name = "__enqueue_kernel_basic_events";
4149        llvm::FunctionType *FTy = llvm::FunctionType::get(
4150            Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4151        return RValue::get(
4152            Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4153                               llvm::ArrayRef<llvm::Value *>(Args)));
4154      }
4155      // Has event info and variadics
4156      // Pass the number of variadics to the runtime function too.
4157      Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4158      ArgTys.push_back(Int32Ty);
4159      Name = "__enqueue_kernel_events_varargs";
4160
4161      llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4162      std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4163      Args.push_back(ElemPtr);
4164      ArgTys.push_back(ElemPtr->getType());
4165
4166      llvm::FunctionType *FTy = llvm::FunctionType::get(
4167          Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4168      auto Call =
4169          RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4170                                         llvm::ArrayRef<llvm::Value *>(Args)));
4171      if (TmpSize)
4172        EmitLifetimeEnd(TmpSize, TmpPtr);
4173      return Call;
4174    }
4175    LLVM_FALLTHROUGH;
4176  }
4177  // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4178  // parameter.
4179  case Builtin::BIget_kernel_work_group_size: {
4180    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4181        getContext().getTargetAddressSpace(LangAS::opencl_generic));
4182    auto Info =
4183        CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4184    Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4185    Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4186    return RValue::get(Builder.CreateCall(
4187        CGM.CreateRuntimeFunction(
4188            llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4189                                    false),
4190            "__get_kernel_work_group_size_impl"),
4191        {Kernel, Arg}));
4192  }
4193  case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4194    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4195        getContext().getTargetAddressSpace(LangAS::opencl_generic));
4196    auto Info =
4197        CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4198    Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4199    Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4200    return RValue::get(Builder.CreateCall(
4201        CGM.CreateRuntimeFunction(
4202            llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4203                                    false),
4204            "__get_kernel_preferred_work_group_size_multiple_impl"),
4205        {Kernel, Arg}));
4206  }
4207  case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4208  case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4209    llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4210        getContext().getTargetAddressSpace(LangAS::opencl_generic));
4211    LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4212    llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4213    auto Info =
4214        CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4215    Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4216    Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4217    const char *Name =
4218        BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4219            ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4220            : "__get_kernel_sub_group_count_for_ndrange_impl";
4221    return RValue::get(Builder.CreateCall(
4222        CGM.CreateRuntimeFunction(
4223            llvm::FunctionType::get(
4224                IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4225                false),
4226            Name),
4227        {NDRange, Kernel, Block}));
4228  }
4229
4230  case Builtin::BI__builtin_store_half:
4231  case Builtin::BI__builtin_store_halff: {
4232    Value *Val = EmitScalarExpr(E->getArg(0));
4233    Address Address = EmitPointerWithAlignment(E->getArg(1));
4234    Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4235    return RValue::get(Builder.CreateStore(HalfVal, Address));
4236  }
4237  case Builtin::BI__builtin_load_half: {
4238    Address Address = EmitPointerWithAlignment(E->getArg(0));
4239    Value *HalfVal = Builder.CreateLoad(Address);
4240    return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4241  }
4242  case Builtin::BI__builtin_load_halff: {
4243    Address Address = EmitPointerWithAlignment(E->getArg(0));
4244    Value *HalfVal = Builder.CreateLoad(Address);
4245    return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4246  }
4247  case Builtin::BIprintf:
4248    if (getTarget().getTriple().isNVPTX())
4249      return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4250    if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4251        getLangOpts().HIP)
4252      return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4253    break;
4254  case Builtin::BI__builtin_canonicalize:
4255  case Builtin::BI__builtin_canonicalizef:
4256  case Builtin::BI__builtin_canonicalizef16:
4257  case Builtin::BI__builtin_canonicalizel:
4258    return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4259
4260  case Builtin::BI__builtin_thread_pointer: {
4261    if (!getContext().getTargetInfo().isTLSSupported())
4262      CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4263    // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4264    break;
4265  }
4266  case Builtin::BI__builtin_os_log_format:
4267    return emitBuiltinOSLogFormat(*E);
4268
4269  case Builtin::BI__xray_customevent: {
4270    if (!ShouldXRayInstrumentFunction())
4271      return RValue::getIgnored();
4272
4273    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4274            XRayInstrKind::Custom))
4275      return RValue::getIgnored();
4276
4277    if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4278      if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4279        return RValue::getIgnored();
4280
4281    Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4282    auto FTy = F->getFunctionType();
4283    auto Arg0 = E->getArg(0);
4284    auto Arg0Val = EmitScalarExpr(Arg0);
4285    auto Arg0Ty = Arg0->getType();
4286    auto PTy0 = FTy->getParamType(0);
4287    if (PTy0 != Arg0Val->getType()) {
4288      if (Arg0Ty->isArrayType())
4289        Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4290      else
4291        Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4292    }
4293    auto Arg1 = EmitScalarExpr(E->getArg(1));
4294    auto PTy1 = FTy->getParamType(1);
4295    if (PTy1 != Arg1->getType())
4296      Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4297    return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4298  }
4299
4300  case Builtin::BI__xray_typedevent: {
4301    // TODO: There should be a way to always emit events even if the current
4302    // function is not instrumented. Losing events in a stream can cripple
4303    // a trace.
4304    if (!ShouldXRayInstrumentFunction())
4305      return RValue::getIgnored();
4306
4307    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4308            XRayInstrKind::Typed))
4309      return RValue::getIgnored();
4310
4311    if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4312      if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4313        return RValue::getIgnored();
4314
4315    Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4316    auto FTy = F->getFunctionType();
4317    auto Arg0 = EmitScalarExpr(E->getArg(0));
4318    auto PTy0 = FTy->getParamType(0);
4319    if (PTy0 != Arg0->getType())
4320      Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4321    auto Arg1 = E->getArg(1);
4322    auto Arg1Val = EmitScalarExpr(Arg1);
4323    auto Arg1Ty = Arg1->getType();
4324    auto PTy1 = FTy->getParamType(1);
4325    if (PTy1 != Arg1Val->getType()) {
4326      if (Arg1Ty->isArrayType())
4327        Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4328      else
4329        Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4330    }
4331    auto Arg2 = EmitScalarExpr(E->getArg(2));
4332    auto PTy2 = FTy->getParamType(2);
4333    if (PTy2 != Arg2->getType())
4334      Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4335    return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4336  }
4337
4338  case Builtin::BI__builtin_ms_va_start:
4339  case Builtin::BI__builtin_ms_va_end:
4340    return RValue::get(
4341        EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4342                       BuiltinID == Builtin::BI__builtin_ms_va_start));
4343
4344  case Builtin::BI__builtin_ms_va_copy: {
4345    // Lower this manually. We can't reliably determine whether or not any
4346    // given va_copy() is for a Win64 va_list from the calling convention
4347    // alone, because it's legal to do this from a System V ABI function.
4348    // With opaque pointer types, we won't have enough information in LLVM
4349    // IR to determine this from the argument types, either. Best to do it
4350    // now, while we have enough information.
4351    Address DestAddr = EmitMSVAListRef(E->getArg(0));
4352    Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4353
4354    llvm::Type *BPP = Int8PtrPtrTy;
4355
4356    DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4357                       DestAddr.getAlignment());
4358    SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4359                      SrcAddr.getAlignment());
4360
4361    Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4362    return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4363  }
4364  }
4365
4366  // If this is an alias for a lib function (e.g. __builtin_sin), emit
4367  // the call using the normal call path, but using the unmangled
4368  // version of the function name.
4369  if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4370    return emitLibraryCall(*this, FD, E,
4371                           CGM.getBuiltinLibFunction(FD, BuiltinID));
4372
4373  // If this is a predefined lib function (e.g. malloc), emit the call
4374  // using exactly the normal call path.
4375  if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4376    return emitLibraryCall(*this, FD, E,
4377                      cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4378
4379  // Check that a call to a target specific builtin has the correct target
4380  // features.
4381  // This is down here to avoid non-target specific builtins, however, if
4382  // generic builtins start to require generic target features then we
4383  // can move this up to the beginning of the function.
4384  checkTargetFeatures(E, FD);
4385
4386  if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4387    LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4388
4389  // See if we have a target specific intrinsic.
4390  const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4391  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4392  StringRef Prefix =
4393      llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4394  if (!Prefix.empty()) {
4395    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4396    // NOTE we don't need to perform a compatibility flag check here since the
4397    // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4398    // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4399    if (IntrinsicID == Intrinsic::not_intrinsic)
4400      IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4401  }
4402
4403  if (IntrinsicID != Intrinsic::not_intrinsic) {
4404    SmallVector<Value*, 16> Args;
4405
4406    // Find out if any arguments are required to be integer constant
4407    // expressions.
4408    unsigned ICEArguments = 0;
4409    ASTContext::GetBuiltinTypeError Error;
4410    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4411    assert(Error == ASTContext::GE_None && "Should not codegen an error");
4412
4413    Function *F = CGM.getIntrinsic(IntrinsicID);
4414    llvm::FunctionType *FTy = F->getFunctionType();
4415
4416    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4417      Value *ArgValue;
4418      // If this is a normal argument, just emit it as a scalar.
4419      if ((ICEArguments & (1 << i)) == 0) {
4420        ArgValue = EmitScalarExpr(E->getArg(i));
4421      } else {
4422        // If this is required to be a constant, constant fold it so that we
4423        // know that the generated intrinsic gets a ConstantInt.
4424        llvm::APSInt Result;
4425        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4426        assert(IsConst && "Constant arg isn't actually constant?");
4427        (void)IsConst;
4428        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4429      }
4430
4431      // If the intrinsic arg type is different from the builtin arg type
4432      // we need to do a bit cast.
4433      llvm::Type *PTy = FTy->getParamType(i);
4434      if (PTy != ArgValue->getType()) {
4435        // XXX - vector of pointers?
4436        if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4437          if (PtrTy->getAddressSpace() !=
4438              ArgValue->getType()->getPointerAddressSpace()) {
4439            ArgValue = Builder.CreateAddrSpaceCast(
4440              ArgValue,
4441              ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4442          }
4443        }
4444
4445        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
4446               "Must be able to losslessly bit cast to param");
4447        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4448      }
4449
4450      Args.push_back(ArgValue);
4451    }
4452
4453    Value *V = Builder.CreateCall(F, Args);
4454    QualType BuiltinRetType = E->getType();
4455
4456    llvm::Type *RetTy = VoidTy;
4457    if (!BuiltinRetType->isVoidType())
4458      RetTy = ConvertType(BuiltinRetType);
4459
4460    if (RetTy != V->getType()) {
4461      // XXX - vector of pointers?
4462      if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4463        if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4464          V = Builder.CreateAddrSpaceCast(
4465            V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4466        }
4467      }
4468
4469      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4470             "Must be able to losslessly bit cast result type");
4471      V = Builder.CreateBitCast(V, RetTy);
4472    }
4473
4474    return RValue::get(V);
4475  }
4476
4477  // Some target-specific builtins can have aggregate return values, e.g.
4478  // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
4479  // ReturnValue to be non-null, so that the target-specific emission code can
4480  // always just emit into it.
4481  TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
4482  if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
4483    Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
4484    ReturnValue = ReturnValueSlot(DestPtr, false);
4485  }
4486
4487  // Now see if we can emit a target-specific builtin.
4488  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
4489    switch (EvalKind) {
4490    case TEK_Scalar:
4491      return RValue::get(V);
4492    case TEK_Aggregate:
4493      return RValue::getAggregate(ReturnValue.getValue(),
4494                                  ReturnValue.isVolatile());
4495    case TEK_Complex:
4496      llvm_unreachable("No current target builtin returns complex");
4497    }
4498    llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
4499  }
4500
4501  ErrorUnsupported(E, "builtin function");
4502
4503  // Unknown builtin, for now just dump it out and return undef.
4504  return GetUndefRValue(E->getType());
4505}
4506
4507static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4508                                        unsigned BuiltinID, const CallExpr *E,
4509                                        ReturnValueSlot ReturnValue,
4510                                        llvm::Triple::ArchType Arch) {
4511  switch (Arch) {
4512  case llvm::Triple::arm:
4513  case llvm::Triple::armeb:
4514  case llvm::Triple::thumb:
4515  case llvm::Triple::thumbeb:
4516    return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
4517  case llvm::Triple::aarch64:
4518  case llvm::Triple::aarch64_32:
4519  case llvm::Triple::aarch64_be:
4520    return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4521  case llvm::Triple::bpfeb:
4522  case llvm::Triple::bpfel:
4523    return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4524  case llvm::Triple::x86:
4525  case llvm::Triple::x86_64:
4526    return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4527  case llvm::Triple::ppc:
4528  case llvm::Triple::ppc64:
4529  case llvm::Triple::ppc64le:
4530    return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4531  case llvm::Triple::r600:
4532  case llvm::Triple::amdgcn:
4533    return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4534  case llvm::Triple::systemz:
4535    return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4536  case llvm::Triple::nvptx:
4537  case llvm::Triple::nvptx64:
4538    return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4539  case llvm::Triple::wasm32:
4540  case llvm::Triple::wasm64:
4541    return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4542  case llvm::Triple::hexagon:
4543    return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4544  default:
4545    return nullptr;
4546  }
4547}
4548
4549Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4550                                              const CallExpr *E,
4551                                              ReturnValueSlot ReturnValue) {
4552  if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4553    assert(getContext().getAuxTargetInfo() && "Missing aux target info");
4554    return EmitTargetArchBuiltinExpr(
4555        this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4556        ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
4557  }
4558
4559  return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
4560                                   getTarget().getTriple().getArch());
4561}
4562
4563static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4564                                     NeonTypeFlags TypeFlags,
4565                                     bool HasLegalHalfType = true,
4566                                     bool V1Ty = false,
4567                                     bool AllowBFloatArgsAndRet = true) {
4568  int IsQuad = TypeFlags.isQuad();
4569  switch (TypeFlags.getEltType()) {
4570  case NeonTypeFlags::Int8:
4571  case NeonTypeFlags::Poly8:
4572    return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4573  case NeonTypeFlags::Int16:
4574  case NeonTypeFlags::Poly16:
4575    return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4576  case NeonTypeFlags::BFloat16:
4577    if (AllowBFloatArgsAndRet)
4578      return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
4579    else
4580      return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4581  case NeonTypeFlags::Float16:
4582    if (HasLegalHalfType)
4583      return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4584    else
4585      return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4586  case NeonTypeFlags::Int32:
4587    return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4588  case NeonTypeFlags::Int64:
4589  case NeonTypeFlags::Poly64:
4590    return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4591  case NeonTypeFlags::Poly128:
4592    // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4593    // There is a lot of i128 and f128 API missing.
4594    // so we use v16i8 to represent poly128 and get pattern matched.
4595    return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
4596  case NeonTypeFlags::Float32:
4597    return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4598  case NeonTypeFlags::Float64:
4599    return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4600  }
4601  llvm_unreachable("Unknown vector element type!");
4602}
4603
4604static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4605                                          NeonTypeFlags IntTypeFlags) {
4606  int IsQuad = IntTypeFlags.isQuad();
4607  switch (IntTypeFlags.getEltType()) {
4608  case NeonTypeFlags::Int16:
4609    return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
4610  case NeonTypeFlags::Int32:
4611    return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
4612  case NeonTypeFlags::Int64:
4613    return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
4614  default:
4615    llvm_unreachable("Type can't be converted to floating-point!");
4616  }
4617}
4618
4619Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
4620                                      const ElementCount &Count) {
4621  Value *SV = llvm::ConstantVector::getSplat(Count, C);
4622  return Builder.CreateShuffleVector(V, V, SV, "lane");
4623}
4624
4625Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4626  ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
4627  return EmitNeonSplat(V, C, EC);
4628}
4629
4630Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4631                                     const char *name,
4632                                     unsigned shift, bool rightshift) {
4633  unsigned j = 0;
4634  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4635       ai != ae; ++ai, ++j) {
4636    if (F->isConstrainedFPIntrinsic())
4637      if (ai->getType()->isMetadataTy())
4638        continue;
4639    if (shift > 0 && shift == j)
4640      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4641    else
4642      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4643  }
4644
4645  if (F->isConstrainedFPIntrinsic())
4646    return Builder.CreateConstrainedFPCall(F, Ops, name);
4647  else
4648    return Builder.CreateCall(F, Ops, name);
4649}
4650
4651Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4652                                            bool neg) {
4653  int SV = cast<ConstantInt>(V)->getSExtValue();
4654  return ConstantInt::get(Ty, neg ? -SV : SV);
4655}
4656
4657// Right-shift a vector by a constant.
4658Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4659                                          llvm::Type *Ty, bool usgn,
4660                                          const char *name) {
4661  llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4662
4663  int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4664  int EltSize = VTy->getScalarSizeInBits();
4665
4666  Vec = Builder.CreateBitCast(Vec, Ty);
4667
4668  // lshr/ashr are undefined when the shift amount is equal to the vector
4669  // element size.
4670  if (ShiftAmt == EltSize) {
4671    if (usgn) {
4672      // Right-shifting an unsigned value by its size yields 0.
4673      return llvm::ConstantAggregateZero::get(VTy);
4674    } else {
4675      // Right-shifting a signed value by its size is equivalent
4676      // to a shift of size-1.
4677      --ShiftAmt;
4678      Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4679    }
4680  }
4681
4682  Shift = EmitNeonShiftVector(Shift, Ty, false);
4683  if (usgn)
4684    return Builder.CreateLShr(Vec, Shift, name);
4685  else
4686    return Builder.CreateAShr(Vec, Shift, name);
4687}
4688
4689enum {
4690  AddRetType = (1 << 0),
4691  Add1ArgType = (1 << 1),
4692  Add2ArgTypes = (1 << 2),
4693
4694  VectorizeRetType = (1 << 3),
4695  VectorizeArgTypes = (1 << 4),
4696
4697  InventFloatType = (1 << 5),
4698  UnsignedAlts = (1 << 6),
4699
4700  Use64BitVectors = (1 << 7),
4701  Use128BitVectors = (1 << 8),
4702
4703  Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4704  VectorRet = AddRetType | VectorizeRetType,
4705  VectorRetGetArgs01 =
4706      AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4707  FpCmpzModifiers =
4708      AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4709};
4710
4711namespace {
4712struct ARMVectorIntrinsicInfo {
4713  const char *NameHint;
4714  unsigned BuiltinID;
4715  unsigned LLVMIntrinsic;
4716  unsigned AltLLVMIntrinsic;
4717  uint64_t TypeModifier;
4718
4719  bool operator<(unsigned RHSBuiltinID) const {
4720    return BuiltinID < RHSBuiltinID;
4721  }
4722  bool operator<(const ARMVectorIntrinsicInfo &TE) const {
4723    return BuiltinID < TE.BuiltinID;
4724  }
4725};
4726} // end anonymous namespace
4727
4728#define NEONMAP0(NameBase) \
4729  { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4730
4731#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4732  { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4733      Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4734
4735#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4736  { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4737      Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4738      TypeModifier }
4739
4740static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4741  NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
4742  NEONMAP0(splat_lane_v),
4743  NEONMAP0(splat_laneq_v),
4744  NEONMAP0(splatq_lane_v),
4745  NEONMAP0(splatq_laneq_v),
4746  NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4747  NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4748  NEONMAP1(vabs_v, arm_neon_vabs, 0),
4749  NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4750  NEONMAP0(vaddhn_v),
4751  NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4752  NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4753  NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4754  NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4755  NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
4756  NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
4757  NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
4758  NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
4759  NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
4760  NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4761  NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4762  NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4763  NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4764  NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4765  NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4766  NEONMAP1(vcage_v, arm_neon_vacge, 0),
4767  NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4768  NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4769  NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4770  NEONMAP1(vcale_v, arm_neon_vacge, 0),
4771  NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4772  NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4773  NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4774  NEONMAP0(vceqz_v),
4775  NEONMAP0(vceqzq_v),
4776  NEONMAP0(vcgez_v),
4777  NEONMAP0(vcgezq_v),
4778  NEONMAP0(vcgtz_v),
4779  NEONMAP0(vcgtzq_v),
4780  NEONMAP0(vclez_v),
4781  NEONMAP0(vclezq_v),
4782  NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4783  NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4784  NEONMAP0(vcltz_v),
4785  NEONMAP0(vcltzq_v),
4786  NEONMAP1(vclz_v, ctlz, Add1ArgType),
4787  NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4788  NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4789  NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4790  NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4791  NEONMAP0(vcvt_f16_v),
4792  NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4793  NEONMAP0(vcvt_f32_v),
4794  NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4795  NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4796  NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4797  NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4798  NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4799  NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4800  NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4801  NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4802  NEONMAP0(vcvt_s16_v),
4803  NEONMAP0(vcvt_s32_v),
4804  NEONMAP0(vcvt_s64_v),
4805  NEONMAP0(vcvt_u16_v),
4806  NEONMAP0(vcvt_u32_v),
4807  NEONMAP0(vcvt_u64_v),
4808  NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4809  NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4810  NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4811  NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4812  NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4813  NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4814  NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4815  NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4816  NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4817  NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4818  NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4819  NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4820  NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
4821  NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4822  NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4823  NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4824  NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4825  NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4826  NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4827  NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4828  NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4829  NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4830  NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4831  NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4832  NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4833  NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4834  NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4835  NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4836  NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4837  NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4838  NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4839  NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4840  NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4841  NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4842  NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4843  NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4844  NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4845  NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4846  NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4847  NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4848  NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4849  NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4850  NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4851  NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4852  NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4853  NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4854  NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4855  NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4856  NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4857  NEONMAP0(vcvtq_f16_v),
4858  NEONMAP0(vcvtq_f32_v),
4859  NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4860  NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4861  NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4862  NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4863  NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4864  NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4865  NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4866  NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4867  NEONMAP0(vcvtq_s16_v),
4868  NEONMAP0(vcvtq_s32_v),
4869  NEONMAP0(vcvtq_s64_v),
4870  NEONMAP0(vcvtq_u16_v),
4871  NEONMAP0(vcvtq_u32_v),
4872  NEONMAP0(vcvtq_u64_v),
4873  NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4874  NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4875  NEONMAP0(vext_v),
4876  NEONMAP0(vextq_v),
4877  NEONMAP0(vfma_v),
4878  NEONMAP0(vfmaq_v),
4879  NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4880  NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4881  NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4882  NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4883  NEONMAP0(vld1_dup_v),
4884  NEONMAP1(vld1_v, arm_neon_vld1, 0),
4885  NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4886  NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4887  NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4888  NEONMAP0(vld1q_dup_v),
4889  NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4890  NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4891  NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4892  NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4893  NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4894  NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4895  NEONMAP1(vld2_v, arm_neon_vld2, 0),
4896  NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4897  NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4898  NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4899  NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4900  NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4901  NEONMAP1(vld3_v, arm_neon_vld3, 0),
4902  NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4903  NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4904  NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4905  NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4906  NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4907  NEONMAP1(vld4_v, arm_neon_vld4, 0),
4908  NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4909  NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4910  NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4911  NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4912  NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4913  NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4914  NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4915  NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4916  NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4917  NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4918  NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4919  NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
4920  NEONMAP0(vmovl_v),
4921  NEONMAP0(vmovn_v),
4922  NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4923  NEONMAP0(vmull_v),
4924  NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4925  NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4926  NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4927  NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4928  NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4929  NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4930  NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4931  NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4932  NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4933  NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4934  NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4935  NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4936  NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4937  NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
4938  NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
4939  NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4940  NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4941  NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4942  NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4943  NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4944  NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4945  NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4946  NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4947  NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4948  NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4949  NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4950  NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4951  NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4952  NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4953  NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4954  NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4955  NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4956  NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4957  NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4958  NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4959  NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4960  NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4961  NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4962  NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4963  NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4964  NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4965  NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4966  NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4967  NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4968  NEONMAP0(vrndi_v),
4969  NEONMAP0(vrndiq_v),
4970  NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4971  NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4972  NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4973  NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4974  NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4975  NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4976  NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4977  NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4978  NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4979  NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4980  NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4981  NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4982  NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4983  NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4984  NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4985  NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4986  NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4987  NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4988  NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4989  NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4990  NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4991  NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4992  NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4993  NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4994  NEONMAP0(vshl_n_v),
4995  NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4996  NEONMAP0(vshll_n_v),
4997  NEONMAP0(vshlq_n_v),
4998  NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4999  NEONMAP0(vshr_n_v),
5000  NEONMAP0(vshrn_n_v),
5001  NEONMAP0(vshrq_n_v),
5002  NEONMAP1(vst1_v, arm_neon_vst1, 0),
5003  NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5004  NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5005  NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5006  NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5007  NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5008  NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5009  NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5010  NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5011  NEONMAP1(vst2_v, arm_neon_vst2, 0),
5012  NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5013  NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5014  NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5015  NEONMAP1(vst3_v, arm_neon_vst3, 0),
5016  NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5017  NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5018  NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5019  NEONMAP1(vst4_v, arm_neon_vst4, 0),
5020  NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5021  NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5022  NEONMAP0(vsubhn_v),
5023  NEONMAP0(vtrn_v),
5024  NEONMAP0(vtrnq_v),
5025  NEONMAP0(vtst_v),
5026  NEONMAP0(vtstq_v),
5027  NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5028  NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5029  NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5030  NEONMAP0(vuzp_v),
5031  NEONMAP0(vuzpq_v),
5032  NEONMAP0(vzip_v),
5033  NEONMAP0(vzipq_v)
5034};
5035
5036static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5037  NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5038  NEONMAP0(splat_lane_v),
5039  NEONMAP0(splat_laneq_v),
5040  NEONMAP0(splatq_lane_v),
5041  NEONMAP0(splatq_laneq_v),
5042  NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5043  NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5044  NEONMAP0(vaddhn_v),
5045  NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5046  NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5047  NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5048  NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5049  NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5050  NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5051  NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5052  NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5053  NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5054  NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5055  NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5056  NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5057  NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5058  NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5059  NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5060  NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5061  NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5062  NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5063  NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5064  NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5065  NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5066  NEONMAP0(vceqz_v),
5067  NEONMAP0(vceqzq_v),
5068  NEONMAP0(vcgez_v),
5069  NEONMAP0(vcgezq_v),
5070  NEONMAP0(vcgtz_v),
5071  NEONMAP0(vcgtzq_v),
5072  NEONMAP0(vclez_v),
5073  NEONMAP0(vclezq_v),
5074  NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5075  NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5076  NEONMAP0(vcltz_v),
5077  NEONMAP0(vcltzq_v),
5078  NEONMAP1(vclz_v, ctlz, Add1ArgType),
5079  NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5080  NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5081  NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5082  NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5083  NEONMAP0(vcvt_f16_v),
5084  NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5085  NEONMAP0(vcvt_f32_v),
5086  NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5087  NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5088  NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5089  NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5090  NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5091  NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5092  NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5093  NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5094  NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5095  NEONMAP0(vcvtq_f16_v),
5096  NEONMAP0(vcvtq_f32_v),
5097  NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5098  NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5099  NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5100  NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5101  NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5102  NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5103  NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5104  NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5105  NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5106  NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5107  NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5108  NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5109  NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5110  NEONMAP0(vext_v),
5111  NEONMAP0(vextq_v),
5112  NEONMAP0(vfma_v),
5113  NEONMAP0(vfmaq_v),
5114  NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5115  NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5116  NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5117  NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5118  NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5119  NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5120  NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5121  NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5122  NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5123  NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5124  NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5125  NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5126  NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5127  NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5128  NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5129  NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5130  NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5131  NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5132  NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5133  NEONMAP0(vmovl_v),
5134  NEONMAP0(vmovn_v),
5135  NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5136  NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5137  NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5138  NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5139  NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5140  NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5141  NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5142  NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5143  NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5144  NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5145  NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5146  NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5147  NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5148  NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5149  NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5150  NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5151  NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5152  NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5153  NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5154  NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5155  NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5156  NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5157  NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5158  NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5159  NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5160  NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5161  NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5162  NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5163  NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5164  NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5165  NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5166  NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5167  NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5168  NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5169  NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5170  NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5171  NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5172  NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5173  NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5174  NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5175  NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5176  NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5177  NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5178  NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5179  NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5180  NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5181  NEONMAP0(vrndi_v),
5182  NEONMAP0(vrndiq_v),
5183  NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5184  NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5185  NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5186  NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5187  NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5188  NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5189  NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5190  NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5191  NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5192  NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5193  NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5194  NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5195  NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5196  NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5197  NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5198  NEONMAP0(vshl_n_v),
5199  NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5200  NEONMAP0(vshll_n_v),
5201  NEONMAP0(vshlq_n_v),
5202  NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5203  NEONMAP0(vshr_n_v),
5204  NEONMAP0(vshrn_n_v),
5205  NEONMAP0(vshrq_n_v),
5206  NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5207  NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5208  NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5209  NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5210  NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5211  NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5212  NEONMAP0(vsubhn_v),
5213  NEONMAP0(vtst_v),
5214  NEONMAP0(vtstq_v),
5215  NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5216  NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5217  NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5218};
5219
5220static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5221  NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5222  NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5223  NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5224  NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5225  NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5226  NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5227  NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5228  NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5229  NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5230  NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5231  NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5232  NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5233  NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5234  NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5235  NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5236  NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5237  NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5238  NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5239  NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5240  NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5241  NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5242  NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5243  NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5244  NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5245  NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5246  NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5247  NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5248  NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5249  NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5250  NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5251  NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5252  NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5253  NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
5254  NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5255  NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5256  NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5257  NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5258  NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5259  NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5260  NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5261  NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5262  NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5263  NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5264  NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5265  NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5266  NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5267  NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5268  NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5269  NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5270  NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
5271  NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5272  NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5273  NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5274  NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5275  NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5276  NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5277  NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5278  NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5279  NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5280  NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5281  NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5282  NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5283  NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5284  NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5285  NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5286  NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5287  NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5288  NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5289  NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5290  NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5291  NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
5292  NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
5293  NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
5294  NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5295  NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5296  NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5297  NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5298  NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5299  NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5300  NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5301  NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5302  NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5303  NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5304  NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5305  NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
5306  NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5307  NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
5308  NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5309  NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5310  NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
5311  NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
5312  NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5313  NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5314  NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
5315  NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
5316  NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
5317  NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
5318  NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
5319  NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
5320  NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
5321  NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
5322  NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5323  NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5324  NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5325  NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5326  NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
5327  NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5328  NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5329  NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5330  NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
5331  NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5332  NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
5333  NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
5334  NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
5335  NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5336  NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5337  NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
5338  NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
5339  NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5340  NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5341  NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
5342  NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
5343  NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5344  NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5345  NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5346  NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5347  NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5348  NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5349  NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5350  NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5351  NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5352  NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5353  NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5354  NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5355  NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5356  NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5357  NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5358  NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5359  NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5360  NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5361  NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5362  NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5363  NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5364  NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5365  NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5366  NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5367  NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5368  NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5369  NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5370  NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5371  NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5372  NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5373  NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5374  NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5375  NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5376  NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5377  NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5378  NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5379  NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5380  NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5381  NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5382  NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5383  NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5384  NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5385  NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5386  NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5387  NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5388  NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5389  NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5390  NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5391  NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5392  NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5393  NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5394  NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5395  NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5396  NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5397  NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5398  NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5399  NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5400  NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5401  NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5402  NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5403  NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5404  NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5405  NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5406  NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5407  NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5408  NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5409  NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5410  NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5411  NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5412  NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5413  NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5414  // FP16 scalar intrinisics go here.
5415  NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5416  NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5417  NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5418  NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5419  NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5420  NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5421  NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5422  NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5423  NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5424  NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5425  NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5426  NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5427  NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5428  NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5429  NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5430  NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5431  NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5432  NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5433  NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5434  NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5435  NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5436  NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5437  NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5438  NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5439  NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5440  NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5441  NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5442  NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5443  NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5444  NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5445};
5446
5447#undef NEONMAP0
5448#undef NEONMAP1
5449#undef NEONMAP2
5450
5451#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
5452  {                                                                            \
5453    #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
5454        TypeModifier                                                           \
5455  }
5456
5457#define SVEMAP2(NameBase, TypeModifier)                                        \
5458  { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
5459static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
5460#define GET_SVE_LLVM_INTRINSIC_MAP
5461#include "clang/Basic/arm_sve_builtin_cg.inc"
5462#undef GET_SVE_LLVM_INTRINSIC_MAP
5463};
5464
5465#undef SVEMAP1
5466#undef SVEMAP2
5467
5468static bool NEONSIMDIntrinsicsProvenSorted = false;
5469
5470static bool AArch64SIMDIntrinsicsProvenSorted = false;
5471static bool AArch64SISDIntrinsicsProvenSorted = false;
5472static bool AArch64SVEIntrinsicsProvenSorted = false;
5473
5474static const ARMVectorIntrinsicInfo *
5475findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
5476                            unsigned BuiltinID, bool &MapProvenSorted) {
5477
5478#ifndef NDEBUG
5479  if (!MapProvenSorted) {
5480    assert(llvm::is_sorted(IntrinsicMap));
5481    MapProvenSorted = true;
5482  }
5483#endif
5484
5485  const ARMVectorIntrinsicInfo *Builtin =
5486      llvm::lower_bound(IntrinsicMap, BuiltinID);
5487
5488  if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5489    return Builtin;
5490
5491  return nullptr;
5492}
5493
5494Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5495                                                   unsigned Modifier,
5496                                                   llvm::Type *ArgType,
5497                                                   const CallExpr *E) {
5498  int VectorSize = 0;
5499  if (Modifier & Use64BitVectors)
5500    VectorSize = 64;
5501  else if (Modifier & Use128BitVectors)
5502    VectorSize = 128;
5503
5504  // Return type.
5505  SmallVector<llvm::Type *, 3> Tys;
5506  if (Modifier & AddRetType) {
5507    llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5508    if (Modifier & VectorizeRetType)
5509      Ty = llvm::FixedVectorType::get(
5510          Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5511
5512    Tys.push_back(Ty);
5513  }
5514
5515  // Arguments.
5516  if (Modifier & VectorizeArgTypes) {
5517    int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5518    ArgType = llvm::FixedVectorType::get(ArgType, Elts);
5519  }
5520
5521  if (Modifier & (Add1ArgType | Add2ArgTypes))
5522    Tys.push_back(ArgType);
5523
5524  if (Modifier & Add2ArgTypes)
5525    Tys.push_back(ArgType);
5526
5527  if (Modifier & InventFloatType)
5528    Tys.push_back(FloatTy);
5529
5530  return CGM.getIntrinsic(IntrinsicID, Tys);
5531}
5532
5533static Value *EmitCommonNeonSISDBuiltinExpr(
5534    CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
5535    SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
5536  unsigned BuiltinID = SISDInfo.BuiltinID;
5537  unsigned int Int = SISDInfo.LLVMIntrinsic;
5538  unsigned Modifier = SISDInfo.TypeModifier;
5539  const char *s = SISDInfo.NameHint;
5540
5541  switch (BuiltinID) {
5542  case NEON::BI__builtin_neon_vcled_s64:
5543  case NEON::BI__builtin_neon_vcled_u64:
5544  case NEON::BI__builtin_neon_vcles_f32:
5545  case NEON::BI__builtin_neon_vcled_f64:
5546  case NEON::BI__builtin_neon_vcltd_s64:
5547  case NEON::BI__builtin_neon_vcltd_u64:
5548  case NEON::BI__builtin_neon_vclts_f32:
5549  case NEON::BI__builtin_neon_vcltd_f64:
5550  case NEON::BI__builtin_neon_vcales_f32:
5551  case NEON::BI__builtin_neon_vcaled_f64:
5552  case NEON::BI__builtin_neon_vcalts_f32:
5553  case NEON::BI__builtin_neon_vcaltd_f64:
5554    // Only one direction of comparisons actually exist, cmle is actually a cmge
5555    // with swapped operands. The table gives us the right intrinsic but we
5556    // still need to do the swap.
5557    std::swap(Ops[0], Ops[1]);
5558    break;
5559  }
5560
5561  assert(Int && "Generic code assumes a valid intrinsic");
5562
5563  // Determine the type(s) of this overloaded AArch64 intrinsic.
5564  const Expr *Arg = E->getArg(0);
5565  llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5566  Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5567
5568  int j = 0;
5569  ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5570  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5571       ai != ae; ++ai, ++j) {
5572    llvm::Type *ArgTy = ai->getType();
5573    if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5574             ArgTy->getPrimitiveSizeInBits())
5575      continue;
5576
5577    assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
5578    // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5579    // it before inserting.
5580    Ops[j] = CGF.Builder.CreateTruncOrBitCast(
5581        Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
5582    Ops[j] =
5583        CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5584  }
5585
5586  Value *Result = CGF.EmitNeonCall(F, Ops, s);
5587  llvm::Type *ResultType = CGF.ConvertType(E->getType());
5588  if (ResultType->getPrimitiveSizeInBits() <
5589      Result->getType()->getPrimitiveSizeInBits())
5590    return CGF.Builder.CreateExtractElement(Result, C0);
5591
5592  return CGF.Builder.CreateBitCast(Result, ResultType, s);
5593}
5594
5595Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5596    unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5597    const char *NameHint, unsigned Modifier, const CallExpr *E,
5598    SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5599    llvm::Triple::ArchType Arch) {
5600  // Get the last argument, which specifies the vector type.
5601  llvm::APSInt NeonTypeConst;
5602  const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5603  if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5604    return nullptr;
5605
5606  // Determine the type of this overloaded NEON intrinsic.
5607  NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5608  bool Usgn = Type.isUnsigned();
5609  bool Quad = Type.isQuad();
5610  const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5611  const bool AllowBFloatArgsAndRet =
5612      getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
5613
5614  llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType, false,
5615                                      AllowBFloatArgsAndRet);
5616  llvm::Type *Ty = VTy;
5617  if (!Ty)
5618    return nullptr;
5619
5620  auto getAlignmentValue32 = [&](Address addr) -> Value* {
5621    return Builder.getInt32(addr.getAlignment().getQuantity());
5622  };
5623
5624  unsigned Int = LLVMIntrinsic;
5625  if ((Modifier & UnsignedAlts) && !Usgn)
5626    Int = AltLLVMIntrinsic;
5627
5628  switch (BuiltinID) {
5629  default: break;
5630  case NEON::BI__builtin_neon_splat_lane_v:
5631  case NEON::BI__builtin_neon_splat_laneq_v:
5632  case NEON::BI__builtin_neon_splatq_lane_v:
5633  case NEON::BI__builtin_neon_splatq_laneq_v: {
5634    auto NumElements = VTy->getElementCount();
5635    if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
5636      NumElements = NumElements * 2;
5637    if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
5638      NumElements = NumElements / 2;
5639
5640    Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
5641    return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
5642  }
5643  case NEON::BI__builtin_neon_vpadd_v:
5644  case NEON::BI__builtin_neon_vpaddq_v:
5645    // We don't allow fp/int overloading of intrinsics.
5646    if (VTy->getElementType()->isFloatingPointTy() &&
5647        Int == Intrinsic::aarch64_neon_addp)
5648      Int = Intrinsic::aarch64_neon_faddp;
5649    break;
5650  case NEON::BI__builtin_neon_vabs_v:
5651  case NEON::BI__builtin_neon_vabsq_v:
5652    if (VTy->getElementType()->isFloatingPointTy())
5653      return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5654    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5655  case NEON::BI__builtin_neon_vaddhn_v: {
5656    llvm::VectorType *SrcTy =
5657        llvm::VectorType::getExtendedElementVectorType(VTy);
5658
5659    // %sum = add <4 x i32> %lhs, %rhs
5660    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5661    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5662    Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5663
5664    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5665    Constant *ShiftAmt =
5666        ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5667    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5668
5669    // %res = trunc <4 x i32> %high to <4 x i16>
5670    return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5671  }
5672  case NEON::BI__builtin_neon_vcale_v:
5673  case NEON::BI__builtin_neon_vcaleq_v:
5674  case NEON::BI__builtin_neon_vcalt_v:
5675  case NEON::BI__builtin_neon_vcaltq_v:
5676    std::swap(Ops[0], Ops[1]);
5677    LLVM_FALLTHROUGH;
5678  case NEON::BI__builtin_neon_vcage_v:
5679  case NEON::BI__builtin_neon_vcageq_v:
5680  case NEON::BI__builtin_neon_vcagt_v:
5681  case NEON::BI__builtin_neon_vcagtq_v: {
5682    llvm::Type *Ty;
5683    switch (VTy->getScalarSizeInBits()) {
5684    default: llvm_unreachable("unexpected type");
5685    case 32:
5686      Ty = FloatTy;
5687      break;
5688    case 64:
5689      Ty = DoubleTy;
5690      break;
5691    case 16:
5692      Ty = HalfTy;
5693      break;
5694    }
5695    auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
5696    llvm::Type *Tys[] = { VTy, VecFlt };
5697    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5698    return EmitNeonCall(F, Ops, NameHint);
5699  }
5700  case NEON::BI__builtin_neon_vceqz_v:
5701  case NEON::BI__builtin_neon_vceqzq_v:
5702    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5703                                         ICmpInst::ICMP_EQ, "vceqz");
5704  case NEON::BI__builtin_neon_vcgez_v:
5705  case NEON::BI__builtin_neon_vcgezq_v:
5706    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5707                                         ICmpInst::ICMP_SGE, "vcgez");
5708  case NEON::BI__builtin_neon_vclez_v:
5709  case NEON::BI__builtin_neon_vclezq_v:
5710    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5711                                         ICmpInst::ICMP_SLE, "vclez");
5712  case NEON::BI__builtin_neon_vcgtz_v:
5713  case NEON::BI__builtin_neon_vcgtzq_v:
5714    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5715                                         ICmpInst::ICMP_SGT, "vcgtz");
5716  case NEON::BI__builtin_neon_vcltz_v:
5717  case NEON::BI__builtin_neon_vcltzq_v:
5718    return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5719                                         ICmpInst::ICMP_SLT, "vcltz");
5720  case NEON::BI__builtin_neon_vclz_v:
5721  case NEON::BI__builtin_neon_vclzq_v:
5722    // We generate target-independent intrinsic, which needs a second argument
5723    // for whether or not clz of zero is undefined; on ARM it isn't.
5724    Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5725    break;
5726  case NEON::BI__builtin_neon_vcvt_f32_v:
5727  case NEON::BI__builtin_neon_vcvtq_f32_v:
5728    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5729    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5730                     HasLegalHalfType);
5731    return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5732                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5733  case NEON::BI__builtin_neon_vcvt_f16_v:
5734  case NEON::BI__builtin_neon_vcvtq_f16_v:
5735    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5736    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5737                     HasLegalHalfType);
5738    return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5739                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5740  case NEON::BI__builtin_neon_vcvt_n_f16_v:
5741  case NEON::BI__builtin_neon_vcvt_n_f32_v:
5742  case NEON::BI__builtin_neon_vcvt_n_f64_v:
5743  case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5744  case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5745  case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5746    llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5747    Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5748    Function *F = CGM.getIntrinsic(Int, Tys);
5749    return EmitNeonCall(F, Ops, "vcvt_n");
5750  }
5751  case NEON::BI__builtin_neon_vcvt_n_s16_v:
5752  case NEON::BI__builtin_neon_vcvt_n_s32_v:
5753  case NEON::BI__builtin_neon_vcvt_n_u16_v:
5754  case NEON::BI__builtin_neon_vcvt_n_u32_v:
5755  case NEON::BI__builtin_neon_vcvt_n_s64_v:
5756  case NEON::BI__builtin_neon_vcvt_n_u64_v:
5757  case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5758  case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5759  case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5760  case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5761  case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5762  case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5763    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5764    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5765    return EmitNeonCall(F, Ops, "vcvt_n");
5766  }
5767  case NEON::BI__builtin_neon_vcvt_s32_v:
5768  case NEON::BI__builtin_neon_vcvt_u32_v:
5769  case NEON::BI__builtin_neon_vcvt_s64_v:
5770  case NEON::BI__builtin_neon_vcvt_u64_v:
5771  case NEON::BI__builtin_neon_vcvt_s16_v:
5772  case NEON::BI__builtin_neon_vcvt_u16_v:
5773  case NEON::BI__builtin_neon_vcvtq_s32_v:
5774  case NEON::BI__builtin_neon_vcvtq_u32_v:
5775  case NEON::BI__builtin_neon_vcvtq_s64_v:
5776  case NEON::BI__builtin_neon_vcvtq_u64_v:
5777  case NEON::BI__builtin_neon_vcvtq_s16_v:
5778  case NEON::BI__builtin_neon_vcvtq_u16_v: {
5779    Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5780    return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5781                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5782  }
5783  case NEON::BI__builtin_neon_vcvta_s16_v:
5784  case NEON::BI__builtin_neon_vcvta_s32_v:
5785  case NEON::BI__builtin_neon_vcvta_s64_v:
5786  case NEON::BI__builtin_neon_vcvta_u16_v:
5787  case NEON::BI__builtin_neon_vcvta_u32_v:
5788  case NEON::BI__builtin_neon_vcvta_u64_v:
5789  case NEON::BI__builtin_neon_vcvtaq_s16_v:
5790  case NEON::BI__builtin_neon_vcvtaq_s32_v:
5791  case NEON::BI__builtin_neon_vcvtaq_s64_v:
5792  case NEON::BI__builtin_neon_vcvtaq_u16_v:
5793  case NEON::BI__builtin_neon_vcvtaq_u32_v:
5794  case NEON::BI__builtin_neon_vcvtaq_u64_v:
5795  case NEON::BI__builtin_neon_vcvtn_s16_v:
5796  case NEON::BI__builtin_neon_vcvtn_s32_v:
5797  case NEON::BI__builtin_neon_vcvtn_s64_v:
5798  case NEON::BI__builtin_neon_vcvtn_u16_v:
5799  case NEON::BI__builtin_neon_vcvtn_u32_v:
5800  case NEON::BI__builtin_neon_vcvtn_u64_v:
5801  case NEON::BI__builtin_neon_vcvtnq_s16_v:
5802  case NEON::BI__builtin_neon_vcvtnq_s32_v:
5803  case NEON::BI__builtin_neon_vcvtnq_s64_v:
5804  case NEON::BI__builtin_neon_vcvtnq_u16_v:
5805  case NEON::BI__builtin_neon_vcvtnq_u32_v:
5806  case NEON::BI__builtin_neon_vcvtnq_u64_v:
5807  case NEON::BI__builtin_neon_vcvtp_s16_v:
5808  case NEON::BI__builtin_neon_vcvtp_s32_v:
5809  case NEON::BI__builtin_neon_vcvtp_s64_v:
5810  case NEON::BI__builtin_neon_vcvtp_u16_v:
5811  case NEON::BI__builtin_neon_vcvtp_u32_v:
5812  case NEON::BI__builtin_neon_vcvtp_u64_v:
5813  case NEON::BI__builtin_neon_vcvtpq_s16_v:
5814  case NEON::BI__builtin_neon_vcvtpq_s32_v:
5815  case NEON::BI__builtin_neon_vcvtpq_s64_v:
5816  case NEON::BI__builtin_neon_vcvtpq_u16_v:
5817  case NEON::BI__builtin_neon_vcvtpq_u32_v:
5818  case NEON::BI__builtin_neon_vcvtpq_u64_v:
5819  case NEON::BI__builtin_neon_vcvtm_s16_v:
5820  case NEON::BI__builtin_neon_vcvtm_s32_v:
5821  case NEON::BI__builtin_neon_vcvtm_s64_v:
5822  case NEON::BI__builtin_neon_vcvtm_u16_v:
5823  case NEON::BI__builtin_neon_vcvtm_u32_v:
5824  case NEON::BI__builtin_neon_vcvtm_u64_v:
5825  case NEON::BI__builtin_neon_vcvtmq_s16_v:
5826  case NEON::BI__builtin_neon_vcvtmq_s32_v:
5827  case NEON::BI__builtin_neon_vcvtmq_s64_v:
5828  case NEON::BI__builtin_neon_vcvtmq_u16_v:
5829  case NEON::BI__builtin_neon_vcvtmq_u32_v:
5830  case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5831    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5832    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5833  }
5834  case NEON::BI__builtin_neon_vcvtx_f32_v: {
5835    llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
5836    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5837
5838  }
5839  case NEON::BI__builtin_neon_vext_v:
5840  case NEON::BI__builtin_neon_vextq_v: {
5841    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5842    SmallVector<int, 16> Indices;
5843    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5844      Indices.push_back(i+CV);
5845
5846    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5847    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5848    return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5849  }
5850  case NEON::BI__builtin_neon_vfma_v:
5851  case NEON::BI__builtin_neon_vfmaq_v: {
5852    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5853    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5854    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5855
5856    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5857    return emitCallMaybeConstrainedFPBuiltin(
5858        *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
5859        {Ops[1], Ops[2], Ops[0]});
5860  }
5861  case NEON::BI__builtin_neon_vld1_v:
5862  case NEON::BI__builtin_neon_vld1q_v: {
5863    llvm::Type *Tys[] = {Ty, Int8PtrTy};
5864    Ops.push_back(getAlignmentValue32(PtrOp0));
5865    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5866  }
5867  case NEON::BI__builtin_neon_vld1_x2_v:
5868  case NEON::BI__builtin_neon_vld1q_x2_v:
5869  case NEON::BI__builtin_neon_vld1_x3_v:
5870  case NEON::BI__builtin_neon_vld1q_x3_v:
5871  case NEON::BI__builtin_neon_vld1_x4_v:
5872  case NEON::BI__builtin_neon_vld1q_x4_v: {
5873    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
5874    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5875    llvm::Type *Tys[2] = { VTy, PTy };
5876    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5877    Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5878    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5879    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5880    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5881  }
5882  case NEON::BI__builtin_neon_vld2_v:
5883  case NEON::BI__builtin_neon_vld2q_v:
5884  case NEON::BI__builtin_neon_vld3_v:
5885  case NEON::BI__builtin_neon_vld3q_v:
5886  case NEON::BI__builtin_neon_vld4_v:
5887  case NEON::BI__builtin_neon_vld4q_v:
5888  case NEON::BI__builtin_neon_vld2_dup_v:
5889  case NEON::BI__builtin_neon_vld2q_dup_v:
5890  case NEON::BI__builtin_neon_vld3_dup_v:
5891  case NEON::BI__builtin_neon_vld3q_dup_v:
5892  case NEON::BI__builtin_neon_vld4_dup_v:
5893  case NEON::BI__builtin_neon_vld4q_dup_v: {
5894    llvm::Type *Tys[] = {Ty, Int8PtrTy};
5895    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5896    Value *Align = getAlignmentValue32(PtrOp1);
5897    Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5898    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5899    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5900    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5901  }
5902  case NEON::BI__builtin_neon_vld1_dup_v:
5903  case NEON::BI__builtin_neon_vld1q_dup_v: {
5904    Value *V = UndefValue::get(Ty);
5905    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5906    PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5907    LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5908    llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5909    Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5910    return EmitNeonSplat(Ops[0], CI);
5911  }
5912  case NEON::BI__builtin_neon_vld2_lane_v:
5913  case NEON::BI__builtin_neon_vld2q_lane_v:
5914  case NEON::BI__builtin_neon_vld3_lane_v:
5915  case NEON::BI__builtin_neon_vld3q_lane_v:
5916  case NEON::BI__builtin_neon_vld4_lane_v:
5917  case NEON::BI__builtin_neon_vld4q_lane_v: {
5918    llvm::Type *Tys[] = {Ty, Int8PtrTy};
5919    Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5920    for (unsigned I = 2; I < Ops.size() - 1; ++I)
5921      Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5922    Ops.push_back(getAlignmentValue32(PtrOp1));
5923    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5924    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5925    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5926    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5927  }
5928  case NEON::BI__builtin_neon_vmovl_v: {
5929    llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5930    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5931    if (Usgn)
5932      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5933    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5934  }
5935  case NEON::BI__builtin_neon_vmovn_v: {
5936    llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5937    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5938    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5939  }
5940  case NEON::BI__builtin_neon_vmull_v:
5941    // FIXME: the integer vmull operations could be emitted in terms of pure
5942    // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5943    // hoisting the exts outside loops. Until global ISel comes along that can
5944    // see through such movement this leads to bad CodeGen. So we need an
5945    // intrinsic for now.
5946    Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5947    Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5948    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5949  case NEON::BI__builtin_neon_vpadal_v:
5950  case NEON::BI__builtin_neon_vpadalq_v: {
5951    // The source operand type has twice as many elements of half the size.
5952    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5953    llvm::Type *EltTy =
5954      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5955    auto *NarrowTy =
5956        llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
5957    llvm::Type *Tys[2] = { Ty, NarrowTy };
5958    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5959  }
5960  case NEON::BI__builtin_neon_vpaddl_v:
5961  case NEON::BI__builtin_neon_vpaddlq_v: {
5962    // The source operand type has twice as many elements of half the size.
5963    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5964    llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5965    auto *NarrowTy =
5966        llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
5967    llvm::Type *Tys[2] = { Ty, NarrowTy };
5968    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5969  }
5970  case NEON::BI__builtin_neon_vqdmlal_v:
5971  case NEON::BI__builtin_neon_vqdmlsl_v: {
5972    SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5973    Ops[1] =
5974        EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5975    Ops.resize(2);
5976    return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5977  }
5978  case NEON::BI__builtin_neon_vqdmulhq_lane_v:
5979  case NEON::BI__builtin_neon_vqdmulh_lane_v:
5980  case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
5981  case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
5982    auto *RTy = cast<llvm::VectorType>(Ty);
5983    if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
5984        BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
5985      RTy = llvm::FixedVectorType::get(RTy->getElementType(),
5986                                       RTy->getNumElements() * 2);
5987    llvm::Type *Tys[2] = {
5988        RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
5989                                             /*isQuad*/ false))};
5990    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5991  }
5992  case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
5993  case NEON::BI__builtin_neon_vqdmulh_laneq_v:
5994  case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
5995  case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
5996    llvm::Type *Tys[2] = {
5997        Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
5998                                            /*isQuad*/ true))};
5999    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6000  }
6001  case NEON::BI__builtin_neon_vqshl_n_v:
6002  case NEON::BI__builtin_neon_vqshlq_n_v:
6003    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6004                        1, false);
6005  case NEON::BI__builtin_neon_vqshlu_n_v:
6006  case NEON::BI__builtin_neon_vqshluq_n_v:
6007    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6008                        1, false);
6009  case NEON::BI__builtin_neon_vrecpe_v:
6010  case NEON::BI__builtin_neon_vrecpeq_v:
6011  case NEON::BI__builtin_neon_vrsqrte_v:
6012  case NEON::BI__builtin_neon_vrsqrteq_v:
6013    Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6014    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6015  case NEON::BI__builtin_neon_vrndi_v:
6016  case NEON::BI__builtin_neon_vrndiq_v:
6017    Int = Builder.getIsFPConstrained()
6018              ? Intrinsic::experimental_constrained_nearbyint
6019              : Intrinsic::nearbyint;
6020    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6021  case NEON::BI__builtin_neon_vrshr_n_v:
6022  case NEON::BI__builtin_neon_vrshrq_n_v:
6023    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6024                        1, true);
6025  case NEON::BI__builtin_neon_vshl_n_v:
6026  case NEON::BI__builtin_neon_vshlq_n_v:
6027    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6028    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6029                             "vshl_n");
6030  case NEON::BI__builtin_neon_vshll_n_v: {
6031    llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
6032    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6033    if (Usgn)
6034      Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6035    else
6036      Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6037    Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6038    return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6039  }
6040  case NEON::BI__builtin_neon_vshrn_n_v: {
6041    llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
6042    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6043    Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6044    if (Usgn)
6045      Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6046    else
6047      Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6048    return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6049  }
6050  case NEON::BI__builtin_neon_vshr_n_v:
6051  case NEON::BI__builtin_neon_vshrq_n_v:
6052    return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6053  case NEON::BI__builtin_neon_vst1_v:
6054  case NEON::BI__builtin_neon_vst1q_v:
6055  case NEON::BI__builtin_neon_vst2_v:
6056  case NEON::BI__builtin_neon_vst2q_v:
6057  case NEON::BI__builtin_neon_vst3_v:
6058  case NEON::BI__builtin_neon_vst3q_v:
6059  case NEON::BI__builtin_neon_vst4_v:
6060  case NEON::BI__builtin_neon_vst4q_v:
6061  case NEON::BI__builtin_neon_vst2_lane_v:
6062  case NEON::BI__builtin_neon_vst2q_lane_v:
6063  case NEON::BI__builtin_neon_vst3_lane_v:
6064  case NEON::BI__builtin_neon_vst3q_lane_v:
6065  case NEON::BI__builtin_neon_vst4_lane_v:
6066  case NEON::BI__builtin_neon_vst4q_lane_v: {
6067    llvm::Type *Tys[] = {Int8PtrTy, Ty};
6068    Ops.push_back(getAlignmentValue32(PtrOp0));
6069    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6070  }
6071  case NEON::BI__builtin_neon_vst1_x2_v:
6072  case NEON::BI__builtin_neon_vst1q_x2_v:
6073  case NEON::BI__builtin_neon_vst1_x3_v:
6074  case NEON::BI__builtin_neon_vst1q_x3_v:
6075  case NEON::BI__builtin_neon_vst1_x4_v:
6076  case NEON::BI__builtin_neon_vst1q_x4_v: {
6077    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6078    // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6079    // in AArch64 it comes last. We may want to stick to one or another.
