1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)time.h	8.5 (Berkeley) 5/4/95
32 * $FreeBSD$
33 */
34
35#ifndef _SYS_TIME_H_
36#define	_SYS_TIME_H_
37
38#include <sys/_timeval.h>
39#include <sys/types.h>
40#include <sys/timespec.h>
41
42struct timezone {
43	int	tz_minuteswest;	/* minutes west of Greenwich */
44	int	tz_dsttime;	/* type of dst correction */
45};
46#define	DST_NONE	0	/* not on dst */
47#define	DST_USA		1	/* USA style dst */
48#define	DST_AUST	2	/* Australian style dst */
49#define	DST_WET		3	/* Western European dst */
50#define	DST_MET		4	/* Middle European dst */
51#define	DST_EET		5	/* Eastern European dst */
52#define	DST_CAN		6	/* Canada */
53
54#if __BSD_VISIBLE
55struct bintime {
56	time_t	sec;
57	uint64_t frac;
58};
59
60static __inline void
61bintime_addx(struct bintime *_bt, uint64_t _x)
62{
63	uint64_t _u;
64
65	_u = _bt->frac;
66	_bt->frac += _x;
67	if (_u > _bt->frac)
68		_bt->sec++;
69}
70
71static __inline void
72bintime_add(struct bintime *_bt, const struct bintime *_bt2)
73{
74	uint64_t _u;
75
76	_u = _bt->frac;
77	_bt->frac += _bt2->frac;
78	if (_u > _bt->frac)
79		_bt->sec++;
80	_bt->sec += _bt2->sec;
81}
82
83static __inline void
84bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
85{
86	uint64_t _u;
87
88	_u = _bt->frac;
89	_bt->frac -= _bt2->frac;
90	if (_u < _bt->frac)
91		_bt->sec--;
92	_bt->sec -= _bt2->sec;
93}
94
95static __inline void
96bintime_mul(struct bintime *_bt, u_int _x)
97{
98	uint64_t _p1, _p2;
99
100	_p1 = (_bt->frac & 0xffffffffull) * _x;
101	_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
102	_bt->sec *= _x;
103	_bt->sec += (_p2 >> 32);
104	_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
105}
106
107static __inline void
108bintime_shift(struct bintime *_bt, int _exp)
109{
110
111	if (_exp > 0) {
112		_bt->sec <<= _exp;
113		_bt->sec |= _bt->frac >> (64 - _exp);
114		_bt->frac <<= _exp;
115	} else if (_exp < 0) {
116		_bt->frac >>= -_exp;
117		_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
118		_bt->sec >>= -_exp;
119	}
120}
121
122#define	bintime_clear(a)	((a)->sec = (a)->frac = 0)
123#define	bintime_isset(a)	((a)->sec || (a)->frac)
124#define	bintime_cmp(a, b, cmp)						\
125	(((a)->sec == (b)->sec) ?					\
126	    ((a)->frac cmp (b)->frac) :					\
127	    ((a)->sec cmp (b)->sec))
128
129#define	SBT_1S	((sbintime_t)1 << 32)
130#define	SBT_1M	(SBT_1S * 60)
131#define	SBT_1MS	(SBT_1S / 1000)
132#define	SBT_1US	(SBT_1S / 1000000)
133#define	SBT_1NS	(SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
134#define	SBT_MAX	0x7fffffffffffffffLL
135
136static __inline int
137sbintime_getsec(sbintime_t _sbt)
138{
139
140	return (_sbt >> 32);
141}
142
143static __inline sbintime_t
144bttosbt(const struct bintime _bt)
145{
146
147	return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
148}
149
150static __inline struct bintime
151sbttobt(sbintime_t _sbt)
152{
153	struct bintime _bt;
154
155	_bt.sec = _sbt >> 32;
156	_bt.frac = _sbt << 32;
157	return (_bt);
158}
159
160/*
161 * Decimal<->sbt conversions.  Multiplying or dividing by SBT_1NS results in
162 * large roundoff errors which sbttons() and nstosbt() avoid.  Millisecond and
163 * microsecond functions are also provided for completeness.
164 *
165 * These functions return the smallest sbt larger or equal to the
166 * number of seconds requested so that sbttoX(Xtosbt(y)) == y.  Unlike
167 * top of second computations below, which require that we tick at the
168 * top of second, these need to be rounded up so we do whatever for at
169 * least as long as requested.
170 *
171 * The naive computation we'd do is this
172 *	((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
173 * However, that overflows. Instead, we compute
174 *	((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
175 * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
176 * term to ensure we are using exactly the right constant. We use the lesser
177 * evil of ull rather than a uint64_t cast to ensure we have well defined
178 * right shift semantics. With these changes, we get all the ns, us and ms
179 * conversions back and forth right.
