1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Redeclarable.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/IdentifierTable.h"
40#include "clang/Basic/LLVM.h"
41#include "clang/Basic/LangOptions.h"
42#include "clang/Basic/Linkage.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/PartialDiagnostic.h"
45#include "clang/Basic/SanitizerBlacklist.h"
46#include "clang/Basic/Sanitizers.h"
47#include "clang/Basic/SourceLocation.h"
48#include "clang/Basic/SourceManager.h"
49#include "clang/Basic/Specifiers.h"
50#include "clang/Basic/TargetCXXABI.h"
51#include "clang/Basic/TargetInfo.h"
52#include "clang/Basic/Visibility.h"
53#include "llvm/ADT/APSInt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/None.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/ADT/Triple.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
76Decl *clang::getPrimaryMergedDecl(Decl *D) {
77  return D->getASTContext().getPrimaryMergedDecl(D);
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81  SourceLocation Loc = this->Loc;
82  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83  if (Loc.isValid()) {
84    Loc.print(OS, Context.getSourceManager());
85    OS << ": ";
86  }
87  OS << Message;
88
89  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90    OS << " '";
91    ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92    OS << "'";
93  }
94
95  OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
100  return !getLexicalDeclContext()->Equals(getDeclContext());
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104    : Decl(TranslationUnit, nullptr, SourceLocation()),
105      DeclContext(TranslationUnit), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored.  Only the innermost
116// visibility attribute applies.  If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments.  But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility.  For example,
148// the visibility of a specialization of either of these templates:
149//   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150//   template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'.  That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
159static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160  return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
165static LVComputationKind
166withExplicitVisibilityAlready(LVComputationKind Kind) {
167  Kind.IgnoreExplicitVisibility = true;
168  return Kind;
169}
170
171static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                  LVComputationKind kind) {
173  assert(!kind.IgnoreExplicitVisibility &&
174         "asking for explicit visibility when we shouldn't be");
175  return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181  return isa<TypeDecl>(D) ||
182         isa<ClassTemplateDecl>(D) ||
183         isa<ObjCInterfaceDecl>(D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T> static typename
189std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190isExplicitMemberSpecialization(const T *D) {
191  if (const MemberSpecializationInfo *member =
192        D->getMemberSpecializationInfo()) {
193    return member->isExplicitSpecialization();
194  }
195  return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
201static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202  return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209  switch (attr->getVisibility()) {
210  case T::Default:
211    return DefaultVisibility;
212  case T::Hidden:
213    return HiddenVisibility;
214  case T::Protected:
215    return ProtectedVisibility;
216  }
217  llvm_unreachable("bad visibility kind");
218}
219
220/// Return the explicit visibility of the given declaration.
221static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                    NamedDecl::ExplicitVisibilityKind kind) {
223  // If we're ultimately computing the visibility of a type, look for
224  // a 'type_visibility' attribute before looking for 'visibility'.
225  if (kind == NamedDecl::VisibilityForType) {
226    if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227      return getVisibilityFromAttr(A);
228    }
229  }
230
231  // If this declaration has an explicit visibility attribute, use it.
232  if (const auto *A = D->getAttr<VisibilityAttr>()) {
233    return getVisibilityFromAttr(A);
234  }
235
236  return None;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                          LVComputationKind computation) {
241  if (computation.IgnoreAllVisibility)
242    return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243  return getTypeLinkageAndVisibility(&T);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list.  For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250    const TemplateParameterList *Params, LVComputationKind computation) {
251  LinkageInfo LV;
252  for (const NamedDecl *P : *Params) {
253    // Template type parameters are the most common and never
254    // contribute to visibility, pack or not.
255    if (isa<TemplateTypeParmDecl>(P))
256      continue;
257
258    // Non-type template parameters can be restricted by the value type, e.g.
259    //   template <enum X> class A { ... };
260    // We have to be careful here, though, because we can be dealing with
261    // dependent types.
262    if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263      // Handle the non-pack case first.
264      if (!NTTP->isExpandedParameterPack()) {
265        if (!NTTP->getType()->isDependentType()) {
266          LV.merge(getLVForType(*NTTP->getType(), computation));
267        }
268        continue;
269      }
270
271      // Look at all the types in an expanded pack.
272      for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273        QualType type = NTTP->getExpansionType(i);
274        if (!type->isDependentType())
275          LV.merge(getTypeLinkageAndVisibility(type));
276      }
277      continue;
278    }
279
280    // Template template parameters can be restricted by their
281    // template parameters, recursively.
282    const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284    // Handle the non-pack case first.
285    if (!TTP->isExpandedParameterPack()) {
286      LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                             computation));
288      continue;
289    }
290
291    // Look at all expansions in an expanded pack.
292    for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293           i != n; ++i) {
294      LV.merge(getLVForTemplateParameterList(
295          TTP->getExpansionTemplateParameters(i), computation));
296    }
297  }
298
299  return LV;
300}
301
302static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303  const Decl *Ret = nullptr;
304  const DeclContext *DC = D->getDeclContext();
305  while (DC->getDeclKind() != Decl::TranslationUnit) {
306    if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307      Ret = cast<Decl>(DC);
308    DC = DC->getParent();
309  }
310  return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
318LinkageInfo
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                              LVComputationKind computation) {
321  LinkageInfo LV;
322
323  for (const TemplateArgument &Arg : Args) {
324    switch (Arg.getKind()) {
325    case TemplateArgument::Null:
326    case TemplateArgument::Integral:
327    case TemplateArgument::Expression:
328      continue;
329
330    case TemplateArgument::Type:
331      LV.merge(getLVForType(*Arg.getAsType(), computation));
332      continue;
333
334    case TemplateArgument::Declaration: {
335      const NamedDecl *ND = Arg.getAsDecl();
336      assert(!usesTypeVisibility(ND));
337      LV.merge(getLVForDecl(ND, computation));
338      continue;
339    }
340
341    case TemplateArgument::NullPtr:
342      LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343      continue;
344
345    case TemplateArgument::Template:
346    case TemplateArgument::TemplateExpansion:
347      if (TemplateDecl *Template =
348              Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349        LV.merge(getLVForDecl(Template, computation));
350      continue;
351
352    case TemplateArgument::Pack:
353      LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354      continue;
355    }
356    llvm_unreachable("bad template argument kind");
357  }
358
359  return LV;
360}
361
362LinkageInfo
363LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                              LVComputationKind computation) {
365  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366}
367
368static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                        const FunctionTemplateSpecializationInfo *specInfo) {
370  // Include visibility from the template parameters and arguments
371  // only if this is not an explicit instantiation or specialization
372  // with direct explicit visibility.  (Implicit instantiations won't
373  // have a direct attribute.)
374  if (!specInfo->isExplicitInstantiationOrSpecialization())
375    return true;
376
377  return !fn->hasAttr<VisibilityAttr>();
378}
379
380/// Merge in template-related linkage and visibility for the given
381/// function template specialization.
382///
383/// We don't need a computation kind here because we can assume
384/// LVForValue.
385///
386/// \param[out] LV the computation to use for the parent
387void LinkageComputer::mergeTemplateLV(
388    LinkageInfo &LV, const FunctionDecl *fn,
389    const FunctionTemplateSpecializationInfo *specInfo,
390    LVComputationKind computation) {
391  bool considerVisibility =
392    shouldConsiderTemplateVisibility(fn, specInfo);
393
394  // Merge information from the template parameters.
395  FunctionTemplateDecl *temp = specInfo->getTemplate();
396  LinkageInfo tempLV =
397    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400  // Merge information from the template arguments.
401  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404}
405
406/// Does the given declaration have a direct visibility attribute
407/// that would match the given rules?
408static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                         LVComputationKind computation) {
410  if (computation.IgnoreAllVisibility)
411    return false;
412
413  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414         D->hasAttr<VisibilityAttr>();
415}
416
417/// Should we consider visibility associated with the template
418/// arguments and parameters of the given class template specialization?
419static bool shouldConsiderTemplateVisibility(
420                                 const ClassTemplateSpecializationDecl *spec,
421                                 LVComputationKind computation) {
422  // Include visibility from the template parameters and arguments
423  // only if this is not an explicit instantiation or specialization
424  // with direct explicit visibility (and note that implicit
425  // instantiations won't have a direct attribute).
426  //
427  // Furthermore, we want to ignore template parameters and arguments
428  // for an explicit specialization when computing the visibility of a
429  // member thereof with explicit visibility.
430  //
431  // This is a bit complex; let's unpack it.
432  //
433  // An explicit class specialization is an independent, top-level
434  // declaration.  As such, if it or any of its members has an
435  // explicit visibility attribute, that must directly express the
436  // user's intent, and we should honor it.  The same logic applies to
437  // an explicit instantiation of a member of such a thing.
438
439  // Fast path: if this is not an explicit instantiation or
440  // specialization, we always want to consider template-related
441  // visibility restrictions.
442  if (!spec->isExplicitInstantiationOrSpecialization())
443    return true;
444
445  // This is the 'member thereof' check.
446  if (spec->isExplicitSpecialization() &&
447      hasExplicitVisibilityAlready(computation))
448    return false;
449
450  return !hasDirectVisibilityAttribute(spec, computation);
451}
452
453/// Merge in template-related linkage and visibility for the given
454/// class template specialization.
455void LinkageComputer::mergeTemplateLV(
456    LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457    LVComputationKind computation) {
458  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460  // Merge information from the template parameters, but ignore
461  // visibility if we're only considering template arguments.
462
463  ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464  LinkageInfo tempLV =
465    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466  LV.mergeMaybeWithVisibility(tempLV,
467           considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469  // Merge information from the template arguments.  We ignore
470  // template-argument visibility if we've got an explicit
471  // instantiation with a visibility attribute.
472  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474  if (considerVisibility)
475    LV.mergeVisibility(argsLV);
476  LV.mergeExternalVisibility(argsLV);
477}
478
479/// Should we consider visibility associated with the template
480/// arguments and parameters of the given variable template
481/// specialization? As usual, follow class template specialization
482/// logic up to initialization.
483static bool shouldConsiderTemplateVisibility(
484                                 const VarTemplateSpecializationDecl *spec,
485                                 LVComputationKind computation) {
486  // Include visibility from the template parameters and arguments
487  // only if this is not an explicit instantiation or specialization
488  // with direct explicit visibility (and note that implicit
489  // instantiations won't have a direct attribute).
490  if (!spec->isExplicitInstantiationOrSpecialization())
491    return true;
492
493  // An explicit variable specialization is an independent, top-level
494  // declaration.  As such, if it has an explicit visibility attribute,
495  // that must directly express the user's intent, and we should honor
496  // it.
497  if (spec->isExplicitSpecialization() &&
498      hasExplicitVisibilityAlready(computation))
499    return false;
500
501  return !hasDirectVisibilityAttribute(spec, computation);
502}
503
504/// Merge in template-related linkage and visibility for the given
505/// variable template specialization. As usual, follow class template
506/// specialization logic up to initialization.
507void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                      const VarTemplateSpecializationDecl *spec,
509                                      LVComputationKind computation) {
510  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512  // Merge information from the template parameters, but ignore
513  // visibility if we're only considering template arguments.
514
515  VarTemplateDecl *temp = spec->getSpecializedTemplate();
516  LinkageInfo tempLV =
517    getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518  LV.mergeMaybeWithVisibility(tempLV,
519           considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521  // Merge information from the template arguments.  We ignore
522  // template-argument visibility if we've got an explicit
523  // instantiation with a visibility attribute.
524  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526  if (considerVisibility)
527    LV.mergeVisibility(argsLV);
528  LV.mergeExternalVisibility(argsLV);
529}
530
531static bool useInlineVisibilityHidden(const NamedDecl *D) {
532  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533  const LangOptions &Opts = D->getASTContext().getLangOpts();
534  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535    return false;
536
537  const auto *FD = dyn_cast<FunctionDecl>(D);
538  if (!FD)
539    return false;
540
541  TemplateSpecializationKind TSK = TSK_Undeclared;
542  if (FunctionTemplateSpecializationInfo *spec
543      = FD->getTemplateSpecializationInfo()) {
544    TSK = spec->getTemplateSpecializationKind();
545  } else if (MemberSpecializationInfo *MSI =
546             FD->getMemberSpecializationInfo()) {
547    TSK = MSI->getTemplateSpecializationKind();
548  }
549
550  const FunctionDecl *Def = nullptr;
551  // InlineVisibilityHidden only applies to definitions, and
552  // isInlined() only gives meaningful answers on definitions
553  // anyway.
554  return TSK != TSK_ExplicitInstantiationDeclaration &&
555    TSK != TSK_ExplicitInstantiationDefinition &&
556    FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557}
558
559template <typename T> static bool isFirstInExternCContext(T *D) {
560  const T *First = D->getFirstDecl();
561  return First->isInExternCContext();
562}
563
564static bool isSingleLineLanguageLinkage(const Decl &D) {
565  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566    if (!SD->hasBraces())
567      return true;
568  return false;
569}
570
571/// Determine whether D is declared in the purview of a named module.
572static bool isInModulePurview(const NamedDecl *D) {
573  if (auto *M = D->getOwningModule())
574    return M->isModulePurview();
575  return false;
576}
577
578static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579  // FIXME: Handle isModulePrivate.
580  switch (D->getModuleOwnershipKind()) {
581  case Decl::ModuleOwnershipKind::Unowned:
582  case Decl::ModuleOwnershipKind::ModulePrivate:
583    return false;
584  case Decl::ModuleOwnershipKind::Visible:
585  case Decl::ModuleOwnershipKind::VisibleWhenImported:
586    return isInModulePurview(D);
587  }
588  llvm_unreachable("unexpected module ownership kind");
589}
590
591static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592  // Internal linkage declarations within a module interface unit are modeled
593  // as "module-internal linkage", which means that they have internal linkage
594  // formally but can be indirectly accessed from outside the module via inline
595  // functions and templates defined within the module.
596  if (isInModulePurview(D))
597    return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599  return LinkageInfo::internal();
600}
601
602static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603  // C++ Modules TS [basic.link]/6.8:
604  //   - A name declared at namespace scope that does not have internal linkage
605  //     by the previous rules and that is introduced by a non-exported
606  //     declaration has module linkage.
607  if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608                                  cast<NamedDecl>(D->getCanonicalDecl())))
609    return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611  return LinkageInfo::external();
612}
613
614static StorageClass getStorageClass(const Decl *D) {
615  if (auto *TD = dyn_cast<TemplateDecl>(D))
616    D = TD->getTemplatedDecl();
617  if (D) {
618    if (auto *VD = dyn_cast<VarDecl>(D))
619      return VD->getStorageClass();
620    if (auto *FD = dyn_cast<FunctionDecl>(D))
621      return FD->getStorageClass();
622  }
623  return SC_None;
624}
625
626LinkageInfo
627LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628                                            LVComputationKind computation,
629                                            bool IgnoreVarTypeLinkage) {
630  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631         "Not a name having namespace scope");
632  ASTContext &Context = D->getASTContext();
633
634  // C++ [basic.link]p3:
635  //   A name having namespace scope (3.3.6) has internal linkage if it
636  //   is the name of
637
638  if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639    // - a variable, variable template, function, or function template
640    //   that is explicitly declared static; or
641    // (This bullet corresponds to C99 6.2.2p3.)
642    return getInternalLinkageFor(D);
643  }
644
645  if (const auto *Var = dyn_cast<VarDecl>(D)) {
646    // - a non-template variable of non-volatile const-qualified type, unless
647    //   - it is explicitly declared extern, or
648    //   - it is inline or exported, or
649    //   - it was previously declared and the prior declaration did not have
650    //     internal linkage
651    // (There is no equivalent in C99.)
652    if (Context.getLangOpts().CPlusPlus &&
653        Var->getType().isConstQualified() &&
654        !Var->getType().isVolatileQualified() &&
655        !Var->isInline() &&
656        !isExportedFromModuleInterfaceUnit(Var) &&
657        !isa<VarTemplateSpecializationDecl>(Var) &&
658        !Var->getDescribedVarTemplate()) {
659      const VarDecl *PrevVar = Var->getPreviousDecl();
660      if (PrevVar)
661        return getLVForDecl(PrevVar, computation);
662
663      if (Var->getStorageClass() != SC_Extern &&
664          Var->getStorageClass() != SC_PrivateExtern &&
665          !isSingleLineLanguageLinkage(*Var))
666        return getInternalLinkageFor(Var);
667    }
668
669    for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670         PrevVar = PrevVar->getPreviousDecl()) {
671      if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672          Var->getStorageClass() == SC_None)
673        return getDeclLinkageAndVisibility(PrevVar);
674      // Explicitly declared static.
675      if (PrevVar->getStorageClass() == SC_Static)
676        return getInternalLinkageFor(Var);
677    }
678  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679    //   - a data member of an anonymous union.
680    const VarDecl *VD = IFD->getVarDecl();
681    assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682    return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683  }
684  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685
686  // FIXME: This gives internal linkage to names that should have no linkage
687  // (those not covered by [basic.link]p6).
688  if (D->isInAnonymousNamespace()) {
689    const auto *Var = dyn_cast<VarDecl>(D);
690    const auto *Func = dyn_cast<FunctionDecl>(D);
691    // FIXME: The check for extern "C" here is not justified by the standard
692    // wording, but we retain it from the pre-DR1113 model to avoid breaking
693    // code.
694    //
695    // C++11 [basic.link]p4:
696    //   An unnamed namespace or a namespace declared directly or indirectly
697    //   within an unnamed namespace has internal linkage.
698    if ((!Var || !isFirstInExternCContext(Var)) &&
699        (!Func || !isFirstInExternCContext(Func)))
700      return getInternalLinkageFor(D);
701  }
702
703  // Set up the defaults.
704
705  // C99 6.2.2p5:
706  //   If the declaration of an identifier for an object has file
707  //   scope and no storage-class specifier, its linkage is
708  //   external.
709  LinkageInfo LV = getExternalLinkageFor(D);
710
711  if (!hasExplicitVisibilityAlready(computation)) {
712    if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713      LV.mergeVisibility(*Vis, true);
714    } else {
715      // If we're declared in a namespace with a visibility attribute,
716      // use that namespace's visibility, and it still counts as explicit.
717      for (const DeclContext *DC = D->getDeclContext();
718           !isa<TranslationUnitDecl>(DC);
719           DC = DC->getParent()) {
720        const auto *ND = dyn_cast<NamespaceDecl>(DC);
721        if (!ND) continue;
722        if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723          LV.mergeVisibility(*Vis, true);
724          break;
725        }
726      }
727    }
728
729    // Add in global settings if the above didn't give us direct visibility.
730    if (!LV.isVisibilityExplicit()) {
731      // Use global type/value visibility as appropriate.
732      Visibility globalVisibility =
733          computation.isValueVisibility()
734              ? Context.getLangOpts().getValueVisibilityMode()
735              : Context.getLangOpts().getTypeVisibilityMode();
736      LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738      // If we're paying attention to global visibility, apply
739      // -finline-visibility-hidden if this is an inline method.
