1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2007-2009
5 * 	Swinburne University of Technology, Melbourne, Australia.
6 * Copyright (c) 2009-2010, The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed at the Centre for Advanced
10 * Internet Architectures, Swinburne University of Technology, Melbourne,
11 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/******************************************************
36 * Statistical Information For TCP Research (SIFTR)
37 *
38 * A FreeBSD kernel module that adds very basic intrumentation to the
39 * TCP stack, allowing internal stats to be recorded to a log file
40 * for experimental, debugging and performance analysis purposes.
41 *
42 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
43 * working on the NewTCP research project at Swinburne University of
44 * Technology's Centre for Advanced Internet Architectures, Melbourne,
45 * Australia, which was made possible in part by a grant from the Cisco
46 * University Research Program Fund at Community Foundation Silicon Valley.
47 * More details are available at:
48 *   http://caia.swin.edu.au/urp/newtcp/
49 *
50 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
51 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
52 * More details are available at:
53 *   http://www.freebsdfoundation.org/
54 *   http://caia.swin.edu.au/freebsd/etcp09/
55 *
56 * Lawrence Stewart is the current maintainer, and all contact regarding
57 * SIFTR should be directed to him via email: lastewart@swin.edu.au
58 *
59 * Initial release date: June 2007
60 * Most recent update: September 2010
61 ******************************************************/
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD$");
65
66#include <sys/param.h>
67#include <sys/alq.h>
68#include <sys/errno.h>
69#include <sys/eventhandler.h>
70#include <sys/hash.h>
71#include <sys/kernel.h>
72#include <sys/kthread.h>
73#include <sys/lock.h>
74#include <sys/mbuf.h>
75#include <sys/module.h>
76#include <sys/mutex.h>
77#include <sys/pcpu.h>
78#include <sys/proc.h>
79#include <sys/sbuf.h>
80#include <sys/sdt.h>
81#include <sys/smp.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/sysctl.h>
85#include <sys/unistd.h>
86
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/pfil.h>
90
91#include <netinet/in.h>
92#include <netinet/in_kdtrace.h>
93#include <netinet/in_pcb.h>
94#include <netinet/in_systm.h>
95#include <netinet/in_var.h>
96#include <netinet/ip.h>
97#include <netinet/tcp_var.h>
98
99#ifdef SIFTR_IPV6
100#include <netinet/ip6.h>
101#include <netinet6/in6_pcb.h>
102#endif /* SIFTR_IPV6 */
103
104#include <machine/in_cksum.h>
105
106/*
107 * Three digit version number refers to X.Y.Z where:
108 * X is the major version number
109 * Y is bumped to mark backwards incompatible changes
110 * Z is bumped to mark backwards compatible changes
111 */
112#define V_MAJOR		1
113#define V_BACKBREAK	2
114#define V_BACKCOMPAT	4
115#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
116#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
117    __XSTRING(V_BACKCOMPAT)
118
119#define HOOK 0
120#define UNHOOK 1
121#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
122#define SYS_NAME "FreeBSD"
123#define PACKET_TAG_SIFTR 100
124#define PACKET_COOKIE_SIFTR 21749576
125#define SIFTR_LOG_FILE_MODE 0644
126#define SIFTR_DISABLE 0
127#define SIFTR_ENABLE 1
128
129/*
130 * Hard upper limit on the length of log messages. Bump this up if you add new
131 * data fields such that the line length could exceed the below value.
132 */
133#define MAX_LOG_MSG_LEN 200
134/* XXX: Make this a sysctl tunable. */
135#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
136
137/*
138 * 1 byte for IP version
139 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
140 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
141 */
142#ifdef SIFTR_IPV6
143#define FLOW_KEY_LEN 37
144#else
145#define FLOW_KEY_LEN 13
146#endif
147
148#ifdef SIFTR_IPV6
149#define SIFTR_IPMODE 6
150#else
151#define SIFTR_IPMODE 4
152#endif
153
154/* useful macros */
155#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
156#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
157
158#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
159#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
160#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
161#define FOURTH_OCTET(X)	((X) & 0x000000FF)
162
163static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
164static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
165    "SIFTR pkt_node struct");
166static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
167    "SIFTR flow_hash_node struct");
168
169/* Used as links in the pkt manager queue. */
170struct pkt_node {
171	/* Timestamp of pkt as noted in the pfil hook. */
172	struct timeval		tval;
173	/* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
174	uint8_t			direction;
175	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
176	uint8_t			ipver;
177	/* Hash of the pkt which triggered the log message. */
178	uint32_t		hash;
179	/* Local/foreign IP address. */
180#ifdef SIFTR_IPV6
181	uint32_t		ip_laddr[4];
182	uint32_t		ip_faddr[4];
183#else
184	uint8_t			ip_laddr[4];
185	uint8_t			ip_faddr[4];
186#endif
187	/* Local TCP port. */
188	uint16_t		tcp_localport;
189	/* Foreign TCP port. */
190	uint16_t		tcp_foreignport;
191	/* Congestion Window (bytes). */
192	u_long			snd_cwnd;
193	/* Sending Window (bytes). */
194	u_long			snd_wnd;
195	/* Receive Window (bytes). */
196	u_long			rcv_wnd;
197	/* Unused (was: Bandwidth Controlled Window (bytes)). */
198	u_long			snd_bwnd;
199	/* Slow Start Threshold (bytes). */
200	u_long			snd_ssthresh;
201	/* Current state of the TCP FSM. */
202	int			conn_state;
203	/* Max Segment Size (bytes). */
204	u_int			max_seg_size;
205	/*
206	 * Smoothed RTT stored as found in the TCP control block
207	 * in units of (TCP_RTT_SCALE*hz).