6080    if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6081        Arch == llvm::Triple::aarch64_32) {
6082      llvm::Type *Tys[2] = { VTy, PTy };
6083      std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6084      return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6085    }
6086    llvm::Type *Tys[2] = { PTy, VTy };
6087    return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6088  }
6089  case NEON::BI__builtin_neon_vsubhn_v: {
6090    llvm::VectorType *SrcTy =
6091        llvm::VectorType::getExtendedElementVectorType(VTy);
6092
6093    // %sum = add <4 x i32> %lhs, %rhs
6094    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6095    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6096    Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6097
6098    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6099    Constant *ShiftAmt =
6100        ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6101    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6102
6103    // %res = trunc <4 x i32> %high to <4 x i16>
6104    return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6105  }
6106  case NEON::BI__builtin_neon_vtrn_v:
6107  case NEON::BI__builtin_neon_vtrnq_v: {
6108    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6109    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6110    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6111    Value *SV = nullptr;
6112
6113    for (unsigned vi = 0; vi != 2; ++vi) {
6114      SmallVector<int, 16> Indices;
6115      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6116        Indices.push_back(i+vi);
6117        Indices.push_back(i+e+vi);
6118      }
6119      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6120      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6121      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6122    }
6123    return SV;
6124  }
6125  case NEON::BI__builtin_neon_vtst_v:
6126  case NEON::BI__builtin_neon_vtstq_v: {
6127    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6128    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6129    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6130    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6131                                ConstantAggregateZero::get(Ty));
6132    return Builder.CreateSExt(Ops[0], Ty, "vtst");
6133  }
6134  case NEON::BI__builtin_neon_vuzp_v:
6135  case NEON::BI__builtin_neon_vuzpq_v: {
6136    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6137    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6138    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6139    Value *SV = nullptr;
6140
6141    for (unsigned vi = 0; vi != 2; ++vi) {
6142      SmallVector<int, 16> Indices;
6143      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6144        Indices.push_back(2*i+vi);
6145
6146      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6147      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6148      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6149    }
6150    return SV;
6151  }
6152  case NEON::BI__builtin_neon_vzip_v:
6153  case NEON::BI__builtin_neon_vzipq_v: {
6154    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6155    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6156    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6157    Value *SV = nullptr;
6158
6159    for (unsigned vi = 0; vi != 2; ++vi) {
6160      SmallVector<int, 16> Indices;
6161      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6162        Indices.push_back((i + vi*e) >> 1);
6163        Indices.push_back(((i + vi*e) >> 1)+e);
6164      }
6165      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6166      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6167      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6168    }
6169    return SV;
6170  }
6171  case NEON::BI__builtin_neon_vdot_v:
6172  case NEON::BI__builtin_neon_vdotq_v: {
6173    auto *InputTy =
6174        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6175    llvm::Type *Tys[2] = { Ty, InputTy };
6176    Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6177    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6178  }
6179  case NEON::BI__builtin_neon_vfmlal_low_v:
6180  case NEON::BI__builtin_neon_vfmlalq_low_v: {
6181    auto *InputTy =
6182        llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6183    llvm::Type *Tys[2] = { Ty, InputTy };
6184    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6185  }
6186  case NEON::BI__builtin_neon_vfmlsl_low_v:
6187  case NEON::BI__builtin_neon_vfmlslq_low_v: {
6188    auto *InputTy =
6189        llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6190    llvm::Type *Tys[2] = { Ty, InputTy };
6191    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
6192  }
6193  case NEON::BI__builtin_neon_vfmlal_high_v:
6194  case NEON::BI__builtin_neon_vfmlalq_high_v: {
6195    auto *InputTy =
6196        llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6197    llvm::Type *Tys[2] = { Ty, InputTy };
6198    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
6199  }
6200  case NEON::BI__builtin_neon_vfmlsl_high_v:
6201  case NEON::BI__builtin_neon_vfmlslq_high_v: {
6202    auto *InputTy =
6203        llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6204    llvm::Type *Tys[2] = { Ty, InputTy };
6205    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
6206  }
6207  case NEON::BI__builtin_neon_vmmlaq_v: {
6208    auto *InputTy =
6209        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6210    llvm::Type *Tys[2] = { Ty, InputTy };
6211    Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6212    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
6213  }
6214  case NEON::BI__builtin_neon_vusmmlaq_v: {
6215    auto *InputTy =
6216        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6217    llvm::Type *Tys[2] = { Ty, InputTy };
6218    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
6219  }
6220  case NEON::BI__builtin_neon_vusdot_v:
6221  case NEON::BI__builtin_neon_vusdotq_v: {
6222    auto *InputTy =
6223        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6224    llvm::Type *Tys[2] = { Ty, InputTy };
6225    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
6226  }
6227  case NEON::BI__builtin_neon_vbfdot_v:
6228  case NEON::BI__builtin_neon_vbfdotq_v: {
6229    llvm::Type *InputTy =
6230        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6231    llvm::Type *Tys[2] = { Ty, InputTy };
6232    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
6233  }
6234  case NEON::BI__builtin_neon_vbfmmlaq_v: {
6235    llvm::Type *InputTy =
6236        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6237    llvm::Type *Tys[2] = { Ty, InputTy };
6238    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmmla");
6239  }
6240  case NEON::BI__builtin_neon_vbfmlalbq_v: {
6241    llvm::Type *InputTy =
6242        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6243    llvm::Type *Tys[2] = { Ty, InputTy };
6244    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmlalb");
6245  }
6246  case NEON::BI__builtin_neon_vbfmlaltq_v: {
6247    llvm::Type *InputTy =
6248        llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6249    llvm::Type *Tys[2] = { Ty, InputTy };
6250    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmlalt");
6251  }
6252  case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
6253    llvm::Type *Tys[1] = { Ty };
6254    Function *F = CGM.getIntrinsic(Int, Tys);
6255    return EmitNeonCall(F, Ops, "vcvtfp2bf");
6256  }
6257
6258  }
6259
6260  assert(Int && "Expected valid intrinsic number");
6261
6262  // Determine the type(s) of this overloaded AArch64 intrinsic.
6263  Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
6264
6265  Value *Result = EmitNeonCall(F, Ops, NameHint);
6266  llvm::Type *ResultType = ConvertType(E->getType());
6267  // AArch64 intrinsic one-element vector type cast to
6268  // scalar type expected by the builtin
6269  return Builder.CreateBitCast(Result, ResultType, NameHint);
6270}
6271
6272Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
6273    Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
6274    const CmpInst::Predicate Ip, const Twine &Name) {
6275  llvm::Type *OTy = Op->getType();
6276
6277  // FIXME: this is utterly horrific. We should not be looking at previous
6278  // codegen context to find out what needs doing. Unfortunately TableGen
6279  // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
6280  // (etc).
6281  if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
6282    OTy = BI->getOperand(0)->getType();
6283
6284  Op = Builder.CreateBitCast(Op, OTy);
6285  if (OTy->getScalarType()->isFloatingPointTy()) {
6286    Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
6287  } else {
6288    Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
6289  }
6290  return Builder.CreateSExt(Op, Ty, Name);
6291}
6292
6293static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
6294                                 Value *ExtOp, Value *IndexOp,
6295                                 llvm::Type *ResTy, unsigned IntID,
6296                                 const char *Name) {
6297  SmallVector<Value *, 2> TblOps;
6298  if (ExtOp)
6299    TblOps.push_back(ExtOp);
6300
6301  // Build a vector containing sequential number like (0, 1, 2, ..., 15)
6302  SmallVector<int, 16> Indices;
6303  llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
6304  for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
6305    Indices.push_back(2*i);
6306    Indices.push_back(2*i+1);
6307  }
6308
6309  int PairPos = 0, End = Ops.size() - 1;
6310  while (PairPos < End) {
6311    TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6312                                                     Ops[PairPos+1], Indices,
6313                                                     Name));
6314    PairPos += 2;
6315  }
6316
6317  // If there's an odd number of 64-bit lookup table, fill the high 64-bit
6318  // of the 128-bit lookup table with zero.
6319  if (PairPos == End) {
6320    Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
6321    TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6322                                                     ZeroTbl, Indices, Name));
6323  }
6324
6325  Function *TblF;
6326  TblOps.push_back(IndexOp);
6327  TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
6328
6329  return CGF.EmitNeonCall(TblF, TblOps, Name);
6330}
6331
6332Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
6333  unsigned Value;
6334  switch (BuiltinID) {
6335  default:
6336    return nullptr;
6337  case ARM::BI__builtin_arm_nop:
6338    Value = 0;
6339    break;
6340  case ARM::BI__builtin_arm_yield:
6341  case ARM::BI__yield:
6342    Value = 1;
6343    break;
6344  case ARM::BI__builtin_arm_wfe:
6345  case ARM::BI__wfe:
6346    Value = 2;
6347    break;
6348  case ARM::BI__builtin_arm_wfi:
6349  case ARM::BI__wfi:
6350    Value = 3;
6351    break;
6352  case ARM::BI__builtin_arm_sev:
6353  case ARM::BI__sev:
6354    Value = 4;
6355    break;
6356  case ARM::BI__builtin_arm_sevl:
6357  case ARM::BI__sevl:
6358    Value = 5;
6359    break;
6360  }
6361
6362  return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
6363                            llvm::ConstantInt::get(Int32Ty, Value));
6364}
6365
6366enum SpecialRegisterAccessKind {
6367  NormalRead,
6368  VolatileRead,
6369  Write,
6370};
6371
6372// Generates the IR for the read/write special register builtin,
6373// ValueType is the type of the value that is to be written or read,
6374// RegisterType is the type of the register being written to or read from.
6375static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
6376                                         const CallExpr *E,
6377                                         llvm::Type *RegisterType,
6378                                         llvm::Type *ValueType,
6379                                         SpecialRegisterAccessKind AccessKind,
6380                                         StringRef SysReg = "") {
6381  // write and register intrinsics only support 32 and 64 bit operations.
6382  assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
6383          && "Unsupported size for register.");
6384
6385  CodeGen::CGBuilderTy &Builder = CGF.Builder;
6386  CodeGen::CodeGenModule &CGM = CGF.CGM;
6387  LLVMContext &Context = CGM.getLLVMContext();
6388
6389  if (SysReg.empty()) {
6390    const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
6391    SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
6392  }
6393
6394  llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
6395  llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
6396  llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
6397
6398  llvm::Type *Types[] = { RegisterType };
6399
6400  bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
6401  assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
6402            && "Can't fit 64-bit value in 32-bit register");
6403
6404  if (AccessKind != Write) {
6405    assert(AccessKind == NormalRead || AccessKind == VolatileRead);
6406    llvm::Function *F = CGM.getIntrinsic(
6407        AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
6408                                   : llvm::Intrinsic::read_register,
6409        Types);
6410    llvm::Value *Call = Builder.CreateCall(F, Metadata);
6411
6412    if (MixedTypes)
6413      // Read into 64 bit register and then truncate result to 32 bit.
6414      return Builder.CreateTrunc(Call, ValueType);
6415
6416    if (ValueType->isPointerTy())
6417      // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
6418      return Builder.CreateIntToPtr(Call, ValueType);
6419
6420    return Call;
6421  }
6422
6423  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
6424  llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
6425  if (MixedTypes) {
6426    // Extend 32 bit write value to 64 bit to pass to write.
6427    ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
6428    return Builder.CreateCall(F, { Metadata, ArgValue });
6429  }
6430
6431  if (ValueType->isPointerTy()) {
6432    // Have VoidPtrTy ArgValue but want to return an i32/i64.
6433    ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
6434    return Builder.CreateCall(F, { Metadata, ArgValue });
6435  }
6436
6437  return Builder.CreateCall(F, { Metadata, ArgValue });
6438}
6439
6440/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
6441/// argument that specifies the vector type.
6442static bool HasExtraNeonArgument(unsigned BuiltinID) {
6443  switch (BuiltinID) {
6444  default: break;
6445  case NEON::BI__builtin_neon_vget_lane_i8:
6446  case NEON::BI__builtin_neon_vget_lane_i16:
6447  case NEON::BI__builtin_neon_vget_lane_bf16:
6448  case NEON::BI__builtin_neon_vget_lane_i32:
6449  case NEON::BI__builtin_neon_vget_lane_i64:
6450  case NEON::BI__builtin_neon_vget_lane_f32:
6451  case NEON::BI__builtin_neon_vgetq_lane_i8:
6452  case NEON::BI__builtin_neon_vgetq_lane_i16:
6453  case NEON::BI__builtin_neon_vgetq_lane_bf16:
6454  case NEON::BI__builtin_neon_vgetq_lane_i32:
6455  case NEON::BI__builtin_neon_vgetq_lane_i64:
6456  case NEON::BI__builtin_neon_vgetq_lane_f32:
6457  case NEON::BI__builtin_neon_vduph_lane_bf16:
6458  case NEON::BI__builtin_neon_vduph_laneq_bf16:
6459  case NEON::BI__builtin_neon_vset_lane_i8:
6460  case NEON::BI__builtin_neon_vset_lane_i16:
6461  case NEON::BI__builtin_neon_vset_lane_bf16:
6462  case NEON::BI__builtin_neon_vset_lane_i32:
6463  case NEON::BI__builtin_neon_vset_lane_i64:
6464  case NEON::BI__builtin_neon_vset_lane_f32:
6465  case NEON::BI__builtin_neon_vsetq_lane_i8:
6466  case NEON::BI__builtin_neon_vsetq_lane_i16:
6467  case NEON::BI__builtin_neon_vsetq_lane_bf16:
6468  case NEON::BI__builtin_neon_vsetq_lane_i32:
6469  case NEON::BI__builtin_neon_vsetq_lane_i64:
6470  case NEON::BI__builtin_neon_vsetq_lane_f32:
6471  case NEON::BI__builtin_neon_vsha1h_u32:
6472  case NEON::BI__builtin_neon_vsha1cq_u32:
6473  case NEON::BI__builtin_neon_vsha1pq_u32:
6474  case NEON::BI__builtin_neon_vsha1mq_u32:
6475  case NEON::BI__builtin_neon_vcvth_bf16_f32:
6476  case clang::ARM::BI_MoveToCoprocessor:
6477  case clang::ARM::BI_MoveToCoprocessor2:
6478    return false;
6479  }
6480  return true;
6481}
6482
6483Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6484                                           const CallExpr *E,
6485                                           ReturnValueSlot ReturnValue,
6486                                           llvm::Triple::ArchType Arch) {
6487  if (auto Hint = GetValueForARMHint(BuiltinID))
6488    return Hint;
6489
6490  if (BuiltinID == ARM::BI__emit) {
6491    bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6492    llvm::FunctionType *FTy =
6493        llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6494
6495    Expr::EvalResult Result;
6496    if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6497      llvm_unreachable("Sema will ensure that the parameter is constant");
6498
6499    llvm::APSInt Value = Result.Val.getInt();
6500    uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6501
6502    llvm::InlineAsm *Emit =
6503        IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6504                                 /*hasSideEffects=*/true)
6505                : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6506                                 /*hasSideEffects=*/true);
6507
6508    return Builder.CreateCall(Emit);
6509  }
6510
6511  if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6512    Value *Option = EmitScalarExpr(E->getArg(0));
6513    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6514  }
6515
6516  if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6517    Value *Address = EmitScalarExpr(E->getArg(0));
6518    Value *RW      = EmitScalarExpr(E->getArg(1));
6519    Value *IsData  = EmitScalarExpr(E->getArg(2));
6520
6521    // Locality is not supported on ARM target
6522    Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6523
6524    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6525    return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6526  }
6527
6528  if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6529    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6530    return Builder.CreateCall(
6531        CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6532  }
6533
6534  if (BuiltinID == ARM::BI__builtin_arm_cls) {
6535    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6536    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
6537  }
6538  if (BuiltinID == ARM::BI__builtin_arm_cls64) {
6539    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6540    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
6541                              "cls");
6542  }
6543
6544  if (BuiltinID == ARM::BI__clear_cache) {
6545    assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
6546    const FunctionDecl *FD = E->getDirectCallee();
6547    Value *Ops[2];
6548    for (unsigned i = 0; i < 2; i++)
6549      Ops[i] = EmitScalarExpr(E->getArg(i));
6550    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6551    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6552    StringRef Name = FD->getName();
6553    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6554  }
6555
6556  if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6557      BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6558    Function *F;
6559
6560    switch (BuiltinID) {
6561    default: llvm_unreachable("unexpected builtin");
6562    case ARM::BI__builtin_arm_mcrr:
6563      F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6564      break;
6565    case ARM::BI__builtin_arm_mcrr2:
6566      F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6567      break;
6568    }
6569
6570    // MCRR{2} instruction has 5 operands but
6571    // the intrinsic has 4 because Rt and Rt2
6572    // are represented as a single unsigned 64
6573    // bit integer in the intrinsic definition
6574    // but internally it's represented as 2 32
6575    // bit integers.
6576
6577    Value *Coproc = EmitScalarExpr(E->getArg(0));
6578    Value *Opc1 = EmitScalarExpr(E->getArg(1));
6579    Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6580    Value *CRm = EmitScalarExpr(E->getArg(3));
6581
6582    Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6583    Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6584    Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6585    Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6586
6587    return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6588  }
6589
6590  if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6591      BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6592    Function *F;
6593
6594    switch (BuiltinID) {
6595    default: llvm_unreachable("unexpected builtin");
6596    case ARM::BI__builtin_arm_mrrc:
6597      F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6598      break;
6599    case ARM::BI__builtin_arm_mrrc2:
6600      F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6601      break;
6602    }
6603
6604    Value *Coproc = EmitScalarExpr(E->getArg(0));
6605    Value *Opc1 = EmitScalarExpr(E->getArg(1));
6606    Value *CRm  = EmitScalarExpr(E->getArg(2));
6607    Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6608
6609    // Returns an unsigned 64 bit integer, represented
6610    // as two 32 bit integers.
6611
6612    Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6613    Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6614    Rt = Builder.CreateZExt(Rt, Int64Ty);
6615    Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6616
6617    Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6618    RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6619    RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6620
6621    return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6622  }
6623
6624  if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6625      ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6626        BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6627       getContext().getTypeSize(E->getType()) == 64) ||
6628      BuiltinID == ARM::BI__ldrexd) {
6629    Function *F;
6630
6631    switch (BuiltinID) {
6632    default: llvm_unreachable("unexpected builtin");
6633    case ARM::BI__builtin_arm_ldaex:
6634      F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6635      break;
6636    case ARM::BI__builtin_arm_ldrexd:
6637    case ARM::BI__builtin_arm_ldrex:
6638    case ARM::BI__ldrexd:
6639      F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6640      break;
6641    }
6642
6643    Value *LdPtr = EmitScalarExpr(E->getArg(0));
6644    Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6645                                    "ldrexd");
6646
6647    Value *Val0 = Builder.CreateExtractValue(Val, 1);
6648    Value *Val1 = Builder.CreateExtractValue(Val, 0);
6649    Val0 = Builder.CreateZExt(Val0, Int64Ty);
6650    Val1 = Builder.CreateZExt(Val1, Int64Ty);
6651
6652    Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6653    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6654    Val = Builder.CreateOr(Val, Val1);
6655    return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6656  }
6657
6658  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6659      BuiltinID == ARM::BI__builtin_arm_ldaex) {
6660    Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6661
6662    QualType Ty = E->getType();
6663    llvm::Type *RealResTy = ConvertType(Ty);
6664    llvm::Type *PtrTy = llvm::IntegerType::get(
6665        getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6666    LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6667
6668    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6669                                       ? Intrinsic::arm_ldaex
6670                                       : Intrinsic::arm_ldrex,
6671                                   PtrTy);
6672    Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6673
6674    if (RealResTy->isPointerTy())
6675      return Builder.CreateIntToPtr(Val, RealResTy);
6676    else {
6677      llvm::Type *IntResTy = llvm::IntegerType::get(
6678          getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6679      Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6680      return Builder.CreateBitCast(Val, RealResTy);
6681    }
6682  }
6683
6684  if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6685      ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6686        BuiltinID == ARM::BI__builtin_arm_strex) &&
6687       getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6688    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6689                                       ? Intrinsic::arm_stlexd
6690                                       : Intrinsic::arm_strexd);
6691    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6692
6693    Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6694    Value *Val = EmitScalarExpr(E->getArg(0));
6695    Builder.CreateStore(Val, Tmp);
6696
6697    Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6698    Val = Builder.CreateLoad(LdPtr);
6699
6700    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6701    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6702    Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6703    return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6704  }
6705
6706  if (BuiltinID == ARM::BI__builtin_arm_strex ||
6707      BuiltinID == ARM::BI__builtin_arm_stlex) {
6708    Value *StoreVal = EmitScalarExpr(E->getArg(0));
6709    Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6710
6711    QualType Ty = E->getArg(0)->getType();
6712    llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6713                                                 getContext().getTypeSize(Ty));
6714    StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6715
6716    if (StoreVal->getType()->isPointerTy())
6717      StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6718    else {
6719      llvm::Type *IntTy = llvm::IntegerType::get(
6720          getLLVMContext(),
6721          CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6722      StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6723      StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6724    }
6725
6726    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6727                                       ? Intrinsic::arm_stlex
6728                                       : Intrinsic::arm_strex,
6729                                   StoreAddr->getType());
6730    return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6731  }
6732
6733  if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6734    Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6735    return Builder.CreateCall(F);
6736  }
6737
6738  // CRC32
6739  Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6740  switch (BuiltinID) {
6741  case ARM::BI__builtin_arm_crc32b:
6742    CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6743  case ARM::BI__builtin_arm_crc32cb:
6744    CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6745  case ARM::BI__builtin_arm_crc32h:
6746    CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6747  case ARM::BI__builtin_arm_crc32ch:
6748    CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6749  case ARM::BI__builtin_arm_crc32w:
6750  case ARM::BI__builtin_arm_crc32d:
6751    CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6752  case ARM::BI__builtin_arm_crc32cw:
6753  case ARM::BI__builtin_arm_crc32cd:
6754    CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6755  }
6756
6757  if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6758    Value *Arg0 = EmitScalarExpr(E->getArg(0));
6759    Value *Arg1 = EmitScalarExpr(E->getArg(1));
6760
6761    // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6762    // intrinsics, hence we need different codegen for these cases.
6763    if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6764        BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6765      Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6766      Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6767      Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6768      Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6769
6770      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6771      Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6772      return Builder.CreateCall(F, {Res, Arg1b});
6773    } else {
6774      Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6775
6776      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6777      return Builder.CreateCall(F, {Arg0, Arg1});
6778    }
6779  }
6780
6781  if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6782      BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6783      BuiltinID == ARM::BI__builtin_arm_rsrp ||
6784      BuiltinID == ARM::BI__builtin_arm_wsr ||
6785      BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6786      BuiltinID == ARM::BI__builtin_arm_wsrp) {
6787
6788    SpecialRegisterAccessKind AccessKind = Write;
6789    if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6790        BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6791        BuiltinID == ARM::BI__builtin_arm_rsrp)
6792      AccessKind = VolatileRead;
6793
6794    bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6795                            BuiltinID == ARM::BI__builtin_arm_wsrp;
6796
6797    bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6798                   BuiltinID == ARM::BI__builtin_arm_wsr64;
6799
6800    llvm::Type *ValueType;
6801    llvm::Type *RegisterType;
6802    if (IsPointerBuiltin) {
6803      ValueType = VoidPtrTy;
6804      RegisterType = Int32Ty;
6805    } else if (Is64Bit) {
6806      ValueType = RegisterType = Int64Ty;
6807    } else {
6808      ValueType = RegisterType = Int32Ty;
6809    }
6810
6811    return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
6812                                      AccessKind);
6813  }
6814
6815  // Deal with MVE builtins
6816  if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6817    return Result;
6818  // Handle CDE builtins
6819  if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6820    return Result;
6821
6822  // Find out if any arguments are required to be integer constant
6823  // expressions.
6824  unsigned ICEArguments = 0;
6825  ASTContext::GetBuiltinTypeError Error;
6826  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6827  assert(Error == ASTContext::GE_None && "Should not codegen an error");
6828
6829  auto getAlignmentValue32 = [&](Address addr) -> Value* {
6830    return Builder.getInt32(addr.getAlignment().getQuantity());
6831  };
6832
6833  Address PtrOp0 = Address::invalid();
6834  Address PtrOp1 = Address::invalid();
6835  SmallVector<Value*, 4> Ops;
6836  bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6837  unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6838  for (unsigned i = 0, e = NumArgs; i != e; i++) {
6839    if (i == 0) {
6840      switch (BuiltinID) {
6841      case NEON::BI__builtin_neon_vld1_v:
6842      case NEON::BI__builtin_neon_vld1q_v:
6843      case NEON::BI__builtin_neon_vld1q_lane_v:
6844      case NEON::BI__builtin_neon_vld1_lane_v:
6845      case NEON::BI__builtin_neon_vld1_dup_v:
6846      case NEON::BI__builtin_neon_vld1q_dup_v:
6847      case NEON::BI__builtin_neon_vst1_v:
6848      case NEON::BI__builtin_neon_vst1q_v:
6849      case NEON::BI__builtin_neon_vst1q_lane_v:
6850      case NEON::BI__builtin_neon_vst1_lane_v:
6851      case NEON::BI__builtin_neon_vst2_v:
6852      case NEON::BI__builtin_neon_vst2q_v:
6853      case NEON::BI__builtin_neon_vst2_lane_v:
6854      case NEON::BI__builtin_neon_vst2q_lane_v:
6855      case NEON::BI__builtin_neon_vst3_v:
6856      case NEON::BI__builtin_neon_vst3q_v:
6857      case NEON::BI__builtin_neon_vst3_lane_v:
6858      case NEON::BI__builtin_neon_vst3q_lane_v:
6859      case NEON::BI__builtin_neon_vst4_v:
6860      case NEON::BI__builtin_neon_vst4q_v:
6861      case NEON::BI__builtin_neon_vst4_lane_v:
6862      case NEON::BI__builtin_neon_vst4q_lane_v:
6863        // Get the alignment for the argument in addition to the value;
6864        // we'll use it later.
6865        PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6866        Ops.push_back(PtrOp0.getPointer());
6867        continue;
6868      }
6869    }
6870    if (i == 1) {
6871      switch (BuiltinID) {
6872      case NEON::BI__builtin_neon_vld2_v:
6873      case NEON::BI__builtin_neon_vld2q_v:
6874      case NEON::BI__builtin_neon_vld3_v:
6875      case NEON::BI__builtin_neon_vld3q_v:
6876      case NEON::BI__builtin_neon_vld4_v:
6877      case NEON::BI__builtin_neon_vld4q_v:
6878      case NEON::BI__builtin_neon_vld2_lane_v:
6879      case NEON::BI__builtin_neon_vld2q_lane_v:
6880      case NEON::BI__builtin_neon_vld3_lane_v:
6881      case NEON::BI__builtin_neon_vld3q_lane_v:
6882      case NEON::BI__builtin_neon_vld4_lane_v:
6883      case NEON::BI__builtin_neon_vld4q_lane_v:
6884      case NEON::BI__builtin_neon_vld2_dup_v:
6885      case NEON::BI__builtin_neon_vld2q_dup_v:
6886      case NEON::BI__builtin_neon_vld3_dup_v:
6887      case NEON::BI__builtin_neon_vld3q_dup_v:
6888      case NEON::BI__builtin_neon_vld4_dup_v:
6889      case NEON::BI__builtin_neon_vld4q_dup_v:
6890        // Get the alignment for the argument in addition to the value;
6891        // we'll use it later.
6892        PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6893        Ops.push_back(PtrOp1.getPointer());
6894        continue;
6895      }
6896    }
6897
6898    if ((ICEArguments & (1 << i)) == 0) {
6899      Ops.push_back(EmitScalarExpr(E->getArg(i)));
6900    } else {
6901      // If this is required to be a constant, constant fold it so that we know
6902      // that the generated intrinsic gets a ConstantInt.
6903      llvm::APSInt Result;
6904      bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6905      assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6906      Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6907    }
6908  }
6909
6910  switch (BuiltinID) {
6911  default: break;
6912
6913  case NEON::BI__builtin_neon_vget_lane_i8:
6914  case NEON::BI__builtin_neon_vget_lane_i16:
6915  case NEON::BI__builtin_neon_vget_lane_i32:
6916  case NEON::BI__builtin_neon_vget_lane_i64:
6917  case NEON::BI__builtin_neon_vget_lane_bf16:
6918  case NEON::BI__builtin_neon_vget_lane_f32:
6919  case NEON::BI__builtin_neon_vgetq_lane_i8:
6920  case NEON::BI__builtin_neon_vgetq_lane_i16:
6921  case NEON::BI__builtin_neon_vgetq_lane_i32:
6922  case NEON::BI__builtin_neon_vgetq_lane_i64:
6923  case NEON::BI__builtin_neon_vgetq_lane_bf16:
6924  case NEON::BI__builtin_neon_vgetq_lane_f32:
6925  case NEON::BI__builtin_neon_vduph_lane_bf16:
6926  case NEON::BI__builtin_neon_vduph_laneq_bf16:
6927    return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6928
6929  case NEON::BI__builtin_neon_vrndns_f32: {
6930    Value *Arg = EmitScalarExpr(E->getArg(0));
6931    llvm::Type *Tys[] = {Arg->getType()};
6932    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6933    return Builder.CreateCall(F, {Arg}, "vrndn"); }
6934
6935  case NEON::BI__builtin_neon_vset_lane_i8:
6936  case NEON::BI__builtin_neon_vset_lane_i16:
6937  case NEON::BI__builtin_neon_vset_lane_i32:
6938  case NEON::BI__builtin_neon_vset_lane_i64:
6939  case NEON::BI__builtin_neon_vset_lane_bf16:
6940  case NEON::BI__builtin_neon_vset_lane_f32:
6941  case NEON::BI__builtin_neon_vsetq_lane_i8:
6942  case NEON::BI__builtin_neon_vsetq_lane_i16:
6943  case NEON::BI__builtin_neon_vsetq_lane_i32:
6944  case NEON::BI__builtin_neon_vsetq_lane_i64:
6945  case NEON::BI__builtin_neon_vsetq_lane_bf16:
6946  case NEON::BI__builtin_neon_vsetq_lane_f32:
6947    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6948
6949  case NEON::BI__builtin_neon_vsha1h_u32:
6950    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6951                        "vsha1h");
6952  case NEON::BI__builtin_neon_vsha1cq_u32:
6953    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6954                        "vsha1h");
6955  case NEON::BI__builtin_neon_vsha1pq_u32:
6956    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6957                        "vsha1h");
6958  case NEON::BI__builtin_neon_vsha1mq_u32:
6959    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6960                        "vsha1h");
6961
6962  case NEON::BI__builtin_neon_vcvth_bf16_f32: {
6963    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
6964                        "vcvtbfp2bf");
6965  }
6966
6967  // The ARM _MoveToCoprocessor builtins put the input register value as
6968  // the first argument, but the LLVM intrinsic expects it as the third one.
6969  case ARM::BI_MoveToCoprocessor:
6970  case ARM::BI_MoveToCoprocessor2: {
6971    Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6972                                   Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6973    return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6974                                  Ops[3], Ops[4], Ops[5]});
6975  }
6976  case ARM::BI_BitScanForward:
6977  case ARM::BI_BitScanForward64:
6978    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6979  case ARM::BI_BitScanReverse:
6980  case ARM::BI_BitScanReverse64:
6981    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6982
6983  case ARM::BI_InterlockedAnd64:
6984    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6985  case ARM::BI_InterlockedExchange64:
6986    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6987  case ARM::BI_InterlockedExchangeAdd64:
6988    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6989  case ARM::BI_InterlockedExchangeSub64:
6990    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6991  case ARM::BI_InterlockedOr64:
6992    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6993  case ARM::BI_InterlockedXor64:
6994    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6995  case ARM::BI_InterlockedDecrement64:
6996    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6997  case ARM::BI_InterlockedIncrement64:
6998    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6999  case ARM::BI_InterlockedExchangeAdd8_acq:
7000  case ARM::BI_InterlockedExchangeAdd16_acq:
7001  case ARM::BI_InterlockedExchangeAdd_acq:
7002  case ARM::BI_InterlockedExchangeAdd64_acq:
7003    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
7004  case ARM::BI_InterlockedExchangeAdd8_rel:
7005  case ARM::BI_InterlockedExchangeAdd16_rel:
7006  case ARM::BI_InterlockedExchangeAdd_rel:
7007  case ARM::BI_InterlockedExchangeAdd64_rel:
7008    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
7009  case ARM::BI_InterlockedExchangeAdd8_nf:
7010  case ARM::BI_InterlockedExchangeAdd16_nf:
7011  case ARM::BI_InterlockedExchangeAdd_nf:
7012  case ARM::BI_InterlockedExchangeAdd64_nf:
7013    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
7014  case ARM::BI_InterlockedExchange8_acq:
7015  case ARM::BI_InterlockedExchange16_acq:
7016  case ARM::BI_InterlockedExchange_acq:
7017  case ARM::BI_InterlockedExchange64_acq:
7018    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
7019  case ARM::BI_InterlockedExchange8_rel:
7020  case ARM::BI_InterlockedExchange16_rel:
7021  case ARM::BI_InterlockedExchange_rel:
7022  case ARM::BI_InterlockedExchange64_rel:
7023    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
7024  case ARM::BI_InterlockedExchange8_nf:
7025  case ARM::BI_InterlockedExchange16_nf:
7026  case ARM::BI_InterlockedExchange_nf:
7027  case ARM::BI_InterlockedExchange64_nf:
7028    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
7029  case ARM::BI_InterlockedCompareExchange8_acq:
7030  case ARM::BI_InterlockedCompareExchange16_acq:
7031  case ARM::BI_InterlockedCompareExchange_acq:
7032  case ARM::BI_InterlockedCompareExchange64_acq:
7033    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
7034  case ARM::BI_InterlockedCompareExchange8_rel:
7035  case ARM::BI_InterlockedCompareExchange16_rel:
7036  case ARM::BI_InterlockedCompareExchange_rel:
7037  case ARM::BI_InterlockedCompareExchange64_rel:
7038    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
7039  case ARM::BI_InterlockedCompareExchange8_nf:
7040  case ARM::BI_InterlockedCompareExchange16_nf:
7041  case ARM::BI_InterlockedCompareExchange_nf:
7042  case ARM::BI_InterlockedCompareExchange64_nf:
7043    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
7044  case ARM::BI_InterlockedOr8_acq:
7045  case ARM::BI_InterlockedOr16_acq:
7046  case ARM::BI_InterlockedOr_acq:
7047  case ARM::BI_InterlockedOr64_acq:
7048    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
7049  case ARM::BI_InterlockedOr8_rel:
7050  case ARM::BI_InterlockedOr16_rel:
7051  case ARM::BI_InterlockedOr_rel:
7052  case ARM::BI_InterlockedOr64_rel:
7053    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
7054  case ARM::BI_InterlockedOr8_nf:
7055  case ARM::BI_InterlockedOr16_nf:
7056  case ARM::BI_InterlockedOr_nf:
7057  case ARM::BI_InterlockedOr64_nf:
7058    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
7059  case ARM::BI_InterlockedXor8_acq:
7060  case ARM::BI_InterlockedXor16_acq:
7061  case ARM::BI_InterlockedXor_acq:
7062  case ARM::BI_InterlockedXor64_acq:
7063    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
7064  case ARM::BI_InterlockedXor8_rel:
7065  case ARM::BI_InterlockedXor16_rel:
7066  case ARM::BI_InterlockedXor_rel:
7067  case ARM::BI_InterlockedXor64_rel:
7068    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
7069  case ARM::BI_InterlockedXor8_nf:
7070  case ARM::BI_InterlockedXor16_nf:
7071  case ARM::BI_InterlockedXor_nf:
7072  case ARM::BI_InterlockedXor64_nf:
7073    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
7074  case ARM::BI_InterlockedAnd8_acq:
7075  case ARM::BI_InterlockedAnd16_acq:
7076  case ARM::BI_InterlockedAnd_acq:
7077  case ARM::BI_InterlockedAnd64_acq:
7078    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
7079  case ARM::BI_InterlockedAnd8_rel:
7080  case ARM::BI_InterlockedAnd16_rel:
7081  case ARM::BI_InterlockedAnd_rel:
7082  case ARM::BI_InterlockedAnd64_rel:
7083    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
7084  case ARM::BI_InterlockedAnd8_nf:
7085  case ARM::BI_InterlockedAnd16_nf:
7086  case ARM::BI_InterlockedAnd_nf:
7087  case ARM::BI_InterlockedAnd64_nf:
7088    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
7089  case ARM::BI_InterlockedIncrement16_acq:
7090  case ARM::BI_InterlockedIncrement_acq:
7091  case ARM::BI_InterlockedIncrement64_acq:
7092    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
7093  case ARM::BI_InterlockedIncrement16_rel:
7094  case ARM::BI_InterlockedIncrement_rel:
7095  case ARM::BI_InterlockedIncrement64_rel:
7096    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
7097  case ARM::BI_InterlockedIncrement16_nf:
7098  case ARM::BI_InterlockedIncrement_nf:
7099  case ARM::BI_InterlockedIncrement64_nf:
7100    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
7101  case ARM::BI_InterlockedDecrement16_acq:
7102  case ARM::BI_InterlockedDecrement_acq:
7103  case ARM::BI_InterlockedDecrement64_acq:
7104    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
7105  case ARM::BI_InterlockedDecrement16_rel:
7106  case ARM::BI_InterlockedDecrement_rel:
7107  case ARM::BI_InterlockedDecrement64_rel:
7108    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
7109  case ARM::BI_InterlockedDecrement16_nf:
7110  case ARM::BI_InterlockedDecrement_nf:
7111  case ARM::BI_InterlockedDecrement64_nf:
7112    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
7113  }
7114
7115  // Get the last argument, which specifies the vector type.
7116  assert(HasExtraArg);
7117  llvm::APSInt Result;
7118  const Expr *Arg = E->getArg(E->getNumArgs()-1);
7119  if (!Arg->isIntegerConstantExpr(Result, getContext()))
7120    return nullptr;
7121
7122  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7123      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7124    // Determine the overloaded type of this builtin.
7125    llvm::Type *Ty;
7126    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7127      Ty = FloatTy;
7128    else
7129      Ty = DoubleTy;
7130
7131    // Determine whether this is an unsigned conversion or not.
7132    bool usgn = Result.getZExtValue() == 1;
7133    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7134
7135    // Call the appropriate intrinsic.
7136    Function *F = CGM.getIntrinsic(Int, Ty);
7137    return Builder.CreateCall(F, Ops, "vcvtr");
7138  }
7139
7140  // Determine the type of this overloaded NEON intrinsic.
7141  NeonTypeFlags Type(Result.getZExtValue());
7142  bool usgn = Type.isUnsigned();
7143  bool rightShift = false;
7144
7145  llvm::VectorType *VTy = GetNeonType(this, Type,
7146                                      getTarget().hasLegalHalfType(),
7147                                      false,
7148                                      getTarget().hasBFloat16Type());
7149  llvm::Type *Ty = VTy;
7150  if (!Ty)
7151    return nullptr;
7152
7153  // Many NEON builtins have identical semantics and uses in ARM and
7154  // AArch64. Emit these in a single function.
7155  auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7156  const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7157      IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7158  if (Builtin)
7159    return EmitCommonNeonBuiltinExpr(
7160        Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7161        Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7162
7163  unsigned Int;
7164  switch (BuiltinID) {
7165  default: return nullptr;
7166  case NEON::BI__builtin_neon_vld1q_lane_v:
7167    // Handle 64-bit integer elements as a special case.  Use shuffles of
7168    // one-element vectors to avoid poor code for i64 in the backend.
7169    if (VTy->getElementType()->isIntegerTy(64)) {
7170      // Extract the other lane.
7171      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7172      int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7173      Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7174      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7175      // Load the value as a one-element vector.
7176      Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7177      llvm::Type *Tys[] = {Ty, Int8PtrTy};
7178      Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7179      Value *Align = getAlignmentValue32(PtrOp0);
7180      Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7181      // Combine them.
7182      int Indices[] = {1 - Lane, Lane};
7183      return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7184    }
7185    LLVM_FALLTHROUGH;
7186  case NEON::BI__builtin_neon_vld1_lane_v: {
7187    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7188    PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7189    Value *Ld = Builder.CreateLoad(PtrOp0);
7190    return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7191  }
7192  case NEON::BI__builtin_neon_vqrshrn_n_v:
7193    Int =
7194      usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7195    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7196                        1, true);
7197  case NEON::BI__builtin_neon_vqrshrun_n_v:
7198    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7199                        Ops, "vqrshrun_n", 1, true);
7200  case NEON::BI__builtin_neon_vqshrn_n_v:
7201    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7202    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7203                        1, true);
7204  case NEON::BI__builtin_neon_vqshrun_n_v:
7205    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7206                        Ops, "vqshrun_n", 1, true);
7207  case NEON::BI__builtin_neon_vrecpe_v:
7208  case NEON::BI__builtin_neon_vrecpeq_v:
7209    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7210                        Ops, "vrecpe");
7211  case NEON::BI__builtin_neon_vrshrn_n_v:
7212    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7213                        Ops, "vrshrn_n", 1, true);
7214  case NEON::BI__builtin_neon_vrsra_n_v:
7215  case NEON::BI__builtin_neon_vrsraq_n_v:
7216    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7217    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7218    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7219    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7220    Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7221    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7222  case NEON::BI__builtin_neon_vsri_n_v:
7223  case NEON::BI__builtin_neon_vsriq_n_v:
7224    rightShift = true;
7225    LLVM_FALLTHROUGH;
7226  case NEON::BI__builtin_neon_vsli_n_v:
7227  case NEON::BI__builtin_neon_vsliq_n_v:
7228    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7229    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7230                        Ops, "vsli_n");
7231  case NEON::BI__builtin_neon_vsra_n_v:
7232  case NEON::BI__builtin_neon_vsraq_n_v:
7233    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7234    Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7235    return Builder.CreateAdd(Ops[0], Ops[1]);
7236  case NEON::BI__builtin_neon_vst1q_lane_v:
7237    // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7238    // a one-element vector and avoid poor code for i64 in the backend.
7239    if (VTy->getElementType()->isIntegerTy(64)) {
7240      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7241      Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7242      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7243      Ops[2] = getAlignmentValue32(PtrOp0);
7244      llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7245      return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7246                                                 Tys), Ops);
7247    }
7248    LLVM_FALLTHROUGH;
7249  case NEON::BI__builtin_neon_vst1_lane_v: {
7250    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7251    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7252    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7253    auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7254    return St;
7255  }
7256  case NEON::BI__builtin_neon_vtbl1_v:
7257    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7258                        Ops, "vtbl1");
7259  case NEON::BI__builtin_neon_vtbl2_v:
7260    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7261                        Ops, "vtbl2");
7262  case NEON::BI__builtin_neon_vtbl3_v:
7263    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7264                        Ops, "vtbl3");
7265  case NEON::BI__builtin_neon_vtbl4_v:
7266    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7267                        Ops, "vtbl4");
7268  case NEON::BI__builtin_neon_vtbx1_v:
7269    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7270                        Ops, "vtbx1");
7271  case NEON::BI__builtin_neon_vtbx2_v:
7272    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7273                        Ops, "vtbx2");
7274  case NEON::BI__builtin_neon_vtbx3_v:
7275    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7276                        Ops, "vtbx3");
7277  case NEON::BI__builtin_neon_vtbx4_v:
7278    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7279                        Ops, "vtbx4");
7280  }
7281}
7282
7283template<typename Integer>
7284static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7285  llvm::APSInt IntVal;
7286  bool IsConst = E->isIntegerConstantExpr(IntVal, Context);
7287  assert(IsConst && "Sema should have checked this was a constant");
7288  (void)IsConst;
7289  return IntVal.getExtValue();
7290}
7291
7292static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7293                                     llvm::Type *T, bool Unsigned) {
7294  // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7295  // which finds it convenient to specify signed/unsigned as a boolean flag.
7296  return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7297}
7298
7299static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7300                                    uint32_t Shift, bool Unsigned) {
7301  // MVE helper function for integer shift right. This must handle signed vs
7302  // unsigned, and also deal specially with the case where the shift count is
7303  // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7304  // undefined behavior, but in MVE it's legal, so we must convert it to code
7305  // that is not undefined in IR.
7306  unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7307                          ->getElementType()
7308                          ->getPrimitiveSizeInBits();
7309  if (Shift == LaneBits) {
7310    // An unsigned shift of the full lane size always generates zero, so we can
7311    // simply emit a zero vector. A signed shift of the full lane size does the
7312    // same thing as shifting by one bit fewer.
7313    if (Unsigned)
7314      return llvm::Constant::getNullValue(V->getType());
7315    else
7316      --Shift;
7317  }
7318  return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7319}
7320
7321static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7322  // MVE-specific helper function for a vector splat, which infers the element
7323  // count of the output vector by knowing that MVE vectors are all 128 bits
7324  // wide.
7325  unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7326  return Builder.CreateVectorSplat(Elements, V);
7327}
7328
7329static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7330                                            CodeGenFunction *CGF,
7331                                            llvm::Value *V,
7332                                            llvm::Type *DestType) {
7333  // Convert one MVE vector type into another by reinterpreting its in-register
7334  // format.
7335  //
7336  // Little-endian, this is identical to a bitcast (which reinterprets the
7337  // memory format). But big-endian, they're not necessarily the same, because
7338  // the register and memory formats map to each other differently depending on
7339  // the lane size.
7340  //
7341  // We generate a bitcast whenever we can (if we're little-endian, or if the
7342  // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7343  // that performs the different kind of reinterpretation.
7344  if (CGF->getTarget().isBigEndian() &&
7345      V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7346    return Builder.CreateCall(
7347        CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
7348                              {DestType, V->getType()}),
7349        V);
7350  } else {
7351    return Builder.CreateBitCast(V, DestType);
7352  }
7353}
7354
7355static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
7356  // Make a shufflevector that extracts every other element of a vector (evens
7357  // or odds, as desired).
7358  SmallVector<int, 16> Indices;
7359  unsigned InputElements =
7360      cast<llvm::VectorType>(V->getType())->getNumElements();
7361  for (unsigned i = 0; i < InputElements; i += 2)
7362    Indices.push_back(i + Odd);
7363  return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7364                                     Indices);
7365}
7366
7367static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
7368                              llvm::Value *V1) {
7369  // Make a shufflevector that interleaves two vectors element by element.
7370  assert(V0->getType() == V1->getType() && "Can't zip different vector types");
7371  SmallVector<int, 16> Indices;
7372  unsigned InputElements =
7373      cast<llvm::VectorType>(V0->getType())->getNumElements();
7374  for (unsigned i = 0; i < InputElements; i++) {
7375    Indices.push_back(i);
7376    Indices.push_back(i + InputElements);
7377  }
7378  return Builder.CreateShuffleVector(V0, V1, Indices);
7379}
7380
7381template<unsigned HighBit, unsigned OtherBits>
7382static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
7383  // MVE-specific helper function to make a vector splat of a constant such as
7384  // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
7385  llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
7386  unsigned LaneBits = T->getPrimitiveSizeInBits();
7387  uint32_t Value = HighBit << (LaneBits - 1);
7388  if (OtherBits)
7389    Value |= (1UL << (LaneBits - 1)) - 1;
7390  llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
7391  return ARMMVEVectorSplat(Builder, Lane);
7392}
7393
7394static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
7395                                               llvm::Value *V,
7396                                               unsigned ReverseWidth) {
7397  // MVE-specific helper function which reverses the elements of a
7398  // vector within every (ReverseWidth)-bit collection of lanes.
7399  SmallVector<int, 16> Indices;
7400  unsigned LaneSize = V->getType()->getScalarSizeInBits();
7401  unsigned Elements = 128 / LaneSize;
7402  unsigned Mask = ReverseWidth / LaneSize - 1;
7403  for (unsigned i = 0; i < Elements; i++)
7404    Indices.push_back(i ^ Mask);
7405  return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7406                                     Indices);
7407}
7408
7409Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
7410                                              const CallExpr *E,
7411                                              ReturnValueSlot ReturnValue,
7412                                              llvm::Triple::ArchType Arch) {
7413  enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
7414  Intrinsic::ID IRIntr;
7415  unsigned NumVectors;
7416
7417  // Code autogenerated by Tablegen will handle all the simple builtins.
7418  switch (BuiltinID) {
7419    #include "clang/Basic/arm_mve_builtin_cg.inc"
7420
7421    // If we didn't match an MVE builtin id at all, go back to the
7422    // main EmitARMBuiltinExpr.
7423  default:
7424    return nullptr;
7425  }
7426
7427  // Anything that breaks from that switch is an MVE builtin that
7428  // needs handwritten code to generate.
7429
7430  switch (CustomCodeGenType) {
7431
7432  case CustomCodeGen::VLD24: {
7433    llvm::SmallVector<Value *, 4> Ops;
7434    llvm::SmallVector<llvm::Type *, 4> Tys;
7435
7436    auto MvecCType = E->getType();
7437    auto MvecLType = ConvertType(MvecCType);
7438    assert(MvecLType->isStructTy() &&
7439           "Return type for vld[24]q should be a struct");
7440    assert(MvecLType->getStructNumElements() == 1 &&
7441           "Return-type struct for vld[24]q should have one element");
7442    auto MvecLTypeInner = MvecLType->getStructElementType(0);
7443    assert(MvecLTypeInner->isArrayTy() &&
7444           "Return-type struct for vld[24]q should contain an array");
7445    assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7446           "Array member of return-type struct vld[24]q has wrong length");
7447    auto VecLType = MvecLTypeInner->getArrayElementType();
7448
7449    Tys.push_back(VecLType);
7450
7451    auto Addr = E->getArg(0);
7452    Ops.push_back(EmitScalarExpr(Addr));
7453    Tys.push_back(ConvertType(Addr->getType()));
7454
7455    Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7456    Value *LoadResult = Builder.CreateCall(F, Ops);
7457    Value *MvecOut = UndefValue::get(MvecLType);
7458    for (unsigned i = 0; i < NumVectors; ++i) {
7459      Value *Vec = Builder.CreateExtractValue(LoadResult, i);
7460      MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
7461    }
7462
7463    if (ReturnValue.isNull())
7464      return MvecOut;
7465    else
7466      return Builder.CreateStore(MvecOut, ReturnValue.getValue());
7467  }
7468
7469  case CustomCodeGen::VST24: {
7470    llvm::SmallVector<Value *, 4> Ops;
7471    llvm::SmallVector<llvm::Type *, 4> Tys;
7472
7473    auto Addr = E->getArg(0);
7474    Ops.push_back(EmitScalarExpr(Addr));
7475    Tys.push_back(ConvertType(Addr->getType()));
7476
7477    auto MvecCType = E->getArg(1)->getType();
7478    auto MvecLType = ConvertType(MvecCType);
7479    assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
7480    assert(MvecLType->getStructNumElements() == 1 &&
7481           "Data-type struct for vst2q should have one element");
7482    auto MvecLTypeInner = MvecLType->getStructElementType(0);
7483    assert(MvecLTypeInner->isArrayTy() &&
7484           "Data-type struct for vst2q should contain an array");
7485    assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7486           "Array member of return-type struct vld[24]q has wrong length");
7487    auto VecLType = MvecLTypeInner->getArrayElementType();
7488
7489    Tys.push_back(VecLType);
7490
7491    AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
7492    EmitAggExpr(E->getArg(1), MvecSlot);
7493    auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
7494    for (unsigned i = 0; i < NumVectors; i++)
7495      Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
7496
7497    Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7498    Value *ToReturn = nullptr;
7499    for (unsigned i = 0; i < NumVectors; i++) {
7500      Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
7501      ToReturn = Builder.CreateCall(F, Ops);
7502      Ops.pop_back();
7503    }
7504    return ToReturn;
7505  }
7506  }
7507  llvm_unreachable("unknown custom codegen type.");
7508}
7509
7510Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
7511                                              const CallExpr *E,
7512                                              ReturnValueSlot ReturnValue,
7513                                              llvm::Triple::ArchType Arch) {
7514  switch (BuiltinID) {
7515  default:
7516    return nullptr;
7517#include "clang/Basic/arm_cde_builtin_cg.inc"
7518  }
7519}
7520
7521static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
7522                                      const CallExpr *E,
7523                                      SmallVectorImpl<Value *> &Ops,
7524                                      llvm::Triple::ArchType Arch) {
7525  unsigned int Int = 0;
7526  const char *s = nullptr;
7527
7528  switch (BuiltinID) {
7529  default:
7530    return nullptr;
7531  case NEON::BI__builtin_neon_vtbl1_v:
7532  case NEON::BI__builtin_neon_vqtbl1_v:
7533  case NEON::BI__builtin_neon_vqtbl1q_v:
7534  case NEON::BI__builtin_neon_vtbl2_v:
7535  case NEON::BI__builtin_neon_vqtbl2_v:
7536  case NEON::BI__builtin_neon_vqtbl2q_v:
7537  case NEON::BI__builtin_neon_vtbl3_v:
7538  case NEON::BI__builtin_neon_vqtbl3_v:
7539  case NEON::BI__builtin_neon_vqtbl3q_v:
7540  case NEON::BI__builtin_neon_vtbl4_v:
7541  case NEON::BI__builtin_neon_vqtbl4_v:
7542  case NEON::BI__builtin_neon_vqtbl4q_v:
7543    break;
7544  case NEON::BI__builtin_neon_vtbx1_v:
7545  case NEON::BI__builtin_neon_vqtbx1_v:
7546  case NEON::BI__builtin_neon_vqtbx1q_v:
7547  case NEON::BI__builtin_neon_vtbx2_v:
7548  case NEON::BI__builtin_neon_vqtbx2_v:
7549  case NEON::BI__builtin_neon_vqtbx2q_v:
7550  case NEON::BI__builtin_neon_vtbx3_v:
7551  case NEON::BI__builtin_neon_vqtbx3_v:
7552  case NEON::BI__builtin_neon_vqtbx3q_v:
7553  case NEON::BI__builtin_neon_vtbx4_v:
7554  case NEON::BI__builtin_neon_vqtbx4_v:
7555  case NEON::BI__builtin_neon_vqtbx4q_v:
7556    break;
7557  }
7558
7559  assert(E->getNumArgs() >= 3);
7560
7561  // Get the last argument, which specifies the vector type.
7562  llvm::APSInt Result;
7563  const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7564  if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
7565    return nullptr;
7566
7567  // Determine the type of this overloaded NEON intrinsic.
7568  NeonTypeFlags Type(Result.getZExtValue());
7569  llvm::VectorType *Ty = GetNeonType(&CGF, Type);
7570  if (!Ty)
7571    return nullptr;
7572
7573  CodeGen::CGBuilderTy &Builder = CGF.Builder;
7574
7575  // AArch64 scalar builtins are not overloaded, they do not have an extra
7576  // argument that specifies the vector type, need to handle each case.
7577  switch (BuiltinID) {
7578  case NEON::BI__builtin_neon_vtbl1_v: {
7579    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
7580                              Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
7581                              "vtbl1");
7582  }
7583  case NEON::BI__builtin_neon_vtbl2_v: {
7584    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
7585                              Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
7586                              "vtbl1");
7587  }
7588  case NEON::BI__builtin_neon_vtbl3_v: {
7589    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
7590                              Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
7591                              "vtbl2");
7592  }
7593  case NEON::BI__builtin_neon_vtbl4_v: {
7594    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
7595                              Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
7596                              "vtbl2");
7597  }
7598  case NEON::BI__builtin_neon_vtbx1_v: {
7599    Value *TblRes =
7600        packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
7601                           Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
7602
7603    llvm::Constant *EightV = ConstantInt::get(Ty, 8);
7604    Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
7605    CmpRes = Builder.CreateSExt(CmpRes, Ty);
7606
7607    Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7608    Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7609    return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7610  }
7611  case NEON::BI__builtin_neon_vtbx2_v: {
7612    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
7613                              Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
7614                              "vtbx1");
7615  }
7616  case NEON::BI__builtin_neon_vtbx3_v: {
7617    Value *TblRes =
7618        packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
7619                           Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
7620
7621    llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
7622    Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
7623                                           TwentyFourV);
7624    CmpRes = Builder.CreateSExt(CmpRes, Ty);
7625
7626    Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7627    Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7628    return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7629  }
7630  case NEON::BI__builtin_neon_vtbx4_v: {
7631    return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
7632                              Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
7633                              "vtbx2");
7634  }
7635  case NEON::BI__builtin_neon_vqtbl1_v:
7636  case NEON::BI__builtin_neon_vqtbl1q_v:
7637    Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
7638  case NEON::BI__builtin_neon_vqtbl2_v:
7639  case NEON::BI__builtin_neon_vqtbl2q_v: {
7640    Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
7641  case NEON::BI__builtin_neon_vqtbl3_v:
7642  case NEON::BI__builtin_neon_vqtbl3q_v:
7643    Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
7644  case NEON::BI__builtin_neon_vqtbl4_v:
7645  case NEON::BI__builtin_neon_vqtbl4q_v:
7646    Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
7647  case NEON::BI__builtin_neon_vqtbx1_v:
7648  case NEON::BI__builtin_neon_vqtbx1q_v:
7649    Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
7650  case NEON::BI__builtin_neon_vqtbx2_v:
7651  case NEON::BI__builtin_neon_vqtbx2q_v:
7652    Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
7653  case NEON::BI__builtin_neon_vqtbx3_v:
7654  case NEON::BI__builtin_neon_vqtbx3q_v:
7655    Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
7656  case NEON::BI__builtin_neon_vqtbx4_v:
7657  case NEON::BI__builtin_neon_vqtbx4q_v:
7658    Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
7659  }
7660  }
7661
7662  if (!Int)
7663    return nullptr;
7664
7665  Function *F = CGF.CGM.getIntrinsic(Int, Ty);
7666  return CGF.EmitNeonCall(F, Ops, s);
7667}
7668
7669Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
7670  auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
7671  Op = Builder.CreateBitCast(Op, Int16Ty);
7672  Value *V = UndefValue::get(VTy);
7673  llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7674  Op = Builder.CreateInsertElement(V, Op, CI);
7675  return Op;
7676}
7677
7678/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
7679/// access builtin.  Only required if it can't be inferred from the base pointer
7680/// operand.
7681llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
7682  switch (TypeFlags.getMemEltType()) {
7683  case SVETypeFlags::MemEltTyDefault:
7684    return getEltType(TypeFlags);
7685  case SVETypeFlags::MemEltTyInt8:
7686    return Builder.getInt8Ty();
7687  case SVETypeFlags::MemEltTyInt16:
7688    return Builder.getInt16Ty();
7689  case SVETypeFlags::MemEltTyInt32:
7690    return Builder.getInt32Ty();
7691  case SVETypeFlags::MemEltTyInt64:
7692    return Builder.getInt64Ty();
7693  }
7694  llvm_unreachable("Unknown MemEltType");
7695}
7696
7697llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
7698  switch (TypeFlags.getEltType()) {
7699  default:
7700    llvm_unreachable("Invalid SVETypeFlag!");
7701
7702  case SVETypeFlags::EltTyInt8:
7703    return Builder.getInt8Ty();
7704  case SVETypeFlags::EltTyInt16:
7705    return Builder.getInt16Ty();
7706  case SVETypeFlags::EltTyInt32:
7707    return Builder.getInt32Ty();
7708  case SVETypeFlags::EltTyInt64:
7709    return Builder.getInt64Ty();
7710
7711  case SVETypeFlags::EltTyFloat16:
7712    return Builder.getHalfTy();
7713  case SVETypeFlags::EltTyFloat32:
7714    return Builder.getFloatTy();
7715  case SVETypeFlags::EltTyFloat64:
7716    return Builder.getDoubleTy();
7717
7718  case SVETypeFlags::EltTyBFloat16:
7719    return Builder.getBFloatTy();
7720
7721  case SVETypeFlags::EltTyBool8:
7722  case SVETypeFlags::EltTyBool16:
7723  case SVETypeFlags::EltTyBool32:
7724  case SVETypeFlags::EltTyBool64:
7725    return Builder.getInt1Ty();
7726  }
7727}
7728
7729// Return the llvm predicate vector type corresponding to the specified element
7730// TypeFlags.
