1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2001-2008, by Cisco Systems, Inc. All rights reserved.
5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * a) Redistributions of source code must retain the above copyright notice,
12 *    this list of conditions and the following disclaimer.
13 *
14 * b) Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the distribution.
17 *
18 * c) Neither the name of Cisco Systems, Inc. nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include <netinet/sctp_os.h>
39#include <netinet/sctp.h>
40#include <netinet/sctp_header.h>
41#include <netinet/sctp_pcb.h>
42#include <netinet/sctp_var.h>
43#include <netinet/sctp_sysctl.h>
44#include <netinet/sctputil.h>
45#include <netinet/sctp_indata.h>
46#include <netinet/sctp_output.h>
47#include <netinet/sctp_auth.h>
48
49#ifdef SCTP_DEBUG
50#define SCTP_AUTH_DEBUG		(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH1)
51#define SCTP_AUTH_DEBUG2	(SCTP_BASE_SYSCTL(sctp_debug_on) & SCTP_DEBUG_AUTH2)
52#endif				/* SCTP_DEBUG */
53
54
55void
56sctp_clear_chunklist(sctp_auth_chklist_t *chklist)
57{
58	memset(chklist, 0, sizeof(*chklist));
59	/* chklist->num_chunks = 0; */
60}
61
62sctp_auth_chklist_t *
63sctp_alloc_chunklist(void)
64{
65	sctp_auth_chklist_t *chklist;
66
67	SCTP_MALLOC(chklist, sctp_auth_chklist_t *, sizeof(*chklist),
68	    SCTP_M_AUTH_CL);
69	if (chklist == NULL) {
70		SCTPDBG(SCTP_DEBUG_AUTH1, "sctp_alloc_chunklist: failed to get memory!\n");
71	} else {
72		sctp_clear_chunklist(chklist);
73	}
74	return (chklist);
75}
76
77void
78sctp_free_chunklist(sctp_auth_chklist_t *list)
79{
80	if (list != NULL)
81		SCTP_FREE(list, SCTP_M_AUTH_CL);
82}
83
84sctp_auth_chklist_t *
85sctp_copy_chunklist(sctp_auth_chklist_t *list)
86{
87	sctp_auth_chklist_t *new_list;
88
89	if (list == NULL)
90		return (NULL);
91
92	/* get a new list */
93	new_list = sctp_alloc_chunklist();
94	if (new_list == NULL)
95		return (NULL);
96	/* copy it */
97	memcpy(new_list, list, sizeof(*new_list));
98
99	return (new_list);
100}
101
102
103/*
104 * add a chunk to the required chunks list
105 */
106int
107sctp_auth_add_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
108{
109	if (list == NULL)
110		return (-1);
111
112	/* is chunk restricted? */
113	if ((chunk == SCTP_INITIATION) ||
114	    (chunk == SCTP_INITIATION_ACK) ||
115	    (chunk == SCTP_SHUTDOWN_COMPLETE) ||
116	    (chunk == SCTP_AUTHENTICATION)) {
117		return (-1);
118	}
119	if (list->chunks[chunk] == 0) {
120		list->chunks[chunk] = 1;
121		list->num_chunks++;
122		SCTPDBG(SCTP_DEBUG_AUTH1,
123		    "SCTP: added chunk %u (0x%02x) to Auth list\n",
124		    chunk, chunk);
125	}
126	return (0);
127}
128
129/*
130 * delete a chunk from the required chunks list
131 */
132int
133sctp_auth_delete_chunk(uint8_t chunk, sctp_auth_chklist_t *list)
134{
135	if (list == NULL)
136		return (-1);
137
138	if (list->chunks[chunk] == 1) {
139		list->chunks[chunk] = 0;
140		list->num_chunks--;
141		SCTPDBG(SCTP_DEBUG_AUTH1,
142		    "SCTP: deleted chunk %u (0x%02x) from Auth list\n",
143		    chunk, chunk);
144	}
145	return (0);
146}
147
148size_t
149sctp_auth_get_chklist_size(const sctp_auth_chklist_t *list)
150{
151	if (list == NULL)
152		return (0);
153	else
154		return (list->num_chunks);
155}
156
157/*
158 * return the current number and list of required chunks caller must
159 * guarantee ptr has space for up to 256 bytes
160 */
161int
162sctp_serialize_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
163{
164	int i, count = 0;
165
166	if (list == NULL)
167		return (0);
168
169	for (i = 0; i < 256; i++) {
170		if (list->chunks[i] != 0) {
171			*ptr++ = i;
172			count++;
173		}
174	}
175	return (count);
176}
177
178int
179sctp_pack_auth_chunks(const sctp_auth_chklist_t *list, uint8_t *ptr)
180{
181	int i, size = 0;
182
183	if (list == NULL)
184		return (0);
185
186	if (list->num_chunks <= 32) {
187		/* just list them, one byte each */
188		for (i = 0; i < 256; i++) {
189			if (list->chunks[i] != 0) {
190				*ptr++ = i;
191				size++;
192			}
193		}
194	} else {
195		int index, offset;
196
197		/* pack into a 32 byte bitfield */
198		for (i = 0; i < 256; i++) {
199			if (list->chunks[i] != 0) {
200				index = i / 8;
201				offset = i % 8;
202				ptr[index] |= (1 << offset);
203			}
204		}
205		size = 32;
206	}
207	return (size);
208}
209
210int
211sctp_unpack_auth_chunks(const uint8_t *ptr, uint8_t num_chunks,
212    sctp_auth_chklist_t *list)
213{
214	int i;
215	int size;
216
217	if (list == NULL)
218		return (0);
219
220	if (num_chunks <= 32) {
221		/* just pull them, one byte each */
222		for (i = 0; i < num_chunks; i++) {
223			(void)sctp_auth_add_chunk(*ptr++, list);
224		}
225		size = num_chunks;
226	} else {
227		int index, offset;
228
229		/* unpack from a 32 byte bitfield */
230		for (index = 0; index < 32; index++) {
231			for (offset = 0; offset < 8; offset++) {
232				if (ptr[index] & (1 << offset)) {
