1/* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements.  See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License.  You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16/**
17 * @file apr_buckets.h
18 * @brief APR-UTIL Buckets/Bucket Brigades
19 */
20
21#ifndef APR_BUCKETS_H
22#define APR_BUCKETS_H
23
24#if defined(APR_BUCKET_DEBUG) && !defined(APR_RING_DEBUG)
25#define APR_RING_DEBUG
26#endif
27
28#include "apu.h"
29#include "apr_network_io.h"
30#include "apr_file_io.h"
31#include "apr_general.h"
32#include "apr_mmap.h"
33#include "apr_errno.h"
34#include "apr_ring.h"
35#include "apr.h"
36#if APR_HAVE_SYS_UIO_H
37#include <sys/uio.h>	/* for struct iovec */
38#endif
39#if APR_HAVE_STDARG_H
40#include <stdarg.h>
41#endif
42
43#ifdef __cplusplus
44extern "C" {
45#endif
46
47/**
48 * @defgroup APR_Util_Bucket_Brigades Bucket Brigades
49 * @ingroup APR_Util
50 * @{
51 */
52
53/** default bucket buffer size - 8KB minus room for memory allocator headers */
54#define APR_BUCKET_BUFF_SIZE 8000
55
56/** Determines how a bucket or brigade should be read */
57typedef enum {
58    APR_BLOCK_READ,   /**< block until data becomes available */
59    APR_NONBLOCK_READ /**< return immediately if no data is available */
60} apr_read_type_e;
61
62/**
63 * The one-sentence buzzword-laden overview: Bucket brigades represent
64 * a complex data stream that can be passed through a layered IO
65 * system without unnecessary copying. A longer overview follows...
66 *
67 * A bucket brigade is a doubly linked list (ring) of buckets, so we
68 * aren't limited to inserting at the front and removing at the end.
69 * Buckets are only passed around as members of a brigade, although
70 * singleton buckets can occur for short periods of time.
71 *
72 * Buckets are data stores of various types. They can refer to data in
73 * memory, or part of a file or mmap area, or the output of a process,
74 * etc. Buckets also have some type-dependent accessor functions:
75 * read, split, copy, setaside, and destroy.
76 *
77 * read returns the address and size of the data in the bucket. If the
78 * data isn't in memory then it is read in and the bucket changes type
79 * so that it can refer to the new location of the data. If all the
80 * data doesn't fit in the bucket then a new bucket is inserted into
81 * the brigade to hold the rest of it.
82 *
83 * split divides the data in a bucket into two regions. After a split
84 * the original bucket refers to the first part of the data and a new
85 * bucket inserted into the brigade after the original bucket refers
86 * to the second part of the data. Reference counts are maintained as
87 * necessary.
88 *
89 * setaside ensures that the data in the bucket has a long enough
90 * lifetime. Sometimes it is convenient to create a bucket referring
91 * to data on the stack in the expectation that it will be consumed
92 * (output to the network) before the stack is unwound. If that
93 * expectation turns out not to be valid, the setaside function is
94 * called to move the data somewhere safer.
95 *
96 * copy makes a duplicate of the bucket structure as long as it's
97 * possible to have multiple references to a single copy of the
98 * data itself.  Not all bucket types can be copied.
99 *
100 * destroy maintains the reference counts on the resources used by a
101 * bucket and frees them if necessary.
102 *
103 * Note: all of the above functions have wrapper macros (apr_bucket_read(),
104 * apr_bucket_destroy(), etc), and those macros should be used rather
105 * than using the function pointers directly.
106 *
107 * To write a bucket brigade, they are first made into an iovec, so that we
108 * don't write too little data at one time.  Currently we ignore compacting the
109 * buckets into as few buckets as possible, but if we really want good
110 * performance, then we need to compact the buckets before we convert to an
111 * iovec, or possibly while we are converting to an iovec.
112 */
113
114/*
115 * Forward declaration of the main types.
116 */
117
118/** @see apr_bucket_brigade */
119typedef struct apr_bucket_brigade apr_bucket_brigade;
120/** @see apr_bucket */
121typedef struct apr_bucket apr_bucket;
122/** @see apr_bucket_alloc_t */
123typedef struct apr_bucket_alloc_t apr_bucket_alloc_t;
124
125/** @see apr_bucket_type_t */
126typedef struct apr_bucket_type_t apr_bucket_type_t;
127
128/**
129 * Basic bucket type
130 */
131struct apr_bucket_type_t {
132    /**
133     * The name of the bucket type
134     */
135    const char *name;
136    /**
137     * The number of functions this bucket understands.  Can not be less than
138     * five.
139     */
140    int num_func;
141    /**
142     * Whether the bucket contains metadata (ie, information that
143     * describes the regular contents of the brigade).  The metadata
144     * is not returned by apr_bucket_read() and is not indicated by
145     * the ->length of the apr_bucket itself.  In other words, an
146     * empty bucket is safe to arbitrarily remove if and only if it
147     * contains no metadata.  In this sense, "data" is just raw bytes
148     * that are the "content" of the brigade and "metadata" describes
149     * that data but is not a proper part of it.
150     */
151    enum {
152        /** This bucket type represents actual data to send to the client. */
153        APR_BUCKET_DATA = 0,
154        /** This bucket type represents metadata. */
155        APR_BUCKET_METADATA = 1
156    } is_metadata;
157    /**
158     * Free the private data and any resources used by the bucket (if they
159     *  aren't shared with another bucket).  This function is required to be
160     *  implemented for all bucket types, though it might be a no-op on some
161     *  of them (namely ones that never allocate any private data structures).
162     * @param data The private data pointer from the bucket to be destroyed
163     */
164    void (*destroy)(void *data);
165
166    /**
167     * Read the data from the bucket. This is required to be implemented
168     *  for all bucket types.
169     * @param b The bucket to read from
170     * @param str A place to store the data read.  Allocation should only be
171     *            done if absolutely necessary.
172     * @param len The amount of data read.
173     * @param block Should this read function block if there is more data that
174     *              cannot be read immediately.
175     */
176    apr_status_t (*read)(apr_bucket *b, const char **str, apr_size_t *len,
177                         apr_read_type_e block);
178
179    /**
180     * Make it possible to set aside the data for at least as long as the
181     *  given pool. Buckets containing data that could potentially die before
182     *  this pool (e.g. the data resides on the stack, in a child pool of
183     *  the given pool, or in a disjoint pool) must somehow copy, shift, or
184     *  transform the data to have the proper lifetime.
185     * @param e The bucket to convert
186     * @remark Some bucket types contain data that will always outlive the
187     *         bucket itself. For example no data (EOS and FLUSH), or the data
188     *         resides in global, constant memory (IMMORTAL), or the data is on
189     *      the heap (HEAP). For these buckets, apr_bucket_setaside_noop can
190     *      be used.
191     */
192    apr_status_t (*setaside)(apr_bucket *e, apr_pool_t *pool);
193
194    /**
195     * Split one bucket in two at the specified position by duplicating
196     *  the bucket structure (not the data) and modifying any necessary
197     *  start/end/offset information.  If it's not possible to do this
198     *  for the bucket type (perhaps the length of the data is indeterminate,
199     *  as with pipe and socket buckets), then APR_ENOTIMPL is returned.
200     * @param e The bucket to split
201     * @param point The offset of the first byte in the new bucket
202     */
203    apr_status_t (*split)(apr_bucket *e, apr_size_t point);
204
205    /**
206     * Copy the bucket structure (not the data), assuming that this is
207     *  possible for the bucket type. If it's not, APR_ENOTIMPL is returned.
208     * @param e The bucket to copy
209     * @param c Returns a pointer to the new bucket
210     */
211    apr_status_t (*copy)(apr_bucket *e, apr_bucket **c);
212
213};
214
215/**
216 * apr_bucket structures are allocated on the malloc() heap and
217 * their lifetime is controlled by the parent apr_bucket_brigade
218 * structure. Buckets can move from one brigade to another e.g. by
219 * calling APR_BRIGADE_CONCAT(). In general the data in a bucket has
220 * the same lifetime as the bucket and is freed when the bucket is
221 * destroyed; if the data is shared by more than one bucket (e.g.
222 * after a split) the data is freed when the last bucket goes away.