7731llvm::ScalableVectorType *
7732CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
7733  switch (TypeFlags.getEltType()) {
7734  default: llvm_unreachable("Unhandled SVETypeFlag!");
7735
7736  case SVETypeFlags::EltTyInt8:
7737    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7738  case SVETypeFlags::EltTyInt16:
7739    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7740  case SVETypeFlags::EltTyInt32:
7741    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7742  case SVETypeFlags::EltTyInt64:
7743    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7744
7745  case SVETypeFlags::EltTyBFloat16:
7746    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7747  case SVETypeFlags::EltTyFloat16:
7748    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7749  case SVETypeFlags::EltTyFloat32:
7750    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7751  case SVETypeFlags::EltTyFloat64:
7752    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7753
7754  case SVETypeFlags::EltTyBool8:
7755    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7756  case SVETypeFlags::EltTyBool16:
7757    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7758  case SVETypeFlags::EltTyBool32:
7759    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7760  case SVETypeFlags::EltTyBool64:
7761    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7762  }
7763}
7764
7765// Return the llvm vector type corresponding to the specified element TypeFlags.
7766llvm::ScalableVectorType *
7767CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
7768  switch (TypeFlags.getEltType()) {
7769  default:
7770    llvm_unreachable("Invalid SVETypeFlag!");
7771
7772  case SVETypeFlags::EltTyInt8:
7773    return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
7774  case SVETypeFlags::EltTyInt16:
7775    return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
7776  case SVETypeFlags::EltTyInt32:
7777    return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
7778  case SVETypeFlags::EltTyInt64:
7779    return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
7780
7781  case SVETypeFlags::EltTyFloat16:
7782    return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
7783  case SVETypeFlags::EltTyBFloat16:
7784    return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
7785  case SVETypeFlags::EltTyFloat32:
7786    return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
7787  case SVETypeFlags::EltTyFloat64:
7788    return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
7789
7790  case SVETypeFlags::EltTyBool8:
7791    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7792  case SVETypeFlags::EltTyBool16:
7793    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7794  case SVETypeFlags::EltTyBool32:
7795    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7796  case SVETypeFlags::EltTyBool64:
7797    return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7798  }
7799}
7800
7801llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
7802  Function *Ptrue =
7803      CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
7804  return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
7805}
7806
7807constexpr unsigned SVEBitsPerBlock = 128;
7808
7809static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
7810  unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
7811  return llvm::ScalableVectorType::get(EltTy, NumElts);
7812}
7813
7814// Reinterpret the input predicate so that it can be used to correctly isolate
7815// the elements of the specified datatype.
7816Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
7817                                             llvm::ScalableVectorType *VTy) {
7818  auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
7819  if (Pred->getType() == RTy)
7820    return Pred;
7821
7822  unsigned IntID;
7823  llvm::Type *IntrinsicTy;
7824  switch (VTy->getMinNumElements()) {
7825  default:
7826    llvm_unreachable("unsupported element count!");
7827  case 2:
7828  case 4:
7829  case 8:
7830    IntID = Intrinsic::aarch64_sve_convert_from_svbool;
7831    IntrinsicTy = RTy;
7832    break;
7833  case 16:
7834    IntID = Intrinsic::aarch64_sve_convert_to_svbool;
7835    IntrinsicTy = Pred->getType();
7836    break;
7837  }
7838
7839  Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
7840  Value *C = Builder.CreateCall(F, Pred);
7841  assert(C->getType() == RTy && "Unexpected return type!");
7842  return C;
7843}
7844
7845Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
7846                                          SmallVectorImpl<Value *> &Ops,
7847                                          unsigned IntID) {
7848  auto *ResultTy = getSVEType(TypeFlags);
7849  auto *OverloadedTy =
7850      llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
7851
7852  // At the ACLE level there's only one predicate type, svbool_t, which is
7853  // mapped to <n x 16 x i1>. However, this might be incompatible with the
7854  // actual type being loaded. For example, when loading doubles (i64) the
7855  // predicated should be <n x 2 x i1> instead. At the IR level the type of
7856  // the predicate and the data being loaded must match. Cast accordingly.
7857  Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
7858
7859  Function *F = nullptr;
7860  if (Ops[1]->getType()->isVectorTy())
7861    // This is the "vector base, scalar offset" case. In order to uniquely
7862    // map this built-in to an LLVM IR intrinsic, we need both the return type
7863    // and the type of the vector base.
7864    F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
7865  else
7866    // This is the "scalar base, vector offset case". The type of the offset
7867    // is encoded in the name of the intrinsic. We only need to specify the
7868    // return type in order to uniquely map this built-in to an LLVM IR
7869    // intrinsic.
7870    F = CGM.getIntrinsic(IntID, OverloadedTy);
7871
7872  // Pass 0 when the offset is missing. This can only be applied when using
7873  // the "vector base" addressing mode for which ACLE allows no offset. The
7874  // corresponding LLVM IR always requires an offset.
7875  if (Ops.size() == 2) {
7876    assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
7877    Ops.push_back(ConstantInt::get(Int64Ty, 0));
7878  }
7879
7880  // For "vector base, scalar index" scale the index so that it becomes a
7881  // scalar offset.
7882  if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
7883    unsigned BytesPerElt =
7884        OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
7885    Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7886    Ops[2] = Builder.CreateMul(Ops[2], Scale);
7887  }
7888
7889  Value *Call = Builder.CreateCall(F, Ops);
7890
7891  // The following sext/zext is only needed when ResultTy != OverloadedTy. In
7892  // other cases it's folded into a nop.
7893  return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
7894                                  : Builder.CreateSExt(Call, ResultTy);
7895}
7896
7897Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
7898                                            SmallVectorImpl<Value *> &Ops,
7899                                            unsigned IntID) {
7900  auto *SrcDataTy = getSVEType(TypeFlags);
7901  auto *OverloadedTy =
7902      llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
7903
7904  // In ACLE the source data is passed in the last argument, whereas in LLVM IR
7905  // it's the first argument. Move it accordingly.
7906  Ops.insert(Ops.begin(), Ops.pop_back_val());
7907
7908  Function *F = nullptr;
7909  if (Ops[2]->getType()->isVectorTy())
7910    // This is the "vector base, scalar offset" case. In order to uniquely
7911    // map this built-in to an LLVM IR intrinsic, we need both the return type
7912    // and the type of the vector base.
7913    F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
7914  else
7915    // This is the "scalar base, vector offset case". The type of the offset
7916    // is encoded in the name of the intrinsic. We only need to specify the
7917    // return type in order to uniquely map this built-in to an LLVM IR
7918    // intrinsic.
7919    F = CGM.getIntrinsic(IntID, OverloadedTy);
7920
7921  // Pass 0 when the offset is missing. This can only be applied when using
7922  // the "vector base" addressing mode for which ACLE allows no offset. The
7923  // corresponding LLVM IR always requires an offset.
7924  if (Ops.size() == 3) {
7925    assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
7926    Ops.push_back(ConstantInt::get(Int64Ty, 0));
7927  }
7928
7929  // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
7930  // folded into a nop.
7931  Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
7932
7933  // At the ACLE level there's only one predicate type, svbool_t, which is
7934  // mapped to <n x 16 x i1>. However, this might be incompatible with the
7935  // actual type being stored. For example, when storing doubles (i64) the
7936  // predicated should be <n x 2 x i1> instead. At the IR level the type of
7937  // the predicate and the data being stored must match. Cast accordingly.
7938  Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
7939
7940  // For "vector base, scalar index" scale the index so that it becomes a
7941  // scalar offset.
7942  if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
7943    unsigned BytesPerElt =
7944        OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
7945    Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7946    Ops[3] = Builder.CreateMul(Ops[3], Scale);
7947  }
7948
7949  return Builder.CreateCall(F, Ops);
7950}
7951
7952Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
7953                                              SmallVectorImpl<Value *> &Ops,
7954                                              unsigned IntID) {
7955  // The gather prefetches are overloaded on the vector input - this can either
7956  // be the vector of base addresses or vector of offsets.
7957  auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
7958  if (!OverloadedTy)
7959    OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
7960
7961  // Cast the predicate from svbool_t to the right number of elements.
7962  Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
7963
7964  // vector + imm addressing modes
7965  if (Ops[1]->getType()->isVectorTy()) {
7966    if (Ops.size() == 3) {
7967      // Pass 0 for 'vector+imm' when the index is omitted.
7968      Ops.push_back(ConstantInt::get(Int64Ty, 0));
7969
7970      // The sv_prfop is the last operand in the builtin and IR intrinsic.
7971      std::swap(Ops[2], Ops[3]);
7972    } else {
7973      // Index needs to be passed as scaled offset.
7974      llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
7975      unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
7976      Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7977      Ops[2] = Builder.CreateMul(Ops[2], Scale);
7978    }
7979  }
7980
7981  Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
7982  return Builder.CreateCall(F, Ops);
7983}
7984
7985Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
7986                                          SmallVectorImpl<Value*> &Ops,
7987                                          unsigned IntID) {
7988  llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
7989  auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
7990  auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
7991
7992  unsigned N;
7993  switch (IntID) {
7994  case Intrinsic::aarch64_sve_ld2:
7995    N = 2;
7996    break;
7997  case Intrinsic::aarch64_sve_ld3:
7998    N = 3;
7999    break;
8000  case Intrinsic::aarch64_sve_ld4:
8001    N = 4;
8002    break;
8003  default:
8004    llvm_unreachable("unknown intrinsic!");
8005  }
8006  auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8007                                     VTy->getElementCount() * N);
8008
8009	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8010  Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8011  Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8012  BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8013  BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8014
8015  Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8016  return Builder.CreateCall(F, { Predicate, BasePtr });
8017}
8018
8019Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8020                                           SmallVectorImpl<Value*> &Ops,
8021                                           unsigned IntID) {
8022  llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8023  auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8024  auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8025
8026  unsigned N;
8027  switch (IntID) {
8028  case Intrinsic::aarch64_sve_st2:
8029    N = 2;
8030    break;
8031  case Intrinsic::aarch64_sve_st3:
8032    N = 3;
8033    break;
8034  case Intrinsic::aarch64_sve_st4:
8035    N = 4;
8036    break;
8037  default:
8038    llvm_unreachable("unknown intrinsic!");
8039  }
8040  auto TupleTy =
8041      llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8042
8043  Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8044  Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8045  Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8046  Value *Val = Ops.back();
8047  BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8048  BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8049
8050  // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8051  // need to break up the tuple vector.
8052  SmallVector<llvm::Value*, 5> Operands;
8053  Function *FExtr =
8054      CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8055  for (unsigned I = 0; I < N; ++I)
8056    Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8057  Operands.append({Predicate, BasePtr});
8058
8059  Function *F = CGM.getIntrinsic(IntID, { VTy });
8060  return Builder.CreateCall(F, Operands);
8061}
8062
8063// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8064// svpmullt_pair intrinsics, with the exception that their results are bitcast
8065// to a wider type.
8066Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8067                                     SmallVectorImpl<Value *> &Ops,
8068                                     unsigned BuiltinID) {
8069  // Splat scalar operand to vector (intrinsics with _n infix)
8070  if (TypeFlags.hasSplatOperand()) {
8071    unsigned OpNo = TypeFlags.getSplatOperand();
8072    Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8073  }
8074
8075  // The pair-wise function has a narrower overloaded type.
8076  Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8077  Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8078
8079  // Now bitcast to the wider result type.
8080  llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8081  return EmitSVEReinterpret(Call, Ty);
8082}
8083
8084Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8085                                    ArrayRef<Value *> Ops, unsigned BuiltinID) {
8086  llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8087  Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8088  return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8089}
8090
8091Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8092                                            SmallVectorImpl<Value *> &Ops,
8093                                            unsigned BuiltinID) {
8094  auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8095  auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8096  auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8097
8098  Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8099  Value *BasePtr = Ops[1];
8100
8101  // Implement the index operand if not omitted.
8102  if (Ops.size() > 3) {
8103    BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8104    BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8105  }
8106
8107  // Prefetch intriniscs always expect an i8*
8108  BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8109  Value *PrfOp = Ops.back();
8110
8111  Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8112  return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8113}
8114
8115Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8116                                          llvm::Type *ReturnTy,
8117                                          SmallVectorImpl<Value *> &Ops,
8118                                          unsigned BuiltinID,
8119                                          bool IsZExtReturn) {
8120  QualType LangPTy = E->getArg(1)->getType();
8121  llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8122      LangPTy->getAs<PointerType>()->getPointeeType());
8123
8124  // The vector type that is returned may be different from the
8125  // eventual type loaded from memory.
8126  auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8127  auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8128
8129  Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8130  Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8131  Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8132  BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8133
8134  BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8135  Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8136  Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8137
8138  return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8139                     : Builder.CreateSExt(Load, VectorTy);
8140}
8141
8142Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8143                                           SmallVectorImpl<Value *> &Ops,
8144                                           unsigned BuiltinID) {
8145  QualType LangPTy = E->getArg(1)->getType();
8146  llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8147      LangPTy->getAs<PointerType>()->getPointeeType());
8148
8149  // The vector type that is stored may be different from the
8150  // eventual type stored to memory.
8151  auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8152  auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8153
8154  Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8155  Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8156  Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8157  BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8158
8159  // Last value is always the data
8160  llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8161
8162  BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8163  Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8164  return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8165}
8166
8167// Limit the usage of scalable llvm IR generated by the ACLE by using the
8168// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
8169Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8170  auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8171  return Builder.CreateCall(F, Scalar);
8172}
8173
8174Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8175  return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8176}
8177
8178Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8179  // FIXME: For big endian this needs an additional REV, or needs a separate
8180  // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8181  // instruction is defined as 'bitwise' equivalent from memory point of
8182  // view (when storing/reloading), whereas the svreinterpret builtin
8183  // implements bitwise equivalent cast from register point of view.
8184  // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8185  return Builder.CreateBitCast(Val, Ty);
8186}
8187
8188static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8189                                      SmallVectorImpl<Value *> &Ops) {
8190  auto *SplatZero = Constant::getNullValue(Ty);
8191  Ops.insert(Ops.begin(), SplatZero);
8192}
8193
8194static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8195                                       SmallVectorImpl<Value *> &Ops) {
8196  auto *SplatUndef = UndefValue::get(Ty);
8197  Ops.insert(Ops.begin(), SplatUndef);
8198}
8199
8200SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8201    SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8202  if (TypeFlags.isOverloadNone())
8203    return {};
8204
8205  llvm::Type *DefaultType = getSVEType(TypeFlags);
8206
8207  if (TypeFlags.isOverloadWhile())
8208    return {DefaultType, Ops[1]->getType()};
8209
8210  if (TypeFlags.isOverloadWhileRW())
8211    return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8212
8213  if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8214    return {Ops[0]->getType(), Ops.back()->getType()};
8215
8216  if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8217    return {ResultType, Ops[0]->getType()};
8218
8219  assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8220  return {DefaultType};
8221}
8222
8223Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8224                                                  const CallExpr *E) {
8225  // Find out if any arguments are required to be integer constant expressions.
8226  unsigned ICEArguments = 0;
8227  ASTContext::GetBuiltinTypeError Error;
8228  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8229  assert(Error == ASTContext::GE_None && "Should not codegen an error");
8230
8231  llvm::Type *Ty = ConvertType(E->getType());
8232  if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8233      BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8234    Value *Val = EmitScalarExpr(E->getArg(0));
8235    return EmitSVEReinterpret(Val, Ty);
8236  }
8237
8238  llvm::SmallVector<Value *, 4> Ops;
8239  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8240    if ((ICEArguments & (1 << i)) == 0)
8241      Ops.push_back(EmitScalarExpr(E->getArg(i)));
8242    else {
8243      // If this is required to be a constant, constant fold it so that we know
8244      // that the generated intrinsic gets a ConstantInt.
8245      llvm::APSInt Result;
8246      if (!E->getArg(i)->isIntegerConstantExpr(Result, getContext()))
8247        llvm_unreachable("Expected argument to be a constant");
8248
8249      // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8250      // truncate because the immediate has been range checked and no valid
8251      // immediate requires more than a handful of bits.
8252      Result = Result.extOrTrunc(32);
8253      Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
8254    }
8255  }
8256
8257  auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8258                                              AArch64SVEIntrinsicsProvenSorted);
8259  SVETypeFlags TypeFlags(Builtin->TypeModifier);
8260  if (TypeFlags.isLoad())
8261    return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8262                             TypeFlags.isZExtReturn());
8263  else if (TypeFlags.isStore())
8264    return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8265  else if (TypeFlags.isGatherLoad())
8266    return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8267  else if (TypeFlags.isScatterStore())
8268    return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8269  else if (TypeFlags.isPrefetch())
8270    return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8271  else if (TypeFlags.isGatherPrefetch())
8272    return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8273	else if (TypeFlags.isStructLoad())
8274		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8275	else if (TypeFlags.isStructStore())
8276		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8277  else if (TypeFlags.isUndef())
8278    return UndefValue::get(Ty);
8279  else if (Builtin->LLVMIntrinsic != 0) {
8280    if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8281      InsertExplicitZeroOperand(Builder, Ty, Ops);
8282
8283    if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8284      InsertExplicitUndefOperand(Builder, Ty, Ops);
8285
8286    // Some ACLE builtins leave out the argument to specify the predicate
8287    // pattern, which is expected to be expanded to an SV_ALL pattern.
8288    if (TypeFlags.isAppendSVALL())
8289      Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8290    if (TypeFlags.isInsertOp1SVALL())
8291      Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8292
8293    // Predicates must match the main datatype.
8294    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8295      if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8296        if (PredTy->getElementType()->isIntegerTy(1))
8297          Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8298
8299    // Splat scalar operand to vector (intrinsics with _n infix)
8300    if (TypeFlags.hasSplatOperand()) {
8301      unsigned OpNo = TypeFlags.getSplatOperand();
8302      Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8303    }
8304
8305    if (TypeFlags.isReverseCompare())
8306      std::swap(Ops[1], Ops[2]);
8307
8308    if (TypeFlags.isReverseUSDOT())
8309      std::swap(Ops[1], Ops[2]);
8310
8311    // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8312    if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8313      llvm::Type *OpndTy = Ops[1]->getType();
8314      auto *SplatZero = Constant::getNullValue(OpndTy);
8315      Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8316      Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8317    }
8318
8319    Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8320                                   getSVEOverloadTypes(TypeFlags, Ty, Ops));
8321    Value *Call = Builder.CreateCall(F, Ops);
8322
8323    // Predicate results must be converted to svbool_t.
8324    if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8325      if (PredTy->getScalarType()->isIntegerTy(1))
8326        Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8327
8328    return Call;
8329  }
8330
8331  switch (BuiltinID) {
8332  default:
8333    return nullptr;
8334
8335  case SVE::BI__builtin_sve_svmov_b_z: {
8336    // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8337    SVETypeFlags TypeFlags(Builtin->TypeModifier);
8338    llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8339    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8340    return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8341  }
8342
8343  case SVE::BI__builtin_sve_svnot_b_z: {
8344    // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8345    SVETypeFlags TypeFlags(Builtin->TypeModifier);
8346    llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8347    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8348    return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
8349  }
8350
8351  case SVE::BI__builtin_sve_svmovlb_u16:
8352  case SVE::BI__builtin_sve_svmovlb_u32:
8353  case SVE::BI__builtin_sve_svmovlb_u64:
8354    return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
8355
8356  case SVE::BI__builtin_sve_svmovlb_s16:
8357  case SVE::BI__builtin_sve_svmovlb_s32:
8358  case SVE::BI__builtin_sve_svmovlb_s64:
8359    return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
8360
8361  case SVE::BI__builtin_sve_svmovlt_u16:
8362  case SVE::BI__builtin_sve_svmovlt_u32:
8363  case SVE::BI__builtin_sve_svmovlt_u64:
8364    return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
8365
8366  case SVE::BI__builtin_sve_svmovlt_s16:
8367  case SVE::BI__builtin_sve_svmovlt_s32:
8368  case SVE::BI__builtin_sve_svmovlt_s64:
8369    return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
8370
8371  case SVE::BI__builtin_sve_svpmullt_u16:
8372  case SVE::BI__builtin_sve_svpmullt_u64:
8373  case SVE::BI__builtin_sve_svpmullt_n_u16:
8374  case SVE::BI__builtin_sve_svpmullt_n_u64:
8375    return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
8376
8377  case SVE::BI__builtin_sve_svpmullb_u16:
8378  case SVE::BI__builtin_sve_svpmullb_u64:
8379  case SVE::BI__builtin_sve_svpmullb_n_u16:
8380  case SVE::BI__builtin_sve_svpmullb_n_u64:
8381    return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
8382
8383  case SVE::BI__builtin_sve_svdup_n_b8:
8384  case SVE::BI__builtin_sve_svdup_n_b16:
8385  case SVE::BI__builtin_sve_svdup_n_b32:
8386  case SVE::BI__builtin_sve_svdup_n_b64: {
8387    Value *CmpNE =
8388        Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
8389    llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
8390    Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
8391    return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
8392  }
8393
8394  case SVE::BI__builtin_sve_svdupq_n_b8:
8395  case SVE::BI__builtin_sve_svdupq_n_b16:
8396  case SVE::BI__builtin_sve_svdupq_n_b32:
8397  case SVE::BI__builtin_sve_svdupq_n_b64:
8398  case SVE::BI__builtin_sve_svdupq_n_u8:
8399  case SVE::BI__builtin_sve_svdupq_n_s8:
8400  case SVE::BI__builtin_sve_svdupq_n_u64:
8401  case SVE::BI__builtin_sve_svdupq_n_f64:
8402  case SVE::BI__builtin_sve_svdupq_n_s64:
8403  case SVE::BI__builtin_sve_svdupq_n_u16:
8404  case SVE::BI__builtin_sve_svdupq_n_f16:
8405  case SVE::BI__builtin_sve_svdupq_n_bf16:
8406  case SVE::BI__builtin_sve_svdupq_n_s16:
8407  case SVE::BI__builtin_sve_svdupq_n_u32:
8408  case SVE::BI__builtin_sve_svdupq_n_f32:
8409  case SVE::BI__builtin_sve_svdupq_n_s32: {
8410    // These builtins are implemented by storing each element to an array and using
8411    // ld1rq to materialize a vector.
8412    unsigned NumOpnds = Ops.size();
8413
8414    bool IsBoolTy =
8415        cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
8416
8417    // For svdupq_n_b* the element type of is an integer of type 128/numelts,
8418    // so that the compare can use the width that is natural for the expected
8419    // number of predicate lanes.
8420    llvm::Type *EltTy = Ops[0]->getType();
8421    if (IsBoolTy)
8422      EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
8423
8424    Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds),
8425                                     CharUnits::fromQuantity(16));
8426    for (unsigned I = 0; I < NumOpnds; ++I)
8427      Builder.CreateDefaultAlignedStore(
8428          IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I],
8429          Builder.CreateGEP(Alloca.getPointer(),
8430                            {Builder.getInt64(0), Builder.getInt64(I)}));
8431
8432    SVETypeFlags TypeFlags(Builtin->TypeModifier);
8433    Value *Pred = EmitSVEAllTruePred(TypeFlags);
8434
8435    llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
8436    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy);
8437    Value *Alloca0 = Builder.CreateGEP(
8438        Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(0)});
8439    Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0});
8440
8441    if (!IsBoolTy)
8442      return LD1RQ;
8443
8444    // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
8445    F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
8446                                       : Intrinsic::aarch64_sve_cmpne_wide,
8447                         OverloadedTy);
8448    Value *Call =
8449        Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))});
8450    return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8451  }
8452
8453  case SVE::BI__builtin_sve_svpfalse_b:
8454    return ConstantInt::getFalse(Ty);
8455
8456  case SVE::BI__builtin_sve_svlen_bf16:
8457  case SVE::BI__builtin_sve_svlen_f16:
8458  case SVE::BI__builtin_sve_svlen_f32:
8459  case SVE::BI__builtin_sve_svlen_f64:
8460  case SVE::BI__builtin_sve_svlen_s8:
8461  case SVE::BI__builtin_sve_svlen_s16:
8462  case SVE::BI__builtin_sve_svlen_s32:
8463  case SVE::BI__builtin_sve_svlen_s64:
8464  case SVE::BI__builtin_sve_svlen_u8:
8465  case SVE::BI__builtin_sve_svlen_u16:
8466  case SVE::BI__builtin_sve_svlen_u32:
8467  case SVE::BI__builtin_sve_svlen_u64: {
8468    SVETypeFlags TF(Builtin->TypeModifier);
8469    auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8470    auto NumEls = llvm::ConstantInt::get(Ty, VTy->getElementCount().Min);
8471
8472    Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
8473    return Builder.CreateMul(NumEls, Builder.CreateCall(F));
8474  }
8475
8476  case SVE::BI__builtin_sve_svtbl2_u8:
8477  case SVE::BI__builtin_sve_svtbl2_s8:
8478  case SVE::BI__builtin_sve_svtbl2_u16:
8479  case SVE::BI__builtin_sve_svtbl2_s16:
8480  case SVE::BI__builtin_sve_svtbl2_u32:
8481  case SVE::BI__builtin_sve_svtbl2_s32:
8482  case SVE::BI__builtin_sve_svtbl2_u64:
8483  case SVE::BI__builtin_sve_svtbl2_s64:
8484  case SVE::BI__builtin_sve_svtbl2_f16:
8485  case SVE::BI__builtin_sve_svtbl2_bf16:
8486  case SVE::BI__builtin_sve_svtbl2_f32:
8487  case SVE::BI__builtin_sve_svtbl2_f64: {
8488    SVETypeFlags TF(Builtin->TypeModifier);
8489    auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8490    auto TupleTy = llvm::VectorType::get(VTy->getElementType(),
8491                                         VTy->getElementCount() * 2);
8492    Function *FExtr =
8493        CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8494    Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
8495    Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
8496    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
8497    return Builder.CreateCall(F, {V0, V1, Ops[1]});
8498  }
8499  }
8500
8501  /// Should not happen
8502  return nullptr;
8503}
8504
8505Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
8506                                               const CallExpr *E,
8507                                               llvm::Triple::ArchType Arch) {
8508  if (BuiltinID >= AArch64::FirstSVEBuiltin &&
8509      BuiltinID <= AArch64::LastSVEBuiltin)
8510    return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
8511
8512  unsigned HintID = static_cast<unsigned>(-1);
8513  switch (BuiltinID) {
8514  default: break;
8515  case AArch64::BI__builtin_arm_nop:
8516    HintID = 0;
8517    break;
8518  case AArch64::BI__builtin_arm_yield:
8519  case AArch64::BI__yield:
8520    HintID = 1;
8521    break;
8522  case AArch64::BI__builtin_arm_wfe:
8523  case AArch64::BI__wfe:
8524    HintID = 2;
8525    break;
8526  case AArch64::BI__builtin_arm_wfi:
8527  case AArch64::BI__wfi:
8528    HintID = 3;
8529    break;
8530  case AArch64::BI__builtin_arm_sev:
8531  case AArch64::BI__sev:
8532    HintID = 4;
8533    break;
8534  case AArch64::BI__builtin_arm_sevl:
8535  case AArch64::BI__sevl:
8536    HintID = 5;
8537    break;
8538  }
8539
8540  if (HintID != static_cast<unsigned>(-1)) {
8541    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
8542    return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
8543  }
8544
8545  if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
8546    Value *Address         = EmitScalarExpr(E->getArg(0));
8547    Value *RW              = EmitScalarExpr(E->getArg(1));
8548    Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
8549    Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
8550    Value *IsData          = EmitScalarExpr(E->getArg(4));
8551
8552    Value *Locality = nullptr;
8553    if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
8554      // Temporal fetch, needs to convert cache level to locality.
8555      Locality = llvm::ConstantInt::get(Int32Ty,
8556        -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
8557    } else {
8558      // Streaming fetch.
8559      Locality = llvm::ConstantInt::get(Int32Ty, 0);
8560    }
8561
8562    // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
8563    // PLDL3STRM or PLDL2STRM.
8564    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8565    return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8566  }
8567
8568  if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
8569    assert((getContext().getTypeSize(E->getType()) == 32) &&
8570           "rbit of unusual size!");
8571    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8572    return Builder.CreateCall(
8573        CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8574  }
8575  if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
8576    assert((getContext().getTypeSize(E->getType()) == 64) &&
8577           "rbit of unusual size!");
8578    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8579    return Builder.CreateCall(
8580        CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8581  }
8582
8583  if (BuiltinID == AArch64::BI__builtin_arm_cls) {
8584    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8585    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
8586                              "cls");
8587  }
8588  if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
8589    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8590    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
8591                              "cls");
8592  }
8593
8594  if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
8595    assert((getContext().getTypeSize(E->getType()) == 32) &&
8596           "__jcvt of unusual size!");
8597    llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8598    return Builder.CreateCall(
8599        CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
8600  }
8601
8602  if (BuiltinID == AArch64::BI__clear_cache) {
8603    assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8604    const FunctionDecl *FD = E->getDirectCallee();
8605    Value *Ops[2];
8606    for (unsigned i = 0; i < 2; i++)
8607      Ops[i] = EmitScalarExpr(E->getArg(i));
8608    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8609    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8610    StringRef Name = FD->getName();
8611    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8612  }
8613
8614  if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8615      BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
8616      getContext().getTypeSize(E->getType()) == 128) {
8617    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8618                                       ? Intrinsic::aarch64_ldaxp
8619                                       : Intrinsic::aarch64_ldxp);
8620
8621    Value *LdPtr = EmitScalarExpr(E->getArg(0));
8622    Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
8623                                    "ldxp");
8624
8625    Value *Val0 = Builder.CreateExtractValue(Val, 1);
8626    Value *Val1 = Builder.CreateExtractValue(Val, 0);
8627    llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
8628    Val0 = Builder.CreateZExt(Val0, Int128Ty);
8629    Val1 = Builder.CreateZExt(Val1, Int128Ty);
8630
8631    Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
8632    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8633    Val = Builder.CreateOr(Val, Val1);
8634    return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8635  } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8636             BuiltinID == AArch64::BI__builtin_arm_ldaex) {
8637    Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8638
8639    QualType Ty = E->getType();
8640    llvm::Type *RealResTy = ConvertType(Ty);
8641    llvm::Type *PtrTy = llvm::IntegerType::get(
8642        getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
8643    LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
8644
8645    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8646                                       ? Intrinsic::aarch64_ldaxr
8647                                       : Intrinsic::aarch64_ldxr,
8648                                   PtrTy);
8649    Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
8650
8651    if (RealResTy->isPointerTy())
8652      return Builder.CreateIntToPtr(Val, RealResTy);
8653
8654    llvm::Type *IntResTy = llvm::IntegerType::get(
8655        getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8656    Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
8657    return Builder.CreateBitCast(Val, RealResTy);
8658  }
8659
8660  if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
8661       BuiltinID == AArch64::BI__builtin_arm_stlex) &&
8662      getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
8663    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
8664                                       ? Intrinsic::aarch64_stlxp
8665                                       : Intrinsic::aarch64_stxp);
8666    llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
8667
8668    Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8669    EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
8670
8671    Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
8672    llvm::Value *Val = Builder.CreateLoad(Tmp);
8673
8674    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8675    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8676    Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
8677                                         Int8PtrTy);
8678    return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
8679  }
8680
8681  if (BuiltinID == AArch64::BI__builtin_arm_strex ||
8682      BuiltinID == AArch64::BI__builtin_arm_stlex) {
8683    Value *StoreVal = EmitScalarExpr(E->getArg(0));
8684    Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8685
8686    QualType Ty = E->getArg(0)->getType();
8687    llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
8688                                                 getContext().getTypeSize(Ty));
8689    StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
8690
8691    if (StoreVal->getType()->isPointerTy())
8692      StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
8693    else {
8694      llvm::Type *IntTy = llvm::IntegerType::get(
8695          getLLVMContext(),
8696          CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8697      StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8698      StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
8699    }
8700
8701    Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
8702                                       ? Intrinsic::aarch64_stlxr
8703                                       : Intrinsic::aarch64_stxr,
8704                                   StoreAddr->getType());
8705    return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
8706  }
8707
8708  if (BuiltinID == AArch64::BI__getReg) {
8709    Expr::EvalResult Result;
8710    if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
8711      llvm_unreachable("Sema will ensure that the parameter is constant");
8712
8713    llvm::APSInt Value = Result.Val.getInt();
8714    LLVMContext &Context = CGM.getLLVMContext();
8715    std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
8716
8717    llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
8718    llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8719    llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8720
8721    llvm::Function *F =
8722        CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
8723    return Builder.CreateCall(F, Metadata);
8724  }
8725
8726  if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
8727    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
8728    return Builder.CreateCall(F);
8729  }
8730
8731  if (BuiltinID == AArch64::BI_ReadWriteBarrier)
8732    return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
8733                               llvm::SyncScope::SingleThread);
8734
8735  // CRC32
8736  Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8737  switch (BuiltinID) {
8738  case AArch64::BI__builtin_arm_crc32b:
8739    CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
8740  case AArch64::BI__builtin_arm_crc32cb:
8741    CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
8742  case AArch64::BI__builtin_arm_crc32h:
8743    CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
8744  case AArch64::BI__builtin_arm_crc32ch:
8745    CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
8746  case AArch64::BI__builtin_arm_crc32w:
8747    CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
8748  case AArch64::BI__builtin_arm_crc32cw:
8749    CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
8750  case AArch64::BI__builtin_arm_crc32d:
8751    CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
8752  case AArch64::BI__builtin_arm_crc32cd:
8753    CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
8754  }
8755
8756  if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8757    Value *Arg0 = EmitScalarExpr(E->getArg(0));
8758    Value *Arg1 = EmitScalarExpr(E->getArg(1));
8759    Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8760
8761    llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
8762    Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
8763
8764    return Builder.CreateCall(F, {Arg0, Arg1});
8765  }
8766
8767  // Memory Tagging Extensions (MTE) Intrinsics
8768  Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
8769  switch (BuiltinID) {
8770  case AArch64::BI__builtin_arm_irg:
8771    MTEIntrinsicID = Intrinsic::aarch64_irg; break;
8772  case  AArch64::BI__builtin_arm_addg:
8773    MTEIntrinsicID = Intrinsic::aarch64_addg; break;
8774  case  AArch64::BI__builtin_arm_gmi:
8775    MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
8776  case  AArch64::BI__builtin_arm_ldg:
8777    MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
8778  case AArch64::BI__builtin_arm_stg:
8779    MTEIntrinsicID = Intrinsic::aarch64_stg; break;
8780  case AArch64::BI__builtin_arm_subp:
8781    MTEIntrinsicID = Intrinsic::aarch64_subp; break;
8782  }
8783
8784  if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
8785    llvm::Type *T = ConvertType(E->getType());
8786
8787    if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
8788      Value *Pointer = EmitScalarExpr(E->getArg(0));
8789      Value *Mask = EmitScalarExpr(E->getArg(1));
8790
8791      Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8792      Mask = Builder.CreateZExt(Mask, Int64Ty);
8793      Value *RV = Builder.CreateCall(
8794                       CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
8795       return Builder.CreatePointerCast(RV, T);
8796    }
8797    if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
8798      Value *Pointer = EmitScalarExpr(E->getArg(0));
8799      Value *TagOffset = EmitScalarExpr(E->getArg(1));
8800
8801      Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8802      TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
8803      Value *RV = Builder.CreateCall(
8804                       CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
8805      return Builder.CreatePointerCast(RV, T);
8806    }
8807    if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
8808      Value *Pointer = EmitScalarExpr(E->getArg(0));
8809      Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
8810
8811      ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
8812      Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8813      return Builder.CreateCall(
8814                       CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
8815    }
8816    // Although it is possible to supply a different return
8817    // address (first arg) to this intrinsic, for now we set
8818    // return address same as input address.
8819    if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
8820      Value *TagAddress = EmitScalarExpr(E->getArg(0));
8821      TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
8822      Value *RV = Builder.CreateCall(
8823                    CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
8824      return Builder.CreatePointerCast(RV, T);
8825    }
8826    // Although it is possible to supply a different tag (to set)
8827    // to this intrinsic (as first arg), for now we supply
8828    // the tag that is in input address arg (common use case).
8829    if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
8830        Value *TagAddress = EmitScalarExpr(E->getArg(0));
8831        TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
8832        return Builder.CreateCall(
8833                 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
8834    }
8835    if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
8836      Value *PointerA = EmitScalarExpr(E->getArg(0));
8837      Value *PointerB = EmitScalarExpr(E->getArg(1));
8838      PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
8839      PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
8840      return Builder.CreateCall(
8841                       CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
8842    }
8843  }
8844
8845  if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
8846      BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8847      BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8848      BuiltinID == AArch64::BI__builtin_arm_wsr ||
8849      BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
8850      BuiltinID == AArch64::BI__builtin_arm_wsrp) {
8851
8852    SpecialRegisterAccessKind AccessKind = Write;
8853    if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
8854        BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8855        BuiltinID == AArch64::BI__builtin_arm_rsrp)
8856      AccessKind = VolatileRead;
8857
8858    bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8859                            BuiltinID == AArch64::BI__builtin_arm_wsrp;
8860
8861    bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
8862                   BuiltinID != AArch64::BI__builtin_arm_wsr;
8863
8864    llvm::Type *ValueType;
8865    llvm::Type *RegisterType = Int64Ty;
8866    if (IsPointerBuiltin) {
8867      ValueType = VoidPtrTy;
8868    } else if (Is64Bit) {
8869      ValueType = Int64Ty;
8870    } else {
8871      ValueType = Int32Ty;
8872    }
8873
8874    return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8875                                      AccessKind);
8876  }
8877
8878  if (BuiltinID == AArch64::BI_ReadStatusReg ||
8879      BuiltinID == AArch64::BI_WriteStatusReg) {
8880    LLVMContext &Context = CGM.getLLVMContext();
8881
8882    unsigned SysReg =
8883      E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
8884
8885    std::string SysRegStr;
8886    llvm::raw_string_ostream(SysRegStr) <<
8887                       ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
8888                       ((SysReg >> 11) & 7)               << ":" <<
8889                       ((SysReg >> 7)  & 15)              << ":" <<
8890                       ((SysReg >> 3)  & 15)              << ":" <<
8891                       ( SysReg        & 7);
8892
8893    llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
8894    llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8895    llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8896
8897    llvm::Type *RegisterType = Int64Ty;
8898    llvm::Type *Types[] = { RegisterType };
8899
8900    if (BuiltinID == AArch64::BI_ReadStatusReg) {
8901      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
8902
8903      return Builder.CreateCall(F, Metadata);
8904    }
8905
8906    llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
8907    llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
8908
8909    return Builder.CreateCall(F, { Metadata, ArgValue });
8910  }
8911
8912  if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
8913    llvm::Function *F =
8914        CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
8915    return Builder.CreateCall(F);
8916  }
8917
8918  if (BuiltinID == AArch64::BI__builtin_sponentry) {
8919    llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8920    return Builder.CreateCall(F);
8921  }
8922
8923  // Find out if any arguments are required to be integer constant
8924  // expressions.
8925  unsigned ICEArguments = 0;
8926  ASTContext::GetBuiltinTypeError Error;
8927  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8928  assert(Error == ASTContext::GE_None && "Should not codegen an error");
8929
8930  llvm::SmallVector<Value*, 4> Ops;
8931  Address PtrOp0 = Address::invalid();
8932  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
8933    if (i == 0) {
8934      switch (BuiltinID) {
8935      case NEON::BI__builtin_neon_vld1_v:
8936      case NEON::BI__builtin_neon_vld1q_v:
8937      case NEON::BI__builtin_neon_vld1_dup_v:
8938      case NEON::BI__builtin_neon_vld1q_dup_v:
8939      case NEON::BI__builtin_neon_vld1_lane_v:
8940      case NEON::BI__builtin_neon_vld1q_lane_v:
8941      case NEON::BI__builtin_neon_vst1_v:
8942      case NEON::BI__builtin_neon_vst1q_v:
8943      case NEON::BI__builtin_neon_vst1_lane_v:
8944      case NEON::BI__builtin_neon_vst1q_lane_v:
8945        // Get the alignment for the argument in addition to the value;
8946        // we'll use it later.
8947        PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
8948        Ops.push_back(PtrOp0.getPointer());
8949        continue;
8950      }
8951    }
8952    if ((ICEArguments & (1 << i)) == 0) {
8953      Ops.push_back(EmitScalarExpr(E->getArg(i)));
8954    } else {
8955      // If this is required to be a constant, constant fold it so that we know
8956      // that the generated intrinsic gets a ConstantInt.
8957      llvm::APSInt Result;
8958      bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
8959      assert(IsConst && "Constant arg isn't actually constant?");
8960      (void)IsConst;
8961      Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
8962    }
8963  }
8964
8965  auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
8966  const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8967      SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
8968
8969  if (Builtin) {
8970    Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
8971    Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
8972    assert(Result && "SISD intrinsic should have been handled");
8973    return Result;
8974  }
8975
8976  llvm::APSInt Result;
8977  const Expr *Arg = E->getArg(E->getNumArgs()-1);
8978  NeonTypeFlags Type(0);
8979  if (Arg->isIntegerConstantExpr(Result, getContext()))
8980    // Determine the type of this overloaded NEON intrinsic.
8981    Type = NeonTypeFlags(Result.getZExtValue());
8982
8983  bool usgn = Type.isUnsigned();
8984  bool quad = Type.isQuad();
8985
8986  // Handle non-overloaded intrinsics first.
8987  switch (BuiltinID) {
8988  default: break;
8989  case NEON::BI__builtin_neon_vabsh_f16:
8990    Ops.push_back(EmitScalarExpr(E->getArg(0)));
8991    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
8992  case NEON::BI__builtin_neon_vldrq_p128: {
8993    llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
8994    llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
8995    Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
8996    return Builder.CreateAlignedLoad(Int128Ty, Ptr,
8997                                     CharUnits::fromQuantity(16));
8998  }
8999  case NEON::BI__builtin_neon_vstrq_p128: {
9000    llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9001    Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9002    return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9003  }
9004  case NEON::BI__builtin_neon_vcvts_u32_f32:
9005  case NEON::BI__builtin_neon_vcvtd_u64_f64:
9006    usgn = true;
9007    LLVM_FALLTHROUGH;
9008  case NEON::BI__builtin_neon_vcvts_s32_f32:
9009  case NEON::BI__builtin_neon_vcvtd_s64_f64: {
9010    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9011    bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9012    llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9013    llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9014    Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
9015    if (usgn)
9016      return Builder.CreateFPToUI(Ops[0], InTy);
9017    return Builder.CreateFPToSI(Ops[0], InTy);
9018  }
9019  case NEON::BI__builtin_neon_vcvts_f32_u32:
9020  case NEON::BI__builtin_neon_vcvtd_f64_u64:
9021    usgn = true;
9022    LLVM_FALLTHROUGH;
9023  case NEON::BI__builtin_neon_vcvts_f32_s32:
9024  case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9025    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9026    bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9027    llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9028    llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9029    Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9030    if (usgn)
9031      return Builder.CreateUIToFP(Ops[0], FTy);
9032    return Builder.CreateSIToFP(Ops[0], FTy);
9033  }
9034  case NEON::BI__builtin_neon_vcvth_f16_u16:
9035  case NEON::BI__builtin_neon_vcvth_f16_u32:
9036  case NEON::BI__builtin_neon_vcvth_f16_u64:
9037    usgn = true;
9038    LLVM_FALLTHROUGH;
9039  case NEON::BI__builtin_neon_vcvth_f16_s16:
9040  case NEON::BI__builtin_neon_vcvth_f16_s32:
9041  case NEON::BI__builtin_neon_vcvth_f16_s64: {
9042    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9043    llvm::Type *FTy = HalfTy;
9044    llvm::Type *InTy;
9045    if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9046      InTy = Int64Ty;
9047    else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9048      InTy = Int32Ty;
9049    else
9050      InTy = Int16Ty;
9051    Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9052    if (usgn)
9053      return Builder.CreateUIToFP(Ops[0], FTy);
9054    return Builder.CreateSIToFP(Ops[0], FTy);
9055  }
9056  case NEON::BI__builtin_neon_vcvth_u16_f16:
9057    usgn = true;
9058    LLVM_FALLTHROUGH;
9059  case NEON::BI__builtin_neon_vcvth_s16_f16: {
9060    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9061    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9062    if (usgn)
9063      return Builder.CreateFPToUI(Ops[0], Int16Ty);
9064    return Builder.CreateFPToSI(Ops[0], Int16Ty);
9065  }
9066  case NEON::BI__builtin_neon_vcvth_u32_f16:
9067    usgn = true;
9068    LLVM_FALLTHROUGH;
9069  case NEON::BI__builtin_neon_vcvth_s32_f16: {
9070    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9071    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9072    if (usgn)
9073      return Builder.CreateFPToUI(Ops[0], Int32Ty);
9074    return Builder.CreateFPToSI(Ops[0], Int32Ty);
9075  }
9076  case NEON::BI__builtin_neon_vcvth_u64_f16:
9077    usgn = true;
9078    LLVM_FALLTHROUGH;
9079  case NEON::BI__builtin_neon_vcvth_s64_f16: {
9080    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9081    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9082    if (usgn)
9083      return Builder.CreateFPToUI(Ops[0], Int64Ty);
9084    return Builder.CreateFPToSI(Ops[0], Int64Ty);
9085  }
9086  case NEON::BI__builtin_neon_vcvtah_u16_f16:
9087  case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9088  case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9089  case NEON::BI__builtin_neon_vcvtph_u16_f16:
9090  case NEON::BI__builtin_neon_vcvtah_s16_f16:
9091  case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9092  case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9093  case NEON::BI__builtin_neon_vcvtph_s16_f16: {
9094    unsigned Int;
9095    llvm::Type* InTy = Int32Ty;
9096    llvm::Type* FTy  = HalfTy;
9097    llvm::Type *Tys[2] = {InTy, FTy};
9098    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9099    switch (BuiltinID) {
9100    default: llvm_unreachable("missing builtin ID in switch!");
9101    case NEON::BI__builtin_neon_vcvtah_u16_f16:
9102      Int = Intrinsic::aarch64_neon_fcvtau; break;
9103    case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9104      Int = Intrinsic::aarch64_neon_fcvtmu; break;
9105    case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9106      Int = Intrinsic::aarch64_neon_fcvtnu; break;
9107    case NEON::BI__builtin_neon_vcvtph_u16_f16:
9108      Int = Intrinsic::aarch64_neon_fcvtpu; break;
9109    case NEON::BI__builtin_neon_vcvtah_s16_f16:
9110      Int = Intrinsic::aarch64_neon_fcvtas; break;
9111    case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9112      Int = Intrinsic::aarch64_neon_fcvtms; break;
9113    case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9114      Int = Intrinsic::aarch64_neon_fcvtns; break;
9115    case NEON::BI__builtin_neon_vcvtph_s16_f16:
9116      Int = Intrinsic::aarch64_neon_fcvtps; break;
9117    }
9118    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9119    return Builder.CreateTrunc(Ops[0], Int16Ty);
9120  }
9121  case NEON::BI__builtin_neon_vcaleh_f16:
9122  case NEON::BI__builtin_neon_vcalth_f16:
9123  case NEON::BI__builtin_neon_vcageh_f16:
9124  case NEON::BI__builtin_neon_vcagth_f16: {
9125    unsigned Int;
9126    llvm::Type* InTy = Int32Ty;
9127    llvm::Type* FTy  = HalfTy;
9128    llvm::Type *Tys[2] = {InTy, FTy};
9129    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9130    switch (BuiltinID) {
9131    default: llvm_unreachable("missing builtin ID in switch!");
9132    case NEON::BI__builtin_neon_vcageh_f16:
9133      Int = Intrinsic::aarch64_neon_facge; break;
9134    case NEON::BI__builtin_neon_vcagth_f16:
9135      Int = Intrinsic::aarch64_neon_facgt; break;
9136    case NEON::BI__builtin_neon_vcaleh_f16:
9137      Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9138    case NEON::BI__builtin_neon_vcalth_f16:
9139      Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9140    }
9141    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9142    return Builder.CreateTrunc(Ops[0], Int16Ty);
9143  }
9144  case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9145  case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9146    unsigned Int;
9147    llvm::Type* InTy = Int32Ty;
9148    llvm::Type* FTy  = HalfTy;
9149    llvm::Type *Tys[2] = {InTy, FTy};
9150    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9151    switch (BuiltinID) {
9152    default: llvm_unreachable("missing builtin ID in switch!");
9153    case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9154      Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9155    case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9156      Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9157    }
9158    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9159    return Builder.CreateTrunc(Ops[0], Int16Ty);
9160  }
9161  case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9162  case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9163    unsigned Int;
9164    llvm::Type* FTy  = HalfTy;
9165    llvm::Type* InTy = Int32Ty;
9166    llvm::Type *Tys[2] = {FTy, InTy};
9167    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9168    switch (BuiltinID) {
9169    default: llvm_unreachable("missing builtin ID in switch!");
9170    case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9171      Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9172      Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9173      break;
9174    case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9175      Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9176      Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9177      break;
9178    }
9179    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9180  }
9181  case NEON::BI__builtin_neon_vpaddd_s64: {
9182    auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9183    Value *Vec = EmitScalarExpr(E->getArg(0));
9184    // The vector is v2f64, so make sure it's bitcast to that.
9185    Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9186    llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9187    llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9188    Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9189    Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9190    // Pairwise addition of a v2f64 into a scalar f64.
9191    return Builder.CreateAdd(Op0, Op1, "vpaddd");
9192  }
9193  case NEON::BI__builtin_neon_vpaddd_f64: {
9194    auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9195    Value *Vec = EmitScalarExpr(E->getArg(0));
9196    // The vector is v2f64, so make sure it's bitcast to that.
9197    Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9198    llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9199    llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9200    Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9201    Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9202    // Pairwise addition of a v2f64 into a scalar f64.
9203    return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9204  }
9205  case NEON::BI__builtin_neon_vpadds_f32: {
9206    auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9207    Value *Vec = EmitScalarExpr(E->getArg(0));
9208    // The vector is v2f32, so make sure it's bitcast to that.
9209    Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9210    llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9211    llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9212    Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9213    Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9214    // Pairwise addition of a v2f32 into a scalar f32.
9215    return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9216  }
9217  case NEON::BI__builtin_neon_vceqzd_s64:
9218  case NEON::BI__builtin_neon_vceqzd_f64:
9219  case NEON::BI__builtin_neon_vceqzs_f32:
9220  case NEON::BI__builtin_neon_vceqzh_f16:
9221    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9222    return EmitAArch64CompareBuiltinExpr(
9223        Ops[0], ConvertType(E->getCallReturnType(getContext())),
9224        ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9225  case NEON::BI__builtin_neon_vcgezd_s64:
9226  case NEON::BI__builtin_neon_vcgezd_f64:
9227  case NEON::BI__builtin_neon_vcgezs_f32:
9228  case NEON::BI__builtin_neon_vcgezh_f16:
9229    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9230    return EmitAArch64CompareBuiltinExpr(
9231        Ops[0], ConvertType(E->getCallReturnType(getContext())),
9232        ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9233  case NEON::BI__builtin_neon_vclezd_s64:
9234  case NEON::BI__builtin_neon_vclezd_f64:
9235  case NEON::BI__builtin_neon_vclezs_f32:
9236  case NEON::BI__builtin_neon_vclezh_f16:
9237    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9238    return EmitAArch64CompareBuiltinExpr(
9239        Ops[0], ConvertType(E->getCallReturnType(getContext())),
9240        ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9241  case NEON::BI__builtin_neon_vcgtzd_s64:
9242  case NEON::BI__builtin_neon_vcgtzd_f64:
9243  case NEON::BI__builtin_neon_vcgtzs_f32:
9244  case NEON::BI__builtin_neon_vcgtzh_f16:
9245    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9246    return EmitAArch64CompareBuiltinExpr(
9247        Ops[0], ConvertType(E->getCallReturnType(getContext())),
9248        ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9249  case NEON::BI__builtin_neon_vcltzd_s64:
9250  case NEON::BI__builtin_neon_vcltzd_f64:
9251  case NEON::BI__builtin_neon_vcltzs_f32:
9252  case NEON::BI__builtin_neon_vcltzh_f16:
9253    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9254    return EmitAArch64CompareBuiltinExpr(
9255        Ops[0], ConvertType(E->getCallReturnType(getContext())),
9256        ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9257
9258  case NEON::BI__builtin_neon_vceqzd_u64: {
9259    Ops.push_back(EmitScalarExpr(E->getArg(0)));
9260    Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9261    Ops[0] =
9262        Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9263    return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9264  }
9265  case NEON::BI__builtin_neon_vceqd_f64:
9266  case NEON::BI__builtin_neon_vcled_f64:
9267  case NEON::BI__builtin_neon_vcltd_f64:
9268  case NEON::BI__builtin_neon_vcged_f64:
9269  case NEON::BI__builtin_neon_vcgtd_f64: {
9270    llvm::CmpInst::Predicate P;
9271    switch (BuiltinID) {
9272    default: llvm_unreachable("missing builtin ID in switch!");
9273    case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9274    case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9275    case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9276    case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9277    case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9278    }
9279    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9280    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9281    Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9282    Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9283    return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9284  }
9285  case NEON::BI__builtin_neon_vceqs_f32:
9286  case NEON::BI__builtin_neon_vcles_f32:
9287  case NEON::BI__builtin_neon_vclts_f32:
9288  case NEON::BI__builtin_neon_vcges_f32:
9289  case NEON::BI__builtin_neon_vcgts_f32: {
9290    llvm::CmpInst::Predicate P;
9291    switch (BuiltinID) {
9292    default: llvm_unreachable("missing builtin ID in switch!");
9293    case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
9294    case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
9295    case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
9296    case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
9297    case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
9298    }
9299    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9300    Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
9301    Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
9302    Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9303    return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
9304  }
9305  case NEON::BI__builtin_neon_vceqh_f16:
9306  case NEON::BI__builtin_neon_vcleh_f16:
9307  case NEON::BI__builtin_neon_vclth_f16:
9308  case NEON::BI__builtin_neon_vcgeh_f16:
9309  case NEON::BI__builtin_neon_vcgth_f16: {
9310    llvm::CmpInst::Predicate P;
9311    switch (BuiltinID) {
9312    default: llvm_unreachable("missing builtin ID in switch!");
9313    case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
9314    case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
9315    case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
9316    case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
9317    case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
9318    }
9319    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9320    Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9321    Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
9322    Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9323    return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
9324  }
9325  case NEON::BI__builtin_neon_vceqd_s64:
9326  case NEON::BI__builtin_neon_vceqd_u64:
9327  case NEON::BI__builtin_neon_vcgtd_s64:
9328  case NEON::BI__builtin_neon_vcgtd_u64:
9329  case NEON::BI__builtin_neon_vcltd_s64:
9330  case NEON::BI__builtin_neon_vcltd_u64:
9331  case NEON::BI__builtin_neon_vcged_u64:
9332  case NEON::BI__builtin_neon_vcged_s64:
9333  case NEON::BI__builtin_neon_vcled_u64:
9334  case NEON::BI__builtin_neon_vcled_s64: {
9335    llvm::CmpInst::Predicate P;
9336    switch (BuiltinID) {
9337    default: llvm_unreachable("missing builtin ID in switch!");
9338    case NEON::BI__builtin_neon_vceqd_s64:
9339    case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
9340    case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
9341    case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
9342    case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
9343    case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
9344    case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
9345    case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
9346    case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
9347    case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
9348    }
9349    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9350    Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9351    Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9352    Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
9353    return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
9354  }
9355  case NEON::BI__builtin_neon_vtstd_s64:
9356  case NEON::BI__builtin_neon_vtstd_u64: {
9357    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9358    Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9359    Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9360    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
9361    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
9362                                llvm::Constant::getNullValue(Int64Ty));
9363    return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
9364  }
9365  case NEON::BI__builtin_neon_vset_lane_i8:
9366  case NEON::BI__builtin_neon_vset_lane_i16:
9367  case NEON::BI__builtin_neon_vset_lane_i32:
9368  case NEON::BI__builtin_neon_vset_lane_i64:
9369  case NEON::BI__builtin_neon_vset_lane_bf16:
9370  case NEON::BI__builtin_neon_vset_lane_f32:
9371  case NEON::BI__builtin_neon_vsetq_lane_i8:
9372  case NEON::BI__builtin_neon_vsetq_lane_i16:
9373  case NEON::BI__builtin_neon_vsetq_lane_i32:
9374  case NEON::BI__builtin_neon_vsetq_lane_i64:
9375  case NEON::BI__builtin_neon_vsetq_lane_bf16:
9376  case NEON::BI__builtin_neon_vsetq_lane_f32:
9377    Ops.push_back(EmitScalarExpr(E->getArg(2)));
9378    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9379  case NEON::BI__builtin_neon_vset_lane_f64:
9380    // The vector type needs a cast for the v1f64 variant.
9381    Ops[1] =
9382        Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
9383    Ops.push_back(EmitScalarExpr(E->getArg(2)));
9384    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9385  case NEON::BI__builtin_neon_vsetq_lane_f64:
9386    // The vector type needs a cast for the v2f64 variant.