233					(void)sctp_auth_add_chunk((index * 8) + offset, list);
234				}
235			}
236		}
237		size = 32;
238	}
239	return (size);
240}
241
242
243/*
244 * allocate structure space for a key of length keylen
245 */
246sctp_key_t *
247sctp_alloc_key(uint32_t keylen)
248{
249	sctp_key_t *new_key;
250
251	SCTP_MALLOC(new_key, sctp_key_t *, sizeof(*new_key) + keylen,
252	    SCTP_M_AUTH_KY);
253	if (new_key == NULL) {
254		/* out of memory */
255		return (NULL);
256	}
257	new_key->keylen = keylen;
258	return (new_key);
259}
260
261void
262sctp_free_key(sctp_key_t *key)
263{
264	if (key != NULL)
265		SCTP_FREE(key, SCTP_M_AUTH_KY);
266}
267
268void
269sctp_print_key(sctp_key_t *key, const char *str)
270{
271	uint32_t i;
272
273	if (key == NULL) {
274		SCTP_PRINTF("%s: [Null key]\n", str);
275		return;
276	}
277	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
278	if (key->keylen) {
279		for (i = 0; i < key->keylen; i++)
280			SCTP_PRINTF("%02x", key->key[i]);
281		SCTP_PRINTF("\n");
282	} else {
283		SCTP_PRINTF("[Null key]\n");
284	}
285}
286
287void
288sctp_show_key(sctp_key_t *key, const char *str)
289{
290	uint32_t i;
291
292	if (key == NULL) {
293		SCTP_PRINTF("%s: [Null key]\n", str);
294		return;
295	}
296	SCTP_PRINTF("%s: len %u, ", str, key->keylen);
297	if (key->keylen) {
298		for (i = 0; i < key->keylen; i++)
299			SCTP_PRINTF("%02x", key->key[i]);
300		SCTP_PRINTF("\n");
301	} else {
302		SCTP_PRINTF("[Null key]\n");
303	}
304}
305
306static uint32_t
307sctp_get_keylen(sctp_key_t *key)
308{
309	if (key != NULL)
310		return (key->keylen);
311	else
312		return (0);
313}
314
315/*
316 * generate a new random key of length 'keylen'
317 */
318sctp_key_t *
319sctp_generate_random_key(uint32_t keylen)
320{
321	sctp_key_t *new_key;
322
323	new_key = sctp_alloc_key(keylen);
324	if (new_key == NULL) {
325		/* out of memory */
326		return (NULL);
327	}
328	SCTP_READ_RANDOM(new_key->key, keylen);
329	new_key->keylen = keylen;
330	return (new_key);
331}
332
333sctp_key_t *
334sctp_set_key(uint8_t *key, uint32_t keylen)
335{
336	sctp_key_t *new_key;
337
338	new_key = sctp_alloc_key(keylen);
339	if (new_key == NULL) {
340		/* out of memory */
341		return (NULL);
342	}
343	memcpy(new_key->key, key, keylen);
344	return (new_key);
345}
346
347/*-
348 * given two keys of variable size, compute which key is "larger/smaller"
349 * returns:  1 if key1 > key2
350 *          -1 if key1 < key2
351 *           0 if key1 = key2
352 */
353static int
354sctp_compare_key(sctp_key_t *key1, sctp_key_t *key2)
355{
356	uint32_t maxlen;
357	uint32_t i;
358	uint32_t key1len, key2len;
359	uint8_t *key_1, *key_2;
360	uint8_t val1, val2;
361
362	/* sanity/length check */
363	key1len = sctp_get_keylen(key1);
364	key2len = sctp_get_keylen(key2);
365	if ((key1len == 0) && (key2len == 0))
366		return (0);
367	else if (key1len == 0)
368		return (-1);
369	else if (key2len == 0)
370		return (1);
371
372	if (key1len < key2len) {
373		maxlen = key2len;
374	} else {
375		maxlen = key1len;
376	}
377	key_1 = key1->key;
378	key_2 = key2->key;
379	/* check for numeric equality */
380	for (i = 0; i < maxlen; i++) {
381		/* left-pad with zeros */
382		val1 = (i < (maxlen - key1len)) ? 0 : *(key_1++);
383		val2 = (i < (maxlen - key2len)) ? 0 : *(key_2++);
384		if (val1 > val2) {
385			return (1);
386		} else if (val1 < val2) {
387			return (-1);
388		}
389	}
390	/* keys are equal value, so check lengths */
391	if (key1len == key2len)
392		return (0);
393	else if (key1len < key2len)
394		return (-1);
395	else
396		return (1);
397}
398
399/*
400 * generate the concatenated keying material based on the two keys and the
401 * shared key (if available). draft-ietf-tsvwg-auth specifies the specific
402 * order for concatenation
403 */
404sctp_key_t *
405sctp_compute_hashkey(sctp_key_t *key1, sctp_key_t *key2, sctp_key_t *shared)
406{
407	uint32_t keylen;
408	sctp_key_t *new_key;
409	uint8_t *key_ptr;
410
411	keylen = sctp_get_keylen(key1) + sctp_get_keylen(key2) +
412	    sctp_get_keylen(shared);
413
414	if (keylen > 0) {
415		/* get space for the new key */
416		new_key = sctp_alloc_key(keylen);
417		if (new_key == NULL) {
418			/* out of memory */
419			return (NULL);
420		}
421		new_key->keylen = keylen;
422		key_ptr = new_key->key;
423	} else {
424		/* all keys empty/null?! */
425		return (NULL);
426	}
427
428	/* concatenate the keys */
429	if (sctp_compare_key(key1, key2) <= 0) {
430		/* key is shared + key1 + key2 */
431		if (sctp_get_keylen(shared)) {
432			memcpy(key_ptr, shared->key, shared->keylen);
433			key_ptr += shared->keylen;
434		}
435		if (sctp_get_keylen(key1)) {
436			memcpy(key_ptr, key1->key, key1->keylen);
437			key_ptr += key1->keylen;
438		}
439		if (sctp_get_keylen(key2)) {
440			memcpy(key_ptr, key2->key, key2->keylen);
441		}
442	} else {
443		/* key is shared + key2 + key1 */
444		if (sctp_get_keylen(shared)) {
445			memcpy(key_ptr, shared->key, shared->keylen);
446			key_ptr += shared->keylen;
447		}
