1/*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11 *
12 * This software is available to you under a choice of one of two
13 * licenses.  You may choose to be licensed under the terms of the GNU
14 * General Public License (GPL) Version 2, available from the file
15 * COPYING in the main directory of this source tree, or the
16 * OpenIB.org BSD license below:
17 *
18 *     Redistribution and use in source and binary forms, with or
19 *     without modification, are permitted provided that the following
20 *     conditions are met:
21 *
22 *      - Redistributions of source code must retain the above
23 *        copyright notice, this list of conditions and the following
24 *        disclaimer.
25 *
26 *      - Redistributions in binary form must reproduce the above
27 *        copyright notice, this list of conditions and the following
28 *        disclaimer in the documentation and/or other materials
29 *        provided with the distribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 * SOFTWARE.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD$");
43
44#include <linux/errno.h>
45#include <linux/err.h>
46#include <linux/string.h>
47#include <linux/slab.h>
48#include <linux/in.h>
49#include <linux/in6.h>
50
51#include <rdma/ib_verbs.h>
52#include <rdma/ib_cache.h>
53#include <rdma/ib_addr.h>
54
55#include <netinet/ip.h>
56#include <netinet/ip6.h>
57
58#include <machine/in_cksum.h>
59
60#include "core_priv.h"
61
62static const char * const ib_events[] = {
63	[IB_EVENT_CQ_ERR]		= "CQ error",
64	[IB_EVENT_QP_FATAL]		= "QP fatal error",
65	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
66	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
67	[IB_EVENT_COMM_EST]		= "communication established",
68	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
69	[IB_EVENT_PATH_MIG]		= "path migration successful",
70	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
71	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
72	[IB_EVENT_PORT_ACTIVE]		= "port active",
73	[IB_EVENT_PORT_ERR]		= "port error",
74	[IB_EVENT_LID_CHANGE]		= "LID change",
75	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
76	[IB_EVENT_SM_CHANGE]		= "SM change",
77	[IB_EVENT_SRQ_ERR]		= "SRQ error",
78	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
79	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
80	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
81	[IB_EVENT_GID_CHANGE]		= "GID changed",
82};
83
84const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
85{
86	size_t index = event;
87
88	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
89			ib_events[index] : "unrecognized event";
90}
91EXPORT_SYMBOL(ib_event_msg);
92
93static const char * const wc_statuses[] = {
94	[IB_WC_SUCCESS]			= "success",
95	[IB_WC_LOC_LEN_ERR]		= "local length error",
96	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
97	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
98	[IB_WC_LOC_PROT_ERR]		= "local protection error",
99	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
100	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
101	[IB_WC_BAD_RESP_ERR]		= "bad response error",
102	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
103	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
104	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
105	[IB_WC_REM_OP_ERR]		= "remote operation error",
106	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
107	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
108	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
109	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
110	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
111	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
112	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
113	[IB_WC_FATAL_ERR]		= "fatal error",
114	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
115	[IB_WC_GENERAL_ERR]		= "general error",
116};
117
118const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119{
120	size_t index = status;
121
122	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
123			wc_statuses[index] : "unrecognized status";
124}
125EXPORT_SYMBOL(ib_wc_status_msg);
126
127__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
128{
129	switch (rate) {
130	case IB_RATE_2_5_GBPS: return  1;
131	case IB_RATE_5_GBPS:   return  2;
132	case IB_RATE_10_GBPS:  return  4;
133	case IB_RATE_20_GBPS:  return  8;
134	case IB_RATE_30_GBPS:  return 12;
135	case IB_RATE_40_GBPS:  return 16;
136	case IB_RATE_60_GBPS:  return 24;
137	case IB_RATE_80_GBPS:  return 32;
138	case IB_RATE_120_GBPS: return 48;
139	case IB_RATE_28_GBPS:  return  11;
140	case IB_RATE_50_GBPS:  return  20;
141	case IB_RATE_400_GBPS: return 160;
142	case IB_RATE_600_GBPS: return 240;
143	default:	       return -1;
144	}
145}
146EXPORT_SYMBOL(ib_rate_to_mult);
147
148__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
149{
150	switch (mult) {
151	case 1:  return IB_RATE_2_5_GBPS;
152	case 2:  return IB_RATE_5_GBPS;
153	case 4:  return IB_RATE_10_GBPS;
154	case 8:  return IB_RATE_20_GBPS;
155	case 12: return IB_RATE_30_GBPS;
156	case 16: return IB_RATE_40_GBPS;
157	case 24: return IB_RATE_60_GBPS;
158	case 32: return IB_RATE_80_GBPS;
159	case 48: return IB_RATE_120_GBPS;
160	case 6:   return IB_RATE_14_GBPS;
161	case 22:  return IB_RATE_56_GBPS;
162	case 45:  return IB_RATE_112_GBPS;
163	case 67:  return IB_RATE_168_GBPS;
164	case 10:  return IB_RATE_25_GBPS;
165	case 40:  return IB_RATE_100_GBPS;
166	case 80:  return IB_RATE_200_GBPS;
167	case 120: return IB_RATE_300_GBPS;
168	case 11:  return IB_RATE_28_GBPS;
169	case 20:  return IB_RATE_50_GBPS;
170	case 160: return IB_RATE_400_GBPS;
171	case 240: return IB_RATE_600_GBPS;
172	default: return IB_RATE_PORT_CURRENT;
173	}
174}
175EXPORT_SYMBOL(mult_to_ib_rate);
176
177__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
178{
179	switch (rate) {
180	case IB_RATE_2_5_GBPS: return 2500;
181	case IB_RATE_5_GBPS:   return 5000;
182	case IB_RATE_10_GBPS:  return 10000;
183	case IB_RATE_20_GBPS:  return 20000;
184	case IB_RATE_30_GBPS:  return 30000;
185	case IB_RATE_40_GBPS:  return 40000;
186	case IB_RATE_60_GBPS:  return 60000;
187	case IB_RATE_80_GBPS:  return 80000;
188	case IB_RATE_120_GBPS: return 120000;
189	case IB_RATE_14_GBPS:  return 14062;
190	case IB_RATE_56_GBPS:  return 56250;
191	case IB_RATE_112_GBPS: return 112500;
192	case IB_RATE_168_GBPS: return 168750;
193	case IB_RATE_25_GBPS:  return 25781;
194	case IB_RATE_100_GBPS: return 103125;
195	case IB_RATE_200_GBPS: return 206250;
196	case IB_RATE_300_GBPS: return 309375;
197	case IB_RATE_28_GBPS:  return 28125;
198	case IB_RATE_50_GBPS:  return 53125;
199	case IB_RATE_400_GBPS: return 425000;
200	case IB_RATE_600_GBPS: return 637500;
201	default:	       return -1;
202	}
203}
204EXPORT_SYMBOL(ib_rate_to_mbps);
205
206__attribute_const__ enum rdma_transport_type
207rdma_node_get_transport(enum rdma_node_type node_type)
208{
209	switch (node_type) {
210	case RDMA_NODE_IB_CA:
211	case RDMA_NODE_IB_SWITCH:
212	case RDMA_NODE_IB_ROUTER:
213		return RDMA_TRANSPORT_IB;
214	case RDMA_NODE_RNIC:
215		return RDMA_TRANSPORT_IWARP;
216	case RDMA_NODE_USNIC:
217		return RDMA_TRANSPORT_USNIC;
218	case RDMA_NODE_USNIC_UDP:
219		return RDMA_TRANSPORT_USNIC_UDP;
220	default:
221		BUG();
222		return 0;
223	}
224}
225EXPORT_SYMBOL(rdma_node_get_transport);
226
227enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
228{
229	if (device->get_link_layer)
230		return device->get_link_layer(device, port_num);
231
232	switch (rdma_node_get_transport(device->node_type)) {
233	case RDMA_TRANSPORT_IB:
234		return IB_LINK_LAYER_INFINIBAND;
235	case RDMA_TRANSPORT_IWARP:
236	case RDMA_TRANSPORT_USNIC:
237	case RDMA_TRANSPORT_USNIC_UDP:
238		return IB_LINK_LAYER_ETHERNET;
239	default:
240		return IB_LINK_LAYER_UNSPECIFIED;
241	}
242}
243EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245/* Protection domains */
246
247/**
248 * ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 *
251 * A protection domain object provides an association between QPs, shared
252 * receive queues, address handles, memory regions, and memory windows.