208	 */
209	int			smoothed_rtt;
210	/* Is SACK enabled? */
211	u_char			sack_enabled;
212	/* Window scaling for snd window. */
213	u_char			snd_scale;
214	/* Window scaling for recv window. */
215	u_char			rcv_scale;
216	/* TCP control block flags. */
217	u_int			flags;
218	/* Retransmit timeout length. */
219	int			rxt_length;
220	/* Size of the TCP send buffer in bytes. */
221	u_int			snd_buf_hiwater;
222	/* Current num bytes in the send socket buffer. */
223	u_int			snd_buf_cc;
224	/* Size of the TCP receive buffer in bytes. */
225	u_int			rcv_buf_hiwater;
226	/* Current num bytes in the receive socket buffer. */
227	u_int			rcv_buf_cc;
228	/* Number of bytes inflight that we are waiting on ACKs for. */
229	u_int			sent_inflight_bytes;
230	/* Number of segments currently in the reassembly queue. */
231	int			t_segqlen;
232	/* Flowid for the connection. */
233	u_int			flowid;
234	/* Flow type for the connection. */
235	u_int			flowtype;
236	/* Link to next pkt_node in the list. */
237	STAILQ_ENTRY(pkt_node)	nodes;
238};
239
240struct flow_hash_node
241{
242	uint16_t counter;
243	uint8_t key[FLOW_KEY_LEN];
244	LIST_ENTRY(flow_hash_node) nodes;
245};
246
247struct siftr_stats
248{
249	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
250	uint64_t n_in;
251	uint64_t n_out;
252	/* # pkts skipped due to failed malloc calls. */
253	uint32_t nskip_in_malloc;
254	uint32_t nskip_out_malloc;
255	/* # pkts skipped due to failed mtx acquisition. */
256	uint32_t nskip_in_mtx;
257	uint32_t nskip_out_mtx;
258	/* # pkts skipped due to failed inpcb lookups. */
259	uint32_t nskip_in_inpcb;
260	uint32_t nskip_out_inpcb;
261	/* # pkts skipped due to failed tcpcb lookups. */
262	uint32_t nskip_in_tcpcb;
263	uint32_t nskip_out_tcpcb;
264	/* # pkts skipped due to stack reinjection. */
265	uint32_t nskip_in_dejavu;
266	uint32_t nskip_out_dejavu;
267};
268
269DPCPU_DEFINE_STATIC(struct siftr_stats, ss);
270
271static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
272static unsigned int siftr_enabled = 0;
273static unsigned int siftr_pkts_per_log = 1;
274static unsigned int siftr_generate_hashes = 0;
275static uint16_t     siftr_port_filter = 0;
276/* static unsigned int siftr_binary_log = 0; */
277static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
278static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
279static u_long siftr_hashmask;
280STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
281LIST_HEAD(listhead, flow_hash_node) *counter_hash;
282static int wait_for_pkt;
283static struct alq *siftr_alq = NULL;
284static struct mtx siftr_pkt_queue_mtx;
285static struct mtx siftr_pkt_mgr_mtx;
286static struct thread *siftr_pkt_manager_thr = NULL;
287/*
288 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
289 * which we use as an index into this array.
290 */
291static char direction[3] = {'\0', 'i','o'};
292
293/* Required function prototypes. */
294static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
295static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
296
297
298/* Declare the net.inet.siftr sysctl tree and populate it. */
299
300SYSCTL_DECL(_net_inet_siftr);
301
302SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
303    "siftr related settings");
304
305SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
306    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
307    "switch siftr module operations on/off");
308
309SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
310    &siftr_logfile_shadow, sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler,
311    "A", "file to save siftr log messages to");
312
313SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
314    &siftr_pkts_per_log, 1,
315    "number of packets between generating a log message");
316
317SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
318    &siftr_generate_hashes, 0,
319    "enable packet hash generation");
320
321SYSCTL_U16(_net_inet_siftr, OID_AUTO, port_filter, CTLFLAG_RW,
322    &siftr_port_filter, 0,
323    "enable packet filter on a TCP port");
324
325/* XXX: TODO
326SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
327    &siftr_binary_log, 0,
328    "write log files in binary instead of ascii");
329*/
330
331
332/* Begin functions. */
333
334static void
335siftr_process_pkt(struct pkt_node * pkt_node)
336{
337	struct flow_hash_node *hash_node;
338	struct listhead *counter_list;
339	struct siftr_stats *ss;
340	struct ale *log_buf;
341	uint8_t key[FLOW_KEY_LEN];
342	uint8_t found_match, key_offset;
343
344	hash_node = NULL;
345	ss = DPCPU_PTR(ss);
346	found_match = 0;
347	key_offset = 1;
348
349	/*
350	 * Create the key that will be used to create a hash index
351	 * into our hash table. Our key consists of:
352	 * ipversion, localip, localport, foreignip, foreignport
353	 */
354	key[0] = pkt_node->ipver;
355	memcpy(key + key_offset, &pkt_node->ip_laddr,
356	    sizeof(pkt_node->ip_laddr));
357	key_offset += sizeof(pkt_node->ip_laddr);
358	memcpy(key + key_offset, &pkt_node->tcp_localport,
359	    sizeof(pkt_node->tcp_localport));
360	key_offset += sizeof(pkt_node->tcp_localport);
361	memcpy(key + key_offset, &pkt_node->ip_faddr,
362	    sizeof(pkt_node->ip_faddr));
363	key_offset += sizeof(pkt_node->ip_faddr);
364	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
365	    sizeof(pkt_node->tcp_foreignport));
366
367	counter_list = counter_hash +
368	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
369
370	/*
371	 * If the list is not empty i.e. the hash index has
372	 * been used by another flow previously.
373	 */
374	if (LIST_FIRST(counter_list) != NULL) {
375		/*
376		 * Loop through the hash nodes in the list.
377		 * There should normally only be 1 hash node in the list,
378		 * except if there have been collisions at the hash index
379		 * computed by hash32_buf().
380		 */
381		LIST_FOREACH(hash_node, counter_list, nodes) {
382			/*
383			 * Check if the key for the pkt we are currently
384			 * processing is the same as the key stored in the
385			 * hash node we are currently processing.
386			 * If they are the same, then we've found the
387			 * hash node that stores the counter for the flow
388			 * the pkt belongs to.