448		if (sctp_get_keylen(key2)) {
449			memcpy(key_ptr, key2->key, key2->keylen);
450			key_ptr += key2->keylen;
451		}
452		if (sctp_get_keylen(key1)) {
453			memcpy(key_ptr, key1->key, key1->keylen);
454		}
455	}
456	return (new_key);
457}
458
459
460sctp_sharedkey_t *
461sctp_alloc_sharedkey(void)
462{
463	sctp_sharedkey_t *new_key;
464
465	SCTP_MALLOC(new_key, sctp_sharedkey_t *, sizeof(*new_key),
466	    SCTP_M_AUTH_KY);
467	if (new_key == NULL) {
468		/* out of memory */
469		return (NULL);
470	}
471	new_key->keyid = 0;
472	new_key->key = NULL;
473	new_key->refcount = 1;
474	new_key->deactivated = 0;
475	return (new_key);
476}
477
478void
479sctp_free_sharedkey(sctp_sharedkey_t *skey)
480{
481	if (skey == NULL)
482		return;
483
484	if (SCTP_DECREMENT_AND_CHECK_REFCOUNT(&skey->refcount)) {
485		if (skey->key != NULL)
486			sctp_free_key(skey->key);
487		SCTP_FREE(skey, SCTP_M_AUTH_KY);
488	}
489}
490
491sctp_sharedkey_t *
492sctp_find_sharedkey(struct sctp_keyhead *shared_keys, uint16_t key_id)
493{
494	sctp_sharedkey_t *skey;
495
496	LIST_FOREACH(skey, shared_keys, next) {
497		if (skey->keyid == key_id)
498			return (skey);
499	}
500	return (NULL);
501}
502
503int
504sctp_insert_sharedkey(struct sctp_keyhead *shared_keys,
505    sctp_sharedkey_t *new_skey)
506{
507	sctp_sharedkey_t *skey;
508
509	if ((shared_keys == NULL) || (new_skey == NULL))
510		return (EINVAL);
511
512	/* insert into an empty list? */
513	if (LIST_EMPTY(shared_keys)) {
514		LIST_INSERT_HEAD(shared_keys, new_skey, next);
515		return (0);
516	}
517	/* insert into the existing list, ordered by key id */
518	LIST_FOREACH(skey, shared_keys, next) {
519		if (new_skey->keyid < skey->keyid) {
520			/* insert it before here */
521			LIST_INSERT_BEFORE(skey, new_skey, next);
522			return (0);
523		} else if (new_skey->keyid == skey->keyid) {
524			/* replace the existing key */
525			/* verify this key *can* be replaced */
526			if ((skey->deactivated) || (skey->refcount > 1)) {
527				SCTPDBG(SCTP_DEBUG_AUTH1,
528				    "can't replace shared key id %u\n",
529				    new_skey->keyid);
530				return (EBUSY);
531			}
532			SCTPDBG(SCTP_DEBUG_AUTH1,
533			    "replacing shared key id %u\n",
534			    new_skey->keyid);
535			LIST_INSERT_BEFORE(skey, new_skey, next);
536			LIST_REMOVE(skey, next);
537			sctp_free_sharedkey(skey);
538			return (0);
539		}
540		if (LIST_NEXT(skey, next) == NULL) {
541			/* belongs at the end of the list */
542			LIST_INSERT_AFTER(skey, new_skey, next);
543			return (0);
544		}
545	}
546	/* shouldn't reach here */
547	return (EINVAL);
548}
549
550void
551sctp_auth_key_acquire(struct sctp_tcb *stcb, uint16_t key_id)
552{
553	sctp_sharedkey_t *skey;
554
555	/* find the shared key */
556	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
557
558	/* bump the ref count */
559	if (skey) {
560		atomic_add_int(&skey->refcount, 1);
561		SCTPDBG(SCTP_DEBUG_AUTH2,
562		    "%s: stcb %p key %u refcount acquire to %d\n",
563		    __func__, (void *)stcb, key_id, skey->refcount);
564	}
565}
566
567void
568sctp_auth_key_release(struct sctp_tcb *stcb, uint16_t key_id, int so_locked)
569{
570	sctp_sharedkey_t *skey;
571
572	/* find the shared key */
573	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, key_id);
574
575	/* decrement the ref count */
576	if (skey) {
577		SCTPDBG(SCTP_DEBUG_AUTH2,
578		    "%s: stcb %p key %u refcount release to %d\n",
579		    __func__, (void *)stcb, key_id, skey->refcount);
580
581		/* see if a notification should be generated */
582		if ((skey->refcount <= 2) && (skey->deactivated)) {
583			/* notify ULP that key is no longer used */
584			sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb,
585			    key_id, 0, so_locked);
586			SCTPDBG(SCTP_DEBUG_AUTH2,
587			    "%s: stcb %p key %u no longer used, %d\n",
588			    __func__, (void *)stcb, key_id, skey->refcount);
589		}
590		sctp_free_sharedkey(skey);
591	}
592}
593
594static sctp_sharedkey_t *
595sctp_copy_sharedkey(const sctp_sharedkey_t *skey)
596{
597	sctp_sharedkey_t *new_skey;
598
599	if (skey == NULL)
600		return (NULL);
601	new_skey = sctp_alloc_sharedkey();
602	if (new_skey == NULL)
603		return (NULL);
604	if (skey->key != NULL)
605		new_skey->key = sctp_set_key(skey->key->key, skey->key->keylen);
606	else
607		new_skey->key = NULL;
608	new_skey->keyid = skey->keyid;
609	return (new_skey);
610}
611
612int
613sctp_copy_skeylist(const struct sctp_keyhead *src, struct sctp_keyhead *dest)
614{
615	sctp_sharedkey_t *skey, *new_skey;
616	int count = 0;
617
618	if ((src == NULL) || (dest == NULL))
619		return (0);
620	LIST_FOREACH(skey, src, next) {
621		new_skey = sctp_copy_sharedkey(skey);
622		if (new_skey != NULL) {
623			if (sctp_insert_sharedkey(dest, new_skey)) {
624				sctp_free_sharedkey(new_skey);
625			} else {
626				count++;
627			}
628		}
629	}
630	return (count);
631}
632
633
634sctp_hmaclist_t *
635sctp_alloc_hmaclist(uint16_t num_hmacs)
636{
637	sctp_hmaclist_t *new_list;