253 *
254 * Every PD has a local_dma_lkey which can be used as the lkey value for local
255 * memory operations.
256 */
257struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
258		const char *caller)
259{
260	struct ib_pd *pd;
261	int mr_access_flags = 0;
262
263	pd = device->alloc_pd(device, NULL, NULL);
264	if (IS_ERR(pd))
265		return pd;
266
267	pd->device = device;
268	pd->uobject = NULL;
269	pd->__internal_mr = NULL;
270	atomic_set(&pd->usecnt, 0);
271	pd->flags = flags;
272
273	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
274		pd->local_dma_lkey = device->local_dma_lkey;
275	else
276		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
277
278	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
279		pr_warn("%s: enabling unsafe global rkey\n", caller);
280		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
281	}
282
283	if (mr_access_flags) {
284		struct ib_mr *mr;
285
286		mr = pd->device->get_dma_mr(pd, mr_access_flags);
287		if (IS_ERR(mr)) {
288			ib_dealloc_pd(pd);
289			return ERR_CAST(mr);
290		}
291
292		mr->device	= pd->device;
293		mr->pd		= pd;
294		mr->uobject	= NULL;
295		mr->need_inval	= false;
296
297		pd->__internal_mr = mr;
298
299		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
300			pd->local_dma_lkey = pd->__internal_mr->lkey;
301
302		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
303			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
304	}
305
306	return pd;
307}
308EXPORT_SYMBOL(__ib_alloc_pd);
309
310/**
311 * ib_dealloc_pd - Deallocates a protection domain.
312 * @pd: The protection domain to deallocate.
313 *
314 * It is an error to call this function while any resources in the pd still
315 * exist.  The caller is responsible to synchronously destroy them and
316 * guarantee no new allocations will happen.
317 */
318void ib_dealloc_pd(struct ib_pd *pd)
319{
320	int ret;
321
322	if (pd->__internal_mr) {
323		ret = pd->device->dereg_mr(pd->__internal_mr);
324		WARN_ON(ret);
325		pd->__internal_mr = NULL;
326	}
327
328	/* uverbs manipulates usecnt with proper locking, while the kabi
329	   requires the caller to guarantee we can't race here. */
330	WARN_ON(atomic_read(&pd->usecnt));
331
332	/* Making delalloc_pd a void return is a WIP, no driver should return
333	   an error here. */
334	ret = pd->device->dealloc_pd(pd);
335	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
336}
337EXPORT_SYMBOL(ib_dealloc_pd);
338
339/* Address handles */
340
341struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
342{
343	struct ib_ah *ah;
344
345	ah = pd->device->create_ah(pd, ah_attr, NULL);
346
347	if (!IS_ERR(ah)) {
348		ah->device  = pd->device;
349		ah->pd      = pd;
350		ah->uobject = NULL;
351		atomic_inc(&pd->usecnt);
352	}
353
354	return ah;
355}
356EXPORT_SYMBOL(ib_create_ah);
357
358static int ib_get_header_version(const union rdma_network_hdr *hdr)
359{
360	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
361	struct ip ip4h_checked;
362	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
363
364	/* If it's IPv6, the version must be 6, otherwise, the first
365	 * 20 bytes (before the IPv4 header) are garbled.
366	 */
367	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
368		return (ip4h->ip_v == 4) ? 4 : 0;
369	/* version may be 6 or 4 because the first 20 bytes could be garbled */
370
371	/* RoCE v2 requires no options, thus header length
372	 * must be 5 words
373	 */
374	if (ip4h->ip_hl != 5)
375		return 6;
376
377	/* Verify checksum.
378	 * We can't write on scattered buffers so we need to copy to
379	 * temp buffer.
380	 */
381	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
382	ip4h_checked.ip_sum = 0;
383#if defined(INET) || defined(INET6)
384	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
385#endif
386	/* if IPv4 header checksum is OK, believe it */
387	if (ip4h->ip_sum == ip4h_checked.ip_sum)
388		return 4;
389	return 6;
390}
391
392static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
393						     u8 port_num,
394						     const struct ib_grh *grh)
395{
396	int grh_version;
397
398	if (rdma_protocol_ib(device, port_num))
399		return RDMA_NETWORK_IB;
400
401	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
402
403	if (grh_version == 4)
404		return RDMA_NETWORK_IPV4;
405
406	if (grh->next_hdr == IPPROTO_UDP)
407		return RDMA_NETWORK_IPV6;
408
409	return RDMA_NETWORK_ROCE_V1;
410}
411
412struct find_gid_index_context {
413	u16 vlan_id;
414	enum ib_gid_type gid_type;
415};
416
417
418/*
419 * This function will return true only if a inspected GID index
420 * matches the request based on the GID type and VLAN configuration
421 */
422static bool find_gid_index(const union ib_gid *gid,
423			   const struct ib_gid_attr *gid_attr,
424			   void *context)
425{
426	u16 vlan_diff;
427	struct find_gid_index_context *ctx =
428		(struct find_gid_index_context *)context;
429
430	if (ctx->gid_type != gid_attr->gid_type)
431		return false;
432
433	/*
434	 * The following will verify:
435	 * 1. VLAN ID matching for VLAN tagged requests.
436	 * 2. prio-tagged/untagged to prio-tagged/untagged matching.
437	 *
438	 * This XOR is valid, since 0x0 < vlan_id < 0x0FFF.
439	 */
440	vlan_diff = rdma_vlan_dev_vlan_id(gid_attr->ndev) ^ ctx->vlan_id;
441
442	return (vlan_diff == 0x0000 || vlan_diff == 0xFFFF);
443}
444
445static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
446				   u16 vlan_id, const union ib_gid *sgid,
447				   enum ib_gid_type gid_type,
448				   u16 *gid_index)
449{
450	struct find_gid_index_context context = {.vlan_id = vlan_id,
451						 .gid_type = gid_type};
452
453	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
454				     &context, gid_index);
455}
456
457static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
458				  enum rdma_network_type net_type,
459				  union ib_gid *sgid, union ib_gid *dgid)
460{
461	struct sockaddr_in  src_in;
462	struct sockaddr_in  dst_in;
463	__be32 src_saddr, dst_saddr;
464
465	if (!sgid || !dgid)
466		return -EINVAL;
467
468	if (net_type == RDMA_NETWORK_IPV4) {
469		memcpy(&src_in.sin_addr.s_addr,
470		       &hdr->roce4grh.ip_src, 4);
471		memcpy(&dst_in.sin_addr.s_addr,
472		       &hdr->roce4grh.ip_dst, 4);
473		src_saddr = src_in.sin_addr.s_addr;
474		dst_saddr = dst_in.sin_addr.s_addr;
475		ipv6_addr_set_v4mapped(src_saddr,
476				       (struct in6_addr *)sgid);
477		ipv6_addr_set_v4mapped(dst_saddr,
478				       (struct in6_addr *)dgid);
479		return 0;
480	} else if (net_type == RDMA_NETWORK_IPV6 ||
481		   net_type == RDMA_NETWORK_IB) {
482		*dgid = hdr->ibgrh.dgid;
483		*sgid = hdr->ibgrh.sgid;
484		return 0;
485	} else {
486		return -EINVAL;
487	}
488}
489
490int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
491		       const struct ib_wc *wc, const struct ib_grh *grh,
492		       struct ib_ah_attr *ah_attr)
493{
494	u32 flow_class;
495	u16 gid_index = 0;
496	int ret;
497	enum rdma_network_type net_type = RDMA_NETWORK_IB;
498	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
499	int hoplimit = 0xff;
500	union ib_gid dgid;
501	union ib_gid sgid;
502
503	memset(ah_attr, 0, sizeof *ah_attr);
504	if (rdma_cap_eth_ah(device, port_num)) {
505		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
506			net_type = wc->network_hdr_type;
507		else
508			net_type = ib_get_net_type_by_grh(device, port_num, grh);
509		gid_type = ib_network_to_gid_type(net_type);
510	}
511	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
512				     &sgid, &dgid);
513	if (ret)
514		return ret;
515
516	if (rdma_protocol_roce(device, port_num)) {
517		struct ib_gid_attr dgid_attr;
518		const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
519				wc->vlan_id : 0xffff;
520
521		if (!(wc->wc_flags & IB_WC_GRH))
522			return -EPROTOTYPE;
523
524		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
525					      &dgid, gid_type, &gid_index);
526		if (ret)
527			return ret;
528
529		ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
530		if (ret)
531			return ret;
532
533		if (dgid_attr.ndev == NULL)
534			return -ENODEV;
535
536		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
537		    dgid_attr.ndev, &hoplimit);
538
539		dev_put(dgid_attr.ndev);
540		if (ret)
541			return ret;
542	}
543
544	ah_attr->dlid = wc->slid;
545	ah_attr->sl = wc->sl;
546	ah_attr->src_path_bits = wc->dlid_path_bits;
547	ah_attr->port_num = port_num;
548
549	if (wc->wc_flags & IB_WC_GRH) {
550		ah_attr->ah_flags = IB_AH_GRH;
551		ah_attr->grh.dgid = sgid;
552
553		if (!rdma_cap_eth_ah(device, port_num)) {
554			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
555				ret = ib_find_cached_gid_by_port(device, &dgid,
556								 IB_GID_TYPE_IB,
557								 port_num, NULL,
558								 &gid_index);
559				if (ret)
560					return ret;
561			}
562		}
563
564		ah_attr->grh.sgid_index = (u8) gid_index;
565		flow_class = be32_to_cpu(grh->version_tclass_flow);
566		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
567		ah_attr->grh.hop_limit = hoplimit;
568		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
569	}
570	return 0;
571}
572EXPORT_SYMBOL(ib_init_ah_from_wc);
573
574struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
575				   const struct ib_grh *grh, u8 port_num)
576{
577	struct ib_ah_attr ah_attr;
578	int ret;
579
580	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
581	if (ret)
582		return ERR_PTR(ret);
583
584	return ib_create_ah(pd, &ah_attr);
585}
586EXPORT_SYMBOL(ib_create_ah_from_wc);
587
588int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
589{
590	return ah->device->modify_ah ?