389			 */
390			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
391				found_match = 1;
392				break;
393			}
394		}
395	}
396
397	/* If this flow hash hasn't been seen before or we have a collision. */
398	if (hash_node == NULL || !found_match) {
399		/* Create a new hash node to store the flow's counter. */
400		hash_node = malloc(sizeof(struct flow_hash_node),
401		    M_SIFTR_HASHNODE, M_WAITOK);
402
403		if (hash_node != NULL) {
404			/* Initialise our new hash node list entry. */
405			hash_node->counter = 0;
406			memcpy(hash_node->key, key, sizeof(key));
407			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
408		} else {
409			/* Malloc failed. */
410			if (pkt_node->direction == PFIL_IN)
411				ss->nskip_in_malloc++;
412			else
413				ss->nskip_out_malloc++;
414
415			return;
416		}
417	} else if (siftr_pkts_per_log > 1) {
418		/*
419		 * Taking the remainder of the counter divided
420		 * by the current value of siftr_pkts_per_log
421		 * and storing that in counter provides a neat
422		 * way to modulate the frequency of log
423		 * messages being written to the log file.
424		 */
425		hash_node->counter = (hash_node->counter + 1) %
426		    siftr_pkts_per_log;
427
428		/*
429		 * If we have not seen enough packets since the last time
430		 * we wrote a log message for this connection, return.
431		 */
432		if (hash_node->counter > 0)
433			return;
434	}
435
436	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
437
438	if (log_buf == NULL)
439		return; /* Should only happen if the ALQ is shutting down. */
440
441#ifdef SIFTR_IPV6
442	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
443	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
444
445	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
446		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
447		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
448		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
449		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
450		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
451		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
452
453		/* Construct an IPv6 log message. */
454		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
455		    MAX_LOG_MSG_LEN,
456		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
457		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
458		    "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
459		    direction[pkt_node->direction],
460		    pkt_node->hash,
461		    pkt_node->tval.tv_sec,
462		    pkt_node->tval.tv_usec,
463		    UPPER_SHORT(pkt_node->ip_laddr[0]),
464		    LOWER_SHORT(pkt_node->ip_laddr[0]),
465		    UPPER_SHORT(pkt_node->ip_laddr[1]),
466		    LOWER_SHORT(pkt_node->ip_laddr[1]),
467		    UPPER_SHORT(pkt_node->ip_laddr[2]),
468		    LOWER_SHORT(pkt_node->ip_laddr[2]),
469		    UPPER_SHORT(pkt_node->ip_laddr[3]),
470		    LOWER_SHORT(pkt_node->ip_laddr[3]),
471		    ntohs(pkt_node->tcp_localport),
472		    UPPER_SHORT(pkt_node->ip_faddr[0]),
473		    LOWER_SHORT(pkt_node->ip_faddr[0]),
474		    UPPER_SHORT(pkt_node->ip_faddr[1]),
475		    LOWER_SHORT(pkt_node->ip_faddr[1]),
476		    UPPER_SHORT(pkt_node->ip_faddr[2]),
477		    LOWER_SHORT(pkt_node->ip_faddr[2]),
478		    UPPER_SHORT(pkt_node->ip_faddr[3]),
479		    LOWER_SHORT(pkt_node->ip_faddr[3]),
480		    ntohs(pkt_node->tcp_foreignport),
481		    pkt_node->snd_ssthresh,
482		    pkt_node->snd_cwnd,
483		    pkt_node->snd_bwnd,
484		    pkt_node->snd_wnd,
485		    pkt_node->rcv_wnd,
486		    pkt_node->snd_scale,
487		    pkt_node->rcv_scale,
488		    pkt_node->conn_state,
489		    pkt_node->max_seg_size,
490		    pkt_node->smoothed_rtt,
491		    pkt_node->sack_enabled,
492		    pkt_node->flags,
493		    pkt_node->rxt_length,
494		    pkt_node->snd_buf_hiwater,
495		    pkt_node->snd_buf_cc,
496		    pkt_node->rcv_buf_hiwater,
497		    pkt_node->rcv_buf_cc,
498		    pkt_node->sent_inflight_bytes,
499		    pkt_node->t_segqlen,
500		    pkt_node->flowid,
501		    pkt_node->flowtype);
502	} else { /* IPv4 packet */
503		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
504		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
505		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
506		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
507		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
508		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
509		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
510		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
511#endif /* SIFTR_IPV6 */
512
513		/* Construct an IPv4 log message. */
514		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
515		    MAX_LOG_MSG_LEN,
516		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
517		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
518		    direction[pkt_node->direction],
519		    pkt_node->hash,
520		    (intmax_t)pkt_node->tval.tv_sec,
521		    pkt_node->tval.tv_usec,
522		    pkt_node->ip_laddr[0],
523		    pkt_node->ip_laddr[1],
524		    pkt_node->ip_laddr[2],
525		    pkt_node->ip_laddr[3],
526		    ntohs(pkt_node->tcp_localport),
527		    pkt_node->ip_faddr[0],
528		    pkt_node->ip_faddr[1],
529		    pkt_node->ip_faddr[2],
530		    pkt_node->ip_faddr[3],
531		    ntohs(pkt_node->tcp_foreignport),
532		    pkt_node->snd_ssthresh,
533		    pkt_node->snd_cwnd,
534		    pkt_node->snd_bwnd,
535		    pkt_node->snd_wnd,
536		    pkt_node->rcv_wnd,
537		    pkt_node->snd_scale,
538		    pkt_node->rcv_scale,
539		    pkt_node->conn_state,
540		    pkt_node->max_seg_size,
541		    pkt_node->smoothed_rtt,
542		    pkt_node->sack_enabled,
543		    pkt_node->flags,
544		    pkt_node->rxt_length,
545		    pkt_node->snd_buf_hiwater,
546		    pkt_node->snd_buf_cc,
547		    pkt_node->rcv_buf_hiwater,
548		    pkt_node->rcv_buf_cc,
549		    pkt_node->sent_inflight_bytes,
550		    pkt_node->t_segqlen,
551		    pkt_node->flowid,
552		    pkt_node->flowtype);
553#ifdef SIFTR_IPV6
554	}
555#endif
556
557	alq_post_flags(siftr_alq, log_buf, 0);
558}
559
560
561static void
562siftr_pkt_manager_thread(void *arg)
563{
564	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
565	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
566	struct pkt_node *pkt_node, *pkt_node_temp;
567	uint8_t draining;
568
569	draining = 2;
570
571	mtx_lock(&siftr_pkt_mgr_mtx);
572
573	/* draining == 0 when queue has been flushed and it's safe to exit. */
574	while (draining) {
575		/*
576		 * Sleep until we are signalled to wake because thread has
577		 * been told to exit or until 1 tick has passed.