638	int alloc_size;
639
640	alloc_size = sizeof(*new_list) + num_hmacs * sizeof(new_list->hmac[0]);
641	SCTP_MALLOC(new_list, sctp_hmaclist_t *, alloc_size,
642	    SCTP_M_AUTH_HL);
643	if (new_list == NULL) {
644		/* out of memory */
645		return (NULL);
646	}
647	new_list->max_algo = num_hmacs;
648	new_list->num_algo = 0;
649	return (new_list);
650}
651
652void
653sctp_free_hmaclist(sctp_hmaclist_t *list)
654{
655	if (list != NULL) {
656		SCTP_FREE(list, SCTP_M_AUTH_HL);
657	}
658}
659
660int
661sctp_auth_add_hmacid(sctp_hmaclist_t *list, uint16_t hmac_id)
662{
663	int i;
664
665	if (list == NULL)
666		return (-1);
667	if (list->num_algo == list->max_algo) {
668		SCTPDBG(SCTP_DEBUG_AUTH1,
669		    "SCTP: HMAC id list full, ignoring add %u\n", hmac_id);
670		return (-1);
671	}
672	if ((hmac_id != SCTP_AUTH_HMAC_ID_SHA1) &&
673	    (hmac_id != SCTP_AUTH_HMAC_ID_SHA256)) {
674		return (-1);
675	}
676	/* Now is it already in the list */
677	for (i = 0; i < list->num_algo; i++) {
678		if (list->hmac[i] == hmac_id) {
679			/* already in list */
680			return (-1);
681		}
682	}
683	SCTPDBG(SCTP_DEBUG_AUTH1, "SCTP: add HMAC id %u to list\n", hmac_id);
684	list->hmac[list->num_algo++] = hmac_id;
685	return (0);
686}
687
688sctp_hmaclist_t *
689sctp_copy_hmaclist(sctp_hmaclist_t *list)
690{
691	sctp_hmaclist_t *new_list;
692	int i;
693
694	if (list == NULL)
695		return (NULL);
696	/* get a new list */
697	new_list = sctp_alloc_hmaclist(list->max_algo);
698	if (new_list == NULL)
699		return (NULL);
700	/* copy it */
701	new_list->max_algo = list->max_algo;
702	new_list->num_algo = list->num_algo;
703	for (i = 0; i < list->num_algo; i++)
704		new_list->hmac[i] = list->hmac[i];
705	return (new_list);
706}
707
708sctp_hmaclist_t *
709sctp_default_supported_hmaclist(void)
710{
711	sctp_hmaclist_t *new_list;
712
713	new_list = sctp_alloc_hmaclist(2);
714	if (new_list == NULL)
715		return (NULL);
716	/* We prefer SHA256, so list it first */
717	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA256);
718	(void)sctp_auth_add_hmacid(new_list, SCTP_AUTH_HMAC_ID_SHA1);
719	return (new_list);
720}
721
722/*-
723 * HMAC algos are listed in priority/preference order
724 * find the best HMAC id to use for the peer based on local support
725 */
726uint16_t
727sctp_negotiate_hmacid(sctp_hmaclist_t *peer, sctp_hmaclist_t *local)
728{
729	int i, j;
730
731	if ((local == NULL) || (peer == NULL))
732		return (SCTP_AUTH_HMAC_ID_RSVD);
733
734	for (i = 0; i < peer->num_algo; i++) {
735		for (j = 0; j < local->num_algo; j++) {
736			if (peer->hmac[i] == local->hmac[j]) {
737				/* found the "best" one */
738				SCTPDBG(SCTP_DEBUG_AUTH1,
739				    "SCTP: negotiated peer HMAC id %u\n",
740				    peer->hmac[i]);
741				return (peer->hmac[i]);
742			}
743		}
744	}
745	/* didn't find one! */
746	return (SCTP_AUTH_HMAC_ID_RSVD);
747}
748
749/*-
750 * serialize the HMAC algo list and return space used
751 * caller must guarantee ptr has appropriate space
752 */
753int
754sctp_serialize_hmaclist(sctp_hmaclist_t *list, uint8_t *ptr)
755{
756	int i;
757	uint16_t hmac_id;
758
759	if (list == NULL)
760		return (0);
761
762	for (i = 0; i < list->num_algo; i++) {
763		hmac_id = htons(list->hmac[i]);
764		memcpy(ptr, &hmac_id, sizeof(hmac_id));
765		ptr += sizeof(hmac_id);
766	}
767	return (list->num_algo * sizeof(hmac_id));
768}
769
770int
771sctp_verify_hmac_param(struct sctp_auth_hmac_algo *hmacs, uint32_t num_hmacs)
772{
773	uint32_t i;
774
775	for (i = 0; i < num_hmacs; i++) {
776		if (ntohs(hmacs->hmac_ids[i]) == SCTP_AUTH_HMAC_ID_SHA1) {
777			return (0);
778		}
779	}
780	return (-1);
781}
782
783sctp_authinfo_t *
784sctp_alloc_authinfo(void)
785{
786	sctp_authinfo_t *new_authinfo;
787
788	SCTP_MALLOC(new_authinfo, sctp_authinfo_t *, sizeof(*new_authinfo),
789	    SCTP_M_AUTH_IF);
790
791	if (new_authinfo == NULL) {
792		/* out of memory */
793		return (NULL);
794	}
795	memset(new_authinfo, 0, sizeof(*new_authinfo));
796	return (new_authinfo);
797}
798
799void
800sctp_free_authinfo(sctp_authinfo_t *authinfo)
801{
802	if (authinfo == NULL)
803		return;
804
805	if (authinfo->random != NULL)
806		sctp_free_key(authinfo->random);
807	if (authinfo->peer_random != NULL)
808		sctp_free_key(authinfo->peer_random);
809	if (authinfo->assoc_key != NULL)
810		sctp_free_key(authinfo->assoc_key);
811	if (authinfo->recv_key != NULL)
812		sctp_free_key(authinfo->recv_key);
813
814	/* We are NOT dynamically allocating authinfo's right now... */
815	/* SCTP_FREE(authinfo, SCTP_M_AUTH_??); */
816}
817
818
819uint32_t
820sctp_get_auth_chunk_len(uint16_t hmac_algo)
821{
822	int size;
823
824	size = sizeof(struct sctp_auth_chunk) + sctp_get_hmac_digest_len(hmac_algo);
825	return (SCTP_SIZE32(size));
826}
827
828uint32_t
829sctp_get_hmac_digest_len(uint16_t hmac_algo)
830{
831	switch (hmac_algo) {
832	case SCTP_AUTH_HMAC_ID_SHA1:
833		return (SCTP_AUTH_DIGEST_LEN_SHA1);
834	case SCTP_AUTH_HMAC_ID_SHA256:
835		return (SCTP_AUTH_DIGEST_LEN_SHA256);