9387    Ops[1] =
9388        Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
9389    Ops.push_back(EmitScalarExpr(E->getArg(2)));
9390    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9391
9392  case NEON::BI__builtin_neon_vget_lane_i8:
9393  case NEON::BI__builtin_neon_vdupb_lane_i8:
9394    Ops[0] =
9395        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
9396    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9397                                        "vget_lane");
9398  case NEON::BI__builtin_neon_vgetq_lane_i8:
9399  case NEON::BI__builtin_neon_vdupb_laneq_i8:
9400    Ops[0] =
9401        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
9402    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9403                                        "vgetq_lane");
9404  case NEON::BI__builtin_neon_vget_lane_i16:
9405  case NEON::BI__builtin_neon_vduph_lane_i16:
9406    Ops[0] =
9407        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
9408    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9409                                        "vget_lane");
9410  case NEON::BI__builtin_neon_vgetq_lane_i16:
9411  case NEON::BI__builtin_neon_vduph_laneq_i16:
9412    Ops[0] =
9413        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
9414    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9415                                        "vgetq_lane");
9416  case NEON::BI__builtin_neon_vget_lane_i32:
9417  case NEON::BI__builtin_neon_vdups_lane_i32:
9418    Ops[0] =
9419        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
9420    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9421                                        "vget_lane");
9422  case NEON::BI__builtin_neon_vdups_lane_f32:
9423    Ops[0] =
9424        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9425    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9426                                        "vdups_lane");
9427  case NEON::BI__builtin_neon_vgetq_lane_i32:
9428  case NEON::BI__builtin_neon_vdups_laneq_i32:
9429    Ops[0] =
9430        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
9431    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9432                                        "vgetq_lane");
9433  case NEON::BI__builtin_neon_vget_lane_i64:
9434  case NEON::BI__builtin_neon_vdupd_lane_i64:
9435    Ops[0] =
9436        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
9437    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9438                                        "vget_lane");
9439  case NEON::BI__builtin_neon_vdupd_lane_f64:
9440    Ops[0] =
9441        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9442    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9443                                        "vdupd_lane");
9444  case NEON::BI__builtin_neon_vgetq_lane_i64:
9445  case NEON::BI__builtin_neon_vdupd_laneq_i64:
9446    Ops[0] =
9447        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
9448    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9449                                        "vgetq_lane");
9450  case NEON::BI__builtin_neon_vget_lane_f32:
9451    Ops[0] =
9452        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9453    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9454                                        "vget_lane");
9455  case NEON::BI__builtin_neon_vget_lane_f64:
9456    Ops[0] =
9457        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9458    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9459                                        "vget_lane");
9460  case NEON::BI__builtin_neon_vgetq_lane_f32:
9461  case NEON::BI__builtin_neon_vdups_laneq_f32:
9462    Ops[0] =
9463        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
9464    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9465                                        "vgetq_lane");
9466  case NEON::BI__builtin_neon_vgetq_lane_f64:
9467  case NEON::BI__builtin_neon_vdupd_laneq_f64:
9468    Ops[0] =
9469        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
9470    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9471                                        "vgetq_lane");
9472  case NEON::BI__builtin_neon_vaddh_f16:
9473    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9474    return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
9475  case NEON::BI__builtin_neon_vsubh_f16:
9476    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9477    return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
9478  case NEON::BI__builtin_neon_vmulh_f16:
9479    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9480    return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
9481  case NEON::BI__builtin_neon_vdivh_f16:
9482    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9483    return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
9484  case NEON::BI__builtin_neon_vfmah_f16:
9485    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9486    return emitCallMaybeConstrainedFPBuiltin(
9487        *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9488        {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
9489  case NEON::BI__builtin_neon_vfmsh_f16: {
9490    // FIXME: This should be an fneg instruction:
9491    Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
9492    Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
9493
9494    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9495    return emitCallMaybeConstrainedFPBuiltin(
9496        *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9497        {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
9498  }
9499  case NEON::BI__builtin_neon_vaddd_s64:
9500  case NEON::BI__builtin_neon_vaddd_u64:
9501    return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
9502  case NEON::BI__builtin_neon_vsubd_s64:
9503  case NEON::BI__builtin_neon_vsubd_u64:
9504    return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
9505  case NEON::BI__builtin_neon_vqdmlalh_s16:
9506  case NEON::BI__builtin_neon_vqdmlslh_s16: {
9507    SmallVector<Value *, 2> ProductOps;
9508    ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9509    ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
9510    auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9511    Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9512                          ProductOps, "vqdmlXl");
9513    Constant *CI = ConstantInt::get(SizeTy, 0);
9514    Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9515
9516    unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
9517                                        ? Intrinsic::aarch64_neon_sqadd
9518                                        : Intrinsic::aarch64_neon_sqsub;
9519    return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
9520  }
9521  case NEON::BI__builtin_neon_vqshlud_n_s64: {
9522    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9523    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9524    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
9525                        Ops, "vqshlu_n");
9526  }
9527  case NEON::BI__builtin_neon_vqshld_n_u64:
9528  case NEON::BI__builtin_neon_vqshld_n_s64: {
9529    unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
9530                                   ? Intrinsic::aarch64_neon_uqshl
9531                                   : Intrinsic::aarch64_neon_sqshl;
9532    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9533    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9534    return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
9535  }
9536  case NEON::BI__builtin_neon_vrshrd_n_u64:
9537  case NEON::BI__builtin_neon_vrshrd_n_s64: {
9538    unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
9539                                   ? Intrinsic::aarch64_neon_urshl
9540                                   : Intrinsic::aarch64_neon_srshl;
9541    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9542    int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
9543    Ops[1] = ConstantInt::get(Int64Ty, -SV);
9544    return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
9545  }
9546  case NEON::BI__builtin_neon_vrsrad_n_u64:
9547  case NEON::BI__builtin_neon_vrsrad_n_s64: {
9548    unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
9549                                   ? Intrinsic::aarch64_neon_urshl
9550                                   : Intrinsic::aarch64_neon_srshl;
9551    Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9552    Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
9553    Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
9554                                {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
9555    return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
9556  }
9557  case NEON::BI__builtin_neon_vshld_n_s64:
9558  case NEON::BI__builtin_neon_vshld_n_u64: {
9559    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9560    return Builder.CreateShl(
9561        Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
9562  }
9563  case NEON::BI__builtin_neon_vshrd_n_s64: {
9564    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9565    return Builder.CreateAShr(
9566        Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9567                                                   Amt->getZExtValue())),
9568        "shrd_n");
9569  }
9570  case NEON::BI__builtin_neon_vshrd_n_u64: {
9571    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9572    uint64_t ShiftAmt = Amt->getZExtValue();
9573    // Right-shifting an unsigned value by its size yields 0.
9574    if (ShiftAmt == 64)
9575      return ConstantInt::get(Int64Ty, 0);
9576    return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
9577                              "shrd_n");
9578  }
9579  case NEON::BI__builtin_neon_vsrad_n_s64: {
9580    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9581    Ops[1] = Builder.CreateAShr(
9582        Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9583                                                   Amt->getZExtValue())),
9584        "shrd_n");
9585    return Builder.CreateAdd(Ops[0], Ops[1]);
9586  }
9587  case NEON::BI__builtin_neon_vsrad_n_u64: {
9588    llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9589    uint64_t ShiftAmt = Amt->getZExtValue();
9590    // Right-shifting an unsigned value by its size yields 0.
9591    // As Op + 0 = Op, return Ops[0] directly.
9592    if (ShiftAmt == 64)
9593      return Ops[0];
9594    Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
9595                                "shrd_n");
9596    return Builder.CreateAdd(Ops[0], Ops[1]);
9597  }
9598  case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
9599  case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
9600  case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
9601  case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
9602    Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9603                                          "lane");
9604    SmallVector<Value *, 2> ProductOps;
9605    ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9606    ProductOps.push_back(vectorWrapScalar16(Ops[2]));
9607    auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9608    Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9609                          ProductOps, "vqdmlXl");
9610    Constant *CI = ConstantInt::get(SizeTy, 0);
9611    Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9612    Ops.pop_back();
9613
9614    unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
9615                       BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
9616                          ? Intrinsic::aarch64_neon_sqadd
9617                          : Intrinsic::aarch64_neon_sqsub;
9618    return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
9619  }
9620  case NEON::BI__builtin_neon_vqdmlals_s32:
9621  case NEON::BI__builtin_neon_vqdmlsls_s32: {
9622    SmallVector<Value *, 2> ProductOps;
9623    ProductOps.push_back(Ops[1]);
9624    ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
9625    Ops[1] =
9626        EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9627                     ProductOps, "vqdmlXl");
9628
9629    unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
9630                                        ? Intrinsic::aarch64_neon_sqadd
9631                                        : Intrinsic::aarch64_neon_sqsub;
9632    return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
9633  }
9634  case NEON::BI__builtin_neon_vqdmlals_lane_s32:
9635  case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
9636  case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
9637  case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
9638    Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9639                                          "lane");
9640    SmallVector<Value *, 2> ProductOps;
9641    ProductOps.push_back(Ops[1]);
9642    ProductOps.push_back(Ops[2]);
9643    Ops[1] =
9644        EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9645                     ProductOps, "vqdmlXl");
9646    Ops.pop_back();
9647
9648    unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
9649                       BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
9650                          ? Intrinsic::aarch64_neon_sqadd
9651                          : Intrinsic::aarch64_neon_sqsub;
9652    return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
9653  }
9654  case NEON::BI__builtin_neon_vget_lane_bf16:
9655  case NEON::BI__builtin_neon_vduph_lane_bf16:
9656  case NEON::BI__builtin_neon_vduph_lane_f16: {
9657    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9658                                        "vget_lane");
9659  }
9660  case NEON::BI__builtin_neon_vgetq_lane_bf16:
9661  case NEON::BI__builtin_neon_vduph_laneq_bf16:
9662  case NEON::BI__builtin_neon_vduph_laneq_f16: {
9663    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9664                                        "vgetq_lane");
9665  }
9666  case AArch64::BI_BitScanForward:
9667  case AArch64::BI_BitScanForward64:
9668    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
9669  case AArch64::BI_BitScanReverse:
9670  case AArch64::BI_BitScanReverse64:
9671    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
9672  case AArch64::BI_InterlockedAnd64:
9673    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
9674  case AArch64::BI_InterlockedExchange64:
9675    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
9676  case AArch64::BI_InterlockedExchangeAdd64:
9677    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
9678  case AArch64::BI_InterlockedExchangeSub64:
9679    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
9680  case AArch64::BI_InterlockedOr64:
9681    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
9682  case AArch64::BI_InterlockedXor64:
9683    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
9684  case AArch64::BI_InterlockedDecrement64:
9685    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
9686  case AArch64::BI_InterlockedIncrement64:
9687    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
9688  case AArch64::BI_InterlockedExchangeAdd8_acq:
9689  case AArch64::BI_InterlockedExchangeAdd16_acq:
9690  case AArch64::BI_InterlockedExchangeAdd_acq:
9691  case AArch64::BI_InterlockedExchangeAdd64_acq:
9692    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
9693  case AArch64::BI_InterlockedExchangeAdd8_rel:
9694  case AArch64::BI_InterlockedExchangeAdd16_rel:
9695  case AArch64::BI_InterlockedExchangeAdd_rel:
9696  case AArch64::BI_InterlockedExchangeAdd64_rel:
9697    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
9698  case AArch64::BI_InterlockedExchangeAdd8_nf:
9699  case AArch64::BI_InterlockedExchangeAdd16_nf:
9700  case AArch64::BI_InterlockedExchangeAdd_nf:
9701  case AArch64::BI_InterlockedExchangeAdd64_nf:
9702    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
9703  case AArch64::BI_InterlockedExchange8_acq:
9704  case AArch64::BI_InterlockedExchange16_acq:
9705  case AArch64::BI_InterlockedExchange_acq:
9706  case AArch64::BI_InterlockedExchange64_acq:
9707    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
9708  case AArch64::BI_InterlockedExchange8_rel:
9709  case AArch64::BI_InterlockedExchange16_rel:
9710  case AArch64::BI_InterlockedExchange_rel:
9711  case AArch64::BI_InterlockedExchange64_rel:
9712    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
9713  case AArch64::BI_InterlockedExchange8_nf:
9714  case AArch64::BI_InterlockedExchange16_nf:
9715  case AArch64::BI_InterlockedExchange_nf:
9716  case AArch64::BI_InterlockedExchange64_nf:
9717    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
9718  case AArch64::BI_InterlockedCompareExchange8_acq:
9719  case AArch64::BI_InterlockedCompareExchange16_acq:
9720  case AArch64::BI_InterlockedCompareExchange_acq:
9721  case AArch64::BI_InterlockedCompareExchange64_acq:
9722    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
9723  case AArch64::BI_InterlockedCompareExchange8_rel:
9724  case AArch64::BI_InterlockedCompareExchange16_rel:
9725  case AArch64::BI_InterlockedCompareExchange_rel:
9726  case AArch64::BI_InterlockedCompareExchange64_rel:
9727    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
9728  case AArch64::BI_InterlockedCompareExchange8_nf:
9729  case AArch64::BI_InterlockedCompareExchange16_nf:
9730  case AArch64::BI_InterlockedCompareExchange_nf:
9731  case AArch64::BI_InterlockedCompareExchange64_nf:
9732    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
9733  case AArch64::BI_InterlockedOr8_acq:
9734  case AArch64::BI_InterlockedOr16_acq:
9735  case AArch64::BI_InterlockedOr_acq:
9736  case AArch64::BI_InterlockedOr64_acq:
9737    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
9738  case AArch64::BI_InterlockedOr8_rel:
9739  case AArch64::BI_InterlockedOr16_rel:
9740  case AArch64::BI_InterlockedOr_rel:
9741  case AArch64::BI_InterlockedOr64_rel:
9742    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
9743  case AArch64::BI_InterlockedOr8_nf:
9744  case AArch64::BI_InterlockedOr16_nf:
9745  case AArch64::BI_InterlockedOr_nf:
9746  case AArch64::BI_InterlockedOr64_nf:
9747    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
9748  case AArch64::BI_InterlockedXor8_acq:
9749  case AArch64::BI_InterlockedXor16_acq:
9750  case AArch64::BI_InterlockedXor_acq:
9751  case AArch64::BI_InterlockedXor64_acq:
9752    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
9753  case AArch64::BI_InterlockedXor8_rel:
9754  case AArch64::BI_InterlockedXor16_rel:
9755  case AArch64::BI_InterlockedXor_rel:
9756  case AArch64::BI_InterlockedXor64_rel:
9757    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
9758  case AArch64::BI_InterlockedXor8_nf:
9759  case AArch64::BI_InterlockedXor16_nf:
9760  case AArch64::BI_InterlockedXor_nf:
9761  case AArch64::BI_InterlockedXor64_nf:
9762    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
9763  case AArch64::BI_InterlockedAnd8_acq:
9764  case AArch64::BI_InterlockedAnd16_acq:
9765  case AArch64::BI_InterlockedAnd_acq:
9766  case AArch64::BI_InterlockedAnd64_acq:
9767    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
9768  case AArch64::BI_InterlockedAnd8_rel:
9769  case AArch64::BI_InterlockedAnd16_rel:
9770  case AArch64::BI_InterlockedAnd_rel:
9771  case AArch64::BI_InterlockedAnd64_rel:
9772    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
9773  case AArch64::BI_InterlockedAnd8_nf:
9774  case AArch64::BI_InterlockedAnd16_nf:
9775  case AArch64::BI_InterlockedAnd_nf:
9776  case AArch64::BI_InterlockedAnd64_nf:
9777    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
9778  case AArch64::BI_InterlockedIncrement16_acq:
9779  case AArch64::BI_InterlockedIncrement_acq:
9780  case AArch64::BI_InterlockedIncrement64_acq:
9781    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
9782  case AArch64::BI_InterlockedIncrement16_rel:
9783  case AArch64::BI_InterlockedIncrement_rel:
9784  case AArch64::BI_InterlockedIncrement64_rel:
9785    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
9786  case AArch64::BI_InterlockedIncrement16_nf:
9787  case AArch64::BI_InterlockedIncrement_nf:
9788  case AArch64::BI_InterlockedIncrement64_nf:
9789    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
9790  case AArch64::BI_InterlockedDecrement16_acq:
9791  case AArch64::BI_InterlockedDecrement_acq:
9792  case AArch64::BI_InterlockedDecrement64_acq:
9793    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
9794  case AArch64::BI_InterlockedDecrement16_rel:
9795  case AArch64::BI_InterlockedDecrement_rel:
9796  case AArch64::BI_InterlockedDecrement64_rel:
9797    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
9798  case AArch64::BI_InterlockedDecrement16_nf:
9799  case AArch64::BI_InterlockedDecrement_nf:
9800  case AArch64::BI_InterlockedDecrement64_nf:
9801    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
9802
9803  case AArch64::BI_InterlockedAdd: {
9804    Value *Arg0 = EmitScalarExpr(E->getArg(0));
9805    Value *Arg1 = EmitScalarExpr(E->getArg(1));
9806    AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
9807      AtomicRMWInst::Add, Arg0, Arg1,
9808      llvm::AtomicOrdering::SequentiallyConsistent);
9809    return Builder.CreateAdd(RMWI, Arg1);
9810  }
9811  }
9812
9813  llvm::VectorType *VTy = GetNeonType(this, Type);
9814  llvm::Type *Ty = VTy;
9815  if (!Ty)
9816    return nullptr;
9817
9818  // Not all intrinsics handled by the common case work for AArch64 yet, so only
9819  // defer to common code if it's been added to our special map.
9820  Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
9821                                        AArch64SIMDIntrinsicsProvenSorted);
9822
9823  if (Builtin)
9824    return EmitCommonNeonBuiltinExpr(
9825        Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
9826        Builtin->NameHint, Builtin->TypeModifier, E, Ops,
9827        /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
9828
9829  if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
9830    return V;
9831
9832  unsigned Int;
9833  switch (BuiltinID) {
9834  default: return nullptr;
9835  case NEON::BI__builtin_neon_vbsl_v:
9836  case NEON::BI__builtin_neon_vbslq_v: {
9837    llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
9838    Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
9839    Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
9840    Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
9841
9842    Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
9843    Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
9844    Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
9845    return Builder.CreateBitCast(Ops[0], Ty);
9846  }
9847  case NEON::BI__builtin_neon_vfma_lane_v:
9848  case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
9849    // The ARM builtins (and instructions) have the addend as the first
9850    // operand, but the 'fma' intrinsics have it last. Swap it around here.
9851    Value *Addend = Ops[0];
9852    Value *Multiplicand = Ops[1];
9853    Value *LaneSource = Ops[2];
9854    Ops[0] = Multiplicand;
9855    Ops[1] = LaneSource;
9856    Ops[2] = Addend;
9857
9858    // Now adjust things to handle the lane access.
9859    auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
9860                         ? llvm::FixedVectorType::get(VTy->getElementType(),
9861                                                      VTy->getNumElements() / 2)
9862                         : VTy;
9863    llvm::Constant *cst = cast<Constant>(Ops[3]);
9864    Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
9865    Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
9866    Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
9867
9868    Ops.pop_back();
9869    Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
9870                                       : Intrinsic::fma;
9871    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
9872  }
9873  case NEON::BI__builtin_neon_vfma_laneq_v: {
9874    llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
9875    // v1f64 fma should be mapped to Neon scalar f64 fma
9876    if (VTy && VTy->getElementType() == DoubleTy) {
9877      Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9878      Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9879      llvm::Type *VTy = GetNeonType(this,
9880        NeonTypeFlags(NeonTypeFlags::Float64, false, true));
9881      Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
9882      Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
9883      Value *Result;
9884      Result = emitCallMaybeConstrainedFPBuiltin(
9885          *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
9886          DoubleTy, {Ops[1], Ops[2], Ops[0]});
9887      return Builder.CreateBitCast(Result, Ty);
9888    }
9889    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9890    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9891
9892    auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
9893                                           VTy->getNumElements() * 2);
9894    Ops[2] = Builder.CreateBitCast(Ops[2], STy);
9895    Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
9896                                               cast<ConstantInt>(Ops[3]));
9897    Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
9898
9899    return emitCallMaybeConstrainedFPBuiltin(
9900        *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9901        {Ops[2], Ops[1], Ops[0]});
9902  }
9903  case NEON::BI__builtin_neon_vfmaq_laneq_v: {
9904    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9905    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9906
9907    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9908    Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
9909    return emitCallMaybeConstrainedFPBuiltin(
9910        *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9911        {Ops[2], Ops[1], Ops[0]});
9912  }
9913  case NEON::BI__builtin_neon_vfmah_lane_f16:
9914  case NEON::BI__builtin_neon_vfmas_lane_f32:
9915  case NEON::BI__builtin_neon_vfmah_laneq_f16:
9916  case NEON::BI__builtin_neon_vfmas_laneq_f32:
9917  case NEON::BI__builtin_neon_vfmad_lane_f64:
9918  case NEON::BI__builtin_neon_vfmad_laneq_f64: {
9919    Ops.push_back(EmitScalarExpr(E->getArg(3)));
9920    llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
9921    Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
9922    return emitCallMaybeConstrainedFPBuiltin(
9923        *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9924        {Ops[1], Ops[2], Ops[0]});
9925  }
9926  case NEON::BI__builtin_neon_vmull_v:
9927    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9928    Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
9929    if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
9930    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
9931  case NEON::BI__builtin_neon_vmax_v:
9932  case NEON::BI__builtin_neon_vmaxq_v:
9933    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9934    Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
9935    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
9936    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
9937  case NEON::BI__builtin_neon_vmaxh_f16: {
9938    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9939    Int = Intrinsic::aarch64_neon_fmax;
9940    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
9941  }
9942  case NEON::BI__builtin_neon_vmin_v:
9943  case NEON::BI__builtin_neon_vminq_v:
9944    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9945    Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
9946    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
9947    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
9948  case NEON::BI__builtin_neon_vminh_f16: {
9949    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9950    Int = Intrinsic::aarch64_neon_fmin;
9951    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
9952  }
9953  case NEON::BI__builtin_neon_vabd_v:
9954  case NEON::BI__builtin_neon_vabdq_v:
9955    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9956    Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
9957    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
9958    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
9959  case NEON::BI__builtin_neon_vpadal_v:
9960  case NEON::BI__builtin_neon_vpadalq_v: {
9961    unsigned ArgElts = VTy->getNumElements();
9962    llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
9963    unsigned BitWidth = EltTy->getBitWidth();
9964    auto *ArgTy = llvm::FixedVectorType::get(
9965        llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
9966    llvm::Type* Tys[2] = { VTy, ArgTy };
9967    Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
9968    SmallVector<llvm::Value*, 1> TmpOps;
9969    TmpOps.push_back(Ops[1]);
9970    Function *F = CGM.getIntrinsic(Int, Tys);
9971    llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
9972    llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
9973    return Builder.CreateAdd(tmp, addend);
9974  }
9975  case NEON::BI__builtin_neon_vpmin_v:
9976  case NEON::BI__builtin_neon_vpminq_v:
9977    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9978    Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
9979    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
9980    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
9981  case NEON::BI__builtin_neon_vpmax_v:
9982  case NEON::BI__builtin_neon_vpmaxq_v:
9983    // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9984    Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
9985    if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
9986    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
9987  case NEON::BI__builtin_neon_vminnm_v:
9988  case NEON::BI__builtin_neon_vminnmq_v:
9989    Int = Intrinsic::aarch64_neon_fminnm;
9990    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
9991  case NEON::BI__builtin_neon_vminnmh_f16:
9992    Ops.push_back(EmitScalarExpr(E->getArg(1)));
9993    Int = Intrinsic::aarch64_neon_fminnm;
9994    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
9995  case NEON::BI__builtin_neon_vmaxnm_v:
9996  case NEON::BI__builtin_neon_vmaxnmq_v:
9997    Int = Intrinsic::aarch64_neon_fmaxnm;
9998    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
9999  case NEON::BI__builtin_neon_vmaxnmh_f16:
10000    Ops.push_back(EmitScalarExpr(E->getArg(1)));
10001    Int = Intrinsic::aarch64_neon_fmaxnm;
10002    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10003  case NEON::BI__builtin_neon_vrecpss_f32: {
10004    Ops.push_back(EmitScalarExpr(E->getArg(1)));
10005    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10006                        Ops, "vrecps");
10007  }
10008  case NEON::BI__builtin_neon_vrecpsd_f64:
10009    Ops.push_back(EmitScalarExpr(E->getArg(1)));
10010    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10011                        Ops, "vrecps");
10012  case NEON::BI__builtin_neon_vrecpsh_f16:
10013    Ops.push_back(EmitScalarExpr(E->getArg(1)));
10014    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10015                        Ops, "vrecps");
10016  case NEON::BI__builtin_neon_vqshrun_n_v:
10017    Int = Intrinsic::aarch64_neon_sqshrun;
10018    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10019  case NEON::BI__builtin_neon_vqrshrun_n_v:
10020    Int = Intrinsic::aarch64_neon_sqrshrun;
10021    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10022  case NEON::BI__builtin_neon_vqshrn_n_v:
10023    Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10024    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10025  case NEON::BI__builtin_neon_vrshrn_n_v:
10026    Int = Intrinsic::aarch64_neon_rshrn;
10027    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10028  case NEON::BI__builtin_neon_vqrshrn_n_v:
10029    Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10030    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10031  case NEON::BI__builtin_neon_vrndah_f16: {
10032    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10033    Int = Builder.getIsFPConstrained()
10034              ? Intrinsic::experimental_constrained_round
10035              : Intrinsic::round;
10036    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10037  }
10038  case NEON::BI__builtin_neon_vrnda_v:
10039  case NEON::BI__builtin_neon_vrndaq_v: {
10040    Int = Builder.getIsFPConstrained()
10041              ? Intrinsic::experimental_constrained_round
10042              : Intrinsic::round;
10043    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10044  }
10045  case NEON::BI__builtin_neon_vrndih_f16: {
10046    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10047    Int = Builder.getIsFPConstrained()
10048              ? Intrinsic::experimental_constrained_nearbyint
10049              : Intrinsic::nearbyint;
10050    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10051  }
10052  case NEON::BI__builtin_neon_vrndmh_f16: {
10053    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10054    Int = Builder.getIsFPConstrained()
10055              ? Intrinsic::experimental_constrained_floor
10056              : Intrinsic::floor;
10057    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10058  }
10059  case NEON::BI__builtin_neon_vrndm_v:
10060  case NEON::BI__builtin_neon_vrndmq_v: {
10061    Int = Builder.getIsFPConstrained()
10062              ? Intrinsic::experimental_constrained_floor
10063              : Intrinsic::floor;
10064    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10065  }
10066  case NEON::BI__builtin_neon_vrndnh_f16: {
10067    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10068    Int = Intrinsic::aarch64_neon_frintn;
10069    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10070  }
10071  case NEON::BI__builtin_neon_vrndn_v:
10072  case NEON::BI__builtin_neon_vrndnq_v: {
10073    Int = Intrinsic::aarch64_neon_frintn;
10074    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10075  }
10076  case NEON::BI__builtin_neon_vrndns_f32: {
10077    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10078    Int = Intrinsic::aarch64_neon_frintn;
10079    return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10080  }
10081  case NEON::BI__builtin_neon_vrndph_f16: {
10082    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10083    Int = Builder.getIsFPConstrained()
10084              ? Intrinsic::experimental_constrained_ceil
10085              : Intrinsic::ceil;
10086    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10087  }
10088  case NEON::BI__builtin_neon_vrndp_v:
10089  case NEON::BI__builtin_neon_vrndpq_v: {
10090    Int = Builder.getIsFPConstrained()
10091              ? Intrinsic::experimental_constrained_ceil
10092              : Intrinsic::ceil;
10093    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10094  }
10095  case NEON::BI__builtin_neon_vrndxh_f16: {
10096    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10097    Int = Builder.getIsFPConstrained()
10098              ? Intrinsic::experimental_constrained_rint
10099              : Intrinsic::rint;
10100    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10101  }
10102  case NEON::BI__builtin_neon_vrndx_v:
10103  case NEON::BI__builtin_neon_vrndxq_v: {
10104    Int = Builder.getIsFPConstrained()
10105              ? Intrinsic::experimental_constrained_rint
10106              : Intrinsic::rint;
10107    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10108  }
10109  case NEON::BI__builtin_neon_vrndh_f16: {
10110    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10111    Int = Builder.getIsFPConstrained()
10112              ? Intrinsic::experimental_constrained_trunc
10113              : Intrinsic::trunc;
10114    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10115  }
10116  case NEON::BI__builtin_neon_vrnd_v:
10117  case NEON::BI__builtin_neon_vrndq_v: {
10118    Int = Builder.getIsFPConstrained()
10119              ? Intrinsic::experimental_constrained_trunc
10120              : Intrinsic::trunc;
10121    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10122  }
10123  case NEON::BI__builtin_neon_vcvt_f64_v:
10124  case NEON::BI__builtin_neon_vcvtq_f64_v:
10125    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10126    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10127    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10128                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10129  case NEON::BI__builtin_neon_vcvt_f64_f32: {
10130    assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10131           "unexpected vcvt_f64_f32 builtin");
10132    NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10133    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10134
10135    return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10136  }
10137  case NEON::BI__builtin_neon_vcvt_f32_f64: {
10138    assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10139           "unexpected vcvt_f32_f64 builtin");
10140    NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10141    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10142
10143    return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10144  }
10145  case NEON::BI__builtin_neon_vcvt_s32_v:
10146  case NEON::BI__builtin_neon_vcvt_u32_v:
10147  case NEON::BI__builtin_neon_vcvt_s64_v:
10148  case NEON::BI__builtin_neon_vcvt_u64_v:
10149  case NEON::BI__builtin_neon_vcvt_s16_v:
10150  case NEON::BI__builtin_neon_vcvt_u16_v:
10151  case NEON::BI__builtin_neon_vcvtq_s32_v:
10152  case NEON::BI__builtin_neon_vcvtq_u32_v:
10153  case NEON::BI__builtin_neon_vcvtq_s64_v:
10154  case NEON::BI__builtin_neon_vcvtq_u64_v:
10155  case NEON::BI__builtin_neon_vcvtq_s16_v:
10156  case NEON::BI__builtin_neon_vcvtq_u16_v: {
10157    Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
10158    if (usgn)
10159      return Builder.CreateFPToUI(Ops[0], Ty);
10160    return Builder.CreateFPToSI(Ops[0], Ty);
10161  }
10162  case NEON::BI__builtin_neon_vcvta_s16_v:
10163  case NEON::BI__builtin_neon_vcvta_u16_v:
10164  case NEON::BI__builtin_neon_vcvta_s32_v:
10165  case NEON::BI__builtin_neon_vcvtaq_s16_v:
10166  case NEON::BI__builtin_neon_vcvtaq_s32_v:
10167  case NEON::BI__builtin_neon_vcvta_u32_v:
10168  case NEON::BI__builtin_neon_vcvtaq_u16_v:
10169  case NEON::BI__builtin_neon_vcvtaq_u32_v:
10170  case NEON::BI__builtin_neon_vcvta_s64_v:
10171  case NEON::BI__builtin_neon_vcvtaq_s64_v:
10172  case NEON::BI__builtin_neon_vcvta_u64_v:
10173  case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10174    Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10175    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10176    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10177  }
10178  case NEON::BI__builtin_neon_vcvtm_s16_v:
10179  case NEON::BI__builtin_neon_vcvtm_s32_v:
10180  case NEON::BI__builtin_neon_vcvtmq_s16_v:
10181  case NEON::BI__builtin_neon_vcvtmq_s32_v:
10182  case NEON::BI__builtin_neon_vcvtm_u16_v:
10183  case NEON::BI__builtin_neon_vcvtm_u32_v:
10184  case NEON::BI__builtin_neon_vcvtmq_u16_v:
10185  case NEON::BI__builtin_neon_vcvtmq_u32_v:
10186  case NEON::BI__builtin_neon_vcvtm_s64_v:
10187  case NEON::BI__builtin_neon_vcvtmq_s64_v:
10188  case NEON::BI__builtin_neon_vcvtm_u64_v:
10189  case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10190    Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10191    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10192    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10193  }
10194  case NEON::BI__builtin_neon_vcvtn_s16_v:
10195  case NEON::BI__builtin_neon_vcvtn_s32_v:
10196  case NEON::BI__builtin_neon_vcvtnq_s16_v:
10197  case NEON::BI__builtin_neon_vcvtnq_s32_v:
10198  case NEON::BI__builtin_neon_vcvtn_u16_v:
10199  case NEON::BI__builtin_neon_vcvtn_u32_v:
10200  case NEON::BI__builtin_neon_vcvtnq_u16_v:
10201  case NEON::BI__builtin_neon_vcvtnq_u32_v:
10202  case NEON::BI__builtin_neon_vcvtn_s64_v:
10203  case NEON::BI__builtin_neon_vcvtnq_s64_v:
10204  case NEON::BI__builtin_neon_vcvtn_u64_v:
10205  case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10206    Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10207    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10208    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10209  }
10210  case NEON::BI__builtin_neon_vcvtp_s16_v:
10211  case NEON::BI__builtin_neon_vcvtp_s32_v:
10212  case NEON::BI__builtin_neon_vcvtpq_s16_v:
10213  case NEON::BI__builtin_neon_vcvtpq_s32_v:
10214  case NEON::BI__builtin_neon_vcvtp_u16_v:
10215  case NEON::BI__builtin_neon_vcvtp_u32_v:
10216  case NEON::BI__builtin_neon_vcvtpq_u16_v:
10217  case NEON::BI__builtin_neon_vcvtpq_u32_v:
10218  case NEON::BI__builtin_neon_vcvtp_s64_v:
10219  case NEON::BI__builtin_neon_vcvtpq_s64_v:
10220  case NEON::BI__builtin_neon_vcvtp_u64_v:
10221  case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10222    Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10223    llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10224    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10225  }
10226  case NEON::BI__builtin_neon_vmulx_v:
10227  case NEON::BI__builtin_neon_vmulxq_v: {
10228    Int = Intrinsic::aarch64_neon_fmulx;
10229    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10230  }
10231  case NEON::BI__builtin_neon_vmulxh_lane_f16:
10232  case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10233    // vmulx_lane should be mapped to Neon scalar mulx after
10234    // extracting the scalar element
10235    Ops.push_back(EmitScalarExpr(E->getArg(2)));
10236    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10237    Ops.pop_back();
10238    Int = Intrinsic::aarch64_neon_fmulx;
10239    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10240  }
10241  case NEON::BI__builtin_neon_vmul_lane_v:
10242  case NEON::BI__builtin_neon_vmul_laneq_v: {
10243    // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10244    bool Quad = false;
10245    if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10246      Quad = true;
10247    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10248    llvm::Type *VTy = GetNeonType(this,
10249      NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10250    Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10251    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10252    Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10253    return Builder.CreateBitCast(Result, Ty);
10254  }
10255  case NEON::BI__builtin_neon_vnegd_s64:
10256    return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10257  case NEON::BI__builtin_neon_vnegh_f16:
10258    return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10259  case NEON::BI__builtin_neon_vpmaxnm_v:
10260  case NEON::BI__builtin_neon_vpmaxnmq_v: {
10261    Int = Intrinsic::aarch64_neon_fmaxnmp;
10262    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10263  }
10264  case NEON::BI__builtin_neon_vpminnm_v:
10265  case NEON::BI__builtin_neon_vpminnmq_v: {
10266    Int = Intrinsic::aarch64_neon_fminnmp;
10267    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10268  }
10269  case NEON::BI__builtin_neon_vsqrth_f16: {
10270    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10271    Int = Builder.getIsFPConstrained()
10272              ? Intrinsic::experimental_constrained_sqrt
10273              : Intrinsic::sqrt;
10274    return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10275  }
10276  case NEON::BI__builtin_neon_vsqrt_v:
10277  case NEON::BI__builtin_neon_vsqrtq_v: {
10278    Int = Builder.getIsFPConstrained()
10279              ? Intrinsic::experimental_constrained_sqrt
10280              : Intrinsic::sqrt;
10281    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10282    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10283  }
10284  case NEON::BI__builtin_neon_vrbit_v:
10285  case NEON::BI__builtin_neon_vrbitq_v: {
10286    Int = Intrinsic::aarch64_neon_rbit;
10287    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10288  }
10289  case NEON::BI__builtin_neon_vaddv_u8:
10290    // FIXME: These are handled by the AArch64 scalar code.
10291    usgn = true;
10292    LLVM_FALLTHROUGH;
10293  case NEON::BI__builtin_neon_vaddv_s8: {
10294    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10295    Ty = Int32Ty;
10296    VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10297    llvm::Type *Tys[2] = { Ty, VTy };
10298    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10299    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10300    return Builder.CreateTrunc(Ops[0], Int8Ty);
10301  }
10302  case NEON::BI__builtin_neon_vaddv_u16:
10303    usgn = true;
10304    LLVM_FALLTHROUGH;
10305  case NEON::BI__builtin_neon_vaddv_s16: {
10306    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10307    Ty = Int32Ty;
10308    VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10309    llvm::Type *Tys[2] = { Ty, VTy };
10310    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10311    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10312    return Builder.CreateTrunc(Ops[0], Int16Ty);
10313  }
10314  case NEON::BI__builtin_neon_vaddvq_u8:
10315    usgn = true;
10316    LLVM_FALLTHROUGH;
10317  case NEON::BI__builtin_neon_vaddvq_s8: {
10318    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10319    Ty = Int32Ty;
10320    VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10321    llvm::Type *Tys[2] = { Ty, VTy };
10322    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10323    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10324    return Builder.CreateTrunc(Ops[0], Int8Ty);
10325  }
10326  case NEON::BI__builtin_neon_vaddvq_u16:
10327    usgn = true;
10328    LLVM_FALLTHROUGH;
10329  case NEON::BI__builtin_neon_vaddvq_s16: {
10330    Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10331    Ty = Int32Ty;
10332    VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10333    llvm::Type *Tys[2] = { Ty, VTy };
10334    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10335    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10336    return Builder.CreateTrunc(Ops[0], Int16Ty);
10337  }
10338  case NEON::BI__builtin_neon_vmaxv_u8: {
10339    Int = Intrinsic::aarch64_neon_umaxv;
10340    Ty = Int32Ty;
10341    VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10342    llvm::Type *Tys[2] = { Ty, VTy };
10343    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10344    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10345    return Builder.CreateTrunc(Ops[0], Int8Ty);
10346  }
10347  case NEON::BI__builtin_neon_vmaxv_u16: {
10348    Int = Intrinsic::aarch64_neon_umaxv;
10349    Ty = Int32Ty;
10350    VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10351    llvm::Type *Tys[2] = { Ty, VTy };
10352    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10353    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10354    return Builder.CreateTrunc(Ops[0], Int16Ty);
10355  }
10356  case NEON::BI__builtin_neon_vmaxvq_u8: {
10357    Int = Intrinsic::aarch64_neon_umaxv;
10358    Ty = Int32Ty;
10359    VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10360    llvm::Type *Tys[2] = { Ty, VTy };
10361    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10362    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10363    return Builder.CreateTrunc(Ops[0], Int8Ty);
10364  }
10365  case NEON::BI__builtin_neon_vmaxvq_u16: {
10366    Int = Intrinsic::aarch64_neon_umaxv;
10367    Ty = Int32Ty;
10368    VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10369    llvm::Type *Tys[2] = { Ty, VTy };
10370    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10371    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10372    return Builder.CreateTrunc(Ops[0], Int16Ty);
10373  }
10374  case NEON::BI__builtin_neon_vmaxv_s8: {
10375    Int = Intrinsic::aarch64_neon_smaxv;
10376    Ty = Int32Ty;
10377    VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10378    llvm::Type *Tys[2] = { Ty, VTy };
10379    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10380    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10381    return Builder.CreateTrunc(Ops[0], Int8Ty);
10382  }
10383  case NEON::BI__builtin_neon_vmaxv_s16: {
10384    Int = Intrinsic::aarch64_neon_smaxv;
10385    Ty = Int32Ty;
10386    VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10387    llvm::Type *Tys[2] = { Ty, VTy };
10388    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10389    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10390    return Builder.CreateTrunc(Ops[0], Int16Ty);
10391  }
10392  case NEON::BI__builtin_neon_vmaxvq_s8: {
10393    Int = Intrinsic::aarch64_neon_smaxv;
10394    Ty = Int32Ty;
10395    VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10396    llvm::Type *Tys[2] = { Ty, VTy };
10397    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10398    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10399    return Builder.CreateTrunc(Ops[0], Int8Ty);
10400  }
10401  case NEON::BI__builtin_neon_vmaxvq_s16: {
10402    Int = Intrinsic::aarch64_neon_smaxv;
10403    Ty = Int32Ty;
10404    VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10405    llvm::Type *Tys[2] = { Ty, VTy };
10406    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10407    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10408    return Builder.CreateTrunc(Ops[0], Int16Ty);
10409  }
10410  case NEON::BI__builtin_neon_vmaxv_f16: {
10411    Int = Intrinsic::aarch64_neon_fmaxv;
10412    Ty = HalfTy;
10413    VTy = llvm::FixedVectorType::get(HalfTy, 4);
10414    llvm::Type *Tys[2] = { Ty, VTy };
10415    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10416    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10417    return Builder.CreateTrunc(Ops[0], HalfTy);
10418  }
10419  case NEON::BI__builtin_neon_vmaxvq_f16: {
10420    Int = Intrinsic::aarch64_neon_fmaxv;
10421    Ty = HalfTy;
10422    VTy = llvm::FixedVectorType::get(HalfTy, 8);
10423    llvm::Type *Tys[2] = { Ty, VTy };
10424    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10425    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10426    return Builder.CreateTrunc(Ops[0], HalfTy);
10427  }
10428  case NEON::BI__builtin_neon_vminv_u8: {
10429    Int = Intrinsic::aarch64_neon_uminv;
10430    Ty = Int32Ty;
10431    VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10432    llvm::Type *Tys[2] = { Ty, VTy };
10433    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10434    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10435    return Builder.CreateTrunc(Ops[0], Int8Ty);
10436  }
10437  case NEON::BI__builtin_neon_vminv_u16: {
10438    Int = Intrinsic::aarch64_neon_uminv;
10439    Ty = Int32Ty;
10440    VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10441    llvm::Type *Tys[2] = { Ty, VTy };
10442    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10443    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10444    return Builder.CreateTrunc(Ops[0], Int16Ty);
10445  }
10446  case NEON::BI__builtin_neon_vminvq_u8: {
10447    Int = Intrinsic::aarch64_neon_uminv;
10448    Ty = Int32Ty;
10449    VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10450    llvm::Type *Tys[2] = { Ty, VTy };
10451    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10452    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10453    return Builder.CreateTrunc(Ops[0], Int8Ty);
10454  }
10455  case NEON::BI__builtin_neon_vminvq_u16: {
10456    Int = Intrinsic::aarch64_neon_uminv;
10457    Ty = Int32Ty;
10458    VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10459    llvm::Type *Tys[2] = { Ty, VTy };
10460    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10461    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10462    return Builder.CreateTrunc(Ops[0], Int16Ty);
10463  }
10464  case NEON::BI__builtin_neon_vminv_s8: {
10465    Int = Intrinsic::aarch64_neon_sminv;
10466    Ty = Int32Ty;
10467    VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10468    llvm::Type *Tys[2] = { Ty, VTy };
10469    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10470    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10471    return Builder.CreateTrunc(Ops[0], Int8Ty);
10472  }
10473  case NEON::BI__builtin_neon_vminv_s16: {
10474    Int = Intrinsic::aarch64_neon_sminv;
10475    Ty = Int32Ty;
10476    VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10477    llvm::Type *Tys[2] = { Ty, VTy };
10478    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10479    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10480    return Builder.CreateTrunc(Ops[0], Int16Ty);
10481  }
10482  case NEON::BI__builtin_neon_vminvq_s8: {
10483    Int = Intrinsic::aarch64_neon_sminv;
10484    Ty = Int32Ty;
10485    VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10486    llvm::Type *Tys[2] = { Ty, VTy };
10487    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10488    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10489    return Builder.CreateTrunc(Ops[0], Int8Ty);
10490  }
10491  case NEON::BI__builtin_neon_vminvq_s16: {
10492    Int = Intrinsic::aarch64_neon_sminv;
10493    Ty = Int32Ty;
10494    VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10495    llvm::Type *Tys[2] = { Ty, VTy };
10496    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10497    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10498    return Builder.CreateTrunc(Ops[0], Int16Ty);
10499  }
10500  case NEON::BI__builtin_neon_vminv_f16: {
10501    Int = Intrinsic::aarch64_neon_fminv;
10502    Ty = HalfTy;
10503    VTy = llvm::FixedVectorType::get(HalfTy, 4);
10504    llvm::Type *Tys[2] = { Ty, VTy };
10505    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10506    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10507    return Builder.CreateTrunc(Ops[0], HalfTy);
10508  }
10509  case NEON::BI__builtin_neon_vminvq_f16: {
10510    Int = Intrinsic::aarch64_neon_fminv;
10511    Ty = HalfTy;
10512    VTy = llvm::FixedVectorType::get(HalfTy, 8);
10513    llvm::Type *Tys[2] = { Ty, VTy };
10514    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10515    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10516    return Builder.CreateTrunc(Ops[0], HalfTy);
10517  }
10518  case NEON::BI__builtin_neon_vmaxnmv_f16: {
10519    Int = Intrinsic::aarch64_neon_fmaxnmv;
10520    Ty = HalfTy;
10521    VTy = llvm::FixedVectorType::get(HalfTy, 4);
10522    llvm::Type *Tys[2] = { Ty, VTy };
10523    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10524    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10525    return Builder.CreateTrunc(Ops[0], HalfTy);
10526  }
10527  case NEON::BI__builtin_neon_vmaxnmvq_f16: {
10528    Int = Intrinsic::aarch64_neon_fmaxnmv;
10529    Ty = HalfTy;
10530    VTy = llvm::FixedVectorType::get(HalfTy, 8);
10531    llvm::Type *Tys[2] = { Ty, VTy };
10532    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10533    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10534    return Builder.CreateTrunc(Ops[0], HalfTy);
10535  }
10536  case NEON::BI__builtin_neon_vminnmv_f16: {
10537    Int = Intrinsic::aarch64_neon_fminnmv;
10538    Ty = HalfTy;
10539    VTy = llvm::FixedVectorType::get(HalfTy, 4);
10540    llvm::Type *Tys[2] = { Ty, VTy };
10541    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10542    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10543    return Builder.CreateTrunc(Ops[0], HalfTy);
10544  }
10545  case NEON::BI__builtin_neon_vminnmvq_f16: {
10546    Int = Intrinsic::aarch64_neon_fminnmv;
10547    Ty = HalfTy;
10548    VTy = llvm::FixedVectorType::get(HalfTy, 8);
10549    llvm::Type *Tys[2] = { Ty, VTy };
10550    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10551    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10552    return Builder.CreateTrunc(Ops[0], HalfTy);
10553  }
10554  case NEON::BI__builtin_neon_vmul_n_f64: {
10555    Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10556    Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
10557    return Builder.CreateFMul(Ops[0], RHS);
10558  }
10559  case NEON::BI__builtin_neon_vaddlv_u8: {
10560    Int = Intrinsic::aarch64_neon_uaddlv;
10561    Ty = Int32Ty;
10562    VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10563    llvm::Type *Tys[2] = { Ty, VTy };
10564    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10565    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10566    return Builder.CreateTrunc(Ops[0], Int16Ty);
10567  }
10568  case NEON::BI__builtin_neon_vaddlv_u16: {
10569    Int = Intrinsic::aarch64_neon_uaddlv;
10570    Ty = Int32Ty;
10571    VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10572    llvm::Type *Tys[2] = { Ty, VTy };
10573    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10574    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10575  }
10576  case NEON::BI__builtin_neon_vaddlvq_u8: {
10577    Int = Intrinsic::aarch64_neon_uaddlv;
10578    Ty = Int32Ty;
10579    VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10580    llvm::Type *Tys[2] = { Ty, VTy };
10581    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10582    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10583    return Builder.CreateTrunc(Ops[0], Int16Ty);
10584  }
10585  case NEON::BI__builtin_neon_vaddlvq_u16: {
10586    Int = Intrinsic::aarch64_neon_uaddlv;
10587    Ty = Int32Ty;
10588    VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10589    llvm::Type *Tys[2] = { Ty, VTy };
10590    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10591    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10592  }
10593  case NEON::BI__builtin_neon_vaddlv_s8: {
10594    Int = Intrinsic::aarch64_neon_saddlv;
10595    Ty = Int32Ty;
10596    VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10597    llvm::Type *Tys[2] = { Ty, VTy };
10598    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10599    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10600    return Builder.CreateTrunc(Ops[0], Int16Ty);
10601  }
10602  case NEON::BI__builtin_neon_vaddlv_s16: {
10603    Int = Intrinsic::aarch64_neon_saddlv;
10604    Ty = Int32Ty;
10605    VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10606    llvm::Type *Tys[2] = { Ty, VTy };
10607    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10608    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10609  }
10610  case NEON::BI__builtin_neon_vaddlvq_s8: {
10611    Int = Intrinsic::aarch64_neon_saddlv;
10612    Ty = Int32Ty;
10613    VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10614    llvm::Type *Tys[2] = { Ty, VTy };
10615    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10616    Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10617    return Builder.CreateTrunc(Ops[0], Int16Ty);
10618  }
10619  case NEON::BI__builtin_neon_vaddlvq_s16: {
10620    Int = Intrinsic::aarch64_neon_saddlv;
10621    Ty = Int32Ty;
10622    VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10623    llvm::Type *Tys[2] = { Ty, VTy };
10624    Ops.push_back(EmitScalarExpr(E->getArg(0)));
10625    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10626  }
10627  case NEON::BI__builtin_neon_vsri_n_v:
10628  case NEON::BI__builtin_neon_vsriq_n_v: {
10629    Int = Intrinsic::aarch64_neon_vsri;
10630    llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10631    return EmitNeonCall(Intrin, Ops, "vsri_n");
10632  }
10633  case NEON::BI__builtin_neon_vsli_n_v:
10634  case NEON::BI__builtin_neon_vsliq_n_v: {
10635    Int = Intrinsic::aarch64_neon_vsli;
10636    llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10637    return EmitNeonCall(Intrin, Ops, "vsli_n");
10638  }
10639  case NEON::BI__builtin_neon_vsra_n_v:
10640  case NEON::BI__builtin_neon_vsraq_n_v:
10641    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10642    Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
10643    return Builder.CreateAdd(Ops[0], Ops[1]);
10644  case NEON::BI__builtin_neon_vrsra_n_v:
10645  case NEON::BI__builtin_neon_vrsraq_n_v: {
10646    Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
10647    SmallVector<llvm::Value*,2> TmpOps;
10648    TmpOps.push_back(Ops[1]);
10649    TmpOps.push_back(Ops[2]);
10650    Function* F = CGM.getIntrinsic(Int, Ty);
10651    llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
10652    Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
10653    return Builder.CreateAdd(Ops[0], tmp);
10654  }
10655  case NEON::BI__builtin_neon_vld1_v:
10656  case NEON::BI__builtin_neon_vld1q_v: {
10657    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10658    return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
10659  }
10660  case NEON::BI__builtin_neon_vst1_v:
10661  case NEON::BI__builtin_neon_vst1q_v:
10662    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10663    Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10664    return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
10665  case NEON::BI__builtin_neon_vld1_lane_v:
10666  case NEON::BI__builtin_neon_vld1q_lane_v: {
10667    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10668    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10669    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10670    Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10671                                       PtrOp0.getAlignment());
10672    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
10673  }
10674  case NEON::BI__builtin_neon_vld1_dup_v:
10675  case NEON::BI__builtin_neon_vld1q_dup_v: {
10676    Value *V = UndefValue::get(Ty);
10677    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10678    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10679    Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10680                                       PtrOp0.getAlignment());
10681    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
10682    Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
10683    return EmitNeonSplat(Ops[0], CI);
10684  }
10685  case NEON::BI__builtin_neon_vst1_lane_v:
10686  case NEON::BI__builtin_neon_vst1q_lane_v:
10687    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10688    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
10689    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10690    return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
10691                                      PtrOp0.getAlignment());
10692  case NEON::BI__builtin_neon_vld2_v:
10693  case NEON::BI__builtin_neon_vld2q_v: {
10694    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10695    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10696    llvm::Type *Tys[2] = { VTy, PTy };
10697    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
10698    Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10699    Ops[0] = Builder.CreateBitCast(Ops[0],
10700                llvm::PointerType::getUnqual(Ops[1]->getType()));
10701    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10702  }
10703  case NEON::BI__builtin_neon_vld3_v:
10704  case NEON::BI__builtin_neon_vld3q_v: {
10705    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10706    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10707    llvm::Type *Tys[2] = { VTy, PTy };
10708    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
10709    Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10710    Ops[0] = Builder.CreateBitCast(Ops[0],
10711                llvm::PointerType::getUnqual(Ops[1]->getType()));
10712    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10713  }
10714  case NEON::BI__builtin_neon_vld4_v:
10715  case NEON::BI__builtin_neon_vld4q_v: {
10716    llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10717    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10718    llvm::Type *Tys[2] = { VTy, PTy };
10719    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
10720    Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10721    Ops[0] = Builder.CreateBitCast(Ops[0],
10722                llvm::PointerType::getUnqual(Ops[1]->getType()));
10723    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10724  }
10725  case NEON::BI__builtin_neon_vld2_dup_v:
10726  case NEON::BI__builtin_neon_vld2q_dup_v: {
10727    llvm::Type *PTy =
10728      llvm::PointerType::getUnqual(VTy->getElementType());
10729    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10730    llvm::Type *Tys[2] = { VTy, PTy };
10731    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
10732    Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10733    Ops[0] = Builder.CreateBitCast(Ops[0],
10734                llvm::PointerType::getUnqual(Ops[1]->getType()));
10735    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10736  }
10737  case NEON::BI__builtin_neon_vld3_dup_v:
10738  case NEON::BI__builtin_neon_vld3q_dup_v: {
10739    llvm::Type *PTy =
10740      llvm::PointerType::getUnqual(VTy->getElementType());
10741    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10742    llvm::Type *Tys[2] = { VTy, PTy };
10743    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
10744    Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10745    Ops[0] = Builder.CreateBitCast(Ops[0],
10746                llvm::PointerType::getUnqual(Ops[1]->getType()));
10747    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10748  }
10749  case NEON::BI__builtin_neon_vld4_dup_v:
10750  case NEON::BI__builtin_neon_vld4q_dup_v: {
10751    llvm::Type *PTy =
10752      llvm::PointerType::getUnqual(VTy->getElementType());
10753    Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10754    llvm::Type *Tys[2] = { VTy, PTy };
10755    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
10756    Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10757    Ops[0] = Builder.CreateBitCast(Ops[0],
10758                llvm::PointerType::getUnqual(Ops[1]->getType()));
10759    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10760  }
10761  case NEON::BI__builtin_neon_vld2_lane_v:
10762  case NEON::BI__builtin_neon_vld2q_lane_v: {
10763    llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10764    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
10765    Ops.push_back(Ops[1]);
10766    Ops.erase(Ops.begin()+1);
10767    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10768    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10769    Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10770    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
10771    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10772    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10773    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10774  }
10775  case NEON::BI__builtin_neon_vld3_lane_v:
10776  case NEON::BI__builtin_neon_vld3q_lane_v: {
10777    llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10778    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
10779    Ops.push_back(Ops[1]);
10780    Ops.erase(Ops.begin()+1);
10781    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10782    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10783    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10784    Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10785    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
10786    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10787    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10788    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10789  }
10790  case NEON::BI__builtin_neon_vld4_lane_v:
10791  case NEON::BI__builtin_neon_vld4q_lane_v: {
10792    llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10793    Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
10794    Ops.push_back(Ops[1]);
10795    Ops.erase(Ops.begin()+1);
10796    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10797    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10798    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10799    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
10800    Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
10801    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
10802    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10803    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10804    return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10805  }
10806  case NEON::BI__builtin_neon_vst2_v:
10807  case NEON::BI__builtin_neon_vst2q_v: {
10808    Ops.push_back(Ops[0]);
10809    Ops.erase(Ops.begin());
10810    llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
10811    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
10812                        Ops, "");
10813  }
10814  case NEON::BI__builtin_neon_vst2_lane_v:
10815  case NEON::BI__builtin_neon_vst2q_lane_v: {
10816    Ops.push_back(Ops[0]);
10817    Ops.erase(Ops.begin());
10818    Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
10819    llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10820    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
10821                        Ops, "");
10822  }
10823  case NEON::BI__builtin_neon_vst3_v:
10824  case NEON::BI__builtin_neon_vst3q_v: {
10825    Ops.push_back(Ops[0]);
10826    Ops.erase(Ops.begin());
10827    llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10828    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
10829                        Ops, "");
10830  }
10831  case NEON::BI__builtin_neon_vst3_lane_v:
10832  case NEON::BI__builtin_neon_vst3q_lane_v: {
10833    Ops.push_back(Ops[0]);
10834    Ops.erase(Ops.begin());
10835    Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10836    llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10837    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
10838                        Ops, "");
10839  }
10840  case NEON::BI__builtin_neon_vst4_v:
10841  case NEON::BI__builtin_neon_vst4q_v: {
10842    Ops.push_back(Ops[0]);
10843    Ops.erase(Ops.begin());
10844    llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10845    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
10846                        Ops, "");
10847  }
10848  case NEON::BI__builtin_neon_vst4_lane_v:
10849  case NEON::BI__builtin_neon_vst4q_lane_v: {
10850    Ops.push_back(Ops[0]);
10851    Ops.erase(Ops.begin());
10852    Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10853    llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
10854    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
10855                        Ops, "");
10856  }
10857  case NEON::BI__builtin_neon_vtrn_v:
10858  case NEON::BI__builtin_neon_vtrnq_v: {
10859    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10860    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10861    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10862    Value *SV = nullptr;
10863
10864    for (unsigned vi = 0; vi != 2; ++vi) {
10865      SmallVector<int, 16> Indices;
10866      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
10867        Indices.push_back(i+vi);
10868        Indices.push_back(i+e+vi);
10869      }
10870      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10871      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
10872      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10873    }
10874    return SV;
10875  }
10876  case NEON::BI__builtin_neon_vuzp_v:
10877  case NEON::BI__builtin_neon_vuzpq_v: {
10878    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10879    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10880    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10881    Value *SV = nullptr;
10882
10883    for (unsigned vi = 0; vi != 2; ++vi) {
10884      SmallVector<int, 16> Indices;
10885      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
10886        Indices.push_back(2*i+vi);
10887
10888      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10889      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
10890      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10891    }
10892    return SV;
10893  }
10894  case NEON::BI__builtin_neon_vzip_v:
10895  case NEON::BI__builtin_neon_vzipq_v: {
10896    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10897    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10898    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10899    Value *SV = nullptr;
10900
10901    for (unsigned vi = 0; vi != 2; ++vi) {
10902      SmallVector<int, 16> Indices;
10903      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
10904        Indices.push_back((i + vi*e) >> 1);
10905        Indices.push_back(((i + vi*e) >> 1)+e);
10906      }
10907      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10908      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
10909      SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10910    }
10911    return SV;
10912  }
10913  case NEON::BI__builtin_neon_vqtbl1q_v: {
10914    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
10915                        Ops, "vtbl1");
10916  }
10917  case NEON::BI__builtin_neon_vqtbl2q_v: {
10918    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
10919                        Ops, "vtbl2");
10920  }
10921  case NEON::BI__builtin_neon_vqtbl3q_v: {
10922    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
10923                        Ops, "vtbl3");
10924  }
10925  case NEON::BI__builtin_neon_vqtbl4q_v: {
10926    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
10927                        Ops, "vtbl4");
10928  }
10929  case NEON::BI__builtin_neon_vqtbx1q_v: {
10930    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
10931                        Ops, "vtbx1");
10932  }
10933  case NEON::BI__builtin_neon_vqtbx2q_v: {
10934    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
10935                        Ops, "vtbx2");
10936  }
10937  case NEON::BI__builtin_neon_vqtbx3q_v: {
10938    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
10939                        Ops, "vtbx3");
10940  }
10941  case NEON::BI__builtin_neon_vqtbx4q_v: {
10942    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
10943                        Ops, "vtbx4");
10944  }
10945  case NEON::BI__builtin_neon_vsqadd_v:
10946  case NEON::BI__builtin_neon_vsqaddq_v: {
10947    Int = Intrinsic::aarch64_neon_usqadd;
10948    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
10949  }
10950  case NEON::BI__builtin_neon_vuqadd_v:
10951  case NEON::BI__builtin_neon_vuqaddq_v: {
10952    Int = Intrinsic::aarch64_neon_suqadd;
10953    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
10954  }
10955  }
10956}
10957
10958Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
10959                                           const CallExpr *E) {
10960  assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
10961          BuiltinID == BPF::BI__builtin_btf_type_id) &&
10962         "unexpected BPF builtin");
10963
10964  switch (BuiltinID) {
10965  default:
10966    llvm_unreachable("Unexpected BPF builtin");
10967  case BPF::BI__builtin_preserve_field_info: {
10968    const Expr *Arg = E->getArg(0);
10969    bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
10970
10971    if (!getDebugInfo()) {
10972      CGM.Error(E->getExprLoc(),
10973                "using __builtin_preserve_field_info() without -g");
10974      return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
10975                        : EmitLValue(Arg).getPointer(*this);
10976    }
10977
10978    // Enable underlying preserve_*_access_index() generation.