740      if (useInlineVisibilityHidden(D))
741        LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742    }
743  }
744
745  // C++ [basic.link]p4:
746
747  //   A name having namespace scope that has not been given internal linkage
748  //   above and that is the name of
749  //   [...bullets...]
750  //   has its linkage determined as follows:
751  //     - if the enclosing namespace has internal linkage, the name has
752  //       internal linkage; [handled above]
753  //     - otherwise, if the declaration of the name is attached to a named
754  //       module and is not exported, the name has module linkage;
755  //     - otherwise, the name has external linkage.
756  // LV is currently set up to handle the last two bullets.
757  //
758  //   The bullets are:
759
760  //     - a variable; or
761  if (const auto *Var = dyn_cast<VarDecl>(D)) {
762    // GCC applies the following optimization to variables and static
763    // data members, but not to functions:
764    //
765    // Modify the variable's LV by the LV of its type unless this is
766    // C or extern "C".  This follows from [basic.link]p9:
767    //   A type without linkage shall not be used as the type of a
768    //   variable or function with external linkage unless
769    //    - the entity has C language linkage, or
770    //    - the entity is declared within an unnamed namespace, or
771    //    - the entity is not used or is defined in the same
772    //      translation unit.
773    // and [basic.link]p10:
774    //   ...the types specified by all declarations referring to a
775    //   given variable or function shall be identical...
776    // C does not have an equivalent rule.
777    //
778    // Ignore this if we've got an explicit attribute;  the user
779    // probably knows what they're doing.
780    //
781    // Note that we don't want to make the variable non-external
782    // because of this, but unique-external linkage suits us.
783    if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784        !IgnoreVarTypeLinkage) {
785      LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786      if (!isExternallyVisible(TypeLV.getLinkage()))
787        return LinkageInfo::uniqueExternal();
788      if (!LV.isVisibilityExplicit())
789        LV.mergeVisibility(TypeLV);
790    }
791
792    if (Var->getStorageClass() == SC_PrivateExtern)
793      LV.mergeVisibility(HiddenVisibility, true);
794
795    // Note that Sema::MergeVarDecl already takes care of implementing
796    // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797    // to do it here.
798
799    // As per function and class template specializations (below),
800    // consider LV for the template and template arguments.  We're at file
801    // scope, so we do not need to worry about nested specializations.
802    if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803      mergeTemplateLV(LV, spec, computation);
804    }
805
806  //     - a function; or
807  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808    // In theory, we can modify the function's LV by the LV of its
809    // type unless it has C linkage (see comment above about variables
810    // for justification).  In practice, GCC doesn't do this, so it's
811    // just too painful to make work.
812
813    if (Function->getStorageClass() == SC_PrivateExtern)
814      LV.mergeVisibility(HiddenVisibility, true);
815
816    // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817    // merging storage classes and visibility attributes, so we don't have to
818    // look at previous decls in here.
819
820    // In C++, then if the type of the function uses a type with
821    // unique-external linkage, it's not legally usable from outside
822    // this translation unit.  However, we should use the C linkage
823    // rules instead for extern "C" declarations.
824    if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825      // Only look at the type-as-written. Otherwise, deducing the return type
826      // of a function could change its linkage.
827      QualType TypeAsWritten = Function->getType();
828      if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829        TypeAsWritten = TSI->getType();
830      if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831        return LinkageInfo::uniqueExternal();
832    }
833
834    // Consider LV from the template and the template arguments.
835    // We're at file scope, so we do not need to worry about nested
836    // specializations.
837    if (FunctionTemplateSpecializationInfo *specInfo
838                               = Function->getTemplateSpecializationInfo()) {
839      mergeTemplateLV(LV, Function, specInfo, computation);
840    }
841
842  //     - a named class (Clause 9), or an unnamed class defined in a
843  //       typedef declaration in which the class has the typedef name
844  //       for linkage purposes (7.1.3); or
845  //     - a named enumeration (7.2), or an unnamed enumeration
846  //       defined in a typedef declaration in which the enumeration
847  //       has the typedef name for linkage purposes (7.1.3); or
848  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849    // Unnamed tags have no linkage.
850    if (!Tag->hasNameForLinkage())
851      return LinkageInfo::none();
852
853    // If this is a class template specialization, consider the
854    // linkage of the template and template arguments.  We're at file
855    // scope, so we do not need to worry about nested specializations.
856    if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857      mergeTemplateLV(LV, spec, computation);
858    }
859
860  // FIXME: This is not part of the C++ standard any more.
861  //     - an enumerator belonging to an enumeration with external linkage; or
862  } else if (isa<EnumConstantDecl>(D)) {
863    LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864                                      computation);
865    if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866      return LinkageInfo::none();
867    LV.merge(EnumLV);
868
869  //     - a template
870  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871    bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872    LinkageInfo tempLV =
873      getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874    LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876  //     An unnamed namespace or a namespace declared directly or indirectly
877  //     within an unnamed namespace has internal linkage. All other namespaces
878  //     have external linkage.
879  //
880  // We handled names in anonymous namespaces above.
881  } else if (isa<NamespaceDecl>(D)) {
882    return LV;
883
884  // By extension, we assign external linkage to Objective-C
885  // interfaces.
886  } else if (isa<ObjCInterfaceDecl>(D)) {
887    // fallout
888
889  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890    // A typedef declaration has linkage if it gives a type a name for
891    // linkage purposes.
892    if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893      return LinkageInfo::none();
894
895  } else if (isa<MSGuidDecl>(D)) {
896    // A GUID behaves like an inline variable with external linkage. Fall
897    // through.
898
899  // Everything not covered here has no linkage.
900  } else {
901    return LinkageInfo::none();
902  }
903
904  // If we ended up with non-externally-visible linkage, visibility should
905  // always be default.
906  if (!isExternallyVisible(LV.getLinkage()))
907    return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908
909  // Mark the symbols as hidden when compiling for the device.
910  if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911    LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912
913  return LV;
914}
915
916LinkageInfo
917LinkageComputer::getLVForClassMember(const NamedDecl *D,
918                                     LVComputationKind computation,
919                                     bool IgnoreVarTypeLinkage) {
920  // Only certain class members have linkage.  Note that fields don't
921  // really have linkage, but it's convenient to say they do for the
922  // purposes of calculating linkage of pointer-to-data-member
923  // template arguments.
924  //
925  // Templates also don't officially have linkage, but since we ignore
926  // the C++ standard and look at template arguments when determining
927  // linkage and visibility of a template specialization, we might hit
928  // a template template argument that way. If we do, we need to
929  // consider its linkage.
930  if (!(isa<CXXMethodDecl>(D) ||
931        isa<VarDecl>(D) ||
932        isa<FieldDecl>(D) ||
933        isa<IndirectFieldDecl>(D) ||
934        isa<TagDecl>(D) ||
935        isa<TemplateDecl>(D)))
936    return LinkageInfo::none();
937
938  LinkageInfo LV;
939
940  // If we have an explicit visibility attribute, merge that in.
941  if (!hasExplicitVisibilityAlready(computation)) {
942    if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943      LV.mergeVisibility(*Vis, true);
944    // If we're paying attention to global visibility, apply
945    // -finline-visibility-hidden if this is an inline method.
946    //
947    // Note that we do this before merging information about
948    // the class visibility.
949    if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950      LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951  }
952
953  // If this class member has an explicit visibility attribute, the only
954  // thing that can change its visibility is the template arguments, so
955  // only look for them when processing the class.
956  LVComputationKind classComputation = computation;
957  if (LV.isVisibilityExplicit())
958    classComputation = withExplicitVisibilityAlready(computation);
959
960  LinkageInfo classLV =
961    getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962  // The member has the same linkage as the class. If that's not externally
963  // visible, we don't need to compute anything about the linkage.
964  // FIXME: If we're only computing linkage, can we bail out here?
965  if (!isExternallyVisible(classLV.getLinkage()))
966    return classLV;
967
968
969  // Otherwise, don't merge in classLV yet, because in certain cases
970  // we need to completely ignore the visibility from it.
971
972  // Specifically, if this decl exists and has an explicit attribute.
973  const NamedDecl *explicitSpecSuppressor = nullptr;
974
975  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976    // Only look at the type-as-written. Otherwise, deducing the return type
977    // of a function could change its linkage.
978    QualType TypeAsWritten = MD->getType();
979    if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980      TypeAsWritten = TSI->getType();
981    if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982      return LinkageInfo::uniqueExternal();
983
984    // If this is a method template specialization, use the linkage for
985    // the template parameters and arguments.
986    if (FunctionTemplateSpecializationInfo *spec
987           = MD->getTemplateSpecializationInfo()) {
988      mergeTemplateLV(LV, MD, spec, computation);
989      if (spec->isExplicitSpecialization()) {
990        explicitSpecSuppressor = MD;
991      } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992        explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993      }
994    } else if (isExplicitMemberSpecialization(MD)) {
995      explicitSpecSuppressor = MD;
996    }
997
998  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999    if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000      mergeTemplateLV(LV, spec, computation);
1001      if (spec->isExplicitSpecialization()) {
1002        explicitSpecSuppressor = spec;
1003      } else {
1004        const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005        if (isExplicitMemberSpecialization(temp)) {
1006          explicitSpecSuppressor = temp->getTemplatedDecl();
1007        }
1008      }
1009    } else if (isExplicitMemberSpecialization(RD)) {
1010      explicitSpecSuppressor = RD;
1011    }
1012
1013  // Static data members.
1014  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015    if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016      mergeTemplateLV(LV, spec, computation);
1017
1018    // Modify the variable's linkage by its type, but ignore the
1019    // type's visibility unless it's a definition.
1020    if (!IgnoreVarTypeLinkage) {
1021      LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022      // FIXME: If the type's linkage is not externally visible, we can
1023      // give this static data member UniqueExternalLinkage.
1024      if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025        LV.mergeVisibility(typeLV);
1026      LV.mergeExternalVisibility(typeLV);
1027    }
1028
1029    if (isExplicitMemberSpecialization(VD)) {
1030      explicitSpecSuppressor = VD;
1031    }
1032
1033  // Template members.
1034  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035    bool considerVisibility =
1036      (!LV.isVisibilityExplicit() &&
1037       !classLV.isVisibilityExplicit() &&
1038       !hasExplicitVisibilityAlready(computation));
1039    LinkageInfo tempLV =
1040      getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041    LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042
1043    if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044      if (isExplicitMemberSpecialization(redeclTemp)) {
1045        explicitSpecSuppressor = temp->getTemplatedDecl();
1046      }
1047    }
1048  }
1049
1050  // We should never be looking for an attribute directly on a template.
1051  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1052
1053  // If this member is an explicit member specialization, and it has
1054  // an explicit attribute, ignore visibility from the parent.
1055  bool considerClassVisibility = true;
1056  if (explicitSpecSuppressor &&
1057      // optimization: hasDVA() is true only with explicit visibility.
1058      LV.isVisibilityExplicit() &&
1059      classLV.getVisibility() != DefaultVisibility &&
1060      hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061    considerClassVisibility = false;
1062  }
1063
1064  // Finally, merge in information from the class.
1065  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066  return LV;
1067}
1068
1069void NamedDecl::anchor() {}
1070
1071bool NamedDecl::isLinkageValid() const {
1072  if (!hasCachedLinkage())
1073    return true;
1074
1075  Linkage L = LinkageComputer{}
1076                  .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077                  .getLinkage();
1078  return L == getCachedLinkage();
1079}
1080
1081ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1082  StringRef name = getName();
1083  if (name.empty()) return SFF_None;
1084
1085  if (name.front() == 'C')
1086    if (name == "CFStringCreateWithFormat" ||
1087        name == "CFStringCreateWithFormatAndArguments" ||
1088        name == "CFStringAppendFormat" ||
1089        name == "CFStringAppendFormatAndArguments")
1090      return SFF_CFString;
1091  return SFF_None;
1092}
1093
1094Linkage NamedDecl::getLinkageInternal() const {
1095  // We don't care about visibility here, so ask for the cheapest
1096  // possible visibility analysis.
1097  return LinkageComputer{}
1098      .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1099      .getLinkage();
1100}
1101
1102LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1103  return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1104}
1105
1106static Optional<Visibility>
1107getExplicitVisibilityAux(const NamedDecl *ND,
1108                         NamedDecl::ExplicitVisibilityKind kind,
1109                         bool IsMostRecent) {
1110  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1111
1112  // Check the declaration itself first.
1113  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1114    return V;
1115
1116  // If this is a member class of a specialization of a class template
1117  // and the corresponding decl has explicit visibility, use that.
1118  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1119    CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1120    if (InstantiatedFrom)
1121      return getVisibilityOf(InstantiatedFrom, kind);
1122  }
1123
1124  // If there wasn't explicit visibility there, and this is a
1125  // specialization of a class template, check for visibility
1126  // on the pattern.
1127  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1128    // Walk all the template decl till this point to see if there are
1129    // explicit visibility attributes.
1130    const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1131    while (TD != nullptr) {
1132      auto Vis = getVisibilityOf(TD, kind);
1133      if (Vis != None)
1134        return Vis;
1135      TD = TD->getPreviousDecl();
1136    }
1137    return None;
1138  }
1139
1140  // Use the most recent declaration.
1141  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1142    const NamedDecl *MostRecent = ND->getMostRecentDecl();
1143    if (MostRecent != ND)
1144      return getExplicitVisibilityAux(MostRecent, kind, true);
1145  }
1146
1147  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1148    if (Var->isStaticDataMember()) {
1149      VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1150      if (InstantiatedFrom)
1151        return getVisibilityOf(InstantiatedFrom, kind);
1152    }
1153
1154    if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1155      return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1156                             kind);
1157
1158    return None;
1159  }
1160  // Also handle function template specializations.
1161  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1162    // If the function is a specialization of a template with an
1163    // explicit visibility attribute, use that.
1164    if (FunctionTemplateSpecializationInfo *templateInfo
1165          = fn->getTemplateSpecializationInfo())
1166      return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1167                             kind);
1168
1169    // If the function is a member of a specialization of a class template
1170    // and the corresponding decl has explicit visibility, use that.
1171    FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1172    if (InstantiatedFrom)
1173      return getVisibilityOf(InstantiatedFrom, kind);
1174
1175    return None;
1176  }
1177
1178  // The visibility of a template is stored in the templated decl.
1179  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1180    return getVisibilityOf(TD->getTemplatedDecl(), kind);
1181
1182  return None;
1183}
1184
1185Optional<Visibility>
1186NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1187  return getExplicitVisibilityAux(this, kind, false);
1188}
1189
1190LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1191                                             Decl *ContextDecl,
1192                                             LVComputationKind computation) {
1193  // This lambda has its linkage/visibility determined by its owner.
1194  const NamedDecl *Owner;
1195  if (!ContextDecl)
1196    Owner = dyn_cast<NamedDecl>(DC);
1197  else if (isa<ParmVarDecl>(ContextDecl))
1198    Owner =
1199        dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1200  else
1201    Owner = cast<NamedDecl>(ContextDecl);
1202
1203  if (!Owner)
1204    return LinkageInfo::none();
1205
1206  // If the owner has a deduced type, we need to skip querying the linkage and
1207  // visibility of that type, because it might involve this closure type.  The
1208  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1209  // than NoLinkage when we don't strictly need to, which is benign.
1210  auto *VD = dyn_cast<VarDecl>(Owner);
1211  LinkageInfo OwnerLV =
1212      VD && VD->getType()->getContainedDeducedType()
1213          ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1214          : getLVForDecl(Owner, computation);
1215
1216  // A lambda never formally has linkage. But if the owner is externally
1217  // visible, then the lambda is too. We apply the same rules to blocks.
1218  if (!isExternallyVisible(OwnerLV.getLinkage()))
1219    return LinkageInfo::none();
1220  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1221                     OwnerLV.isVisibilityExplicit());
1222}
1223
1224LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1225                                               LVComputationKind computation) {
1226  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1227    if (Function->isInAnonymousNamespace() &&
1228        !isFirstInExternCContext(Function))
1229      return getInternalLinkageFor(Function);
1230
1231    // This is a "void f();" which got merged with a file static.
1232    if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1233      return getInternalLinkageFor(Function);
1234
1235    LinkageInfo LV;
1236    if (!hasExplicitVisibilityAlready(computation)) {
1237      if (Optional<Visibility> Vis =
1238              getExplicitVisibility(Function, computation))
1239        LV.mergeVisibility(*Vis, true);
1240    }
1241
1242    // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1243    // merging storage classes and visibility attributes, so we don't have to
1244    // look at previous decls in here.
1245
1246    return LV;
1247  }
1248
1249  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1250    if (Var->hasExternalStorage()) {
1251      if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1252        return getInternalLinkageFor(Var);
1253
1254      LinkageInfo LV;
1255      if (Var->getStorageClass() == SC_PrivateExtern)
1256        LV.mergeVisibility(HiddenVisibility, true);
1257      else if (!hasExplicitVisibilityAlready(computation)) {
1258        if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1259          LV.mergeVisibility(*Vis, true);
1260      }
1261
1262      if (const VarDecl *Prev = Var->getPreviousDecl()) {
1263        LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1264        if (PrevLV.getLinkage())
1265          LV.setLinkage(PrevLV.getLinkage());
1266        LV.mergeVisibility(PrevLV);
1267      }
1268
1269      return LV;
1270    }
1271
1272    if (!Var->isStaticLocal())
1273      return LinkageInfo::none();
1274  }
1275
1276  ASTContext &Context = D->getASTContext();
1277  if (!Context.getLangOpts().CPlusPlus)
1278    return LinkageInfo::none();
1279
1280  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1281  if (!OuterD || OuterD->isInvalidDecl())
1282    return LinkageInfo::none();
1283
1284  LinkageInfo LV;
1285  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1286    if (!BD->getBlockManglingNumber())
1287      return LinkageInfo::none();
1288
1289    LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1290                         BD->getBlockManglingContextDecl(), computation);
1291  } else {
1292    const auto *FD = cast<FunctionDecl>(OuterD);
1293    if (!FD->isInlined() &&
1294        !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1295      return LinkageInfo::none();
1296
1297    // If a function is hidden by -fvisibility-inlines-hidden option and
1298    // is not explicitly attributed as a hidden function,
1299    // we should not make static local variables in the function hidden.
1300    LV = getLVForDecl(FD, computation);
1301    if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1302        !LV.isVisibilityExplicit()) {
1303      assert(cast<VarDecl>(D)->isStaticLocal());
1304      // If this was an implicitly hidden inline method, check again for
1305      // explicit visibility on the parent class, and use that for static locals
1306      // if present.
1307      if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1308        LV = getLVForDecl(MD->getParent(), computation);
1309      if (!LV.isVisibilityExplicit()) {
1310        Visibility globalVisibility =
1311            computation.isValueVisibility()
1312                ? Context.getLangOpts().getValueVisibilityMode()
1313                : Context.getLangOpts().getTypeVisibilityMode();
1314        return LinkageInfo(VisibleNoLinkage, globalVisibility,
1315                           /*visibilityExplicit=*/false);
1316      }
1317    }
1318  }
1319  if (!isExternallyVisible(LV.getLinkage()))
1320    return LinkageInfo::none();
1321  return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1322                     LV.isVisibilityExplicit());
1323}
1324
1325LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1326                                              LVComputationKind computation,
1327                                              bool IgnoreVarTypeLinkage) {
1328  // Internal_linkage attribute overrides other considerations.