591		ah->device->modify_ah(ah, ah_attr) :
592		-ENOSYS;
593}
594EXPORT_SYMBOL(ib_modify_ah);
595
596int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
597{
598	return ah->device->query_ah ?
599		ah->device->query_ah(ah, ah_attr) :
600		-ENOSYS;
601}
602EXPORT_SYMBOL(ib_query_ah);
603
604int ib_destroy_ah(struct ib_ah *ah)
605{
606	struct ib_pd *pd;
607	int ret;
608
609	pd = ah->pd;
610	ret = ah->device->destroy_ah(ah);
611	if (!ret)
612		atomic_dec(&pd->usecnt);
613
614	return ret;
615}
616EXPORT_SYMBOL(ib_destroy_ah);
617
618/* Shared receive queues */
619
620struct ib_srq *ib_create_srq(struct ib_pd *pd,
621			     struct ib_srq_init_attr *srq_init_attr)
622{
623	struct ib_srq *srq;
624
625	if (!pd->device->create_srq)
626		return ERR_PTR(-ENOSYS);
627
628	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
629
630	if (!IS_ERR(srq)) {
631		srq->device    	   = pd->device;
632		srq->pd        	   = pd;
633		srq->uobject       = NULL;
634		srq->event_handler = srq_init_attr->event_handler;
635		srq->srq_context   = srq_init_attr->srq_context;
636		srq->srq_type      = srq_init_attr->srq_type;
637		if (srq->srq_type == IB_SRQT_XRC) {
638			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
639			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
640			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
641			atomic_inc(&srq->ext.xrc.cq->usecnt);
642		}
643		atomic_inc(&pd->usecnt);
644		atomic_set(&srq->usecnt, 0);
645	}
646
647	return srq;
648}
649EXPORT_SYMBOL(ib_create_srq);
650
651int ib_modify_srq(struct ib_srq *srq,
652		  struct ib_srq_attr *srq_attr,
653		  enum ib_srq_attr_mask srq_attr_mask)
654{
655	return srq->device->modify_srq ?
656		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
657		-ENOSYS;
658}
659EXPORT_SYMBOL(ib_modify_srq);
660
661int ib_query_srq(struct ib_srq *srq,
662		 struct ib_srq_attr *srq_attr)
663{
664	return srq->device->query_srq ?
665		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
666}
667EXPORT_SYMBOL(ib_query_srq);
668
669int ib_destroy_srq(struct ib_srq *srq)
670{
671	struct ib_pd *pd;
672	enum ib_srq_type srq_type;
673	struct ib_xrcd *uninitialized_var(xrcd);
674	struct ib_cq *uninitialized_var(cq);
675	int ret;
676
677	if (atomic_read(&srq->usecnt))
678		return -EBUSY;
679
680	pd = srq->pd;
681	srq_type = srq->srq_type;
682	if (srq_type == IB_SRQT_XRC) {
683		xrcd = srq->ext.xrc.xrcd;
684		cq = srq->ext.xrc.cq;
685	}
686
687	ret = srq->device->destroy_srq(srq);
688	if (!ret) {
689		atomic_dec(&pd->usecnt);
690		if (srq_type == IB_SRQT_XRC) {
691			atomic_dec(&xrcd->usecnt);
692			atomic_dec(&cq->usecnt);
693		}
694	}
695
696	return ret;
697}
698EXPORT_SYMBOL(ib_destroy_srq);
699
700/* Queue pairs */
701
702static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
703{
704	struct ib_qp *qp = context;
705	unsigned long flags;
706
707	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
708	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
709		if (event->element.qp->event_handler)
710			event->element.qp->event_handler(event, event->element.qp->qp_context);
711	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
712}
713
714static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
715{
716	mutex_lock(&xrcd->tgt_qp_mutex);
717	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
718	mutex_unlock(&xrcd->tgt_qp_mutex);
719}
720
721static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
722				  void (*event_handler)(struct ib_event *, void *),
723				  void *qp_context)
724{
725	struct ib_qp *qp;
726	unsigned long flags;
727
728	qp = kzalloc(sizeof *qp, GFP_KERNEL);
729	if (!qp)
730		return ERR_PTR(-ENOMEM);
731
732	qp->real_qp = real_qp;
733	atomic_inc(&real_qp->usecnt);
734	qp->device = real_qp->device;
735	qp->event_handler = event_handler;
736	qp->qp_context = qp_context;
737	qp->qp_num = real_qp->qp_num;
738	qp->qp_type = real_qp->qp_type;
739
740	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
741	list_add(&qp->open_list, &real_qp->open_list);
742	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
743
744	return qp;
745}
746
747struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
748			 struct ib_qp_open_attr *qp_open_attr)
749{
750	struct ib_qp *qp, *real_qp;
751
752	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
753		return ERR_PTR(-EINVAL);
754
755	qp = ERR_PTR(-EINVAL);
756	mutex_lock(&xrcd->tgt_qp_mutex);
757	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
758		if (real_qp->qp_num == qp_open_attr->qp_num) {
759			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
760					  qp_open_attr->qp_context);
761			break;
762		}
763	}
764	mutex_unlock(&xrcd->tgt_qp_mutex);
765	return qp;
766}
767EXPORT_SYMBOL(ib_open_qp);
768
769static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
770		struct ib_qp_init_attr *qp_init_attr)
771{
772	struct ib_qp *real_qp = qp;
773
774	qp->event_handler = __ib_shared_qp_event_handler;
775	qp->qp_context = qp;
776	qp->pd = NULL;
777	qp->send_cq = qp->recv_cq = NULL;
778	qp->srq = NULL;
779	qp->xrcd = qp_init_attr->xrcd;
780	atomic_inc(&qp_init_attr->xrcd->usecnt);
781	INIT_LIST_HEAD(&qp->open_list);
782
783	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
784			  qp_init_attr->qp_context);
785	if (!IS_ERR(qp))
786		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
787	else
788		real_qp->device->destroy_qp(real_qp);
789	return qp;
790}
791
792struct ib_qp *ib_create_qp(struct ib_pd *pd,
793			   struct ib_qp_init_attr *qp_init_attr)
794{
795	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
796	struct ib_qp *qp;
797
798	if (qp_init_attr->rwq_ind_tbl &&
799	    (qp_init_attr->recv_cq ||
800	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
801	    qp_init_attr->cap.max_recv_sge))
802		return ERR_PTR(-EINVAL);
803
804	qp = device->create_qp(pd, qp_init_attr, NULL);
805	if (IS_ERR(qp))
806		return qp;
807
808	qp->device     = device;
809	qp->real_qp    = qp;
810	qp->uobject    = NULL;
811	qp->qp_type    = qp_init_attr->qp_type;
812	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
813
814	atomic_set(&qp->usecnt, 0);
815	spin_lock_init(&qp->mr_lock);
816
817	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
818		return ib_create_xrc_qp(qp, qp_init_attr);
819
820	qp->event_handler = qp_init_attr->event_handler;
821	qp->qp_context = qp_init_attr->qp_context;
822	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
823		qp->recv_cq = NULL;
824		qp->srq = NULL;
825	} else {
826		qp->recv_cq = qp_init_attr->recv_cq;
827		if (qp_init_attr->recv_cq)
828			atomic_inc(&qp_init_attr->recv_cq->usecnt);
829		qp->srq = qp_init_attr->srq;
830		if (qp->srq)
831			atomic_inc(&qp_init_attr->srq->usecnt);
832	}
833
834	qp->pd	    = pd;
835	qp->send_cq = qp_init_attr->send_cq;
836	qp->xrcd    = NULL;
837
838	atomic_inc(&pd->usecnt);
839	if (qp_init_attr->send_cq)
840		atomic_inc(&qp_init_attr->send_cq->usecnt);
841	if (qp_init_attr->rwq_ind_tbl)
842		atomic_inc(&qp->rwq_ind_tbl->usecnt);
843
844	/*
845	 * Note: all hw drivers guarantee that max_send_sge is lower than
846	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
847	 * max_send_sge <= max_sge_rd.