10979    bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
10980    IsInPreservedAIRegion = true;
10981    Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
10982                                  : EmitLValue(Arg).getPointer(*this);
10983    IsInPreservedAIRegion = OldIsInPreservedAIRegion;
10984
10985    ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10986    Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
10987
10988    // Built the IR for the preserve_field_info intrinsic.
10989    llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
10990        &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
10991        {FieldAddr->getType()});
10992    return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
10993  }
10994  case BPF::BI__builtin_btf_type_id: {
10995    Value *FieldVal = nullptr;
10996
10997    // The LValue cannot be converted Value in order to be used as the function
10998    // parameter. If it is a structure, it is the "alloca" result of the LValue
10999    // (a pointer) is used in the parameter. If it is a simple type,
11000    // the value will be loaded from its corresponding "alloca" and used as
11001    // the parameter. In our case, let us just get a pointer of the LValue
11002    // since we do not really use the parameter. The purpose of parameter
11003    // is to prevent the generated IR llvm.bpf.btf.type.id intrinsic call,
11004    // which carries metadata, from being changed.
11005    bool IsLValue = E->getArg(0)->isLValue();
11006    if (IsLValue)
11007      FieldVal = EmitLValue(E->getArg(0)).getPointer(*this);
11008    else
11009      FieldVal = EmitScalarExpr(E->getArg(0));
11010
11011    if (!getDebugInfo()) {
11012      CGM.Error(E->getExprLoc(), "using __builtin_btf_type_id() without -g");
11013      return nullptr;
11014    }
11015
11016    // Generate debuginfo type for the first argument.
11017    llvm::DIType *DbgInfo =
11018        getDebugInfo()->getOrCreateStandaloneType(E->getArg(0)->getType(),
11019                                                  E->getArg(0)->getExprLoc());
11020
11021    ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11022    Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11023
11024    // Built the IR for the btf_type_id intrinsic.
11025    //
11026    // In the above, we converted LValue argument to a pointer to LValue.
11027    // For example, the following
11028    //   int v;
11029    //   C1: __builtin_btf_type_id(v, flag);
11030    // will be converted to
11031    //   L1: llvm.bpf.btf.type.id(&v, flag)
11032    // This makes it hard to differentiate from
11033    //   C2: __builtin_btf_type_id(&v, flag);
11034    // to
11035    //   L2: llvm.bpf.btf.type.id(&v, flag)
11036    //
11037    // If both C1 and C2 are present in the code, the llvm may later
11038    // on do CSE on L1 and L2, which will result in incorrect tagged types.
11039    //
11040    // The C1->L1 transformation only happens if the argument of
11041    // __builtin_btf_type_id() is a LValue. So Let us put whether
11042    // the argument is an LValue or not into generated IR. This should
11043    // prevent potential CSE from causing debuginfo type loss.
11044    //
11045    // The generated IR intrinsics will hence look like
11046    //   L1: llvm.bpf.btf.type.id(&v, 1, flag) !di_type_for_{v};
11047    //   L2: llvm.bpf.btf.type.id(&v, 0, flag) !di_type_for_{&v};
11048    Constant *CV = ConstantInt::get(IntTy, IsLValue);
11049    llvm::Function *FnBtfTypeId = llvm::Intrinsic::getDeclaration(
11050        &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id,
11051        {FieldVal->getType(), CV->getType()});
11052    CallInst *Fn = Builder.CreateCall(FnBtfTypeId, {FieldVal, CV, FlagValue});
11053    Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11054    return Fn;
11055  }
11056  }
11057}
11058
11059llvm::Value *CodeGenFunction::
11060BuildVector(ArrayRef<llvm::Value*> Ops) {
11061  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11062         "Not a power-of-two sized vector!");
11063  bool AllConstants = true;
11064  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11065    AllConstants &= isa<Constant>(Ops[i]);
11066
11067  // If this is a constant vector, create a ConstantVector.
11068  if (AllConstants) {
11069    SmallVector<llvm::Constant*, 16> CstOps;
11070    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11071      CstOps.push_back(cast<Constant>(Ops[i]));
11072    return llvm::ConstantVector::get(CstOps);
11073  }
11074
11075  // Otherwise, insertelement the values to build the vector.
11076  Value *Result = llvm::UndefValue::get(
11077      llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11078
11079  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11080    Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11081
11082  return Result;
11083}
11084
11085// Convert the mask from an integer type to a vector of i1.
11086static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11087                              unsigned NumElts) {
11088
11089  auto *MaskTy = llvm::FixedVectorType::get(
11090      CGF.Builder.getInt1Ty(),
11091      cast<IntegerType>(Mask->getType())->getBitWidth());
11092  Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11093
11094  // If we have less than 8 elements, then the starting mask was an i8 and
11095  // we need to extract down to the right number of elements.
11096  if (NumElts < 8) {
11097    int Indices[4];
11098    for (unsigned i = 0; i != NumElts; ++i)
11099      Indices[i] = i;
11100    MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11101                                             makeArrayRef(Indices, NumElts),
11102                                             "extract");
11103  }
11104  return MaskVec;
11105}
11106
11107static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11108                                 Align Alignment) {
11109  // Cast the pointer to right type.
11110  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11111                               llvm::PointerType::getUnqual(Ops[1]->getType()));
11112
11113  Value *MaskVec = getMaskVecValue(
11114      CGF, Ops[2], cast<llvm::VectorType>(Ops[1]->getType())->getNumElements());
11115
11116  return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11117}
11118
11119static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11120                                Align Alignment) {
11121  // Cast the pointer to right type.
11122  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11123                               llvm::PointerType::getUnqual(Ops[1]->getType()));
11124
11125  Value *MaskVec = getMaskVecValue(
11126      CGF, Ops[2], cast<llvm::VectorType>(Ops[1]->getType())->getNumElements());
11127
11128  return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11129}
11130
11131static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11132                                ArrayRef<Value *> Ops) {
11133  auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11134  llvm::Type *PtrTy = ResultTy->getElementType();
11135
11136  // Cast the pointer to element type.
11137  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11138                                         llvm::PointerType::getUnqual(PtrTy));
11139
11140  Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11141
11142  llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11143                                           ResultTy);
11144  return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11145}
11146
11147static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11148                                    ArrayRef<Value *> Ops,
11149                                    bool IsCompress) {
11150  auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11151
11152  Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11153
11154  Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11155                                 : Intrinsic::x86_avx512_mask_expand;
11156  llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11157  return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11158}
11159
11160static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11161                                   ArrayRef<Value *> Ops) {
11162  auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11163  llvm::Type *PtrTy = ResultTy->getElementType();
11164
11165  // Cast the pointer to element type.
11166  Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11167                                         llvm::PointerType::getUnqual(PtrTy));
11168
11169  Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11170
11171  llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11172                                           ResultTy);
11173  return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11174}
11175
11176static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11177                              ArrayRef<Value *> Ops,
11178                              bool InvertLHS = false) {
11179  unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11180  Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11181  Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11182
11183  if (InvertLHS)
11184    LHS = CGF.Builder.CreateNot(LHS);
11185
11186  return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11187                                   Ops[0]->getType());
11188}
11189
11190static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11191                                 Value *Amt, bool IsRight) {
11192  llvm::Type *Ty = Op0->getType();
11193
11194  // Amount may be scalar immediate, in which case create a splat vector.
11195  // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11196  // we only care about the lowest log2 bits anyway.
11197  if (Amt->getType() != Ty) {
11198    unsigned NumElts = cast<llvm::VectorType>(Ty)->getNumElements();
11199    Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11200    Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11201  }
11202
11203  unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11204  Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11205  return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11206}
11207
11208static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11209                           bool IsSigned) {
11210  Value *Op0 = Ops[0];
11211  Value *Op1 = Ops[1];
11212  llvm::Type *Ty = Op0->getType();
11213  uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11214
11215  CmpInst::Predicate Pred;
11216  switch (Imm) {
11217  case 0x0:
11218    Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11219    break;
11220  case 0x1:
11221    Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11222    break;
11223  case 0x2:
11224    Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11225    break;
11226  case 0x3:
11227    Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11228    break;
11229  case 0x4:
11230    Pred = ICmpInst::ICMP_EQ;
11231    break;
11232  case 0x5:
11233    Pred = ICmpInst::ICMP_NE;
11234    break;
11235  case 0x6:
11236    return llvm::Constant::getNullValue(Ty); // FALSE
11237  case 0x7:
11238    return llvm::Constant::getAllOnesValue(Ty); // TRUE
11239  default:
11240    llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11241  }
11242
11243  Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11244  Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11245  return Res;
11246}
11247
11248static Value *EmitX86Select(CodeGenFunction &CGF,
11249                            Value *Mask, Value *Op0, Value *Op1) {
11250
11251  // If the mask is all ones just return first argument.
11252  if (const auto *C = dyn_cast<Constant>(Mask))
11253    if (C->isAllOnesValue())
11254      return Op0;
11255
11256  Mask = getMaskVecValue(
11257      CGF, Mask, cast<llvm::VectorType>(Op0->getType())->getNumElements());
11258
11259  return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11260}
11261
11262static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11263                                  Value *Mask, Value *Op0, Value *Op1) {
11264  // If the mask is all ones just return first argument.
11265  if (const auto *C = dyn_cast<Constant>(Mask))
11266    if (C->isAllOnesValue())
11267      return Op0;
11268
11269  auto *MaskTy = llvm::FixedVectorType::get(
11270      CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11271  Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11272  Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11273  return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11274}
11275
11276static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11277                                         unsigned NumElts, Value *MaskIn) {
11278  if (MaskIn) {
11279    const auto *C = dyn_cast<Constant>(MaskIn);
11280    if (!C || !C->isAllOnesValue())
11281      Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11282  }
11283
11284  if (NumElts < 8) {
11285    int Indices[8];
11286    for (unsigned i = 0; i != NumElts; ++i)
11287      Indices[i] = i;
11288    for (unsigned i = NumElts; i != 8; ++i)
11289      Indices[i] = i % NumElts + NumElts;
11290    Cmp = CGF.Builder.CreateShuffleVector(
11291        Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11292  }
11293
11294  return CGF.Builder.CreateBitCast(Cmp,
11295                                   IntegerType::get(CGF.getLLVMContext(),
11296                                                    std::max(NumElts, 8U)));
11297}
11298
11299static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11300                                   bool Signed, ArrayRef<Value *> Ops) {
11301  assert((Ops.size() == 2 || Ops.size() == 4) &&
11302         "Unexpected number of arguments");
11303  unsigned NumElts =
11304      cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
11305  Value *Cmp;
11306
11307  if (CC == 3) {
11308    Cmp = Constant::getNullValue(
11309        llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11310  } else if (CC == 7) {
11311    Cmp = Constant::getAllOnesValue(
11312        llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11313  } else {
11314    ICmpInst::Predicate Pred;
11315    switch (CC) {
11316    default: llvm_unreachable("Unknown condition code");
11317    case 0: Pred = ICmpInst::ICMP_EQ;  break;
11318    case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11319    case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11320    case 4: Pred = ICmpInst::ICMP_NE;  break;
11321    case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11322    case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11323    }
11324    Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11325  }
11326
11327  Value *MaskIn = nullptr;
11328  if (Ops.size() == 4)
11329    MaskIn = Ops[3];
11330
11331  return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11332}
11333
11334static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11335  Value *Zero = Constant::getNullValue(In->getType());
11336  return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11337}
11338
11339static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
11340                                    ArrayRef<Value *> Ops, bool IsSigned) {
11341  unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11342  llvm::Type *Ty = Ops[1]->getType();
11343
11344  Value *Res;
11345  if (Rnd != 4) {
11346    Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11347                                 : Intrinsic::x86_avx512_uitofp_round;
11348    Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11349    Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11350  } else {
11351    Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11352                   : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11353  }
11354
11355  return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11356}
11357
11358static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
11359
11360  llvm::Type *Ty = Ops[0]->getType();
11361  Value *Zero = llvm::Constant::getNullValue(Ty);
11362  Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
11363  Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
11364  Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
11365  return Res;
11366}
11367
11368static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
11369                            ArrayRef<Value *> Ops) {
11370  Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11371  Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
11372
11373  assert(Ops.size() == 2);
11374  return Res;
11375}
11376
11377// Lowers X86 FMA intrinsics to IR.
11378static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11379                             unsigned BuiltinID, bool IsAddSub) {
11380
11381  bool Subtract = false;
11382  Intrinsic::ID IID = Intrinsic::not_intrinsic;
11383  switch (BuiltinID) {
11384  default: break;
11385  case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11386    Subtract = true;
11387    LLVM_FALLTHROUGH;
11388  case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11389  case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11390  case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11391    IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11392  case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11393    Subtract = true;
11394    LLVM_FALLTHROUGH;
11395  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11396  case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11397  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11398    IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11399  case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11400    Subtract = true;
11401    LLVM_FALLTHROUGH;
11402  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11403  case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11404  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11405    IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11406    break;
11407  case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11408    Subtract = true;
11409    LLVM_FALLTHROUGH;
11410  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11411  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11412  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11413    IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
11414    break;
11415  }
11416
11417  Value *A = Ops[0];
11418  Value *B = Ops[1];
11419  Value *C = Ops[2];
11420
11421  if (Subtract)
11422    C = CGF.Builder.CreateFNeg(C);
11423
11424  Value *Res;
11425
11426  // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
11427  if (IID != Intrinsic::not_intrinsic &&
11428      (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
11429       IsAddSub)) {
11430    Function *Intr = CGF.CGM.getIntrinsic(IID);
11431    Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
11432  } else {
11433    llvm::Type *Ty = A->getType();
11434    Function *FMA;
11435    if (CGF.Builder.getIsFPConstrained()) {
11436      FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
11437      Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
11438    } else {
11439      FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
11440      Res = CGF.Builder.CreateCall(FMA, {A, B, C});
11441    }
11442  }
11443
11444  // Handle any required masking.
11445  Value *MaskFalseVal = nullptr;
11446  switch (BuiltinID) {
11447  case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11448  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11449  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11450  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11451    MaskFalseVal = Ops[0];
11452    break;
11453  case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11454  case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11455  case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11456  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11457    MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
11458    break;
11459  case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11460  case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11461  case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11462  case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11463  case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11464  case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11465  case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11466  case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11467    MaskFalseVal = Ops[2];
11468    break;
11469  }
11470
11471  if (MaskFalseVal)
11472    return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
11473
11474  return Res;
11475}
11476
11477static Value *
11478EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
11479                  Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
11480                  bool NegAcc = false) {
11481  unsigned Rnd = 4;
11482  if (Ops.size() > 4)
11483    Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11484
11485  if (NegAcc)
11486    Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
11487
11488  Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11489  Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11490  Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11491  Value *Res;
11492  if (Rnd != 4) {
11493    Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
11494                        Intrinsic::x86_avx512_vfmadd_f32 :
11495                        Intrinsic::x86_avx512_vfmadd_f64;
11496    Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11497                                 {Ops[0], Ops[1], Ops[2], Ops[4]});
11498  } else if (CGF.Builder.getIsFPConstrained()) {
11499    Function *FMA = CGF.CGM.getIntrinsic(
11500        Intrinsic::experimental_constrained_fma, Ops[0]->getType());
11501    Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
11502  } else {
11503    Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
11504    Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
11505  }
11506  // If we have more than 3 arguments, we need to do masking.
11507  if (Ops.size() > 3) {
11508    Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
11509                               : Ops[PTIdx];
11510
11511    // If we negated the accumulator and the its the PassThru value we need to
11512    // bypass the negate. Conveniently Upper should be the same thing in this
11513    // case.
11514    if (NegAcc && PTIdx == 2)
11515      PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
11516
11517    Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
11518  }
11519  return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
11520}
11521
11522static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
11523                           ArrayRef<Value *> Ops) {
11524  llvm::Type *Ty = Ops[0]->getType();
11525  // Arguments have a vXi32 type so cast to vXi64.
11526  Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
11527                                  Ty->getPrimitiveSizeInBits() / 64);
11528  Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
11529  Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
11530
11531  if (IsSigned) {
11532    // Shift left then arithmetic shift right.
11533    Constant *ShiftAmt = ConstantInt::get(Ty, 32);
11534    LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
11535    LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
11536    RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
11537    RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
11538  } else {
11539    // Clear the upper bits.
11540    Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
11541    LHS = CGF.Builder.CreateAnd(LHS, Mask);
11542    RHS = CGF.Builder.CreateAnd(RHS, Mask);
11543  }
11544
11545  return CGF.Builder.CreateMul(LHS, RHS);
11546}
11547
11548// Emit a masked pternlog intrinsic. This only exists because the header has to
11549// use a macro and we aren't able to pass the input argument to a pternlog
11550// builtin and a select builtin without evaluating it twice.
11551static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
11552                             ArrayRef<Value *> Ops) {
11553  llvm::Type *Ty = Ops[0]->getType();
11554
11555  unsigned VecWidth = Ty->getPrimitiveSizeInBits();
11556  unsigned EltWidth = Ty->getScalarSizeInBits();
11557  Intrinsic::ID IID;
11558  if (VecWidth == 128 && EltWidth == 32)
11559    IID = Intrinsic::x86_avx512_pternlog_d_128;
11560  else if (VecWidth == 256 && EltWidth == 32)
11561    IID = Intrinsic::x86_avx512_pternlog_d_256;
11562  else if (VecWidth == 512 && EltWidth == 32)
11563    IID = Intrinsic::x86_avx512_pternlog_d_512;
11564  else if (VecWidth == 128 && EltWidth == 64)
11565    IID = Intrinsic::x86_avx512_pternlog_q_128;
11566  else if (VecWidth == 256 && EltWidth == 64)
11567    IID = Intrinsic::x86_avx512_pternlog_q_256;
11568  else if (VecWidth == 512 && EltWidth == 64)
11569    IID = Intrinsic::x86_avx512_pternlog_q_512;
11570  else
11571    llvm_unreachable("Unexpected intrinsic");
11572
11573  Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11574                                          Ops.drop_back());
11575  Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
11576  return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
11577}
11578
11579static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
11580                              llvm::Type *DstTy) {
11581  unsigned NumberOfElements = cast<llvm::VectorType>(DstTy)->getNumElements();
11582  Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
11583  return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
11584}
11585
11586// Emit addition or subtraction with signed/unsigned saturation.
11587static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
11588                                   ArrayRef<Value *> Ops, bool IsSigned,
11589                                   bool IsAddition) {
11590  Intrinsic::ID IID =
11591      IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
11592               : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
11593  llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
11594  return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
11595}
11596
11597Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
11598  const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
11599  StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
11600  return EmitX86CpuIs(CPUStr);
11601}
11602
11603// Convert F16 halfs to floats.
11604static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
11605                                       ArrayRef<Value *> Ops,
11606                                       llvm::Type *DstTy) {
11607  assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
11608         "Unknown cvtph2ps intrinsic");
11609
11610  // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
11611  if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
11612    Function *F =
11613        CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
11614    return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
11615  }
11616
11617  unsigned NumDstElts = cast<llvm::VectorType>(DstTy)->getNumElements();
11618  Value *Src = Ops[0];
11619
11620  // Extract the subvector.
11621  if (NumDstElts != cast<llvm::VectorType>(Src->getType())->getNumElements()) {
11622    assert(NumDstElts == 4 && "Unexpected vector size");
11623    Src = CGF.Builder.CreateShuffleVector(Src, UndefValue::get(Src->getType()),
11624                                          ArrayRef<int>{0, 1, 2, 3});
11625  }
11626
11627  // Bitcast from vXi16 to vXf16.
11628  auto *HalfTy = llvm::FixedVectorType::get(
11629      llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
11630  Src = CGF.Builder.CreateBitCast(Src, HalfTy);
11631
11632  // Perform the fp-extension.
11633  Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
11634
11635  if (Ops.size() >= 3)
11636    Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11637  return Res;
11638}
11639
11640// Convert a BF16 to a float.
11641static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
11642                                        const CallExpr *E,
11643                                        ArrayRef<Value *> Ops) {
11644  llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
11645  Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
11646  Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
11647  llvm::Type *ResultType = CGF.ConvertType(E->getType());
11648  Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
11649  return BitCast;
11650}
11651
11652Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
11653
11654  llvm::Type *Int32Ty = Builder.getInt32Ty();
11655
11656  // Matching the struct layout from the compiler-rt/libgcc structure that is
11657  // filled in:
11658  // unsigned int __cpu_vendor;
11659  // unsigned int __cpu_type;
11660  // unsigned int __cpu_subtype;
11661  // unsigned int __cpu_features[1];
11662  llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11663                                          llvm::ArrayType::get(Int32Ty, 1));
11664
11665  // Grab the global __cpu_model.
11666  llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11667  cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11668
11669  // Calculate the index needed to access the correct field based on the
11670  // range. Also adjust the expected value.
11671  unsigned Index;
11672  unsigned Value;
11673  std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
11674#define X86_VENDOR(ENUM, STRING)                                               \
11675  .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
11676#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
11677  .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11678#define X86_CPU_TYPE(ENUM, STR)                                                \
11679  .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11680#define X86_CPU_SUBTYPE(ENUM, STR)                                             \
11681  .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
11682#include "llvm/Support/X86TargetParser.def"
11683                               .Default({0, 0});
11684  assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
11685
11686  // Grab the appropriate field from __cpu_model.
11687  llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
11688                         ConstantInt::get(Int32Ty, Index)};
11689  llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
11690  CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
11691
11692  // Check the value of the field against the requested value.
11693  return Builder.CreateICmpEQ(CpuValue,
11694                                  llvm::ConstantInt::get(Int32Ty, Value));
11695}
11696
11697Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
11698  const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
11699  StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
11700  return EmitX86CpuSupports(FeatureStr);
11701}
11702
11703uint64_t
11704CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
11705  // Processor features and mapping to processor feature value.
11706  uint64_t FeaturesMask = 0;
11707  for (const StringRef &FeatureStr : FeatureStrs) {
11708    unsigned Feature =
11709        StringSwitch<unsigned>(FeatureStr)
11710#define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
11711#include "llvm/Support/X86TargetParser.def"
11712        ;
11713    FeaturesMask |= (1ULL << Feature);
11714  }
11715  return FeaturesMask;
11716}
11717
11718Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
11719  return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
11720}
11721
11722llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
11723  uint32_t Features1 = Lo_32(FeaturesMask);
11724  uint32_t Features2 = Hi_32(FeaturesMask);
11725
11726  Value *Result = Builder.getTrue();
11727
11728  if (Features1 != 0) {
11729    // Matching the struct layout from the compiler-rt/libgcc structure that is
11730    // filled in:
11731    // unsigned int __cpu_vendor;
11732    // unsigned int __cpu_type;
11733    // unsigned int __cpu_subtype;
11734    // unsigned int __cpu_features[1];
11735    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11736                                            llvm::ArrayType::get(Int32Ty, 1));
11737
11738    // Grab the global __cpu_model.
11739    llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11740    cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11741
11742    // Grab the first (0th) element from the field __cpu_features off of the
11743    // global in the struct STy.
11744    Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
11745                     Builder.getInt32(0)};
11746    Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
11747    Value *Features =
11748        Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
11749
11750    // Check the value of the bit corresponding to the feature requested.
11751    Value *Mask = Builder.getInt32(Features1);
11752    Value *Bitset = Builder.CreateAnd(Features, Mask);
11753    Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11754    Result = Builder.CreateAnd(Result, Cmp);
11755  }
11756
11757  if (Features2 != 0) {
11758    llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
11759                                                             "__cpu_features2");
11760    cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
11761
11762    Value *Features =
11763        Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
11764
11765    // Check the value of the bit corresponding to the feature requested.
11766    Value *Mask = Builder.getInt32(Features2);
11767    Value *Bitset = Builder.CreateAnd(Features, Mask);
11768    Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11769    Result = Builder.CreateAnd(Result, Cmp);
11770  }
11771
11772  return Result;
11773}
11774
11775Value *CodeGenFunction::EmitX86CpuInit() {
11776  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
11777                                                    /*Variadic*/ false);
11778  llvm::FunctionCallee Func =
11779      CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
11780  cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
11781  cast<llvm::GlobalValue>(Func.getCallee())
11782      ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
11783  return Builder.CreateCall(Func);
11784}
11785
11786Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
11787                                           const CallExpr *E) {
11788  if (BuiltinID == X86::BI__builtin_cpu_is)
11789    return EmitX86CpuIs(E);
11790  if (BuiltinID == X86::BI__builtin_cpu_supports)
11791    return EmitX86CpuSupports(E);
11792  if (BuiltinID == X86::BI__builtin_cpu_init)
11793    return EmitX86CpuInit();
11794
11795  SmallVector<Value*, 4> Ops;
11796
11797  // Find out if any arguments are required to be integer constant expressions.
11798  unsigned ICEArguments = 0;
11799  ASTContext::GetBuiltinTypeError Error;
11800  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11801  assert(Error == ASTContext::GE_None && "Should not codegen an error");
11802
11803  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
11804    // If this is a normal argument, just emit it as a scalar.
11805    if ((ICEArguments & (1 << i)) == 0) {
11806      Ops.push_back(EmitScalarExpr(E->getArg(i)));
11807      continue;
11808    }
11809
11810    // If this is required to be a constant, constant fold it so that we know
11811    // that the generated intrinsic gets a ConstantInt.
11812    llvm::APSInt Result;
11813    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
11814    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
11815    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
11816  }
11817
11818  // These exist so that the builtin that takes an immediate can be bounds
11819  // checked by clang to avoid passing bad immediates to the backend. Since
11820  // AVX has a larger immediate than SSE we would need separate builtins to
11821  // do the different bounds checking. Rather than create a clang specific
11822  // SSE only builtin, this implements eight separate builtins to match gcc
11823  // implementation.
11824  auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
11825    Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
11826    llvm::Function *F = CGM.getIntrinsic(ID);
11827    return Builder.CreateCall(F, Ops);
11828  };
11829
11830  // For the vector forms of FP comparisons, translate the builtins directly to
11831  // IR.
11832  // TODO: The builtins could be removed if the SSE header files used vector
11833  // extension comparisons directly (vector ordered/unordered may need
11834  // additional support via __builtin_isnan()).
11835  auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred,
11836                                      bool IsSignaling) {
11837    Value *Cmp;
11838    if (IsSignaling)
11839      Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
11840    else
11841      Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11842    llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
11843    llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
11844    Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
11845    return Builder.CreateBitCast(Sext, FPVecTy);
11846  };
11847
11848  switch (BuiltinID) {
11849  default: return nullptr;
11850  case X86::BI_mm_prefetch: {
11851    Value *Address = Ops[0];
11852    ConstantInt *C = cast<ConstantInt>(Ops[1]);
11853    Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
11854    Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
11855    Value *Data = ConstantInt::get(Int32Ty, 1);
11856    Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11857    return Builder.CreateCall(F, {Address, RW, Locality, Data});
11858  }
11859  case X86::BI_mm_clflush: {
11860    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
11861                              Ops[0]);
11862  }
11863  case X86::BI_mm_lfence: {
11864    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
11865  }
11866  case X86::BI_mm_mfence: {
11867    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
11868  }
11869  case X86::BI_mm_sfence: {
11870    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
11871  }
11872  case X86::BI_mm_pause: {
11873    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
11874  }
11875  case X86::BI__rdtsc: {
11876    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
11877  }
11878  case X86::BI__builtin_ia32_rdtscp: {
11879    Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
11880    Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11881                                      Ops[0]);
11882    return Builder.CreateExtractValue(Call, 0);
11883  }
11884  case X86::BI__builtin_ia32_lzcnt_u16:
11885  case X86::BI__builtin_ia32_lzcnt_u32:
11886  case X86::BI__builtin_ia32_lzcnt_u64: {
11887    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11888    return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
11889  }
11890  case X86::BI__builtin_ia32_tzcnt_u16:
11891  case X86::BI__builtin_ia32_tzcnt_u32:
11892  case X86::BI__builtin_ia32_tzcnt_u64: {
11893    Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
11894    return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
11895  }
11896  case X86::BI__builtin_ia32_undef128:
11897  case X86::BI__builtin_ia32_undef256:
11898  case X86::BI__builtin_ia32_undef512:
11899    // The x86 definition of "undef" is not the same as the LLVM definition
11900    // (PR32176). We leave optimizing away an unnecessary zero constant to the
11901    // IR optimizer and backend.
11902    // TODO: If we had a "freeze" IR instruction to generate a fixed undef
11903    // value, we should use that here instead of a zero.
11904    return llvm::Constant::getNullValue(ConvertType(E->getType()));
11905  case X86::BI__builtin_ia32_vec_init_v8qi:
11906  case X86::BI__builtin_ia32_vec_init_v4hi:
11907  case X86::BI__builtin_ia32_vec_init_v2si:
11908    return Builder.CreateBitCast(BuildVector(Ops),
11909                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
11910  case X86::BI__builtin_ia32_vec_ext_v2si:
11911  case X86::BI__builtin_ia32_vec_ext_v16qi:
11912  case X86::BI__builtin_ia32_vec_ext_v8hi:
11913  case X86::BI__builtin_ia32_vec_ext_v4si:
11914  case X86::BI__builtin_ia32_vec_ext_v4sf:
11915  case X86::BI__builtin_ia32_vec_ext_v2di:
11916  case X86::BI__builtin_ia32_vec_ext_v32qi:
11917  case X86::BI__builtin_ia32_vec_ext_v16hi:
11918  case X86::BI__builtin_ia32_vec_ext_v8si:
11919  case X86::BI__builtin_ia32_vec_ext_v4di: {
11920    unsigned NumElts =
11921        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
11922    uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
11923    Index &= NumElts - 1;
11924    // These builtins exist so we can ensure the index is an ICE and in range.
11925    // Otherwise we could just do this in the header file.
11926    return Builder.CreateExtractElement(Ops[0], Index);
11927  }
11928  case X86::BI__builtin_ia32_vec_set_v16qi:
11929  case X86::BI__builtin_ia32_vec_set_v8hi:
11930  case X86::BI__builtin_ia32_vec_set_v4si:
11931  case X86::BI__builtin_ia32_vec_set_v2di:
11932  case X86::BI__builtin_ia32_vec_set_v32qi:
11933  case X86::BI__builtin_ia32_vec_set_v16hi:
11934  case X86::BI__builtin_ia32_vec_set_v8si:
11935  case X86::BI__builtin_ia32_vec_set_v4di: {
11936    unsigned NumElts =
11937        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
11938    unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
11939    Index &= NumElts - 1;
11940    // These builtins exist so we can ensure the index is an ICE and in range.
11941    // Otherwise we could just do this in the header file.
11942    return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
11943  }
11944  case X86::BI_mm_setcsr:
11945  case X86::BI__builtin_ia32_ldmxcsr: {
11946    Address Tmp = CreateMemTemp(E->getArg(0)->getType());
11947    Builder.CreateStore(Ops[0], Tmp);
11948    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
11949                          Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
11950  }
11951  case X86::BI_mm_getcsr:
11952  case X86::BI__builtin_ia32_stmxcsr: {
11953    Address Tmp = CreateMemTemp(E->getType());
11954    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
11955                       Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
11956    return Builder.CreateLoad(Tmp, "stmxcsr");
11957  }
11958  case X86::BI__builtin_ia32_xsave:
11959  case X86::BI__builtin_ia32_xsave64:
11960  case X86::BI__builtin_ia32_xrstor:
11961  case X86::BI__builtin_ia32_xrstor64:
11962  case X86::BI__builtin_ia32_xsaveopt:
11963  case X86::BI__builtin_ia32_xsaveopt64:
11964  case X86::BI__builtin_ia32_xrstors:
11965  case X86::BI__builtin_ia32_xrstors64:
11966  case X86::BI__builtin_ia32_xsavec:
11967  case X86::BI__builtin_ia32_xsavec64:
11968  case X86::BI__builtin_ia32_xsaves:
11969  case X86::BI__builtin_ia32_xsaves64:
11970  case X86::BI__builtin_ia32_xsetbv:
11971  case X86::BI_xsetbv: {
11972    Intrinsic::ID ID;
11973#define INTRINSIC_X86_XSAVE_ID(NAME) \
11974    case X86::BI__builtin_ia32_##NAME: \
11975      ID = Intrinsic::x86_##NAME; \
11976      break
11977    switch (BuiltinID) {
11978    default: llvm_unreachable("Unsupported intrinsic!");
11979    INTRINSIC_X86_XSAVE_ID(xsave);
11980    INTRINSIC_X86_XSAVE_ID(xsave64);
11981    INTRINSIC_X86_XSAVE_ID(xrstor);
11982    INTRINSIC_X86_XSAVE_ID(xrstor64);
11983    INTRINSIC_X86_XSAVE_ID(xsaveopt);
11984    INTRINSIC_X86_XSAVE_ID(xsaveopt64);
11985    INTRINSIC_X86_XSAVE_ID(xrstors);
11986    INTRINSIC_X86_XSAVE_ID(xrstors64);
11987    INTRINSIC_X86_XSAVE_ID(xsavec);
11988    INTRINSIC_X86_XSAVE_ID(xsavec64);
11989    INTRINSIC_X86_XSAVE_ID(xsaves);
11990    INTRINSIC_X86_XSAVE_ID(xsaves64);
11991    INTRINSIC_X86_XSAVE_ID(xsetbv);
11992    case X86::BI_xsetbv:
11993      ID = Intrinsic::x86_xsetbv;
11994      break;
11995    }
11996#undef INTRINSIC_X86_XSAVE_ID
11997    Value *Mhi = Builder.CreateTrunc(
11998      Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
11999    Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12000    Ops[1] = Mhi;
12001    Ops.push_back(Mlo);
12002    return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12003  }
12004  case X86::BI__builtin_ia32_xgetbv:
12005  case X86::BI_xgetbv:
12006    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12007  case X86::BI__builtin_ia32_storedqudi128_mask:
12008  case X86::BI__builtin_ia32_storedqusi128_mask:
12009  case X86::BI__builtin_ia32_storedquhi128_mask:
12010  case X86::BI__builtin_ia32_storedquqi128_mask:
12011  case X86::BI__builtin_ia32_storeupd128_mask:
12012  case X86::BI__builtin_ia32_storeups128_mask:
12013  case X86::BI__builtin_ia32_storedqudi256_mask:
12014  case X86::BI__builtin_ia32_storedqusi256_mask:
12015  case X86::BI__builtin_ia32_storedquhi256_mask:
12016  case X86::BI__builtin_ia32_storedquqi256_mask:
12017  case X86::BI__builtin_ia32_storeupd256_mask:
12018  case X86::BI__builtin_ia32_storeups256_mask:
12019  case X86::BI__builtin_ia32_storedqudi512_mask:
12020  case X86::BI__builtin_ia32_storedqusi512_mask:
12021  case X86::BI__builtin_ia32_storedquhi512_mask:
12022  case X86::BI__builtin_ia32_storedquqi512_mask:
12023  case X86::BI__builtin_ia32_storeupd512_mask:
12024  case X86::BI__builtin_ia32_storeups512_mask:
12025    return EmitX86MaskedStore(*this, Ops, Align(1));
12026
12027  case X86::BI__builtin_ia32_storess128_mask:
12028  case X86::BI__builtin_ia32_storesd128_mask:
12029    return EmitX86MaskedStore(*this, Ops, Align(1));
12030
12031  case X86::BI__builtin_ia32_vpopcntb_128:
12032  case X86::BI__builtin_ia32_vpopcntd_128:
12033  case X86::BI__builtin_ia32_vpopcntq_128:
12034  case X86::BI__builtin_ia32_vpopcntw_128:
12035  case X86::BI__builtin_ia32_vpopcntb_256:
12036  case X86::BI__builtin_ia32_vpopcntd_256:
12037  case X86::BI__builtin_ia32_vpopcntq_256:
12038  case X86::BI__builtin_ia32_vpopcntw_256:
12039  case X86::BI__builtin_ia32_vpopcntb_512:
12040  case X86::BI__builtin_ia32_vpopcntd_512:
12041  case X86::BI__builtin_ia32_vpopcntq_512:
12042  case X86::BI__builtin_ia32_vpopcntw_512: {
12043    llvm::Type *ResultType = ConvertType(E->getType());
12044    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12045    return Builder.CreateCall(F, Ops);
12046  }
12047  case X86::BI__builtin_ia32_cvtmask2b128:
12048  case X86::BI__builtin_ia32_cvtmask2b256:
12049  case X86::BI__builtin_ia32_cvtmask2b512:
12050  case X86::BI__builtin_ia32_cvtmask2w128:
12051  case X86::BI__builtin_ia32_cvtmask2w256:
12052  case X86::BI__builtin_ia32_cvtmask2w512:
12053  case X86::BI__builtin_ia32_cvtmask2d128:
12054  case X86::BI__builtin_ia32_cvtmask2d256:
12055  case X86::BI__builtin_ia32_cvtmask2d512:
12056  case X86::BI__builtin_ia32_cvtmask2q128:
12057  case X86::BI__builtin_ia32_cvtmask2q256:
12058  case X86::BI__builtin_ia32_cvtmask2q512:
12059    return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12060
12061  case X86::BI__builtin_ia32_cvtb2mask128:
12062  case X86::BI__builtin_ia32_cvtb2mask256:
12063  case X86::BI__builtin_ia32_cvtb2mask512:
12064  case X86::BI__builtin_ia32_cvtw2mask128:
12065  case X86::BI__builtin_ia32_cvtw2mask256:
12066  case X86::BI__builtin_ia32_cvtw2mask512:
12067  case X86::BI__builtin_ia32_cvtd2mask128:
12068  case X86::BI__builtin_ia32_cvtd2mask256:
12069  case X86::BI__builtin_ia32_cvtd2mask512:
12070  case X86::BI__builtin_ia32_cvtq2mask128:
12071  case X86::BI__builtin_ia32_cvtq2mask256:
12072  case X86::BI__builtin_ia32_cvtq2mask512:
12073    return EmitX86ConvertToMask(*this, Ops[0]);
12074
12075  case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12076  case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12077  case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12078    return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
12079  case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12080  case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12081  case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12082    return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
12083
12084  case X86::BI__builtin_ia32_vfmaddss3:
12085  case X86::BI__builtin_ia32_vfmaddsd3:
12086  case X86::BI__builtin_ia32_vfmaddss3_mask:
12087  case X86::BI__builtin_ia32_vfmaddsd3_mask:
12088    return EmitScalarFMAExpr(*this, Ops, Ops[0]);
12089  case X86::BI__builtin_ia32_vfmaddss:
12090  case X86::BI__builtin_ia32_vfmaddsd:
12091    return EmitScalarFMAExpr(*this, Ops,
12092                             Constant::getNullValue(Ops[0]->getType()));
12093  case X86::BI__builtin_ia32_vfmaddss3_maskz:
12094  case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12095    return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
12096  case X86::BI__builtin_ia32_vfmaddss3_mask3:
12097  case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12098    return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
12099  case X86::BI__builtin_ia32_vfmsubss3_mask3:
12100  case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12101    return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
12102                             /*NegAcc*/true);
12103  case X86::BI__builtin_ia32_vfmaddps:
12104  case X86::BI__builtin_ia32_vfmaddpd:
12105  case X86::BI__builtin_ia32_vfmaddps256:
12106  case X86::BI__builtin_ia32_vfmaddpd256:
12107  case X86::BI__builtin_ia32_vfmaddps512_mask:
12108  case X86::BI__builtin_ia32_vfmaddps512_maskz:
12109  case X86::BI__builtin_ia32_vfmaddps512_mask3:
12110  case X86::BI__builtin_ia32_vfmsubps512_mask3:
12111  case X86::BI__builtin_ia32_vfmaddpd512_mask:
12112  case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12113  case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12114  case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12115    return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
12116  case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12117  case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12118  case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12119  case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12120  case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12121  case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12122  case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12123  case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12124    return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
12125
12126  case X86::BI__builtin_ia32_movdqa32store128_mask:
12127  case X86::BI__builtin_ia32_movdqa64store128_mask:
12128  case X86::BI__builtin_ia32_storeaps128_mask:
12129  case X86::BI__builtin_ia32_storeapd128_mask:
12130  case X86::BI__builtin_ia32_movdqa32store256_mask:
12131  case X86::BI__builtin_ia32_movdqa64store256_mask:
12132  case X86::BI__builtin_ia32_storeaps256_mask:
12133  case X86::BI__builtin_ia32_storeapd256_mask:
12134  case X86::BI__builtin_ia32_movdqa32store512_mask:
12135  case X86::BI__builtin_ia32_movdqa64store512_mask:
12136  case X86::BI__builtin_ia32_storeaps512_mask:
12137  case X86::BI__builtin_ia32_storeapd512_mask:
12138    return EmitX86MaskedStore(
12139        *this, Ops,
12140        getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12141
12142  case X86::BI__builtin_ia32_loadups128_mask:
12143  case X86::BI__builtin_ia32_loadups256_mask:
12144  case X86::BI__builtin_ia32_loadups512_mask:
12145  case X86::BI__builtin_ia32_loadupd128_mask:
12146  case X86::BI__builtin_ia32_loadupd256_mask:
12147  case X86::BI__builtin_ia32_loadupd512_mask:
12148  case X86::BI__builtin_ia32_loaddquqi128_mask:
12149  case X86::BI__builtin_ia32_loaddquqi256_mask:
12150  case X86::BI__builtin_ia32_loaddquqi512_mask:
12151  case X86::BI__builtin_ia32_loaddquhi128_mask:
12152  case X86::BI__builtin_ia32_loaddquhi256_mask:
12153  case X86::BI__builtin_ia32_loaddquhi512_mask:
12154  case X86::BI__builtin_ia32_loaddqusi128_mask:
12155  case X86::BI__builtin_ia32_loaddqusi256_mask:
12156  case X86::BI__builtin_ia32_loaddqusi512_mask:
12157  case X86::BI__builtin_ia32_loaddqudi128_mask:
12158  case X86::BI__builtin_ia32_loaddqudi256_mask:
12159  case X86::BI__builtin_ia32_loaddqudi512_mask:
12160    return EmitX86MaskedLoad(*this, Ops, Align(1));
12161
12162  case X86::BI__builtin_ia32_loadss128_mask:
12163  case X86::BI__builtin_ia32_loadsd128_mask:
12164    return EmitX86MaskedLoad(*this, Ops, Align(1));
12165
12166  case X86::BI__builtin_ia32_loadaps128_mask:
12167  case X86::BI__builtin_ia32_loadaps256_mask:
12168  case X86::BI__builtin_ia32_loadaps512_mask:
12169  case X86::BI__builtin_ia32_loadapd128_mask:
12170  case X86::BI__builtin_ia32_loadapd256_mask:
12171  case X86::BI__builtin_ia32_loadapd512_mask:
12172  case X86::BI__builtin_ia32_movdqa32load128_mask:
12173  case X86::BI__builtin_ia32_movdqa32load256_mask:
12174  case X86::BI__builtin_ia32_movdqa32load512_mask:
12175  case X86::BI__builtin_ia32_movdqa64load128_mask:
12176  case X86::BI__builtin_ia32_movdqa64load256_mask:
12177  case X86::BI__builtin_ia32_movdqa64load512_mask:
12178    return EmitX86MaskedLoad(
12179        *this, Ops,
12180        getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12181
12182  case X86::BI__builtin_ia32_expandloaddf128_mask:
12183  case X86::BI__builtin_ia32_expandloaddf256_mask:
12184  case X86::BI__builtin_ia32_expandloaddf512_mask:
12185  case X86::BI__builtin_ia32_expandloadsf128_mask:
12186  case X86::BI__builtin_ia32_expandloadsf256_mask:
12187  case X86::BI__builtin_ia32_expandloadsf512_mask:
12188  case X86::BI__builtin_ia32_expandloaddi128_mask:
12189  case X86::BI__builtin_ia32_expandloaddi256_mask:
12190  case X86::BI__builtin_ia32_expandloaddi512_mask:
12191  case X86::BI__builtin_ia32_expandloadsi128_mask:
12192  case X86::BI__builtin_ia32_expandloadsi256_mask:
12193  case X86::BI__builtin_ia32_expandloadsi512_mask:
12194  case X86::BI__builtin_ia32_expandloadhi128_mask:
12195  case X86::BI__builtin_ia32_expandloadhi256_mask:
12196  case X86::BI__builtin_ia32_expandloadhi512_mask:
12197  case X86::BI__builtin_ia32_expandloadqi128_mask:
12198  case X86::BI__builtin_ia32_expandloadqi256_mask:
12199  case X86::BI__builtin_ia32_expandloadqi512_mask:
12200    return EmitX86ExpandLoad(*this, Ops);
12201
12202  case X86::BI__builtin_ia32_compressstoredf128_mask:
12203  case X86::BI__builtin_ia32_compressstoredf256_mask:
12204  case X86::BI__builtin_ia32_compressstoredf512_mask:
12205  case X86::BI__builtin_ia32_compressstoresf128_mask:
12206  case X86::BI__builtin_ia32_compressstoresf256_mask:
12207  case X86::BI__builtin_ia32_compressstoresf512_mask:
12208  case X86::BI__builtin_ia32_compressstoredi128_mask:
12209  case X86::BI__builtin_ia32_compressstoredi256_mask:
12210  case X86::BI__builtin_ia32_compressstoredi512_mask:
12211  case X86::BI__builtin_ia32_compressstoresi128_mask:
12212  case X86::BI__builtin_ia32_compressstoresi256_mask:
12213  case X86::BI__builtin_ia32_compressstoresi512_mask:
12214  case X86::BI__builtin_ia32_compressstorehi128_mask:
12215  case X86::BI__builtin_ia32_compressstorehi256_mask:
12216  case X86::BI__builtin_ia32_compressstorehi512_mask:
12217  case X86::BI__builtin_ia32_compressstoreqi128_mask:
12218  case X86::BI__builtin_ia32_compressstoreqi256_mask:
12219  case X86::BI__builtin_ia32_compressstoreqi512_mask:
12220    return EmitX86CompressStore(*this, Ops);
12221
12222  case X86::BI__builtin_ia32_expanddf128_mask:
12223  case X86::BI__builtin_ia32_expanddf256_mask:
12224  case X86::BI__builtin_ia32_expanddf512_mask:
12225  case X86::BI__builtin_ia32_expandsf128_mask:
12226  case X86::BI__builtin_ia32_expandsf256_mask:
12227  case X86::BI__builtin_ia32_expandsf512_mask:
12228  case X86::BI__builtin_ia32_expanddi128_mask:
12229  case X86::BI__builtin_ia32_expanddi256_mask:
12230  case X86::BI__builtin_ia32_expanddi512_mask:
12231  case X86::BI__builtin_ia32_expandsi128_mask:
12232  case X86::BI__builtin_ia32_expandsi256_mask:
12233  case X86::BI__builtin_ia32_expandsi512_mask:
12234  case X86::BI__builtin_ia32_expandhi128_mask:
12235  case X86::BI__builtin_ia32_expandhi256_mask:
12236  case X86::BI__builtin_ia32_expandhi512_mask:
12237  case X86::BI__builtin_ia32_expandqi128_mask:
12238  case X86::BI__builtin_ia32_expandqi256_mask:
12239  case X86::BI__builtin_ia32_expandqi512_mask:
12240    return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12241
12242  case X86::BI__builtin_ia32_compressdf128_mask:
12243  case X86::BI__builtin_ia32_compressdf256_mask:
12244  case X86::BI__builtin_ia32_compressdf512_mask:
12245  case X86::BI__builtin_ia32_compresssf128_mask:
12246  case X86::BI__builtin_ia32_compresssf256_mask:
12247  case X86::BI__builtin_ia32_compresssf512_mask:
12248  case X86::BI__builtin_ia32_compressdi128_mask:
12249  case X86::BI__builtin_ia32_compressdi256_mask:
12250  case X86::BI__builtin_ia32_compressdi512_mask:
12251  case X86::BI__builtin_ia32_compresssi128_mask:
12252  case X86::BI__builtin_ia32_compresssi256_mask:
12253  case X86::BI__builtin_ia32_compresssi512_mask:
12254  case X86::BI__builtin_ia32_compresshi128_mask:
12255  case X86::BI__builtin_ia32_compresshi256_mask:
12256  case X86::BI__builtin_ia32_compresshi512_mask:
12257  case X86::BI__builtin_ia32_compressqi128_mask:
12258  case X86::BI__builtin_ia32_compressqi256_mask:
12259  case X86::BI__builtin_ia32_compressqi512_mask:
12260    return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12261
12262  case X86::BI__builtin_ia32_gather3div2df:
12263  case X86::BI__builtin_ia32_gather3div2di:
12264  case X86::BI__builtin_ia32_gather3div4df:
12265  case X86::BI__builtin_ia32_gather3div4di:
12266  case X86::BI__builtin_ia32_gather3div4sf:
12267  case X86::BI__builtin_ia32_gather3div4si:
12268  case X86::BI__builtin_ia32_gather3div8sf:
12269  case X86::BI__builtin_ia32_gather3div8si:
12270  case X86::BI__builtin_ia32_gather3siv2df:
12271  case X86::BI__builtin_ia32_gather3siv2di:
12272  case X86::BI__builtin_ia32_gather3siv4df:
12273  case X86::BI__builtin_ia32_gather3siv4di:
12274  case X86::BI__builtin_ia32_gather3siv4sf:
12275  case X86::BI__builtin_ia32_gather3siv4si:
12276  case X86::BI__builtin_ia32_gather3siv8sf:
12277  case X86::BI__builtin_ia32_gather3siv8si:
12278  case X86::BI__builtin_ia32_gathersiv8df:
12279  case X86::BI__builtin_ia32_gathersiv16sf:
12280  case X86::BI__builtin_ia32_gatherdiv8df:
12281  case X86::BI__builtin_ia32_gatherdiv16sf:
12282  case X86::BI__builtin_ia32_gathersiv8di:
12283  case X86::BI__builtin_ia32_gathersiv16si:
12284  case X86::BI__builtin_ia32_gatherdiv8di:
12285  case X86::BI__builtin_ia32_gatherdiv16si: {
12286    Intrinsic::ID IID;
12287    switch (BuiltinID) {
12288    default: llvm_unreachable("Unexpected builtin");
12289    case X86::BI__builtin_ia32_gather3div2df:
12290      IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12291      break;
12292    case X86::BI__builtin_ia32_gather3div2di:
12293      IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12294      break;
12295    case X86::BI__builtin_ia32_gather3div4df:
12296      IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12297      break;
12298    case X86::BI__builtin_ia32_gather3div4di:
12299      IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12300      break;
12301    case X86::BI__builtin_ia32_gather3div4sf:
12302      IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12303      break;
12304    case X86::BI__builtin_ia32_gather3div4si:
12305      IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12306      break;
12307    case X86::BI__builtin_ia32_gather3div8sf:
12308      IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12309      break;
12310    case X86::BI__builtin_ia32_gather3div8si:
12311      IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12312      break;
12313    case X86::BI__builtin_ia32_gather3siv2df:
12314      IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12315      break;
12316    case X86::BI__builtin_ia32_gather3siv2di:
12317      IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12318      break;
12319    case X86::BI__builtin_ia32_gather3siv4df:
12320      IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12321      break;
12322    case X86::BI__builtin_ia32_gather3siv4di:
12323      IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12324      break;
12325    case X86::BI__builtin_ia32_gather3siv4sf:
12326      IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12327      break;
12328    case X86::BI__builtin_ia32_gather3siv4si:
12329      IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12330      break;
12331    case X86::BI__builtin_ia32_gather3siv8sf:
12332      IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12333      break;
12334    case X86::BI__builtin_ia32_gather3siv8si:
12335      IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12336      break;
12337    case X86::BI__builtin_ia32_gathersiv8df:
12338      IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12339      break;
12340    case X86::BI__builtin_ia32_gathersiv16sf:
12341      IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12342      break;
12343    case X86::BI__builtin_ia32_gatherdiv8df:
12344      IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12345      break;
12346    case X86::BI__builtin_ia32_gatherdiv16sf:
12347      IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12348      break;
12349    case X86::BI__builtin_ia32_gathersiv8di:
12350      IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12351      break;
12352    case X86::BI__builtin_ia32_gathersiv16si:
12353      IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12354      break;
12355    case X86::BI__builtin_ia32_gatherdiv8di:
12356      IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12357      break;
12358    case X86::BI__builtin_ia32_gatherdiv16si:
12359      IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12360      break;
12361    }
12362
12363    unsigned MinElts =
12364        std::min(cast<llvm::VectorType>(Ops[0]->getType())->getNumElements(),
12365                 cast<llvm::VectorType>(Ops[2]->getType())->getNumElements());
12366    Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12367    Function *Intr = CGM.getIntrinsic(IID);
12368    return Builder.CreateCall(Intr, Ops);
12369  }
12370
12371  case X86::BI__builtin_ia32_scattersiv8df:
12372  case X86::BI__builtin_ia32_scattersiv16sf:
12373  case X86::BI__builtin_ia32_scatterdiv8df:
12374  case X86::BI__builtin_ia32_scatterdiv16sf:
12375  case X86::BI__builtin_ia32_scattersiv8di:
12376  case X86::BI__builtin_ia32_scattersiv16si:
12377  case X86::BI__builtin_ia32_scatterdiv8di:
12378  case X86::BI__builtin_ia32_scatterdiv16si:
12379  case X86::BI__builtin_ia32_scatterdiv2df:
12380  case X86::BI__builtin_ia32_scatterdiv2di:
12381  case X86::BI__builtin_ia32_scatterdiv4df:
12382  case X86::BI__builtin_ia32_scatterdiv4di:
12383  case X86::BI__builtin_ia32_scatterdiv4sf:
12384  case X86::BI__builtin_ia32_scatterdiv4si:
12385  case X86::BI__builtin_ia32_scatterdiv8sf:
12386  case X86::BI__builtin_ia32_scatterdiv8si:
12387  case X86::BI__builtin_ia32_scattersiv2df:
12388  case X86::BI__builtin_ia32_scattersiv2di:
12389  case X86::BI__builtin_ia32_scattersiv4df:
12390  case X86::BI__builtin_ia32_scattersiv4di:
12391  case X86::BI__builtin_ia32_scattersiv4sf:
12392  case X86::BI__builtin_ia32_scattersiv4si:
12393  case X86::BI__builtin_ia32_scattersiv8sf:
12394  case X86::BI__builtin_ia32_scattersiv8si: {
12395    Intrinsic::ID IID;
12396    switch (BuiltinID) {
12397    default: llvm_unreachable("Unexpected builtin");
12398    case X86::BI__builtin_ia32_scattersiv8df:
12399      IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12400      break;
12401    case X86::BI__builtin_ia32_scattersiv16sf:
12402      IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12403      break;
12404    case X86::BI__builtin_ia32_scatterdiv8df:
12405      IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
12406      break;
12407    case X86::BI__builtin_ia32_scatterdiv16sf:
12408      IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
12409      break;
12410    case X86::BI__builtin_ia32_scattersiv8di:
12411      IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
12412      break;
12413    case X86::BI__builtin_ia32_scattersiv16si:
12414      IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
12415      break;
12416    case X86::BI__builtin_ia32_scatterdiv8di:
12417      IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
12418      break;
12419    case X86::BI__builtin_ia32_scatterdiv16si:
12420      IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
12421      break;
12422    case X86::BI__builtin_ia32_scatterdiv2df:
12423      IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
12424      break;
12425    case X86::BI__builtin_ia32_scatterdiv2di:
12426      IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
12427      break;
12428    case X86::BI__builtin_ia32_scatterdiv4df:
12429      IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
12430      break;
12431    case X86::BI__builtin_ia32_scatterdiv4di:
12432      IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
12433      break;
12434    case X86::BI__builtin_ia32_scatterdiv4sf:
12435      IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
12436      break;
12437    case X86::BI__builtin_ia32_scatterdiv4si:
12438      IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
12439      break;
12440    case X86::BI__builtin_ia32_scatterdiv8sf:
12441      IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
12442      break;
12443    case X86::BI__builtin_ia32_scatterdiv8si:
12444      IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
12445      break;
12446    case X86::BI__builtin_ia32_scattersiv2df:
12447      IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
12448      break;
12449    case X86::BI__builtin_ia32_scattersiv2di:
12450      IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
12451      break;
12452    case X86::BI__builtin_ia32_scattersiv4df:
12453      IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
12454      break;
12455    case X86::BI__builtin_ia32_scattersiv4di:
12456      IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
12457      break;
12458    case X86::BI__builtin_ia32_scattersiv4sf:
12459      IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
12460      break;
12461    case X86::BI__builtin_ia32_scattersiv4si:
12462      IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
12463      break;
12464    case X86::BI__builtin_ia32_scattersiv8sf:
12465      IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
12466      break;
12467    case X86::BI__builtin_ia32_scattersiv8si:
12468      IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
12469      break;
12470    }
12471
12472    unsigned MinElts =
12473        std::min(cast<llvm::VectorType>(Ops[2]->getType())->getNumElements(),
12474                 cast<llvm::VectorType>(Ops[3]->getType())->getNumElements());
12475    Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
12476    Function *Intr = CGM.getIntrinsic(IID);
12477    return Builder.CreateCall(Intr, Ops);
12478  }
12479
12480  case X86::BI__builtin_ia32_vextractf128_pd256:
12481  case X86::BI__builtin_ia32_vextractf128_ps256:
12482  case X86::BI__builtin_ia32_vextractf128_si256:
12483  case X86::BI__builtin_ia32_extract128i256:
12484  case X86::BI__builtin_ia32_extractf64x4_mask:
12485  case X86::BI__builtin_ia32_extractf32x4_mask:
12486  case X86::BI__builtin_ia32_extracti64x4_mask:
12487  case X86::BI__builtin_ia32_extracti32x4_mask:
12488  case X86::BI__builtin_ia32_extractf32x8_mask:
12489  case X86::BI__builtin_ia32_extracti32x8_mask:
12490  case X86::BI__builtin_ia32_extractf32x4_256_mask:
12491  case X86::BI__builtin_ia32_extracti32x4_256_mask:
12492  case X86::BI__builtin_ia32_extractf64x2_256_mask:
12493  case X86::BI__builtin_ia32_extracti64x2_256_mask:
12494  case X86::BI__builtin_ia32_extractf64x2_512_mask:
12495  case X86::BI__builtin_ia32_extracti64x2_512_mask: {
12496    auto *DstTy = cast<llvm::VectorType>(ConvertType(E->getType()));
12497    unsigned NumElts = DstTy->getNumElements();
12498    unsigned SrcNumElts =
12499        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12500    unsigned SubVectors = SrcNumElts / NumElts;
12501    unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12502    assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12503    Index &= SubVectors - 1; // Remove any extra bits.