1329  if (D->hasAttr<InternalLinkageAttr>())
1330    return getInternalLinkageFor(D);
1331
1332  // Objective-C: treat all Objective-C declarations as having external
1333  // linkage.
1334  switch (D->getKind()) {
1335    default:
1336      break;
1337
1338    // Per C++ [basic.link]p2, only the names of objects, references,
1339    // functions, types, templates, namespaces, and values ever have linkage.
1340    //
1341    // Note that the name of a typedef, namespace alias, using declaration,
1342    // and so on are not the name of the corresponding type, namespace, or
1343    // declaration, so they do *not* have linkage.
1344    case Decl::ImplicitParam:
1345    case Decl::Label:
1346    case Decl::NamespaceAlias:
1347    case Decl::ParmVar:
1348    case Decl::Using:
1349    case Decl::UsingShadow:
1350    case Decl::UsingDirective:
1351      return LinkageInfo::none();
1352
1353    case Decl::EnumConstant:
1354      // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1355      if (D->getASTContext().getLangOpts().CPlusPlus)
1356        return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1357      return LinkageInfo::visible_none();
1358
1359    case Decl::Typedef:
1360    case Decl::TypeAlias:
1361      // A typedef declaration has linkage if it gives a type a name for
1362      // linkage purposes.
1363      if (!cast<TypedefNameDecl>(D)
1364               ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1365        return LinkageInfo::none();
1366      break;
1367
1368    case Decl::TemplateTemplateParm: // count these as external
1369    case Decl::NonTypeTemplateParm:
1370    case Decl::ObjCAtDefsField:
1371    case Decl::ObjCCategory:
1372    case Decl::ObjCCategoryImpl:
1373    case Decl::ObjCCompatibleAlias:
1374    case Decl::ObjCImplementation:
1375    case Decl::ObjCMethod:
1376    case Decl::ObjCProperty:
1377    case Decl::ObjCPropertyImpl:
1378    case Decl::ObjCProtocol:
1379      return getExternalLinkageFor(D);
1380
1381    case Decl::CXXRecord: {
1382      const auto *Record = cast<CXXRecordDecl>(D);
1383      if (Record->isLambda()) {
1384        if (Record->hasKnownLambdaInternalLinkage() ||
1385            !Record->getLambdaManglingNumber()) {
1386          // This lambda has no mangling number, so it's internal.
1387          return getInternalLinkageFor(D);
1388        }
1389
1390        return getLVForClosure(
1391                  Record->getDeclContext()->getRedeclContext(),
1392                  Record->getLambdaContextDecl(), computation);
1393      }
1394
1395      break;
1396    }
1397  }
1398
1399  // Handle linkage for namespace-scope names.
1400  if (D->getDeclContext()->getRedeclContext()->isFileContext())
1401    return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1402
1403  // C++ [basic.link]p5:
1404  //   In addition, a member function, static data member, a named
1405  //   class or enumeration of class scope, or an unnamed class or
1406  //   enumeration defined in a class-scope typedef declaration such
1407  //   that the class or enumeration has the typedef name for linkage
1408  //   purposes (7.1.3), has external linkage if the name of the class
1409  //   has external linkage.
1410  if (D->getDeclContext()->isRecord())
1411    return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1412
1413  // C++ [basic.link]p6:
1414  //   The name of a function declared in block scope and the name of
1415  //   an object declared by a block scope extern declaration have
1416  //   linkage. If there is a visible declaration of an entity with
1417  //   linkage having the same name and type, ignoring entities
1418  //   declared outside the innermost enclosing namespace scope, the
1419  //   block scope declaration declares that same entity and receives
1420  //   the linkage of the previous declaration. If there is more than
1421  //   one such matching entity, the program is ill-formed. Otherwise,
1422  //   if no matching entity is found, the block scope entity receives
1423  //   external linkage.
1424  if (D->getDeclContext()->isFunctionOrMethod())
1425    return getLVForLocalDecl(D, computation);
1426
1427  // C++ [basic.link]p6:
1428  //   Names not covered by these rules have no linkage.
1429  return LinkageInfo::none();
1430}
1431
1432/// getLVForDecl - Get the linkage and visibility for the given declaration.
1433LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1434                                          LVComputationKind computation) {
1435  // Internal_linkage attribute overrides other considerations.
1436  if (D->hasAttr<InternalLinkageAttr>())
1437    return getInternalLinkageFor(D);
1438
1439  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1440    return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1441
1442  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1443    return *LI;
1444
1445  LinkageInfo LV = computeLVForDecl(D, computation);
1446  if (D->hasCachedLinkage())
1447    assert(D->getCachedLinkage() == LV.getLinkage());
1448
1449  D->setCachedLinkage(LV.getLinkage());
1450  cache(D, computation, LV);
1451
1452#ifndef NDEBUG
1453  // In C (because of gnu inline) and in c++ with microsoft extensions an
1454  // static can follow an extern, so we can have two decls with different
1455  // linkages.
1456  const LangOptions &Opts = D->getASTContext().getLangOpts();
1457  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1458    return LV;
1459
1460  // We have just computed the linkage for this decl. By induction we know
1461  // that all other computed linkages match, check that the one we just
1462  // computed also does.
1463  NamedDecl *Old = nullptr;
1464  for (auto I : D->redecls()) {
1465    auto *T = cast<NamedDecl>(I);
1466    if (T == D)
1467      continue;
1468    if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1469      Old = T;
1470      break;
1471    }
1472  }
1473  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1474#endif
1475
1476  return LV;
1477}
1478
1479LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1480  return getLVForDecl(D,
1481                      LVComputationKind(usesTypeVisibility(D)
1482                                            ? NamedDecl::VisibilityForType
1483                                            : NamedDecl::VisibilityForValue));
1484}
1485
1486Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1487  Module *M = getOwningModule();
1488  if (!M)
1489    return nullptr;
1490
1491  switch (M->Kind) {
1492  case Module::ModuleMapModule:
1493    // Module map modules have no special linkage semantics.
1494    return nullptr;
1495
1496  case Module::ModuleInterfaceUnit:
1497    return M;
1498
1499  case Module::GlobalModuleFragment: {
1500    // External linkage declarations in the global module have no owning module
1501    // for linkage purposes. But internal linkage declarations in the global
1502    // module fragment of a particular module are owned by that module for
1503    // linkage purposes.
1504    if (IgnoreLinkage)
1505      return nullptr;
1506    bool InternalLinkage;
1507    if (auto *ND = dyn_cast<NamedDecl>(this))
1508      InternalLinkage = !ND->hasExternalFormalLinkage();
1509    else {
1510      auto *NSD = dyn_cast<NamespaceDecl>(this);
1511      InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1512                        isInAnonymousNamespace();
1513    }
1514    return InternalLinkage ? M->Parent : nullptr;
1515  }
1516
1517  case Module::PrivateModuleFragment:
1518    // The private module fragment is part of its containing module for linkage
1519    // purposes.
1520    return M->Parent;
1521  }
1522
1523  llvm_unreachable("unknown module kind");
1524}
1525
1526void NamedDecl::printName(raw_ostream &os) const {
1527  os << Name;
1528}
1529
1530std::string NamedDecl::getQualifiedNameAsString() const {
1531  std::string QualName;
1532  llvm::raw_string_ostream OS(QualName);
1533  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1534  return OS.str();
1535}
1536
1537void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1538  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1539}
1540
1541void NamedDecl::printQualifiedName(raw_ostream &OS,
1542                                   const PrintingPolicy &P) const {
1543  if (getDeclContext()->isFunctionOrMethod()) {
1544    // We do not print '(anonymous)' for function parameters without name.
1545    printName(OS);
1546    return;
1547  }
1548  printNestedNameSpecifier(OS, P);
1549  if (getDeclName())
1550    OS << *this;
1551  else {
1552    // Give the printName override a chance to pick a different name before we
1553    // fall back to "(anonymous)".
1554    SmallString<64> NameBuffer;
1555    llvm::raw_svector_ostream NameOS(NameBuffer);
1556    printName(NameOS);
1557    if (NameBuffer.empty())
1558      OS << "(anonymous)";
1559    else
1560      OS << NameBuffer;
1561  }
1562}
1563
1564void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1565  printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1566}
1567
1568void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1569                                         const PrintingPolicy &P) const {
1570  const DeclContext *Ctx = getDeclContext();
1571
1572  // For ObjC methods and properties, look through categories and use the
1573  // interface as context.
1574  if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1575    if (auto *ID = MD->getClassInterface())
1576      Ctx = ID;
1577  } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1578    if (auto *MD = PD->getGetterMethodDecl())
1579      if (auto *ID = MD->getClassInterface())
1580        Ctx = ID;
1581  } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1582    if (auto *CI = ID->getContainingInterface())
1583      Ctx = CI;
1584  }
1585
1586  if (Ctx->isFunctionOrMethod())
1587    return;
1588
1589  using ContextsTy = SmallVector<const DeclContext *, 8>;
1590  ContextsTy Contexts;
1591
1592  // Collect named contexts.
1593  while (Ctx) {
1594    if (isa<NamedDecl>(Ctx))
1595      Contexts.push_back(Ctx);
1596    Ctx = Ctx->getParent();
1597  }
1598
1599  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1600    if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1601      OS << Spec->getName();
1602      const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1603      printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1604    } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1605      if (P.SuppressUnwrittenScope &&
1606          (ND->isAnonymousNamespace() || ND->isInline()))
1607        continue;
1608      if (ND->isAnonymousNamespace()) {
1609        OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1610                                : "(anonymous namespace)");
1611      }
1612      else
1613        OS << *ND;
1614    } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1615      if (!RD->getIdentifier())
1616        OS << "(anonymous " << RD->getKindName() << ')';
1617      else
1618        OS << *RD;
1619    } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1620      const FunctionProtoType *FT = nullptr;
1621      if (FD->hasWrittenPrototype())
1622        FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1623
1624      OS << *FD << '(';
1625      if (FT) {
1626        unsigned NumParams = FD->getNumParams();
1627        for (unsigned i = 0; i < NumParams; ++i) {
1628          if (i)
1629            OS << ", ";
1630          OS << FD->getParamDecl(i)->getType().stream(P);
1631        }
1632
1633        if (FT->isVariadic()) {
1634          if (NumParams > 0)
1635            OS << ", ";
1636          OS << "...";
1637        }
1638      }
1639      OS << ')';
1640    } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1641      // C++ [dcl.enum]p10: Each enum-name and each unscoped
1642      // enumerator is declared in the scope that immediately contains
1643      // the enum-specifier. Each scoped enumerator is declared in the
1644      // scope of the enumeration.
1645      // For the case of unscoped enumerator, do not include in the qualified
1646      // name any information about its enum enclosing scope, as its visibility
1647      // is global.
1648      if (ED->isScoped())
1649        OS << *ED;
1650      else
1651        continue;
1652    } else {
1653      OS << *cast<NamedDecl>(DC);
1654    }
1655    OS << "::";
1656  }
1657}
1658
1659void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1660                                     const PrintingPolicy &Policy,
1661                                     bool Qualified) const {
1662  if (Qualified)
1663    printQualifiedName(OS, Policy);
1664  else
1665    printName(OS);
1666}
1667
1668template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1669  return true;
1670}
1671static bool isRedeclarableImpl(...) { return false; }
1672static bool isRedeclarable(Decl::Kind K) {
1673  switch (K) {
1674#define DECL(Type, Base) \
1675  case Decl::Type: \
1676    return isRedeclarableImpl((Type##Decl *)nullptr);
1677#define ABSTRACT_DECL(DECL)
1678#include "clang/AST/DeclNodes.inc"
1679  }
1680  llvm_unreachable("unknown decl kind");
1681}
1682
1683bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1684  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1685
1686  // Never replace one imported declaration with another; we need both results
1687  // when re-exporting.
1688  if (OldD->isFromASTFile() && isFromASTFile())
1689    return false;
1690
1691  // A kind mismatch implies that the declaration is not replaced.
1692  if (OldD->getKind() != getKind())
1693    return false;
1694
1695  // For method declarations, we never replace. (Why?)
1696  if (isa<ObjCMethodDecl>(this))
1697    return false;
1698
1699  // For parameters, pick the newer one. This is either an error or (in
1700  // Objective-C) permitted as an extension.
1701  if (isa<ParmVarDecl>(this))
1702    return true;
1703
1704  // Inline namespaces can give us two declarations with the same
1705  // name and kind in the same scope but different contexts; we should
1706  // keep both declarations in this case.
1707  if (!this->getDeclContext()->getRedeclContext()->Equals(
1708          OldD->getDeclContext()->getRedeclContext()))
1709    return false;
1710
1711  // Using declarations can be replaced if they import the same name from the
1712  // same context.
1713  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1714    ASTContext &Context = getASTContext();
1715    return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1716           Context.getCanonicalNestedNameSpecifier(
1717               cast<UsingDecl>(OldD)->getQualifier());
1718  }
1719  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1720    ASTContext &Context = getASTContext();
1721    return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1722           Context.getCanonicalNestedNameSpecifier(
1723                        cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1724  }
1725
1726  if (isRedeclarable(getKind())) {
1727    if (getCanonicalDecl() != OldD->getCanonicalDecl())
1728      return false;
1729
1730    if (IsKnownNewer)
1731      return true;
1732
1733    // Check whether this is actually newer than OldD. We want to keep the
1734    // newer declaration. This loop will usually only iterate once, because
1735    // OldD is usually the previous declaration.
1736    for (auto D : redecls()) {
1737      if (D == OldD)
1738        break;
1739
1740      // If we reach the canonical declaration, then OldD is not actually older
1741      // than this one.
1742      //
1743      // FIXME: In this case, we should not add this decl to the lookup table.
1744      if (D->isCanonicalDecl())
1745        return false;
1746    }
1747
1748    // It's a newer declaration of the same kind of declaration in the same
1749    // scope: we want this decl instead of the existing one.
1750    return true;
1751  }
1752
1753  // In all other cases, we need to keep both declarations in case they have
1754  // different visibility. Any attempt to use the name will result in an
1755  // ambiguity if more than one is visible.
1756  return false;
1757}
1758
1759bool NamedDecl::hasLinkage() const {
1760  return getFormalLinkage() != NoLinkage;
1761}
1762
1763NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1764  NamedDecl *ND = this;
1765  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1766    ND = UD->getTargetDecl();
1767
1768  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1769    return AD->getClassInterface();
1770
1771  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1772    return AD->getNamespace();
1773
1774  return ND;
1775}
1776
1777bool NamedDecl::isCXXInstanceMember() const {
1778  if (!isCXXClassMember())
1779    return false;
1780
1781  const NamedDecl *D = this;
1782  if (isa<UsingShadowDecl>(D))
1783    D = cast<UsingShadowDecl>(D)->getTargetDecl();
1784
1785  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1786    return true;
1787  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1788    return MD->isInstance();
1789  return false;
1790}
1791
1792//===----------------------------------------------------------------------===//
1793// DeclaratorDecl Implementation
1794//===----------------------------------------------------------------------===//
1795
1796template <typename DeclT>
1797static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1798  if (decl->getNumTemplateParameterLists() > 0)
1799    return decl->getTemplateParameterList(0)->getTemplateLoc();
1800  else
1801    return decl->getInnerLocStart();
1802}
1803
1804SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1805  TypeSourceInfo *TSI = getTypeSourceInfo();
1806  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1807  return SourceLocation();
1808}
1809
1810SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1811  TypeSourceInfo *TSI = getTypeSourceInfo();
1812  if (TSI) return TSI->getTypeLoc().getEndLoc();
1813  return SourceLocation();
1814}
1815
1816void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1817  if (QualifierLoc) {
1818    // Make sure the extended decl info is allocated.
1819    if (!hasExtInfo()) {
1820      // Save (non-extended) type source info pointer.
1821      auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1822      // Allocate external info struct.
1823      DeclInfo = new (getASTContext()) ExtInfo;
1824      // Restore savedTInfo into (extended) decl info.
1825      getExtInfo()->TInfo = savedTInfo;
1826    }
1827    // Set qualifier info.
1828    getExtInfo()->QualifierLoc = QualifierLoc;
1829  } else if (hasExtInfo()) {
1830    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1831    getExtInfo()->QualifierLoc = QualifierLoc;
1832  }
1833}
1834
1835void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1836  assert(TrailingRequiresClause);
1837  // Make sure the extended decl info is allocated.
1838  if (!hasExtInfo()) {
1839    // Save (non-extended) type source info pointer.
1840    auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1841    // Allocate external info struct.
1842    DeclInfo = new (getASTContext()) ExtInfo;
1843    // Restore savedTInfo into (extended) decl info.
1844    getExtInfo()->TInfo = savedTInfo;
1845  }
1846  // Set requires clause info.
1847  getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1848}
1849
1850void DeclaratorDecl::setTemplateParameterListsInfo(
1851    ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1852  assert(!TPLists.empty());
1853  // Make sure the extended decl info is allocated.
1854  if (!hasExtInfo()) {
1855    // Save (non-extended) type source info pointer.
1856    auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1857    // Allocate external info struct.
1858    DeclInfo = new (getASTContext()) ExtInfo;
1859    // Restore savedTInfo into (extended) decl info.
1860    getExtInfo()->TInfo = savedTInfo;
1861  }
1862  // Set the template parameter lists info.
1863  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1864}
1865
1866SourceLocation DeclaratorDecl::getOuterLocStart() const {
1867  return getTemplateOrInnerLocStart(this);
1868}
1869
1870// Helper function: returns true if QT is or contains a type
1871// having a postfix component.
1872static bool typeIsPostfix(QualType QT) {
1873  while (true) {
1874    const Type* T = QT.getTypePtr();
1875    switch (T->getTypeClass()) {
1876    default:
1877      return false;
1878    case Type::Pointer:
1879      QT = cast<PointerType>(T)->getPointeeType();
1880      break;
1881    case Type::BlockPointer:
1882      QT = cast<BlockPointerType>(T)->getPointeeType();
1883      break;
1884    case Type::MemberPointer:
1885      QT = cast<MemberPointerType>(T)->getPointeeType();
1886      break;
1887    case Type::LValueReference:
1888    case Type::RValueReference:
1889      QT = cast<ReferenceType>(T)->getPointeeType();
1890      break;
1891    case Type::PackExpansion:
1892      QT = cast<PackExpansionType>(T)->getPattern();
1893      break;
1894    case Type::Paren:
1895    case Type::ConstantArray:
1896    case Type::DependentSizedArray:
1897    case Type::IncompleteArray:
1898    case Type::VariableArray:
1899    case Type::FunctionProto:
1900    case Type::FunctionNoProto:
1901      return true;
1902    }
1903  }
1904}
1905
1906SourceRange DeclaratorDecl::getSourceRange() const {
1907  SourceLocation RangeEnd = getLocation();
1908  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1909    // If the declaration has no name or the type extends past the name take the
1910    // end location of the type.