836	default:
837		/* unknown HMAC algorithm: can't do anything */
838		return (0);
839	}			/* end switch */
840}
841
842static inline int
843sctp_get_hmac_block_len(uint16_t hmac_algo)
844{
845	switch (hmac_algo) {
846	case SCTP_AUTH_HMAC_ID_SHA1:
847		return (64);
848	case SCTP_AUTH_HMAC_ID_SHA256:
849		return (64);
850	case SCTP_AUTH_HMAC_ID_RSVD:
851	default:
852		/* unknown HMAC algorithm: can't do anything */
853		return (0);
854	}			/* end switch */
855}
856
857static void
858sctp_hmac_init(uint16_t hmac_algo, sctp_hash_context_t *ctx)
859{
860	switch (hmac_algo) {
861	case SCTP_AUTH_HMAC_ID_SHA1:
862		SCTP_SHA1_INIT(&ctx->sha1);
863		break;
864	case SCTP_AUTH_HMAC_ID_SHA256:
865		SCTP_SHA256_INIT(&ctx->sha256);
866		break;
867	case SCTP_AUTH_HMAC_ID_RSVD:
868	default:
869		/* unknown HMAC algorithm: can't do anything */
870		return;
871	}			/* end switch */
872}
873
874static void
875sctp_hmac_update(uint16_t hmac_algo, sctp_hash_context_t *ctx,
876    uint8_t *text, uint32_t textlen)
877{
878	switch (hmac_algo) {
879	case SCTP_AUTH_HMAC_ID_SHA1:
880		SCTP_SHA1_UPDATE(&ctx->sha1, text, textlen);
881		break;
882	case SCTP_AUTH_HMAC_ID_SHA256:
883		SCTP_SHA256_UPDATE(&ctx->sha256, text, textlen);
884		break;
885	case SCTP_AUTH_HMAC_ID_RSVD:
886	default:
887		/* unknown HMAC algorithm: can't do anything */
888		return;
889	}			/* end switch */
890}
891
892static void
893sctp_hmac_final(uint16_t hmac_algo, sctp_hash_context_t *ctx,
894    uint8_t *digest)
895{
896	switch (hmac_algo) {
897	case SCTP_AUTH_HMAC_ID_SHA1:
898		SCTP_SHA1_FINAL(digest, &ctx->sha1);
899		break;
900	case SCTP_AUTH_HMAC_ID_SHA256:
901		SCTP_SHA256_FINAL(digest, &ctx->sha256);
902		break;
903	case SCTP_AUTH_HMAC_ID_RSVD:
904	default:
905		/* unknown HMAC algorithm: can't do anything */
906		return;
907	}			/* end switch */
908}
909
910/*-
911 * Keyed-Hashing for Message Authentication: FIPS 198 (RFC 2104)
912 *
913 * Compute the HMAC digest using the desired hash key, text, and HMAC
914 * algorithm.  Resulting digest is placed in 'digest' and digest length
915 * is returned, if the HMAC was performed.
916 *
917 * WARNING: it is up to the caller to supply sufficient space to hold the
918 * resultant digest.
919 */
920uint32_t
921sctp_hmac(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
922    uint8_t *text, uint32_t textlen, uint8_t *digest)
923{
924	uint32_t digestlen;
925	uint32_t blocklen;
926	sctp_hash_context_t ctx;
927	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
928	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
929	uint32_t i;
930
931	/* sanity check the material and length */
932	if ((key == NULL) || (keylen == 0) || (text == NULL) ||
933	    (textlen == 0) || (digest == NULL)) {
934		/* can't do HMAC with empty key or text or digest store */
935		return (0);
936	}
937	/* validate the hmac algo and get the digest length */
938	digestlen = sctp_get_hmac_digest_len(hmac_algo);
939	if (digestlen == 0)
940		return (0);
941
942	/* hash the key if it is longer than the hash block size */
943	blocklen = sctp_get_hmac_block_len(hmac_algo);
944	if (keylen > blocklen) {
945		sctp_hmac_init(hmac_algo, &ctx);
946		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
947		sctp_hmac_final(hmac_algo, &ctx, temp);
948		/* set the hashed key as the key */
949		keylen = digestlen;
950		key = temp;
951	}
952	/* initialize the inner/outer pads with the key and "append" zeroes */
953	memset(ipad, 0, blocklen);
954	memset(opad, 0, blocklen);
955	memcpy(ipad, key, keylen);
956	memcpy(opad, key, keylen);
957
958	/* XOR the key with ipad and opad values */
959	for (i = 0; i < blocklen; i++) {
960		ipad[i] ^= 0x36;
961		opad[i] ^= 0x5c;
962	}
963
964	/* perform inner hash */
965	sctp_hmac_init(hmac_algo, &ctx);
966	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
967	sctp_hmac_update(hmac_algo, &ctx, text, textlen);
968	sctp_hmac_final(hmac_algo, &ctx, temp);
969
970	/* perform outer hash */
971	sctp_hmac_init(hmac_algo, &ctx);
972	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
973	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
974	sctp_hmac_final(hmac_algo, &ctx, digest);
975
976	return (digestlen);
977}
978
979/* mbuf version */
980uint32_t
981sctp_hmac_m(uint16_t hmac_algo, uint8_t *key, uint32_t keylen,
982    struct mbuf *m, uint32_t m_offset, uint8_t *digest, uint32_t trailer)
983{
984	uint32_t digestlen;
985	uint32_t blocklen;
986	sctp_hash_context_t ctx;
987	uint8_t ipad[128], opad[128];	/* keyed hash inner/outer pads */
988	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
989	uint32_t i;
990	struct mbuf *m_tmp;
991
992	/* sanity check the material and length */
993	if ((key == NULL) || (keylen == 0) || (m == NULL) || (digest == NULL)) {
994		/* can't do HMAC with empty key or text or digest store */
995		return (0);
996	}
997	/* validate the hmac algo and get the digest length */
998	digestlen = sctp_get_hmac_digest_len(hmac_algo);