180 * Note: This file is used for both kernel and userland includes, so we can't
181 * rely on KASSERT being defined, nor can we pollute the namespace by including
182 * assert.h.
183 */
184static __inline int64_t
185sbttons(sbintime_t _sbt)
186{
187	uint64_t ns;
188
189#ifdef KASSERT
190	KASSERT(_sbt >= 0, ("Negative values illegal for sbttons: %jx", _sbt));
191#endif
192	ns = _sbt;
193	if (ns >= SBT_1S)
194		ns = (ns >> 32) * 1000000000;
195	else
196		ns = 0;
197
198	return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
199}
200
201static __inline sbintime_t
202nstosbt(int64_t _ns)
203{
204	sbintime_t sb = 0;
205
206#ifdef KASSERT
207	KASSERT(_ns >= 0, ("Negative values illegal for nstosbt: %jd", _ns));
208#endif
209	if (_ns >= SBT_1S) {
210		sb = (_ns / 1000000000) * SBT_1S;
211		_ns = _ns % 1000000000;
212	}
213	/* 9223372037 = ceil(2^63 / 1000000000) */
214	sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
215	return (sb);
216}
217
218static __inline int64_t
219sbttous(sbintime_t _sbt)
220{
221
222	return ((1000000 * _sbt) >> 32);
223}
224
225static __inline sbintime_t
226ustosbt(int64_t _us)
227{
228	sbintime_t sb = 0;
229
230#ifdef KASSERT
231	KASSERT(_us >= 0, ("Negative values illegal for ustosbt: %jd", _us));
232#endif
233	if (_us >= SBT_1S) {
234		sb = (_us / 1000000) * SBT_1S;
235		_us = _us % 1000000;
236	}
237	/* 9223372036855 = ceil(2^63 / 1000000) */
238	sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
239	return (sb);
240}
241
242static __inline int64_t
243sbttoms(sbintime_t _sbt)
244{
245
246	return ((1000 * _sbt) >> 32);
247}
248
249static __inline sbintime_t
250mstosbt(int64_t _ms)
251{
252	sbintime_t sb = 0;
253
254#ifdef KASSERT
255	KASSERT(_ms >= 0, ("Negative values illegal for mstosbt: %jd", _ms));
256#endif
257	if (_ms >= SBT_1S) {
258		sb = (_ms / 1000) * SBT_1S;
259		_ms = _ms % 1000;
260	}
261	/* 9223372036854776 = ceil(2^63 / 1000) */
262	sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
263	return (sb);
264}
265
266/*-
267 * Background information:
268 *
269 * When converting between timestamps on parallel timescales of differing
270 * resolutions it is historical and scientific practice to round down rather
271 * than doing 4/5 rounding.
272 *
273 *   The date changes at midnight, not at noon.
274 *
275 *   Even at 15:59:59.999999999 it's not four'o'clock.
276 *
277 *   time_second ticks after N.999999999 not after N.4999999999
278 */
279
280static __inline void
281bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
282{
283
284	_ts->tv_sec = _bt->sec;
285	_ts->tv_nsec = ((uint64_t)1000000000 *
286	    (uint32_t)(_bt->frac >> 32)) >> 32;
287}
288
289static __inline void
290timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
291{
292
293	_bt->sec = _ts->tv_sec;
294	/* 18446744073 = int(2^64 / 1000000000) */
295	_bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
296}
297
298static __inline void
299bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
300{
301
302	_tv->tv_sec = _bt->sec;
303	_tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
304}
305
306static __inline void
307timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
308{
309
310	_bt->sec = _tv->tv_sec;
311	/* 18446744073709 = int(2^64 / 1000000) */
312	_bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
313}
314
315static __inline struct timespec
316sbttots(sbintime_t _sbt)
317{
318	struct timespec _ts;
319
320	_ts.tv_sec = _sbt >> 32;
321	_ts.tv_nsec = sbttons((uint32_t)_sbt);
322	return (_ts);
323}
324
325static __inline sbintime_t
326tstosbt(struct timespec _ts)
327{
328
329	return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
330}
331
332static __inline struct timeval
333sbttotv(sbintime_t _sbt)
334{
335	struct timeval _tv;
336
337	_tv.tv_sec = _sbt >> 32;
338	_tv.tv_usec = sbttous((uint32_t)_sbt);
339	return (_tv);
340}
341
342static __inline sbintime_t
343tvtosbt(struct timeval _tv)
344{
345
346	return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
347}
348#endif /* __BSD_VISIBLE */
349
350#ifdef _KERNEL
351/*
352 * Simple macros to convert ticks to milliseconds
353 * or microseconds and vice-versa. The answer
354 * will always be at least 1. Note the return
355 * value is a uint32_t however we step up the
356 * operations to 64 bit to avoid any overflow/underflow
357 * problems.