12504    Index *= NumElts;
12505
12506    int Indices[16];
12507    for (unsigned i = 0; i != NumElts; ++i)
12508      Indices[i] = i + Index;
12509
12510    Value *Res = Builder.CreateShuffleVector(Ops[0],
12511                                             UndefValue::get(Ops[0]->getType()),
12512                                             makeArrayRef(Indices, NumElts),
12513                                             "extract");
12514
12515    if (Ops.size() == 4)
12516      Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
12517
12518    return Res;
12519  }
12520  case X86::BI__builtin_ia32_vinsertf128_pd256:
12521  case X86::BI__builtin_ia32_vinsertf128_ps256:
12522  case X86::BI__builtin_ia32_vinsertf128_si256:
12523  case X86::BI__builtin_ia32_insert128i256:
12524  case X86::BI__builtin_ia32_insertf64x4:
12525  case X86::BI__builtin_ia32_insertf32x4:
12526  case X86::BI__builtin_ia32_inserti64x4:
12527  case X86::BI__builtin_ia32_inserti32x4:
12528  case X86::BI__builtin_ia32_insertf32x8:
12529  case X86::BI__builtin_ia32_inserti32x8:
12530  case X86::BI__builtin_ia32_insertf32x4_256:
12531  case X86::BI__builtin_ia32_inserti32x4_256:
12532  case X86::BI__builtin_ia32_insertf64x2_256:
12533  case X86::BI__builtin_ia32_inserti64x2_256:
12534  case X86::BI__builtin_ia32_insertf64x2_512:
12535  case X86::BI__builtin_ia32_inserti64x2_512: {
12536    unsigned DstNumElts =
12537        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12538    unsigned SrcNumElts =
12539        cast<llvm::VectorType>(Ops[1]->getType())->getNumElements();
12540    unsigned SubVectors = DstNumElts / SrcNumElts;
12541    unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12542    assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12543    Index &= SubVectors - 1; // Remove any extra bits.
12544    Index *= SrcNumElts;
12545
12546    int Indices[16];
12547    for (unsigned i = 0; i != DstNumElts; ++i)
12548      Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
12549
12550    Value *Op1 = Builder.CreateShuffleVector(Ops[1],
12551                                             UndefValue::get(Ops[1]->getType()),
12552                                             makeArrayRef(Indices, DstNumElts),
12553                                             "widen");
12554
12555    for (unsigned i = 0; i != DstNumElts; ++i) {
12556      if (i >= Index && i < (Index + SrcNumElts))
12557        Indices[i] = (i - Index) + DstNumElts;
12558      else
12559        Indices[i] = i;
12560    }
12561
12562    return Builder.CreateShuffleVector(Ops[0], Op1,
12563                                       makeArrayRef(Indices, DstNumElts),
12564                                       "insert");
12565  }
12566  case X86::BI__builtin_ia32_pmovqd512_mask:
12567  case X86::BI__builtin_ia32_pmovwb512_mask: {
12568    Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12569    return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12570  }
12571  case X86::BI__builtin_ia32_pmovdb512_mask:
12572  case X86::BI__builtin_ia32_pmovdw512_mask:
12573  case X86::BI__builtin_ia32_pmovqw512_mask: {
12574    if (const auto *C = dyn_cast<Constant>(Ops[2]))
12575      if (C->isAllOnesValue())
12576        return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12577
12578    Intrinsic::ID IID;
12579    switch (BuiltinID) {
12580    default: llvm_unreachable("Unsupported intrinsic!");
12581    case X86::BI__builtin_ia32_pmovdb512_mask:
12582      IID = Intrinsic::x86_avx512_mask_pmov_db_512;
12583      break;
12584    case X86::BI__builtin_ia32_pmovdw512_mask:
12585      IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
12586      break;
12587    case X86::BI__builtin_ia32_pmovqw512_mask:
12588      IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
12589      break;
12590    }
12591
12592    Function *Intr = CGM.getIntrinsic(IID);
12593    return Builder.CreateCall(Intr, Ops);
12594  }
12595  case X86::BI__builtin_ia32_pblendw128:
12596  case X86::BI__builtin_ia32_blendpd:
12597  case X86::BI__builtin_ia32_blendps:
12598  case X86::BI__builtin_ia32_blendpd256:
12599  case X86::BI__builtin_ia32_blendps256:
12600  case X86::BI__builtin_ia32_pblendw256:
12601  case X86::BI__builtin_ia32_pblendd128:
12602  case X86::BI__builtin_ia32_pblendd256: {
12603    unsigned NumElts =
12604        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12605    unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12606
12607    int Indices[16];
12608    // If there are more than 8 elements, the immediate is used twice so make
12609    // sure we handle that.
12610    for (unsigned i = 0; i != NumElts; ++i)
12611      Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
12612
12613    return Builder.CreateShuffleVector(Ops[0], Ops[1],
12614                                       makeArrayRef(Indices, NumElts),
12615                                       "blend");
12616  }
12617  case X86::BI__builtin_ia32_pshuflw:
12618  case X86::BI__builtin_ia32_pshuflw256:
12619  case X86::BI__builtin_ia32_pshuflw512: {
12620    uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12621    auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12622    unsigned NumElts = Ty->getNumElements();
12623
12624    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12625    Imm = (Imm & 0xff) * 0x01010101;
12626
12627    int Indices[32];
12628    for (unsigned l = 0; l != NumElts; l += 8) {
12629      for (unsigned i = 0; i != 4; ++i) {
12630        Indices[l + i] = l + (Imm & 3);
12631        Imm >>= 2;
12632      }
12633      for (unsigned i = 4; i != 8; ++i)
12634        Indices[l + i] = l + i;
12635    }
12636
12637    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12638                                       makeArrayRef(Indices, NumElts),
12639                                       "pshuflw");
12640  }
12641  case X86::BI__builtin_ia32_pshufhw:
12642  case X86::BI__builtin_ia32_pshufhw256:
12643  case X86::BI__builtin_ia32_pshufhw512: {
12644    uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12645    auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12646    unsigned NumElts = Ty->getNumElements();
12647
12648    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12649    Imm = (Imm & 0xff) * 0x01010101;
12650
12651    int Indices[32];
12652    for (unsigned l = 0; l != NumElts; l += 8) {
12653      for (unsigned i = 0; i != 4; ++i)
12654        Indices[l + i] = l + i;
12655      for (unsigned i = 4; i != 8; ++i) {
12656        Indices[l + i] = l + 4 + (Imm & 3);
12657        Imm >>= 2;
12658      }
12659    }
12660
12661    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12662                                       makeArrayRef(Indices, NumElts),
12663                                       "pshufhw");
12664  }
12665  case X86::BI__builtin_ia32_pshufd:
12666  case X86::BI__builtin_ia32_pshufd256:
12667  case X86::BI__builtin_ia32_pshufd512:
12668  case X86::BI__builtin_ia32_vpermilpd:
12669  case X86::BI__builtin_ia32_vpermilps:
12670  case X86::BI__builtin_ia32_vpermilpd256:
12671  case X86::BI__builtin_ia32_vpermilps256:
12672  case X86::BI__builtin_ia32_vpermilpd512:
12673  case X86::BI__builtin_ia32_vpermilps512: {
12674    uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12675    auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12676    unsigned NumElts = Ty->getNumElements();
12677    unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12678    unsigned NumLaneElts = NumElts / NumLanes;
12679
12680    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12681    Imm = (Imm & 0xff) * 0x01010101;
12682
12683    int Indices[16];
12684    for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12685      for (unsigned i = 0; i != NumLaneElts; ++i) {
12686        Indices[i + l] = (Imm % NumLaneElts) + l;
12687        Imm /= NumLaneElts;
12688      }
12689    }
12690
12691    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12692                                       makeArrayRef(Indices, NumElts),
12693                                       "permil");
12694  }
12695  case X86::BI__builtin_ia32_shufpd:
12696  case X86::BI__builtin_ia32_shufpd256:
12697  case X86::BI__builtin_ia32_shufpd512:
12698  case X86::BI__builtin_ia32_shufps:
12699  case X86::BI__builtin_ia32_shufps256:
12700  case X86::BI__builtin_ia32_shufps512: {
12701    uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12702    auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12703    unsigned NumElts = Ty->getNumElements();
12704    unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12705    unsigned NumLaneElts = NumElts / NumLanes;
12706
12707    // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12708    Imm = (Imm & 0xff) * 0x01010101;
12709
12710    int Indices[16];
12711    for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12712      for (unsigned i = 0; i != NumLaneElts; ++i) {
12713        unsigned Index = Imm % NumLaneElts;
12714        Imm /= NumLaneElts;
12715        if (i >= (NumLaneElts / 2))
12716          Index += NumElts;
12717        Indices[l + i] = l + Index;
12718      }
12719    }
12720
12721    return Builder.CreateShuffleVector(Ops[0], Ops[1],
12722                                       makeArrayRef(Indices, NumElts),
12723                                       "shufp");
12724  }
12725  case X86::BI__builtin_ia32_permdi256:
12726  case X86::BI__builtin_ia32_permdf256:
12727  case X86::BI__builtin_ia32_permdi512:
12728  case X86::BI__builtin_ia32_permdf512: {
12729    unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12730    auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12731    unsigned NumElts = Ty->getNumElements();
12732
12733    // These intrinsics operate on 256-bit lanes of four 64-bit elements.
12734    int Indices[8];
12735    for (unsigned l = 0; l != NumElts; l += 4)
12736      for (unsigned i = 0; i != 4; ++i)
12737        Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
12738
12739    return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12740                                       makeArrayRef(Indices, NumElts),
12741                                       "perm");
12742  }
12743  case X86::BI__builtin_ia32_palignr128:
12744  case X86::BI__builtin_ia32_palignr256:
12745  case X86::BI__builtin_ia32_palignr512: {
12746    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12747
12748    unsigned NumElts =
12749        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12750    assert(NumElts % 16 == 0);
12751
12752    // If palignr is shifting the pair of vectors more than the size of two
12753    // lanes, emit zero.
12754    if (ShiftVal >= 32)
12755      return llvm::Constant::getNullValue(ConvertType(E->getType()));
12756
12757    // If palignr is shifting the pair of input vectors more than one lane,
12758    // but less than two lanes, convert to shifting in zeroes.
12759    if (ShiftVal > 16) {
12760      ShiftVal -= 16;
12761      Ops[1] = Ops[0];
12762      Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
12763    }
12764
12765    int Indices[64];
12766    // 256-bit palignr operates on 128-bit lanes so we need to handle that
12767    for (unsigned l = 0; l != NumElts; l += 16) {
12768      for (unsigned i = 0; i != 16; ++i) {
12769        unsigned Idx = ShiftVal + i;
12770        if (Idx >= 16)
12771          Idx += NumElts - 16; // End of lane, switch operand.
12772        Indices[l + i] = Idx + l;
12773      }
12774    }
12775
12776    return Builder.CreateShuffleVector(Ops[1], Ops[0],
12777                                       makeArrayRef(Indices, NumElts),
12778                                       "palignr");
12779  }
12780  case X86::BI__builtin_ia32_alignd128:
12781  case X86::BI__builtin_ia32_alignd256:
12782  case X86::BI__builtin_ia32_alignd512:
12783  case X86::BI__builtin_ia32_alignq128:
12784  case X86::BI__builtin_ia32_alignq256:
12785  case X86::BI__builtin_ia32_alignq512: {
12786    unsigned NumElts =
12787        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12788    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12789
12790    // Mask the shift amount to width of two vectors.
12791    ShiftVal &= (2 * NumElts) - 1;
12792
12793    int Indices[16];
12794    for (unsigned i = 0; i != NumElts; ++i)
12795      Indices[i] = i + ShiftVal;
12796
12797    return Builder.CreateShuffleVector(Ops[1], Ops[0],
12798                                       makeArrayRef(Indices, NumElts),
12799                                       "valign");
12800  }
12801  case X86::BI__builtin_ia32_shuf_f32x4_256:
12802  case X86::BI__builtin_ia32_shuf_f64x2_256:
12803  case X86::BI__builtin_ia32_shuf_i32x4_256:
12804  case X86::BI__builtin_ia32_shuf_i64x2_256:
12805  case X86::BI__builtin_ia32_shuf_f32x4:
12806  case X86::BI__builtin_ia32_shuf_f64x2:
12807  case X86::BI__builtin_ia32_shuf_i32x4:
12808  case X86::BI__builtin_ia32_shuf_i64x2: {
12809    unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12810    auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12811    unsigned NumElts = Ty->getNumElements();
12812    unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
12813    unsigned NumLaneElts = NumElts / NumLanes;
12814
12815    int Indices[16];
12816    for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12817      unsigned Index = (Imm % NumLanes) * NumLaneElts;
12818      Imm /= NumLanes; // Discard the bits we just used.
12819      if (l >= (NumElts / 2))
12820        Index += NumElts; // Switch to other source.
12821      for (unsigned i = 0; i != NumLaneElts; ++i) {
12822        Indices[l + i] = Index + i;
12823      }
12824    }
12825
12826    return Builder.CreateShuffleVector(Ops[0], Ops[1],
12827                                       makeArrayRef(Indices, NumElts),
12828                                       "shuf");
12829  }
12830
12831  case X86::BI__builtin_ia32_vperm2f128_pd256:
12832  case X86::BI__builtin_ia32_vperm2f128_ps256:
12833  case X86::BI__builtin_ia32_vperm2f128_si256:
12834  case X86::BI__builtin_ia32_permti256: {
12835    unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12836    unsigned NumElts =
12837        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12838
12839    // This takes a very simple approach since there are two lanes and a
12840    // shuffle can have 2 inputs. So we reserve the first input for the first
12841    // lane and the second input for the second lane. This may result in
12842    // duplicate sources, but this can be dealt with in the backend.
12843
12844    Value *OutOps[2];
12845    int Indices[8];
12846    for (unsigned l = 0; l != 2; ++l) {
12847      // Determine the source for this lane.
12848      if (Imm & (1 << ((l * 4) + 3)))
12849        OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
12850      else if (Imm & (1 << ((l * 4) + 1)))
12851        OutOps[l] = Ops[1];
12852      else
12853        OutOps[l] = Ops[0];
12854
12855      for (unsigned i = 0; i != NumElts/2; ++i) {
12856        // Start with ith element of the source for this lane.
12857        unsigned Idx = (l * NumElts) + i;
12858        // If bit 0 of the immediate half is set, switch to the high half of
12859        // the source.
12860        if (Imm & (1 << (l * 4)))
12861          Idx += NumElts/2;
12862        Indices[(l * (NumElts/2)) + i] = Idx;
12863      }
12864    }
12865
12866    return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
12867                                       makeArrayRef(Indices, NumElts),
12868                                       "vperm");
12869  }
12870
12871  case X86::BI__builtin_ia32_pslldqi128_byteshift:
12872  case X86::BI__builtin_ia32_pslldqi256_byteshift:
12873  case X86::BI__builtin_ia32_pslldqi512_byteshift: {
12874    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12875    auto *ResultType = cast<llvm::VectorType>(Ops[0]->getType());
12876    // Builtin type is vXi64 so multiply by 8 to get bytes.
12877    unsigned NumElts = ResultType->getNumElements() * 8;
12878
12879    // If pslldq is shifting the vector more than 15 bytes, emit zero.
12880    if (ShiftVal >= 16)
12881      return llvm::Constant::getNullValue(ResultType);
12882
12883    int Indices[64];
12884    // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
12885    for (unsigned l = 0; l != NumElts; l += 16) {
12886      for (unsigned i = 0; i != 16; ++i) {
12887        unsigned Idx = NumElts + i - ShiftVal;
12888        if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
12889        Indices[l + i] = Idx + l;
12890      }
12891    }
12892
12893    auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
12894    Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
12895    Value *Zero = llvm::Constant::getNullValue(VecTy);
12896    Value *SV = Builder.CreateShuffleVector(Zero, Cast,
12897                                            makeArrayRef(Indices, NumElts),
12898                                            "pslldq");
12899    return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
12900  }
12901  case X86::BI__builtin_ia32_psrldqi128_byteshift:
12902  case X86::BI__builtin_ia32_psrldqi256_byteshift:
12903  case X86::BI__builtin_ia32_psrldqi512_byteshift: {
12904    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12905    auto *ResultType = cast<llvm::VectorType>(Ops[0]->getType());
12906    // Builtin type is vXi64 so multiply by 8 to get bytes.
12907    unsigned NumElts = ResultType->getNumElements() * 8;
12908
12909    // If psrldq is shifting the vector more than 15 bytes, emit zero.
12910    if (ShiftVal >= 16)
12911      return llvm::Constant::getNullValue(ResultType);
12912
12913    int Indices[64];
12914    // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
12915    for (unsigned l = 0; l != NumElts; l += 16) {
12916      for (unsigned i = 0; i != 16; ++i) {
12917        unsigned Idx = i + ShiftVal;
12918        if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
12919        Indices[l + i] = Idx + l;
12920      }
12921    }
12922
12923    auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
12924    Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
12925    Value *Zero = llvm::Constant::getNullValue(VecTy);
12926    Value *SV = Builder.CreateShuffleVector(Cast, Zero,
12927                                            makeArrayRef(Indices, NumElts),
12928                                            "psrldq");
12929    return Builder.CreateBitCast(SV, ResultType, "cast");
12930  }
12931  case X86::BI__builtin_ia32_kshiftliqi:
12932  case X86::BI__builtin_ia32_kshiftlihi:
12933  case X86::BI__builtin_ia32_kshiftlisi:
12934  case X86::BI__builtin_ia32_kshiftlidi: {
12935    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12936    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12937
12938    if (ShiftVal >= NumElts)
12939      return llvm::Constant::getNullValue(Ops[0]->getType());
12940
12941    Value *In = getMaskVecValue(*this, Ops[0], NumElts);
12942
12943    int Indices[64];
12944    for (unsigned i = 0; i != NumElts; ++i)
12945      Indices[i] = NumElts + i - ShiftVal;
12946
12947    Value *Zero = llvm::Constant::getNullValue(In->getType());
12948    Value *SV = Builder.CreateShuffleVector(Zero, In,
12949                                            makeArrayRef(Indices, NumElts),
12950                                            "kshiftl");
12951    return Builder.CreateBitCast(SV, Ops[0]->getType());
12952  }
12953  case X86::BI__builtin_ia32_kshiftriqi:
12954  case X86::BI__builtin_ia32_kshiftrihi:
12955  case X86::BI__builtin_ia32_kshiftrisi:
12956  case X86::BI__builtin_ia32_kshiftridi: {
12957    unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12958    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12959
12960    if (ShiftVal >= NumElts)
12961      return llvm::Constant::getNullValue(Ops[0]->getType());
12962
12963    Value *In = getMaskVecValue(*this, Ops[0], NumElts);
12964
12965    int Indices[64];
12966    for (unsigned i = 0; i != NumElts; ++i)
12967      Indices[i] = i + ShiftVal;
12968
12969    Value *Zero = llvm::Constant::getNullValue(In->getType());
12970    Value *SV = Builder.CreateShuffleVector(In, Zero,
12971                                            makeArrayRef(Indices, NumElts),
12972                                            "kshiftr");
12973    return Builder.CreateBitCast(SV, Ops[0]->getType());
12974  }
12975  case X86::BI__builtin_ia32_movnti:
12976  case X86::BI__builtin_ia32_movnti64:
12977  case X86::BI__builtin_ia32_movntsd:
12978  case X86::BI__builtin_ia32_movntss: {
12979    llvm::MDNode *Node = llvm::MDNode::get(
12980        getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
12981
12982    Value *Ptr = Ops[0];
12983    Value *Src = Ops[1];
12984
12985    // Extract the 0'th element of the source vector.
12986    if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
12987        BuiltinID == X86::BI__builtin_ia32_movntss)
12988      Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
12989
12990    // Convert the type of the pointer to a pointer to the stored type.
12991    Value *BC = Builder.CreateBitCast(
12992        Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
12993
12994    // Unaligned nontemporal store of the scalar value.
12995    StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
12996    SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
12997    SI->setAlignment(llvm::Align(1));
12998    return SI;
12999  }
13000  // Rotate is a special case of funnel shift - 1st 2 args are the same.
13001  case X86::BI__builtin_ia32_vprotb:
13002  case X86::BI__builtin_ia32_vprotw:
13003  case X86::BI__builtin_ia32_vprotd:
13004  case X86::BI__builtin_ia32_vprotq:
13005  case X86::BI__builtin_ia32_vprotbi:
13006  case X86::BI__builtin_ia32_vprotwi:
13007  case X86::BI__builtin_ia32_vprotdi:
13008  case X86::BI__builtin_ia32_vprotqi:
13009  case X86::BI__builtin_ia32_prold128:
13010  case X86::BI__builtin_ia32_prold256:
13011  case X86::BI__builtin_ia32_prold512:
13012  case X86::BI__builtin_ia32_prolq128:
13013  case X86::BI__builtin_ia32_prolq256:
13014  case X86::BI__builtin_ia32_prolq512:
13015  case X86::BI__builtin_ia32_prolvd128:
13016  case X86::BI__builtin_ia32_prolvd256:
13017  case X86::BI__builtin_ia32_prolvd512:
13018  case X86::BI__builtin_ia32_prolvq128:
13019  case X86::BI__builtin_ia32_prolvq256:
13020  case X86::BI__builtin_ia32_prolvq512:
13021    return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13022  case X86::BI__builtin_ia32_prord128:
13023  case X86::BI__builtin_ia32_prord256:
13024  case X86::BI__builtin_ia32_prord512:
13025  case X86::BI__builtin_ia32_prorq128:
13026  case X86::BI__builtin_ia32_prorq256:
13027  case X86::BI__builtin_ia32_prorq512:
13028  case X86::BI__builtin_ia32_prorvd128:
13029  case X86::BI__builtin_ia32_prorvd256:
13030  case X86::BI__builtin_ia32_prorvd512:
13031  case X86::BI__builtin_ia32_prorvq128:
13032  case X86::BI__builtin_ia32_prorvq256:
13033  case X86::BI__builtin_ia32_prorvq512:
13034    return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13035  case X86::BI__builtin_ia32_selectb_128:
13036  case X86::BI__builtin_ia32_selectb_256:
13037  case X86::BI__builtin_ia32_selectb_512:
13038  case X86::BI__builtin_ia32_selectw_128:
13039  case X86::BI__builtin_ia32_selectw_256:
13040  case X86::BI__builtin_ia32_selectw_512:
13041  case X86::BI__builtin_ia32_selectd_128:
13042  case X86::BI__builtin_ia32_selectd_256:
13043  case X86::BI__builtin_ia32_selectd_512:
13044  case X86::BI__builtin_ia32_selectq_128:
13045  case X86::BI__builtin_ia32_selectq_256:
13046  case X86::BI__builtin_ia32_selectq_512:
13047  case X86::BI__builtin_ia32_selectps_128:
13048  case X86::BI__builtin_ia32_selectps_256:
13049  case X86::BI__builtin_ia32_selectps_512:
13050  case X86::BI__builtin_ia32_selectpd_128:
13051  case X86::BI__builtin_ia32_selectpd_256:
13052  case X86::BI__builtin_ia32_selectpd_512:
13053    return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13054  case X86::BI__builtin_ia32_selectss_128:
13055  case X86::BI__builtin_ia32_selectsd_128: {
13056    Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13057    Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13058    A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13059    return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13060  }
13061  case X86::BI__builtin_ia32_cmpb128_mask:
13062  case X86::BI__builtin_ia32_cmpb256_mask:
13063  case X86::BI__builtin_ia32_cmpb512_mask:
13064  case X86::BI__builtin_ia32_cmpw128_mask:
13065  case X86::BI__builtin_ia32_cmpw256_mask:
13066  case X86::BI__builtin_ia32_cmpw512_mask:
13067  case X86::BI__builtin_ia32_cmpd128_mask:
13068  case X86::BI__builtin_ia32_cmpd256_mask:
13069  case X86::BI__builtin_ia32_cmpd512_mask:
13070  case X86::BI__builtin_ia32_cmpq128_mask:
13071  case X86::BI__builtin_ia32_cmpq256_mask:
13072  case X86::BI__builtin_ia32_cmpq512_mask: {
13073    unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13074    return EmitX86MaskedCompare(*this, CC, true, Ops);
13075  }
13076  case X86::BI__builtin_ia32_ucmpb128_mask:
13077  case X86::BI__builtin_ia32_ucmpb256_mask:
13078  case X86::BI__builtin_ia32_ucmpb512_mask:
13079  case X86::BI__builtin_ia32_ucmpw128_mask:
13080  case X86::BI__builtin_ia32_ucmpw256_mask:
13081  case X86::BI__builtin_ia32_ucmpw512_mask:
13082  case X86::BI__builtin_ia32_ucmpd128_mask:
13083  case X86::BI__builtin_ia32_ucmpd256_mask:
13084  case X86::BI__builtin_ia32_ucmpd512_mask:
13085  case X86::BI__builtin_ia32_ucmpq128_mask:
13086  case X86::BI__builtin_ia32_ucmpq256_mask:
13087  case X86::BI__builtin_ia32_ucmpq512_mask: {
13088    unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13089    return EmitX86MaskedCompare(*this, CC, false, Ops);
13090  }
13091  case X86::BI__builtin_ia32_vpcomb:
13092  case X86::BI__builtin_ia32_vpcomw:
13093  case X86::BI__builtin_ia32_vpcomd:
13094  case X86::BI__builtin_ia32_vpcomq:
13095    return EmitX86vpcom(*this, Ops, true);
13096  case X86::BI__builtin_ia32_vpcomub:
13097  case X86::BI__builtin_ia32_vpcomuw:
13098  case X86::BI__builtin_ia32_vpcomud:
13099  case X86::BI__builtin_ia32_vpcomuq:
13100    return EmitX86vpcom(*this, Ops, false);
13101
13102  case X86::BI__builtin_ia32_kortestcqi:
13103  case X86::BI__builtin_ia32_kortestchi:
13104  case X86::BI__builtin_ia32_kortestcsi:
13105  case X86::BI__builtin_ia32_kortestcdi: {
13106    Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13107    Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13108    Value *Cmp = Builder.CreateICmpEQ(Or, C);
13109    return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13110  }
13111  case X86::BI__builtin_ia32_kortestzqi:
13112  case X86::BI__builtin_ia32_kortestzhi:
13113  case X86::BI__builtin_ia32_kortestzsi:
13114  case X86::BI__builtin_ia32_kortestzdi: {
13115    Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13116    Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13117    Value *Cmp = Builder.CreateICmpEQ(Or, C);
13118    return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13119  }
13120
13121  case X86::BI__builtin_ia32_ktestcqi:
13122  case X86::BI__builtin_ia32_ktestzqi:
13123  case X86::BI__builtin_ia32_ktestchi:
13124  case X86::BI__builtin_ia32_ktestzhi:
13125  case X86::BI__builtin_ia32_ktestcsi:
13126  case X86::BI__builtin_ia32_ktestzsi:
13127  case X86::BI__builtin_ia32_ktestcdi:
13128  case X86::BI__builtin_ia32_ktestzdi: {
13129    Intrinsic::ID IID;
13130    switch (BuiltinID) {
13131    default: llvm_unreachable("Unsupported intrinsic!");
13132    case X86::BI__builtin_ia32_ktestcqi:
13133      IID = Intrinsic::x86_avx512_ktestc_b;
13134      break;
13135    case X86::BI__builtin_ia32_ktestzqi:
13136      IID = Intrinsic::x86_avx512_ktestz_b;
13137      break;
13138    case X86::BI__builtin_ia32_ktestchi:
13139      IID = Intrinsic::x86_avx512_ktestc_w;
13140      break;
13141    case X86::BI__builtin_ia32_ktestzhi:
13142      IID = Intrinsic::x86_avx512_ktestz_w;
13143      break;
13144    case X86::BI__builtin_ia32_ktestcsi:
13145      IID = Intrinsic::x86_avx512_ktestc_d;
13146      break;
13147    case X86::BI__builtin_ia32_ktestzsi:
13148      IID = Intrinsic::x86_avx512_ktestz_d;
13149      break;
13150    case X86::BI__builtin_ia32_ktestcdi:
13151      IID = Intrinsic::x86_avx512_ktestc_q;
13152      break;
13153    case X86::BI__builtin_ia32_ktestzdi:
13154      IID = Intrinsic::x86_avx512_ktestz_q;
13155      break;
13156    }
13157
13158    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13159    Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13160    Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13161    Function *Intr = CGM.getIntrinsic(IID);
13162    return Builder.CreateCall(Intr, {LHS, RHS});
13163  }
13164
13165  case X86::BI__builtin_ia32_kaddqi:
13166  case X86::BI__builtin_ia32_kaddhi:
13167  case X86::BI__builtin_ia32_kaddsi:
13168  case X86::BI__builtin_ia32_kadddi: {
13169    Intrinsic::ID IID;
13170    switch (BuiltinID) {
13171    default: llvm_unreachable("Unsupported intrinsic!");
13172    case X86::BI__builtin_ia32_kaddqi:
13173      IID = Intrinsic::x86_avx512_kadd_b;
13174      break;
13175    case X86::BI__builtin_ia32_kaddhi:
13176      IID = Intrinsic::x86_avx512_kadd_w;
13177      break;
13178    case X86::BI__builtin_ia32_kaddsi:
13179      IID = Intrinsic::x86_avx512_kadd_d;
13180      break;
13181    case X86::BI__builtin_ia32_kadddi:
13182      IID = Intrinsic::x86_avx512_kadd_q;
13183      break;
13184    }
13185
13186    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13187    Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13188    Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13189    Function *Intr = CGM.getIntrinsic(IID);
13190    Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13191    return Builder.CreateBitCast(Res, Ops[0]->getType());
13192  }
13193  case X86::BI__builtin_ia32_kandqi:
13194  case X86::BI__builtin_ia32_kandhi:
13195  case X86::BI__builtin_ia32_kandsi:
13196  case X86::BI__builtin_ia32_kanddi:
13197    return EmitX86MaskLogic(*this, Instruction::And, Ops);
13198  case X86::BI__builtin_ia32_kandnqi:
13199  case X86::BI__builtin_ia32_kandnhi:
13200  case X86::BI__builtin_ia32_kandnsi:
13201  case X86::BI__builtin_ia32_kandndi:
13202    return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13203  case X86::BI__builtin_ia32_korqi:
13204  case X86::BI__builtin_ia32_korhi:
13205  case X86::BI__builtin_ia32_korsi:
13206  case X86::BI__builtin_ia32_kordi:
13207    return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13208  case X86::BI__builtin_ia32_kxnorqi:
13209  case X86::BI__builtin_ia32_kxnorhi:
13210  case X86::BI__builtin_ia32_kxnorsi:
13211  case X86::BI__builtin_ia32_kxnordi:
13212    return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13213  case X86::BI__builtin_ia32_kxorqi:
13214  case X86::BI__builtin_ia32_kxorhi:
13215  case X86::BI__builtin_ia32_kxorsi:
13216  case X86::BI__builtin_ia32_kxordi:
13217    return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13218  case X86::BI__builtin_ia32_knotqi:
13219  case X86::BI__builtin_ia32_knothi:
13220  case X86::BI__builtin_ia32_knotsi:
13221  case X86::BI__builtin_ia32_knotdi: {
13222    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13223    Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13224    return Builder.CreateBitCast(Builder.CreateNot(Res),
13225                                 Ops[0]->getType());
13226  }
13227  case X86::BI__builtin_ia32_kmovb:
13228  case X86::BI__builtin_ia32_kmovw:
13229  case X86::BI__builtin_ia32_kmovd:
13230  case X86::BI__builtin_ia32_kmovq: {
13231    // Bitcast to vXi1 type and then back to integer. This gets the mask
13232    // register type into the IR, but might be optimized out depending on
13233    // what's around it.
13234    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13235    Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13236    return Builder.CreateBitCast(Res, Ops[0]->getType());
13237  }
13238
13239  case X86::BI__builtin_ia32_kunpckdi:
13240  case X86::BI__builtin_ia32_kunpcksi:
13241  case X86::BI__builtin_ia32_kunpckhi: {
13242    unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13243    Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13244    Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13245    int Indices[64];
13246    for (unsigned i = 0; i != NumElts; ++i)
13247      Indices[i] = i;
13248
13249    // First extract half of each vector. This gives better codegen than
13250    // doing it in a single shuffle.
13251    LHS = Builder.CreateShuffleVector(LHS, LHS,
13252                                      makeArrayRef(Indices, NumElts / 2));
13253    RHS = Builder.CreateShuffleVector(RHS, RHS,
13254                                      makeArrayRef(Indices, NumElts / 2));
13255    // Concat the vectors.
13256    // NOTE: Operands are swapped to match the intrinsic definition.
13257    Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13258                                             makeArrayRef(Indices, NumElts));
13259    return Builder.CreateBitCast(Res, Ops[0]->getType());
13260  }
13261
13262  case X86::BI__builtin_ia32_vplzcntd_128:
13263  case X86::BI__builtin_ia32_vplzcntd_256:
13264  case X86::BI__builtin_ia32_vplzcntd_512:
13265  case X86::BI__builtin_ia32_vplzcntq_128:
13266  case X86::BI__builtin_ia32_vplzcntq_256:
13267  case X86::BI__builtin_ia32_vplzcntq_512: {
13268    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13269    return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13270  }
13271  case X86::BI__builtin_ia32_sqrtss:
13272  case X86::BI__builtin_ia32_sqrtsd: {
13273    Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13274    Function *F;
13275    if (Builder.getIsFPConstrained()) {
13276      F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13277                           A->getType());
13278      A = Builder.CreateConstrainedFPCall(F, {A});
13279    } else {
13280      F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13281      A = Builder.CreateCall(F, {A});
13282    }
13283    return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13284  }
13285  case X86::BI__builtin_ia32_sqrtsd_round_mask:
13286  case X86::BI__builtin_ia32_sqrtss_round_mask: {
13287    unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13288    // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13289    // otherwise keep the intrinsic.
13290    if (CC != 4) {
13291      Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13292                          Intrinsic::x86_avx512_mask_sqrt_sd :
13293                          Intrinsic::x86_avx512_mask_sqrt_ss;
13294      return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13295    }
13296    Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13297    Function *F;
13298    if (Builder.getIsFPConstrained()) {
13299      F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13300                           A->getType());
13301      A = Builder.CreateConstrainedFPCall(F, A);
13302    } else {
13303      F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13304      A = Builder.CreateCall(F, A);
13305    }
13306    Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13307    A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13308    return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13309  }
13310  case X86::BI__builtin_ia32_sqrtpd256:
13311  case X86::BI__builtin_ia32_sqrtpd:
13312  case X86::BI__builtin_ia32_sqrtps256:
13313  case X86::BI__builtin_ia32_sqrtps:
13314  case X86::BI__builtin_ia32_sqrtps512:
13315  case X86::BI__builtin_ia32_sqrtpd512: {
13316    if (Ops.size() == 2) {
13317      unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13318      // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13319      // otherwise keep the intrinsic.
13320      if (CC != 4) {
13321        Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13322                            Intrinsic::x86_avx512_sqrt_ps_512 :
13323                            Intrinsic::x86_avx512_sqrt_pd_512;
13324        return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13325      }
13326    }
13327    if (Builder.getIsFPConstrained()) {
13328      Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13329                                     Ops[0]->getType());
13330      return Builder.CreateConstrainedFPCall(F, Ops[0]);
13331    } else {
13332      Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13333      return Builder.CreateCall(F, Ops[0]);
13334    }
13335  }
13336  case X86::BI__builtin_ia32_pabsb128:
13337  case X86::BI__builtin_ia32_pabsw128:
13338  case X86::BI__builtin_ia32_pabsd128:
13339  case X86::BI__builtin_ia32_pabsb256:
13340  case X86::BI__builtin_ia32_pabsw256:
13341  case X86::BI__builtin_ia32_pabsd256:
13342  case X86::BI__builtin_ia32_pabsq128:
13343  case X86::BI__builtin_ia32_pabsq256:
13344  case X86::BI__builtin_ia32_pabsb512:
13345  case X86::BI__builtin_ia32_pabsw512:
13346  case X86::BI__builtin_ia32_pabsd512:
13347  case X86::BI__builtin_ia32_pabsq512:
13348    return EmitX86Abs(*this, Ops);
13349
13350  case X86::BI__builtin_ia32_pmaxsb128:
13351  case X86::BI__builtin_ia32_pmaxsw128:
13352  case X86::BI__builtin_ia32_pmaxsd128:
13353  case X86::BI__builtin_ia32_pmaxsq128:
13354  case X86::BI__builtin_ia32_pmaxsb256:
13355  case X86::BI__builtin_ia32_pmaxsw256:
13356  case X86::BI__builtin_ia32_pmaxsd256:
13357  case X86::BI__builtin_ia32_pmaxsq256:
13358  case X86::BI__builtin_ia32_pmaxsb512:
13359  case X86::BI__builtin_ia32_pmaxsw512:
13360  case X86::BI__builtin_ia32_pmaxsd512:
13361  case X86::BI__builtin_ia32_pmaxsq512:
13362    return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
13363  case X86::BI__builtin_ia32_pmaxub128:
13364  case X86::BI__builtin_ia32_pmaxuw128:
13365  case X86::BI__builtin_ia32_pmaxud128:
13366  case X86::BI__builtin_ia32_pmaxuq128:
13367  case X86::BI__builtin_ia32_pmaxub256:
13368  case X86::BI__builtin_ia32_pmaxuw256:
13369  case X86::BI__builtin_ia32_pmaxud256:
13370  case X86::BI__builtin_ia32_pmaxuq256:
13371  case X86::BI__builtin_ia32_pmaxub512:
13372  case X86::BI__builtin_ia32_pmaxuw512:
13373  case X86::BI__builtin_ia32_pmaxud512:
13374  case X86::BI__builtin_ia32_pmaxuq512:
13375    return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
13376  case X86::BI__builtin_ia32_pminsb128:
13377  case X86::BI__builtin_ia32_pminsw128:
13378  case X86::BI__builtin_ia32_pminsd128:
13379  case X86::BI__builtin_ia32_pminsq128:
13380  case X86::BI__builtin_ia32_pminsb256:
13381  case X86::BI__builtin_ia32_pminsw256:
13382  case X86::BI__builtin_ia32_pminsd256:
13383  case X86::BI__builtin_ia32_pminsq256:
13384  case X86::BI__builtin_ia32_pminsb512:
13385  case X86::BI__builtin_ia32_pminsw512:
13386  case X86::BI__builtin_ia32_pminsd512:
13387  case X86::BI__builtin_ia32_pminsq512:
13388    return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
13389  case X86::BI__builtin_ia32_pminub128:
13390  case X86::BI__builtin_ia32_pminuw128:
13391  case X86::BI__builtin_ia32_pminud128:
13392  case X86::BI__builtin_ia32_pminuq128:
13393  case X86::BI__builtin_ia32_pminub256:
13394  case X86::BI__builtin_ia32_pminuw256:
13395  case X86::BI__builtin_ia32_pminud256:
13396  case X86::BI__builtin_ia32_pminuq256:
13397  case X86::BI__builtin_ia32_pminub512:
13398  case X86::BI__builtin_ia32_pminuw512:
13399  case X86::BI__builtin_ia32_pminud512:
13400  case X86::BI__builtin_ia32_pminuq512:
13401    return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
13402
13403  case X86::BI__builtin_ia32_pmuludq128:
13404  case X86::BI__builtin_ia32_pmuludq256:
13405  case X86::BI__builtin_ia32_pmuludq512:
13406    return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
13407
13408  case X86::BI__builtin_ia32_pmuldq128:
13409  case X86::BI__builtin_ia32_pmuldq256:
13410  case X86::BI__builtin_ia32_pmuldq512:
13411    return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
13412
13413  case X86::BI__builtin_ia32_pternlogd512_mask:
13414  case X86::BI__builtin_ia32_pternlogq512_mask:
13415  case X86::BI__builtin_ia32_pternlogd128_mask:
13416  case X86::BI__builtin_ia32_pternlogd256_mask:
13417  case X86::BI__builtin_ia32_pternlogq128_mask:
13418  case X86::BI__builtin_ia32_pternlogq256_mask:
13419    return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
13420
13421  case X86::BI__builtin_ia32_pternlogd512_maskz:
13422  case X86::BI__builtin_ia32_pternlogq512_maskz:
13423  case X86::BI__builtin_ia32_pternlogd128_maskz:
13424  case X86::BI__builtin_ia32_pternlogd256_maskz:
13425  case X86::BI__builtin_ia32_pternlogq128_maskz:
13426  case X86::BI__builtin_ia32_pternlogq256_maskz:
13427    return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
13428
13429  case X86::BI__builtin_ia32_vpshldd128:
13430  case X86::BI__builtin_ia32_vpshldd256:
13431  case X86::BI__builtin_ia32_vpshldd512:
13432  case X86::BI__builtin_ia32_vpshldq128:
13433  case X86::BI__builtin_ia32_vpshldq256:
13434  case X86::BI__builtin_ia32_vpshldq512:
13435  case X86::BI__builtin_ia32_vpshldw128:
13436  case X86::BI__builtin_ia32_vpshldw256:
13437  case X86::BI__builtin_ia32_vpshldw512:
13438    return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13439
13440  case X86::BI__builtin_ia32_vpshrdd128:
13441  case X86::BI__builtin_ia32_vpshrdd256:
13442  case X86::BI__builtin_ia32_vpshrdd512:
13443  case X86::BI__builtin_ia32_vpshrdq128:
13444  case X86::BI__builtin_ia32_vpshrdq256:
13445  case X86::BI__builtin_ia32_vpshrdq512:
13446  case X86::BI__builtin_ia32_vpshrdw128:
13447  case X86::BI__builtin_ia32_vpshrdw256:
13448  case X86::BI__builtin_ia32_vpshrdw512:
13449    // Ops 0 and 1 are swapped.
13450    return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13451
13452  case X86::BI__builtin_ia32_vpshldvd128:
13453  case X86::BI__builtin_ia32_vpshldvd256:
13454  case X86::BI__builtin_ia32_vpshldvd512:
13455  case X86::BI__builtin_ia32_vpshldvq128:
13456  case X86::BI__builtin_ia32_vpshldvq256:
13457  case X86::BI__builtin_ia32_vpshldvq512:
13458  case X86::BI__builtin_ia32_vpshldvw128:
13459  case X86::BI__builtin_ia32_vpshldvw256:
13460  case X86::BI__builtin_ia32_vpshldvw512:
13461    return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13462
13463  case X86::BI__builtin_ia32_vpshrdvd128:
13464  case X86::BI__builtin_ia32_vpshrdvd256:
13465  case X86::BI__builtin_ia32_vpshrdvd512:
13466  case X86::BI__builtin_ia32_vpshrdvq128:
13467  case X86::BI__builtin_ia32_vpshrdvq256:
13468  case X86::BI__builtin_ia32_vpshrdvq512:
13469  case X86::BI__builtin_ia32_vpshrdvw128:
13470  case X86::BI__builtin_ia32_vpshrdvw256:
13471  case X86::BI__builtin_ia32_vpshrdvw512:
13472    // Ops 0 and 1 are swapped.
13473    return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13474
13475  // 3DNow!
13476  case X86::BI__builtin_ia32_pswapdsf:
13477  case X86::BI__builtin_ia32_pswapdsi: {
13478    llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
13479    Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
13480    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
13481    return Builder.CreateCall(F, Ops, "pswapd");
13482  }
13483  case X86::BI__builtin_ia32_rdrand16_step:
13484  case X86::BI__builtin_ia32_rdrand32_step:
13485  case X86::BI__builtin_ia32_rdrand64_step:
13486  case X86::BI__builtin_ia32_rdseed16_step:
13487  case X86::BI__builtin_ia32_rdseed32_step:
13488  case X86::BI__builtin_ia32_rdseed64_step: {
13489    Intrinsic::ID ID;
13490    switch (BuiltinID) {
13491    default: llvm_unreachable("Unsupported intrinsic!");
13492    case X86::BI__builtin_ia32_rdrand16_step:
13493      ID = Intrinsic::x86_rdrand_16;
13494      break;
13495    case X86::BI__builtin_ia32_rdrand32_step:
13496      ID = Intrinsic::x86_rdrand_32;
13497      break;
13498    case X86::BI__builtin_ia32_rdrand64_step:
13499      ID = Intrinsic::x86_rdrand_64;
13500      break;
13501    case X86::BI__builtin_ia32_rdseed16_step:
13502      ID = Intrinsic::x86_rdseed_16;
13503      break;
13504    case X86::BI__builtin_ia32_rdseed32_step:
13505      ID = Intrinsic::x86_rdseed_32;
13506      break;
13507    case X86::BI__builtin_ia32_rdseed64_step:
13508      ID = Intrinsic::x86_rdseed_64;
13509      break;
13510    }
13511
13512    Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
13513    Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
13514                                      Ops[0]);
13515    return Builder.CreateExtractValue(Call, 1);
13516  }
13517  case X86::BI__builtin_ia32_addcarryx_u32:
13518  case X86::BI__builtin_ia32_addcarryx_u64:
13519  case X86::BI__builtin_ia32_subborrow_u32:
13520  case X86::BI__builtin_ia32_subborrow_u64: {
13521    Intrinsic::ID IID;
13522    switch (BuiltinID) {
13523    default: llvm_unreachable("Unsupported intrinsic!");
13524    case X86::BI__builtin_ia32_addcarryx_u32:
13525      IID = Intrinsic::x86_addcarry_32;
13526      break;
13527    case X86::BI__builtin_ia32_addcarryx_u64:
13528      IID = Intrinsic::x86_addcarry_64;
13529      break;
13530    case X86::BI__builtin_ia32_subborrow_u32:
13531      IID = Intrinsic::x86_subborrow_32;
13532      break;
13533    case X86::BI__builtin_ia32_subborrow_u64:
13534      IID = Intrinsic::x86_subborrow_64;
13535      break;
13536    }
13537
13538    Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
13539                                     { Ops[0], Ops[1], Ops[2] });
13540    Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
13541                                      Ops[3]);
13542    return Builder.CreateExtractValue(Call, 0);
13543  }
13544
13545  case X86::BI__builtin_ia32_fpclassps128_mask:
13546  case X86::BI__builtin_ia32_fpclassps256_mask:
13547  case X86::BI__builtin_ia32_fpclassps512_mask:
13548  case X86::BI__builtin_ia32_fpclasspd128_mask:
13549  case X86::BI__builtin_ia32_fpclasspd256_mask:
13550  case X86::BI__builtin_ia32_fpclasspd512_mask: {
13551    unsigned NumElts =
13552        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13553    Value *MaskIn = Ops[2];
13554    Ops.erase(&Ops[2]);
13555
13556    Intrinsic::ID ID;
13557    switch (BuiltinID) {
13558    default: llvm_unreachable("Unsupported intrinsic!");
13559    case X86::BI__builtin_ia32_fpclassps128_mask:
13560      ID = Intrinsic::x86_avx512_fpclass_ps_128;
13561      break;
13562    case X86::BI__builtin_ia32_fpclassps256_mask:
13563      ID = Intrinsic::x86_avx512_fpclass_ps_256;
13564      break;
13565    case X86::BI__builtin_ia32_fpclassps512_mask:
13566      ID = Intrinsic::x86_avx512_fpclass_ps_512;
13567      break;
13568    case X86::BI__builtin_ia32_fpclasspd128_mask:
13569      ID = Intrinsic::x86_avx512_fpclass_pd_128;
13570      break;
13571    case X86::BI__builtin_ia32_fpclasspd256_mask:
13572      ID = Intrinsic::x86_avx512_fpclass_pd_256;
13573      break;
13574    case X86::BI__builtin_ia32_fpclasspd512_mask:
13575      ID = Intrinsic::x86_avx512_fpclass_pd_512;
13576      break;
13577    }
13578
13579    Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13580    return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
13581  }
13582
13583  case X86::BI__builtin_ia32_vp2intersect_q_512:
13584  case X86::BI__builtin_ia32_vp2intersect_q_256:
13585  case X86::BI__builtin_ia32_vp2intersect_q_128:
13586  case X86::BI__builtin_ia32_vp2intersect_d_512:
13587  case X86::BI__builtin_ia32_vp2intersect_d_256:
13588  case X86::BI__builtin_ia32_vp2intersect_d_128: {
13589    unsigned NumElts =
13590        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13591    Intrinsic::ID ID;
13592
13593    switch (BuiltinID) {
13594    default: llvm_unreachable("Unsupported intrinsic!");
13595    case X86::BI__builtin_ia32_vp2intersect_q_512:
13596      ID = Intrinsic::x86_avx512_vp2intersect_q_512;
13597      break;
13598    case X86::BI__builtin_ia32_vp2intersect_q_256:
13599      ID = Intrinsic::x86_avx512_vp2intersect_q_256;
13600      break;
13601    case X86::BI__builtin_ia32_vp2intersect_q_128:
13602      ID = Intrinsic::x86_avx512_vp2intersect_q_128;
13603      break;
13604    case X86::BI__builtin_ia32_vp2intersect_d_512:
13605      ID = Intrinsic::x86_avx512_vp2intersect_d_512;
13606      break;
13607    case X86::BI__builtin_ia32_vp2intersect_d_256:
13608      ID = Intrinsic::x86_avx512_vp2intersect_d_256;
13609      break;
13610    case X86::BI__builtin_ia32_vp2intersect_d_128:
13611      ID = Intrinsic::x86_avx512_vp2intersect_d_128;
13612      break;
13613    }
13614
13615    Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
13616    Value *Result = Builder.CreateExtractValue(Call, 0);
13617    Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13618    Builder.CreateDefaultAlignedStore(Result, Ops[2]);
13619
13620    Result = Builder.CreateExtractValue(Call, 1);
13621    Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13622    return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
13623  }
13624
13625  case X86::BI__builtin_ia32_vpmultishiftqb128:
13626  case X86::BI__builtin_ia32_vpmultishiftqb256:
13627  case X86::BI__builtin_ia32_vpmultishiftqb512: {
13628    Intrinsic::ID ID;
13629    switch (BuiltinID) {
13630    default: llvm_unreachable("Unsupported intrinsic!");
13631    case X86::BI__builtin_ia32_vpmultishiftqb128:
13632      ID = Intrinsic::x86_avx512_pmultishift_qb_128;
13633      break;
13634    case X86::BI__builtin_ia32_vpmultishiftqb256:
13635      ID = Intrinsic::x86_avx512_pmultishift_qb_256;
13636      break;
13637    case X86::BI__builtin_ia32_vpmultishiftqb512:
13638      ID = Intrinsic::x86_avx512_pmultishift_qb_512;
13639      break;
13640    }
13641
13642    return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13643  }
13644
13645  case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13646  case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13647  case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
13648    unsigned NumElts =
13649        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13650    Value *MaskIn = Ops[2];
13651    Ops.erase(&Ops[2]);
13652
13653    Intrinsic::ID ID;
13654    switch (BuiltinID) {
13655    default: llvm_unreachable("Unsupported intrinsic!");
13656    case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13657      ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
13658      break;
13659    case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13660      ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
13661      break;
13662    case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
13663      ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
13664      break;
13665    }
13666
13667    Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13668    return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
13669  }
13670
13671  // packed comparison intrinsics
13672  case X86::BI__builtin_ia32_cmpeqps:
13673  case X86::BI__builtin_ia32_cmpeqpd:
13674    return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
13675  case X86::BI__builtin_ia32_cmpltps:
13676  case X86::BI__builtin_ia32_cmpltpd:
13677    return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
13678  case X86::BI__builtin_ia32_cmpleps:
13679  case X86::BI__builtin_ia32_cmplepd:
13680    return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
13681  case X86::BI__builtin_ia32_cmpunordps:
13682  case X86::BI__builtin_ia32_cmpunordpd:
13683    return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
13684  case X86::BI__builtin_ia32_cmpneqps:
13685  case X86::BI__builtin_ia32_cmpneqpd:
13686    return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
13687  case X86::BI__builtin_ia32_cmpnltps:
13688  case X86::BI__builtin_ia32_cmpnltpd:
13689    return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
13690  case X86::BI__builtin_ia32_cmpnleps:
13691  case X86::BI__builtin_ia32_cmpnlepd:
13692    return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
13693  case X86::BI__builtin_ia32_cmpordps:
13694  case X86::BI__builtin_ia32_cmpordpd:
13695    return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
13696  case X86::BI__builtin_ia32_cmpps:
13697  case X86::BI__builtin_ia32_cmpps256:
13698  case X86::BI__builtin_ia32_cmppd:
13699  case X86::BI__builtin_ia32_cmppd256:
13700  case X86::BI__builtin_ia32_cmpps128_mask:
13701  case X86::BI__builtin_ia32_cmpps256_mask:
13702  case X86::BI__builtin_ia32_cmpps512_mask:
13703  case X86::BI__builtin_ia32_cmppd128_mask:
13704  case X86::BI__builtin_ia32_cmppd256_mask:
13705  case X86::BI__builtin_ia32_cmppd512_mask: {
13706    // Lowering vector comparisons to fcmp instructions, while
13707    // ignoring signalling behaviour requested
13708    // ignoring rounding mode requested
13709    // This is is only possible as long as FENV_ACCESS is not implemented.
13710    // See also: https://reviews.llvm.org/D45616
13711
13712    // The third argument is the comparison condition, and integer in the
13713    // range [0, 31]
13714    unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
13715
13716    // Lowering to IR fcmp instruction.
13717    // Ignoring requested signaling behaviour,
13718    // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
13719    FCmpInst::Predicate Pred;
13720    bool IsSignaling;
13721    // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
13722    // behavior is inverted. We'll handle that after the switch.
13723    switch (CC & 0xf) {
13724    case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
13725    case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
13726    case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
13727    case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
13728    case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
13729    case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
13730    case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
13731    case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
13732    case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
13733    case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
13734    case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
13735    case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
13736    case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
13737    case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
13738    case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
13739    case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
13740    default: llvm_unreachable("Unhandled CC");
13741    }
13742
13743    // Invert the signalling behavior for 16-31.
13744    if (CC & 0x10)
13745      IsSignaling = !IsSignaling;
13746
13747    // If the predicate is true or false and we're using constrained intrinsics,
13748    // we don't have a compare intrinsic we can use. Just use the legacy X86
13749    // specific intrinsic.
13750    if ((Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE) &&
13751        Builder.getIsFPConstrained()) {
13752
13753      Intrinsic::ID IID;
13754      switch (BuiltinID) {
13755      default: llvm_unreachable("Unexpected builtin");
13756      case X86::BI__builtin_ia32_cmpps:
13757        IID = Intrinsic::x86_sse_cmp_ps;
13758        break;
13759      case X86::BI__builtin_ia32_cmpps256:
13760        IID = Intrinsic::x86_avx_cmp_ps_256;
13761        break;
13762      case X86::BI__builtin_ia32_cmppd:
13763        IID = Intrinsic::x86_sse2_cmp_pd;
13764        break;
13765      case X86::BI__builtin_ia32_cmppd256:
13766        IID = Intrinsic::x86_avx_cmp_pd_256;
13767        break;
13768      case X86::BI__builtin_ia32_cmpps512_mask:
13769        IID = Intrinsic::x86_avx512_cmp_ps_512;
13770        break;
13771      case X86::BI__builtin_ia32_cmppd512_mask:
13772        IID = Intrinsic::x86_avx512_cmp_pd_512;
13773        break;
13774      case X86::BI__builtin_ia32_cmpps128_mask:
13775        IID = Intrinsic::x86_avx512_cmp_ps_128;
13776        break;
13777      case X86::BI__builtin_ia32_cmpps256_mask:
13778        IID = Intrinsic::x86_avx512_cmp_ps_256;
13779        break;
13780      case X86::BI__builtin_ia32_cmppd128_mask:
13781        IID = Intrinsic::x86_avx512_cmp_pd_128;
13782        break;
13783      case X86::BI__builtin_ia32_cmppd256_mask:
13784        IID = Intrinsic::x86_avx512_cmp_pd_256;
13785        break;
13786      }
13787
13788      Function *Intr = CGM.getIntrinsic(IID);
13789      if (cast<llvm::VectorType>(Intr->getReturnType())
13790              ->getElementType()
13791              ->isIntegerTy(1)) {
13792        unsigned NumElts =
13793            cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13794        Value *MaskIn = Ops[3];
13795        Ops.erase(&Ops[3]);
13796
13797        Value *Cmp = Builder.CreateCall(Intr, Ops);
13798        return EmitX86MaskedCompareResult(*this, Cmp, NumElts, MaskIn);
13799      }
13800
13801      return Builder.CreateCall(Intr, Ops);
13802    }
13803
13804    // Builtins without the _mask suffix return a vector of integers
13805    // of the same width as the input vectors
13806    switch (BuiltinID) {
13807    case X86::BI__builtin_ia32_cmpps512_mask:
13808    case X86::BI__builtin_ia32_cmppd512_mask:
13809    case X86::BI__builtin_ia32_cmpps128_mask:
13810    case X86::BI__builtin_ia32_cmpps256_mask:
13811    case X86::BI__builtin_ia32_cmppd128_mask:
13812    case X86::BI__builtin_ia32_cmppd256_mask: {
13813      // FIXME: Support SAE.