1911    if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1912      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1913  }
1914  return SourceRange(getOuterLocStart(), RangeEnd);
1915}
1916
1917void QualifierInfo::setTemplateParameterListsInfo(
1918    ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1919  // Free previous template parameters (if any).
1920  if (NumTemplParamLists > 0) {
1921    Context.Deallocate(TemplParamLists);
1922    TemplParamLists = nullptr;
1923    NumTemplParamLists = 0;
1924  }
1925  // Set info on matched template parameter lists (if any).
1926  if (!TPLists.empty()) {
1927    TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1928    NumTemplParamLists = TPLists.size();
1929    std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1930  }
1931}
1932
1933//===----------------------------------------------------------------------===//
1934// VarDecl Implementation
1935//===----------------------------------------------------------------------===//
1936
1937const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1938  switch (SC) {
1939  case SC_None:                 break;
1940  case SC_Auto:                 return "auto";
1941  case SC_Extern:               return "extern";
1942  case SC_PrivateExtern:        return "__private_extern__";
1943  case SC_Register:             return "register";
1944  case SC_Static:               return "static";
1945  }
1946
1947  llvm_unreachable("Invalid storage class");
1948}
1949
1950VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1951                 SourceLocation StartLoc, SourceLocation IdLoc,
1952                 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1953                 StorageClass SC)
1954    : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1955      redeclarable_base(C) {
1956  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1957                "VarDeclBitfields too large!");
1958  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1959                "ParmVarDeclBitfields too large!");
1960  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1961                "NonParmVarDeclBitfields too large!");
1962  AllBits = 0;
1963  VarDeclBits.SClass = SC;
1964  // Everything else is implicitly initialized to false.
1965}
1966
1967VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1968                         SourceLocation StartL, SourceLocation IdL,
1969                         IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1970                         StorageClass S) {
1971  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1972}
1973
1974VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1975  return new (C, ID)
1976      VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1977              QualType(), nullptr, SC_None);
1978}
1979
1980void VarDecl::setStorageClass(StorageClass SC) {
1981  assert(isLegalForVariable(SC));
1982  VarDeclBits.SClass = SC;
1983}
1984
1985VarDecl::TLSKind VarDecl::getTLSKind() const {
1986  switch (VarDeclBits.TSCSpec) {
1987  case TSCS_unspecified:
1988    if (!hasAttr<ThreadAttr>() &&
1989        !(getASTContext().getLangOpts().OpenMPUseTLS &&
1990          getASTContext().getTargetInfo().isTLSSupported() &&
1991          hasAttr<OMPThreadPrivateDeclAttr>()))
1992      return TLS_None;
1993    return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1994                LangOptions::MSVC2015)) ||
1995            hasAttr<OMPThreadPrivateDeclAttr>())
1996               ? TLS_Dynamic
1997               : TLS_Static;
1998  case TSCS___thread: // Fall through.
1999  case TSCS__Thread_local:
2000    return TLS_Static;
2001  case TSCS_thread_local:
2002    return TLS_Dynamic;
2003  }
2004  llvm_unreachable("Unknown thread storage class specifier!");
2005}
2006
2007SourceRange VarDecl::getSourceRange() const {
2008  if (const Expr *Init = getInit()) {
2009    SourceLocation InitEnd = Init->getEndLoc();
2010    // If Init is implicit, ignore its source range and fallback on
2011    // DeclaratorDecl::getSourceRange() to handle postfix elements.
2012    if (InitEnd.isValid() && InitEnd != getLocation())
2013      return SourceRange(getOuterLocStart(), InitEnd);
2014  }
2015  return DeclaratorDecl::getSourceRange();
2016}
2017
2018template<typename T>
2019static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2020  // C++ [dcl.link]p1: All function types, function names with external linkage,
2021  // and variable names with external linkage have a language linkage.
2022  if (!D.hasExternalFormalLinkage())
2023    return NoLanguageLinkage;
2024
2025  // Language linkage is a C++ concept, but saying that everything else in C has
2026  // C language linkage fits the implementation nicely.
2027  ASTContext &Context = D.getASTContext();
2028  if (!Context.getLangOpts().CPlusPlus)
2029    return CLanguageLinkage;
2030
2031  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2032  // language linkage of the names of class members and the function type of
2033  // class member functions.
2034  const DeclContext *DC = D.getDeclContext();
2035  if (DC->isRecord())
2036    return CXXLanguageLinkage;
2037
2038  // If the first decl is in an extern "C" context, any other redeclaration
2039  // will have C language linkage. If the first one is not in an extern "C"
2040  // context, we would have reported an error for any other decl being in one.
2041  if (isFirstInExternCContext(&D))
2042    return CLanguageLinkage;
2043  return CXXLanguageLinkage;
2044}
2045
2046template<typename T>
2047static bool isDeclExternC(const T &D) {
2048  // Since the context is ignored for class members, they can only have C++
2049  // language linkage or no language linkage.
2050  const DeclContext *DC = D.getDeclContext();
2051  if (DC->isRecord()) {
2052    assert(D.getASTContext().getLangOpts().CPlusPlus);
2053    return false;
2054  }
2055
2056  return D.getLanguageLinkage() == CLanguageLinkage;
2057}
2058
2059LanguageLinkage VarDecl::getLanguageLinkage() const {
2060  return getDeclLanguageLinkage(*this);
2061}
2062
2063bool VarDecl::isExternC() const {
2064  return isDeclExternC(*this);
2065}
2066
2067bool VarDecl::isInExternCContext() const {
2068  return getLexicalDeclContext()->isExternCContext();
2069}
2070
2071bool VarDecl::isInExternCXXContext() const {
2072  return getLexicalDeclContext()->isExternCXXContext();
2073}
2074
2075VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2076
2077VarDecl::DefinitionKind
2078VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2079  if (isThisDeclarationADemotedDefinition())
2080    return DeclarationOnly;
2081
2082  // C++ [basic.def]p2:
2083  //   A declaration is a definition unless [...] it contains the 'extern'
2084  //   specifier or a linkage-specification and neither an initializer [...],
2085  //   it declares a non-inline static data member in a class declaration [...],
2086  //   it declares a static data member outside a class definition and the variable
2087  //   was defined within the class with the constexpr specifier [...],
2088  // C++1y [temp.expl.spec]p15:
2089  //   An explicit specialization of a static data member or an explicit
2090  //   specialization of a static data member template is a definition if the
2091  //   declaration includes an initializer; otherwise, it is a declaration.
2092  //
2093  // FIXME: How do you declare (but not define) a partial specialization of
2094  // a static data member template outside the containing class?
2095  if (isStaticDataMember()) {
2096    if (isOutOfLine() &&
2097        !(getCanonicalDecl()->isInline() &&
2098          getCanonicalDecl()->isConstexpr()) &&
2099        (hasInit() ||
2100         // If the first declaration is out-of-line, this may be an
2101         // instantiation of an out-of-line partial specialization of a variable
2102         // template for which we have not yet instantiated the initializer.
2103         (getFirstDecl()->isOutOfLine()
2104              ? getTemplateSpecializationKind() == TSK_Undeclared
2105              : getTemplateSpecializationKind() !=
2106                    TSK_ExplicitSpecialization) ||
2107         isa<VarTemplatePartialSpecializationDecl>(this)))
2108      return Definition;
2109    else if (!isOutOfLine() && isInline())
2110      return Definition;
2111    else
2112      return DeclarationOnly;
2113  }
2114  // C99 6.7p5:
2115  //   A definition of an identifier is a declaration for that identifier that
2116  //   [...] causes storage to be reserved for that object.
2117  // Note: that applies for all non-file-scope objects.
2118  // C99 6.9.2p1:
2119  //   If the declaration of an identifier for an object has file scope and an
2120  //   initializer, the declaration is an external definition for the identifier
2121  if (hasInit())
2122    return Definition;
2123
2124  if (hasDefiningAttr())
2125    return Definition;
2126
2127  if (const auto *SAA = getAttr<SelectAnyAttr>())
2128    if (!SAA->isInherited())
2129      return Definition;
2130
2131  // A variable template specialization (other than a static data member
2132  // template or an explicit specialization) is a declaration until we
2133  // instantiate its initializer.
2134  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2135    if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2136        !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2137        !VTSD->IsCompleteDefinition)
2138      return DeclarationOnly;
2139  }
2140
2141  if (hasExternalStorage())
2142    return DeclarationOnly;
2143
2144  // [dcl.link] p7:
2145  //   A declaration directly contained in a linkage-specification is treated
2146  //   as if it contains the extern specifier for the purpose of determining
2147  //   the linkage of the declared name and whether it is a definition.
2148  if (isSingleLineLanguageLinkage(*this))
2149    return DeclarationOnly;
2150
2151  // C99 6.9.2p2:
2152  //   A declaration of an object that has file scope without an initializer,
2153  //   and without a storage class specifier or the scs 'static', constitutes
2154  //   a tentative definition.
2155  // No such thing in C++.
2156  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2157    return TentativeDefinition;
2158
2159  // What's left is (in C, block-scope) declarations without initializers or
2160  // external storage. These are definitions.
2161  return Definition;
2162}
2163
2164VarDecl *VarDecl::getActingDefinition() {
2165  DefinitionKind Kind = isThisDeclarationADefinition();
2166  if (Kind != TentativeDefinition)
2167    return nullptr;
2168
2169  VarDecl *LastTentative = nullptr;
2170  VarDecl *First = getFirstDecl();
2171  for (auto I : First->redecls()) {
2172    Kind = I->isThisDeclarationADefinition();
2173    if (Kind == Definition)
2174      return nullptr;
2175    else if (Kind == TentativeDefinition)
2176      LastTentative = I;
2177  }
2178  return LastTentative;
2179}
2180
2181VarDecl *VarDecl::getDefinition(ASTContext &C) {
2182  VarDecl *First = getFirstDecl();
2183  for (auto I : First->redecls()) {
2184    if (I->isThisDeclarationADefinition(C) == Definition)
2185      return I;
2186  }
2187  return nullptr;
2188}
2189
2190VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2191  DefinitionKind Kind = DeclarationOnly;
2192
2193  const VarDecl *First = getFirstDecl();
2194  for (auto I : First->redecls()) {
2195    Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2196    if (Kind == Definition)
2197      break;
2198  }
2199
2200  return Kind;
2201}
2202
2203const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2204  for (auto I : redecls()) {
2205    if (auto Expr = I->getInit()) {
2206      D = I;
2207      return Expr;
2208    }
2209  }
2210  return nullptr;
2211}
2212
2213bool VarDecl::hasInit() const {
2214  if (auto *P = dyn_cast<ParmVarDecl>(this))
2215    if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2216      return false;
2217
2218  return !Init.isNull();
2219}
2220
2221Expr *VarDecl::getInit() {
2222  if (!hasInit())
2223    return nullptr;
2224
2225  if (auto *S = Init.dyn_cast<Stmt *>())
2226    return cast<Expr>(S);
2227
2228  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2229}
2230
2231Stmt **VarDecl::getInitAddress() {
2232  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2233    return &ES->Value;
2234
2235  return Init.getAddrOfPtr1();
2236}
2237
2238VarDecl *VarDecl::getInitializingDeclaration() {
2239  VarDecl *Def = nullptr;
2240  for (auto I : redecls()) {
2241    if (I->hasInit())
2242      return I;
2243
2244    if (I->isThisDeclarationADefinition()) {
2245      if (isStaticDataMember())
2246        return I;
2247      else
2248        Def = I;
2249    }
2250  }
2251  return Def;
2252}
2253
2254bool VarDecl::isOutOfLine() const {
2255  if (Decl::isOutOfLine())
2256    return true;
2257
2258  if (!isStaticDataMember())
2259    return false;
2260
2261  // If this static data member was instantiated from a static data member of
2262  // a class template, check whether that static data member was defined
2263  // out-of-line.
2264  if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2265    return VD->isOutOfLine();
2266
2267  return false;
2268}
2269
2270void VarDecl::setInit(Expr *I) {
2271  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2272    Eval->~EvaluatedStmt();
2273    getASTContext().Deallocate(Eval);
2274  }
2275
2276  Init = I;
2277}
2278
2279bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
2280  const LangOptions &Lang = C.getLangOpts();
2281
2282  if (!Lang.CPlusPlus)
2283    return false;
2284
2285  // Function parameters are never usable in constant expressions.
2286  if (isa<ParmVarDecl>(this))
2287    return false;
2288
2289  // In C++11, any variable of reference type can be used in a constant
2290  // expression if it is initialized by a constant expression.
2291  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2292    return true;
2293
2294  // Only const objects can be used in constant expressions in C++. C++98 does
2295  // not require the variable to be non-volatile, but we consider this to be a
2296  // defect.
2297  if (!getType().isConstQualified() || getType().isVolatileQualified())
2298    return false;
2299
2300  // In C++, const, non-volatile variables of integral or enumeration types
2301  // can be used in constant expressions.
2302  if (getType()->isIntegralOrEnumerationType())
2303    return true;
2304
2305  // Additionally, in C++11, non-volatile constexpr variables can be used in
2306  // constant expressions.
2307  return Lang.CPlusPlus11 && isConstexpr();
2308}
2309
2310bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
2311  // C++2a [expr.const]p3:
2312  //   A variable is usable in constant expressions after its initializing
2313  //   declaration is encountered...
2314  const VarDecl *DefVD = nullptr;
2315  const Expr *Init = getAnyInitializer(DefVD);
2316  if (!Init || Init->isValueDependent() || getType()->isDependentType())
2317    return false;
2318  //   ... if it is a constexpr variable, or it is of reference type or of
2319  //   const-qualified integral or enumeration type, ...
2320  if (!DefVD->mightBeUsableInConstantExpressions(Context))
2321    return false;
2322  //   ... and its initializer is a constant initializer.
2323  return DefVD->checkInitIsICE();
2324}
2325
2326/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2327/// form, which contains extra information on the evaluated value of the
2328/// initializer.
2329EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2330  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2331  if (!Eval) {
2332    // Note: EvaluatedStmt contains an APValue, which usually holds
2333    // resources not allocated from the ASTContext.  We need to do some
2334    // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2335    // where we can detect whether there's anything to clean up or not.
2336    Eval = new (getASTContext()) EvaluatedStmt;
2337    Eval->Value = Init.get<Stmt *>();
2338    Init = Eval;
2339  }
2340  return Eval;
2341}
2342
2343APValue *VarDecl::evaluateValue() const {
2344  SmallVector<PartialDiagnosticAt, 8> Notes;
2345  return evaluateValue(Notes);
2346}
2347
2348APValue *VarDecl::evaluateValue(
2349    SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2350  EvaluatedStmt *Eval = ensureEvaluatedStmt();
2351
2352  // We only produce notes indicating why an initializer is non-constant the
2353  // first time it is evaluated. FIXME: The notes won't always be emitted the
2354  // first time we try evaluation, so might not be produced at all.
2355  if (Eval->WasEvaluated)
2356    return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2357
2358  const auto *Init = cast<Expr>(Eval->Value);
2359  assert(!Init->isValueDependent());
2360
2361  if (Eval->IsEvaluating) {
2362    // FIXME: Produce a diagnostic for self-initialization.
2363    Eval->CheckedICE = true;
2364    Eval->IsICE = false;
2365    return nullptr;
2366  }
2367
2368  Eval->IsEvaluating = true;
2369
2370  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2371                                            this, Notes);
2372
2373  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2374  // or that it's empty (so that there's nothing to clean up) if evaluation
2375  // failed.
2376  if (!Result)
2377    Eval->Evaluated = APValue();
2378  else if (Eval->Evaluated.needsCleanup())
2379    getASTContext().addDestruction(&Eval->Evaluated);
2380
2381  Eval->IsEvaluating = false;
2382  Eval->WasEvaluated = true;
2383
2384  // In C++11, we have determined whether the initializer was a constant
2385  // expression as a side-effect.
2386  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2387    Eval->CheckedICE = true;
2388    Eval->IsICE = Result && Notes.empty();
2389  }
2390
2391  return Result ? &Eval->Evaluated : nullptr;
2392}
2393
2394APValue *VarDecl::getEvaluatedValue() const {
2395  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2396    if (Eval->WasEvaluated)
2397      return &Eval->Evaluated;
2398
2399  return nullptr;
2400}
2401
2402bool VarDecl::isInitKnownICE() const {
2403  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2404    return Eval->CheckedICE;
2405
2406  return false;
2407}
2408
2409bool VarDecl::isInitICE() const {
2410  assert(isInitKnownICE() &&
2411         "Check whether we already know that the initializer is an ICE");
2412  return Init.get<EvaluatedStmt *>()->IsICE;
2413}
2414
2415bool VarDecl::checkInitIsICE() const {
2416  // Initializers of weak variables are never ICEs.
2417  if (isWeak())
2418    return false;
2419
2420  EvaluatedStmt *Eval = ensureEvaluatedStmt();
2421  if (Eval->CheckedICE)
2422    // We have already checked whether this subexpression is an
2423    // integral constant expression.
2424    return Eval->IsICE;
2425
2426  const auto *Init = cast<Expr>(Eval->Value);
2427  assert(!Init->isValueDependent());
2428
2429  // In C++11, evaluate the initializer to check whether it's a constant
2430  // expression.
2431  if (getASTContext().getLangOpts().CPlusPlus11) {
2432    SmallVector<PartialDiagnosticAt, 8> Notes;
2433    evaluateValue(Notes);
2434    return Eval->IsICE;
2435  }
2436
2437  // It's an ICE whether or not the definition we found is
2438  // out-of-line.  See DR 721 and the discussion in Clang PR
2439  // 6206 for details.
2440
2441  if (Eval->CheckingICE)
2442    return false;
2443  Eval->CheckingICE = true;
2444
2445  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2446  Eval->CheckingICE = false;
2447  Eval->CheckedICE = true;
2448  return Eval->IsICE;
2449}
2450
2451bool VarDecl::isParameterPack() const {
2452  return isa<PackExpansionType>(getType());
2453}
2454
2455template<typename DeclT>
2456static DeclT *getDefinitionOrSelf(DeclT *D) {
2457  assert(D);
2458  if (auto *Def = D->getDefinition())
2459    return Def;
2460  return D;
2461}
2462
2463bool VarDecl::isEscapingByref() const {
2464  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2465}
2466
2467bool VarDecl::isNonEscapingByref() const {
2468  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2469}
2470
2471VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2472  const VarDecl *VD = this;
2473
2474  // If this is an instantiated member, walk back to the template from which
2475  // it was instantiated.
2476  if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2477    if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2478      VD = VD->getInstantiatedFromStaticDataMember();
2479      while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2480        VD = NewVD;
2481    }
2482  }
2483
2484  // If it's an instantiated variable template specialization, find the
2485  // template or partial specialization from which it was instantiated.
2486  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2487    if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2488      auto From = VDTemplSpec->getInstantiatedFrom();
2489      if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2490        while (!VTD->isMemberSpecialization()) {
2491          auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2492          if (!NewVTD)
2493            break;
2494          VTD = NewVTD;
2495        }
2496        return getDefinitionOrSelf(VTD->getTemplatedDecl());
2497      }
2498      if (auto *VTPSD =
2499              From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2500        while (!VTPSD->isMemberSpecialization()) {
2501          auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2502          if (!NewVTPSD)
2503            break;
2504          VTPSD = NewVTPSD;
2505        }
2506        return getDefinitionOrSelf<VarDecl>(VTPSD);
2507      }
2508    }
2509  }
2510
2511  // If this is the pattern of a variable template, find where it was
2512  // instantiated from. FIXME: Is this necessary?