358 */
359#define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
360	  (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
361#define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
362	  ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
363#define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
364	  (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
365#define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
366	 ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
367
368#endif
369/* Operations on timespecs */
370#define	timespecclear(tvp)	((tvp)->tv_sec = (tvp)->tv_nsec = 0)
371#define	timespecisset(tvp)	((tvp)->tv_sec || (tvp)->tv_nsec)
372#define	timespeccmp(tvp, uvp, cmp)					\
373	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
374	    ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :			\
375	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
376
377#define	timespecadd(tsp, usp, vsp)					\
378	do {								\
379		(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec;		\
380		(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec;	\
381		if ((vsp)->tv_nsec >= 1000000000L) {			\
382			(vsp)->tv_sec++;				\
383			(vsp)->tv_nsec -= 1000000000L;			\
384		}							\
385	} while (0)
386#define	timespecsub(tsp, usp, vsp)					\
387	do {								\
388		(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec;		\
389		(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec;	\
390		if ((vsp)->tv_nsec < 0) {				\
391			(vsp)->tv_sec--;				\
392			(vsp)->tv_nsec += 1000000000L;			\
393		}							\
394	} while (0)
395
396#ifdef _KERNEL
397
398/* Operations on timevals. */
399
400#define	timevalclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
401#define	timevalisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
402#define	timevalcmp(tvp, uvp, cmp)					\
403	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
404	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
405	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
406
407/* timevaladd and timevalsub are not inlined */
408
409#endif /* _KERNEL */
410
411#ifndef _KERNEL			/* NetBSD/OpenBSD compatible interfaces */
412
413#define	timerclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
414#define	timerisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
415#define	timercmp(tvp, uvp, cmp)					\
416	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
417	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
418	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
419#define	timeradd(tvp, uvp, vvp)						\
420	do {								\
421		(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;		\
422		(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;	\
423		if ((vvp)->tv_usec >= 1000000) {			\
424			(vvp)->tv_sec++;				\
425			(vvp)->tv_usec -= 1000000;			\
426		}							\
427	} while (0)
428#define	timersub(tvp, uvp, vvp)						\
429	do {								\
430		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
431		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
432		if ((vvp)->tv_usec < 0) {				\
433			(vvp)->tv_sec--;				\
434			(vvp)->tv_usec += 1000000;			\
435		}							\
436	} while (0)
437#endif
438
439/*
440 * Names of the interval timers, and structure
441 * defining a timer setting.
442 */
443#define	ITIMER_REAL	0
444#define	ITIMER_VIRTUAL	1
445#define	ITIMER_PROF	2
446
447struct itimerval {
448	struct	timeval it_interval;	/* timer interval */
449	struct	timeval it_value;	/* current value */
450};
451
452/*
453 * Getkerninfo clock information structure
454 */
455struct clockinfo {
456	int	hz;		/* clock frequency */
457	int	tick;		/* micro-seconds per hz tick */
458	int	spare;
459	int	stathz;		/* statistics clock frequency */
460	int	profhz;		/* profiling clock frequency */
461};
462
463/* These macros are also in time.h. */
464#ifndef CLOCK_REALTIME
465#define	CLOCK_REALTIME	0
466#endif
467#ifndef CLOCK_VIRTUAL
468#define	CLOCK_VIRTUAL	1
469#define	CLOCK_PROF	2
470#endif
471#ifndef CLOCK_MONOTONIC
472#define	CLOCK_MONOTONIC	4
473#define	CLOCK_UPTIME	5		/* FreeBSD-specific. */
474#define	CLOCK_UPTIME_PRECISE	7	/* FreeBSD-specific. */
475#define	CLOCK_UPTIME_FAST	8	/* FreeBSD-specific. */
476#define	CLOCK_REALTIME_PRECISE	9	/* FreeBSD-specific. */
477#define	CLOCK_REALTIME_FAST	10	/* FreeBSD-specific. */
478#define	CLOCK_MONOTONIC_PRECISE	11	/* FreeBSD-specific. */
479#define	CLOCK_MONOTONIC_FAST	12	/* FreeBSD-specific. */
480#define	CLOCK_SECOND	13		/* FreeBSD-specific. */
481#define	CLOCK_THREAD_CPUTIME_ID	14
482#define	CLOCK_PROCESS_CPUTIME_ID	15
483#endif
484
485#ifndef TIMER_ABSTIME
486#define	TIMER_RELTIME	0x0	/* relative timer */
487#define	TIMER_ABSTIME	0x1	/* absolute timer */
488#endif
489
490#if __BSD_VISIBLE
491#define	CPUCLOCK_WHICH_PID	0
492#define	CPUCLOCK_WHICH_TID	1
493#endif
494
495#ifdef _KERNEL
496
497/*
498 * Kernel to clock driver interface.