223 */
224struct apr_bucket {
225    /** Links to the rest of the brigade */
226    APR_RING_ENTRY(apr_bucket) link;
227    /** The type of bucket.  */
228    const apr_bucket_type_t *type;
229    /** The length of the data in the bucket.  This could have been implemented
230     *  with a function, but this is an optimization, because the most
231     *  common thing to do will be to get the length.  If the length is unknown,
232     *  the value of this field will be (apr_size_t)(-1).
233     */
234    apr_size_t length;
235    /** The start of the data in the bucket relative to the private base
236     *  pointer.  The vast majority of bucket types allow a fixed block of
237     *  data to be referenced by multiple buckets, each bucket pointing to
238     *  a different segment of the data.  That segment starts at base+start
239     *  and ends at base+start+length.
240     *  If the length == (apr_size_t)(-1), then start == -1.
241     */
242    apr_off_t start;
243    /** type-dependent data hangs off this pointer */
244    void *data;
245    /**
246     * Pointer to function used to free the bucket. This function should
247     * always be defined and it should be consistent with the memory
248     * function used to allocate the bucket. For example, if malloc() is
249     * used to allocate the bucket, this pointer should point to free().
250     * @param e Pointer to the bucket being freed
251     */
252    void (*free)(void *e);
253    /** The freelist from which this bucket was allocated */
254    apr_bucket_alloc_t *list;
255};
256
257/** A list of buckets */
258struct apr_bucket_brigade {
259    /** The pool to associate the brigade with.  The data is not allocated out
260     *  of the pool, but a cleanup is registered with this pool.  If the
261     *  brigade is destroyed by some mechanism other than pool destruction,
262     *  the destroying function is responsible for killing the cleanup.
263     */
264    apr_pool_t *p;
265    /** The buckets in the brigade are on this list. */
266    /*
267     * The apr_bucket_list structure doesn't actually need a name tag
268     * because it has no existence independent of struct apr_bucket_brigade;
269     * the ring macros are designed so that you can leave the name tag
270     * argument empty in this situation but apparently the Windows compiler
271     * doesn't like that.
272     */
273    APR_RING_HEAD(apr_bucket_list, apr_bucket) list;
274    /** The freelist from which this bucket was allocated */
275    apr_bucket_alloc_t *bucket_alloc;
276};
277
278
279/**
280 * Function called when a brigade should be flushed
281 */
282typedef apr_status_t (*apr_brigade_flush)(apr_bucket_brigade *bb, void *ctx);
283
284/*
285 * define APR_BUCKET_DEBUG if you want your brigades to be checked for
286 * validity at every possible instant.  this will slow your code down
287 * substantially but is a very useful debugging tool.
288 */
289#ifdef APR_BUCKET_DEBUG
290
291#define APR_BRIGADE_CHECK_CONSISTENCY(b)				\
292        APR_RING_CHECK_CONSISTENCY(&(b)->list, apr_bucket, link)
293
294#define APR_BUCKET_CHECK_CONSISTENCY(e)					\
295        APR_RING_CHECK_ELEM_CONSISTENCY((e), apr_bucket, link)
296
297#else
298/**
299 * checks the ring pointers in a bucket brigade for consistency.  an
300 * abort() will be triggered if any inconsistencies are found.
301 *   note: this is a no-op unless APR_BUCKET_DEBUG is defined.
302 * @param b The brigade
303 */
304#define APR_BRIGADE_CHECK_CONSISTENCY(b)
305/**
306 * checks the brigade a bucket is in for ring consistency.  an
307 * abort() will be triggered if any inconsistencies are found.
308 *   note: this is a no-op unless APR_BUCKET_DEBUG is defined.
309 * @param e The bucket
310 */
311#define APR_BUCKET_CHECK_CONSISTENCY(e)
312#endif
313
314
315/**
316 * Wrappers around the RING macros to reduce the verbosity of the code
317 * that handles bucket brigades.
318 */
319/**
320 * The magic pointer value that indicates the head of the brigade
321 * @remark This is used to find the beginning and end of the brigade, eg:
322 * <pre>
323 *      while (e != APR_BRIGADE_SENTINEL(b)) {
324 *          ...
325 *          e = APR_BUCKET_NEXT(e);
326 *      }
327 * </pre>
328 * @param  b The brigade
329 * @return The magic pointer value
330 */
331#define APR_BRIGADE_SENTINEL(b)	APR_RING_SENTINEL(&(b)->list, apr_bucket, link)
332
333/**
334 * Determine if the bucket brigade is empty
335 * @param b The brigade to check
336 * @return true or false
337 */
338#define APR_BRIGADE_EMPTY(b)	APR_RING_EMPTY(&(b)->list, apr_bucket, link)
339
340/**
341 * Return the first bucket in a brigade
342 * @param b The brigade to query
343 * @return The first bucket in the brigade
344 */
345#define APR_BRIGADE_FIRST(b)	APR_RING_FIRST(&(b)->list)
346/**
347 * Return the last bucket in a brigade
348 * @param b The brigade to query
349 * @return The last bucket in the brigade
350 */
351#define APR_BRIGADE_LAST(b)	APR_RING_LAST(&(b)->list)
352
353/**
354 * Insert a single bucket at the front of a brigade
355 * @param b The brigade to add to
356 * @param e The bucket to insert
357 */
358#define APR_BRIGADE_INSERT_HEAD(b, e) do {				\
359	apr_bucket *ap__b = (e);                                        \
360	APR_RING_INSERT_HEAD(&(b)->list, ap__b, apr_bucket, link);	\
361        APR_BRIGADE_CHECK_CONSISTENCY((b));				\
362    } while (0)
363
364/**
365 * Insert a single bucket at the end of a brigade
366 * @param b The brigade to add to
367 * @param e The bucket to insert
368 */
369#define APR_BRIGADE_INSERT_TAIL(b, e) do {				\
370	apr_bucket *ap__b = (e);					\
371	APR_RING_INSERT_TAIL(&(b)->list, ap__b, apr_bucket, link);	\
372        APR_BRIGADE_CHECK_CONSISTENCY((b));				\
373    } while (0)
374
375/**
376 * Concatenate brigade b onto the end of brigade a, leaving brigade b empty
377 * @param a The first brigade
378 * @param b The second brigade
379 */
380#define APR_BRIGADE_CONCAT(a, b) do {					\
381        APR_RING_CONCAT(&(a)->list, &(b)->list, apr_bucket, link);	\
382        APR_BRIGADE_CHECK_CONSISTENCY((a));				\
383    } while (0)
384
385/**
386 * Prepend brigade b onto the beginning of brigade a, leaving brigade b empty
387 * @param a The first brigade
388 * @param b The second brigade
389 */
390#define APR_BRIGADE_PREPEND(a, b) do {					\
391        APR_RING_PREPEND(&(a)->list, &(b)->list, apr_bucket, link);	\
392        APR_BRIGADE_CHECK_CONSISTENCY((a));				\
393    } while (0)
394
395/**
396 * Insert a single bucket before a specified bucket
397 * @param a The bucket to insert before
398 * @param b The bucket to insert
399 */
400#define APR_BUCKET_INSERT_BEFORE(a, b) do {				\
401	apr_bucket *ap__a = (a), *ap__b = (b);				\
402	APR_RING_INSERT_BEFORE(ap__a, ap__b, link);			\
403        APR_BUCKET_CHECK_CONSISTENCY(ap__a);				\
404    } while (0)
405
406/**
407 * Insert a single bucket after a specified bucket
408 * @param a The bucket to insert after
409 * @param b The bucket to insert
410 */
411#define APR_BUCKET_INSERT_AFTER(a, b) do {				\
412	apr_bucket *ap__a = (a), *ap__b = (b);				\
413	APR_RING_INSERT_AFTER(ap__a, ap__b, link);			\
414        APR_BUCKET_CHECK_CONSISTENCY(ap__a);				\
415    } while (0)
416
417/**
418 * Get the next bucket in the list
419 * @param e The current bucket
420 * @return The next bucket
421 */
422#define APR_BUCKET_NEXT(e)	APR_RING_NEXT((e), link)
423/**
424 * Get the previous bucket in the list
425 * @param e The current bucket
426 * @return The previous bucket
427 */
428#define APR_BUCKET_PREV(e)	APR_RING_PREV((e), link)
429
430/**
431 * Remove a bucket from its bucket brigade
432 * @param e The bucket to remove
433 */
434#define APR_BUCKET_REMOVE(e)	APR_RING_REMOVE((e), link)
435
436/**
437 * Initialize a new bucket's prev/next pointers
438 * @param e The bucket to initialize
439 */
440#define APR_BUCKET_INIT(e)	APR_RING_ELEM_INIT((e), link)
441
442/**
443 * Determine if a bucket contains metadata.  An empty bucket is
444 * safe to arbitrarily remove if and only if this is false.