2513  if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2514    while (!VarTemplate->isMemberSpecialization()) {
2515      auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2516      if (!NewVT)
2517        break;
2518      VarTemplate = NewVT;
2519    }
2520
2521    return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2522  }
2523
2524  if (VD == this)
2525    return nullptr;
2526  return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2527}
2528
2529VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2530  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2531    return cast<VarDecl>(MSI->getInstantiatedFrom());
2532
2533  return nullptr;
2534}
2535
2536TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2537  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2538    return Spec->getSpecializationKind();
2539
2540  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2541    return MSI->getTemplateSpecializationKind();
2542
2543  return TSK_Undeclared;
2544}
2545
2546TemplateSpecializationKind
2547VarDecl::getTemplateSpecializationKindForInstantiation() const {
2548  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2549    return MSI->getTemplateSpecializationKind();
2550
2551  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2552    return Spec->getSpecializationKind();
2553
2554  return TSK_Undeclared;
2555}
2556
2557SourceLocation VarDecl::getPointOfInstantiation() const {
2558  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2559    return Spec->getPointOfInstantiation();
2560
2561  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2562    return MSI->getPointOfInstantiation();
2563
2564  return SourceLocation();
2565}
2566
2567VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2568  return getASTContext().getTemplateOrSpecializationInfo(this)
2569      .dyn_cast<VarTemplateDecl *>();
2570}
2571
2572void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2573  getASTContext().setTemplateOrSpecializationInfo(this, Template);
2574}
2575
2576bool VarDecl::isKnownToBeDefined() const {
2577  const auto &LangOpts = getASTContext().getLangOpts();
2578  // In CUDA mode without relocatable device code, variables of form 'extern
2579  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2580  // memory pool.  These are never undefined variables, even if they appear
2581  // inside of an anon namespace or static function.
2582  //
2583  // With CUDA relocatable device code enabled, these variables don't get
2584  // special handling; they're treated like regular extern variables.
2585  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2586      hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2587      isa<IncompleteArrayType>(getType()))
2588    return true;
2589
2590  return hasDefinition();
2591}
2592
2593bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2594  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2595                                (!Ctx.getLangOpts().RegisterStaticDestructors &&
2596                                 !hasAttr<AlwaysDestroyAttr>()));
2597}
2598
2599QualType::DestructionKind
2600VarDecl::needsDestruction(const ASTContext &Ctx) const {
2601  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2602    if (Eval->HasConstantDestruction)
2603      return QualType::DK_none;
2604
2605  if (isNoDestroy(Ctx))
2606    return QualType::DK_none;
2607
2608  return getType().isDestructedType();
2609}
2610
2611MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2612  if (isStaticDataMember())
2613    // FIXME: Remove ?
2614    // return getASTContext().getInstantiatedFromStaticDataMember(this);
2615    return getASTContext().getTemplateOrSpecializationInfo(this)
2616        .dyn_cast<MemberSpecializationInfo *>();
2617  return nullptr;
2618}
2619
2620void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2621                                         SourceLocation PointOfInstantiation) {
2622  assert((isa<VarTemplateSpecializationDecl>(this) ||
2623          getMemberSpecializationInfo()) &&
2624         "not a variable or static data member template specialization");
2625
2626  if (VarTemplateSpecializationDecl *Spec =
2627          dyn_cast<VarTemplateSpecializationDecl>(this)) {
2628    Spec->setSpecializationKind(TSK);
2629    if (TSK != TSK_ExplicitSpecialization &&
2630        PointOfInstantiation.isValid() &&
2631        Spec->getPointOfInstantiation().isInvalid()) {
2632      Spec->setPointOfInstantiation(PointOfInstantiation);
2633      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2634        L->InstantiationRequested(this);
2635    }
2636  } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2637    MSI->setTemplateSpecializationKind(TSK);
2638    if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2639        MSI->getPointOfInstantiation().isInvalid()) {
2640      MSI->setPointOfInstantiation(PointOfInstantiation);
2641      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2642        L->InstantiationRequested(this);
2643    }
2644  }
2645}
2646
2647void
2648VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2649                                            TemplateSpecializationKind TSK) {
2650  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2651         "Previous template or instantiation?");
2652  getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2653}
2654
2655//===----------------------------------------------------------------------===//
2656// ParmVarDecl Implementation
2657//===----------------------------------------------------------------------===//
2658
2659ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2660                                 SourceLocation StartLoc,
2661                                 SourceLocation IdLoc, IdentifierInfo *Id,
2662                                 QualType T, TypeSourceInfo *TInfo,
2663                                 StorageClass S, Expr *DefArg) {
2664  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2665                                 S, DefArg);
2666}
2667
2668QualType ParmVarDecl::getOriginalType() const {
2669  TypeSourceInfo *TSI = getTypeSourceInfo();
2670  QualType T = TSI ? TSI->getType() : getType();
2671  if (const auto *DT = dyn_cast<DecayedType>(T))
2672    return DT->getOriginalType();
2673  return T;
2674}
2675
2676ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2677  return new (C, ID)
2678      ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2679                  nullptr, QualType(), nullptr, SC_None, nullptr);
2680}
2681
2682SourceRange ParmVarDecl::getSourceRange() const {
2683  if (!hasInheritedDefaultArg()) {
2684    SourceRange ArgRange = getDefaultArgRange();
2685    if (ArgRange.isValid())
2686      return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2687  }
2688
2689  // DeclaratorDecl considers the range of postfix types as overlapping with the
2690  // declaration name, but this is not the case with parameters in ObjC methods.
2691  if (isa<ObjCMethodDecl>(getDeclContext()))
2692    return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2693
2694  return DeclaratorDecl::getSourceRange();
2695}
2696
2697Expr *ParmVarDecl::getDefaultArg() {
2698  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2699  assert(!hasUninstantiatedDefaultArg() &&
2700         "Default argument is not yet instantiated!");
2701
2702  Expr *Arg = getInit();
2703  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2704    return E->getSubExpr();
2705
2706  return Arg;
2707}
2708
2709void ParmVarDecl::setDefaultArg(Expr *defarg) {
2710  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2711  Init = defarg;
2712}
2713
2714SourceRange ParmVarDecl::getDefaultArgRange() const {
2715  switch (ParmVarDeclBits.DefaultArgKind) {
2716  case DAK_None:
2717  case DAK_Unparsed:
2718    // Nothing we can do here.
2719    return SourceRange();
2720
2721  case DAK_Uninstantiated:
2722    return getUninstantiatedDefaultArg()->getSourceRange();
2723
2724  case DAK_Normal:
2725    if (const Expr *E = getInit())
2726      return E->getSourceRange();
2727
2728    // Missing an actual expression, may be invalid.
2729    return SourceRange();
2730  }
2731  llvm_unreachable("Invalid default argument kind.");
2732}
2733
2734void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2735  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2736  Init = arg;
2737}
2738
2739Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2740  assert(hasUninstantiatedDefaultArg() &&
2741         "Wrong kind of initialization expression!");
2742  return cast_or_null<Expr>(Init.get<Stmt *>());
2743}
2744
2745bool ParmVarDecl::hasDefaultArg() const {
2746  // FIXME: We should just return false for DAK_None here once callers are
2747  // prepared for the case that we encountered an invalid default argument and
2748  // were unable to even build an invalid expression.
2749  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2750         !Init.isNull();
2751}
2752
2753void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2754  getASTContext().setParameterIndex(this, parameterIndex);
2755  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2756}
2757
2758unsigned ParmVarDecl::getParameterIndexLarge() const {
2759  return getASTContext().getParameterIndex(this);
2760}
2761
2762//===----------------------------------------------------------------------===//
2763// FunctionDecl Implementation
2764//===----------------------------------------------------------------------===//
2765
2766FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2767                           SourceLocation StartLoc,
2768                           const DeclarationNameInfo &NameInfo, QualType T,
2769                           TypeSourceInfo *TInfo, StorageClass S,
2770                           bool isInlineSpecified,
2771                           ConstexprSpecKind ConstexprKind,
2772                           Expr *TrailingRequiresClause)
2773    : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2774                     StartLoc),
2775      DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2776      EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2777  assert(T.isNull() || T->isFunctionType());
2778  FunctionDeclBits.SClass = S;
2779  FunctionDeclBits.IsInline = isInlineSpecified;
2780  FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2781  FunctionDeclBits.IsVirtualAsWritten = false;
2782  FunctionDeclBits.IsPure = false;
2783  FunctionDeclBits.HasInheritedPrototype = false;
2784  FunctionDeclBits.HasWrittenPrototype = true;
2785  FunctionDeclBits.IsDeleted = false;
2786  FunctionDeclBits.IsTrivial = false;
2787  FunctionDeclBits.IsTrivialForCall = false;
2788  FunctionDeclBits.IsDefaulted = false;
2789  FunctionDeclBits.IsExplicitlyDefaulted = false;
2790  FunctionDeclBits.HasDefaultedFunctionInfo = false;
2791  FunctionDeclBits.HasImplicitReturnZero = false;
2792  FunctionDeclBits.IsLateTemplateParsed = false;
2793  FunctionDeclBits.ConstexprKind = ConstexprKind;
2794  FunctionDeclBits.InstantiationIsPending = false;
2795  FunctionDeclBits.UsesSEHTry = false;
2796  FunctionDeclBits.UsesFPIntrin = false;
2797  FunctionDeclBits.HasSkippedBody = false;
2798  FunctionDeclBits.WillHaveBody = false;
2799  FunctionDeclBits.IsMultiVersion = false;
2800  FunctionDeclBits.IsCopyDeductionCandidate = false;
2801  FunctionDeclBits.HasODRHash = false;
2802  if (TrailingRequiresClause)
2803    setTrailingRequiresClause(TrailingRequiresClause);
2804}
2805
2806void FunctionDecl::getNameForDiagnostic(
2807    raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2808  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2809  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2810  if (TemplateArgs)
2811    printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2812}
2813
2814bool FunctionDecl::isVariadic() const {
2815  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2816    return FT->isVariadic();
2817  return false;
2818}
2819
2820FunctionDecl::DefaultedFunctionInfo *
2821FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2822                                            ArrayRef<DeclAccessPair> Lookups) {
2823  DefaultedFunctionInfo *Info = new (Context.Allocate(
2824      totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2825      std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2826      DefaultedFunctionInfo;
2827  Info->NumLookups = Lookups.size();
2828  std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2829                          Info->getTrailingObjects<DeclAccessPair>());
2830  return Info;
2831}
2832
2833void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2834  assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2835  assert(!Body && "can't replace function body with defaulted function info");
2836
2837  FunctionDeclBits.HasDefaultedFunctionInfo = true;
2838  DefaultedInfo = Info;
2839}
2840
2841FunctionDecl::DefaultedFunctionInfo *
2842FunctionDecl::getDefaultedFunctionInfo() const {
2843  return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2844}
2845
2846bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2847  for (auto I : redecls()) {
2848    if (I->doesThisDeclarationHaveABody()) {
2849      Definition = I;
2850      return true;
2851    }
2852  }
2853
2854  return false;
2855}
2856
2857bool FunctionDecl::hasTrivialBody() const {
2858  Stmt *S = getBody();
2859  if (!S) {
2860    // Since we don't have a body for this function, we don't know if it's
2861    // trivial or not.
2862    return false;
2863  }
2864
2865  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2866    return true;
2867  return false;
2868}
2869
2870bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2871  for (auto I : redecls()) {
2872    if (I->isThisDeclarationADefinition()) {
2873      Definition = I;
2874      return true;
2875    }
2876  }
2877
2878  return false;
2879}
2880
2881Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2882  if (!hasBody(Definition))
2883    return nullptr;
2884
2885  assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
2886         "definition should not have a body");
2887  if (Definition->Body)
2888    return Definition->Body.get(getASTContext().getExternalSource());
2889
2890  return nullptr;
2891}
2892
2893void FunctionDecl::setBody(Stmt *B) {
2894  FunctionDeclBits.HasDefaultedFunctionInfo = false;
2895  Body = LazyDeclStmtPtr(B);
2896  if (B)
2897    EndRangeLoc = B->getEndLoc();
2898}
2899
2900void FunctionDecl::setPure(bool P) {
2901  FunctionDeclBits.IsPure = P;
2902  if (P)
2903    if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2904      Parent->markedVirtualFunctionPure();
2905}
2906
2907template<std::size_t Len>
2908static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2909  IdentifierInfo *II = ND->getIdentifier();
2910  return II && II->isStr(Str);
2911}
2912
2913bool FunctionDecl::isMain() const {
2914  const TranslationUnitDecl *tunit =
2915    dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2916  return tunit &&
2917         !tunit->getASTContext().getLangOpts().Freestanding &&
2918         isNamed(this, "main");
2919}
2920
2921bool FunctionDecl::isMSVCRTEntryPoint() const {
2922  const TranslationUnitDecl *TUnit =
2923      dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2924  if (!TUnit)
2925    return false;
2926
2927  // Even though we aren't really targeting MSVCRT if we are freestanding,
2928  // semantic analysis for these functions remains the same.
2929
2930  // MSVCRT entry points only exist on MSVCRT targets.
2931  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2932    return false;
2933
2934  // Nameless functions like constructors cannot be entry points.
2935  if (!getIdentifier())
2936    return false;
2937
2938  return llvm::StringSwitch<bool>(getName())
2939      .Cases("main",     // an ANSI console app
2940             "wmain",    // a Unicode console App
2941             "WinMain",  // an ANSI GUI app
2942             "wWinMain", // a Unicode GUI app
2943             "DllMain",  // a DLL
2944             true)
2945      .Default(false);
2946}
2947
2948bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2949  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2950  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2951         getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2952         getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2953         getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2954
2955  if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2956    return false;
2957
2958  const auto *proto = getType()->castAs<FunctionProtoType>();
2959  if (proto->getNumParams() != 2 || proto->isVariadic())
2960    return false;
2961
2962  ASTContext &Context =
2963    cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2964      ->getASTContext();
2965
2966  // The result type and first argument type are constant across all
2967  // these operators.  The second argument must be exactly void*.
2968  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2969}
2970
2971bool FunctionDecl::isReplaceableGlobalAllocationFunction(
2972    Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
2973  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2974    return false;
2975  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2976      getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2977      getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2978      getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2979    return false;
2980
2981  if (isa<CXXRecordDecl>(getDeclContext()))
2982    return false;
2983
2984  // This can only fail for an invalid 'operator new' declaration.
2985  if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2986    return false;
2987
2988  const auto *FPT = getType()->castAs<FunctionProtoType>();
2989  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2990    return false;
2991
2992  // If this is a single-parameter function, it must be a replaceable global
2993  // allocation or deallocation function.
2994  if (FPT->getNumParams() == 1)
2995    return true;
2996
2997  unsigned Params = 1;
2998  QualType Ty = FPT->getParamType(Params);
2999  ASTContext &Ctx = getASTContext();
3000
3001  auto Consume = [&] {
3002    ++Params;
3003    Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3004  };
3005
3006  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3007  bool IsSizedDelete = false;
3008  if (Ctx.getLangOpts().SizedDeallocation &&
3009      (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3010       getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3011      Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3012    IsSizedDelete = true;
3013    Consume();
3014  }
3015
3016  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3017  // new/delete.
3018  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3019    Consume();
3020    if (AlignmentParam)
3021      *AlignmentParam = Params;
3022  }
3023
3024  // Finally, if this is not a sized delete, the final parameter can
3025  // be a 'const std::nothrow_t&'.
3026  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3027    Ty = Ty->getPointeeType();
3028    if (Ty.getCVRQualifiers() != Qualifiers::Const)
3029      return false;
3030    if (Ty->isNothrowT()) {
3031      if (IsNothrow)
3032        *IsNothrow = true;
3033      Consume();
3034    }
3035  }
3036
3037  return Params == FPT->getNumParams();
3038}
3039
3040bool FunctionDecl::isInlineBuiltinDeclaration() const {
3041  if (!getBuiltinID())
3042    return false;
3043
3044  const FunctionDecl *Definition;
3045  return hasBody(Definition) && Definition->isInlineSpecified();
3046}
3047
3048bool FunctionDecl::isDestroyingOperatorDelete() const {
3049  // C++ P0722:
3050  //   Within a class C, a single object deallocation function with signature
3051  //     (T, std::destroying_delete_t, <more params>)
3052  //   is a destroying operator delete.
3053  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3054      getNumParams() < 2)
3055    return false;
3056
3057  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3058  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3059         RD->getIdentifier()->isStr("destroying_delete_t");
3060}
3061
3062LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3063  return getDeclLanguageLinkage(*this);
3064}
3065
3066bool FunctionDecl::isExternC() const {
3067  return isDeclExternC(*this);
3068}
3069
3070bool FunctionDecl::isInExternCContext() const {
3071  if (hasAttr<OpenCLKernelAttr>())
3072    return true;
3073  return getLexicalDeclContext()->isExternCContext();
3074}
3075
3076bool FunctionDecl::isInExternCXXContext() const {
3077  return getLexicalDeclContext()->isExternCXXContext();
3078}
3079
3080bool FunctionDecl::isGlobal() const {
3081  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3082    return Method->isStatic();
3083
3084  if (getCanonicalDecl()->getStorageClass() == SC_Static)
3085    return false;
3086
3087  for (const DeclContext *DC = getDeclContext();
3088       DC->isNamespace();
3089       DC = DC->getParent()) {
3090    if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3091      if (!Namespace->getDeclName())
3092        return false;
3093      break;
3094    }
3095  }
3096
3097  return true;
3098}
3099
3100bool FunctionDecl::isNoReturn() const {
3101  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3102      hasAttr<C11NoReturnAttr>())
3103    return true;
3104
3105  if (auto *FnTy = getType()->getAs<FunctionType>())
3106    return FnTy->getNoReturnAttr();
3107
3108  return false;
3109}
3110
3111
3112MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3113  if (hasAttr<TargetAttr>())
3114    return MultiVersionKind::Target;
3115  if (hasAttr<CPUDispatchAttr>())
3116    return MultiVersionKind::CPUDispatch;
3117  if (hasAttr<CPUSpecificAttr>())
3118    return MultiVersionKind::CPUSpecific;
3119  return MultiVersionKind::None;
3120}
3121
3122bool FunctionDecl::isCPUDispatchMultiVersion() const {
3123  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3124}
3125
3126bool FunctionDecl::isCPUSpecificMultiVersion() const {
3127  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3128}
3129
3130bool FunctionDecl::isTargetMultiVersion() const {
3131  return isMultiVersion() && hasAttr<TargetAttr>();
3132}
3133
3134void
3135FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3136  redeclarable_base::setPreviousDecl(PrevDecl);
3137
3138  if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3139    FunctionTemplateDecl *PrevFunTmpl
3140      = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3141    assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3142    FunTmpl->setPreviousDecl(PrevFunTmpl);
3143  }
3144
3145  if (PrevDecl && PrevDecl->isInlined())
3146    setImplicitlyInline(true);
3147}
3148
3149FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3150
3151/// Returns a value indicating whether this function corresponds to a builtin
3152/// function.