578		 */
579		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
580		    1);
581
582		/* Gain exclusive access to the pkt_node queue. */
583		mtx_lock(&siftr_pkt_queue_mtx);
584
585		/*
586		 * Move pkt_queue to tmp_pkt_queue, which leaves
587		 * pkt_queue empty and ready to receive more pkt_nodes.
588		 */
589		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
590
591		/*
592		 * We've finished making changes to the list. Unlock it
593		 * so the pfil hooks can continue queuing pkt_nodes.
594		 */
595		mtx_unlock(&siftr_pkt_queue_mtx);
596
597		/*
598		 * We can't hold a mutex whilst calling siftr_process_pkt
599		 * because ALQ might sleep waiting for buffer space.
600		 */
601		mtx_unlock(&siftr_pkt_mgr_mtx);
602
603		/* Flush all pkt_nodes to the log file. */
604		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
605		    pkt_node_temp) {
606			siftr_process_pkt(pkt_node);
607			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
608			free(pkt_node, M_SIFTR_PKTNODE);
609		}
610
611		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
612		    ("SIFTR tmp_pkt_queue not empty after flush"));
613
614		mtx_lock(&siftr_pkt_mgr_mtx);
615
616		/*
617		 * If siftr_exit_pkt_manager_thread gets set during the window
618		 * where we are draining the tmp_pkt_queue above, there might
619		 * still be pkts in pkt_queue that need to be drained.
620		 * Allow one further iteration to occur after
621		 * siftr_exit_pkt_manager_thread has been set to ensure
622		 * pkt_queue is completely empty before we kill the thread.
623		 *
624		 * siftr_exit_pkt_manager_thread is set only after the pfil
625		 * hooks have been removed, so only 1 extra iteration
626		 * is needed to drain the queue.
627		 */
628		if (siftr_exit_pkt_manager_thread)
629			draining--;
630	}
631
632	mtx_unlock(&siftr_pkt_mgr_mtx);
633
634	/* Calls wakeup on this thread's struct thread ptr. */
635	kthread_exit();
636}
637
638
639static uint32_t
640hash_pkt(struct mbuf *m, uint32_t offset)
641{
642	uint32_t hash;
643
644	hash = 0;
645
646	while (m != NULL && offset > m->m_len) {
647		/*
648		 * The IP packet payload does not start in this mbuf, so
649		 * need to figure out which mbuf it starts in and what offset
650		 * into the mbuf's data region the payload starts at.
651		 */
652		offset -= m->m_len;
653		m = m->m_next;
654	}
655
656	while (m != NULL) {
657		/* Ensure there is data in the mbuf */
658		if ((m->m_len - offset) > 0)
659			hash = hash32_buf(m->m_data + offset,
660			    m->m_len - offset, hash);
661
662		m = m->m_next;
663		offset = 0;
664        }
665
666	return (hash);
667}
668
669
670/*
671 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
672 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
673 * Return value >0 means the caller should skip processing this mbuf.
674 */
675static inline int
676siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
677{
678	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
679	    != NULL) {
680		if (dir == PFIL_IN)
681			ss->nskip_in_dejavu++;
682		else
683			ss->nskip_out_dejavu++;
684
685		return (1);
686	} else {
687		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
688		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
689		if (tag == NULL) {
690			if (dir == PFIL_IN)
691				ss->nskip_in_malloc++;
692			else
693				ss->nskip_out_malloc++;
694
695			return (1);
696		}
697
698		m_tag_prepend(m, tag);
699	}
700
701	return (0);
702}
703
704
705/*
706 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
707 * otherwise.
708 */
709static inline struct inpcb *
710siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
711    uint16_t dport, int dir, struct siftr_stats *ss)
712{
713	struct inpcb *inp;
714
715	/* We need the tcbinfo lock. */
716	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
717
718	if (dir == PFIL_IN)
719		inp = (ipver == INP_IPV4 ?
720		    in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
721		    dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
722		    :
723#ifdef SIFTR_IPV6
724		    in6_pcblookup(&V_tcbinfo,
725		    &((struct ip6_hdr *)ip)->ip6_src, sport,
726		    &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
727		    m->m_pkthdr.rcvif)
728#else
729		    NULL
730#endif
731		    );
732
733	else
734		inp = (ipver == INP_IPV4 ?
735		    in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
736		    sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
737		    :
738#ifdef SIFTR_IPV6
739		    in6_pcblookup(&V_tcbinfo,
740		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
741		    &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
742		    m->m_pkthdr.rcvif)
743#else
744		    NULL
745#endif
746		    );
747
748	/* If we can't find the inpcb, bail. */
749	if (inp == NULL) {
750		if (dir == PFIL_IN)
751			ss->nskip_in_inpcb++;
752		else
753			ss->nskip_out_inpcb++;
754	}
755
756	return (inp);
757}
758
759
760static inline void
761siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
762    int ipver, int dir, int inp_locally_locked)
763{
764#ifdef SIFTR_IPV6
765	if (ipver == INP_IPV4) {
766		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
767		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
768#else
769		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
770		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
771#endif
772#ifdef SIFTR_IPV6
773	} else {
774		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
775		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
776		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
777		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
778		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
779		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
780		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
781		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
782	}
783#endif
784	pn->tcp_localport = inp->inp_lport;
785	pn->tcp_foreignport = inp->inp_fport;
786	pn->snd_cwnd = tp->snd_cwnd;
787	pn->snd_wnd = tp->snd_wnd;
788	pn->rcv_wnd = tp->rcv_wnd;
789	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
790	pn->snd_ssthresh = tp->snd_ssthresh;
791	pn->snd_scale = tp->snd_scale;
792	pn->rcv_scale = tp->rcv_scale;
793	pn->conn_state = tp->t_state;
794	pn->max_seg_size = tp->t_maxseg;
795	pn->smoothed_rtt = tp->t_srtt;
796	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
797	pn->flags = tp->t_flags;
798	pn->rxt_length = tp->t_rxtcur;
799	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
800	pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
801	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
802	pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
803	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
804	pn->t_segqlen = tp->t_segqlen;
805	pn->flowid = inp->inp_flowid;
806	pn->flowtype = inp->inp_flowtype;
807
808	/* We've finished accessing the tcb so release the lock. */
809	if (inp_locally_locked)
810		INP_RUNLOCK(inp);
811
812	pn->ipver = ipver;
813	pn->direction = dir;
814
815	/*
816	 * Significantly more accurate than using getmicrotime(), but slower!