445 * @param e The bucket to inspect
446 * @return true or false
447 */
448#define APR_BUCKET_IS_METADATA(e)    ((e)->type->is_metadata)
449
450/**
451 * Determine if a bucket is a FLUSH bucket
452 * @param e The bucket to inspect
453 * @return true or false
454 */
455#define APR_BUCKET_IS_FLUSH(e)       ((e)->type == &apr_bucket_type_flush)
456/**
457 * Determine if a bucket is an EOS bucket
458 * @param e The bucket to inspect
459 * @return true or false
460 */
461#define APR_BUCKET_IS_EOS(e)         ((e)->type == &apr_bucket_type_eos)
462/**
463 * Determine if a bucket is a FILE bucket
464 * @param e The bucket to inspect
465 * @return true or false
466 */
467#define APR_BUCKET_IS_FILE(e)        ((e)->type == &apr_bucket_type_file)
468/**
469 * Determine if a bucket is a PIPE bucket
470 * @param e The bucket to inspect
471 * @return true or false
472 */
473#define APR_BUCKET_IS_PIPE(e)        ((e)->type == &apr_bucket_type_pipe)
474/**
475 * Determine if a bucket is a SOCKET bucket
476 * @param e The bucket to inspect
477 * @return true or false
478 */
479#define APR_BUCKET_IS_SOCKET(e)      ((e)->type == &apr_bucket_type_socket)
480/**
481 * Determine if a bucket is a HEAP bucket
482 * @param e The bucket to inspect
483 * @return true or false
484 */
485#define APR_BUCKET_IS_HEAP(e)        ((e)->type == &apr_bucket_type_heap)
486/**
487 * Determine if a bucket is a TRANSIENT bucket
488 * @param e The bucket to inspect
489 * @return true or false
490 */
491#define APR_BUCKET_IS_TRANSIENT(e)   ((e)->type == &apr_bucket_type_transient)
492/**
493 * Determine if a bucket is a IMMORTAL bucket
494 * @param e The bucket to inspect
495 * @return true or false
496 */
497#define APR_BUCKET_IS_IMMORTAL(e)    ((e)->type == &apr_bucket_type_immortal)
498#if APR_HAS_MMAP
499/**
500 * Determine if a bucket is a MMAP bucket
501 * @param e The bucket to inspect
502 * @return true or false
503 */
504#define APR_BUCKET_IS_MMAP(e)        ((e)->type == &apr_bucket_type_mmap)
505#endif
506/**
507 * Determine if a bucket is a POOL bucket
508 * @param e The bucket to inspect
509 * @return true or false
510 */
511#define APR_BUCKET_IS_POOL(e)        ((e)->type == &apr_bucket_type_pool)
512
513/*
514 * General-purpose reference counting for the various bucket types.
515 *
516 * Any bucket type that keeps track of the resources it uses (i.e.
517 * most of them except for IMMORTAL, TRANSIENT, and EOS) needs to
518 * attach a reference count to the resource so that it can be freed
519 * when the last bucket that uses it goes away. Resource-sharing may
520 * occur because of bucket splits or buckets that refer to globally
521 * cached data. */
522
523/** @see apr_bucket_refcount */
524typedef struct apr_bucket_refcount apr_bucket_refcount;
525/**
526 * The structure used to manage the shared resource must start with an
527 * apr_bucket_refcount which is updated by the general-purpose refcount
528 * code. A pointer to the bucket-type-dependent private data structure
529 * can be cast to a pointer to an apr_bucket_refcount and vice versa.
530 */
531struct apr_bucket_refcount {
532    /** The number of references to this bucket */
533    int          refcount;
534};
535
536/*  *****  Reference-counted bucket types  *****  */
537
538/** @see apr_bucket_heap */
539typedef struct apr_bucket_heap apr_bucket_heap;
540/**
541 * A bucket referring to data allocated off the heap.
542 */
543struct apr_bucket_heap {
544    /** Number of buckets using this memory */
545    apr_bucket_refcount  refcount;
546    /** The start of the data actually allocated.  This should never be
547     * modified, it is only used to free the bucket.
548     */
549    char    *base;
550    /** how much memory was allocated */
551    apr_size_t  alloc_len;
552    /** function to use to delete the data */
553    void (*free_func)(void *data);
554};
555
556/** @see apr_bucket_pool */
557typedef struct apr_bucket_pool apr_bucket_pool;
558/**
559 * A bucket referring to data allocated from a pool
560 */
561struct apr_bucket_pool {
562    /** The pool bucket must be able to be easily morphed to a heap
563     * bucket if the pool gets cleaned up before all references are
564     * destroyed.  This apr_bucket_heap structure is populated automatically
565     * when the pool gets cleaned up, and subsequent calls to pool_read()
566     * will result in the apr_bucket in question being morphed into a
567     * regular heap bucket.  (To avoid having to do many extra refcount
568     * manipulations and b->data manipulations, the apr_bucket_pool
569     * struct actually *contains* the apr_bucket_heap struct that it
570     * will become as its first element; the two share their
571     * apr_bucket_refcount members.)
572     */
573    apr_bucket_heap  heap;
574    /** The block of data actually allocated from the pool.
575     * Segments of this block are referenced by adjusting
576     * the start and length of the apr_bucket accordingly.
577     * This will be NULL after the pool gets cleaned up.
578     */
579    const char *base;
580    /** The pool the data was allocated from.  When the pool
581     * is cleaned up, this gets set to NULL as an indicator
582     * to pool_read() that the data is now on the heap and
583     * so it should morph the bucket into a regular heap
584     * bucket before continuing.
585     */
586    apr_pool_t *pool;
587    /** The freelist this structure was allocated from, which is
588     * needed in the cleanup phase in order to allocate space on the heap
589     */
590    apr_bucket_alloc_t *list;
591};
592
593#if APR_HAS_MMAP
594/** @see apr_bucket_mmap */
595typedef struct apr_bucket_mmap apr_bucket_mmap;
596/**
597 * A bucket referring to an mmap()ed file
598 */
599struct apr_bucket_mmap {
600    /** Number of buckets using this memory */
601    apr_bucket_refcount  refcount;
602    /** The mmap this sub_bucket refers to */
603    apr_mmap_t *mmap;
604};
605#endif
606
607/** @see apr_bucket_file */
608typedef struct apr_bucket_file apr_bucket_file;
609/**
610 * A bucket referring to an file
611 */
612struct apr_bucket_file {
613    /** Number of buckets using this memory */
614    apr_bucket_refcount  refcount;
615    /** The file this bucket refers to */
616    apr_file_t *fd;
617    /** The pool into which any needed structures should
618     *  be created while reading from this file bucket */
619    apr_pool_t *readpool;
620#if APR_HAS_MMAP
621    /** Whether this bucket should be memory-mapped if
622     *  a caller tries to read from it */
623    int can_mmap;
624#endif /* APR_HAS_MMAP */
625    /** File read block size */
626    apr_size_t read_size;
627};
628
629/** @see apr_bucket_structs */
630typedef union apr_bucket_structs apr_bucket_structs;
631/**
632 * A union of all bucket structures so we know what
633 * the max size is.
634 */
635union apr_bucket_structs {
636    apr_bucket      b;      /**< Bucket */
637    apr_bucket_heap heap;   /**< Heap */
638    apr_bucket_pool pool;   /**< Pool */
639#if APR_HAS_MMAP
640    apr_bucket_mmap mmap;   /**< MMap */
641#endif
642    apr_bucket_file file;   /**< File */
643};
644
645/**
646 * The amount that apr_bucket_alloc() should allocate in the common case.