499 */
500void	inittodr(time_t base);
501void	resettodr(void);
502
503extern volatile time_t	time_second;
504extern volatile time_t	time_uptime;
505extern struct bintime tc_tick_bt;
506extern sbintime_t tc_tick_sbt;
507extern struct bintime tick_bt;
508extern sbintime_t tick_sbt;
509extern int tc_precexp;
510extern int tc_timepercentage;
511extern struct bintime bt_timethreshold;
512extern struct bintime bt_tickthreshold;
513extern sbintime_t sbt_timethreshold;
514extern sbintime_t sbt_tickthreshold;
515
516extern volatile int rtc_generation;
517
518/*
519 * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
520 *
521 * Functions without the "get" prefix returns the best timestamp
522 * we can produce in the given format.
523 *
524 * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
525 * "nano"  == struct timespec == seconds + nanoseconds.
526 * "micro" == struct timeval  == seconds + microseconds.
527 *
528 * Functions containing "up" returns time relative to boot and
529 * should be used for calculating time intervals.
530 *
531 * Functions without "up" returns UTC time.
532 *
533 * Functions with the "get" prefix returns a less precise result
534 * much faster than the functions without "get" prefix and should
535 * be used where a precision of 1/hz seconds is acceptable or where
536 * performance is priority. (NB: "precision", _not_ "resolution" !)
537 */
538
539void	binuptime(struct bintime *bt);
540void	nanouptime(struct timespec *tsp);
541void	microuptime(struct timeval *tvp);
542
543static __inline sbintime_t
544sbinuptime(void)
545{
546	struct bintime _bt;
547
548	binuptime(&_bt);
549	return (bttosbt(_bt));
550}
551
552void	bintime(struct bintime *bt);
553void	nanotime(struct timespec *tsp);
554void	microtime(struct timeval *tvp);
555
556void	getbinuptime(struct bintime *bt);
557void	getnanouptime(struct timespec *tsp);
558void	getmicrouptime(struct timeval *tvp);
559
560static __inline sbintime_t
561getsbinuptime(void)
562{
563	struct bintime _bt;
564
565	getbinuptime(&_bt);
566	return (bttosbt(_bt));
567}
568
569void	getbintime(struct bintime *bt);
570void	getnanotime(struct timespec *tsp);
571void	getmicrotime(struct timeval *tvp);
572
573void	getboottime(struct timeval *boottime);
574void	getboottimebin(struct bintime *boottimebin);
575
576/* Other functions */
577int	itimerdecr(struct itimerval *itp, int usec);
578int	itimerfix(struct timeval *tv);
579int	ppsratecheck(struct timeval *, int *, int);
580int	ratecheck(struct timeval *, const struct timeval *);
581void	timevaladd(struct timeval *t1, const struct timeval *t2);
582void	timevalsub(struct timeval *t1, const struct timeval *t2);
583int	tvtohz(struct timeval *tv);
584
585#define	TC_DEFAULTPERC		5
586
587#define	BT2FREQ(bt)                                                     \
588	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
589	    ((bt)->frac >> 1))
590
591#define	SBT2FREQ(sbt)	((SBT_1S + ((sbt) >> 1)) / (sbt))
592
593#define	FREQ2BT(freq, bt)                                               \
594{									\
595	(bt)->sec = 0;                                                  \
596	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
597}
598
599#define	TIMESEL(sbt, sbt2)						\
600	(((sbt2) >= sbt_timethreshold) ?				\
601	    ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
602
603#else /* !_KERNEL */
604#include <time.h>
605
606#include <sys/cdefs.h>
607#include <sys/select.h>
608
609__BEGIN_DECLS
610int	setitimer(int, const struct itimerval *, struct itimerval *);
611int	utimes(const char *, const struct timeval *);
612
613#if __BSD_VISIBLE
614int	adjtime(const struct timeval *, struct timeval *);
615int	clock_getcpuclockid2(id_t, int, clockid_t *);
616int	futimes(int, const struct timeval *);
617int	futimesat(int, const char *, const struct timeval [2]);
618int	lutimes(const char *, const struct timeval *);
619int	settimeofday(const struct timeval *, const struct timezone *);
620#endif
621
622#if __XSI_VISIBLE
623int	getitimer(int, struct itimerval *);
624int	gettimeofday(struct timeval *, struct timezone *);
625#endif
626
627__END_DECLS
628
629#endif /* !_KERNEL */
630
631#endif /* !_SYS_TIME_H_ */
632