999	if (digestlen == 0)
1000		return (0);
1001
1002	/* hash the key if it is longer than the hash block size */
1003	blocklen = sctp_get_hmac_block_len(hmac_algo);
1004	if (keylen > blocklen) {
1005		sctp_hmac_init(hmac_algo, &ctx);
1006		sctp_hmac_update(hmac_algo, &ctx, key, keylen);
1007		sctp_hmac_final(hmac_algo, &ctx, temp);
1008		/* set the hashed key as the key */
1009		keylen = digestlen;
1010		key = temp;
1011	}
1012	/* initialize the inner/outer pads with the key and "append" zeroes */
1013	memset(ipad, 0, blocklen);
1014	memset(opad, 0, blocklen);
1015	memcpy(ipad, key, keylen);
1016	memcpy(opad, key, keylen);
1017
1018	/* XOR the key with ipad and opad values */
1019	for (i = 0; i < blocklen; i++) {
1020		ipad[i] ^= 0x36;
1021		opad[i] ^= 0x5c;
1022	}
1023
1024	/* perform inner hash */
1025	sctp_hmac_init(hmac_algo, &ctx);
1026	sctp_hmac_update(hmac_algo, &ctx, ipad, blocklen);
1027	/* find the correct starting mbuf and offset (get start of text) */
1028	m_tmp = m;
1029	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1030		m_offset -= SCTP_BUF_LEN(m_tmp);
1031		m_tmp = SCTP_BUF_NEXT(m_tmp);
1032	}
1033	/* now use the rest of the mbuf chain for the text */
1034	while (m_tmp != NULL) {
1035		if ((SCTP_BUF_NEXT(m_tmp) == NULL) && trailer) {
1036			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1037			    SCTP_BUF_LEN(m_tmp) - (trailer + m_offset));
1038		} else {
1039			sctp_hmac_update(hmac_algo, &ctx, mtod(m_tmp, uint8_t *)+m_offset,
1040			    SCTP_BUF_LEN(m_tmp) - m_offset);
1041		}
1042
1043		/* clear the offset since it's only for the first mbuf */
1044		m_offset = 0;
1045		m_tmp = SCTP_BUF_NEXT(m_tmp);
1046	}
1047	sctp_hmac_final(hmac_algo, &ctx, temp);
1048
1049	/* perform outer hash */
1050	sctp_hmac_init(hmac_algo, &ctx);
1051	sctp_hmac_update(hmac_algo, &ctx, opad, blocklen);
1052	sctp_hmac_update(hmac_algo, &ctx, temp, digestlen);
1053	sctp_hmac_final(hmac_algo, &ctx, digest);
1054
1055	return (digestlen);
1056}
1057
1058/*
1059 * computes the requested HMAC using a key struct (which may be modified if
1060 * the keylen exceeds the HMAC block len).
1061 */
1062uint32_t
1063sctp_compute_hmac(uint16_t hmac_algo, sctp_key_t *key, uint8_t *text,
1064    uint32_t textlen, uint8_t *digest)
1065{
1066	uint32_t digestlen;
1067	uint32_t blocklen;
1068	sctp_hash_context_t ctx;
1069	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1070
1071	/* sanity check */
1072	if ((key == NULL) || (text == NULL) || (textlen == 0) ||
1073	    (digest == NULL)) {
1074		/* can't do HMAC with empty key or text or digest store */
1075		return (0);
1076	}
1077	/* validate the hmac algo and get the digest length */
1078	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1079	if (digestlen == 0)
1080		return (0);
1081
1082	/* hash the key if it is longer than the hash block size */
1083	blocklen = sctp_get_hmac_block_len(hmac_algo);
1084	if (key->keylen > blocklen) {
1085		sctp_hmac_init(hmac_algo, &ctx);
1086		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1087		sctp_hmac_final(hmac_algo, &ctx, temp);
1088		/* save the hashed key as the new key */
1089		key->keylen = digestlen;
1090		memcpy(key->key, temp, key->keylen);
1091	}
1092	return (sctp_hmac(hmac_algo, key->key, key->keylen, text, textlen,
1093	    digest));
1094}
1095
1096/* mbuf version */
1097uint32_t
1098sctp_compute_hmac_m(uint16_t hmac_algo, sctp_key_t *key, struct mbuf *m,
1099    uint32_t m_offset, uint8_t *digest)
1100{
1101	uint32_t digestlen;
1102	uint32_t blocklen;
1103	sctp_hash_context_t ctx;
1104	uint8_t temp[SCTP_AUTH_DIGEST_LEN_MAX];
1105
1106	/* sanity check */
1107	if ((key == NULL) || (m == NULL) || (digest == NULL)) {
1108		/* can't do HMAC with empty key or text or digest store */
1109		return (0);
1110	}
1111	/* validate the hmac algo and get the digest length */
1112	digestlen = sctp_get_hmac_digest_len(hmac_algo);
1113	if (digestlen == 0)
1114		return (0);
1115
1116	/* hash the key if it is longer than the hash block size */
1117	blocklen = sctp_get_hmac_block_len(hmac_algo);
1118	if (key->keylen > blocklen) {
1119		sctp_hmac_init(hmac_algo, &ctx);
1120		sctp_hmac_update(hmac_algo, &ctx, key->key, key->keylen);
1121		sctp_hmac_final(hmac_algo, &ctx, temp);
1122		/* save the hashed key as the new key */
1123		key->keylen = digestlen;
1124		memcpy(key->key, temp, key->keylen);
1125	}
1126	return (sctp_hmac_m(hmac_algo, key->key, key->keylen, m, m_offset, digest, 0));
1127}
1128
1129int
1130sctp_auth_is_supported_hmac(sctp_hmaclist_t *list, uint16_t id)
1131{
1132	int i;
1133
1134	if ((list == NULL) || (id == SCTP_AUTH_HMAC_ID_RSVD))
1135		return (0);
1136
1137	for (i = 0; i < list->num_algo; i++)
1138		if (list->hmac[i] == id)
1139			return (1);
1140
1141	/* not in the list */
1142	return (0);
1143}
1144
1145
1146/*-
1147 * clear any cached key(s) if they match the given key id on an association.
1148 * the cached key(s) will be recomputed and re-cached at next use.