647 * Note: this is twice as big as apr_bucket_structs to allow breathing
648 * room for third-party bucket types.
649 */
650#define APR_BUCKET_ALLOC_SIZE  APR_ALIGN_DEFAULT(2*sizeof(apr_bucket_structs))
651
652/*  *****  Bucket Brigade Functions  *****  */
653/**
654 * Create a new bucket brigade.  The bucket brigade is originally empty.
655 * @param p The pool to associate with the brigade.  Data is not allocated out
656 *          of the pool, but a cleanup is registered.
657 * @param list The bucket allocator to use
658 * @return The empty bucket brigade
659 */
660APU_DECLARE(apr_bucket_brigade *) apr_brigade_create(apr_pool_t *p,
661                                                     apr_bucket_alloc_t *list);
662
663/**
664 * destroy an entire bucket brigade.  This includes destroying all of the
665 * buckets within the bucket brigade's bucket list.
666 * @param b The bucket brigade to destroy
667 */
668APU_DECLARE(apr_status_t) apr_brigade_destroy(apr_bucket_brigade *b);
669
670/**
671 * empty out an entire bucket brigade.  This includes destroying all of the
672 * buckets within the bucket brigade's bucket list.  This is similar to
673 * apr_brigade_destroy(), except that it does not deregister the brigade's
674 * pool cleanup function.
675 * @param data The bucket brigade to clean up
676 * @remark Generally, you should use apr_brigade_destroy().  This function
677 *         can be useful in situations where you have a single brigade that
678 *         you wish to reuse many times by destroying all of the buckets in
679 *         the brigade and putting new buckets into it later.
680 */
681APU_DECLARE(apr_status_t) apr_brigade_cleanup(void *data);
682
683/**
684 * Move the buckets from the tail end of the existing brigade @a b into
685 * the brigade @a a. If @a a is NULL a new brigade is created. Buckets
686 * from @a e to the last bucket (inclusively) of brigade @a b are moved
687 * from @a b to the returned brigade @a a.
688 *
689 * @param b The brigade to split
690 * @param e The first bucket to move
691 * @param a The brigade which should be used for the result or NULL if
692 *          a new brigade should be created. The brigade @a a will be
693 *          cleared if it is not empty.
694 * @return The brigade supplied in @a a or a new one if @a a was NULL.
695 * @warning Note that this function allocates a new brigade if @a a is
696 * NULL so memory consumption should be carefully considered.
697 */
698APU_DECLARE(apr_bucket_brigade *) apr_brigade_split_ex(apr_bucket_brigade *b,
699                                                       apr_bucket *e,
700                                                       apr_bucket_brigade *a);
701
702/**
703 * Create a new bucket brigade and move the buckets from the tail end
704 * of an existing brigade into the new brigade.  Buckets from
705 * @a e to the last bucket (inclusively) of brigade @a b
706 * are moved from @a b to the returned brigade.
707 * @param b The brigade to split
708 * @param e The first bucket to move
709 * @return The new brigade
710 * @warning Note that this function always allocates a new brigade
711 * so memory consumption should be carefully considered.
712 */
713APU_DECLARE(apr_bucket_brigade *) apr_brigade_split(apr_bucket_brigade *b,
714                                                    apr_bucket *e);
715
716/**
717 * Partition a bucket brigade at a given offset (in bytes from the start of
718 * the brigade).  This is useful whenever a filter wants to use known ranges
719 * of bytes from the brigade; the ranges can even overlap.
720 * @param b The brigade to partition
721 * @param point The offset at which to partition the brigade
722 * @param after_point Returns a pointer to the first bucket after the partition
723 * @return APR_SUCCESS on success, APR_INCOMPLETE if the contents of the
724 * brigade were shorter than @a point, or an error code.
725 * @remark if APR_INCOMPLETE is returned, @a after_point will be set to
726 * the brigade sentinel.
727 */
728APU_DECLARE(apr_status_t) apr_brigade_partition(apr_bucket_brigade *b,
729                                                apr_off_t point,
730                                                apr_bucket **after_point);
731
732/**
733 * Return the total length of the brigade.
734 * @param bb The brigade to compute the length of
735 * @param read_all Read unknown-length buckets to force a size
736 * @param length Returns the length of the brigade (up to the end, or up
737 *               to a bucket read error), or -1 if the brigade has buckets
738 *               of indeterminate length and read_all is 0.
739 */
740APU_DECLARE(apr_status_t) apr_brigade_length(apr_bucket_brigade *bb,
741                                             int read_all,
742                                             apr_off_t *length);
743
744/**
745 * Take a bucket brigade and store the data in a flat char*
746 * @param bb The bucket brigade to create the char* from
747 * @param c The char* to write into
748 * @param len The maximum length of the char array. On return, it is the
749 *            actual length of the char array.
750 */
751APU_DECLARE(apr_status_t) apr_brigade_flatten(apr_bucket_brigade *bb,
752                                              char *c,
753                                              apr_size_t *len);
754
755/**
756 * Creates a pool-allocated string representing a flat bucket brigade
757 * @param bb The bucket brigade to create the char array from
758 * @param c On return, the allocated char array
759 * @param len On return, the length of the char array.
760 * @param pool The pool to allocate the string from.
761 */
762APU_DECLARE(apr_status_t) apr_brigade_pflatten(apr_bucket_brigade *bb,
763                                               char **c,
764                                               apr_size_t *len,
765                                               apr_pool_t *pool);
766
767/**
768 * Split a brigade to represent one LF line.
769 * @param bbOut The bucket brigade that will have the LF line appended to.
770 * @param bbIn The input bucket brigade to search for a LF-line.
771 * @param block The blocking mode to be used to split the line.
772 * @param maxbytes The maximum bytes to read.  If this many bytes are seen
773 *                 without a LF, the brigade will contain a partial line.
774 */
775APU_DECLARE(apr_status_t) apr_brigade_split_line(apr_bucket_brigade *bbOut,
776                                                 apr_bucket_brigade *bbIn,
777                                                 apr_read_type_e block,
778                                                 apr_off_t maxbytes);
779
780/**
781 * Create an iovec of the elements in a bucket_brigade... return number
782 * of elements used.  This is useful for writing to a file or to the
783 * network efficiently.
784 * @param b The bucket brigade to create the iovec from
785 * @param vec The iovec to create
786 * @param nvec The number of elements in the iovec. On return, it is the
787 *             number of iovec elements actually filled out.
788 */
789APU_DECLARE(apr_status_t) apr_brigade_to_iovec(apr_bucket_brigade *b,
790                                               struct iovec *vec, int *nvec);
791
792/**
793 * This function writes a list of strings into a bucket brigade.
794 * @param b The bucket brigade to add to
795 * @param flush The flush function to use if the brigade is full
796 * @param ctx The structure to pass to the flush function
797 * @param va A list of strings to add
798 * @return APR_SUCCESS or error code.
799 */
800APU_DECLARE(apr_status_t) apr_brigade_vputstrs(apr_bucket_brigade *b,
801                                               apr_brigade_flush flush,
802                                               void *ctx,
803                                               va_list va);
804
805/**
806 * This function writes a string into a bucket brigade.
807 *
808 * The apr_brigade_write function attempts to be efficient with the
809 * handling of heap buckets. Regardless of the amount of data stored
810 * inside a heap bucket, heap buckets are a fixed size to promote their
811 * reuse.
812 *
813 * If an attempt is made to write a string to a brigade that already
814 * ends with a heap bucket, this function will attempt to pack the
815 * string into the remaining space in the previous heap bucket, before
816 * allocating a new heap bucket.
817 *
818 * This function always returns APR_SUCCESS, unless a flush function is
819 * passed, in which case the return value of the flush function will be
820 * returned if used.
821 * @param b The bucket brigade to add to
822 * @param flush The flush function to use if the brigade is full
823 * @param ctx The structure to pass to the flush function
824 * @param str The string to add
825 * @param nbyte The number of bytes to write
826 * @return APR_SUCCESS or error code
827 */
828APU_DECLARE(apr_status_t) apr_brigade_write(apr_bucket_brigade *b,
829                                            apr_brigade_flush flush, void *ctx,
830                                            const char *str, apr_size_t nbyte);
831
832/**
833 * This function writes multiple strings into a bucket brigade.