848	 */
849	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
850	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
851				 device->attrs.max_sge_rd);
852
853	return qp;
854}
855EXPORT_SYMBOL(ib_create_qp);
856
857static const struct {
858	int			valid;
859	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
860	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
861} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
862	[IB_QPS_RESET] = {
863		[IB_QPS_RESET] = { .valid = 1 },
864		[IB_QPS_INIT]  = {
865			.valid = 1,
866			.req_param = {
867				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
868						IB_QP_PORT			|
869						IB_QP_QKEY),
870				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
871				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
872						IB_QP_PORT			|
873						IB_QP_ACCESS_FLAGS),
874				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
875						IB_QP_PORT			|
876						IB_QP_ACCESS_FLAGS),
877				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
878						IB_QP_PORT			|
879						IB_QP_ACCESS_FLAGS),
880				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
881						IB_QP_PORT			|
882						IB_QP_ACCESS_FLAGS),
883				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
884						IB_QP_QKEY),
885				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
886						IB_QP_QKEY),
887			}
888		},
889	},
890	[IB_QPS_INIT]  = {
891		[IB_QPS_RESET] = { .valid = 1 },
892		[IB_QPS_ERR] =   { .valid = 1 },
893		[IB_QPS_INIT]  = {
894			.valid = 1,
895			.opt_param = {
896				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
897						IB_QP_PORT			|
898						IB_QP_QKEY),
899				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
900						IB_QP_PORT			|
901						IB_QP_ACCESS_FLAGS),
902				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
903						IB_QP_PORT			|
904						IB_QP_ACCESS_FLAGS),
905				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
906						IB_QP_PORT			|
907						IB_QP_ACCESS_FLAGS),
908				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
909						IB_QP_PORT			|
910						IB_QP_ACCESS_FLAGS),
911				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
912						IB_QP_QKEY),
913				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
914						IB_QP_QKEY),
915			}
916		},
917		[IB_QPS_RTR]   = {
918			.valid = 1,
919			.req_param = {
920				[IB_QPT_UC]  = (IB_QP_AV			|
921						IB_QP_PATH_MTU			|
922						IB_QP_DEST_QPN			|
923						IB_QP_RQ_PSN),
924				[IB_QPT_RC]  = (IB_QP_AV			|
925						IB_QP_PATH_MTU			|
926						IB_QP_DEST_QPN			|
927						IB_QP_RQ_PSN			|
928						IB_QP_MAX_DEST_RD_ATOMIC	|
929						IB_QP_MIN_RNR_TIMER),
930				[IB_QPT_XRC_INI] = (IB_QP_AV			|
931						IB_QP_PATH_MTU			|
932						IB_QP_DEST_QPN			|
933						IB_QP_RQ_PSN),
934				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
935						IB_QP_PATH_MTU			|
936						IB_QP_DEST_QPN			|
937						IB_QP_RQ_PSN			|
938						IB_QP_MAX_DEST_RD_ATOMIC	|
939						IB_QP_MIN_RNR_TIMER),
940			},
941			.opt_param = {
942				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
943						 IB_QP_QKEY),
944				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
945						 IB_QP_ACCESS_FLAGS		|
946						 IB_QP_PKEY_INDEX),
947				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
948						 IB_QP_ACCESS_FLAGS		|
949						 IB_QP_PKEY_INDEX),
950				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
951						 IB_QP_ACCESS_FLAGS		|
952						 IB_QP_PKEY_INDEX),
953				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
954						 IB_QP_ACCESS_FLAGS		|
955						 IB_QP_PKEY_INDEX),
956				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
957						 IB_QP_QKEY),
958				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
959						 IB_QP_QKEY),
960			 },
961		},
962	},
963	[IB_QPS_RTR]   = {
964		[IB_QPS_RESET] = { .valid = 1 },
965		[IB_QPS_ERR] =   { .valid = 1 },
966		[IB_QPS_RTS]   = {
967			.valid = 1,
968			.req_param = {
969				[IB_QPT_UD]  = IB_QP_SQ_PSN,
970				[IB_QPT_UC]  = IB_QP_SQ_PSN,
971				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
972						IB_QP_RETRY_CNT			|
973						IB_QP_RNR_RETRY			|
974						IB_QP_SQ_PSN			|
975						IB_QP_MAX_QP_RD_ATOMIC),
976				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
977						IB_QP_RETRY_CNT			|
978						IB_QP_RNR_RETRY			|
979						IB_QP_SQ_PSN			|
980						IB_QP_MAX_QP_RD_ATOMIC),
981				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
982						IB_QP_SQ_PSN),
983				[IB_QPT_SMI] = IB_QP_SQ_PSN,
984				[IB_QPT_GSI] = IB_QP_SQ_PSN,
985			},
986			.opt_param = {
987				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
988						 IB_QP_QKEY),
989				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
990						 IB_QP_ALT_PATH			|
991						 IB_QP_ACCESS_FLAGS		|
992						 IB_QP_PATH_MIG_STATE),
993				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
994						 IB_QP_ALT_PATH			|
995						 IB_QP_ACCESS_FLAGS		|
996						 IB_QP_MIN_RNR_TIMER		|
997						 IB_QP_PATH_MIG_STATE),
998				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
999						 IB_QP_ALT_PATH			|
1000						 IB_QP_ACCESS_FLAGS		|
1001						 IB_QP_PATH_MIG_STATE),
1002				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1003						 IB_QP_ALT_PATH			|
1004						 IB_QP_ACCESS_FLAGS		|
1005						 IB_QP_MIN_RNR_TIMER		|
1006						 IB_QP_PATH_MIG_STATE),
1007				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1008						 IB_QP_QKEY),
1009				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1010						 IB_QP_QKEY),
1011			 }
1012		}
1013	},
1014	[IB_QPS_RTS]   = {
1015		[IB_QPS_RESET] = { .valid = 1 },
1016		[IB_QPS_ERR] =   { .valid = 1 },
1017		[IB_QPS_RTS]   = {
1018			.valid = 1,
1019			.opt_param = {
1020				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1021						IB_QP_QKEY),
1022				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1023						IB_QP_ACCESS_FLAGS		|
1024						IB_QP_ALT_PATH			|
1025						IB_QP_PATH_MIG_STATE),
1026				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1027						IB_QP_ACCESS_FLAGS		|
1028						IB_QP_ALT_PATH			|
1029						IB_QP_PATH_MIG_STATE		|
1030						IB_QP_MIN_RNR_TIMER),
1031				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1032						IB_QP_ACCESS_FLAGS		|
1033						IB_QP_ALT_PATH			|
1034						IB_QP_PATH_MIG_STATE),
1035				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1036						IB_QP_ACCESS_FLAGS		|
1037						IB_QP_ALT_PATH			|
1038						IB_QP_PATH_MIG_STATE		|
1039						IB_QP_MIN_RNR_TIMER),
1040				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1041						IB_QP_QKEY),
1042				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1043						IB_QP_QKEY),
1044			}
1045		},