1149 * ASSUMES TCB_LOCK is already held
1150 */
1151void
1152sctp_clear_cachedkeys(struct sctp_tcb *stcb, uint16_t keyid)
1153{
1154	if (stcb == NULL)
1155		return;
1156
1157	if (keyid == stcb->asoc.authinfo.assoc_keyid) {
1158		sctp_free_key(stcb->asoc.authinfo.assoc_key);
1159		stcb->asoc.authinfo.assoc_key = NULL;
1160	}
1161	if (keyid == stcb->asoc.authinfo.recv_keyid) {
1162		sctp_free_key(stcb->asoc.authinfo.recv_key);
1163		stcb->asoc.authinfo.recv_key = NULL;
1164	}
1165}
1166
1167/*-
1168 * clear any cached key(s) if they match the given key id for all assocs on
1169 * an endpoint.
1170 * ASSUMES INP_WLOCK is already held
1171 */
1172void
1173sctp_clear_cachedkeys_ep(struct sctp_inpcb *inp, uint16_t keyid)
1174{
1175	struct sctp_tcb *stcb;
1176
1177	if (inp == NULL)
1178		return;
1179
1180	/* clear the cached keys on all assocs on this instance */
1181	LIST_FOREACH(stcb, &inp->sctp_asoc_list, sctp_tcblist) {
1182		SCTP_TCB_LOCK(stcb);
1183		sctp_clear_cachedkeys(stcb, keyid);
1184		SCTP_TCB_UNLOCK(stcb);
1185	}
1186}
1187
1188/*-
1189 * delete a shared key from an association
1190 * ASSUMES TCB_LOCK is already held
1191 */
1192int
1193sctp_delete_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1194{
1195	sctp_sharedkey_t *skey;
1196
1197	if (stcb == NULL)
1198		return (-1);
1199
1200	/* is the keyid the assoc active sending key */
1201	if (keyid == stcb->asoc.authinfo.active_keyid)
1202		return (-1);
1203
1204	/* does the key exist? */
1205	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1206	if (skey == NULL)
1207		return (-1);
1208
1209	/* are there other refcount holders on the key? */
1210	if (skey->refcount > 1)
1211		return (-1);
1212
1213	/* remove it */
1214	LIST_REMOVE(skey, next);
1215	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1216
1217	/* clear any cached keys */
1218	sctp_clear_cachedkeys(stcb, keyid);
1219	return (0);
1220}
1221
1222/*-
1223 * deletes a shared key from the endpoint
1224 * ASSUMES INP_WLOCK is already held
1225 */
1226int
1227sctp_delete_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1228{
1229	sctp_sharedkey_t *skey;
1230
1231	if (inp == NULL)
1232		return (-1);
1233
1234	/* is the keyid the active sending key on the endpoint */
1235	if (keyid == inp->sctp_ep.default_keyid)
1236		return (-1);
1237
1238	/* does the key exist? */
1239	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1240	if (skey == NULL)
1241		return (-1);
1242
1243	/* endpoint keys are not refcounted */
1244
1245	/* remove it */
1246	LIST_REMOVE(skey, next);
1247	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1248
1249	/* clear any cached keys */
1250	sctp_clear_cachedkeys_ep(inp, keyid);
1251	return (0);
1252}
1253
1254/*-
1255 * set the active key on an association
1256 * ASSUMES TCB_LOCK is already held
1257 */
1258int
1259sctp_auth_setactivekey(struct sctp_tcb *stcb, uint16_t keyid)
1260{
1261	sctp_sharedkey_t *skey = NULL;
1262
1263	/* find the key on the assoc */
1264	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1265	if (skey == NULL) {
1266		/* that key doesn't exist */
1267		return (-1);
1268	}
1269	if ((skey->deactivated) && (skey->refcount > 1)) {
1270		/* can't reactivate a deactivated key with other refcounts */
1271		return (-1);
1272	}
1273
1274	/* set the (new) active key */
1275	stcb->asoc.authinfo.active_keyid = keyid;
1276	/* reset the deactivated flag */
1277	skey->deactivated = 0;
1278
1279	return (0);
1280}
1281
1282/*-
1283 * set the active key on an endpoint
1284 * ASSUMES INP_WLOCK is already held
1285 */
1286int
1287sctp_auth_setactivekey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1288{
1289	sctp_sharedkey_t *skey;
1290
1291	/* find the key */
1292	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1293	if (skey == NULL) {
1294		/* that key doesn't exist */
1295		return (-1);
1296	}
1297	inp->sctp_ep.default_keyid = keyid;
1298	return (0);
1299}
1300
1301/*-
1302 * deactivates a shared key from the association
1303 * ASSUMES INP_WLOCK is already held
1304 */
1305int
1306sctp_deact_sharedkey(struct sctp_tcb *stcb, uint16_t keyid)
1307{
1308	sctp_sharedkey_t *skey;
1309
1310	if (stcb == NULL)
1311		return (-1);
1312
1313	/* is the keyid the assoc active sending key */
1314	if (keyid == stcb->asoc.authinfo.active_keyid)
1315		return (-1);
1316
1317	/* does the key exist? */
1318	skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1319	if (skey == NULL)
1320		return (-1);
1321
1322	/* are there other refcount holders on the key? */
1323	if (skey->refcount == 1) {
1324		/* no other users, send a notification for this key */
1325		sctp_ulp_notify(SCTP_NOTIFY_AUTH_FREE_KEY, stcb, keyid, 0,
1326		    SCTP_SO_LOCKED);
1327	}
1328
1329	/* mark the key as deactivated */
1330	skey->deactivated = 1;
1331
1332	return (0);
1333}
1334
1335/*-
1336 * deactivates a shared key from the endpoint
1337 * ASSUMES INP_WLOCK is already held
1338 */
1339int
1340sctp_deact_sharedkey_ep(struct sctp_inpcb *inp, uint16_t keyid)
1341{
1342	sctp_sharedkey_t *skey;
1343
1344	if (inp == NULL)
1345		return (-1);
1346
1347	/* is the keyid the active sending key on the endpoint */
1348	if (keyid == inp->sctp_ep.default_keyid)
1349		return (-1);
1350
1351	/* does the key exist? */
1352	skey = sctp_find_sharedkey(&inp->sctp_ep.shared_keys, keyid);