834 * @param b The bucket brigade to add to
835 * @param flush The flush function to use if the brigade is full
836 * @param ctx The structure to pass to the flush function
837 * @param vec The strings to add (address plus length for each)
838 * @param nvec The number of entries in iovec
839 * @return APR_SUCCESS or error code
840 */
841APU_DECLARE(apr_status_t) apr_brigade_writev(apr_bucket_brigade *b,
842                                             apr_brigade_flush flush,
843                                             void *ctx,
844                                             const struct iovec *vec,
845                                             apr_size_t nvec);
846
847/**
848 * This function writes a string into a bucket brigade.
849 * @param bb The bucket brigade to add to
850 * @param flush The flush function to use if the brigade is full
851 * @param ctx The structure to pass to the flush function
852 * @param str The string to add
853 * @return APR_SUCCESS or error code
854 */
855APU_DECLARE(apr_status_t) apr_brigade_puts(apr_bucket_brigade *bb,
856                                           apr_brigade_flush flush, void *ctx,
857                                           const char *str);
858
859/**
860 * This function writes a character into a bucket brigade.
861 * @param b The bucket brigade to add to
862 * @param flush The flush function to use if the brigade is full
863 * @param ctx The structure to pass to the flush function
864 * @param c The character to add
865 * @return APR_SUCCESS or error code
866 */
867APU_DECLARE(apr_status_t) apr_brigade_putc(apr_bucket_brigade *b,
868                                           apr_brigade_flush flush, void *ctx,
869                                           const char c);
870
871/**
872 * This function writes an unspecified number of strings into a bucket brigade.
873 * @param b The bucket brigade to add to
874 * @param flush The flush function to use if the brigade is full
875 * @param ctx The structure to pass to the flush function
876 * @param ... The strings to add
877 * @return APR_SUCCESS or error code
878 */
879APU_DECLARE_NONSTD(apr_status_t) apr_brigade_putstrs(apr_bucket_brigade *b,
880                                                     apr_brigade_flush flush,
881                                                     void *ctx, ...);
882
883/**
884 * Evaluate a printf and put the resulting string at the end
885 * of the bucket brigade.
886 * @param b The brigade to write to
887 * @param flush The flush function to use if the brigade is full
888 * @param ctx The structure to pass to the flush function
889 * @param fmt The format of the string to write
890 * @param ... The arguments to fill out the format
891 * @return APR_SUCCESS or error code
892 */
893APU_DECLARE_NONSTD(apr_status_t) apr_brigade_printf(apr_bucket_brigade *b,
894                                                    apr_brigade_flush flush,
895                                                    void *ctx,
896                                                    const char *fmt, ...)
897        __attribute__((format(printf,4,5)));
898
899/**
900 * Evaluate a printf and put the resulting string at the end
901 * of the bucket brigade.
902 * @param b The brigade to write to
903 * @param flush The flush function to use if the brigade is full
904 * @param ctx The structure to pass to the flush function
905 * @param fmt The format of the string to write
906 * @param va The arguments to fill out the format
907 * @return APR_SUCCESS or error code
908 */
909APU_DECLARE(apr_status_t) apr_brigade_vprintf(apr_bucket_brigade *b,
910                                              apr_brigade_flush flush,
911                                              void *ctx,
912                                              const char *fmt, va_list va);
913
914/**
915 * Utility function to insert a file (or a segment of a file) onto the
916 * end of the brigade.  The file is split into multiple buckets if it
917 * is larger than the maximum size which can be represented by a
918 * single bucket.
919 * @param bb the brigade to insert into
920 * @param f the file to insert
921 * @param start the offset of the start of the segment
922 * @param len the length of the segment of the file to insert
923 * @param p pool from which file buckets are allocated
924 * @return the last bucket inserted
925 */
926APU_DECLARE(apr_bucket *) apr_brigade_insert_file(apr_bucket_brigade *bb,
927                                                  apr_file_t *f,
928                                                  apr_off_t start,
929                                                  apr_off_t len,
930                                                  apr_pool_t *p);
931
932
933
934/*  *****  Bucket freelist functions *****  */
935/**
936 * Create a bucket allocator.
937 * @param p This pool's underlying apr_allocator_t is used to allocate memory
938 *          for the bucket allocator.  When the pool is destroyed, the bucket
939 *          allocator's cleanup routine will free all memory that has been
940 *          allocated from it.
941 * @remark  The reason the allocator gets its memory from the pool's
942 *          apr_allocator_t rather than from the pool itself is because
943 *          the bucket allocator will free large memory blocks back to the
944 *          allocator when it's done with them, thereby preventing memory
945 *          footprint growth that would occur if we allocated from the pool.
946 * @warning The allocator must never be used by more than one thread at a time.
947 */
948APU_DECLARE_NONSTD(apr_bucket_alloc_t *) apr_bucket_alloc_create(apr_pool_t *p);
949
950/**
951 * Create a bucket allocator.
952 * @param allocator This apr_allocator_t is used to allocate both the bucket
953 *          allocator and all memory handed out by the bucket allocator.  The
954 *          caller is responsible for destroying the bucket allocator and the
955 *          apr_allocator_t -- no automatic cleanups will happen.
956 * @warning The allocator must never be used by more than one thread at a time.
957 */
958APU_DECLARE_NONSTD(apr_bucket_alloc_t *) apr_bucket_alloc_create_ex(apr_allocator_t *allocator);
959
960/**
961 * Destroy a bucket allocator.
962 * @param list The allocator to be destroyed
963 */
964APU_DECLARE_NONSTD(void) apr_bucket_alloc_destroy(apr_bucket_alloc_t *list);
965
966/**
967 * Get the aligned size corresponding to the requested size, but minus the
968 * allocator(s) overhead such that the allocation would remain in the
969 * same boundary.
970 * @param list The allocator from which to the memory would be allocated.
971 * @param size The requested size.
972 * @return The corresponding aligned/floored size.
973 */
974APU_DECLARE_NONSTD(apr_size_t) apr_bucket_alloc_aligned_floor(apr_bucket_alloc_t *list,
975                                                              apr_size_t size)
976                         __attribute__((nonnull(1)));
977
978/**
979 * Allocate memory for use by the buckets.
980 * @param size The amount to allocate.
981 * @param list The allocator from which to allocate the memory.
982 */
983APU_DECLARE_NONSTD(void *) apr_bucket_alloc(apr_size_t size, apr_bucket_alloc_t *list);
984
985/**
986 * Free memory previously allocated with apr_bucket_alloc().
987 * @param block The block of memory to be freed.
988 */
989APU_DECLARE_NONSTD(void) apr_bucket_free(void *block);
990
991
992/*  *****  Bucket Functions  *****  */
993/**
994 * Free the resources used by a bucket. If multiple buckets refer to
995 * the same resource it is freed when the last one goes away.
996 * @see apr_bucket_delete()
997 * @param e The bucket to destroy
998 */
999#define apr_bucket_destroy(e) do {					\
1000        (e)->type->destroy((e)->data);					\
1001        (e)->free(e);							\
1002    } while (0)
1003
1004/**
1005 * Delete a bucket by removing it from its brigade (if any) and then
1006 * destroying it.
1007 * @remark This mainly acts as an aid in avoiding code verbosity.  It is
1008 * the preferred exact equivalent to:
1009 * <pre>
1010 *      APR_BUCKET_REMOVE(e);
1011 *      apr_bucket_destroy(e);
1012 * </pre>
1013 * @param e The bucket to delete
1014 */
1015#define apr_bucket_delete(e) do {					\
1016        APR_BUCKET_REMOVE(e);						\
1017        apr_bucket_destroy(e);						\
1018    } while (0)
1019
1020/**
1021 * Read some data from the bucket.
1022 *
1023 * The apr_bucket_read function returns a convenient amount of data
1024 * from the bucket provided, writing the address and length of the
1025 * data to the pointers provided by the caller. The function tries
1026 * as hard as possible to avoid a memory copy.
1027 *
1028 * Buckets are expected to be a member of a brigade at the time they
1029 * are read.
1030 *
1031 * In typical application code, buckets are read in a loop, and after
1032 * each bucket is read and processed, it is moved or deleted from the
1033 * brigade and the next bucket read.