1046		[IB_QPS_SQD]   = {
1047			.valid = 1,
1048			.opt_param = {
1049				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1050				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1051				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1052				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1053				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1054				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1055				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1056			}
1057		},
1058	},
1059	[IB_QPS_SQD]   = {
1060		[IB_QPS_RESET] = { .valid = 1 },
1061		[IB_QPS_ERR] =   { .valid = 1 },
1062		[IB_QPS_RTS]   = {
1063			.valid = 1,
1064			.opt_param = {
1065				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1066						IB_QP_QKEY),
1067				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1068						IB_QP_ALT_PATH			|
1069						IB_QP_ACCESS_FLAGS		|
1070						IB_QP_PATH_MIG_STATE),
1071				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1072						IB_QP_ALT_PATH			|
1073						IB_QP_ACCESS_FLAGS		|
1074						IB_QP_MIN_RNR_TIMER		|
1075						IB_QP_PATH_MIG_STATE),
1076				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1077						IB_QP_ALT_PATH			|
1078						IB_QP_ACCESS_FLAGS		|
1079						IB_QP_PATH_MIG_STATE),
1080				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1081						IB_QP_ALT_PATH			|
1082						IB_QP_ACCESS_FLAGS		|
1083						IB_QP_MIN_RNR_TIMER		|
1084						IB_QP_PATH_MIG_STATE),
1085				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1086						IB_QP_QKEY),
1087				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1088						IB_QP_QKEY),
1089			}
1090		},
1091		[IB_QPS_SQD]   = {
1092			.valid = 1,
1093			.opt_param = {
1094				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1095						IB_QP_QKEY),
1096				[IB_QPT_UC]  = (IB_QP_AV			|
1097						IB_QP_ALT_PATH			|
1098						IB_QP_ACCESS_FLAGS		|
1099						IB_QP_PKEY_INDEX		|
1100						IB_QP_PATH_MIG_STATE),
1101				[IB_QPT_RC]  = (IB_QP_PORT			|
1102						IB_QP_AV			|
1103						IB_QP_TIMEOUT			|
1104						IB_QP_RETRY_CNT			|
1105						IB_QP_RNR_RETRY			|
1106						IB_QP_MAX_QP_RD_ATOMIC		|
1107						IB_QP_MAX_DEST_RD_ATOMIC	|
1108						IB_QP_ALT_PATH			|
1109						IB_QP_ACCESS_FLAGS		|
1110						IB_QP_PKEY_INDEX		|
1111						IB_QP_MIN_RNR_TIMER		|
1112						IB_QP_PATH_MIG_STATE),
1113				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1114						IB_QP_AV			|
1115						IB_QP_TIMEOUT			|
1116						IB_QP_RETRY_CNT			|
1117						IB_QP_RNR_RETRY			|
1118						IB_QP_MAX_QP_RD_ATOMIC		|
1119						IB_QP_ALT_PATH			|
1120						IB_QP_ACCESS_FLAGS		|
1121						IB_QP_PKEY_INDEX		|
1122						IB_QP_PATH_MIG_STATE),
1123				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1124						IB_QP_AV			|
1125						IB_QP_TIMEOUT			|
1126						IB_QP_MAX_DEST_RD_ATOMIC	|
1127						IB_QP_ALT_PATH			|
1128						IB_QP_ACCESS_FLAGS		|
1129						IB_QP_PKEY_INDEX		|
1130						IB_QP_MIN_RNR_TIMER		|
1131						IB_QP_PATH_MIG_STATE),
1132				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1133						IB_QP_QKEY),
1134				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1135						IB_QP_QKEY),
1136			}
1137		}
1138	},
1139	[IB_QPS_SQE]   = {
1140		[IB_QPS_RESET] = { .valid = 1 },
1141		[IB_QPS_ERR] =   { .valid = 1 },
1142		[IB_QPS_RTS]   = {
1143			.valid = 1,
1144			.opt_param = {
1145				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1146						IB_QP_QKEY),
1147				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1148						IB_QP_ACCESS_FLAGS),
1149				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1150						IB_QP_QKEY),
1151				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1152						IB_QP_QKEY),
1153			}
1154		}
1155	},
1156	[IB_QPS_ERR] = {
1157		[IB_QPS_RESET] = { .valid = 1 },
1158		[IB_QPS_ERR] =   { .valid = 1 }
1159	}
1160};
1161
1162int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1163		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1164		       enum rdma_link_layer ll)
1165{
1166	enum ib_qp_attr_mask req_param, opt_param;
1167
1168	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1169	    next_state < 0 || next_state > IB_QPS_ERR)
1170		return 0;
1171
1172	if (mask & IB_QP_CUR_STATE  &&
1173	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1174	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1175		return 0;
1176
1177	if (!qp_state_table[cur_state][next_state].valid)
1178		return 0;
1179
1180	req_param = qp_state_table[cur_state][next_state].req_param[type];
1181	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1182
1183	if ((mask & req_param) != req_param)
1184		return 0;
1185
1186	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1187		return 0;
1188
1189	return 1;
1190}
1191EXPORT_SYMBOL(ib_modify_qp_is_ok);
1192
1193int ib_resolve_eth_dmac(struct ib_device *device,
1194			struct ib_ah_attr *ah_attr)
1195{
1196	struct ib_gid_attr sgid_attr;
1197	union ib_gid sgid;
1198	int hop_limit;
1199	int ret;
1200
1201	if (ah_attr->port_num < rdma_start_port(device) ||
1202	    ah_attr->port_num > rdma_end_port(device))
1203		return -EINVAL;
1204
1205	if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1206		return 0;
1207
1208	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1209		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1210			__be32 addr = 0;
1211
1212			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1213			ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1214		} else {
1215			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1216					(char *)ah_attr->dmac);
1217		}
1218		return 0;
1219	}
1220
1221	ret = ib_query_gid(device,
1222			   ah_attr->port_num,
1223			   ah_attr->grh.sgid_index,
1224			   &sgid, &sgid_attr);
1225	if (ret != 0)
1226		return (ret);
1227	if (!sgid_attr.ndev)
1228		return -ENXIO;
1229
1230	ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1231					   &ah_attr->grh.dgid,
1232					   ah_attr->dmac,
1233					   sgid_attr.ndev, &hop_limit);
1234	dev_put(sgid_attr.ndev);
1235
1236	ah_attr->grh.hop_limit = hop_limit;
1237	return ret;
1238}
1239EXPORT_SYMBOL(ib_resolve_eth_dmac);
1240
1241
1242int ib_modify_qp(struct ib_qp *qp,
1243		 struct ib_qp_attr *qp_attr,
1244		 int qp_attr_mask)
1245{
1246	if (qp_attr_mask & IB_QP_AV) {
1247		int ret;
1248
1249		ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1250		if (ret)
1251			return ret;
1252	}
1253
1254	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1255}
1256EXPORT_SYMBOL(ib_modify_qp);
1257
1258int ib_query_qp(struct ib_qp *qp,
1259		struct ib_qp_attr *qp_attr,
1260		int qp_attr_mask,
1261		struct ib_qp_init_attr *qp_init_attr)
1262{
1263	return qp->device->query_qp ?