3153///
3154/// The function corresponds to a built-in function if it is declared at
3155/// translation scope or within an extern "C" block and its name matches with
3156/// the name of a builtin. The returned value will be 0 for functions that do
3157/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3158/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3159/// value.
3160///
3161/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3162/// functions as their wrapped builtins. This shouldn't be done in general, but
3163/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3164unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3165  unsigned BuiltinID = 0;
3166
3167  if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3168    BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3169  } else if (const auto *A = getAttr<BuiltinAttr>()) {
3170    BuiltinID = A->getID();
3171  }
3172
3173  if (!BuiltinID)
3174    return 0;
3175
3176  // If the function is marked "overloadable", it has a different mangled name
3177  // and is not the C library function.
3178  if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3179      !hasAttr<ArmBuiltinAliasAttr>())
3180    return 0;
3181
3182  ASTContext &Context = getASTContext();
3183  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3184    return BuiltinID;
3185
3186  // This function has the name of a known C library
3187  // function. Determine whether it actually refers to the C library
3188  // function or whether it just has the same name.
3189
3190  // If this is a static function, it's not a builtin.
3191  if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3192    return 0;
3193
3194  // OpenCL v1.2 s6.9.f - The library functions defined in
3195  // the C99 standard headers are not available.
3196  if (Context.getLangOpts().OpenCL &&
3197      Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3198    return 0;
3199
3200  // CUDA does not have device-side standard library. printf and malloc are the
3201  // only special cases that are supported by device-side runtime.
3202  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3203      !hasAttr<CUDAHostAttr>() &&
3204      !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3205    return 0;
3206
3207  // As AMDGCN implementation of OpenMP does not have a device-side standard
3208  // library, none of the predefined library functions except printf and malloc
3209  // should be treated as a builtin i.e. 0 should be returned for them.
3210  if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3211      Context.getLangOpts().OpenMPIsDevice &&
3212      Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3213      !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3214    return 0;
3215
3216  return BuiltinID;
3217}
3218
3219/// getNumParams - Return the number of parameters this function must have
3220/// based on its FunctionType.  This is the length of the ParamInfo array
3221/// after it has been created.
3222unsigned FunctionDecl::getNumParams() const {
3223  const auto *FPT = getType()->getAs<FunctionProtoType>();
3224  return FPT ? FPT->getNumParams() : 0;
3225}
3226
3227void FunctionDecl::setParams(ASTContext &C,
3228                             ArrayRef<ParmVarDecl *> NewParamInfo) {
3229  assert(!ParamInfo && "Already has param info!");
3230  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3231
3232  // Zero params -> null pointer.
3233  if (!NewParamInfo.empty()) {
3234    ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3235    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3236  }
3237}
3238
3239/// getMinRequiredArguments - Returns the minimum number of arguments
3240/// needed to call this function. This may be fewer than the number of
3241/// function parameters, if some of the parameters have default
3242/// arguments (in C++) or are parameter packs (C++11).
3243unsigned FunctionDecl::getMinRequiredArguments() const {
3244  if (!getASTContext().getLangOpts().CPlusPlus)
3245    return getNumParams();
3246
3247  // Note that it is possible for a parameter with no default argument to
3248  // follow a parameter with a default argument.
3249  unsigned NumRequiredArgs = 0;
3250  unsigned MinParamsSoFar = 0;
3251  for (auto *Param : parameters()) {
3252    if (!Param->isParameterPack()) {
3253      ++MinParamsSoFar;
3254      if (!Param->hasDefaultArg())
3255        NumRequiredArgs = MinParamsSoFar;
3256    }
3257  }
3258  return NumRequiredArgs;
3259}
3260
3261bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3262  return getNumParams() == 1 ||
3263         (getNumParams() > 1 &&
3264          std::all_of(param_begin() + 1, param_end(),
3265                      [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3266}
3267
3268/// The combination of the extern and inline keywords under MSVC forces
3269/// the function to be required.
3270///
3271/// Note: This function assumes that we will only get called when isInlined()
3272/// would return true for this FunctionDecl.
3273bool FunctionDecl::isMSExternInline() const {
3274  assert(isInlined() && "expected to get called on an inlined function!");
3275
3276  const ASTContext &Context = getASTContext();
3277  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3278      !hasAttr<DLLExportAttr>())
3279    return false;
3280
3281  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3282       FD = FD->getPreviousDecl())
3283    if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3284      return true;
3285
3286  return false;
3287}
3288
3289static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3290  if (Redecl->getStorageClass() != SC_Extern)
3291    return false;
3292
3293  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3294       FD = FD->getPreviousDecl())
3295    if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3296      return false;
3297
3298  return true;
3299}
3300
3301static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3302  // Only consider file-scope declarations in this test.
3303  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3304    return false;
3305
3306  // Only consider explicit declarations; the presence of a builtin for a
3307  // libcall shouldn't affect whether a definition is externally visible.
3308  if (Redecl->isImplicit())
3309    return false;
3310
3311  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3312    return true; // Not an inline definition
3313
3314  return false;
3315}
3316
3317/// For a function declaration in C or C++, determine whether this
3318/// declaration causes the definition to be externally visible.
3319///
3320/// For instance, this determines if adding the current declaration to the set
3321/// of redeclarations of the given functions causes
3322/// isInlineDefinitionExternallyVisible to change from false to true.
3323bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3324  assert(!doesThisDeclarationHaveABody() &&
3325         "Must have a declaration without a body.");
3326
3327  ASTContext &Context = getASTContext();
3328
3329  if (Context.getLangOpts().MSVCCompat) {
3330    const FunctionDecl *Definition;
3331    if (hasBody(Definition) && Definition->isInlined() &&
3332        redeclForcesDefMSVC(this))
3333      return true;
3334  }
3335
3336  if (Context.getLangOpts().CPlusPlus)
3337    return false;
3338
3339  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3340    // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3341    // an externally visible definition.
3342    //
3343    // FIXME: What happens if gnu_inline gets added on after the first
3344    // declaration?
3345    if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3346      return false;
3347
3348    const FunctionDecl *Prev = this;
3349    bool FoundBody = false;
3350    while ((Prev = Prev->getPreviousDecl())) {
3351      FoundBody |= Prev->doesThisDeclarationHaveABody();
3352
3353      if (Prev->doesThisDeclarationHaveABody()) {
3354        // If it's not the case that both 'inline' and 'extern' are
3355        // specified on the definition, then it is always externally visible.
3356        if (!Prev->isInlineSpecified() ||
3357            Prev->getStorageClass() != SC_Extern)
3358          return false;
3359      } else if (Prev->isInlineSpecified() &&
3360                 Prev->getStorageClass() != SC_Extern) {
3361        return false;
3362      }
3363    }
3364    return FoundBody;
3365  }
3366
3367  // C99 6.7.4p6:
3368  //   [...] If all of the file scope declarations for a function in a
3369  //   translation unit include the inline function specifier without extern,
3370  //   then the definition in that translation unit is an inline definition.
3371  if (isInlineSpecified() && getStorageClass() != SC_Extern)
3372    return false;
3373  const FunctionDecl *Prev = this;
3374  bool FoundBody = false;
3375  while ((Prev = Prev->getPreviousDecl())) {
3376    FoundBody |= Prev->doesThisDeclarationHaveABody();
3377    if (RedeclForcesDefC99(Prev))
3378      return false;
3379  }
3380  return FoundBody;
3381}
3382
3383FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3384  const TypeSourceInfo *TSI = getTypeSourceInfo();
3385  return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3386             : FunctionTypeLoc();
3387}
3388
3389SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3390  FunctionTypeLoc FTL = getFunctionTypeLoc();
3391  if (!FTL)
3392    return SourceRange();
3393
3394  // Skip self-referential return types.
3395  const SourceManager &SM = getASTContext().getSourceManager();
3396  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3397  SourceLocation Boundary = getNameInfo().getBeginLoc();
3398  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3399      !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3400    return SourceRange();
3401
3402  return RTRange;
3403}
3404
3405SourceRange FunctionDecl::getParametersSourceRange() const {
3406  unsigned NP = getNumParams();
3407  SourceLocation EllipsisLoc = getEllipsisLoc();
3408
3409  if (NP == 0 && EllipsisLoc.isInvalid())
3410    return SourceRange();
3411
3412  SourceLocation Begin =
3413      NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3414  SourceLocation End = EllipsisLoc.isValid()
3415                           ? EllipsisLoc
3416                           : ParamInfo[NP - 1]->getSourceRange().getEnd();
3417
3418  return SourceRange(Begin, End);
3419}
3420
3421SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3422  FunctionTypeLoc FTL = getFunctionTypeLoc();
3423  return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3424}
3425
3426/// For an inline function definition in C, or for a gnu_inline function
3427/// in C++, determine whether the definition will be externally visible.
3428///
3429/// Inline function definitions are always available for inlining optimizations.
3430/// However, depending on the language dialect, declaration specifiers, and
3431/// attributes, the definition of an inline function may or may not be
3432/// "externally" visible to other translation units in the program.
3433///
3434/// In C99, inline definitions are not externally visible by default. However,
3435/// if even one of the global-scope declarations is marked "extern inline", the
3436/// inline definition becomes externally visible (C99 6.7.4p6).
3437///
3438/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3439/// definition, we use the GNU semantics for inline, which are nearly the
3440/// opposite of C99 semantics. In particular, "inline" by itself will create
3441/// an externally visible symbol, but "extern inline" will not create an
3442/// externally visible symbol.
3443bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3444  assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3445          hasAttr<AliasAttr>()) &&
3446         "Must be a function definition");
3447  assert(isInlined() && "Function must be inline");
3448  ASTContext &Context = getASTContext();
3449
3450  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3451    // Note: If you change the logic here, please change
3452    // doesDeclarationForceExternallyVisibleDefinition as well.
3453    //
3454    // If it's not the case that both 'inline' and 'extern' are
3455    // specified on the definition, then this inline definition is
3456    // externally visible.
3457    if (Context.getLangOpts().CPlusPlus)
3458      return false;
3459    if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3460      return true;
3461
3462    // If any declaration is 'inline' but not 'extern', then this definition
3463    // is externally visible.
3464    for (auto Redecl : redecls()) {
3465      if (Redecl->isInlineSpecified() &&
3466          Redecl->getStorageClass() != SC_Extern)
3467        return true;
3468    }
3469
3470    return false;
3471  }
3472
3473  // The rest of this function is C-only.
3474  assert(!Context.getLangOpts().CPlusPlus &&
3475         "should not use C inline rules in C++");
3476
3477  // C99 6.7.4p6:
3478  //   [...] If all of the file scope declarations for a function in a
3479  //   translation unit include the inline function specifier without extern,
3480  //   then the definition in that translation unit is an inline definition.
3481  for (auto Redecl : redecls()) {
3482    if (RedeclForcesDefC99(Redecl))
3483      return true;
3484  }
3485
3486  // C99 6.7.4p6:
3487  //   An inline definition does not provide an external definition for the
3488  //   function, and does not forbid an external definition in another
3489  //   translation unit.
3490  return false;
3491}
3492
3493/// getOverloadedOperator - Which C++ overloaded operator this
3494/// function represents, if any.
3495OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3496  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3497    return getDeclName().getCXXOverloadedOperator();
3498  else
3499    return OO_None;
3500}
3501
3502/// getLiteralIdentifier - The literal suffix identifier this function
3503/// represents, if any.
3504const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3505  if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3506    return getDeclName().getCXXLiteralIdentifier();
3507  else
3508    return nullptr;
3509}
3510
3511FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3512  if (TemplateOrSpecialization.isNull())
3513    return TK_NonTemplate;
3514  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3515    return TK_FunctionTemplate;
3516  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3517    return TK_MemberSpecialization;
3518  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3519    return TK_FunctionTemplateSpecialization;
3520  if (TemplateOrSpecialization.is
3521                               <DependentFunctionTemplateSpecializationInfo*>())
3522    return TK_DependentFunctionTemplateSpecialization;
3523
3524  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3525}
3526
3527FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3528  if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3529    return cast<FunctionDecl>(Info->getInstantiatedFrom());
3530
3531  return nullptr;
3532}
3533
3534MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3535  if (auto *MSI =
3536          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3537    return MSI;
3538  if (auto *FTSI = TemplateOrSpecialization
3539                       .dyn_cast<FunctionTemplateSpecializationInfo *>())
3540    return FTSI->getMemberSpecializationInfo();
3541  return nullptr;
3542}
3543
3544void
3545FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3546                                               FunctionDecl *FD,
3547                                               TemplateSpecializationKind TSK) {
3548  assert(TemplateOrSpecialization.isNull() &&
3549         "Member function is already a specialization");
3550  MemberSpecializationInfo *Info
3551    = new (C) MemberSpecializationInfo(FD, TSK);
3552  TemplateOrSpecialization = Info;
3553}
3554
3555FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3556  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3557}
3558
3559void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3560  assert(TemplateOrSpecialization.isNull() &&
3561         "Member function is already a specialization");
3562  TemplateOrSpecialization = Template;
3563}
3564
3565bool FunctionDecl::isImplicitlyInstantiable() const {
3566  // If the function is invalid, it can't be implicitly instantiated.
3567  if (isInvalidDecl())
3568    return false;
3569
3570  switch (getTemplateSpecializationKindForInstantiation()) {
3571  case TSK_Undeclared:
3572  case TSK_ExplicitInstantiationDefinition:
3573  case TSK_ExplicitSpecialization:
3574    return false;
3575
3576  case TSK_ImplicitInstantiation:
3577    return true;
3578
3579  case TSK_ExplicitInstantiationDeclaration:
3580    // Handled below.
3581    break;
3582  }
3583
3584  // Find the actual template from which we will instantiate.
3585  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3586  bool HasPattern = false;
3587  if (PatternDecl)
3588    HasPattern = PatternDecl->hasBody(PatternDecl);
3589
3590  // C++0x [temp.explicit]p9:
3591  //   Except for inline functions, other explicit instantiation declarations
3592  //   have the effect of suppressing the implicit instantiation of the entity
3593  //   to which they refer.
3594  if (!HasPattern || !PatternDecl)
3595    return true;
3596
3597  return PatternDecl->isInlined();
3598}
3599
3600bool FunctionDecl::isTemplateInstantiation() const {
3601  // FIXME: Remove this, it's not clear what it means. (Which template
3602  // specialization kind?)
3603  return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3604}
3605
3606FunctionDecl *
3607FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3608  // If this is a generic lambda call operator specialization, its
3609  // instantiation pattern is always its primary template's pattern
3610  // even if its primary template was instantiated from another
3611  // member template (which happens with nested generic lambdas).
3612  // Since a lambda's call operator's body is transformed eagerly,
3613  // we don't have to go hunting for a prototype definition template
3614  // (i.e. instantiated-from-member-template) to use as an instantiation
3615  // pattern.
3616
3617  if (isGenericLambdaCallOperatorSpecialization(
3618          dyn_cast<CXXMethodDecl>(this))) {
3619    assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3620    return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3621  }
3622
3623  if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
3624    if (ForDefinition &&
3625        !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3626      return nullptr;
3627    return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3628  }
3629
3630  if (ForDefinition &&
3631      !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3632    return nullptr;
3633
3634  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3635    // If we hit a point where the user provided a specialization of this
3636    // template, we're done looking.
3637    while (!ForDefinition || !Primary->isMemberSpecialization()) {
3638      auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3639      if (!NewPrimary)
3640        break;
3641      Primary = NewPrimary;
3642    }
3643
3644    return getDefinitionOrSelf(Primary->getTemplatedDecl());
3645  }
3646
3647  return nullptr;
3648}
3649
3650FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3651  if (FunctionTemplateSpecializationInfo *Info
3652        = TemplateOrSpecialization
3653            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3654    return Info->getTemplate();
3655  }
3656  return nullptr;
3657}
3658
3659FunctionTemplateSpecializationInfo *
3660FunctionDecl::getTemplateSpecializationInfo() const {
3661  return TemplateOrSpecialization
3662      .dyn_cast<FunctionTemplateSpecializationInfo *>();
3663}
3664
3665const TemplateArgumentList *
3666FunctionDecl::getTemplateSpecializationArgs() const {
3667  if (FunctionTemplateSpecializationInfo *Info
3668        = TemplateOrSpecialization
3669            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3670    return Info->TemplateArguments;
3671  }
3672  return nullptr;
3673}
3674
3675const ASTTemplateArgumentListInfo *
3676FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3677  if (FunctionTemplateSpecializationInfo *Info
3678        = TemplateOrSpecialization
3679            .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3680    return Info->TemplateArgumentsAsWritten;
3681  }
3682  return nullptr;
3683}
3684
3685void
3686FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3687                                                FunctionTemplateDecl *Template,
3688                                     const TemplateArgumentList *TemplateArgs,
3689                                                void *InsertPos,
3690                                                TemplateSpecializationKind TSK,
3691                        const TemplateArgumentListInfo *TemplateArgsAsWritten,
3692                                          SourceLocation PointOfInstantiation) {
3693  assert((TemplateOrSpecialization.isNull() ||
3694          TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3695         "Member function is already a specialization");
3696  assert(TSK != TSK_Undeclared &&
3697         "Must specify the type of function template specialization");
3698  assert((TemplateOrSpecialization.isNull() ||
3699          TSK == TSK_ExplicitSpecialization) &&
3700         "Member specialization must be an explicit specialization");
3701  FunctionTemplateSpecializationInfo *Info =
3702      FunctionTemplateSpecializationInfo::Create(
3703          C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3704          PointOfInstantiation,
3705          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3706  TemplateOrSpecialization = Info;
3707  Template->addSpecialization(Info, InsertPos);
3708}
3709
3710void
3711FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3712                                    const UnresolvedSetImpl &Templates,
3713                             const TemplateArgumentListInfo &TemplateArgs) {
3714  assert(TemplateOrSpecialization.isNull());
3715  DependentFunctionTemplateSpecializationInfo *Info =
3716      DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3717                                                          TemplateArgs);
3718  TemplateOrSpecialization = Info;
3719}
3720
3721DependentFunctionTemplateSpecializationInfo *
3722FunctionDecl::getDependentSpecializationInfo() const {
3723  return TemplateOrSpecialization
3724      .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3725}
3726
3727DependentFunctionTemplateSpecializationInfo *
3728DependentFunctionTemplateSpecializationInfo::Create(
3729    ASTContext &Context, const UnresolvedSetImpl &Ts,
3730    const TemplateArgumentListInfo &TArgs) {
3731  void *Buffer = Context.Allocate(
3732      totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3733          TArgs.size(), Ts.size()));
3734  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3735}
3736
3737DependentFunctionTemplateSpecializationInfo::
3738DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3739                                      const TemplateArgumentListInfo &TArgs)
3740  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3741  NumTemplates = Ts.size();
3742  NumArgs = TArgs.size();
3743
3744  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3745  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3746    TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3747
3748  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3749  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3750    new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3751}
3752
3753TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3754  // For a function template specialization, query the specialization
3755  // information object.