1034 *
1035 * The definition of "convenient" depends on the type of bucket that
1036 * is being read, and is decided by APR. In the case of memory based
1037 * buckets such as heap and immortal buckets, a pointer will be
1038 * returned to the location of the buffer containing the complete
1039 * contents of the bucket.
1040 *
1041 * Some buckets, such as the socket bucket, might have no concept
1042 * of length. If an attempt is made to read such a bucket, the
1043 * apr_bucket_read function will read a convenient amount of data
1044 * from the socket. The socket bucket is magically morphed into a
1045 * heap bucket containing the just-read data, and a new socket bucket
1046 * is inserted just after this heap bucket.
1047 *
1048 * To understand why apr_bucket_read might do this, consider the loop
1049 * described above to read and process buckets. The current bucket
1050 * is magically morphed into a heap bucket and returned to the caller.
1051 * The caller processes the data, and deletes the heap bucket, moving
1052 * onto the next bucket, the new socket bucket. This process repeats,
1053 * giving the illusion of a bucket brigade that contains potentially
1054 * infinite amounts of data. It is up to the caller to decide at what
1055 * point to stop reading buckets.
1056 *
1057 * Some buckets, such as the file bucket, might have a fixed size,
1058 * but be significantly larger than is practical to store in RAM in
1059 * one go. As with the socket bucket, if an attempt is made to read
1060 * from a file bucket, the file bucket is magically morphed into a
1061 * heap bucket containing a convenient amount of data read from the
1062 * current offset in the file. During the read, the offset will be
1063 * moved forward on the file, and a new file bucket will be inserted
1064 * directly after the current bucket representing the remainder of the
1065 * file. If the heap bucket was large enough to store the whole
1066 * remainder of the file, no more file buckets are inserted, and the
1067 * file bucket will disappear completely.
1068 *
1069 * The pattern for reading buckets described above does create the
1070 * illusion that the code is willing to swallow buckets that might be
1071 * too large for the system to handle in one go. This however is just
1072 * an illusion: APR will always ensure that large (file) or infinite
1073 * (socket) buckets are broken into convenient bite sized heap buckets
1074 * before data is returned to the caller.
1075 *
1076 * There is a potential gotcha to watch for: if buckets are read in a
1077 * loop, and aren't deleted after being processed, the potentially large
1078 * bucket will slowly be converted into RAM resident heap buckets. If
1079 * the file is larger than available RAM, an out of memory condition
1080 * could be caused if the application is not careful to manage this.
1081 *
1082 * @param e The bucket to read from
1083 * @param str The location to store a pointer to the data in
1084 * @param len The location to store the amount of data read
1085 * @param block Whether the read function blocks
1086 */
1087#define apr_bucket_read(e,str,len,block) (e)->type->read(e, str, len, block)
1088
1089/**
1090 * Setaside data so that stack data is not destroyed on returning from
1091 * the function
1092 * @param e The bucket to setaside
1093 * @param p The pool to setaside into
1094 */
1095#define apr_bucket_setaside(e,p) (e)->type->setaside(e,p)
1096
1097/**
1098 * Split one bucket in two at the point provided.
1099 *
1100 * Once split, the original bucket becomes the first of the two new buckets.
1101 *
1102 * (It is assumed that the bucket is a member of a brigade when this
1103 * function is called).
1104 * @param e The bucket to split
1105 * @param point The offset to split the bucket at
1106 */
1107#define apr_bucket_split(e,point) (e)->type->split(e, point)
1108
1109/**
1110 * Copy a bucket.
1111 * @param e The bucket to copy
1112 * @param c Returns a pointer to the new bucket
1113 */
1114#define apr_bucket_copy(e,c) (e)->type->copy(e, c)
1115
1116/* Bucket type handling */
1117
1118/**
1119 * This function simply returns APR_SUCCESS to denote that the bucket does
1120 * not require anything to happen for its setaside() function. This is
1121 * appropriate for buckets that have "immortal" data -- the data will live
1122 * at least as long as the bucket.
1123 * @param data The bucket to setaside
1124 * @param pool The pool defining the desired lifetime of the bucket data
1125 * @return APR_SUCCESS
1126 */
1127APU_DECLARE_NONSTD(apr_status_t) apr_bucket_setaside_noop(apr_bucket *data,
1128                                                          apr_pool_t *pool);
1129
1130/**
1131 * A place holder function that signifies that the setaside function was not
1132 * implemented for this bucket
1133 * @param data The bucket to setaside
1134 * @param pool The pool defining the desired lifetime of the bucket data
1135 * @return APR_ENOTIMPL
1136 */
1137APU_DECLARE_NONSTD(apr_status_t) apr_bucket_setaside_notimpl(apr_bucket *data,
1138                                                             apr_pool_t *pool);
1139
1140/**
1141 * A place holder function that signifies that the split function was not
1142 * implemented for this bucket
1143 * @param data The bucket to split
1144 * @param point The location to split the bucket
1145 * @return APR_ENOTIMPL
1146 */
1147APU_DECLARE_NONSTD(apr_status_t) apr_bucket_split_notimpl(apr_bucket *data,
1148                                                          apr_size_t point);
1149
1150/**
1151 * A place holder function that signifies that the copy function was not
1152 * implemented for this bucket
1153 * @param e The bucket to copy
1154 * @param c Returns a pointer to the new bucket
1155 * @return APR_ENOTIMPL
1156 */
1157APU_DECLARE_NONSTD(apr_status_t) apr_bucket_copy_notimpl(apr_bucket *e,
1158                                                         apr_bucket **c);
1159
1160/**
1161 * A place holder function that signifies that this bucket does not need
1162 * to do anything special to be destroyed.  That's only the case for buckets
1163 * that either have no data (metadata buckets) or buckets whose data pointer
1164 * points to something that's not a bucket-type-specific structure, as with
1165 * simple buckets where data points to a string and pipe buckets where data
1166 * points directly to the apr_file_t.
1167 * @param data The bucket data to destroy
1168 */
1169APU_DECLARE_NONSTD(void) apr_bucket_destroy_noop(void *data);
1170
1171/**
1172 * There is no apr_bucket_destroy_notimpl, because destruction is required
1173 * to be implemented (it could be a noop, but only if that makes sense for
1174 * the bucket type)
1175 */
1176
1177/* There is no apr_bucket_read_notimpl, because it is a required function
1178 */
1179
1180
1181/* All of the bucket types implemented by the core */
1182/**
1183 * The flush bucket type.  This signifies that all data should be flushed to
1184 * the next filter.  The flush bucket should be sent with the other buckets.
1185 */
1186APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_flush;
1187/**
1188 * The EOS bucket type.  This signifies that there will be no more data, ever.
1189 * All filters MUST send all data to the next filter when they receive a
1190 * bucket of this type
1191 */
1192APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_eos;
1193/**
1194 * The FILE bucket type.  This bucket represents a file on disk
1195 */
1196APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_file;
1197/**
1198 * The HEAP bucket type.  This bucket represents a data allocated from the
1199 * heap.
1200 */
1201APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_heap;
1202#if APR_HAS_MMAP
1203/**
1204 * The MMAP bucket type.  This bucket represents an MMAP'ed file
1205 */
1206APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_mmap;
1207#endif
1208/**
1209 * The POOL bucket type.  This bucket represents a data that was allocated
1210 * from a pool.  IF this bucket is still available when the pool is cleared,
1211 * the data is copied on to the heap.
1212 */
1213APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_pool;
1214/**
1215 * The PIPE bucket type.  This bucket represents a pipe to another program.
1216 */
1217APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_pipe;
1218/**
1219 * The IMMORTAL bucket type.  This bucket represents a segment of data that
1220 * the creator is willing to take responsibility for.  The core will do
1221 * nothing with the data in an immortal bucket
1222 */
1223APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_immortal;
1224/**
1225 * The TRANSIENT bucket type.  This bucket represents a data allocated off
1226 * the stack.  When the setaside function is called, this data is copied on
1227 * to the heap
1228 */
1229APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_transient;
1230/**
1231 * The SOCKET bucket type.  This bucket represents a socket to another machine
1232 */
1233APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_socket;
1234
1235
1236/*  *****  Simple buckets  *****  */
1237
1238/**
1239 * Split a simple bucket into two at the given point.  Most non-reference
1240 * counting buckets that allow multiple references to the same block of
1241 * data (eg transient and immortal) will use this as their split function
1242 * without any additional type-specific handling.