1264		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1265		-ENOSYS;
1266}
1267EXPORT_SYMBOL(ib_query_qp);
1268
1269int ib_close_qp(struct ib_qp *qp)
1270{
1271	struct ib_qp *real_qp;
1272	unsigned long flags;
1273
1274	real_qp = qp->real_qp;
1275	if (real_qp == qp)
1276		return -EINVAL;
1277
1278	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1279	list_del(&qp->open_list);
1280	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1281
1282	atomic_dec(&real_qp->usecnt);
1283	kfree(qp);
1284
1285	return 0;
1286}
1287EXPORT_SYMBOL(ib_close_qp);
1288
1289static int __ib_destroy_shared_qp(struct ib_qp *qp)
1290{
1291	struct ib_xrcd *xrcd;
1292	struct ib_qp *real_qp;
1293	int ret;
1294
1295	real_qp = qp->real_qp;
1296	xrcd = real_qp->xrcd;
1297
1298	mutex_lock(&xrcd->tgt_qp_mutex);
1299	ib_close_qp(qp);
1300	if (atomic_read(&real_qp->usecnt) == 0)
1301		list_del(&real_qp->xrcd_list);
1302	else
1303		real_qp = NULL;
1304	mutex_unlock(&xrcd->tgt_qp_mutex);
1305
1306	if (real_qp) {
1307		ret = ib_destroy_qp(real_qp);
1308		if (!ret)
1309			atomic_dec(&xrcd->usecnt);
1310		else
1311			__ib_insert_xrcd_qp(xrcd, real_qp);
1312	}
1313
1314	return 0;
1315}
1316
1317int ib_destroy_qp(struct ib_qp *qp)
1318{
1319	struct ib_pd *pd;
1320	struct ib_cq *scq, *rcq;
1321	struct ib_srq *srq;
1322	struct ib_rwq_ind_table *ind_tbl;
1323	int ret;
1324
1325	if (atomic_read(&qp->usecnt))
1326		return -EBUSY;
1327
1328	if (qp->real_qp != qp)
1329		return __ib_destroy_shared_qp(qp);
1330
1331	pd   = qp->pd;
1332	scq  = qp->send_cq;
1333	rcq  = qp->recv_cq;
1334	srq  = qp->srq;
1335	ind_tbl = qp->rwq_ind_tbl;
1336
1337	ret = qp->device->destroy_qp(qp);
1338	if (!ret) {
1339		if (pd)
1340			atomic_dec(&pd->usecnt);
1341		if (scq)
1342			atomic_dec(&scq->usecnt);
1343		if (rcq)
1344			atomic_dec(&rcq->usecnt);
1345		if (srq)
1346			atomic_dec(&srq->usecnt);
1347		if (ind_tbl)
1348			atomic_dec(&ind_tbl->usecnt);
1349	}
1350
1351	return ret;
1352}
1353EXPORT_SYMBOL(ib_destroy_qp);
1354
1355/* Completion queues */
1356
1357struct ib_cq *ib_create_cq(struct ib_device *device,
1358			   ib_comp_handler comp_handler,
1359			   void (*event_handler)(struct ib_event *, void *),
1360			   void *cq_context,
1361			   const struct ib_cq_init_attr *cq_attr)
1362{
1363	struct ib_cq *cq;
1364
1365	cq = device->create_cq(device, cq_attr, NULL, NULL);
1366
1367	if (!IS_ERR(cq)) {
1368		cq->device        = device;
1369		cq->uobject       = NULL;
1370		cq->comp_handler  = comp_handler;
1371		cq->event_handler = event_handler;
1372		cq->cq_context    = cq_context;
1373		atomic_set(&cq->usecnt, 0);
1374	}
1375
1376	return cq;
1377}
1378EXPORT_SYMBOL(ib_create_cq);
1379
1380int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1381{
1382	return cq->device->modify_cq ?
1383		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1384}
1385EXPORT_SYMBOL(ib_modify_cq);
1386
1387int ib_destroy_cq(struct ib_cq *cq)
1388{
1389	if (atomic_read(&cq->usecnt))
1390		return -EBUSY;
1391
1392	return cq->device->destroy_cq(cq);
1393}
1394EXPORT_SYMBOL(ib_destroy_cq);
1395
1396int ib_resize_cq(struct ib_cq *cq, int cqe)
1397{
1398	return cq->device->resize_cq ?
1399		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1400}
1401EXPORT_SYMBOL(ib_resize_cq);
1402
1403/* Memory regions */
1404
1405int ib_dereg_mr(struct ib_mr *mr)
1406{
1407	struct ib_pd *pd = mr->pd;
1408	int ret;
1409
1410	ret = mr->device->dereg_mr(mr);
1411	if (!ret)
1412		atomic_dec(&pd->usecnt);
1413
1414	return ret;
1415}
1416EXPORT_SYMBOL(ib_dereg_mr);
1417
1418/**
1419 * ib_alloc_mr() - Allocates a memory region
1420 * @pd:            protection domain associated with the region
1421 * @mr_type:       memory region type
1422 * @max_num_sg:    maximum sg entries available for registration.
1423 *
1424 * Notes:
1425 * Memory registeration page/sg lists must not exceed max_num_sg.
1426 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1427 * max_num_sg * used_page_size.
1428 *
1429 */
1430struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1431			  enum ib_mr_type mr_type,
1432			  u32 max_num_sg)
1433{
1434	struct ib_mr *mr;
1435
1436	if (!pd->device->alloc_mr)
1437		return ERR_PTR(-ENOSYS);
1438
1439	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1440	if (!IS_ERR(mr)) {
1441		mr->device  = pd->device;
1442		mr->pd      = pd;
1443		mr->uobject = NULL;
1444		atomic_inc(&pd->usecnt);
1445		mr->need_inval = false;
1446	}
1447
1448	return mr;
1449}
1450EXPORT_SYMBOL(ib_alloc_mr);
1451
1452/* "Fast" memory regions */
1453
1454struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1455			    int mr_access_flags,
1456			    struct ib_fmr_attr *fmr_attr)
1457{
1458	struct ib_fmr *fmr;
1459
1460	if (!pd->device->alloc_fmr)
1461		return ERR_PTR(-ENOSYS);
1462
1463	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1464	if (!IS_ERR(fmr)) {
1465		fmr->device = pd->device;
1466		fmr->pd     = pd;
1467		atomic_inc(&pd->usecnt);
1468	}
1469
1470	return fmr;
1471}
1472EXPORT_SYMBOL(ib_alloc_fmr);
1473
1474int ib_unmap_fmr(struct list_head *fmr_list)
1475{
1476	struct ib_fmr *fmr;
1477
1478	if (list_empty(fmr_list))
1479		return 0;
1480
1481	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1482	return fmr->device->unmap_fmr(fmr_list);
1483}
1484EXPORT_SYMBOL(ib_unmap_fmr);
1485
1486int ib_dealloc_fmr(struct ib_fmr *fmr)
1487{
1488	struct ib_pd *pd;
1489	int ret;
1490
1491	pd = fmr->pd;
1492	ret = fmr->device->dealloc_fmr(fmr);
1493	if (!ret)
1494		atomic_dec(&pd->usecnt);
1495
1496	return ret;
1497}
1498EXPORT_SYMBOL(ib_dealloc_fmr);
1499
1500/* Multicast groups */
1501
1502static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1503{
1504	struct ib_qp_init_attr init_attr = {};
1505	struct ib_qp_attr attr = {};
1506	int num_eth_ports = 0;
1507	int port;
1508
1509	/* If QP state >= init, it is assigned to a port and we can check this
1510	 * port only.
1511	 */
1512	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1513		if (attr.qp_state >= IB_QPS_INIT) {
1514			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1515			    IB_LINK_LAYER_INFINIBAND)
1516				return true;
1517			goto lid_check;
1518		}
1519	}
1520
1521	/* Can't get a quick answer, iterate over all ports */
1522	for (port = 0; port < qp->device->phys_port_cnt; port++)
1523		if (rdma_port_get_link_layer(qp->device, port) !=
1524		    IB_LINK_LAYER_INFINIBAND)
1525			num_eth_ports++;
1526
1527	/* If we have at lease one Ethernet port, RoCE annex declares that
1528	 * multicast LID should be ignored. We can't tell at this step if the
1529	 * QP belongs to an IB or Ethernet port.