3756  if (FunctionTemplateSpecializationInfo *FTSInfo =
3757          TemplateOrSpecialization
3758              .dyn_cast<FunctionTemplateSpecializationInfo *>())
3759    return FTSInfo->getTemplateSpecializationKind();
3760
3761  if (MemberSpecializationInfo *MSInfo =
3762          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3763    return MSInfo->getTemplateSpecializationKind();
3764
3765  return TSK_Undeclared;
3766}
3767
3768TemplateSpecializationKind
3769FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3770  // This is the same as getTemplateSpecializationKind(), except that for a
3771  // function that is both a function template specialization and a member
3772  // specialization, we prefer the member specialization information. Eg:
3773  //
3774  // template<typename T> struct A {
3775  //   template<typename U> void f() {}
3776  //   template<> void f<int>() {}
3777  // };
3778  //
3779  // For A<int>::f<int>():
3780  // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3781  // * getTemplateSpecializationKindForInstantiation() will return
3782  //       TSK_ImplicitInstantiation
3783  //
3784  // This reflects the facts that A<int>::f<int> is an explicit specialization
3785  // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3786  // from A::f<int> if a definition is needed.
3787  if (FunctionTemplateSpecializationInfo *FTSInfo =
3788          TemplateOrSpecialization
3789              .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3790    if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3791      return MSInfo->getTemplateSpecializationKind();
3792    return FTSInfo->getTemplateSpecializationKind();
3793  }
3794
3795  if (MemberSpecializationInfo *MSInfo =
3796          TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3797    return MSInfo->getTemplateSpecializationKind();
3798
3799  return TSK_Undeclared;
3800}
3801
3802void
3803FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3804                                          SourceLocation PointOfInstantiation) {
3805  if (FunctionTemplateSpecializationInfo *FTSInfo
3806        = TemplateOrSpecialization.dyn_cast<
3807                                    FunctionTemplateSpecializationInfo*>()) {
3808    FTSInfo->setTemplateSpecializationKind(TSK);
3809    if (TSK != TSK_ExplicitSpecialization &&
3810        PointOfInstantiation.isValid() &&
3811        FTSInfo->getPointOfInstantiation().isInvalid()) {
3812      FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3813      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3814        L->InstantiationRequested(this);
3815    }
3816  } else if (MemberSpecializationInfo *MSInfo
3817             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3818    MSInfo->setTemplateSpecializationKind(TSK);
3819    if (TSK != TSK_ExplicitSpecialization &&
3820        PointOfInstantiation.isValid() &&
3821        MSInfo->getPointOfInstantiation().isInvalid()) {
3822      MSInfo->setPointOfInstantiation(PointOfInstantiation);
3823      if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3824        L->InstantiationRequested(this);
3825    }
3826  } else
3827    llvm_unreachable("Function cannot have a template specialization kind");
3828}
3829
3830SourceLocation FunctionDecl::getPointOfInstantiation() const {
3831  if (FunctionTemplateSpecializationInfo *FTSInfo
3832        = TemplateOrSpecialization.dyn_cast<
3833                                        FunctionTemplateSpecializationInfo*>())
3834    return FTSInfo->getPointOfInstantiation();
3835  else if (MemberSpecializationInfo *MSInfo
3836             = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3837    return MSInfo->getPointOfInstantiation();
3838
3839  return SourceLocation();
3840}
3841
3842bool FunctionDecl::isOutOfLine() const {
3843  if (Decl::isOutOfLine())
3844    return true;
3845
3846  // If this function was instantiated from a member function of a
3847  // class template, check whether that member function was defined out-of-line.
3848  if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3849    const FunctionDecl *Definition;
3850    if (FD->hasBody(Definition))
3851      return Definition->isOutOfLine();
3852  }
3853
3854  // If this function was instantiated from a function template,
3855  // check whether that function template was defined out-of-line.
3856  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3857    const FunctionDecl *Definition;
3858    if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3859      return Definition->isOutOfLine();
3860  }
3861
3862  return false;
3863}
3864
3865SourceRange FunctionDecl::getSourceRange() const {
3866  return SourceRange(getOuterLocStart(), EndRangeLoc);
3867}
3868
3869unsigned FunctionDecl::getMemoryFunctionKind() const {
3870  IdentifierInfo *FnInfo = getIdentifier();
3871
3872  if (!FnInfo)
3873    return 0;
3874
3875  // Builtin handling.
3876  switch (getBuiltinID()) {
3877  case Builtin::BI__builtin_memset:
3878  case Builtin::BI__builtin___memset_chk:
3879  case Builtin::BImemset:
3880    return Builtin::BImemset;
3881
3882  case Builtin::BI__builtin_memcpy:
3883  case Builtin::BI__builtin___memcpy_chk:
3884  case Builtin::BImemcpy:
3885    return Builtin::BImemcpy;
3886
3887  case Builtin::BI__builtin_mempcpy:
3888  case Builtin::BI__builtin___mempcpy_chk:
3889  case Builtin::BImempcpy:
3890    return Builtin::BImempcpy;
3891
3892  case Builtin::BI__builtin_memmove:
3893  case Builtin::BI__builtin___memmove_chk:
3894  case Builtin::BImemmove:
3895    return Builtin::BImemmove;
3896
3897  case Builtin::BIstrlcpy:
3898  case Builtin::BI__builtin___strlcpy_chk:
3899    return Builtin::BIstrlcpy;
3900
3901  case Builtin::BIstrlcat:
3902  case Builtin::BI__builtin___strlcat_chk:
3903    return Builtin::BIstrlcat;
3904
3905  case Builtin::BI__builtin_memcmp:
3906  case Builtin::BImemcmp:
3907    return Builtin::BImemcmp;
3908
3909  case Builtin::BI__builtin_bcmp:
3910  case Builtin::BIbcmp:
3911    return Builtin::BIbcmp;
3912
3913  case Builtin::BI__builtin_strncpy:
3914  case Builtin::BI__builtin___strncpy_chk:
3915  case Builtin::BIstrncpy:
3916    return Builtin::BIstrncpy;
3917
3918  case Builtin::BI__builtin_strncmp:
3919  case Builtin::BIstrncmp:
3920    return Builtin::BIstrncmp;
3921
3922  case Builtin::BI__builtin_strncasecmp:
3923  case Builtin::BIstrncasecmp:
3924    return Builtin::BIstrncasecmp;
3925
3926  case Builtin::BI__builtin_strncat:
3927  case Builtin::BI__builtin___strncat_chk:
3928  case Builtin::BIstrncat:
3929    return Builtin::BIstrncat;
3930
3931  case Builtin::BI__builtin_strndup:
3932  case Builtin::BIstrndup:
3933    return Builtin::BIstrndup;
3934
3935  case Builtin::BI__builtin_strlen:
3936  case Builtin::BIstrlen:
3937    return Builtin::BIstrlen;
3938
3939  case Builtin::BI__builtin_bzero:
3940  case Builtin::BIbzero:
3941    return Builtin::BIbzero;
3942
3943  default:
3944    if (isExternC()) {
3945      if (FnInfo->isStr("memset"))
3946        return Builtin::BImemset;
3947      else if (FnInfo->isStr("memcpy"))
3948        return Builtin::BImemcpy;
3949      else if (FnInfo->isStr("mempcpy"))
3950        return Builtin::BImempcpy;
3951      else if (FnInfo->isStr("memmove"))
3952        return Builtin::BImemmove;
3953      else if (FnInfo->isStr("memcmp"))
3954        return Builtin::BImemcmp;
3955      else if (FnInfo->isStr("bcmp"))
3956        return Builtin::BIbcmp;
3957      else if (FnInfo->isStr("strncpy"))
3958        return Builtin::BIstrncpy;
3959      else if (FnInfo->isStr("strncmp"))
3960        return Builtin::BIstrncmp;
3961      else if (FnInfo->isStr("strncasecmp"))
3962        return Builtin::BIstrncasecmp;
3963      else if (FnInfo->isStr("strncat"))
3964        return Builtin::BIstrncat;
3965      else if (FnInfo->isStr("strndup"))
3966        return Builtin::BIstrndup;
3967      else if (FnInfo->isStr("strlen"))
3968        return Builtin::BIstrlen;
3969      else if (FnInfo->isStr("bzero"))
3970        return Builtin::BIbzero;
3971    }
3972    break;
3973  }
3974  return 0;
3975}
3976
3977unsigned FunctionDecl::getODRHash() const {
3978  assert(hasODRHash());
3979  return ODRHash;
3980}
3981
3982unsigned FunctionDecl::getODRHash() {
3983  if (hasODRHash())
3984    return ODRHash;
3985
3986  if (auto *FT = getInstantiatedFromMemberFunction()) {
3987    setHasODRHash(true);
3988    ODRHash = FT->getODRHash();
3989    return ODRHash;
3990  }
3991
3992  class ODRHash Hash;
3993  Hash.AddFunctionDecl(this);
3994  setHasODRHash(true);
3995  ODRHash = Hash.CalculateHash();
3996  return ODRHash;
3997}
3998
3999//===----------------------------------------------------------------------===//
4000// FieldDecl Implementation
4001//===----------------------------------------------------------------------===//
4002
4003FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4004                             SourceLocation StartLoc, SourceLocation IdLoc,
4005                             IdentifierInfo *Id, QualType T,
4006                             TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4007                             InClassInitStyle InitStyle) {
4008  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4009                               BW, Mutable, InitStyle);
4010}
4011
4012FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4013  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4014                               SourceLocation(), nullptr, QualType(), nullptr,
4015                               nullptr, false, ICIS_NoInit);
4016}
4017
4018bool FieldDecl::isAnonymousStructOrUnion() const {
4019  if (!isImplicit() || getDeclName())
4020    return false;
4021
4022  if (const auto *Record = getType()->getAs<RecordType>())
4023    return Record->getDecl()->isAnonymousStructOrUnion();
4024
4025  return false;
4026}
4027
4028unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4029  assert(isBitField() && "not a bitfield");
4030  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4031}
4032
4033bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4034  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4035         getBitWidthValue(Ctx) == 0;
4036}
4037
4038bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4039  if (isZeroLengthBitField(Ctx))
4040    return true;
4041
4042  // C++2a [intro.object]p7:
4043  //   An object has nonzero size if it
4044  //     -- is not a potentially-overlapping subobject, or
4045  if (!hasAttr<NoUniqueAddressAttr>())
4046    return false;
4047
4048  //     -- is not of class type, or
4049  const auto *RT = getType()->getAs<RecordType>();
4050  if (!RT)
4051    return false;
4052  const RecordDecl *RD = RT->getDecl()->getDefinition();
4053  if (!RD) {
4054    assert(isInvalidDecl() && "valid field has incomplete type");
4055    return false;
4056  }
4057
4058  //     -- [has] virtual member functions or virtual base classes, or
4059  //     -- has subobjects of nonzero size or bit-fields of nonzero length
4060  const auto *CXXRD = cast<CXXRecordDecl>(RD);
4061  if (!CXXRD->isEmpty())
4062    return false;
4063
4064  // Otherwise, [...] the circumstances under which the object has zero size
4065  // are implementation-defined.
4066  // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4067  // ABI will do.
4068  return true;
4069}
4070
4071unsigned FieldDecl::getFieldIndex() const {
4072  const FieldDecl *Canonical = getCanonicalDecl();
4073  if (Canonical != this)
4074    return Canonical->getFieldIndex();
4075
4076  if (CachedFieldIndex) return CachedFieldIndex - 1;
4077
4078  unsigned Index = 0;
4079  const RecordDecl *RD = getParent()->getDefinition();
4080  assert(RD && "requested index for field of struct with no definition");
4081
4082  for (auto *Field : RD->fields()) {
4083    Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4084    ++Index;
4085  }
4086
4087  assert(CachedFieldIndex && "failed to find field in parent");
4088  return CachedFieldIndex - 1;
4089}
4090
4091SourceRange FieldDecl::getSourceRange() const {
4092  const Expr *FinalExpr = getInClassInitializer();
4093  if (!FinalExpr)
4094    FinalExpr = getBitWidth();
4095  if (FinalExpr)
4096    return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4097  return DeclaratorDecl::getSourceRange();
4098}
4099
4100void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4101  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4102         "capturing type in non-lambda or captured record.");
4103  assert(InitStorage.getInt() == ISK_NoInit &&
4104         InitStorage.getPointer() == nullptr &&
4105         "bit width, initializer or captured type already set");
4106  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4107                               ISK_CapturedVLAType);
4108}
4109
4110//===----------------------------------------------------------------------===//
4111// TagDecl Implementation
4112//===----------------------------------------------------------------------===//
4113
4114TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4115                 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4116                 SourceLocation StartL)
4117    : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4118      TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4119  assert((DK != Enum || TK == TTK_Enum) &&
4120         "EnumDecl not matched with TTK_Enum");
4121  setPreviousDecl(PrevDecl);
4122  setTagKind(TK);
4123  setCompleteDefinition(false);
4124  setBeingDefined(false);
4125  setEmbeddedInDeclarator(false);
4126  setFreeStanding(false);
4127  setCompleteDefinitionRequired(false);
4128}
4129
4130SourceLocation TagDecl::getOuterLocStart() const {
4131  return getTemplateOrInnerLocStart(this);
4132}
4133
4134SourceRange TagDecl::getSourceRange() const {
4135  SourceLocation RBraceLoc = BraceRange.getEnd();
4136  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4137  return SourceRange(getOuterLocStart(), E);
4138}
4139
4140TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4141
4142void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4143  TypedefNameDeclOrQualifier = TDD;
4144  if (const Type *T = getTypeForDecl()) {
4145    (void)T;
4146    assert(T->isLinkageValid());
4147  }
4148  assert(isLinkageValid());
4149}
4150
4151void TagDecl::startDefinition() {
4152  setBeingDefined(true);
4153
4154  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4155    struct CXXRecordDecl::DefinitionData *Data =
4156      new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4157    for (auto I : redecls())
4158      cast<CXXRecordDecl>(I)->DefinitionData = Data;
4159  }
4160}
4161
4162void TagDecl::completeDefinition() {
4163  assert((!isa<CXXRecordDecl>(this) ||
4164          cast<CXXRecordDecl>(this)->hasDefinition()) &&
4165         "definition completed but not started");
4166
4167  setCompleteDefinition(true);
4168  setBeingDefined(false);
4169
4170  if (ASTMutationListener *L = getASTMutationListener())
4171    L->CompletedTagDefinition(this);
4172}
4173
4174TagDecl *TagDecl::getDefinition() const {
4175  if (isCompleteDefinition())
4176    return const_cast<TagDecl *>(this);
4177
4178  // If it's possible for us to have an out-of-date definition, check now.
4179  if (mayHaveOutOfDateDef()) {
4180    if (IdentifierInfo *II = getIdentifier()) {
4181      if (II->isOutOfDate()) {
4182        updateOutOfDate(*II);
4183      }
4184    }
4185  }
4186
4187  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4188    return CXXRD->getDefinition();
4189
4190  for (auto R : redecls())
4191    if (R->isCompleteDefinition())
4192      return R;
4193
4194  return nullptr;
4195}
4196
4197void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4198  if (QualifierLoc) {
4199    // Make sure the extended qualifier info is allocated.
4200    if (!hasExtInfo())
4201      TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4202    // Set qualifier info.
4203    getExtInfo()->QualifierLoc = QualifierLoc;
4204  } else {
4205    // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4206    if (hasExtInfo()) {
4207      if (getExtInfo()->NumTemplParamLists == 0) {
4208        getASTContext().Deallocate(getExtInfo());
4209        TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4210      }
4211      else
4212        getExtInfo()->QualifierLoc = QualifierLoc;
4213    }
4214  }
4215}
4216
4217void TagDecl::setTemplateParameterListsInfo(
4218    ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4219  assert(!TPLists.empty());
4220  // Make sure the extended decl info is allocated.
4221  if (!hasExtInfo())
4222    // Allocate external info struct.