1243 * @param b The bucket to be split
1244 * @param point The offset of the first byte in the new bucket
1245 * @return APR_EINVAL if the point is not within the bucket;
1246 *         APR_ENOMEM if allocation failed;
1247 *         or APR_SUCCESS
1248 */
1249APU_DECLARE_NONSTD(apr_status_t) apr_bucket_simple_split(apr_bucket *b,
1250                                                         apr_size_t point);
1251
1252/**
1253 * Copy a simple bucket.  Most non-reference-counting buckets that allow
1254 * multiple references to the same block of data (eg transient and immortal)
1255 * will use this as their copy function without any additional type-specific
1256 * handling.
1257 * @param a The bucket to copy
1258 * @param b Returns a pointer to the new bucket
1259 * @return APR_ENOMEM if allocation failed;
1260 *         or APR_SUCCESS
1261 */
1262APU_DECLARE_NONSTD(apr_status_t) apr_bucket_simple_copy(apr_bucket *a,
1263                                                        apr_bucket **b);
1264
1265
1266/*  *****  Shared, reference-counted buckets  *****  */
1267
1268/**
1269 * Initialize a bucket containing reference-counted data that may be
1270 * shared. The caller must allocate the bucket if necessary and
1271 * initialize its type-dependent fields, and allocate and initialize
1272 * its own private data structure. This function should only be called
1273 * by type-specific bucket creation functions.
1274 * @param b The bucket to initialize
1275 * @param data A pointer to the private data structure
1276 *             with the reference count at the start
1277 * @param start The start of the data in the bucket
1278 *              relative to the private base pointer
1279 * @param length The length of the data in the bucket
1280 * @return The new bucket, or NULL if allocation failed
1281 */
1282APU_DECLARE(apr_bucket *) apr_bucket_shared_make(apr_bucket *b, void *data,
1283				                 apr_off_t start,
1284                                                 apr_size_t length);
1285
1286/**
1287 * Decrement the refcount of the data in the bucket. This function
1288 * should only be called by type-specific bucket destruction functions.
1289 * @param data The private data pointer from the bucket to be destroyed
1290 * @return TRUE or FALSE; TRUE if the reference count is now
1291 *         zero, indicating that the shared resource itself can
1292 *         be destroyed by the caller.
1293 */
1294APU_DECLARE(int) apr_bucket_shared_destroy(void *data);
1295
1296/**
1297 * Split a bucket into two at the given point, and adjust the refcount
1298 * to the underlying data. Most reference-counting bucket types will
1299 * be able to use this function as their split function without any
1300 * additional type-specific handling.
1301 * @param b The bucket to be split
1302 * @param point The offset of the first byte in the new bucket
1303 * @return APR_EINVAL if the point is not within the bucket;
1304 *         APR_ENOMEM if allocation failed;
1305 *         or APR_SUCCESS
1306 */
1307APU_DECLARE_NONSTD(apr_status_t) apr_bucket_shared_split(apr_bucket *b,
1308                                                         apr_size_t point);
1309
1310/**
1311 * Copy a refcounted bucket, incrementing the reference count. Most
1312 * reference-counting bucket types will be able to use this function
1313 * as their copy function without any additional type-specific handling.
1314 * @param a The bucket to copy
1315 * @param b Returns a pointer to the new bucket
1316 * @return APR_ENOMEM if allocation failed;
1317           or APR_SUCCESS
1318 */
1319APU_DECLARE_NONSTD(apr_status_t) apr_bucket_shared_copy(apr_bucket *a,
1320                                                        apr_bucket **b);
1321
1322
1323/*  *****  Functions to Create Buckets of varying types  *****  */
1324/*
1325 * Each bucket type foo has two initialization functions:
1326 * apr_bucket_foo_make which sets up some already-allocated memory as a
1327 * bucket of type foo; and apr_bucket_foo_create which allocates memory
1328 * for the bucket, calls apr_bucket_make_foo, and initializes the
1329 * bucket's list pointers. The apr_bucket_foo_make functions are used
1330 * inside the bucket code to change the type of buckets in place;
1331 * other code should call apr_bucket_foo_create. All the initialization
1332 * functions change nothing if they fail.
1333 */
1334
1335/**
1336 * Create an End of Stream bucket.  This indicates that there is no more data
1337 * coming from down the filter stack.  All filters should flush at this point.
1338 * @param list The freelist from which this bucket should be allocated
1339 * @return The new bucket, or NULL if allocation failed
1340 */
1341APU_DECLARE(apr_bucket *) apr_bucket_eos_create(apr_bucket_alloc_t *list);
1342
1343/**
1344 * Make the bucket passed in an EOS bucket.  This indicates that there is no
1345 * more data coming from down the filter stack.  All filters should flush at
1346 * this point.
1347 * @param b The bucket to make into an EOS bucket
1348 * @return The new bucket, or NULL if allocation failed
1349 */
1350APU_DECLARE(apr_bucket *) apr_bucket_eos_make(apr_bucket *b);
1351
1352/**
1353 * Create a flush  bucket.  This indicates that filters should flush their
1354 * data.  There is no guarantee that they will flush it, but this is the
1355 * best we can do.
1356 * @param list The freelist from which this bucket should be allocated
1357 * @return The new bucket, or NULL if allocation failed
1358 */
1359APU_DECLARE(apr_bucket *) apr_bucket_flush_create(apr_bucket_alloc_t *list);
1360
1361/**
1362 * Make the bucket passed in a FLUSH  bucket.  This indicates that filters
1363 * should flush their data.  There is no guarantee that they will flush it,
1364 * but this is the best we can do.
1365 * @param b The bucket to make into a FLUSH bucket
1366 * @return The new bucket, or NULL if allocation failed
1367 */
1368APU_DECLARE(apr_bucket *) apr_bucket_flush_make(apr_bucket *b);
1369
1370/**
1371 * Create a bucket referring to long-lived data.
1372 * @param buf The data to insert into the bucket
1373 * @param nbyte The size of the data to insert.
1374 * @param list The freelist from which this bucket should be allocated
1375 * @return The new bucket, or NULL if allocation failed
1376 */
1377APU_DECLARE(apr_bucket *) apr_bucket_immortal_create(const char *buf,
1378                                                     apr_size_t nbyte,
1379                                                     apr_bucket_alloc_t *list);
1380
1381/**
1382 * Make the bucket passed in a bucket refer to long-lived data
1383 * @param b The bucket to make into a IMMORTAL bucket
1384 * @param buf The data to insert into the bucket
1385 * @param nbyte The size of the data to insert.
1386 * @return The new bucket, or NULL if allocation failed
1387 */
1388APU_DECLARE(apr_bucket *) apr_bucket_immortal_make(apr_bucket *b,
1389                                                   const char *buf,
1390                                                   apr_size_t nbyte);
1391
1392/**
1393 * Create a bucket referring to data on the stack.
1394 * @param buf The data to insert into the bucket
1395 * @param nbyte The size of the data to insert.
1396 * @param list The freelist from which this bucket should be allocated
1397 * @return The new bucket, or NULL if allocation failed
1398 */
1399APU_DECLARE(apr_bucket *) apr_bucket_transient_create(const char *buf,
1400                                                      apr_size_t nbyte,
1401                                                      apr_bucket_alloc_t *list);
1402
1403/**
1404 * Make the bucket passed in a bucket refer to stack data
1405 * @param b The bucket to make into a TRANSIENT bucket
1406 * @param buf The data to insert into the bucket
1407 * @param nbyte The size of the data to insert.
1408 * @return The new bucket, or NULL if allocation failed
1409 */
1410APU_DECLARE(apr_bucket *) apr_bucket_transient_make(apr_bucket *b,
1411                                                    const char *buf,
1412                                                    apr_size_t nbyte);
1413
1414/**
1415 * Create a bucket referring to memory on the heap. If the caller asks
1416 * for the data to be copied, this function always allocates 4K of
1417 * memory so that more data can be added to the bucket without
1418 * requiring another allocation. Therefore not all the data may be put
1419 * into the bucket. If copying is not requested then the bucket takes
1420 * over responsibility for free()ing the memory.