1530	 */
1531	if (num_eth_ports)
1532		return true;
1533
1534	/* If all the ports are IB, we can check according to IB spec. */
1535lid_check:
1536	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1537		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1538}
1539
1540int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1541{
1542	int ret;
1543
1544	if (!qp->device->attach_mcast)
1545		return -ENOSYS;
1546
1547	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1548	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1549		return -EINVAL;
1550
1551	ret = qp->device->attach_mcast(qp, gid, lid);
1552	if (!ret)
1553		atomic_inc(&qp->usecnt);
1554	return ret;
1555}
1556EXPORT_SYMBOL(ib_attach_mcast);
1557
1558int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1559{
1560	int ret;
1561
1562	if (!qp->device->detach_mcast)
1563		return -ENOSYS;
1564
1565	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1566	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1567		return -EINVAL;
1568
1569	ret = qp->device->detach_mcast(qp, gid, lid);
1570	if (!ret)
1571		atomic_dec(&qp->usecnt);
1572	return ret;
1573}
1574EXPORT_SYMBOL(ib_detach_mcast);
1575
1576struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1577{
1578	struct ib_xrcd *xrcd;
1579
1580	if (!device->alloc_xrcd)
1581		return ERR_PTR(-ENOSYS);
1582
1583	xrcd = device->alloc_xrcd(device, NULL, NULL);
1584	if (!IS_ERR(xrcd)) {
1585		xrcd->device = device;
1586		xrcd->inode = NULL;
1587		atomic_set(&xrcd->usecnt, 0);
1588		mutex_init(&xrcd->tgt_qp_mutex);
1589		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1590	}
1591
1592	return xrcd;
1593}
1594EXPORT_SYMBOL(ib_alloc_xrcd);
1595
1596int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1597{
1598	struct ib_qp *qp;
1599	int ret;
1600
1601	if (atomic_read(&xrcd->usecnt))
1602		return -EBUSY;
1603
1604	while (!list_empty(&xrcd->tgt_qp_list)) {
1605		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1606		ret = ib_destroy_qp(qp);
1607		if (ret)
1608			return ret;
1609	}
1610
1611	return xrcd->device->dealloc_xrcd(xrcd);
1612}
1613EXPORT_SYMBOL(ib_dealloc_xrcd);
1614
1615/**
1616 * ib_create_wq - Creates a WQ associated with the specified protection
1617 * domain.
1618 * @pd: The protection domain associated with the WQ.
1619 * @wq_init_attr: A list of initial attributes required to create the
1620 * WQ. If WQ creation succeeds, then the attributes are updated to
1621 * the actual capabilities of the created WQ.
1622 *
1623 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1624 * the requested size of the WQ, and set to the actual values allocated
1625 * on return.
1626 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1627 * at least as large as the requested values.
1628 */
1629struct ib_wq *ib_create_wq(struct ib_pd *pd,
1630			   struct ib_wq_init_attr *wq_attr)
1631{
1632	struct ib_wq *wq;
1633
1634	if (!pd->device->create_wq)
1635		return ERR_PTR(-ENOSYS);
1636
1637	wq = pd->device->create_wq(pd, wq_attr, NULL);
1638	if (!IS_ERR(wq)) {
1639		wq->event_handler = wq_attr->event_handler;
1640		wq->wq_context = wq_attr->wq_context;
1641		wq->wq_type = wq_attr->wq_type;
1642		wq->cq = wq_attr->cq;
1643		wq->device = pd->device;
1644		wq->pd = pd;
1645		wq->uobject = NULL;
1646		atomic_inc(&pd->usecnt);
1647		atomic_inc(&wq_attr->cq->usecnt);
1648		atomic_set(&wq->usecnt, 0);
1649	}
1650	return wq;
1651}
1652EXPORT_SYMBOL(ib_create_wq);
1653
1654/**
1655 * ib_destroy_wq - Destroys the specified WQ.
1656 * @wq: The WQ to destroy.
1657 */
1658int ib_destroy_wq(struct ib_wq *wq)
1659{
1660	int err;
1661	struct ib_cq *cq = wq->cq;
1662	struct ib_pd *pd = wq->pd;
1663
1664	if (atomic_read(&wq->usecnt))
1665		return -EBUSY;
1666
1667	err = wq->device->destroy_wq(wq);
1668	if (!err) {
1669		atomic_dec(&pd->usecnt);
1670		atomic_dec(&cq->usecnt);
1671	}
1672	return err;
1673}
1674EXPORT_SYMBOL(ib_destroy_wq);
1675
1676/**
1677 * ib_modify_wq - Modifies the specified WQ.
1678 * @wq: The WQ to modify.
1679 * @wq_attr: On input, specifies the WQ attributes to modify.
1680 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1681 *   are being modified.
1682 * On output, the current values of selected WQ attributes are returned.
1683 */
1684int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1685		 u32 wq_attr_mask)
1686{
1687	int err;
1688
1689	if (!wq->device->modify_wq)
1690		return -ENOSYS;
1691
1692	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1693	return err;
1694}
1695EXPORT_SYMBOL(ib_modify_wq);
1696
1697/*
1698 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1699 * @device: The device on which to create the rwq indirection table.
1700 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1701 * create the Indirection Table.
1702 *
1703 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1704 *	than the created ib_rwq_ind_table object and the caller is responsible
1705 *	for its memory allocation/free.
1706 */
1707struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1708						 struct ib_rwq_ind_table_init_attr *init_attr)
1709{
1710	struct ib_rwq_ind_table *rwq_ind_table;
1711	int i;
1712	u32 table_size;
1713
1714	if (!device->create_rwq_ind_table)
1715		return ERR_PTR(-ENOSYS);
1716
1717	table_size = (1 << init_attr->log_ind_tbl_size);
1718	rwq_ind_table = device->create_rwq_ind_table(device,
1719				init_attr, NULL);
1720	if (IS_ERR(rwq_ind_table))
1721		return rwq_ind_table;
1722
1723	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1724	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1725	rwq_ind_table->device = device;
1726	rwq_ind_table->uobject = NULL;
1727	atomic_set(&rwq_ind_table->usecnt, 0);
1728
1729	for (i = 0; i < table_size; i++)
1730		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1731
1732	return rwq_ind_table;
1733}
1734EXPORT_SYMBOL(ib_create_rwq_ind_table);
1735
1736/*
1737 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1738 * @wq_ind_table: The Indirection Table to destroy.
1739*/
1740int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1741{
1742	int err, i;
1743	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1744	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1745
1746	if (atomic_read(&rwq_ind_table->usecnt))
1747		return -EBUSY;
1748
1749	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1750	if (!err) {
1751		for (i = 0; i < table_size; i++)
1752			atomic_dec(&ind_tbl[i]->usecnt);
1753	}
1754
1755	return err;
1756}
1757EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1758
1759struct ib_flow *ib_create_flow(struct ib_qp *qp,
1760			       struct ib_flow_attr *flow_attr,
1761			       int domain)
1762{
1763	struct ib_flow *flow_id;
1764	if (!qp->device->create_flow)
1765		return ERR_PTR(-ENOSYS);
1766
1767	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1768	if (!IS_ERR(flow_id))
1769		atomic_inc(&qp->usecnt);
1770	return flow_id;
1771}
1772EXPORT_SYMBOL(ib_create_flow);
1773
1774int ib_destroy_flow(struct ib_flow *flow_id)
1775{
1776	int err;
1777	struct ib_qp *qp = flow_id->qp;
1778
1779	err = qp->device->destroy_flow(flow_id);
1780	if (!err)
1781		atomic_dec(&qp->usecnt);
1782	return err;
1783}
1784EXPORT_SYMBOL(ib_destroy_flow);
1785
1786int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1787		       struct ib_mr_status *mr_status)
1788{
1789	return mr->device->check_mr_status ?
1790		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1791}
1792EXPORT_SYMBOL(ib_check_mr_status);
1793
1794int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1795			 int state)
1796{
1797	if (!device->set_vf_link_state)
1798		return -ENOSYS;
1799
1800	return device->set_vf_link_state(device, vf, port, state);
1801}
1802EXPORT_SYMBOL(ib_set_vf_link_state);
1803
1804int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1805		     struct ifla_vf_info *info)
1806{
1807	if (!device->get_vf_config)
1808		return -ENOSYS;
1809
1810	return device->get_vf_config(device, vf, port, info);
1811}
1812EXPORT_SYMBOL(ib_get_vf_config);
1813
1814int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1815		    struct ifla_vf_stats *stats)
1816{
1817	if (!device->get_vf_stats)
1818		return -ENOSYS;
1819
1820	return device->get_vf_stats(device, vf, port, stats);
1821}
1822EXPORT_SYMBOL(ib_get_vf_stats);
1823
1824int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1825		   int type)
1826{
1827	if (!device->set_vf_guid)
1828		return -ENOSYS;
1829
1830	return device->set_vf_guid(device, vf, port, guid, type);
1831}
1832EXPORT_SYMBOL(ib_set_vf_guid);
1833
1834/**
1835 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1836 *     and set it the memory region.
1837 * @mr:            memory region
1838 * @sg:            dma mapped scatterlist
1839 * @sg_nents:      number of entries in sg
1840 * @sg_offset:     offset in bytes into sg
1841 * @page_size:     page vector desired page size
1842 *
1843 * Constraints:
1844 * - The first sg element is allowed to have an offset.