13814      unsigned NumElts =
13815          cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13816      Value *Cmp;
13817      if (IsSignaling)
13818        Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
13819      else
13820        Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
13821      return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
13822    }
13823    default:
13824      return getVectorFCmpIR(Pred, IsSignaling);
13825    }
13826  }
13827
13828  // SSE scalar comparison intrinsics
13829  case X86::BI__builtin_ia32_cmpeqss:
13830    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
13831  case X86::BI__builtin_ia32_cmpltss:
13832    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
13833  case X86::BI__builtin_ia32_cmpless:
13834    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
13835  case X86::BI__builtin_ia32_cmpunordss:
13836    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
13837  case X86::BI__builtin_ia32_cmpneqss:
13838    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
13839  case X86::BI__builtin_ia32_cmpnltss:
13840    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
13841  case X86::BI__builtin_ia32_cmpnless:
13842    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
13843  case X86::BI__builtin_ia32_cmpordss:
13844    return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
13845  case X86::BI__builtin_ia32_cmpeqsd:
13846    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
13847  case X86::BI__builtin_ia32_cmpltsd:
13848    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
13849  case X86::BI__builtin_ia32_cmplesd:
13850    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
13851  case X86::BI__builtin_ia32_cmpunordsd:
13852    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
13853  case X86::BI__builtin_ia32_cmpneqsd:
13854    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
13855  case X86::BI__builtin_ia32_cmpnltsd:
13856    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
13857  case X86::BI__builtin_ia32_cmpnlesd:
13858    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
13859  case X86::BI__builtin_ia32_cmpordsd:
13860    return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
13861
13862  // f16c half2float intrinsics
13863  case X86::BI__builtin_ia32_vcvtph2ps:
13864  case X86::BI__builtin_ia32_vcvtph2ps256:
13865  case X86::BI__builtin_ia32_vcvtph2ps_mask:
13866  case X86::BI__builtin_ia32_vcvtph2ps256_mask:
13867  case X86::BI__builtin_ia32_vcvtph2ps512_mask:
13868    return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
13869
13870// AVX512 bf16 intrinsics
13871  case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
13872    Ops[2] = getMaskVecValue(
13873        *this, Ops[2],
13874        cast<llvm::VectorType>(Ops[0]->getType())->getNumElements());
13875    Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
13876    return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13877  }
13878  case X86::BI__builtin_ia32_cvtsbf162ss_32:
13879    return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
13880
13881  case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
13882  case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
13883    Intrinsic::ID IID;
13884    switch (BuiltinID) {
13885    default: llvm_unreachable("Unsupported intrinsic!");
13886    case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
13887      IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
13888      break;
13889    case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
13890      IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
13891      break;
13892    }
13893    Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
13894    return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13895  }
13896
13897  case X86::BI__emul:
13898  case X86::BI__emulu: {
13899    llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
13900    bool isSigned = (BuiltinID == X86::BI__emul);
13901    Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
13902    Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
13903    return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
13904  }
13905  case X86::BI__mulh:
13906  case X86::BI__umulh:
13907  case X86::BI_mul128:
13908  case X86::BI_umul128: {
13909    llvm::Type *ResType = ConvertType(E->getType());
13910    llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
13911
13912    bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
13913    Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
13914    Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
13915
13916    Value *MulResult, *HigherBits;
13917    if (IsSigned) {
13918      MulResult = Builder.CreateNSWMul(LHS, RHS);
13919      HigherBits = Builder.CreateAShr(MulResult, 64);
13920    } else {
13921      MulResult = Builder.CreateNUWMul(LHS, RHS);
13922      HigherBits = Builder.CreateLShr(MulResult, 64);
13923    }
13924    HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
13925
13926    if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
13927      return HigherBits;
13928
13929    Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
13930    Builder.CreateStore(HigherBits, HighBitsAddress);
13931    return Builder.CreateIntCast(MulResult, ResType, IsSigned);
13932  }
13933
13934  case X86::BI__faststorefence: {
13935    return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
13936                               llvm::SyncScope::System);
13937  }
13938  case X86::BI__shiftleft128:
13939  case X86::BI__shiftright128: {
13940    // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
13941    // llvm::Function *F = CGM.getIntrinsic(
13942    //   BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
13943    //   Int64Ty);
13944    // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
13945    // return Builder.CreateCall(F, Ops);
13946    llvm::Type *Int128Ty = Builder.getInt128Ty();
13947    Value *HighPart128 =
13948        Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
13949    Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
13950    Value *Val = Builder.CreateOr(HighPart128, LowPart128);
13951    Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
13952                                   llvm::ConstantInt::get(Int128Ty, 0x3f));
13953    Value *Res;
13954    if (BuiltinID == X86::BI__shiftleft128)
13955      Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
13956    else
13957      Res = Builder.CreateLShr(Val, Amt);
13958    return Builder.CreateTrunc(Res, Int64Ty);
13959  }
13960  case X86::BI_ReadWriteBarrier:
13961  case X86::BI_ReadBarrier:
13962  case X86::BI_WriteBarrier: {
13963    return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
13964                               llvm::SyncScope::SingleThread);
13965  }
13966  case X86::BI_BitScanForward:
13967  case X86::BI_BitScanForward64:
13968    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
13969  case X86::BI_BitScanReverse:
13970  case X86::BI_BitScanReverse64:
13971    return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
13972
13973  case X86::BI_InterlockedAnd64:
13974    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
13975  case X86::BI_InterlockedExchange64:
13976    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
13977  case X86::BI_InterlockedExchangeAdd64:
13978    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
13979  case X86::BI_InterlockedExchangeSub64:
13980    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
13981  case X86::BI_InterlockedOr64:
13982    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
13983  case X86::BI_InterlockedXor64:
13984    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
13985  case X86::BI_InterlockedDecrement64:
13986    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
13987  case X86::BI_InterlockedIncrement64:
13988    return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
13989  case X86::BI_InterlockedCompareExchange128: {
13990    // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
13991    // instead it takes pointers to 64bit ints for Destination and
13992    // ComparandResult, and exchange is taken as two 64bit ints (high & low).
13993    // The previous value is written to ComparandResult, and success is
13994    // returned.
13995
13996    llvm::Type *Int128Ty = Builder.getInt128Ty();
13997    llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
13998
13999    Value *Destination =
14000        Builder.CreateBitCast(Ops[0], Int128PtrTy);
14001    Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
14002    Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
14003    Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
14004                            getContext().toCharUnitsFromBits(128));
14005
14006    Value *Exchange = Builder.CreateOr(
14007        Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
14008        ExchangeLow128);
14009
14010    Value *Comparand = Builder.CreateLoad(ComparandResult);
14011
14012    AtomicCmpXchgInst *CXI =
14013        Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
14014                                    AtomicOrdering::SequentiallyConsistent,
14015                                    AtomicOrdering::SequentiallyConsistent);
14016    CXI->setVolatile(true);
14017
14018    // Write the result back to the inout pointer.
14019    Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
14020
14021    // Get the success boolean and zero extend it to i8.
14022    Value *Success = Builder.CreateExtractValue(CXI, 1);
14023    return Builder.CreateZExt(Success, ConvertType(E->getType()));
14024  }
14025
14026  case X86::BI_AddressOfReturnAddress: {
14027    Function *F =
14028        CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14029    return Builder.CreateCall(F);
14030  }
14031  case X86::BI__stosb: {
14032    // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14033    // instruction, but it will create a memset that won't be optimized away.
14034    return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14035  }
14036  case X86::BI__ud2:
14037    // llvm.trap makes a ud2a instruction on x86.
14038    return EmitTrapCall(Intrinsic::trap);
14039  case X86::BI__int2c: {
14040    // This syscall signals a driver assertion failure in x86 NT kernels.
14041    llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14042    llvm::InlineAsm *IA =
14043        llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14044    llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14045        getLLVMContext(), llvm::AttributeList::FunctionIndex,
14046        llvm::Attribute::NoReturn);
14047    llvm::CallInst *CI = Builder.CreateCall(IA);
14048    CI->setAttributes(NoReturnAttr);
14049    return CI;
14050  }
14051  case X86::BI__readfsbyte:
14052  case X86::BI__readfsword:
14053  case X86::BI__readfsdword:
14054  case X86::BI__readfsqword: {
14055    llvm::Type *IntTy = ConvertType(E->getType());
14056    Value *Ptr =
14057        Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14058    LoadInst *Load = Builder.CreateAlignedLoad(
14059        IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14060    Load->setVolatile(true);
14061    return Load;
14062  }
14063  case X86::BI__readgsbyte:
14064  case X86::BI__readgsword:
14065  case X86::BI__readgsdword:
14066  case X86::BI__readgsqword: {
14067    llvm::Type *IntTy = ConvertType(E->getType());
14068    Value *Ptr =
14069        Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14070    LoadInst *Load = Builder.CreateAlignedLoad(
14071        IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14072    Load->setVolatile(true);
14073    return Load;
14074  }
14075  case X86::BI__builtin_ia32_paddsb512:
14076  case X86::BI__builtin_ia32_paddsw512:
14077  case X86::BI__builtin_ia32_paddsb256:
14078  case X86::BI__builtin_ia32_paddsw256:
14079  case X86::BI__builtin_ia32_paddsb128:
14080  case X86::BI__builtin_ia32_paddsw128:
14081    return EmitX86AddSubSatExpr(*this, Ops, true, true);
14082  case X86::BI__builtin_ia32_paddusb512:
14083  case X86::BI__builtin_ia32_paddusw512:
14084  case X86::BI__builtin_ia32_paddusb256:
14085  case X86::BI__builtin_ia32_paddusw256:
14086  case X86::BI__builtin_ia32_paddusb128:
14087  case X86::BI__builtin_ia32_paddusw128:
14088    return EmitX86AddSubSatExpr(*this, Ops, false, true);
14089  case X86::BI__builtin_ia32_psubsb512:
14090  case X86::BI__builtin_ia32_psubsw512:
14091  case X86::BI__builtin_ia32_psubsb256:
14092  case X86::BI__builtin_ia32_psubsw256:
14093  case X86::BI__builtin_ia32_psubsb128:
14094  case X86::BI__builtin_ia32_psubsw128:
14095    return EmitX86AddSubSatExpr(*this, Ops, true, false);
14096  case X86::BI__builtin_ia32_psubusb512:
14097  case X86::BI__builtin_ia32_psubusw512:
14098  case X86::BI__builtin_ia32_psubusb256:
14099  case X86::BI__builtin_ia32_psubusw256:
14100  case X86::BI__builtin_ia32_psubusb128:
14101  case X86::BI__builtin_ia32_psubusw128:
14102    return EmitX86AddSubSatExpr(*this, Ops, false, false);
14103  }
14104}
14105
14106Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14107                                           const CallExpr *E) {
14108  SmallVector<Value*, 4> Ops;
14109
14110  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14111    Ops.push_back(EmitScalarExpr(E->getArg(i)));
14112
14113  Intrinsic::ID ID = Intrinsic::not_intrinsic;
14114
14115  switch (BuiltinID) {
14116  default: return nullptr;
14117
14118  // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14119  // call __builtin_readcyclecounter.
14120  case PPC::BI__builtin_ppc_get_timebase:
14121    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14122
14123  // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14124  case PPC::BI__builtin_altivec_lvx:
14125  case PPC::BI__builtin_altivec_lvxl:
14126  case PPC::BI__builtin_altivec_lvebx:
14127  case PPC::BI__builtin_altivec_lvehx:
14128  case PPC::BI__builtin_altivec_lvewx:
14129  case PPC::BI__builtin_altivec_lvsl:
14130  case PPC::BI__builtin_altivec_lvsr:
14131  case PPC::BI__builtin_vsx_lxvd2x:
14132  case PPC::BI__builtin_vsx_lxvw4x:
14133  case PPC::BI__builtin_vsx_lxvd2x_be:
14134  case PPC::BI__builtin_vsx_lxvw4x_be:
14135  case PPC::BI__builtin_vsx_lxvl:
14136  case PPC::BI__builtin_vsx_lxvll:
14137  {
14138    if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14139       BuiltinID == PPC::BI__builtin_vsx_lxvll){
14140      Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14141    }else {
14142      Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14143      Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14144      Ops.pop_back();
14145    }
14146
14147    switch (BuiltinID) {
14148    default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14149    case PPC::BI__builtin_altivec_lvx:
14150      ID = Intrinsic::ppc_altivec_lvx;
14151      break;
14152    case PPC::BI__builtin_altivec_lvxl:
14153      ID = Intrinsic::ppc_altivec_lvxl;
14154      break;
14155    case PPC::BI__builtin_altivec_lvebx:
14156      ID = Intrinsic::ppc_altivec_lvebx;
14157      break;
14158    case PPC::BI__builtin_altivec_lvehx:
14159      ID = Intrinsic::ppc_altivec_lvehx;
14160      break;
14161    case PPC::BI__builtin_altivec_lvewx:
14162      ID = Intrinsic::ppc_altivec_lvewx;
14163      break;
14164    case PPC::BI__builtin_altivec_lvsl:
14165      ID = Intrinsic::ppc_altivec_lvsl;
14166      break;
14167    case PPC::BI__builtin_altivec_lvsr:
14168      ID = Intrinsic::ppc_altivec_lvsr;
14169      break;
14170    case PPC::BI__builtin_vsx_lxvd2x:
14171      ID = Intrinsic::ppc_vsx_lxvd2x;
14172      break;
14173    case PPC::BI__builtin_vsx_lxvw4x:
14174      ID = Intrinsic::ppc_vsx_lxvw4x;
14175      break;
14176    case PPC::BI__builtin_vsx_lxvd2x_be:
14177      ID = Intrinsic::ppc_vsx_lxvd2x_be;
14178      break;
14179    case PPC::BI__builtin_vsx_lxvw4x_be:
14180      ID = Intrinsic::ppc_vsx_lxvw4x_be;
14181      break;
14182    case PPC::BI__builtin_vsx_lxvl:
14183      ID = Intrinsic::ppc_vsx_lxvl;
14184      break;
14185    case PPC::BI__builtin_vsx_lxvll:
14186      ID = Intrinsic::ppc_vsx_lxvll;
14187      break;
14188    }
14189    llvm::Function *F = CGM.getIntrinsic(ID);
14190    return Builder.CreateCall(F, Ops, "");
14191  }
14192
14193  // vec_st, vec_xst_be
14194  case PPC::BI__builtin_altivec_stvx:
14195  case PPC::BI__builtin_altivec_stvxl:
14196  case PPC::BI__builtin_altivec_stvebx:
14197  case PPC::BI__builtin_altivec_stvehx:
14198  case PPC::BI__builtin_altivec_stvewx:
14199  case PPC::BI__builtin_vsx_stxvd2x:
14200  case PPC::BI__builtin_vsx_stxvw4x:
14201  case PPC::BI__builtin_vsx_stxvd2x_be:
14202  case PPC::BI__builtin_vsx_stxvw4x_be:
14203  case PPC::BI__builtin_vsx_stxvl:
14204  case PPC::BI__builtin_vsx_stxvll:
14205  {
14206    if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14207      BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14208      Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14209    }else {
14210      Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14211      Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14212      Ops.pop_back();
14213    }
14214
14215    switch (BuiltinID) {
14216    default: llvm_unreachable("Unsupported st intrinsic!");
14217    case PPC::BI__builtin_altivec_stvx:
14218      ID = Intrinsic::ppc_altivec_stvx;
14219      break;
14220    case PPC::BI__builtin_altivec_stvxl:
14221      ID = Intrinsic::ppc_altivec_stvxl;
14222      break;
14223    case PPC::BI__builtin_altivec_stvebx:
14224      ID = Intrinsic::ppc_altivec_stvebx;
14225      break;
14226    case PPC::BI__builtin_altivec_stvehx:
14227      ID = Intrinsic::ppc_altivec_stvehx;
14228      break;
14229    case PPC::BI__builtin_altivec_stvewx:
14230      ID = Intrinsic::ppc_altivec_stvewx;
14231      break;
14232    case PPC::BI__builtin_vsx_stxvd2x:
14233      ID = Intrinsic::ppc_vsx_stxvd2x;
14234      break;
14235    case PPC::BI__builtin_vsx_stxvw4x:
14236      ID = Intrinsic::ppc_vsx_stxvw4x;
14237      break;
14238    case PPC::BI__builtin_vsx_stxvd2x_be:
14239      ID = Intrinsic::ppc_vsx_stxvd2x_be;
14240      break;
14241    case PPC::BI__builtin_vsx_stxvw4x_be:
14242      ID = Intrinsic::ppc_vsx_stxvw4x_be;
14243      break;
14244    case PPC::BI__builtin_vsx_stxvl:
14245      ID = Intrinsic::ppc_vsx_stxvl;
14246      break;
14247    case PPC::BI__builtin_vsx_stxvll:
14248      ID = Intrinsic::ppc_vsx_stxvll;
14249      break;
14250    }
14251    llvm::Function *F = CGM.getIntrinsic(ID);
14252    return Builder.CreateCall(F, Ops, "");
14253  }
14254  // Square root
14255  case PPC::BI__builtin_vsx_xvsqrtsp:
14256  case PPC::BI__builtin_vsx_xvsqrtdp: {
14257    llvm::Type *ResultType = ConvertType(E->getType());
14258    Value *X = EmitScalarExpr(E->getArg(0));
14259    if (Builder.getIsFPConstrained()) {
14260      llvm::Function *F = CGM.getIntrinsic(
14261          Intrinsic::experimental_constrained_sqrt, ResultType);
14262      return Builder.CreateConstrainedFPCall(F, X);
14263    } else {
14264      llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
14265      return Builder.CreateCall(F, X);
14266    }
14267  }
14268  // Count leading zeros
14269  case PPC::BI__builtin_altivec_vclzb:
14270  case PPC::BI__builtin_altivec_vclzh:
14271  case PPC::BI__builtin_altivec_vclzw:
14272  case PPC::BI__builtin_altivec_vclzd: {
14273    llvm::Type *ResultType = ConvertType(E->getType());
14274    Value *X = EmitScalarExpr(E->getArg(0));
14275    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14276    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14277    return Builder.CreateCall(F, {X, Undef});
14278  }
14279  case PPC::BI__builtin_altivec_vctzb:
14280  case PPC::BI__builtin_altivec_vctzh:
14281  case PPC::BI__builtin_altivec_vctzw:
14282  case PPC::BI__builtin_altivec_vctzd: {
14283    llvm::Type *ResultType = ConvertType(E->getType());
14284    Value *X = EmitScalarExpr(E->getArg(0));
14285    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14286    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
14287    return Builder.CreateCall(F, {X, Undef});
14288  }
14289  case PPC::BI__builtin_altivec_vpopcntb:
14290  case PPC::BI__builtin_altivec_vpopcnth:
14291  case PPC::BI__builtin_altivec_vpopcntw:
14292  case PPC::BI__builtin_altivec_vpopcntd: {
14293    llvm::Type *ResultType = ConvertType(E->getType());
14294    Value *X = EmitScalarExpr(E->getArg(0));
14295    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14296    return Builder.CreateCall(F, X);
14297  }
14298  // Copy sign
14299  case PPC::BI__builtin_vsx_xvcpsgnsp:
14300  case PPC::BI__builtin_vsx_xvcpsgndp: {
14301    llvm::Type *ResultType = ConvertType(E->getType());
14302    Value *X = EmitScalarExpr(E->getArg(0));
14303    Value *Y = EmitScalarExpr(E->getArg(1));
14304    ID = Intrinsic::copysign;
14305    llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14306    return Builder.CreateCall(F, {X, Y});
14307  }
14308  // Rounding/truncation
14309  case PPC::BI__builtin_vsx_xvrspip:
14310  case PPC::BI__builtin_vsx_xvrdpip:
14311  case PPC::BI__builtin_vsx_xvrdpim:
14312  case PPC::BI__builtin_vsx_xvrspim:
14313  case PPC::BI__builtin_vsx_xvrdpi:
14314  case PPC::BI__builtin_vsx_xvrspi:
14315  case PPC::BI__builtin_vsx_xvrdpic:
14316  case PPC::BI__builtin_vsx_xvrspic:
14317  case PPC::BI__builtin_vsx_xvrdpiz:
14318  case PPC::BI__builtin_vsx_xvrspiz: {
14319    llvm::Type *ResultType = ConvertType(E->getType());
14320    Value *X = EmitScalarExpr(E->getArg(0));
14321    if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
14322        BuiltinID == PPC::BI__builtin_vsx_xvrspim)
14323      ID = Builder.getIsFPConstrained()
14324               ? Intrinsic::experimental_constrained_floor
14325               : Intrinsic::floor;
14326    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
14327             BuiltinID == PPC::BI__builtin_vsx_xvrspi)
14328      ID = Builder.getIsFPConstrained()
14329               ? Intrinsic::experimental_constrained_round
14330               : Intrinsic::round;
14331    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
14332             BuiltinID == PPC::BI__builtin_vsx_xvrspic)
14333      ID = Builder.getIsFPConstrained()
14334               ? Intrinsic::experimental_constrained_nearbyint
14335               : Intrinsic::nearbyint;
14336    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
14337             BuiltinID == PPC::BI__builtin_vsx_xvrspip)
14338      ID = Builder.getIsFPConstrained()
14339               ? Intrinsic::experimental_constrained_ceil
14340               : Intrinsic::ceil;
14341    else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
14342             BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
14343      ID = Builder.getIsFPConstrained()
14344               ? Intrinsic::experimental_constrained_trunc
14345               : Intrinsic::trunc;
14346    llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14347    return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
14348                                        : Builder.CreateCall(F, X);
14349  }
14350
14351  // Absolute value
14352  case PPC::BI__builtin_vsx_xvabsdp:
14353  case PPC::BI__builtin_vsx_xvabssp: {
14354    llvm::Type *ResultType = ConvertType(E->getType());
14355    Value *X = EmitScalarExpr(E->getArg(0));
14356    llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
14357    return Builder.CreateCall(F, X);
14358  }
14359
14360  // FMA variations
14361  case PPC::BI__builtin_vsx_xvmaddadp:
14362  case PPC::BI__builtin_vsx_xvmaddasp:
14363  case PPC::BI__builtin_vsx_xvnmaddadp:
14364  case PPC::BI__builtin_vsx_xvnmaddasp:
14365  case PPC::BI__builtin_vsx_xvmsubadp:
14366  case PPC::BI__builtin_vsx_xvmsubasp:
14367  case PPC::BI__builtin_vsx_xvnmsubadp:
14368  case PPC::BI__builtin_vsx_xvnmsubasp: {
14369    llvm::Type *ResultType = ConvertType(E->getType());
14370    Value *X = EmitScalarExpr(E->getArg(0));
14371    Value *Y = EmitScalarExpr(E->getArg(1));
14372    Value *Z = EmitScalarExpr(E->getArg(2));
14373    llvm::Function *F;
14374    if (Builder.getIsFPConstrained())
14375      F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
14376    else
14377      F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
14378    switch (BuiltinID) {
14379      case PPC::BI__builtin_vsx_xvmaddadp:
14380      case PPC::BI__builtin_vsx_xvmaddasp:
14381        if (Builder.getIsFPConstrained())
14382          return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
14383        else
14384          return Builder.CreateCall(F, {X, Y, Z});
14385      case PPC::BI__builtin_vsx_xvnmaddadp:
14386      case PPC::BI__builtin_vsx_xvnmaddasp:
14387        if (Builder.getIsFPConstrained())
14388          return Builder.CreateFNeg(
14389              Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
14390        else
14391          return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
14392      case PPC::BI__builtin_vsx_xvmsubadp:
14393      case PPC::BI__builtin_vsx_xvmsubasp:
14394        if (Builder.getIsFPConstrained())
14395          return Builder.CreateConstrainedFPCall(
14396              F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14397        else
14398          return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14399      case PPC::BI__builtin_vsx_xvnmsubadp:
14400      case PPC::BI__builtin_vsx_xvnmsubasp:
14401        if (Builder.getIsFPConstrained())
14402          return Builder.CreateFNeg(
14403              Builder.CreateConstrainedFPCall(
14404                  F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14405              "neg");
14406        else
14407          return Builder.CreateFNeg(
14408              Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14409              "neg");
14410    }
14411    llvm_unreachable("Unknown FMA operation");
14412    return nullptr; // Suppress no-return warning
14413  }
14414
14415  case PPC::BI__builtin_vsx_insertword: {
14416    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
14417
14418    // Third argument is a compile time constant int. It must be clamped to
14419    // to the range [0, 12].
14420    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14421    assert(ArgCI &&
14422           "Third arg to xxinsertw intrinsic must be constant integer");
14423    const int64_t MaxIndex = 12;
14424    int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14425
14426    // The builtin semantics don't exactly match the xxinsertw instructions
14427    // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
14428    // word from the first argument, and inserts it in the second argument. The
14429    // instruction extracts the word from its second input register and inserts
14430    // it into its first input register, so swap the first and second arguments.
14431    std::swap(Ops[0], Ops[1]);
14432
14433    // Need to cast the second argument from a vector of unsigned int to a
14434    // vector of long long.
14435    Ops[1] =
14436        Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14437
14438    if (getTarget().isLittleEndian()) {
14439      // Reverse the double words in the vector we will extract from.
14440      Ops[0] =
14441          Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14442      Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
14443
14444      // Reverse the index.
14445      Index = MaxIndex - Index;
14446    }
14447
14448    // Intrinsic expects the first arg to be a vector of int.
14449    Ops[0] =
14450        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14451    Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
14452    return Builder.CreateCall(F, Ops);
14453  }
14454
14455  case PPC::BI__builtin_vsx_extractuword: {
14456    llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
14457
14458    // Intrinsic expects the first argument to be a vector of doublewords.
14459    Ops[0] =
14460        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14461
14462    // The second argument is a compile time constant int that needs to
14463    // be clamped to the range [0, 12].
14464    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
14465    assert(ArgCI &&
14466           "Second Arg to xxextractuw intrinsic must be a constant integer!");
14467    const int64_t MaxIndex = 12;
14468    int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14469
14470    if (getTarget().isLittleEndian()) {
14471      // Reverse the index.
14472      Index = MaxIndex - Index;
14473      Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14474
14475      // Emit the call, then reverse the double words of the results vector.
14476      Value *Call = Builder.CreateCall(F, Ops);
14477
14478      Value *ShuffleCall =
14479          Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
14480      return ShuffleCall;
14481    } else {
14482      Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14483      return Builder.CreateCall(F, Ops);
14484    }
14485  }
14486
14487  case PPC::BI__builtin_vsx_xxpermdi: {
14488    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14489    assert(ArgCI && "Third arg must be constant integer!");
14490
14491    unsigned Index = ArgCI->getZExtValue();
14492    Ops[0] =
14493        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14494    Ops[1] =
14495        Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14496
14497    // Account for endianness by treating this as just a shuffle. So we use the
14498    // same indices for both LE and BE in order to produce expected results in
14499    // both cases.
14500    int ElemIdx0 = (Index & 2) >> 1;
14501    int ElemIdx1 = 2 + (Index & 1);
14502
14503    int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
14504    Value *ShuffleCall =
14505        Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14506    QualType BIRetType = E->getType();
14507    auto RetTy = ConvertType(BIRetType);
14508    return Builder.CreateBitCast(ShuffleCall, RetTy);
14509  }
14510
14511  case PPC::BI__builtin_vsx_xxsldwi: {
14512    ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14513    assert(ArgCI && "Third argument must be a compile time constant");
14514    unsigned Index = ArgCI->getZExtValue() & 0x3;
14515    Ops[0] =
14516        Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14517    Ops[1] =
14518        Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
14519
14520    // Create a shuffle mask
14521    int ElemIdx0;
14522    int ElemIdx1;
14523    int ElemIdx2;
14524    int ElemIdx3;
14525    if (getTarget().isLittleEndian()) {
14526      // Little endian element N comes from element 8+N-Index of the
14527      // concatenated wide vector (of course, using modulo arithmetic on
14528      // the total number of elements).
14529      ElemIdx0 = (8 - Index) % 8;
14530      ElemIdx1 = (9 - Index) % 8;
14531      ElemIdx2 = (10 - Index) % 8;
14532      ElemIdx3 = (11 - Index) % 8;
14533    } else {
14534      // Big endian ElemIdx<N> = Index + N
14535      ElemIdx0 = Index;
14536      ElemIdx1 = Index + 1;
14537      ElemIdx2 = Index + 2;
14538      ElemIdx3 = Index + 3;
14539    }
14540
14541    int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
14542    Value *ShuffleCall =
14543        Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14544    QualType BIRetType = E->getType();
14545    auto RetTy = ConvertType(BIRetType);
14546    return Builder.CreateBitCast(ShuffleCall, RetTy);
14547  }
14548
14549  case PPC::BI__builtin_pack_vector_int128: {
14550    bool isLittleEndian = getTarget().isLittleEndian();
14551    Value *UndefValue =
14552        llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
14553    Value *Res = Builder.CreateInsertElement(
14554        UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
14555    Res = Builder.CreateInsertElement(Res, Ops[1],
14556                                      (uint64_t)(isLittleEndian ? 0 : 1));
14557    return Builder.CreateBitCast(Res, ConvertType(E->getType()));
14558  }
14559
14560  case PPC::BI__builtin_unpack_vector_int128: {
14561    ConstantInt *Index = cast<ConstantInt>(Ops[1]);
14562    Value *Unpacked = Builder.CreateBitCast(
14563        Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
14564
14565    if (getTarget().isLittleEndian())
14566      Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
14567
14568    return Builder.CreateExtractElement(Unpacked, Index);
14569  }
14570  }
14571}
14572
14573namespace {
14574// If \p E is not null pointer, insert address space cast to match return
14575// type of \p E if necessary.
14576Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
14577                             const CallExpr *E = nullptr) {
14578  auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
14579  auto *Call = CGF.Builder.CreateCall(F);
14580  Call->addAttribute(
14581      AttributeList::ReturnIndex,
14582      Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
14583  Call->addAttribute(AttributeList::ReturnIndex,
14584                     Attribute::getWithAlignment(Call->getContext(), Align(4)));
14585  if (!E)
14586    return Call;
14587  QualType BuiltinRetType = E->getType();
14588  auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
14589  if (RetTy == Call->getType())
14590    return Call;
14591  return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
14592}
14593
14594// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
14595Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
14596  const unsigned XOffset = 4;
14597  auto *DP = EmitAMDGPUDispatchPtr(CGF);
14598  // Indexing the HSA kernel_dispatch_packet struct.
14599  auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
14600  auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
14601  auto *DstTy =
14602      CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
14603  auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
14604  auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
14605  llvm::MDBuilder MDHelper(CGF.getLLVMContext());
14606  llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
14607      APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
14608  LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
14609  LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
14610      llvm::MDNode::get(CGF.getLLVMContext(), None));
14611  return LD;
14612}
14613} // namespace
14614
14615// For processing memory ordering and memory scope arguments of various
14616// amdgcn builtins.
14617// \p Order takes a C++11 comptabile memory-ordering specifier and converts
14618// it into LLVM's memory ordering specifier using atomic C ABI, and writes
14619// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
14620// specific SyncScopeID and writes it to \p SSID.
14621bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
14622                                              llvm::AtomicOrdering &AO,
14623                                              llvm::SyncScope::ID &SSID) {
14624  if (isa<llvm::ConstantInt>(Order)) {
14625    int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
14626
14627    // Map C11/C++11 memory ordering to LLVM memory ordering
14628    switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
14629    case llvm::AtomicOrderingCABI::acquire:
14630      AO = llvm::AtomicOrdering::Acquire;
14631      break;
14632    case llvm::AtomicOrderingCABI::release:
14633      AO = llvm::AtomicOrdering::Release;
14634      break;
14635    case llvm::AtomicOrderingCABI::acq_rel:
14636      AO = llvm::AtomicOrdering::AcquireRelease;
14637      break;
14638    case llvm::AtomicOrderingCABI::seq_cst:
14639      AO = llvm::AtomicOrdering::SequentiallyConsistent;
14640      break;
14641    case llvm::AtomicOrderingCABI::consume:
14642    case llvm::AtomicOrderingCABI::relaxed:
14643      break;
14644    }
14645
14646    StringRef scp;
14647    llvm::getConstantStringInfo(Scope, scp);
14648    SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
14649    return true;
14650  }
14651  return false;
14652}
14653
14654Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
14655                                              const CallExpr *E) {
14656  llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
14657  llvm::SyncScope::ID SSID;
14658  switch (BuiltinID) {
14659  case AMDGPU::BI__builtin_amdgcn_div_scale:
14660  case AMDGPU::BI__builtin_amdgcn_div_scalef: {
14661    // Translate from the intrinsics's struct return to the builtin's out
14662    // argument.
14663
14664    Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
14665
14666    llvm::Value *X = EmitScalarExpr(E->getArg(0));
14667    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
14668    llvm::Value *Z = EmitScalarExpr(E->getArg(2));
14669
14670    llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
14671                                           X->getType());
14672
14673    llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
14674
14675    llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
14676    llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
14677
14678    llvm::Type *RealFlagType
14679      = FlagOutPtr.getPointer()->getType()->getPointerElementType();
14680
14681    llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
14682    Builder.CreateStore(FlagExt, FlagOutPtr);
14683    return Result;
14684  }
14685  case AMDGPU::BI__builtin_amdgcn_div_fmas:
14686  case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
14687    llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14688    llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14689    llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14690    llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
14691
14692    llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
14693                                      Src0->getType());
14694    llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
14695    return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
14696  }
14697
14698  case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
14699    return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
14700  case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
14701    return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
14702  case AMDGPU::BI__builtin_amdgcn_mov_dpp:
14703  case AMDGPU::BI__builtin_amdgcn_update_dpp: {
14704    llvm::SmallVector<llvm::Value *, 6> Args;
14705    for (unsigned I = 0; I != E->getNumArgs(); ++I)
14706      Args.push_back(EmitScalarExpr(E->getArg(I)));
14707    assert(Args.size() == 5 || Args.size() == 6);
14708    if (Args.size() == 5)
14709      Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
14710    Function *F =
14711        CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
14712    return Builder.CreateCall(F, Args);
14713  }
14714  case AMDGPU::BI__builtin_amdgcn_div_fixup:
14715  case AMDGPU::BI__builtin_amdgcn_div_fixupf:
14716  case AMDGPU::BI__builtin_amdgcn_div_fixuph:
14717    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
14718  case AMDGPU::BI__builtin_amdgcn_trig_preop:
14719  case AMDGPU::BI__builtin_amdgcn_trig_preopf:
14720    return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
14721  case AMDGPU::BI__builtin_amdgcn_rcp:
14722  case AMDGPU::BI__builtin_amdgcn_rcpf:
14723  case AMDGPU::BI__builtin_amdgcn_rcph:
14724    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
14725  case AMDGPU::BI__builtin_amdgcn_sqrt:
14726  case AMDGPU::BI__builtin_amdgcn_sqrtf:
14727  case AMDGPU::BI__builtin_amdgcn_sqrth:
14728    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
14729  case AMDGPU::BI__builtin_amdgcn_rsq:
14730  case AMDGPU::BI__builtin_amdgcn_rsqf:
14731  case AMDGPU::BI__builtin_amdgcn_rsqh:
14732    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
14733  case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
14734  case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
14735    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
14736  case AMDGPU::BI__builtin_amdgcn_sinf:
14737  case AMDGPU::BI__builtin_amdgcn_sinh:
14738    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
14739  case AMDGPU::BI__builtin_amdgcn_cosf:
14740  case AMDGPU::BI__builtin_amdgcn_cosh:
14741    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
14742  case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
14743    return EmitAMDGPUDispatchPtr(*this, E);
14744  case AMDGPU::BI__builtin_amdgcn_log_clampf:
14745    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
14746  case AMDGPU::BI__builtin_amdgcn_ldexp:
14747  case AMDGPU::BI__builtin_amdgcn_ldexpf:
14748  case AMDGPU::BI__builtin_amdgcn_ldexph:
14749    return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
14750  case AMDGPU::BI__builtin_amdgcn_frexp_mant:
14751  case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
14752  case AMDGPU::BI__builtin_amdgcn_frexp_manth:
14753    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
14754  case AMDGPU::BI__builtin_amdgcn_frexp_exp:
14755  case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
14756    Value *Src0 = EmitScalarExpr(E->getArg(0));
14757    Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
14758                                { Builder.getInt32Ty(), Src0->getType() });
14759    return Builder.CreateCall(F, Src0);
14760  }
14761  case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
14762    Value *Src0 = EmitScalarExpr(E->getArg(0));
14763    Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
14764                                { Builder.getInt16Ty(), Src0->getType() });
14765    return Builder.CreateCall(F, Src0);
14766  }
14767  case AMDGPU::BI__builtin_amdgcn_fract:
14768  case AMDGPU::BI__builtin_amdgcn_fractf:
14769  case AMDGPU::BI__builtin_amdgcn_fracth:
14770    return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
14771  case AMDGPU::BI__builtin_amdgcn_lerp:
14772    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
14773  case AMDGPU::BI__builtin_amdgcn_ubfe:
14774    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
14775  case AMDGPU::BI__builtin_amdgcn_sbfe:
14776    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
14777  case AMDGPU::BI__builtin_amdgcn_uicmp:
14778  case AMDGPU::BI__builtin_amdgcn_uicmpl:
14779  case AMDGPU::BI__builtin_amdgcn_sicmp:
14780  case AMDGPU::BI__builtin_amdgcn_sicmpl: {
14781    llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14782    llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14783    llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14784
14785    // FIXME-GFX10: How should 32 bit mask be handled?
14786    Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
14787      { Builder.getInt64Ty(), Src0->getType() });
14788    return Builder.CreateCall(F, { Src0, Src1, Src2 });
14789  }
14790  case AMDGPU::BI__builtin_amdgcn_fcmp:
14791  case AMDGPU::BI__builtin_amdgcn_fcmpf: {
14792    llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14793    llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14794    llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14795
14796    // FIXME-GFX10: How should 32 bit mask be handled?
14797    Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
14798      { Builder.getInt64Ty(), Src0->getType() });
14799    return Builder.CreateCall(F, { Src0, Src1, Src2 });
14800  }
14801  case AMDGPU::BI__builtin_amdgcn_class:
14802  case AMDGPU::BI__builtin_amdgcn_classf:
14803  case AMDGPU::BI__builtin_amdgcn_classh:
14804    return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
14805  case AMDGPU::BI__builtin_amdgcn_fmed3f:
14806  case AMDGPU::BI__builtin_amdgcn_fmed3h:
14807    return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
14808  case AMDGPU::BI__builtin_amdgcn_ds_append:
14809  case AMDGPU::BI__builtin_amdgcn_ds_consume: {
14810    Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
14811      Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
14812    Value *Src0 = EmitScalarExpr(E->getArg(0));
14813    Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
14814    return Builder.CreateCall(F, { Src0, Builder.getFalse() });
14815  }
14816  case AMDGPU::BI__builtin_amdgcn_read_exec: {
14817    CallInst *CI = cast<CallInst>(
14818      EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
14819    CI->setConvergent();
14820    return CI;
14821  }
14822  case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
14823  case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
14824    StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
14825      "exec_lo" : "exec_hi";
14826    CallInst *CI = cast<CallInst>(
14827      EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
14828    CI->setConvergent();
14829    return CI;
14830  }
14831  // amdgcn workitem
14832  case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
14833    return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
14834  case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
14835    return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
14836  case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
14837    return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
14838
14839  // amdgcn workgroup size
14840  case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
14841    return EmitAMDGPUWorkGroupSize(*this, 0);
14842  case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
14843    return EmitAMDGPUWorkGroupSize(*this, 1);
14844  case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
14845    return EmitAMDGPUWorkGroupSize(*this, 2);
14846
14847  // r600 intrinsics
14848  case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
14849  case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
14850    return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
14851  case AMDGPU::BI__builtin_r600_read_tidig_x:
14852    return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
14853  case AMDGPU::BI__builtin_r600_read_tidig_y:
14854    return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
14855  case AMDGPU::BI__builtin_r600_read_tidig_z:
14856    return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
14857  case AMDGPU::BI__builtin_amdgcn_alignbit: {
14858    llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14859    llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14860    llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14861    Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
14862    return Builder.CreateCall(F, { Src0, Src1, Src2 });
14863  }
14864
14865  case AMDGPU::BI__builtin_amdgcn_fence: {
14866    if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
14867                                EmitScalarExpr(E->getArg(1)), AO, SSID))
14868      return Builder.CreateFence(AO, SSID);
14869    LLVM_FALLTHROUGH;
14870  }
14871  case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
14872  case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
14873  case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
14874  case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
14875    unsigned BuiltinAtomicOp;
14876    llvm::Type *ResultType = ConvertType(E->getType());
14877
14878    switch (BuiltinID) {
14879    case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
14880    case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
14881      BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
14882      break;
14883    case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
14884    case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
14885      BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
14886      break;
14887    }
14888
14889    Value *Ptr = EmitScalarExpr(E->getArg(0));
14890    Value *Val = EmitScalarExpr(E->getArg(1));
14891
14892    llvm::Function *F =
14893        CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
14894
14895    if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
14896                                EmitScalarExpr(E->getArg(3)), AO, SSID)) {
14897
14898      // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
14899      // scope as unsigned values
14900      Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
14901      Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
14902
14903      QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
14904      bool Volatile =
14905          PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
14906      Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
14907
14908      return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
14909    }
14910    LLVM_FALLTHROUGH;
14911  }
14912  default:
14913    return nullptr;
14914  }
14915}
14916
14917/// Handle a SystemZ function in which the final argument is a pointer
14918/// to an int that receives the post-instruction CC value.  At the LLVM level
14919/// this is represented as a function that returns a {result, cc} pair.
14920static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
14921                                         unsigned IntrinsicID,
14922                                         const CallExpr *E) {
14923  unsigned NumArgs = E->getNumArgs() - 1;
14924  SmallVector<Value *, 8> Args(NumArgs);
14925  for (unsigned I = 0; I < NumArgs; ++I)
14926    Args[I] = CGF.EmitScalarExpr(E->getArg(I));
14927  Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
14928  Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
14929  Value *Call = CGF.Builder.CreateCall(F, Args);
14930  Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
14931  CGF.Builder.CreateStore(CC, CCPtr);
14932  return CGF.Builder.CreateExtractValue(Call, 0);
14933}
14934
14935Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
14936                                               const CallExpr *E) {
14937  switch (BuiltinID) {
14938  case SystemZ::BI__builtin_tbegin: {
14939    Value *TDB = EmitScalarExpr(E->getArg(0));
14940    Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
14941    Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
14942    return Builder.CreateCall(F, {TDB, Control});
14943  }
14944  case SystemZ::BI__builtin_tbegin_nofloat: {
14945    Value *TDB = EmitScalarExpr(E->getArg(0));
14946    Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
14947    Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
14948    return Builder.CreateCall(F, {TDB, Control});
14949  }
14950  case SystemZ::BI__builtin_tbeginc: {
14951    Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
14952    Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
14953    Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
14954    return Builder.CreateCall(F, {TDB, Control});
14955  }
14956  case SystemZ::BI__builtin_tabort: {
14957    Value *Data = EmitScalarExpr(E->getArg(0));
14958    Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
14959    return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
14960  }
14961  case SystemZ::BI__builtin_non_tx_store: {
14962    Value *Address = EmitScalarExpr(E->getArg(0));
14963    Value *Data = EmitScalarExpr(E->getArg(1));
14964    Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
14965    return Builder.CreateCall(F, {Data, Address});
14966  }
14967
14968  // Vector builtins.  Note that most vector builtins are mapped automatically
14969  // to target-specific LLVM intrinsics.  The ones handled specially here can
14970  // be represented via standard LLVM IR, which is preferable to enable common
14971  // LLVM optimizations.
14972
14973  case SystemZ::BI__builtin_s390_vpopctb:
14974  case SystemZ::BI__builtin_s390_vpopcth:
14975  case SystemZ::BI__builtin_s390_vpopctf:
14976  case SystemZ::BI__builtin_s390_vpopctg: {
14977    llvm::Type *ResultType = ConvertType(E->getType());
14978    Value *X = EmitScalarExpr(E->getArg(0));
14979    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14980    return Builder.CreateCall(F, X);
14981  }
14982
14983  case SystemZ::BI__builtin_s390_vclzb:
14984  case SystemZ::BI__builtin_s390_vclzh:
14985  case SystemZ::BI__builtin_s390_vclzf:
14986  case SystemZ::BI__builtin_s390_vclzg: {
14987    llvm::Type *ResultType = ConvertType(E->getType());
14988    Value *X = EmitScalarExpr(E->getArg(0));
14989    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14990    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14991    return Builder.CreateCall(F, {X, Undef});
14992  }
14993
14994  case SystemZ::BI__builtin_s390_vctzb:
14995  case SystemZ::BI__builtin_s390_vctzh:
14996  case SystemZ::BI__builtin_s390_vctzf:
14997  case SystemZ::BI__builtin_s390_vctzg: {
14998    llvm::Type *ResultType = ConvertType(E->getType());
14999    Value *X = EmitScalarExpr(E->getArg(0));
15000    Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15001    Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15002    return Builder.CreateCall(F, {X, Undef});
15003  }
15004
15005  case SystemZ::BI__builtin_s390_vfsqsb:
15006  case SystemZ::BI__builtin_s390_vfsqdb: {
15007    llvm::Type *ResultType = ConvertType(E->getType());
15008    Value *X = EmitScalarExpr(E->getArg(0));
15009    if (Builder.getIsFPConstrained()) {
15010      Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
15011      return Builder.CreateConstrainedFPCall(F, { X });
15012    } else {
15013      Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15014      return Builder.CreateCall(F, X);
15015    }
15016  }
15017  case SystemZ::BI__builtin_s390_vfmasb:
15018  case SystemZ::BI__builtin_s390_vfmadb: {
15019    llvm::Type *ResultType = ConvertType(E->getType());
15020    Value *X = EmitScalarExpr(E->getArg(0));
15021    Value *Y = EmitScalarExpr(E->getArg(1));
15022    Value *Z = EmitScalarExpr(E->getArg(2));
15023    if (Builder.getIsFPConstrained()) {
15024      Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15025      return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15026    } else {
15027      Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15028      return Builder.CreateCall(F, {X, Y, Z});
15029    }
15030  }
15031  case SystemZ::BI__builtin_s390_vfmssb:
15032  case SystemZ::BI__builtin_s390_vfmsdb: {
15033    llvm::Type *ResultType = ConvertType(E->getType());
15034    Value *X = EmitScalarExpr(E->getArg(0));
15035    Value *Y = EmitScalarExpr(E->getArg(1));
15036    Value *Z = EmitScalarExpr(E->getArg(2));
15037    if (Builder.getIsFPConstrained()) {
15038      Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15039      return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15040    } else {
15041      Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15042      return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15043    }
15044  }
15045  case SystemZ::BI__builtin_s390_vfnmasb:
15046  case SystemZ::BI__builtin_s390_vfnmadb: {
15047    llvm::Type *ResultType = ConvertType(E->getType());
15048    Value *X = EmitScalarExpr(E->getArg(0));
15049    Value *Y = EmitScalarExpr(E->getArg(1));
15050    Value *Z = EmitScalarExpr(E->getArg(2));
15051    if (Builder.getIsFPConstrained()) {
15052      Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15053      return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
15054    } else {
15055      Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15056      return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15057    }
15058  }
15059  case SystemZ::BI__builtin_s390_vfnmssb:
15060  case SystemZ::BI__builtin_s390_vfnmsdb: {
15061    llvm::Type *ResultType = ConvertType(E->getType());
15062    Value *X = EmitScalarExpr(E->getArg(0));
15063    Value *Y = EmitScalarExpr(E->getArg(1));
15064    Value *Z = EmitScalarExpr(E->getArg(2));
15065    if (Builder.getIsFPConstrained()) {
15066      Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15067      Value *NegZ = Builder.CreateFNeg(Z, "sub");
15068      return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
15069    } else {
15070      Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15071      Value *NegZ = Builder.CreateFNeg(Z, "neg");
15072      return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
15073    }
15074  }
15075  case SystemZ::BI__builtin_s390_vflpsb:
15076  case SystemZ::BI__builtin_s390_vflpdb: {
15077    llvm::Type *ResultType = ConvertType(E->getType());
15078    Value *X = EmitScalarExpr(E->getArg(0));
15079    Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15080    return Builder.CreateCall(F, X);
15081  }
15082  case SystemZ::BI__builtin_s390_vflnsb:
15083  case SystemZ::BI__builtin_s390_vflndb: {
15084    llvm::Type *ResultType = ConvertType(E->getType());
15085    Value *X = EmitScalarExpr(E->getArg(0));
15086    Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15087    return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
15088  }
15089  case SystemZ::BI__builtin_s390_vfisb:
15090  case SystemZ::BI__builtin_s390_vfidb: {
15091    llvm::Type *ResultType = ConvertType(E->getType());
15092    Value *X = EmitScalarExpr(E->getArg(0));
15093    // Constant-fold the M4 and M5 mask arguments.
15094    llvm::APSInt M4, M5;
15095    bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
15096    bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
15097    assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
15098    (void)IsConstM4; (void)IsConstM5;
15099    // Check whether this instance can be represented via a LLVM standard
15100    // intrinsic.  We only support some combinations of M4 and M5.
15101    Intrinsic::ID ID = Intrinsic::not_intrinsic;
15102    Intrinsic::ID CI;
15103    switch (M4.getZExtValue()) {
15104    default: break;
15105    case 0:  // IEEE-inexact exception allowed
15106      switch (M5.getZExtValue()) {
15107      default: break;
15108      case 0: ID = Intrinsic::rint;
15109              CI = Intrinsic::experimental_constrained_rint; break;
15110      }
15111      break;
15112    case 4:  // IEEE-inexact exception suppressed
15113      switch (M5.getZExtValue()) {
15114      default: break;
15115      case 0: ID = Intrinsic::nearbyint;
15116              CI = Intrinsic::experimental_constrained_nearbyint; break;
15117      case 1: ID = Intrinsic::round;
15118              CI = Intrinsic::experimental_constrained_round; break;
15119      case 5: ID = Intrinsic::trunc;
15120              CI = Intrinsic::experimental_constrained_trunc; break;
15121      case 6: ID = Intrinsic::ceil;
15122              CI = Intrinsic::experimental_constrained_ceil; break;
15123      case 7: ID = Intrinsic::floor;
15124              CI = Intrinsic::experimental_constrained_floor; break;
15125      }
15126      break;
15127    }
15128    if (ID != Intrinsic::not_intrinsic) {
15129      if (Builder.getIsFPConstrained()) {
15130        Function *F = CGM.getIntrinsic(CI, ResultType);
15131        return Builder.CreateConstrainedFPCall(F, X);
15132      } else {
15133        Function *F = CGM.getIntrinsic(ID, ResultType);
15134        return Builder.CreateCall(F, X);
15135      }
15136    }
15137    switch (BuiltinID) { // FIXME: constrained version?
15138      case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
15139      case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
15140      default: llvm_unreachable("Unknown BuiltinID");
15141    }
15142    Function *F = CGM.getIntrinsic(ID);
15143    Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15144    Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
15145    return Builder.CreateCall(F, {X, M4Value, M5Value});
15146  }
15147  case SystemZ::BI__builtin_s390_vfmaxsb:
15148  case SystemZ::BI__builtin_s390_vfmaxdb: {
15149    llvm::Type *ResultType = ConvertType(E->getType());
15150    Value *X = EmitScalarExpr(E->getArg(0));
15151    Value *Y = EmitScalarExpr(E->getArg(1));
15152    // Constant-fold the M4 mask argument.
15153    llvm::APSInt M4;
15154    bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
15155    assert(IsConstM4 && "Constant arg isn't actually constant?");
15156    (void)IsConstM4;
15157    // Check whether this instance can be represented via a LLVM standard
15158    // intrinsic.  We only support some values of M4.
15159    Intrinsic::ID ID = Intrinsic::not_intrinsic;
15160    Intrinsic::ID CI;
15161    switch (M4.getZExtValue()) {
15162    default: break;
15163    case 4: ID = Intrinsic::maxnum;
15164            CI = Intrinsic::experimental_constrained_maxnum; break;
15165    }
15166    if (ID != Intrinsic::not_intrinsic) {
15167      if (Builder.getIsFPConstrained()) {
15168        Function *F = CGM.getIntrinsic(CI, ResultType);
15169        return Builder.CreateConstrainedFPCall(F, {X, Y});
15170      } else {
15171        Function *F = CGM.getIntrinsic(ID, ResultType);
15172        return Builder.CreateCall(F, {X, Y});
15173      }
15174    }
15175    switch (BuiltinID) {
15176      case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
15177      case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
15178      default: llvm_unreachable("Unknown BuiltinID");
15179    }
15180    Function *F = CGM.getIntrinsic(ID);
15181    Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15182    return Builder.CreateCall(F, {X, Y, M4Value});
15183  }
15184  case SystemZ::BI__builtin_s390_vfminsb:
15185  case SystemZ::BI__builtin_s390_vfmindb: {
15186    llvm::Type *ResultType = ConvertType(E->getType());
15187    Value *X = EmitScalarExpr(E->getArg(0));
15188    Value *Y = EmitScalarExpr(E->getArg(1));
15189    // Constant-fold the M4 mask argument.
15190    llvm::APSInt M4;
15191    bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
15192    assert(IsConstM4 && "Constant arg isn't actually constant?");
15193    (void)IsConstM4;
15194    // Check whether this instance can be represented via a LLVM standard
15195    // intrinsic.  We only support some values of M4.
15196    Intrinsic::ID ID = Intrinsic::not_intrinsic;
15197    Intrinsic::ID CI;
15198    switch (M4.getZExtValue()) {
15199    default: break;
15200    case 4: ID = Intrinsic::minnum;
15201            CI = Intrinsic::experimental_constrained_minnum; break;
15202    }
15203    if (ID != Intrinsic::not_intrinsic) {
15204      if (Builder.getIsFPConstrained()) {
15205        Function *F = CGM.getIntrinsic(CI, ResultType);
15206        return Builder.CreateConstrainedFPCall(F, {X, Y});
15207      } else {
15208        Function *F = CGM.getIntrinsic(ID, ResultType);
15209        return Builder.CreateCall(F, {X, Y});
15210      }
15211    }
15212    switch (BuiltinID) {
15213      case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
15214      case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
15215      default: llvm_unreachable("Unknown BuiltinID");
15216    }
15217    Function *F = CGM.getIntrinsic(ID);
15218    Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15219    return Builder.CreateCall(F, {X, Y, M4Value});
15220  }
15221
15222  case SystemZ::BI__builtin_s390_vlbrh:
15223  case SystemZ::BI__builtin_s390_vlbrf:
15224  case SystemZ::BI__builtin_s390_vlbrg: {
15225    llvm::Type *ResultType = ConvertType(E->getType());
15226    Value *X = EmitScalarExpr(E->getArg(0));
15227    Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
15228    return Builder.CreateCall(F, X);
15229  }
15230
15231  // Vector intrinsics that output the post-instruction CC value.