817	 * Gives true microsecond resolution at the expense of a hit to
818	 * maximum pps throughput processing when SIFTR is loaded and enabled.
819	 */
820	microtime(&pn->tval);
821	TCP_PROBE1(siftr, &pn);
822
823}
824
825
826/*
827 * pfil hook that is called for each IPv4 packet making its way through the
828 * stack in either direction.
829 * The pfil subsystem holds a non-sleepable mutex somewhere when
830 * calling our hook function, so we can't sleep at all.
831 * It's very important to use the M_NOWAIT flag with all function calls
832 * that support it so that they won't sleep, otherwise you get a panic.
833 */
834static int
835siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
836    struct inpcb *inp)
837{
838	struct pkt_node *pn;
839	struct ip *ip;
840	struct tcphdr *th;
841	struct tcpcb *tp;
842	struct siftr_stats *ss;
843	unsigned int ip_hl;
844	int inp_locally_locked;
845
846	inp_locally_locked = 0;
847	ss = DPCPU_PTR(ss);
848
849	/*
850	 * m_pullup is not required here because ip_{input|output}
851	 * already do the heavy lifting for us.
852	 */
853
854	ip = mtod(*m, struct ip *);
855
856	/* Only continue processing if the packet is TCP. */
857	if (ip->ip_p != IPPROTO_TCP)
858		goto ret;
859
860	/*
861	 * If a kernel subsystem reinjects packets into the stack, our pfil
862	 * hook will be called multiple times for the same packet.
863	 * Make sure we only process unique packets.
864	 */
865	if (siftr_chkreinject(*m, dir, ss))
866		goto ret;
867
868	if (dir == PFIL_IN)
869		ss->n_in++;
870	else
871		ss->n_out++;
872
873	/*
874	 * Create a tcphdr struct starting at the correct offset
875	 * in the IP packet. ip->ip_hl gives the ip header length
876	 * in 4-byte words, so multiply it to get the size in bytes.
877	 */
878	ip_hl = (ip->ip_hl << 2);
879	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
880
881	/*
882	 * If the pfil hooks don't provide a pointer to the
883	 * inpcb, we need to find it ourselves and lock it.
884	 */
885	if (!inp) {
886		/* Find the corresponding inpcb for this pkt. */
887		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
888		    th->th_dport, dir, ss);
889
890		if (inp == NULL)
891			goto ret;
892		else
893			inp_locally_locked = 1;
894	}
895
896	INP_LOCK_ASSERT(inp);
897
898	/* Find the TCP control block that corresponds with this packet */
899	tp = intotcpcb(inp);
900
901	/*
902	 * If we can't find the TCP control block (happens occasionaly for a
903	 * packet sent during the shutdown phase of a TCP connection),
904	 * or we're in the timewait state, bail
905	 */
906	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
907		if (dir == PFIL_IN)
908			ss->nskip_in_tcpcb++;
909		else
910			ss->nskip_out_tcpcb++;
911
912		goto inp_unlock;
913	}
914
915	/*
916	 * Only pkts selected by the tcp port filter
917	 * can be inserted into the pkt_queue
918	 */
919	if ((siftr_port_filter != 0) &&
920	    (siftr_port_filter != ntohs(inp->inp_lport)) &&
921	    (siftr_port_filter != ntohs(inp->inp_fport))) {
922		goto inp_unlock;
923	}
924
925	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
926
927	if (pn == NULL) {
928		if (dir == PFIL_IN)
929			ss->nskip_in_malloc++;
930		else
931			ss->nskip_out_malloc++;
932
933		goto inp_unlock;
934	}
935
936	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
937
938	if (siftr_generate_hashes) {
939		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
940			/*
941			 * For outbound packets, the TCP checksum isn't
942			 * calculated yet. This is a problem for our packet
943			 * hashing as the receiver will calc a different hash
944			 * to ours if we don't include the correct TCP checksum
945			 * in the bytes being hashed. To work around this
946			 * problem, we manually calc the TCP checksum here in
947			 * software. We unset the CSUM_TCP flag so the lower
948			 * layers don't recalc it.
949			 */
950			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
951
952			/*
953			 * Calculate the TCP checksum in software and assign
954			 * to correct TCP header field, which will follow the
955			 * packet mbuf down the stack. The trick here is that
956			 * tcp_output() sets th->th_sum to the checksum of the
957			 * pseudo header for us already. Because of the nature
958			 * of the checksumming algorithm, we can sum over the
959			 * entire IP payload (i.e. TCP header and data), which
960			 * will include the already calculated pseduo header
961			 * checksum, thus giving us the complete TCP checksum.
962			 *
963			 * To put it in simple terms, if checksum(1,2,3,4)=10,
964			 * then checksum(1,2,3,4,5) == checksum(10,5).
965			 * This property is what allows us to "cheat" and
966			 * checksum only the IP payload which has the TCP
967			 * th_sum field populated with the pseudo header's
968			 * checksum, and not need to futz around checksumming
969			 * pseudo header bytes and TCP header/data in one hit.
970			 * Refer to RFC 1071 for more info.
971			 *
972			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
973			 * in_cksum_skip 2nd argument is NOT the number of
974			 * bytes to read from the mbuf at "skip" bytes offset
975			 * from the start of the mbuf (very counter intuitive!).
976			 * The number of bytes to read is calculated internally
977			 * by the function as len-skip i.e. to sum over the IP
978			 * payload (TCP header + data) bytes, it is INCORRECT
979			 * to call the function like this:
980			 * in_cksum_skip(at, ip->ip_len - offset, offset)
981			 * Rather, it should be called like this:
982			 * in_cksum_skip(at, ip->ip_len, offset)
983			 * which means read "ip->ip_len - offset" bytes from
984			 * the mbuf cluster "at" at offset "offset" bytes from
985			 * the beginning of the "at" mbuf's data pointer.