1845 * - Each sg element must either be aligned to page_size or virtually
1846 *   contiguous to the previous element. In case an sg element has a
1847 *   non-contiguous offset, the mapping prefix will not include it.
1848 * - The last sg element is allowed to have length less than page_size.
1849 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1850 *   then only max_num_sg entries will be mapped.
1851 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1852 *   constraints holds and the page_size argument is ignored.
1853 *
1854 * Returns the number of sg elements that were mapped to the memory region.
1855 *
1856 * After this completes successfully, the  memory region
1857 * is ready for registration.
1858 */
1859int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1860		 unsigned int *sg_offset, unsigned int page_size)
1861{
1862	if (unlikely(!mr->device->map_mr_sg))
1863		return -ENOSYS;
1864
1865	mr->page_size = page_size;
1866
1867	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1868}
1869EXPORT_SYMBOL(ib_map_mr_sg);
1870
1871/**
1872 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1873 *     to a page vector
1874 * @mr:            memory region
1875 * @sgl:           dma mapped scatterlist
1876 * @sg_nents:      number of entries in sg
1877 * @sg_offset_p:   IN:  start offset in bytes into sg
1878 *                 OUT: offset in bytes for element n of the sg of the first
1879 *                      byte that has not been processed where n is the return
1880 *                      value of this function.
1881 * @set_page:      driver page assignment function pointer
1882 *
1883 * Core service helper for drivers to convert the largest
1884 * prefix of given sg list to a page vector. The sg list
1885 * prefix converted is the prefix that meet the requirements
1886 * of ib_map_mr_sg.
1887 *
1888 * Returns the number of sg elements that were assigned to
1889 * a page vector.
1890 */
1891int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1892		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1893{
1894	struct scatterlist *sg;
1895	u64 last_end_dma_addr = 0;
1896	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1897	unsigned int last_page_off = 0;
1898	u64 page_mask = ~((u64)mr->page_size - 1);
1899	int i, ret;
1900
1901	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1902		return -EINVAL;
1903
1904	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1905	mr->length = 0;
1906
1907	for_each_sg(sgl, sg, sg_nents, i) {
1908		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1909		u64 prev_addr = dma_addr;
1910		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1911		u64 end_dma_addr = dma_addr + dma_len;
1912		u64 page_addr = dma_addr & page_mask;
1913
1914		/*
1915		 * For the second and later elements, check whether either the
1916		 * end of element i-1 or the start of element i is not aligned
1917		 * on a page boundary.
1918		 */
1919		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1920			/* Stop mapping if there is a gap. */
1921			if (last_end_dma_addr != dma_addr)
1922				break;
1923
1924			/*
1925			 * Coalesce this element with the last. If it is small
1926			 * enough just update mr->length. Otherwise start
1927			 * mapping from the next page.
1928			 */
1929			goto next_page;
1930		}
1931
1932		do {
1933			ret = set_page(mr, page_addr);
1934			if (unlikely(ret < 0)) {
1935				sg_offset = prev_addr - sg_dma_address(sg);
1936				mr->length += prev_addr - dma_addr;
1937				if (sg_offset_p)
1938					*sg_offset_p = sg_offset;
1939				return i || sg_offset ? i : ret;
1940			}
1941			prev_addr = page_addr;
1942next_page:
1943			page_addr += mr->page_size;
1944		} while (page_addr < end_dma_addr);
1945
1946		mr->length += dma_len;
1947		last_end_dma_addr = end_dma_addr;
1948		last_page_off = end_dma_addr & ~page_mask;
1949
1950		sg_offset = 0;
1951	}
1952
1953	if (sg_offset_p)
1954		*sg_offset_p = 0;
1955	return i;
1956}
1957EXPORT_SYMBOL(ib_sg_to_pages);
1958
1959struct ib_drain_cqe {
1960	struct ib_cqe cqe;
1961	struct completion done;
1962};
1963
1964static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1965{
1966	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1967						cqe);
1968
1969	complete(&cqe->done);
1970}
1971
1972/*
1973 * Post a WR and block until its completion is reaped for the SQ.
1974 */
1975static void __ib_drain_sq(struct ib_qp *qp)
1976{
1977	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1978	struct ib_drain_cqe sdrain;
1979	struct ib_send_wr *bad_swr;
1980	struct ib_rdma_wr swr = {
1981		.wr = {
1982			.opcode	= IB_WR_RDMA_WRITE,
1983			.wr_cqe	= &sdrain.cqe,
1984		},
1985	};
1986	int ret;
1987
1988	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1989		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1990			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1991		return;
1992	}
1993
1994	sdrain.cqe.done = ib_drain_qp_done;
1995	init_completion(&sdrain.done);
1996
1997	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1998	if (ret) {
1999		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2000		return;
2001	}
2002
2003	ret = ib_post_send(qp, &swr.wr, &bad_swr);
2004	if (ret) {
2005		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2006		return;
2007	}
2008
2009	wait_for_completion(&sdrain.done);
2010}
2011
2012/*
2013 * Post a WR and block until its completion is reaped for the RQ.
2014 */
2015static void __ib_drain_rq(struct ib_qp *qp)
2016{
2017	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2018	struct ib_drain_cqe rdrain;
2019	struct ib_recv_wr rwr = {}, *bad_rwr;
2020	int ret;
2021
2022	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2023		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2024			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2025		return;
2026	}
2027
2028	rwr.wr_cqe = &rdrain.cqe;
2029	rdrain.cqe.done = ib_drain_qp_done;
2030	init_completion(&rdrain.done);
2031
2032	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2033	if (ret) {
2034		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2035		return;
2036	}
2037
2038	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2039	if (ret) {
2040		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2041		return;
2042	}
2043
2044	wait_for_completion(&rdrain.done);
2045}
2046
2047/**
2048 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2049 *		   application.
2050 * @qp:            queue pair to drain
2051 *
2052 * If the device has a provider-specific drain function, then
2053 * call that.  Otherwise call the generic drain function
2054 * __ib_drain_sq().
2055 *
2056 * The caller must:
2057 *
2058 * ensure there is room in the CQ and SQ for the drain work request and
2059 * completion.
2060 *
2061 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2062 * IB_POLL_DIRECT.
2063 *
2064 * ensure that there are no other contexts that are posting WRs concurrently.
2065 * Otherwise the drain is not guaranteed.
2066 */
2067void ib_drain_sq(struct ib_qp *qp)
2068{
2069	if (qp->device->drain_sq)
2070		qp->device->drain_sq(qp);
2071	else
2072		__ib_drain_sq(qp);
2073}
2074EXPORT_SYMBOL(ib_drain_sq);
2075
2076/**
2077 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2078 *		   application.
2079 * @qp:            queue pair to drain
2080 *
2081 * If the device has a provider-specific drain function, then
2082 * call that.  Otherwise call the generic drain function
2083 * __ib_drain_rq().
2084 *
2085 * The caller must:
2086 *
2087 * ensure there is room in the CQ and RQ for the drain work request and
2088 * completion.
2089 *
2090 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2091 * IB_POLL_DIRECT.
2092 *
2093 * ensure that there are no other contexts that are posting WRs concurrently.
2094 * Otherwise the drain is not guaranteed.
2095 */
2096void ib_drain_rq(struct ib_qp *qp)
2097{
2098	if (qp->device->drain_rq)
2099		qp->device->drain_rq(qp);
2100	else
2101		__ib_drain_rq(qp);
2102}
2103EXPORT_SYMBOL(ib_drain_rq);
2104
2105/**
2106 * ib_drain_qp() - Block until all CQEs have been consumed by the
2107 *		   application on both the RQ and SQ.
2108 * @qp:            queue pair to drain
2109 *
2110 * The caller must:
2111 *
2112 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2113 * and completions.
2114 *
2115 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2116 * IB_POLL_DIRECT.
2117 *
2118 * ensure that there are no other contexts that are posting WRs concurrently.
2119 * Otherwise the drain is not guaranteed.
2120 */
2121void ib_drain_qp(struct ib_qp *qp)
2122{
2123	ib_drain_sq(qp);
2124	if (!qp->srq)
2125		ib_drain_rq(qp);
2126}
2127EXPORT_SYMBOL(ib_drain_qp);
2128