15232
15233#define INTRINSIC_WITH_CC(NAME) \
15234    case SystemZ::BI__builtin_##NAME: \
15235      return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
15236
15237  INTRINSIC_WITH_CC(s390_vpkshs);
15238  INTRINSIC_WITH_CC(s390_vpksfs);
15239  INTRINSIC_WITH_CC(s390_vpksgs);
15240
15241  INTRINSIC_WITH_CC(s390_vpklshs);
15242  INTRINSIC_WITH_CC(s390_vpklsfs);
15243  INTRINSIC_WITH_CC(s390_vpklsgs);
15244
15245  INTRINSIC_WITH_CC(s390_vceqbs);
15246  INTRINSIC_WITH_CC(s390_vceqhs);
15247  INTRINSIC_WITH_CC(s390_vceqfs);
15248  INTRINSIC_WITH_CC(s390_vceqgs);
15249
15250  INTRINSIC_WITH_CC(s390_vchbs);
15251  INTRINSIC_WITH_CC(s390_vchhs);
15252  INTRINSIC_WITH_CC(s390_vchfs);
15253  INTRINSIC_WITH_CC(s390_vchgs);
15254
15255  INTRINSIC_WITH_CC(s390_vchlbs);
15256  INTRINSIC_WITH_CC(s390_vchlhs);
15257  INTRINSIC_WITH_CC(s390_vchlfs);
15258  INTRINSIC_WITH_CC(s390_vchlgs);
15259
15260  INTRINSIC_WITH_CC(s390_vfaebs);
15261  INTRINSIC_WITH_CC(s390_vfaehs);
15262  INTRINSIC_WITH_CC(s390_vfaefs);
15263
15264  INTRINSIC_WITH_CC(s390_vfaezbs);
15265  INTRINSIC_WITH_CC(s390_vfaezhs);
15266  INTRINSIC_WITH_CC(s390_vfaezfs);
15267
15268  INTRINSIC_WITH_CC(s390_vfeebs);
15269  INTRINSIC_WITH_CC(s390_vfeehs);
15270  INTRINSIC_WITH_CC(s390_vfeefs);
15271
15272  INTRINSIC_WITH_CC(s390_vfeezbs);
15273  INTRINSIC_WITH_CC(s390_vfeezhs);
15274  INTRINSIC_WITH_CC(s390_vfeezfs);
15275
15276  INTRINSIC_WITH_CC(s390_vfenebs);
15277  INTRINSIC_WITH_CC(s390_vfenehs);
15278  INTRINSIC_WITH_CC(s390_vfenefs);
15279
15280  INTRINSIC_WITH_CC(s390_vfenezbs);
15281  INTRINSIC_WITH_CC(s390_vfenezhs);
15282  INTRINSIC_WITH_CC(s390_vfenezfs);
15283
15284  INTRINSIC_WITH_CC(s390_vistrbs);
15285  INTRINSIC_WITH_CC(s390_vistrhs);
15286  INTRINSIC_WITH_CC(s390_vistrfs);
15287
15288  INTRINSIC_WITH_CC(s390_vstrcbs);
15289  INTRINSIC_WITH_CC(s390_vstrchs);
15290  INTRINSIC_WITH_CC(s390_vstrcfs);
15291
15292  INTRINSIC_WITH_CC(s390_vstrczbs);
15293  INTRINSIC_WITH_CC(s390_vstrczhs);
15294  INTRINSIC_WITH_CC(s390_vstrczfs);
15295
15296  INTRINSIC_WITH_CC(s390_vfcesbs);
15297  INTRINSIC_WITH_CC(s390_vfcedbs);
15298  INTRINSIC_WITH_CC(s390_vfchsbs);
15299  INTRINSIC_WITH_CC(s390_vfchdbs);
15300  INTRINSIC_WITH_CC(s390_vfchesbs);
15301  INTRINSIC_WITH_CC(s390_vfchedbs);
15302
15303  INTRINSIC_WITH_CC(s390_vftcisb);
15304  INTRINSIC_WITH_CC(s390_vftcidb);
15305
15306  INTRINSIC_WITH_CC(s390_vstrsb);
15307  INTRINSIC_WITH_CC(s390_vstrsh);
15308  INTRINSIC_WITH_CC(s390_vstrsf);
15309
15310  INTRINSIC_WITH_CC(s390_vstrszb);
15311  INTRINSIC_WITH_CC(s390_vstrszh);
15312  INTRINSIC_WITH_CC(s390_vstrszf);
15313
15314#undef INTRINSIC_WITH_CC
15315
15316  default:
15317    return nullptr;
15318  }
15319}
15320
15321namespace {
15322// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
15323struct NVPTXMmaLdstInfo {
15324  unsigned NumResults;  // Number of elements to load/store
15325  // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
15326  unsigned IID_col;
15327  unsigned IID_row;
15328};
15329
15330#define MMA_INTR(geom_op_type, layout) \
15331  Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
15332#define MMA_LDST(n, geom_op_type)                                              \
15333  { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
15334
15335static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
15336  switch (BuiltinID) {
15337  // FP MMA loads
15338  case NVPTX::BI__hmma_m16n16k16_ld_a:
15339    return MMA_LDST(8, m16n16k16_load_a_f16);
15340  case NVPTX::BI__hmma_m16n16k16_ld_b:
15341    return MMA_LDST(8, m16n16k16_load_b_f16);
15342  case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
15343    return MMA_LDST(4, m16n16k16_load_c_f16);
15344  case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
15345    return MMA_LDST(8, m16n16k16_load_c_f32);
15346  case NVPTX::BI__hmma_m32n8k16_ld_a:
15347    return MMA_LDST(8, m32n8k16_load_a_f16);
15348  case NVPTX::BI__hmma_m32n8k16_ld_b:
15349    return MMA_LDST(8, m32n8k16_load_b_f16);
15350  case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
15351    return MMA_LDST(4, m32n8k16_load_c_f16);
15352  case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
15353    return MMA_LDST(8, m32n8k16_load_c_f32);
15354  case NVPTX::BI__hmma_m8n32k16_ld_a:
15355    return MMA_LDST(8, m8n32k16_load_a_f16);
15356  case NVPTX::BI__hmma_m8n32k16_ld_b:
15357    return MMA_LDST(8, m8n32k16_load_b_f16);
15358  case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
15359    return MMA_LDST(4, m8n32k16_load_c_f16);
15360  case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
15361    return MMA_LDST(8, m8n32k16_load_c_f32);
15362
15363  // Integer MMA loads
15364  case NVPTX::BI__imma_m16n16k16_ld_a_s8:
15365    return MMA_LDST(2, m16n16k16_load_a_s8);
15366  case NVPTX::BI__imma_m16n16k16_ld_a_u8:
15367    return MMA_LDST(2, m16n16k16_load_a_u8);
15368  case NVPTX::BI__imma_m16n16k16_ld_b_s8:
15369    return MMA_LDST(2, m16n16k16_load_b_s8);
15370  case NVPTX::BI__imma_m16n16k16_ld_b_u8:
15371    return MMA_LDST(2, m16n16k16_load_b_u8);
15372  case NVPTX::BI__imma_m16n16k16_ld_c:
15373    return MMA_LDST(8, m16n16k16_load_c_s32);
15374  case NVPTX::BI__imma_m32n8k16_ld_a_s8:
15375    return MMA_LDST(4, m32n8k16_load_a_s8);
15376  case NVPTX::BI__imma_m32n8k16_ld_a_u8:
15377    return MMA_LDST(4, m32n8k16_load_a_u8);
15378  case NVPTX::BI__imma_m32n8k16_ld_b_s8:
15379    return MMA_LDST(1, m32n8k16_load_b_s8);
15380  case NVPTX::BI__imma_m32n8k16_ld_b_u8:
15381    return MMA_LDST(1, m32n8k16_load_b_u8);
15382  case NVPTX::BI__imma_m32n8k16_ld_c:
15383    return MMA_LDST(8, m32n8k16_load_c_s32);
15384  case NVPTX::BI__imma_m8n32k16_ld_a_s8:
15385    return MMA_LDST(1, m8n32k16_load_a_s8);
15386  case NVPTX::BI__imma_m8n32k16_ld_a_u8:
15387    return MMA_LDST(1, m8n32k16_load_a_u8);
15388  case NVPTX::BI__imma_m8n32k16_ld_b_s8:
15389    return MMA_LDST(4, m8n32k16_load_b_s8);
15390  case NVPTX::BI__imma_m8n32k16_ld_b_u8:
15391    return MMA_LDST(4, m8n32k16_load_b_u8);
15392  case NVPTX::BI__imma_m8n32k16_ld_c:
15393    return MMA_LDST(8, m8n32k16_load_c_s32);
15394
15395  // Sub-integer MMA loads.
15396  // Only row/col layout is supported by A/B fragments.
15397  case NVPTX::BI__imma_m8n8k32_ld_a_s4:
15398    return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
15399  case NVPTX::BI__imma_m8n8k32_ld_a_u4:
15400    return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
15401  case NVPTX::BI__imma_m8n8k32_ld_b_s4:
15402    return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
15403  case NVPTX::BI__imma_m8n8k32_ld_b_u4:
15404    return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
15405  case NVPTX::BI__imma_m8n8k32_ld_c:
15406    return MMA_LDST(2, m8n8k32_load_c_s32);
15407  case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
15408    return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
15409  case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
15410    return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
15411  case NVPTX::BI__bmma_m8n8k128_ld_c:
15412    return MMA_LDST(2, m8n8k128_load_c_s32);
15413
15414  // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
15415  // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
15416  // use fragment C for both loads and stores.
15417  // FP MMA stores.
15418  case NVPTX::BI__hmma_m16n16k16_st_c_f16:
15419    return MMA_LDST(4, m16n16k16_store_d_f16);
15420  case NVPTX::BI__hmma_m16n16k16_st_c_f32:
15421    return MMA_LDST(8, m16n16k16_store_d_f32);
15422  case NVPTX::BI__hmma_m32n8k16_st_c_f16:
15423    return MMA_LDST(4, m32n8k16_store_d_f16);
15424  case NVPTX::BI__hmma_m32n8k16_st_c_f32:
15425    return MMA_LDST(8, m32n8k16_store_d_f32);
15426  case NVPTX::BI__hmma_m8n32k16_st_c_f16:
15427    return MMA_LDST(4, m8n32k16_store_d_f16);
15428  case NVPTX::BI__hmma_m8n32k16_st_c_f32:
15429    return MMA_LDST(8, m8n32k16_store_d_f32);
15430
15431  // Integer and sub-integer MMA stores.
15432  // Another naming quirk. Unlike other MMA builtins that use PTX types in the
15433  // name, integer loads/stores use LLVM's i32.
15434  case NVPTX::BI__imma_m16n16k16_st_c_i32:
15435    return MMA_LDST(8, m16n16k16_store_d_s32);
15436  case NVPTX::BI__imma_m32n8k16_st_c_i32:
15437    return MMA_LDST(8, m32n8k16_store_d_s32);
15438  case NVPTX::BI__imma_m8n32k16_st_c_i32:
15439    return MMA_LDST(8, m8n32k16_store_d_s32);
15440  case NVPTX::BI__imma_m8n8k32_st_c_i32:
15441    return MMA_LDST(2, m8n8k32_store_d_s32);
15442  case NVPTX::BI__bmma_m8n8k128_st_c_i32:
15443    return MMA_LDST(2, m8n8k128_store_d_s32);
15444
15445  default:
15446    llvm_unreachable("Unknown MMA builtin");
15447  }
15448}
15449#undef MMA_LDST
15450#undef MMA_INTR
15451
15452
15453struct NVPTXMmaInfo {
15454  unsigned NumEltsA;
15455  unsigned NumEltsB;
15456  unsigned NumEltsC;
15457  unsigned NumEltsD;
15458  std::array<unsigned, 8> Variants;
15459
15460  unsigned getMMAIntrinsic(int Layout, bool Satf) {
15461    unsigned Index = Layout * 2 + Satf;
15462    if (Index >= Variants.size())
15463      return 0;
15464    return Variants[Index];
15465  }
15466};
15467
15468  // Returns an intrinsic that matches Layout and Satf for valid combinations of
15469  // Layout and Satf, 0 otherwise.
15470static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
15471  // clang-format off
15472#define MMA_VARIANTS(geom, type) {{                                 \
15473      Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
15474      Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
15475      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15476      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15477      Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
15478      Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
15479      Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
15480      Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
15481    }}
15482// Sub-integer MMA only supports row.col layout.
15483#define MMA_VARIANTS_I4(geom, type) {{ \
15484      0, \
15485      0, \
15486      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15487      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15488      0, \
15489      0, \
15490      0, \
15491      0  \
15492    }}
15493// b1 MMA does not support .satfinite.
15494#define MMA_VARIANTS_B1(geom, type) {{ \
15495      0, \
15496      0, \
15497      Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15498      0, \
15499      0, \
15500      0, \
15501      0, \
15502      0  \
15503    }}
15504    // clang-format on
15505    switch (BuiltinID) {
15506    // FP MMA
15507    // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
15508    // NumEltsN of return value are ordered as A,B,C,D.
15509    case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
15510      return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
15511    case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
15512      return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
15513    case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
15514      return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
15515    case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
15516      return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
15517    case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
15518      return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
15519    case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
15520      return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
15521    case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
15522      return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
15523    case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
15524      return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
15525    case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
15526      return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
15527    case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
15528      return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
15529    case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
15530      return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
15531    case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
15532      return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
15533
15534    // Integer MMA
15535    case NVPTX::BI__imma_m16n16k16_mma_s8:
15536      return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
15537    case NVPTX::BI__imma_m16n16k16_mma_u8:
15538      return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
15539    case NVPTX::BI__imma_m32n8k16_mma_s8:
15540      return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
15541    case NVPTX::BI__imma_m32n8k16_mma_u8:
15542      return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
15543    case NVPTX::BI__imma_m8n32k16_mma_s8:
15544      return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
15545    case NVPTX::BI__imma_m8n32k16_mma_u8:
15546      return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
15547
15548    // Sub-integer MMA
15549    case NVPTX::BI__imma_m8n8k32_mma_s4:
15550      return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
15551    case NVPTX::BI__imma_m8n8k32_mma_u4:
15552      return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
15553    case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
15554      return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
15555    default:
15556      llvm_unreachable("Unexpected builtin ID.");
15557    }
15558#undef MMA_VARIANTS
15559#undef MMA_VARIANTS_I4
15560#undef MMA_VARIANTS_B1
15561}
15562
15563} // namespace
15564
15565Value *
15566CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
15567  auto MakeLdg = [&](unsigned IntrinsicID) {
15568    Value *Ptr = EmitScalarExpr(E->getArg(0));
15569    clang::CharUnits Align =
15570        CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
15571    return Builder.CreateCall(
15572        CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15573                                       Ptr->getType()}),
15574        {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
15575  };
15576  auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
15577    Value *Ptr = EmitScalarExpr(E->getArg(0));
15578    return Builder.CreateCall(
15579        CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15580                                       Ptr->getType()}),
15581        {Ptr, EmitScalarExpr(E->getArg(1))});
15582  };
15583  switch (BuiltinID) {
15584  case NVPTX::BI__nvvm_atom_add_gen_i:
15585  case NVPTX::BI__nvvm_atom_add_gen_l:
15586  case NVPTX::BI__nvvm_atom_add_gen_ll:
15587    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
15588
15589  case NVPTX::BI__nvvm_atom_sub_gen_i:
15590  case NVPTX::BI__nvvm_atom_sub_gen_l:
15591  case NVPTX::BI__nvvm_atom_sub_gen_ll:
15592    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
15593
15594  case NVPTX::BI__nvvm_atom_and_gen_i:
15595  case NVPTX::BI__nvvm_atom_and_gen_l:
15596  case NVPTX::BI__nvvm_atom_and_gen_ll:
15597    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
15598
15599  case NVPTX::BI__nvvm_atom_or_gen_i:
15600  case NVPTX::BI__nvvm_atom_or_gen_l:
15601  case NVPTX::BI__nvvm_atom_or_gen_ll:
15602    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
15603
15604  case NVPTX::BI__nvvm_atom_xor_gen_i:
15605  case NVPTX::BI__nvvm_atom_xor_gen_l:
15606  case NVPTX::BI__nvvm_atom_xor_gen_ll:
15607    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
15608
15609  case NVPTX::BI__nvvm_atom_xchg_gen_i:
15610  case NVPTX::BI__nvvm_atom_xchg_gen_l:
15611  case NVPTX::BI__nvvm_atom_xchg_gen_ll:
15612    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
15613
15614  case NVPTX::BI__nvvm_atom_max_gen_i:
15615  case NVPTX::BI__nvvm_atom_max_gen_l:
15616  case NVPTX::BI__nvvm_atom_max_gen_ll:
15617    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
15618
15619  case NVPTX::BI__nvvm_atom_max_gen_ui:
15620  case NVPTX::BI__nvvm_atom_max_gen_ul:
15621  case NVPTX::BI__nvvm_atom_max_gen_ull:
15622    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
15623
15624  case NVPTX::BI__nvvm_atom_min_gen_i:
15625  case NVPTX::BI__nvvm_atom_min_gen_l:
15626  case NVPTX::BI__nvvm_atom_min_gen_ll:
15627    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
15628
15629  case NVPTX::BI__nvvm_atom_min_gen_ui:
15630  case NVPTX::BI__nvvm_atom_min_gen_ul:
15631  case NVPTX::BI__nvvm_atom_min_gen_ull:
15632    return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
15633
15634  case NVPTX::BI__nvvm_atom_cas_gen_i:
15635  case NVPTX::BI__nvvm_atom_cas_gen_l:
15636  case NVPTX::BI__nvvm_atom_cas_gen_ll:
15637    // __nvvm_atom_cas_gen_* should return the old value rather than the
15638    // success flag.
15639    return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
15640
15641  case NVPTX::BI__nvvm_atom_add_gen_f:
15642  case NVPTX::BI__nvvm_atom_add_gen_d: {
15643    Value *Ptr = EmitScalarExpr(E->getArg(0));
15644    Value *Val = EmitScalarExpr(E->getArg(1));
15645    return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
15646                                   AtomicOrdering::SequentiallyConsistent);
15647  }
15648
15649  case NVPTX::BI__nvvm_atom_inc_gen_ui: {
15650    Value *Ptr = EmitScalarExpr(E->getArg(0));
15651    Value *Val = EmitScalarExpr(E->getArg(1));
15652    Function *FnALI32 =
15653        CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
15654    return Builder.CreateCall(FnALI32, {Ptr, Val});
15655  }
15656
15657  case NVPTX::BI__nvvm_atom_dec_gen_ui: {
15658    Value *Ptr = EmitScalarExpr(E->getArg(0));
15659    Value *Val = EmitScalarExpr(E->getArg(1));
15660    Function *FnALD32 =
15661        CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
15662    return Builder.CreateCall(FnALD32, {Ptr, Val});
15663  }
15664
15665  case NVPTX::BI__nvvm_ldg_c:
15666  case NVPTX::BI__nvvm_ldg_c2:
15667  case NVPTX::BI__nvvm_ldg_c4:
15668  case NVPTX::BI__nvvm_ldg_s:
15669  case NVPTX::BI__nvvm_ldg_s2:
15670  case NVPTX::BI__nvvm_ldg_s4:
15671  case NVPTX::BI__nvvm_ldg_i:
15672  case NVPTX::BI__nvvm_ldg_i2:
15673  case NVPTX::BI__nvvm_ldg_i4:
15674  case NVPTX::BI__nvvm_ldg_l:
15675  case NVPTX::BI__nvvm_ldg_ll:
15676  case NVPTX::BI__nvvm_ldg_ll2:
15677  case NVPTX::BI__nvvm_ldg_uc:
15678  case NVPTX::BI__nvvm_ldg_uc2:
15679  case NVPTX::BI__nvvm_ldg_uc4:
15680  case NVPTX::BI__nvvm_ldg_us:
15681  case NVPTX::BI__nvvm_ldg_us2:
15682  case NVPTX::BI__nvvm_ldg_us4:
15683  case NVPTX::BI__nvvm_ldg_ui:
15684  case NVPTX::BI__nvvm_ldg_ui2:
15685  case NVPTX::BI__nvvm_ldg_ui4:
15686  case NVPTX::BI__nvvm_ldg_ul:
15687  case NVPTX::BI__nvvm_ldg_ull:
15688  case NVPTX::BI__nvvm_ldg_ull2:
15689    // PTX Interoperability section 2.2: "For a vector with an even number of
15690    // elements, its alignment is set to number of elements times the alignment
15691    // of its member: n*alignof(t)."
15692    return MakeLdg(Intrinsic::nvvm_ldg_global_i);
15693  case NVPTX::BI__nvvm_ldg_f:
15694  case NVPTX::BI__nvvm_ldg_f2:
15695  case NVPTX::BI__nvvm_ldg_f4:
15696  case NVPTX::BI__nvvm_ldg_d:
15697  case NVPTX::BI__nvvm_ldg_d2:
15698    return MakeLdg(Intrinsic::nvvm_ldg_global_f);
15699
15700  case NVPTX::BI__nvvm_atom_cta_add_gen_i:
15701  case NVPTX::BI__nvvm_atom_cta_add_gen_l:
15702  case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
15703    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
15704  case NVPTX::BI__nvvm_atom_sys_add_gen_i:
15705  case NVPTX::BI__nvvm_atom_sys_add_gen_l:
15706  case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
15707    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
15708  case NVPTX::BI__nvvm_atom_cta_add_gen_f:
15709  case NVPTX::BI__nvvm_atom_cta_add_gen_d:
15710    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
15711  case NVPTX::BI__nvvm_atom_sys_add_gen_f:
15712  case NVPTX::BI__nvvm_atom_sys_add_gen_d:
15713    return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
15714  case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
15715  case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
15716  case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
15717    return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
15718  case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
15719  case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
15720  case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
15721    return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
15722  case NVPTX::BI__nvvm_atom_cta_max_gen_i:
15723  case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
15724  case NVPTX::BI__nvvm_atom_cta_max_gen_l:
15725  case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
15726  case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
15727  case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
15728    return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
15729  case NVPTX::BI__nvvm_atom_sys_max_gen_i:
15730  case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
15731  case NVPTX::BI__nvvm_atom_sys_max_gen_l:
15732  case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
15733  case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
15734  case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
15735    return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
15736  case NVPTX::BI__nvvm_atom_cta_min_gen_i:
15737  case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
15738  case NVPTX::BI__nvvm_atom_cta_min_gen_l:
15739  case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
15740  case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
15741  case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
15742    return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
15743  case NVPTX::BI__nvvm_atom_sys_min_gen_i:
15744  case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
15745  case NVPTX::BI__nvvm_atom_sys_min_gen_l:
15746  case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
15747  case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
15748  case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
15749    return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
15750  case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
15751    return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
15752  case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
15753    return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
15754  case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
15755    return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
15756  case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
15757    return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
15758  case NVPTX::BI__nvvm_atom_cta_and_gen_i:
15759  case NVPTX::BI__nvvm_atom_cta_and_gen_l:
15760  case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
15761    return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
15762  case NVPTX::BI__nvvm_atom_sys_and_gen_i:
15763  case NVPTX::BI__nvvm_atom_sys_and_gen_l:
15764  case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
15765    return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
15766  case NVPTX::BI__nvvm_atom_cta_or_gen_i:
15767  case NVPTX::BI__nvvm_atom_cta_or_gen_l:
15768  case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
15769    return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
15770  case NVPTX::BI__nvvm_atom_sys_or_gen_i:
15771  case NVPTX::BI__nvvm_atom_sys_or_gen_l:
15772  case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
15773    return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
15774  case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
15775  case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
15776  case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
15777    return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
15778  case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
15779  case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
15780  case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
15781    return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
15782  case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
15783  case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
15784  case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
15785    Value *Ptr = EmitScalarExpr(E->getArg(0));
15786    return Builder.CreateCall(
15787        CGM.getIntrinsic(
15788            Intrinsic::nvvm_atomic_cas_gen_i_cta,
15789            {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
15790        {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
15791  }
15792  case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
15793  case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
15794  case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
15795    Value *Ptr = EmitScalarExpr(E->getArg(0));
15796    return Builder.CreateCall(
15797        CGM.getIntrinsic(
15798            Intrinsic::nvvm_atomic_cas_gen_i_sys,
15799            {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
15800        {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
15801  }
15802  case NVPTX::BI__nvvm_match_all_sync_i32p:
15803  case NVPTX::BI__nvvm_match_all_sync_i64p: {
15804    Value *Mask = EmitScalarExpr(E->getArg(0));
15805    Value *Val = EmitScalarExpr(E->getArg(1));
15806    Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
15807    Value *ResultPair = Builder.CreateCall(
15808        CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
15809                             ? Intrinsic::nvvm_match_all_sync_i32p
15810                             : Intrinsic::nvvm_match_all_sync_i64p),
15811        {Mask, Val});
15812    Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
15813                                     PredOutPtr.getElementType());
15814    Builder.CreateStore(Pred, PredOutPtr);
15815    return Builder.CreateExtractValue(ResultPair, 0);
15816  }
15817
15818  // FP MMA loads
15819  case NVPTX::BI__hmma_m16n16k16_ld_a:
15820  case NVPTX::BI__hmma_m16n16k16_ld_b:
15821  case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
15822  case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
15823  case NVPTX::BI__hmma_m32n8k16_ld_a:
15824  case NVPTX::BI__hmma_m32n8k16_ld_b:
15825  case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
15826  case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
15827  case NVPTX::BI__hmma_m8n32k16_ld_a:
15828  case NVPTX::BI__hmma_m8n32k16_ld_b:
15829  case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
15830  case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
15831  // Integer MMA loads.
15832  case NVPTX::BI__imma_m16n16k16_ld_a_s8:
15833  case NVPTX::BI__imma_m16n16k16_ld_a_u8:
15834  case NVPTX::BI__imma_m16n16k16_ld_b_s8:
15835  case NVPTX::BI__imma_m16n16k16_ld_b_u8:
15836  case NVPTX::BI__imma_m16n16k16_ld_c:
15837  case NVPTX::BI__imma_m32n8k16_ld_a_s8:
15838  case NVPTX::BI__imma_m32n8k16_ld_a_u8:
15839  case NVPTX::BI__imma_m32n8k16_ld_b_s8:
15840  case NVPTX::BI__imma_m32n8k16_ld_b_u8:
15841  case NVPTX::BI__imma_m32n8k16_ld_c:
15842  case NVPTX::BI__imma_m8n32k16_ld_a_s8:
15843  case NVPTX::BI__imma_m8n32k16_ld_a_u8:
15844  case NVPTX::BI__imma_m8n32k16_ld_b_s8:
15845  case NVPTX::BI__imma_m8n32k16_ld_b_u8:
15846  case NVPTX::BI__imma_m8n32k16_ld_c:
15847  // Sub-integer MMA loads.
15848  case NVPTX::BI__imma_m8n8k32_ld_a_s4:
15849  case NVPTX::BI__imma_m8n8k32_ld_a_u4:
15850  case NVPTX::BI__imma_m8n8k32_ld_b_s4:
15851  case NVPTX::BI__imma_m8n8k32_ld_b_u4:
15852  case NVPTX::BI__imma_m8n8k32_ld_c:
15853  case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
15854  case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
15855  case NVPTX::BI__bmma_m8n8k128_ld_c:
15856  {
15857    Address Dst = EmitPointerWithAlignment(E->getArg(0));
15858    Value *Src = EmitScalarExpr(E->getArg(1));
15859    Value *Ldm = EmitScalarExpr(E->getArg(2));
15860    llvm::APSInt isColMajorArg;
15861    if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
15862      return nullptr;
15863    bool isColMajor = isColMajorArg.getSExtValue();
15864    NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
15865    unsigned IID = isColMajor ? II.IID_col : II.IID_row;
15866    if (IID == 0)
15867      return nullptr;
15868
15869    Value *Result =
15870        Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
15871
15872    // Save returned values.
15873    assert(II.NumResults);
15874    if (II.NumResults == 1) {
15875      Builder.CreateAlignedStore(Result, Dst.getPointer(),
15876                                 CharUnits::fromQuantity(4));
15877    } else {
15878      for (unsigned i = 0; i < II.NumResults; ++i) {
15879        Builder.CreateAlignedStore(
15880            Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
15881                                  Dst.getElementType()),
15882            Builder.CreateGEP(Dst.getPointer(),
15883                              llvm::ConstantInt::get(IntTy, i)),
15884            CharUnits::fromQuantity(4));
15885      }
15886    }
15887    return Result;
15888  }
15889
15890  case NVPTX::BI__hmma_m16n16k16_st_c_f16:
15891  case NVPTX::BI__hmma_m16n16k16_st_c_f32:
15892  case NVPTX::BI__hmma_m32n8k16_st_c_f16:
15893  case NVPTX::BI__hmma_m32n8k16_st_c_f32:
15894  case NVPTX::BI__hmma_m8n32k16_st_c_f16:
15895  case NVPTX::BI__hmma_m8n32k16_st_c_f32:
15896  case NVPTX::BI__imma_m16n16k16_st_c_i32:
15897  case NVPTX::BI__imma_m32n8k16_st_c_i32:
15898  case NVPTX::BI__imma_m8n32k16_st_c_i32:
15899  case NVPTX::BI__imma_m8n8k32_st_c_i32:
15900  case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
15901    Value *Dst = EmitScalarExpr(E->getArg(0));
15902    Address Src = EmitPointerWithAlignment(E->getArg(1));
15903    Value *Ldm = EmitScalarExpr(E->getArg(2));
15904    llvm::APSInt isColMajorArg;
15905    if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
15906      return nullptr;
15907    bool isColMajor = isColMajorArg.getSExtValue();
15908    NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
15909    unsigned IID = isColMajor ? II.IID_col : II.IID_row;
15910    if (IID == 0)
15911      return nullptr;
15912    Function *Intrinsic =
15913        CGM.getIntrinsic(IID, Dst->getType());
15914    llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
15915    SmallVector<Value *, 10> Values = {Dst};
15916    for (unsigned i = 0; i < II.NumResults; ++i) {
15917      Value *V = Builder.CreateAlignedLoad(
15918          Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
15919          CharUnits::fromQuantity(4));
15920      Values.push_back(Builder.CreateBitCast(V, ParamType));
15921    }
15922    Values.push_back(Ldm);
15923    Value *Result = Builder.CreateCall(Intrinsic, Values);
15924    return Result;
15925  }
15926
15927  // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
15928  // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
15929  case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
15930  case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
15931  case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
15932  case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
15933  case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
15934  case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
15935  case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
15936  case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
15937  case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
15938  case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
15939  case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
15940  case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
15941  case NVPTX::BI__imma_m16n16k16_mma_s8:
15942  case NVPTX::BI__imma_m16n16k16_mma_u8:
15943  case NVPTX::BI__imma_m32n8k16_mma_s8:
15944  case NVPTX::BI__imma_m32n8k16_mma_u8:
15945  case NVPTX::BI__imma_m8n32k16_mma_s8:
15946  case NVPTX::BI__imma_m8n32k16_mma_u8:
15947  case NVPTX::BI__imma_m8n8k32_mma_s4:
15948  case NVPTX::BI__imma_m8n8k32_mma_u4:
15949  case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
15950    Address Dst = EmitPointerWithAlignment(E->getArg(0));
15951    Address SrcA = EmitPointerWithAlignment(E->getArg(1));
15952    Address SrcB = EmitPointerWithAlignment(E->getArg(2));
15953    Address SrcC = EmitPointerWithAlignment(E->getArg(3));
15954    llvm::APSInt LayoutArg;
15955    if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
15956      return nullptr;
15957    int Layout = LayoutArg.getSExtValue();
15958    if (Layout < 0 || Layout > 3)
15959      return nullptr;
15960    llvm::APSInt SatfArg;
15961    if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
15962      SatfArg = 0;  // .b1 does not have satf argument.
15963    else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
15964      return nullptr;
15965    bool Satf = SatfArg.getSExtValue();
15966    NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
15967    unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
15968    if (IID == 0)  // Unsupported combination of Layout/Satf.
15969      return nullptr;
15970
15971    SmallVector<Value *, 24> Values;
15972    Function *Intrinsic = CGM.getIntrinsic(IID);
15973    llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
15974    // Load A
15975    for (unsigned i = 0; i < MI.NumEltsA; ++i) {
15976      Value *V = Builder.CreateAlignedLoad(
15977          Builder.CreateGEP(SrcA.getPointer(),
15978                            llvm::ConstantInt::get(IntTy, i)),
15979          CharUnits::fromQuantity(4));
15980      Values.push_back(Builder.CreateBitCast(V, AType));
15981    }
15982    // Load B
15983    llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
15984    for (unsigned i = 0; i < MI.NumEltsB; ++i) {
15985      Value *V = Builder.CreateAlignedLoad(
15986          Builder.CreateGEP(SrcB.getPointer(),
15987                            llvm::ConstantInt::get(IntTy, i)),
15988          CharUnits::fromQuantity(4));
15989      Values.push_back(Builder.CreateBitCast(V, BType));
15990    }
15991    // Load C
15992    llvm::Type *CType =
15993        Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
15994    for (unsigned i = 0; i < MI.NumEltsC; ++i) {
15995      Value *V = Builder.CreateAlignedLoad(
15996          Builder.CreateGEP(SrcC.getPointer(),
15997                            llvm::ConstantInt::get(IntTy, i)),
15998          CharUnits::fromQuantity(4));
15999      Values.push_back(Builder.CreateBitCast(V, CType));
16000    }
16001    Value *Result = Builder.CreateCall(Intrinsic, Values);
16002    llvm::Type *DType = Dst.getElementType();
16003    for (unsigned i = 0; i < MI.NumEltsD; ++i)
16004      Builder.CreateAlignedStore(
16005          Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
16006          Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16007          CharUnits::fromQuantity(4));
16008    return Result;
16009  }
16010  default:
16011    return nullptr;
16012  }
16013}
16014
16015namespace {
16016struct BuiltinAlignArgs {
16017  llvm::Value *Src = nullptr;
16018  llvm::Type *SrcType = nullptr;
16019  llvm::Value *Alignment = nullptr;
16020  llvm::Value *Mask = nullptr;
16021  llvm::IntegerType *IntType = nullptr;
16022
16023  BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
16024    QualType AstType = E->getArg(0)->getType();
16025    if (AstType->isArrayType())
16026      Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
16027    else
16028      Src = CGF.EmitScalarExpr(E->getArg(0));
16029    SrcType = Src->getType();
16030    if (SrcType->isPointerTy()) {
16031      IntType = IntegerType::get(
16032          CGF.getLLVMContext(),
16033          CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
16034    } else {
16035      assert(SrcType->isIntegerTy());
16036      IntType = cast<llvm::IntegerType>(SrcType);
16037    }
16038    Alignment = CGF.EmitScalarExpr(E->getArg(1));
16039    Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
16040    auto *One = llvm::ConstantInt::get(IntType, 1);
16041    Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
16042  }
16043};
16044} // namespace
16045
16046/// Generate (x & (y-1)) == 0.
16047RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
16048  BuiltinAlignArgs Args(E, *this);
16049  llvm::Value *SrcAddress = Args.Src;
16050  if (Args.SrcType->isPointerTy())
16051    SrcAddress =
16052        Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
16053  return RValue::get(Builder.CreateICmpEQ(
16054      Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
16055      llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
16056}
16057
16058/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
16059/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
16060/// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
16061/// TODO: actually use ptrmask once most optimization passes know about it.
16062RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
16063  BuiltinAlignArgs Args(E, *this);
16064  llvm::Value *SrcAddr = Args.Src;
16065  if (Args.Src->getType()->isPointerTy())
16066    SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
16067  llvm::Value *SrcForMask = SrcAddr;
16068  if (AlignUp) {
16069    // When aligning up we have to first add the mask to ensure we go over the
16070    // next alignment value and then align down to the next valid multiple.
16071    // By adding the mask, we ensure that align_up on an already aligned
16072    // value will not change the value.
16073    SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
16074  }
16075  // Invert the mask to only clear the lower bits.
16076  llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
16077  llvm::Value *Result =
16078      Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
16079  if (Args.Src->getType()->isPointerTy()) {
16080    /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
16081    // Result = Builder.CreateIntrinsic(
16082    //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
16083    //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
16084    Result->setName("aligned_intptr");
16085    llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
16086    // The result must point to the same underlying allocation. This means we
16087    // can use an inbounds GEP to enable better optimization.
16088    Value *Base = EmitCastToVoidPtr(Args.Src);
16089    if (getLangOpts().isSignedOverflowDefined())
16090      Result = Builder.CreateGEP(Base, Difference, "aligned_result");
16091    else
16092      Result = EmitCheckedInBoundsGEP(Base, Difference,
16093                                      /*SignedIndices=*/true,
16094                                      /*isSubtraction=*/!AlignUp,
16095                                      E->getExprLoc(), "aligned_result");
16096    Result = Builder.CreatePointerCast(Result, Args.SrcType);
16097    // Emit an alignment assumption to ensure that the new alignment is
16098    // propagated to loads/stores, etc.
16099    emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
16100  }
16101  assert(Result->getType() == Args.SrcType);
16102  return RValue::get(Result);
16103}
16104
16105Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
16106                                                   const CallExpr *E) {
16107  switch (BuiltinID) {
16108  case WebAssembly::BI__builtin_wasm_memory_size: {
16109    llvm::Type *ResultType = ConvertType(E->getType());
16110    Value *I = EmitScalarExpr(E->getArg(0));
16111    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
16112    return Builder.CreateCall(Callee, I);
16113  }
16114  case WebAssembly::BI__builtin_wasm_memory_grow: {
16115    llvm::Type *ResultType = ConvertType(E->getType());
16116    Value *Args[] = {
16117      EmitScalarExpr(E->getArg(0)),
16118      EmitScalarExpr(E->getArg(1))
16119    };
16120    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
16121    return Builder.CreateCall(Callee, Args);
16122  }
16123  case WebAssembly::BI__builtin_wasm_tls_size: {
16124    llvm::Type *ResultType = ConvertType(E->getType());
16125    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
16126    return Builder.CreateCall(Callee);
16127  }
16128  case WebAssembly::BI__builtin_wasm_tls_align: {
16129    llvm::Type *ResultType = ConvertType(E->getType());
16130    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
16131    return Builder.CreateCall(Callee);
16132  }
16133  case WebAssembly::BI__builtin_wasm_tls_base: {
16134    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
16135    return Builder.CreateCall(Callee);
16136  }
16137  case WebAssembly::BI__builtin_wasm_throw: {
16138    Value *Tag = EmitScalarExpr(E->getArg(0));
16139    Value *Obj = EmitScalarExpr(E->getArg(1));
16140    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
16141    return Builder.CreateCall(Callee, {Tag, Obj});
16142  }
16143  case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
16144    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
16145    return Builder.CreateCall(Callee);
16146  }
16147  case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
16148    Value *Addr = EmitScalarExpr(E->getArg(0));
16149    Value *Expected = EmitScalarExpr(E->getArg(1));
16150    Value *Timeout = EmitScalarExpr(E->getArg(2));
16151    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
16152    return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16153  }
16154  case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
16155    Value *Addr = EmitScalarExpr(E->getArg(0));
16156    Value *Expected = EmitScalarExpr(E->getArg(1));
16157    Value *Timeout = EmitScalarExpr(E->getArg(2));
16158    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
16159    return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16160  }
16161  case WebAssembly::BI__builtin_wasm_atomic_notify: {
16162    Value *Addr = EmitScalarExpr(E->getArg(0));
16163    Value *Count = EmitScalarExpr(E->getArg(1));
16164    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
16165    return Builder.CreateCall(Callee, {Addr, Count});
16166  }
16167  case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
16168  case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
16169  case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
16170  case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
16171    Value *Src = EmitScalarExpr(E->getArg(0));
16172    llvm::Type *ResT = ConvertType(E->getType());
16173    Function *Callee =
16174        CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
16175    return Builder.CreateCall(Callee, {Src});
16176  }
16177  case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
16178  case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
16179  case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
16180  case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
16181    Value *Src = EmitScalarExpr(E->getArg(0));
16182    llvm::Type *ResT = ConvertType(E->getType());
16183    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
16184                                        {ResT, Src->getType()});
16185    return Builder.CreateCall(Callee, {Src});
16186  }
16187  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
16188  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
16189  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
16190  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
16191  case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
16192    Value *Src = EmitScalarExpr(E->getArg(0));
16193    llvm::Type *ResT = ConvertType(E->getType());
16194    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
16195                                     {ResT, Src->getType()});
16196    return Builder.CreateCall(Callee, {Src});
16197  }
16198  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
16199  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
16200  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
16201  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
16202  case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
16203    Value *Src = EmitScalarExpr(E->getArg(0));
16204    llvm::Type *ResT = ConvertType(E->getType());
16205    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
16206                                     {ResT, Src->getType()});
16207    return Builder.CreateCall(Callee, {Src});
16208  }
16209  case WebAssembly::BI__builtin_wasm_min_f32:
16210  case WebAssembly::BI__builtin_wasm_min_f64:
16211  case WebAssembly::BI__builtin_wasm_min_f32x4:
16212  case WebAssembly::BI__builtin_wasm_min_f64x2: {
16213    Value *LHS = EmitScalarExpr(E->getArg(0));
16214    Value *RHS = EmitScalarExpr(E->getArg(1));
16215    Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
16216                                     ConvertType(E->getType()));
16217    return Builder.CreateCall(Callee, {LHS, RHS});
16218  }
16219  case WebAssembly::BI__builtin_wasm_max_f32:
16220  case WebAssembly::BI__builtin_wasm_max_f64:
16221  case WebAssembly::BI__builtin_wasm_max_f32x4:
16222  case WebAssembly::BI__builtin_wasm_max_f64x2: {
16223    Value *LHS = EmitScalarExpr(E->getArg(0));
16224    Value *RHS = EmitScalarExpr(E->getArg(1));
16225    Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
16226                                     ConvertType(E->getType()));
16227    return Builder.CreateCall(Callee, {LHS, RHS});
16228  }
16229  case WebAssembly::BI__builtin_wasm_pmin_f32x4:
16230  case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
16231    Value *LHS = EmitScalarExpr(E->getArg(0));
16232    Value *RHS = EmitScalarExpr(E->getArg(1));
16233    Function *Callee =
16234        CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
16235    return Builder.CreateCall(Callee, {LHS, RHS});
16236  }
16237  case WebAssembly::BI__builtin_wasm_pmax_f32x4:
16238  case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
16239    Value *LHS = EmitScalarExpr(E->getArg(0));
16240    Value *RHS = EmitScalarExpr(E->getArg(1));
16241    Function *Callee =
16242        CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
16243    return Builder.CreateCall(Callee, {LHS, RHS});
16244  }
16245  case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16246  case WebAssembly::BI__builtin_wasm_floor_f32x4:
16247  case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16248  case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16249  case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16250  case WebAssembly::BI__builtin_wasm_floor_f64x2:
16251  case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16252  case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
16253    unsigned IntNo;
16254    switch (BuiltinID) {
16255    case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16256    case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16257      IntNo = Intrinsic::wasm_ceil;
16258      break;
16259    case WebAssembly::BI__builtin_wasm_floor_f32x4:
16260    case WebAssembly::BI__builtin_wasm_floor_f64x2:
16261      IntNo = Intrinsic::wasm_floor;
16262      break;
16263    case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16264    case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16265      IntNo = Intrinsic::wasm_trunc;
16266      break;
16267    case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16268    case WebAssembly::BI__builtin_wasm_nearest_f64x2:
16269      IntNo = Intrinsic::wasm_nearest;
16270      break;
16271    default:
16272      llvm_unreachable("unexpected builtin ID");
16273    }
16274    Value *Value = EmitScalarExpr(E->getArg(0));
16275    Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16276    return Builder.CreateCall(Callee, Value);
16277  }
16278  case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
16279    Value *Src = EmitScalarExpr(E->getArg(0));
16280    Value *Indices = EmitScalarExpr(E->getArg(1));
16281    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
16282    return Builder.CreateCall(Callee, {Src, Indices});
16283  }
16284  case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16285  case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16286  case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16287  case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16288  case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16289  case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16290  case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16291  case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
16292    llvm::APSInt LaneConst;
16293    if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
16294      llvm_unreachable("Constant arg isn't actually constant?");
16295    Value *Vec = EmitScalarExpr(E->getArg(0));
16296    Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16297    Value *Extract = Builder.CreateExtractElement(Vec, Lane);
16298    switch (BuiltinID) {
16299    case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16300    case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16301      return Builder.CreateSExt(Extract, ConvertType(E->getType()));
16302    case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16303    case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16304      return Builder.CreateZExt(Extract, ConvertType(E->getType()));
16305    case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16306    case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16307    case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16308    case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
16309      return Extract;
16310    default:
16311      llvm_unreachable("unexpected builtin ID");
16312    }
16313  }
16314  case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16315  case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
16316  case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16317  case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16318  case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16319  case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
16320    llvm::APSInt LaneConst;
16321    if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
16322      llvm_unreachable("Constant arg isn't actually constant?");
16323    Value *Vec = EmitScalarExpr(E->getArg(0));
16324    Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16325    Value *Val = EmitScalarExpr(E->getArg(2));
16326    switch (BuiltinID) {
16327    case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16328    case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
16329      llvm::Type *ElemType =
16330          cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
16331      Value *Trunc = Builder.CreateTrunc(Val, ElemType);
16332      return Builder.CreateInsertElement(Vec, Trunc, Lane);
16333    }
16334    case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16335    case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16336    case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16337    case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
16338      return Builder.CreateInsertElement(Vec, Val, Lane);
16339    default:
16340      llvm_unreachable("unexpected builtin ID");
16341    }
16342  }
16343  case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16344  case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16345  case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16346  case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16347  case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16348  case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16349  case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16350  case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
16351    unsigned IntNo;
16352    switch (BuiltinID) {
16353    case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16354    case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16355      IntNo = Intrinsic::sadd_sat;
16356      break;
16357    case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16358    case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16359      IntNo = Intrinsic::uadd_sat;
16360      break;
16361    case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16362    case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16363      IntNo = Intrinsic::wasm_sub_saturate_signed;
16364      break;
16365    case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16366    case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
16367      IntNo = Intrinsic::wasm_sub_saturate_unsigned;
16368      break;
16369    default:
16370      llvm_unreachable("unexpected builtin ID");
16371    }
16372    Value *LHS = EmitScalarExpr(E->getArg(0));
16373    Value *RHS = EmitScalarExpr(E->getArg(1));
16374    Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16375    return Builder.CreateCall(Callee, {LHS, RHS});
16376  }
16377  case WebAssembly::BI__builtin_wasm_abs_i8x16:
16378  case WebAssembly::BI__builtin_wasm_abs_i16x8:
16379  case WebAssembly::BI__builtin_wasm_abs_i32x4: {
16380    Value *Vec = EmitScalarExpr(E->getArg(0));
16381    Value *Neg = Builder.CreateNeg(Vec, "neg");
16382    Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
16383    Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
16384    return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
16385  }
16386  case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16387  case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16388  case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16389  case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16390  case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16391  case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16392  case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16393  case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16394  case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16395  case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16396  case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16397  case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
16398    Value *LHS = EmitScalarExpr(E->getArg(0));
16399    Value *RHS = EmitScalarExpr(E->getArg(1));
16400    Value *ICmp;
16401    switch (BuiltinID) {
16402    case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16403    case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16404    case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16405      ICmp = Builder.CreateICmpSLT(LHS, RHS);
16406      break;
16407    case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16408    case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16409    case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16410      ICmp = Builder.CreateICmpULT(LHS, RHS);
16411      break;
16412    case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16413    case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16414    case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16415      ICmp = Builder.CreateICmpSGT(LHS, RHS);
16416      break;
16417    case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16418    case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16419    case WebAssembly::BI__builtin_wasm_max_u_i32x4:
16420      ICmp = Builder.CreateICmpUGT(LHS, RHS);
16421      break;
16422    default:
16423      llvm_unreachable("unexpected builtin ID");
16424    }
16425    return Builder.CreateSelect(ICmp, LHS, RHS);
16426  }
16427  case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
16428  case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
16429    Value *LHS = EmitScalarExpr(E->getArg(0));
16430    Value *RHS = EmitScalarExpr(E->getArg(1));
16431    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
16432                                        ConvertType(E->getType()));
16433    return Builder.CreateCall(Callee, {LHS, RHS});
16434  }
16435  case WebAssembly::BI__builtin_wasm_bitselect: {
16436    Value *V1 = EmitScalarExpr(E->getArg(0));
16437    Value *V2 = EmitScalarExpr(E->getArg(1));
16438    Value *C = EmitScalarExpr(E->getArg(2));
16439    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
16440                                     ConvertType(E->getType()));
16441    return Builder.CreateCall(Callee, {V1, V2, C});
16442  }
16443  case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
16444    Value *LHS = EmitScalarExpr(E->getArg(0));
16445    Value *RHS = EmitScalarExpr(E->getArg(1));
16446    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
16447    return Builder.CreateCall(Callee, {LHS, RHS});
16448  }
16449  case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16450  case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16451  case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16452  case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16453  case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16454  case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16455  case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16456  case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
16457    unsigned IntNo;
16458    switch (BuiltinID) {
16459    case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16460    case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16461    case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16462    case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16463      IntNo = Intrinsic::wasm_anytrue;
16464      break;
16465    case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16466    case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16467    case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16468    case WebAssembly::BI__builtin_wasm_all_true_i64x2:
16469      IntNo = Intrinsic::wasm_alltrue;
16470      break;
16471    default:
16472      llvm_unreachable("unexpected builtin ID");
16473    }
16474    Value *Vec = EmitScalarExpr(E->getArg(0));
16475    Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
16476    return Builder.CreateCall(Callee, {Vec});
16477  }
16478  case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
16479  case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
16480  case WebAssembly::BI__builtin_wasm_bitmask_i32x4: {
16481    Value *Vec = EmitScalarExpr(E->getArg(0));
16482    Function *Callee =
16483        CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
16484    return Builder.CreateCall(Callee, {Vec});
16485  }
16486  case WebAssembly::BI__builtin_wasm_abs_f32x4:
16487  case WebAssembly::BI__builtin_wasm_abs_f64x2: {
16488    Value *Vec = EmitScalarExpr(E->getArg(0));
16489    Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
16490    return Builder.CreateCall(Callee, {Vec});
16491  }
16492  case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
16493  case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
16494    Value *Vec = EmitScalarExpr(E->getArg(0));
16495    Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
16496    return Builder.CreateCall(Callee, {Vec});
16497  }
16498  case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16499  case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16500  case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16501  case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
16502    Value *A = EmitScalarExpr(E->getArg(0));
16503    Value *B = EmitScalarExpr(E->getArg(1));
16504    Value *C = EmitScalarExpr(E->getArg(2));
16505    unsigned IntNo;
16506    switch (BuiltinID) {
16507    case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16508    case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16509      IntNo = Intrinsic::wasm_qfma;
16510      break;
16511    case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16512    case WebAssembly::BI__builtin_wasm_qfms_f64x2:
16513      IntNo = Intrinsic::wasm_qfms;
16514      break;
16515    default:
16516      llvm_unreachable("unexpected builtin ID");
16517    }
16518    Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
16519    return Builder.CreateCall(Callee, {A, B, C});
16520  }
16521  case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16522  case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16523  case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16524  case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
16525    Value *Low = EmitScalarExpr(E->getArg(0));
16526    Value *High = EmitScalarExpr(E->getArg(1));
16527    unsigned IntNo;
16528    switch (BuiltinID) {
16529    case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16530    case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16531      IntNo = Intrinsic::wasm_narrow_signed;
16532      break;
16533    case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16534    case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
16535      IntNo = Intrinsic::wasm_narrow_unsigned;
16536      break;
16537    default:
16538      llvm_unreachable("unexpected builtin ID");
16539    }
16540    Function *Callee =
16541        CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
16542    return Builder.CreateCall(Callee, {Low, High});
16543  }
16544  case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
16545  case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
16546  case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
16547  case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
16548  case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
16549  case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
16550  case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
16551  case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: {
16552    Value *Vec = EmitScalarExpr(E->getArg(0));
16553    unsigned IntNo;
16554    switch (BuiltinID) {
16555    case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
16556    case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
16557      IntNo = Intrinsic::wasm_widen_low_signed;
16558      break;
16559    case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
16560    case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
16561      IntNo = Intrinsic::wasm_widen_high_signed;
16562      break;
16563    case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
16564    case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
16565      IntNo = Intrinsic::wasm_widen_low_unsigned;
16566      break;
16567    case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
16568    case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8:
16569      IntNo = Intrinsic::wasm_widen_high_unsigned;
16570      break;
16571    default:
16572      llvm_unreachable("unexpected builtin ID");
16573    }
16574    Function *Callee =
16575        CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()});
16576    return Builder.CreateCall(Callee, Vec);
16577  }
16578  case WebAssembly::BI__builtin_wasm_shuffle_v8x16: {
16579    Value *Ops[18];
16580    size_t OpIdx = 0;
16581    Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
16582    Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
16583    while (OpIdx < 18) {
16584      llvm::APSInt LaneConst;
16585      if (!E->getArg(OpIdx)->isIntegerConstantExpr(LaneConst, getContext()))
16586        llvm_unreachable("Constant arg isn't actually constant?");
16587      Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16588    }
16589    Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
16590    return Builder.CreateCall(Callee, Ops);
16591  }
16592  default:
16593    return nullptr;
16594  }
16595}
16596
16597static std::pair<Intrinsic::ID, unsigned>
16598getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
16599  struct Info {
16600    unsigned BuiltinID;
16601    Intrinsic::ID IntrinsicID;
16602    unsigned VecLen;
16603  };
16604  Info Infos[] = {
16605#define CUSTOM_BUILTIN_MAPPING(x,s) \
16606  { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
16607    CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
16608    CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
16609    CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
16610    CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
16611    CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
16612    CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
16613    CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
16614    CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
16615    CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
16616    CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
16617    CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
16618    CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
16619    CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
16620    CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
16621    CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
16622    CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
16623    CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
16624    CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
16625    CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
16626    CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
16627    CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
16628    CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
16629    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
16630    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
16631    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
16632    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
16633    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
16634    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
16635    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
16636    CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
16637#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
16638#undef CUSTOM_BUILTIN_MAPPING
16639  };
16640
16641  auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
16642  static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
16643  (void)SortOnce;
16644
16645  const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
16646                                   Info{BuiltinID, 0, 0}, CmpInfo);
16647  if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
16648    return {Intrinsic::not_intrinsic, 0};
16649
16650  return {F->IntrinsicID, F->VecLen};
16651}
16652
16653Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
16654                                               const CallExpr *E) {
16655  Intrinsic::ID ID;
16656  unsigned VecLen;
16657  std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
16658
16659  auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
16660    // The base pointer is passed by address, so it needs to be loaded.
16661    Address A = EmitPointerWithAlignment(E->getArg(0));
16662    Address BP = Address(
16663        Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
16664    llvm::Value *Base = Builder.CreateLoad(BP);
16665    // The treatment of both loads and stores is the same: the arguments for
16666    // the builtin are the same as the arguments for the intrinsic.
16667    // Load:
16668    //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
16669    //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
16670    // Store:
16671    //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
16672    //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
16673    SmallVector<llvm::Value*,5> Ops = { Base };
16674    for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
16675      Ops.push_back(EmitScalarExpr(E->getArg(i)));
16676
16677    llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
16678    // The load intrinsics generate two results (Value, NewBase), stores
16679    // generate one (NewBase). The new base address needs to be stored.
16680    llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
16681                                  : Result;
16682    llvm::Value *LV = Builder.CreateBitCast(
16683        EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
16684    Address Dest = EmitPointerWithAlignment(E->getArg(0));
16685    llvm::Value *RetVal =
16686        Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
16687    if (IsLoad)
16688      RetVal = Builder.CreateExtractValue(Result, 0);
16689    return RetVal;
16690  };
16691
16692  // Handle the conversion of bit-reverse load intrinsics to bit code.
16693  // The intrinsic call after this function only reads from memory and the
16694  // write to memory is dealt by the store instruction.
16695  auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
16696    // The intrinsic generates one result, which is the new value for the base
16697    // pointer. It needs to be returned. The result of the load instruction is
16698    // passed to intrinsic by address, so the value needs to be stored.
16699    llvm::Value *BaseAddress =
16700        Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16701
16702    // Expressions like &(*pt++) will be incremented per evaluation.
16703    // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
16704    // per call.
16705    Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
16706    DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
16707                       DestAddr.getAlignment());
16708    llvm::Value *DestAddress = DestAddr.getPointer();
16709
16710    // Operands are Base, Dest, Modifier.
16711    // The intrinsic format in LLVM IR is defined as
16712    // { ValueType, i8* } (i8*, i32).
16713    llvm::Value *Result = Builder.CreateCall(
16714        CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
16715
16716    // The value needs to be stored as the variable is passed by reference.
16717    llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
16718
16719    // The store needs to be truncated to fit the destination type.
16720    // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
16721    // to be handled with stores of respective destination type.
16722    DestVal = Builder.CreateTrunc(DestVal, DestTy);
16723
16724    llvm::Value *DestForStore =
16725        Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
16726    Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
16727    // The updated value of the base pointer is returned.
16728    return Builder.CreateExtractValue(Result, 1);
16729  };
16730
16731  auto V2Q = [this, VecLen] (llvm::Value *Vec) {
16732    Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
16733                                     : Intrinsic::hexagon_V6_vandvrt;
16734    return Builder.CreateCall(CGM.getIntrinsic(ID),
16735                              {Vec, Builder.getInt32(-1)});
16736  };
16737  auto Q2V = [this, VecLen] (llvm::Value *Pred) {
16738    Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
16739                                     : Intrinsic::hexagon_V6_vandqrt;
16740    return Builder.CreateCall(CGM.getIntrinsic(ID),
16741                              {Pred, Builder.getInt32(-1)});
16742  };
16743
16744  switch (BuiltinID) {
16745  // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
16746  // and the corresponding C/C++ builtins use loads/stores to update
16747  // the predicate.
16748  case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
16749  case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
16750  case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
16751  case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
16752    // Get the type from the 0-th argument.
16753    llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
16754    Address PredAddr = Builder.CreateBitCast(
16755        EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
16756    llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
16757    llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
16758        {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
16759
16760    llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
16761    Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
16762        PredAddr.getAlignment());
16763    return Builder.CreateExtractValue(Result, 0);
16764  }
16765
16766  case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
16767  case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
16768  case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
16769  case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
16770  case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
16771  case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
16772  case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
16773  case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
16774  case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
16775  case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
16776  case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
16777  case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
16778    return MakeCircOp(ID, /*IsLoad=*/true);
16779  case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
16780  case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
16781  case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
16782  case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
16783  case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
16784  case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
16785  case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
16786  case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
16787  case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
16788  case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
16789    return MakeCircOp(ID, /*IsLoad=*/false);
16790  case Hexagon::BI__builtin_brev_ldub:
16791    return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
16792  case Hexagon::BI__builtin_brev_ldb:
16793    return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
16794  case Hexagon::BI__builtin_brev_lduh:
16795    return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
16796  case Hexagon::BI__builtin_brev_ldh:
16797    return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
16798  case Hexagon::BI__builtin_brev_ldw:
16799    return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
16800  case Hexagon::BI__builtin_brev_ldd:
16801    return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
16802
16803  default: {
16804    if (ID == Intrinsic::not_intrinsic)
16805      return nullptr;
16806
16807    auto IsVectorPredTy = [](llvm::Type *T) {
16808      return T->isVectorTy() &&
16809             cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
16810    };
16811
16812    llvm::Function *IntrFn = CGM.getIntrinsic(ID);
16813    llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
16814    SmallVector<llvm::Value*,4> Ops;
16815    for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
16816      llvm::Type *T = IntrTy->getParamType(i);
16817      const Expr *A = E->getArg(i);
16818      if (IsVectorPredTy(T)) {
16819        // There will be an implicit cast to a boolean vector. Strip it.
16820        if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
16821          if (Cast->getCastKind() == CK_BitCast)
16822            A = Cast->getSubExpr();
16823        }
16824        Ops.push_back(V2Q(EmitScalarExpr(A)));
16825      } else {
16826        Ops.push_back(EmitScalarExpr(A));
16827      }
16828    }
16829
16830    llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
16831    if (IsVectorPredTy(IntrTy->getReturnType()))
16832      Call = Q2V(Call);
16833
16834    return Call;
16835  } // default
16836  } // switch
16837
16838  return nullptr;
16839}
16840