986			 */
987			th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
988			    ip_hl);
989		}
990
991		/*
992		 * XXX: Having to calculate the checksum in software and then
993		 * hash over all bytes is really inefficient. Would be nice to
994		 * find a way to create the hash and checksum in the same pass
995		 * over the bytes.
996		 */
997		pn->hash = hash_pkt(*m, ip_hl);
998	}
999
1000	mtx_lock(&siftr_pkt_queue_mtx);
1001	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1002	mtx_unlock(&siftr_pkt_queue_mtx);
1003	goto ret;
1004
1005inp_unlock:
1006	if (inp_locally_locked)
1007		INP_RUNLOCK(inp);
1008
1009ret:
1010	/* Returning 0 ensures pfil will not discard the pkt */
1011	return (0);
1012}
1013
1014
1015#ifdef SIFTR_IPV6
1016static int
1017siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
1018    struct inpcb *inp)
1019{
1020	struct pkt_node *pn;
1021	struct ip6_hdr *ip6;
1022	struct tcphdr *th;
1023	struct tcpcb *tp;
1024	struct siftr_stats *ss;
1025	unsigned int ip6_hl;
1026	int inp_locally_locked;
1027
1028	inp_locally_locked = 0;
1029	ss = DPCPU_PTR(ss);
1030
1031	/*
1032	 * m_pullup is not required here because ip6_{input|output}
1033	 * already do the heavy lifting for us.
1034	 */
1035
1036	ip6 = mtod(*m, struct ip6_hdr *);
1037
1038	/*
1039	 * Only continue processing if the packet is TCP
1040	 * XXX: We should follow the next header fields
1041	 * as shown on Pg 6 RFC 2460, but right now we'll
1042	 * only check pkts that have no extension headers.
1043	 */
1044	if (ip6->ip6_nxt != IPPROTO_TCP)
1045		goto ret6;
1046
1047	/*
1048	 * If a kernel subsystem reinjects packets into the stack, our pfil
1049	 * hook will be called multiple times for the same packet.
1050	 * Make sure we only process unique packets.
1051	 */
1052	if (siftr_chkreinject(*m, dir, ss))
1053		goto ret6;
1054
1055	if (dir == PFIL_IN)
1056		ss->n_in++;
1057	else
1058		ss->n_out++;
1059
1060	ip6_hl = sizeof(struct ip6_hdr);
1061
1062	/*
1063	 * Create a tcphdr struct starting at the correct offset
1064	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1065	 * in 4-byte words, so multiply it to get the size in bytes.
1066	 */
1067	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1068
1069	/*
1070	 * For inbound packets, the pfil hooks don't provide a pointer to the
1071	 * inpcb, so we need to find it ourselves and lock it.
1072	 */
1073	if (!inp) {
1074		/* Find the corresponding inpcb for this pkt. */
1075		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1076		    th->th_sport, th->th_dport, dir, ss);
1077
1078		if (inp == NULL)
1079			goto ret6;
1080		else
1081			inp_locally_locked = 1;
1082	}
1083
1084	/* Find the TCP control block that corresponds with this packet. */
1085	tp = intotcpcb(inp);
1086
1087	/*
1088	 * If we can't find the TCP control block (happens occasionaly for a
1089	 * packet sent during the shutdown phase of a TCP connection),
1090	 * or we're in the timewait state, bail.
1091	 */
1092	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1093		if (dir == PFIL_IN)
1094			ss->nskip_in_tcpcb++;
1095		else
1096			ss->nskip_out_tcpcb++;
1097
1098		goto inp_unlock6;
1099	}
1100
1101	/*
1102	 * Only pkts selected by the tcp port filter
1103	 * can be inserted into the pkt_queue
1104	 */
1105	if ((siftr_port_filter != 0) &&
1106	    (siftr_port_filter != ntohs(inp->inp_lport)) &&
1107	    (siftr_port_filter != ntohs(inp->inp_fport))) {
1108		goto inp_unlock6;
1109	}
1110
1111	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1112
1113	if (pn == NULL) {
1114		if (dir == PFIL_IN)
1115			ss->nskip_in_malloc++;
1116		else
1117			ss->nskip_out_malloc++;
1118
1119		goto inp_unlock6;
1120	}
1121
1122	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1123
1124	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1125
1126	mtx_lock(&siftr_pkt_queue_mtx);
1127	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1128	mtx_unlock(&siftr_pkt_queue_mtx);
1129	goto ret6;
1130
1131inp_unlock6:
1132	if (inp_locally_locked)
1133		INP_RUNLOCK(inp);
1134
1135ret6:
1136	/* Returning 0 ensures pfil will not discard the pkt. */
1137	return (0);
1138}
1139#endif /* #ifdef SIFTR_IPV6 */
1140
1141
1142static int
1143siftr_pfil(int action)
1144{
1145	struct pfil_head *pfh_inet;
1146#ifdef SIFTR_IPV6
1147	struct pfil_head *pfh_inet6;
1148#endif
1149	VNET_ITERATOR_DECL(vnet_iter);
1150
1151	VNET_LIST_RLOCK();
1152	VNET_FOREACH(vnet_iter) {
1153		CURVNET_SET(vnet_iter);
1154		pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1155#ifdef SIFTR_IPV6
1156		pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1157#endif
1158
1159		if (action == HOOK) {
1160			pfil_add_hook(siftr_chkpkt, NULL,
1161			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1162#ifdef SIFTR_IPV6
1163			pfil_add_hook(siftr_chkpkt6, NULL,
1164			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1165#endif
1166		} else if (action == UNHOOK) {
1167			pfil_remove_hook(siftr_chkpkt, NULL,
1168			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1169#ifdef SIFTR_IPV6
1170			pfil_remove_hook(siftr_chkpkt6, NULL,
1171			    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1172#endif
1173		}
1174		CURVNET_RESTORE();
1175	}
1176	VNET_LIST_RUNLOCK();
1177
1178	return (0);
1179}
1180
1181
1182static int
1183siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1184{
1185	struct alq *new_alq;
1186	int error;
1187
1188	error = sysctl_handle_string(oidp, arg1, arg2, req);
1189
1190	/* Check for error or same filename */
1191	if (error != 0 || req->newptr == NULL ||
1192	    strncmp(siftr_logfile, arg1, arg2) == 0)
1193		goto done;
1194
1195	/* Filname changed */
1196	error = alq_open(&new_alq, arg1, curthread->td_ucred,
1197	    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1198	if (error != 0)
1199		goto done;
1200
1201	/*
1202	 * If disabled, siftr_alq == NULL so we simply close
1203	 * the alq as we've proved it can be opened.