4223    TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4224  // Set the template parameter lists info.
4225  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4226}
4227
4228//===----------------------------------------------------------------------===//
4229// EnumDecl Implementation
4230//===----------------------------------------------------------------------===//
4231
4232EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4233                   SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4234                   bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4235    : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4236  assert(Scoped || !ScopedUsingClassTag);
4237  IntegerType = nullptr;
4238  setNumPositiveBits(0);
4239  setNumNegativeBits(0);
4240  setScoped(Scoped);
4241  setScopedUsingClassTag(ScopedUsingClassTag);
4242  setFixed(Fixed);
4243  setHasODRHash(false);
4244  ODRHash = 0;
4245}
4246
4247void EnumDecl::anchor() {}
4248
4249EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4250                           SourceLocation StartLoc, SourceLocation IdLoc,
4251                           IdentifierInfo *Id,
4252                           EnumDecl *PrevDecl, bool IsScoped,
4253                           bool IsScopedUsingClassTag, bool IsFixed) {
4254  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4255                                    IsScoped, IsScopedUsingClassTag, IsFixed);
4256  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4257  C.getTypeDeclType(Enum, PrevDecl);
4258  return Enum;
4259}
4260
4261EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4262  EnumDecl *Enum =
4263      new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4264                           nullptr, nullptr, false, false, false);
4265  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4266  return Enum;
4267}
4268
4269SourceRange EnumDecl::getIntegerTypeRange() const {
4270  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4271    return TI->getTypeLoc().getSourceRange();
4272  return SourceRange();
4273}
4274
4275void EnumDecl::completeDefinition(QualType NewType,
4276                                  QualType NewPromotionType,
4277                                  unsigned NumPositiveBits,
4278                                  unsigned NumNegativeBits) {
4279  assert(!isCompleteDefinition() && "Cannot redefine enums!");
4280  if (!IntegerType)
4281    IntegerType = NewType.getTypePtr();
4282  PromotionType = NewPromotionType;
4283  setNumPositiveBits(NumPositiveBits);
4284  setNumNegativeBits(NumNegativeBits);
4285  TagDecl::completeDefinition();
4286}
4287
4288bool EnumDecl::isClosed() const {
4289  if (const auto *A = getAttr<EnumExtensibilityAttr>())
4290    return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4291  return true;
4292}
4293
4294bool EnumDecl::isClosedFlag() const {
4295  return isClosed() && hasAttr<FlagEnumAttr>();
4296}
4297
4298bool EnumDecl::isClosedNonFlag() const {
4299  return isClosed() && !hasAttr<FlagEnumAttr>();
4300}
4301
4302TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4303  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4304    return MSI->getTemplateSpecializationKind();
4305
4306  return TSK_Undeclared;
4307}
4308
4309void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4310                                         SourceLocation PointOfInstantiation) {
4311  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4312  assert(MSI && "Not an instantiated member enumeration?");
4313  MSI->setTemplateSpecializationKind(TSK);
4314  if (TSK != TSK_ExplicitSpecialization &&
4315      PointOfInstantiation.isValid() &&
4316      MSI->getPointOfInstantiation().isInvalid())
4317    MSI->setPointOfInstantiation(PointOfInstantiation);
4318}
4319
4320EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4321  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4322    if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4323      EnumDecl *ED = getInstantiatedFromMemberEnum();
4324      while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4325        ED = NewED;
4326      return getDefinitionOrSelf(ED);
4327    }
4328  }
4329
4330  assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4331         "couldn't find pattern for enum instantiation");
4332  return nullptr;
4333}
4334
4335EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4336  if (SpecializationInfo)
4337    return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4338
4339  return nullptr;
4340}
4341
4342void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4343                                            TemplateSpecializationKind TSK) {
4344  assert(!SpecializationInfo && "Member enum is already a specialization");
4345  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4346}
4347
4348unsigned EnumDecl::getODRHash() {
4349  if (hasODRHash())
4350    return ODRHash;
4351
4352  class ODRHash Hash;
4353  Hash.AddEnumDecl(this);
4354  setHasODRHash(true);
4355  ODRHash = Hash.CalculateHash();
4356  return ODRHash;
4357}
4358
4359//===----------------------------------------------------------------------===//
4360// RecordDecl Implementation
4361//===----------------------------------------------------------------------===//
4362
4363RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4364                       DeclContext *DC, SourceLocation StartLoc,
4365                       SourceLocation IdLoc, IdentifierInfo *Id,
4366                       RecordDecl *PrevDecl)
4367    : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4368  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4369  setHasFlexibleArrayMember(false);
4370  setAnonymousStructOrUnion(false);
4371  setHasObjectMember(false);
4372  setHasVolatileMember(false);
4373  setHasLoadedFieldsFromExternalStorage(false);
4374  setNonTrivialToPrimitiveDefaultInitialize(false);
4375  setNonTrivialToPrimitiveCopy(false);
4376  setNonTrivialToPrimitiveDestroy(false);
4377  setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4378  setHasNonTrivialToPrimitiveDestructCUnion(false);
4379  setHasNonTrivialToPrimitiveCopyCUnion(false);
4380  setParamDestroyedInCallee(false);
4381  setArgPassingRestrictions(APK_CanPassInRegs);
4382}
4383
4384RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4385                               SourceLocation StartLoc, SourceLocation IdLoc,
4386                               IdentifierInfo *Id, RecordDecl* PrevDecl) {
4387  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4388                                         StartLoc, IdLoc, Id, PrevDecl);
4389  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4390
4391  C.getTypeDeclType(R, PrevDecl);
4392  return R;
4393}
4394
4395RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4396  RecordDecl *R =
4397      new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4398                             SourceLocation(), nullptr, nullptr);
4399  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4400  return R;
4401}
4402
4403bool RecordDecl::isInjectedClassName() const {
4404  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4405    cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4406}
4407
4408bool RecordDecl::isLambda() const {
4409  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4410    return RD->isLambda();
4411  return false;
4412}
4413
4414bool RecordDecl::isCapturedRecord() const {
4415  return hasAttr<CapturedRecordAttr>();
4416}
4417
4418void RecordDecl::setCapturedRecord() {
4419  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4420}
4421
4422bool RecordDecl::isOrContainsUnion() const {
4423  if (isUnion())
4424    return true;
4425
4426  if (const RecordDecl *Def = getDefinition()) {
4427    for (const FieldDecl *FD : Def->fields()) {
4428      const RecordType *RT = FD->getType()->getAs<RecordType>();
4429      if (RT && RT->getDecl()->isOrContainsUnion())
4430        return true;
4431    }
4432  }
4433
4434  return false;
4435}
4436
4437RecordDecl::field_iterator RecordDecl::field_begin() const {
4438  if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4439    LoadFieldsFromExternalStorage();
4440
4441  return field_iterator(decl_iterator(FirstDecl));
4442}
4443
4444/// completeDefinition - Notes that the definition of this type is now
4445/// complete.
4446void RecordDecl::completeDefinition() {
4447  assert(!isCompleteDefinition() && "Cannot redefine record!");
4448  TagDecl::completeDefinition();
4449}
4450
4451/// isMsStruct - Get whether or not this record uses ms_struct layout.
4452/// This which can be turned on with an attribute, pragma, or the
4453/// -mms-bitfields command-line option.
4454bool RecordDecl::isMsStruct(const ASTContext &C) const {
4455  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4456}
4457
4458void RecordDecl::LoadFieldsFromExternalStorage() const {
4459  ExternalASTSource *Source = getASTContext().getExternalSource();
4460  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4461
4462  // Notify that we have a RecordDecl doing some initialization.
4463  ExternalASTSource::Deserializing TheFields(Source);
4464
4465  SmallVector<Decl*, 64> Decls;
4466  setHasLoadedFieldsFromExternalStorage(true);
4467  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4468    return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4469  }, Decls);
4470
4471#ifndef NDEBUG
4472  // Check that all decls we got were FieldDecls.
4473  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4474    assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4475#endif
4476
4477  if (Decls.empty())
4478    return;
4479
4480  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4481                                                 /*FieldsAlreadyLoaded=*/false);
4482}
4483
4484bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4485  ASTContext &Context = getASTContext();
4486  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4487      (SanitizerKind::Address | SanitizerKind::KernelAddress);
4488  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4489    return false;
4490  const auto &Blacklist = Context.getSanitizerBlacklist();
4491  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4492  // We may be able to relax some of these requirements.
4493  int ReasonToReject = -1;
4494  if (!CXXRD || CXXRD->isExternCContext())
4495    ReasonToReject = 0;  // is not C++.
4496  else if (CXXRD->hasAttr<PackedAttr>())
4497    ReasonToReject = 1;  // is packed.
4498  else if (CXXRD->isUnion())
4499    ReasonToReject = 2;  // is a union.
4500  else if (CXXRD->isTriviallyCopyable())
4501    ReasonToReject = 3;  // is trivially copyable.
4502  else if (CXXRD->hasTrivialDestructor())
4503    ReasonToReject = 4;  // has trivial destructor.
4504  else if (CXXRD->isStandardLayout())
4505    ReasonToReject = 5;  // is standard layout.
4506  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4507                                           "field-padding"))
4508    ReasonToReject = 6;  // is in an excluded file.
4509  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4510                                       getQualifiedNameAsString(),
4511                                       "field-padding"))
4512    ReasonToReject = 7;  // The type is excluded.
4513
4514  if (EmitRemark) {
4515    if (ReasonToReject >= 0)
4516      Context.getDiagnostics().Report(
4517          getLocation(),
4518          diag::remark_sanitize_address_insert_extra_padding_rejected)
4519          << getQualifiedNameAsString() << ReasonToReject;
4520    else
4521      Context.getDiagnostics().Report(
4522          getLocation(),
4523          diag::remark_sanitize_address_insert_extra_padding_accepted)
4524          << getQualifiedNameAsString();
4525  }
4526  return ReasonToReject < 0;
4527}
4528
4529const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4530  for (const auto *I : fields()) {
4531    if (I->getIdentifier())
4532      return I;
4533
4534    if (const auto *RT = I->getType()->getAs<RecordType>())
4535      if (const FieldDecl *NamedDataMember =
4536              RT->getDecl()->findFirstNamedDataMember())
4537        return NamedDataMember;
4538  }
4539
4540  // We didn't find a named data member.
4541  return nullptr;
4542}
4543
4544//===----------------------------------------------------------------------===//
4545// BlockDecl Implementation
4546//===----------------------------------------------------------------------===//
4547
4548BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4549    : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4550  setIsVariadic(false);
4551  setCapturesCXXThis(false);
4552  setBlockMissingReturnType(true);
4553  setIsConversionFromLambda(false);
4554  setDoesNotEscape(false);
4555  setCanAvoidCopyToHeap(false);
4556}
4557
4558void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4559  assert(!ParamInfo && "Already has param info!");
4560
4561  // Zero params -> null pointer.
4562  if (!NewParamInfo.empty()) {
4563    NumParams = NewParamInfo.size();
4564    ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4565    std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4566  }
4567}
4568
4569void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4570                            bool CapturesCXXThis) {
4571  this->setCapturesCXXThis(CapturesCXXThis);
4572  this->NumCaptures = Captures.size();
4573
4574  if (Captures.empty()) {
4575    this->Captures = nullptr;
4576    return;
4577  }
4578
4579  this->Captures = Captures.copy(Context).data();
4580}
4581
4582bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4583  for (const auto &I : captures())
4584    // Only auto vars can be captured, so no redeclaration worries.
4585    if (I.getVariable() == variable)
4586      return true;
4587
4588  return false;
4589}
4590
4591SourceRange BlockDecl::getSourceRange() const {
4592  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4593}
4594
4595//===----------------------------------------------------------------------===//
4596// Other Decl Allocation/Deallocation Method Implementations
4597//===----------------------------------------------------------------------===//
4598
4599void TranslationUnitDecl::anchor() {}
4600
4601TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4602  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4603}
4604
4605void PragmaCommentDecl::anchor() {}
4606
4607PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4608                                             TranslationUnitDecl *DC,
4609                                             SourceLocation CommentLoc,
4610                                             PragmaMSCommentKind CommentKind,
4611                                             StringRef Arg) {
4612  PragmaCommentDecl *PCD =
4613      new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4614          PragmaCommentDecl(DC, CommentLoc, CommentKind);
4615  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4616  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4617  return PCD;
4618}
4619
4620PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4621                                                         unsigned ID,
4622                                                         unsigned ArgSize) {
4623  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4624      PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4625}
4626
4627void PragmaDetectMismatchDecl::anchor() {}
4628
4629PragmaDetectMismatchDecl *
4630PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4631                                 SourceLocation Loc, StringRef Name,
4632                                 StringRef Value) {
4633  size_t ValueStart = Name.size() + 1;
4634  PragmaDetectMismatchDecl *PDMD =
4635      new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4636          PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4637  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4638  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4639  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4640         Value.size());
4641  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4642  return PDMD;
4643}
4644
4645PragmaDetectMismatchDecl *
4646PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4647                                             unsigned NameValueSize) {
4648  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4649      PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4650}
4651
4652void ExternCContextDecl::anchor() {}
4653
4654ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4655                                               TranslationUnitDecl *DC) {
4656  return new (C, DC) ExternCContextDecl(DC);
4657}
4658
4659void LabelDecl::anchor() {}
4660
4661LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4662                             SourceLocation IdentL, IdentifierInfo *II) {
4663  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4664}
4665
4666LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4667                             SourceLocation IdentL, IdentifierInfo *II,
4668                             SourceLocation GnuLabelL) {
4669  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4670  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4671}
4672
4673LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4674  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4675                               SourceLocation());
4676}
4677
4678void LabelDecl::setMSAsmLabel(StringRef Name) {
4679char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4680  memcpy(Buffer, Name.data(), Name.size());
4681  Buffer[Name.size()] = '\0';
4682  MSAsmName = Buffer;
4683}
4684
4685void ValueDecl::anchor() {}
4686
4687bool ValueDecl::isWeak() const {
4688  for (const auto *I : attrs())
4689    if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4690      return true;
4691
4692  return isWeakImported();
4693}
4694
4695void ImplicitParamDecl::anchor() {}
4696
4697ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4698                                             SourceLocation IdLoc,
4699                                             IdentifierInfo *Id, QualType Type,
4700                                             ImplicitParamKind ParamKind) {
4701  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4702}
4703
4704ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4705                                             ImplicitParamKind ParamKind) {
4706  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4707}
4708
4709ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4710                                                         unsigned ID) {
4711  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4712}
4713
4714FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4715                                   SourceLocation StartLoc,
4716                                   const DeclarationNameInfo &NameInfo,
4717                                   QualType T, TypeSourceInfo *TInfo,
4718                                   StorageClass SC, bool isInlineSpecified,
4719                                   bool hasWrittenPrototype,
4720                                   ConstexprSpecKind ConstexprKind,
4721                                   Expr *TrailingRequiresClause) {
4722  FunctionDecl *New =
4723      new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4724                               SC, isInlineSpecified, ConstexprKind,
4725                               TrailingRequiresClause);
4726  New->setHasWrittenPrototype(hasWrittenPrototype);
4727  return New;
4728}
4729
4730FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4731  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4732                                  DeclarationNameInfo(), QualType(), nullptr,
4733                                  SC_None, false, CSK_unspecified, nullptr);
4734}
4735
4736BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4737  return new (C, DC) BlockDecl(DC, L);
4738}
4739
4740BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4741  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4742}
4743
4744CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4745    : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4746      NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4747
4748CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4749                                   unsigned NumParams) {
4750  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4751      CapturedDecl(DC, NumParams);
4752}
4753
4754CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4755                                               unsigned NumParams) {
4756  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4757      CapturedDecl(nullptr, NumParams);
4758}
4759
4760Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4761void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4762
4763bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4764void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4765
4766EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4767                                           SourceLocation L,
4768                                           IdentifierInfo *Id, QualType T,
4769                                           Expr *E, const llvm::APSInt &V) {
4770  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4771}
4772
4773EnumConstantDecl *
4774EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4775  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4776                                      QualType(), nullptr, llvm::APSInt());
4777}
4778
4779void IndirectFieldDecl::anchor() {}
4780
4781IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4782                                     SourceLocation L, DeclarationName N,
4783                                     QualType T,
4784                                     MutableArrayRef<NamedDecl *> CH)
4785    : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4786      ChainingSize(CH.size()) {
4787  // In C++, indirect field declarations conflict with tag declarations in the
4788  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4789  if (C.getLangOpts().CPlusPlus)
4790    IdentifierNamespace |= IDNS_Tag;
4791}
4792
4793IndirectFieldDecl *
4794IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4795                          IdentifierInfo *Id, QualType T,
4796                          llvm::MutableArrayRef<NamedDecl *> CH) {
4797  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4798}
4799
4800IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4801                                                         unsigned ID) {
4802  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4803                                       DeclarationName(), QualType(), None);
4804}
4805
4806SourceRange EnumConstantDecl::getSourceRange() const {
4807  SourceLocation End = getLocation();
4808  if (Init)
4809    End = Init->getEndLoc();
4810  return SourceRange(getLocation(), End);
4811}
4812
4813void TypeDecl::anchor() {}
4814
4815TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4816                                 SourceLocation StartLoc, SourceLocation IdLoc,
4817                                 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4818  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4819}
4820
4821void TypedefNameDecl::anchor() {}
4822
4823TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4824  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4825    auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4826    auto *ThisTypedef = this;
4827    if (AnyRedecl && OwningTypedef) {
4828      OwningTypedef = OwningTypedef->getCanonicalDecl();
4829      ThisTypedef = ThisTypedef->getCanonicalDecl();
4830    }
4831    if (OwningTypedef == ThisTypedef)
4832      return TT->getDecl();
4833  }
4834
4835  return nullptr;
4836}
4837
4838bool TypedefNameDecl::isTransparentTagSlow() const {
4839  auto determineIsTransparent = [&]() {
4840    if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4841      if (auto *TD = TT->getDecl()) {
4842        if (TD->getName() != getName())
4843          return false;
4844        SourceLocation TTLoc = getLocation();
4845        SourceLocation TDLoc = TD->getLocation();
4846        if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4847          return false;
4848        SourceManager &SM = getASTContext().getSourceManager();
4849        return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4850      }
4851    }
4852    return false;
4853  };
4854
4855  bool isTransparent = determineIsTransparent();
4856  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4857  return isTransparent;
4858}
4859
4860TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4861  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4862                                 nullptr, nullptr);
4863}
4864
4865TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4866                                     SourceLocation StartLoc,
4867                                     SourceLocation IdLoc, IdentifierInfo *Id,
4868                                     TypeSourceInfo *TInfo) {
4869  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4870}
4871
4872TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4873  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4874                                   SourceLocation(), nullptr, nullptr);
4875}
4876
4877SourceRange TypedefDecl::getSourceRange() const {
4878  SourceLocation RangeEnd = getLocation();
4879  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4880    if (typeIsPostfix(TInfo->getType()))
4881      RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4882  }
4883  return SourceRange(getBeginLoc(), RangeEnd);
4884}
4885
4886SourceRange TypeAliasDecl::getSourceRange() const {
4887  SourceLocation RangeEnd = getBeginLoc();
4888  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4889    RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4890  return SourceRange(getBeginLoc(), RangeEnd);
4891}
4892
4893void FileScopeAsmDecl::anchor() {}
4894
4895FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4896                                           StringLiteral *Str,
4897                                           SourceLocation AsmLoc,
4898                                           SourceLocation RParenLoc) {
4899  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4900}
4901
4902FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4903                                                       unsigned ID) {
4904  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4905                                      SourceLocation());
4906}
4907
4908void EmptyDecl::anchor() {}
4909
4910EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4911  return new (C, DC) EmptyDecl(DC, L);
4912}
4913
4914EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4915  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4916}
4917
4918//===----------------------------------------------------------------------===//
4919// ImportDecl Implementation
4920//===----------------------------------------------------------------------===//
4921
4922/// Retrieve the number of module identifiers needed to name the given
4923/// module.
4924static unsigned getNumModuleIdentifiers(Module *Mod) {
4925  unsigned Result = 1;
4926  while (Mod->Parent) {
4927    Mod = Mod->Parent;
4928    ++Result;
4929  }
4930  return Result;
4931}
4932
4933ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4934                       Module *Imported,
4935                       ArrayRef<SourceLocation> IdentifierLocs)
4936    : Decl(Import, DC, StartLoc), ImportedModule(Imported),
4937      NextLocalImportAndComplete(nullptr, true) {
4938  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4939  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4940  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4941                          StoredLocs);
4942}
4943
4944ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4945                       Module *Imported, SourceLocation EndLoc)
4946    : Decl(Import, DC, StartLoc), ImportedModule(Imported),
4947      NextLocalImportAndComplete(nullptr, false) {
4948  *getTrailingObjects<SourceLocation>() = EndLoc;
4949}
4950
4951ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4952                               SourceLocation StartLoc, Module *Imported,
4953                               ArrayRef<SourceLocation> IdentifierLocs) {
4954  return new (C, DC,
4955              additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4956      ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4957}
4958
4959ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4960                                       SourceLocation StartLoc,
4961                                       Module *Imported,
4962                                       SourceLocation EndLoc) {
4963  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4964      ImportDecl(DC, StartLoc, Imported, EndLoc);
4965  Import->setImplicit();
4966  return Import;
4967}
4968
4969ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4970                                           unsigned NumLocations) {
4971  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4972      ImportDecl(EmptyShell());
4973}
4974
4975ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4976  if (!isImportComplete())
4977    return None;
4978
4979  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4980  return llvm::makeArrayRef(StoredLocs,
4981                            getNumModuleIdentifiers(getImportedModule()));
4982}
4983
4984SourceRange ImportDecl::getSourceRange() const {
4985  if (!isImportComplete())
4986    return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4987
4988  return SourceRange(getLocation(), getIdentifierLocs().back());
4989}
4990
4991//===----------------------------------------------------------------------===//
4992// ExportDecl Implementation
4993//===----------------------------------------------------------------------===//
4994
4995void ExportDecl::anchor() {}
4996
4997ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4998                               SourceLocation ExportLoc) {
4999  return new (C, DC) ExportDecl(DC, ExportLoc);
5000}
5001
5002ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5003  return new (C, ID) ExportDecl(nullptr, SourceLocation());
5004}
5005