1421 * @param buf The buffer to insert into the bucket
1422 * @param nbyte The size of the buffer to insert.
1423 * @param free_func Function to use to free the data; NULL indicates that the
1424 *                  bucket should make a copy of the data
1425 * @param list The freelist from which this bucket should be allocated
1426 * @return The new bucket, or NULL if allocation failed
1427 */
1428APU_DECLARE(apr_bucket *) apr_bucket_heap_create(const char *buf,
1429                                                 apr_size_t nbyte,
1430                                                 void (*free_func)(void *data),
1431                                                 apr_bucket_alloc_t *list);
1432/**
1433 * Make the bucket passed in a bucket refer to heap data
1434 * @param b The bucket to make into a HEAP bucket
1435 * @param buf The buffer to insert into the bucket
1436 * @param nbyte The size of the buffer to insert.
1437 * @param free_func Function to use to free the data; NULL indicates that the
1438 *                  bucket should make a copy of the data
1439 * @return The new bucket, or NULL if allocation failed
1440 */
1441APU_DECLARE(apr_bucket *) apr_bucket_heap_make(apr_bucket *b, const char *buf,
1442                                               apr_size_t nbyte,
1443                                               void (*free_func)(void *data));
1444
1445/**
1446 * Create a bucket referring to memory allocated from a pool.
1447 *
1448 * @param buf The buffer to insert into the bucket
1449 * @param length The number of bytes referred to by this bucket
1450 * @param pool The pool the memory was allocated from
1451 * @param list The freelist from which this bucket should be allocated
1452 * @return The new bucket, or NULL if allocation failed
1453 */
1454APU_DECLARE(apr_bucket *) apr_bucket_pool_create(const char *buf,
1455                                                 apr_size_t length,
1456                                                 apr_pool_t *pool,
1457                                                 apr_bucket_alloc_t *list);
1458
1459/**
1460 * Make the bucket passed in a bucket refer to pool data
1461 * @param b The bucket to make into a pool bucket
1462 * @param buf The buffer to insert into the bucket
1463 * @param length The number of bytes referred to by this bucket
1464 * @param pool The pool the memory was allocated from
1465 * @return The new bucket, or NULL if allocation failed
1466 */
1467APU_DECLARE(apr_bucket *) apr_bucket_pool_make(apr_bucket *b, const char *buf,
1468                                               apr_size_t length,
1469                                               apr_pool_t *pool);
1470
1471#if APR_HAS_MMAP
1472/**
1473 * Create a bucket referring to mmap()ed memory.
1474 * @param mm The mmap to insert into the bucket
1475 * @param start The offset of the first byte in the mmap
1476 *              that this bucket refers to
1477 * @param length The number of bytes referred to by this bucket
1478 * @param list The freelist from which this bucket should be allocated
1479 * @return The new bucket, or NULL if allocation failed
1480 */
1481APU_DECLARE(apr_bucket *) apr_bucket_mmap_create(apr_mmap_t *mm,
1482                                                 apr_off_t start,
1483                                                 apr_size_t length,
1484                                                 apr_bucket_alloc_t *list);
1485
1486/**
1487 * Make the bucket passed in a bucket refer to an MMAP'ed file
1488 * @param b The bucket to make into a MMAP bucket
1489 * @param mm The mmap to insert into the bucket
1490 * @param start The offset of the first byte in the mmap
1491 *              that this bucket refers to
1492 * @param length The number of bytes referred to by this bucket
1493 * @return The new bucket, or NULL if allocation failed
1494 */
1495APU_DECLARE(apr_bucket *) apr_bucket_mmap_make(apr_bucket *b, apr_mmap_t *mm,
1496                                               apr_off_t start,
1497                                               apr_size_t length);
1498#endif
1499
1500/**
1501 * Create a bucket referring to a socket.
1502 * @param thissock The socket to put in the bucket
1503 * @param list The freelist from which this bucket should be allocated
1504 * @return The new bucket, or NULL if allocation failed
1505 */
1506APU_DECLARE(apr_bucket *) apr_bucket_socket_create(apr_socket_t *thissock,
1507                                                   apr_bucket_alloc_t *list);
1508/**
1509 * Make the bucket passed in a bucket refer to a socket
1510 * @param b The bucket to make into a SOCKET bucket
1511 * @param thissock The socket to put in the bucket
1512 * @return The new bucket, or NULL if allocation failed
1513 */
1514APU_DECLARE(apr_bucket *) apr_bucket_socket_make(apr_bucket *b,
1515                                                 apr_socket_t *thissock);
1516
1517/**
1518 * Create a bucket referring to a pipe.
1519 * @param thispipe The pipe to put in the bucket
1520 * @param list The freelist from which this bucket should be allocated
1521 * @return The new bucket, or NULL if allocation failed
1522 */
1523APU_DECLARE(apr_bucket *) apr_bucket_pipe_create(apr_file_t *thispipe,
1524                                                 apr_bucket_alloc_t *list);
1525
1526/**
1527 * Make the bucket passed in a bucket refer to a pipe
1528 * @param b The bucket to make into a PIPE bucket
1529 * @param thispipe The pipe to put in the bucket
1530 * @return The new bucket, or NULL if allocation failed
1531 */
1532APU_DECLARE(apr_bucket *) apr_bucket_pipe_make(apr_bucket *b,
1533                                               apr_file_t *thispipe);
1534
1535/**
1536 * Create a bucket referring to a file.
1537 * @param fd The file to put in the bucket
1538 * @param offset The offset where the data of interest begins in the file
1539 * @param len The amount of data in the file we are interested in
1540 * @param p The pool into which any needed structures should be created
1541 *          while reading from this file bucket
1542 * @param list The freelist from which this bucket should be allocated
1543 * @return The new bucket, or NULL if allocation failed
1544 * @remark If the file is truncated such that the segment of the file
1545 * referenced by the bucket no longer exists, an attempt to read
1546 * from the bucket will fail with APR_EOF.
1547 * @remark apr_brigade_insert_file() should generally be used to
1548 * insert files into brigades, since that function can correctly
1549 * handle large file issues.
1550 */
1551APU_DECLARE(apr_bucket *) apr_bucket_file_create(apr_file_t *fd,
1552                                                 apr_off_t offset,
1553                                                 apr_size_t len,
1554                                                 apr_pool_t *p,
1555                                                 apr_bucket_alloc_t *list);
1556
1557/**
1558 * Make the bucket passed in a bucket refer to a file
1559 * @param b The bucket to make into a FILE bucket
1560 * @param fd The file to put in the bucket
1561 * @param offset The offset where the data of interest begins in the file
1562 * @param len The amount of data in the file we are interested in
1563 * @param p The pool into which any needed structures should be created
1564 *          while reading from this file bucket
1565 * @return The new bucket, or NULL if allocation failed
1566 */
1567APU_DECLARE(apr_bucket *) apr_bucket_file_make(apr_bucket *b, apr_file_t *fd,
1568                                               apr_off_t offset,
1569                                               apr_size_t len, apr_pool_t *p);
1570
1571/**
1572 * Enable or disable memory-mapping for a FILE bucket (default is enabled)
1573 * @param b The bucket
1574 * @param enabled Whether memory-mapping should be enabled
1575 * @return APR_SUCCESS normally, or an error code if the operation fails
1576 */
1577APU_DECLARE(apr_status_t) apr_bucket_file_enable_mmap(apr_bucket *b,
1578                                                      int enabled);
1579
1580/**
1581 * Set the size of the read buffer allocated by a FILE bucket (default
1582 * is @a APR_BUCKET_BUFF_SIZE)
1583 * memory-mapping is disabled only)
1584 * @param b The bucket
1585 * @param size Size of the allocated buffers
1586 * @return APR_SUCCESS normally, or an error code if the operation fails
1587 * @remark Relevant/used only when memory-mapping is disabled (@see
1588 * apr_bucket_file_enable_mmap)
1589 */
1590APU_DECLARE(apr_status_t) apr_bucket_file_set_buf_size(apr_bucket *e,
1591                                                       apr_size_t size);
1592
1593/** @} */
1594#ifdef __cplusplus
1595}
1596#endif
1597
1598#endif /* !APR_BUCKETS_H */
1599