1204	 * If enabled, close the existing alq and switch the old
1205	 * for the new.
1206	 */
1207	if (siftr_alq == NULL) {
1208		alq_close(new_alq);
1209	} else {
1210		alq_close(siftr_alq);
1211		siftr_alq = new_alq;
1212	}
1213
1214	/* Update filename upon success */
1215	strlcpy(siftr_logfile, arg1, arg2);
1216done:
1217	return (error);
1218}
1219
1220static int
1221siftr_manage_ops(uint8_t action)
1222{
1223	struct siftr_stats totalss;
1224	struct timeval tval;
1225	struct flow_hash_node *counter, *tmp_counter;
1226	struct sbuf *s;
1227	int i, key_index, error;
1228	uint32_t bytes_to_write, total_skipped_pkts;
1229	uint16_t lport, fport;
1230	uint8_t *key, ipver __unused;
1231
1232#ifdef SIFTR_IPV6
1233	uint32_t laddr[4];
1234	uint32_t faddr[4];
1235#else
1236	uint8_t laddr[4];
1237	uint8_t faddr[4];
1238#endif
1239
1240	error = 0;
1241	total_skipped_pkts = 0;
1242
1243	/* Init an autosizing sbuf that initially holds 200 chars. */
1244	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1245		return (-1);
1246
1247	if (action == SIFTR_ENABLE && siftr_pkt_manager_thr == NULL) {
1248		/*
1249		 * Create our alq
1250		 * XXX: We should abort if alq_open fails!
1251		 */
1252		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1253		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1254
1255		STAILQ_INIT(&pkt_queue);
1256
1257		DPCPU_ZERO(ss);
1258
1259		siftr_exit_pkt_manager_thread = 0;
1260
1261		kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1262		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1263		    "siftr_pkt_manager_thr");
1264
1265		siftr_pfil(HOOK);
1266
1267		microtime(&tval);
1268
1269		sbuf_printf(s,
1270		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1271		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1272		    "sysver=%u\tipmode=%u\n",
1273		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1274		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1275
1276		sbuf_finish(s);
1277		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1278
1279	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1280		/*
1281		 * Remove the pfil hook functions. All threads currently in
1282		 * the hook functions are allowed to exit before siftr_pfil()
1283		 * returns.
1284		 */
1285		siftr_pfil(UNHOOK);
1286
1287		/* This will block until the pkt manager thread unlocks it. */
1288		mtx_lock(&siftr_pkt_mgr_mtx);
1289
1290		/* Tell the pkt manager thread that it should exit now. */
1291		siftr_exit_pkt_manager_thread = 1;
1292
1293		/*
1294		 * Wake the pkt_manager thread so it realises that
1295		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1296		 * The wakeup won't be delivered until we unlock
1297		 * siftr_pkt_mgr_mtx so this isn't racy.
1298		 */
1299		wakeup(&wait_for_pkt);
1300
1301		/* Wait for the pkt_manager thread to exit. */
1302		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1303		    "thrwait", 0);
1304
1305		siftr_pkt_manager_thr = NULL;
1306		mtx_unlock(&siftr_pkt_mgr_mtx);
1307
1308		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1309		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1310		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1311		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1312		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1313		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1314		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1315		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1316		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1317		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1318
1319		total_skipped_pkts = totalss.nskip_in_malloc +
1320		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1321		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1322		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1323		    totalss.nskip_out_inpcb;
1324
1325		microtime(&tval);
1326
1327		sbuf_printf(s,
1328		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1329		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1330		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1331		    "num_outbound_skipped_pkts_malloc=%u\t"
1332		    "num_inbound_skipped_pkts_mtx=%u\t"
1333		    "num_outbound_skipped_pkts_mtx=%u\t"
1334		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1335		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1336		    "num_inbound_skipped_pkts_inpcb=%u\t"
1337		    "num_outbound_skipped_pkts_inpcb=%u\t"
1338		    "total_skipped_tcp_pkts=%u\tflow_list=",
1339		    (intmax_t)tval.tv_sec,
1340		    tval.tv_usec,
1341		    (uintmax_t)totalss.n_in,
1342		    (uintmax_t)totalss.n_out,
1343		    (uintmax_t)(totalss.n_in + totalss.n_out),
1344		    totalss.nskip_in_malloc,
1345		    totalss.nskip_out_malloc,
1346		    totalss.nskip_in_mtx,
1347		    totalss.nskip_out_mtx,
1348		    totalss.nskip_in_tcpcb,
1349		    totalss.nskip_out_tcpcb,
1350		    totalss.nskip_in_inpcb,
1351		    totalss.nskip_out_inpcb,
1352		    total_skipped_pkts);
1353
1354		/*
1355		 * Iterate over the flow hash, printing a summary of each
1356		 * flow seen and freeing any malloc'd memory.
1357		 * The hash consists of an array of LISTs (man 3 queue).
1358		 */
1359		for (i = 0; i <= siftr_hashmask; i++) {
1360			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1361			    tmp_counter) {
1362				key = counter->key;
1363				key_index = 1;
1364
1365				ipver = key[0];
1366
1367				memcpy(laddr, key + key_index, sizeof(laddr));
1368				key_index += sizeof(laddr);
1369				memcpy(&lport, key + key_index, sizeof(lport));
1370				key_index += sizeof(lport);
1371				memcpy(faddr, key + key_index, sizeof(faddr));
1372				key_index += sizeof(faddr);
1373				memcpy(&fport, key + key_index, sizeof(fport));
1374
1375#ifdef SIFTR_IPV6
1376				laddr[3] = ntohl(laddr[3]);
1377				faddr[3] = ntohl(faddr[3]);
1378
1379				if (ipver == INP_IPV6) {
1380					laddr[0] = ntohl(laddr[0]);
1381					laddr[1] = ntohl(laddr[1]);
1382					laddr[2] = ntohl(laddr[2]);
1383					faddr[0] = ntohl(faddr[0]);
1384					faddr[1] = ntohl(faddr[1]);
1385					faddr[2] = ntohl(faddr[2]);
1386
1387					sbuf_printf(s,
1388					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1389					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1390					    UPPER_SHORT(laddr[0]),
1391					    LOWER_SHORT(laddr[0]),
1392					    UPPER_SHORT(laddr[1]),
1393					    LOWER_SHORT(laddr[1]),
1394					    UPPER_SHORT(laddr[2]),
1395					    LOWER_SHORT(laddr[2]),
1396					    UPPER_SHORT(laddr[3]),
1397					    LOWER_SHORT(laddr[3]),
1398					    ntohs(lport),
1399					    UPPER_SHORT(faddr[0]),
1400					    LOWER_SHORT(faddr[0]),
1401					    UPPER_SHORT(faddr[1]),
1402					    LOWER_SHORT(faddr[1]),
1403					    UPPER_SHORT(faddr[2]),
1404					    LOWER_SHORT(faddr[2]),
1405					    UPPER_SHORT(faddr[3]),
1406					    LOWER_SHORT(faddr[3]),
1407					    ntohs(fport));
1408				} else {
1409					laddr[0] = FIRST_OCTET(laddr[3]);
1410					laddr[1] = SECOND_OCTET(laddr[3]);
1411					laddr[2] = THIRD_OCTET(laddr[3]);
1412					laddr[3] = FOURTH_OCTET(laddr[3]);
1413					faddr[0] = FIRST_OCTET(faddr[3]);
1414					faddr[1] = SECOND_OCTET(faddr[3]);
1415					faddr[2] = THIRD_OCTET(faddr[3]);
1416					faddr[3] = FOURTH_OCTET(faddr[3]);
1417#endif
1418					sbuf_printf(s,
1419					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1420					    laddr[0],
1421					    laddr[1],
1422					    laddr[2],
1423					    laddr[3],
1424					    ntohs(lport),
1425					    faddr[0],
1426					    faddr[1],
1427					    faddr[2],
1428					    faddr[3],
1429					    ntohs(fport));
1430#ifdef SIFTR_IPV6
1431				}
1432#endif
1433
1434				free(counter, M_SIFTR_HASHNODE);
1435			}
1436
1437			LIST_INIT(counter_hash + i);
1438		}
1439
1440		sbuf_printf(s, "\n");
1441		sbuf_finish(s);
1442
1443		i = 0;
1444		do {
1445			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1446			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1447			i += bytes_to_write;
1448		} while (i < sbuf_len(s));
1449
1450		alq_close(siftr_alq);
1451		siftr_alq = NULL;
1452	} else
1453		error = EINVAL;
1454
1455	sbuf_delete(s);
1456
1457	/*
1458	 * XXX: Should be using ret to check if any functions fail
1459	 * and set error appropriately
1460	 */
1461
1462	return (error);
1463}
1464
1465
1466static int
1467siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1468{
1469	int error;
1470	uint32_t new;
1471
1472	new = siftr_enabled;
1473	error = sysctl_handle_int(oidp, &new, 0, req);
1474	if (error == 0 && req->newptr != NULL) {
1475		if (new > 1)
1476			return (EINVAL);
1477		else if (new != siftr_enabled) {
1478			if ((error = siftr_manage_ops(new)) == 0) {
1479				siftr_enabled = new;
1480			} else {
1481				siftr_manage_ops(SIFTR_DISABLE);
1482			}
1483		}
1484	}
1485
1486	return (error);
1487}
1488
1489
1490static void
1491siftr_shutdown_handler(void *arg)
1492{
1493	if (siftr_enabled == 1) {
1494		siftr_manage_ops(SIFTR_DISABLE);
1495	}
1496}
1497
1498
1499/*
1500 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1501 */
1502static int
1503deinit_siftr(void)
1504{
1505	/* Cleanup. */
1506	siftr_manage_ops(SIFTR_DISABLE);
1507	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1508	mtx_destroy(&siftr_pkt_queue_mtx);
1509	mtx_destroy(&siftr_pkt_mgr_mtx);
1510
1511	return (0);
1512}
1513
1514
1515/*
1516 * Module has just been loaded into the kernel.
1517 */
1518static int
1519init_siftr(void)
1520{
1521	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1522	    SHUTDOWN_PRI_FIRST);
1523
1524	/* Initialise our flow counter hash table. */
1525	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1526	    &siftr_hashmask);
1527
1528	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1529	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1530
1531	/* Print message to the user's current terminal. */
1532	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1533	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1534	    MODVERSION_STR);
1535
1536	return (0);
1537}
1538
1539
1540/*
1541 * This is the function that is called to load and unload the module.
1542 * When the module is loaded, this function is called once with
1543 * "what" == MOD_LOAD
1544 * When the module is unloaded, this function is called twice with
1545 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1546 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1547 * this function is called once with "what" = MOD_SHUTDOWN
1548 * When the system is shut down, the handler isn't called until the very end
1549 * of the shutdown sequence i.e. after the disks have been synced.
1550 */
1551static int
1552siftr_load_handler(module_t mod, int what, void *arg)
1553{
1554	int ret;
1555
1556	switch (what) {
1557	case MOD_LOAD:
1558		ret = init_siftr();
1559		break;
1560
1561	case MOD_QUIESCE:
1562	case MOD_SHUTDOWN:
1563		ret = deinit_siftr();
1564		break;
1565
1566	case MOD_UNLOAD:
1567		ret = 0;
1568		break;
1569
1570	default:
1571		ret = EINVAL;
1572		break;
1573	}
1574
1575	return (ret);
1576}
1577
1578
1579static moduledata_t siftr_mod = {
1580	.name = "siftr",
1581	.evhand = siftr_load_handler,
1582};
1583
1584/*
1585 * Param 1: name of the kernel module
1586 * Param 2: moduledata_t struct containing info about the kernel module
1587 *          and the execution entry point for the module
1588 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1589 *          Defines the module initialisation order
1590 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1591 *          Defines the initialisation order of this kld relative to others
1592 *          within the same subsystem as defined by param 3
1593 */
1594DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
1595MODULE_DEPEND(siftr, alq, 1, 1, 1);
1596MODULE_VERSION(siftr, MODVERSION);
1597