1353	if (skey == NULL)
1354		return (-1);
1355
1356	/* endpoint keys are not refcounted */
1357
1358	/* remove it */
1359	LIST_REMOVE(skey, next);
1360	sctp_free_sharedkey(skey);	/* frees skey->key as well */
1361
1362	return (0);
1363}
1364
1365/*
1366 * get local authentication parameters from cookie (from INIT-ACK)
1367 */
1368void
1369sctp_auth_get_cookie_params(struct sctp_tcb *stcb, struct mbuf *m,
1370    uint32_t offset, uint32_t length)
1371{
1372	struct sctp_paramhdr *phdr, tmp_param;
1373	uint16_t plen, ptype;
1374	uint8_t random_store[SCTP_PARAM_BUFFER_SIZE];
1375	struct sctp_auth_random *p_random = NULL;
1376	uint16_t random_len = 0;
1377	uint8_t hmacs_store[SCTP_PARAM_BUFFER_SIZE];
1378	struct sctp_auth_hmac_algo *hmacs = NULL;
1379	uint16_t hmacs_len = 0;
1380	uint8_t chunks_store[SCTP_PARAM_BUFFER_SIZE];
1381	struct sctp_auth_chunk_list *chunks = NULL;
1382	uint16_t num_chunks = 0;
1383	sctp_key_t *new_key;
1384	uint32_t keylen;
1385
1386	/* convert to upper bound */
1387	length += offset;
1388
1389	phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset,
1390	    sizeof(struct sctp_paramhdr), (uint8_t *)&tmp_param);
1391	while (phdr != NULL) {
1392		ptype = ntohs(phdr->param_type);
1393		plen = ntohs(phdr->param_length);
1394
1395		if ((plen < sizeof(struct sctp_paramhdr)) ||
1396		    (offset + plen > length))
1397			break;
1398
1399		if (ptype == SCTP_RANDOM) {
1400			if (plen > sizeof(random_store))
1401				break;
1402			phdr = sctp_get_next_param(m, offset,
1403			    (struct sctp_paramhdr *)random_store, plen);
1404			if (phdr == NULL)
1405				return;
1406			/* save the random and length for the key */
1407			p_random = (struct sctp_auth_random *)phdr;
1408			random_len = plen - sizeof(*p_random);
1409		} else if (ptype == SCTP_HMAC_LIST) {
1410			uint16_t num_hmacs;
1411			uint16_t i;
1412
1413			if (plen > sizeof(hmacs_store))
1414				break;
1415			phdr = sctp_get_next_param(m, offset,
1416			    (struct sctp_paramhdr *)hmacs_store, plen);
1417			if (phdr == NULL)
1418				return;
1419			/* save the hmacs list and num for the key */
1420			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1421			hmacs_len = plen - sizeof(*hmacs);
1422			num_hmacs = hmacs_len / sizeof(hmacs->hmac_ids[0]);
1423			if (stcb->asoc.local_hmacs != NULL)
1424				sctp_free_hmaclist(stcb->asoc.local_hmacs);
1425			stcb->asoc.local_hmacs = sctp_alloc_hmaclist(num_hmacs);
1426			if (stcb->asoc.local_hmacs != NULL) {
1427				for (i = 0; i < num_hmacs; i++) {
1428					(void)sctp_auth_add_hmacid(stcb->asoc.local_hmacs,
1429					    ntohs(hmacs->hmac_ids[i]));
1430				}
1431			}
1432		} else if (ptype == SCTP_CHUNK_LIST) {
1433			int i;
1434
1435			if (plen > sizeof(chunks_store))
1436				break;
1437			phdr = sctp_get_next_param(m, offset,
1438			    (struct sctp_paramhdr *)chunks_store, plen);
1439			if (phdr == NULL)
1440				return;
1441			chunks = (struct sctp_auth_chunk_list *)phdr;
1442			num_chunks = plen - sizeof(*chunks);
1443			/* save chunks list and num for the key */
1444			if (stcb->asoc.local_auth_chunks != NULL)
1445				sctp_clear_chunklist(stcb->asoc.local_auth_chunks);
1446			else
1447				stcb->asoc.local_auth_chunks = sctp_alloc_chunklist();
1448			for (i = 0; i < num_chunks; i++) {
1449				(void)sctp_auth_add_chunk(chunks->chunk_types[i],
1450				    stcb->asoc.local_auth_chunks);
1451			}
1452		}
1453		/* get next parameter */
1454		offset += SCTP_SIZE32(plen);
1455		if (offset + sizeof(struct sctp_paramhdr) > length)
1456			break;
1457		phdr = (struct sctp_paramhdr *)sctp_m_getptr(m, offset, sizeof(struct sctp_paramhdr),
1458		    (uint8_t *)&tmp_param);
1459	}
1460	/* concatenate the full random key */
1461	keylen = sizeof(*p_random) + random_len + sizeof(*hmacs) + hmacs_len;
1462	if (chunks != NULL) {
1463		keylen += sizeof(*chunks) + num_chunks;
1464	}
1465	new_key = sctp_alloc_key(keylen);
1466	if (new_key != NULL) {
1467		/* copy in the RANDOM */
1468		if (p_random != NULL) {
1469			keylen = sizeof(*p_random) + random_len;
1470			memcpy(new_key->key, p_random, keylen);
1471		} else {
1472			keylen = 0;
1473		}
1474		/* append in the AUTH chunks */
1475		if (chunks != NULL) {
1476			memcpy(new_key->key + keylen, chunks,
1477			    sizeof(*chunks) + num_chunks);
1478			keylen += sizeof(*chunks) + num_chunks;
1479		}
1480		/* append in the HMACs */
1481		if (hmacs != NULL) {
1482			memcpy(new_key->key + keylen, hmacs,
1483			    sizeof(*hmacs) + hmacs_len);
1484		}
1485	}
1486	if (stcb->asoc.authinfo.random != NULL)
1487		sctp_free_key(stcb->asoc.authinfo.random);
1488	stcb->asoc.authinfo.random = new_key;
1489	stcb->asoc.authinfo.random_len = random_len;
1490	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.assoc_keyid);
1491	sctp_clear_cachedkeys(stcb, stcb->asoc.authinfo.recv_keyid);
1492
1493	/* negotiate what HMAC to use for the peer */
1494	stcb->asoc.peer_hmac_id = sctp_negotiate_hmacid(stcb->asoc.peer_hmacs,
1495	    stcb->asoc.local_hmacs);
1496
1497	/* copy defaults from the endpoint */
1498	/* FIX ME: put in cookie? */
1499	stcb->asoc.authinfo.active_keyid = stcb->sctp_ep->sctp_ep.default_keyid;
1500	/* copy out the shared key list (by reference) from the endpoint */
1501	(void)sctp_copy_skeylist(&stcb->sctp_ep->sctp_ep.shared_keys,
1502	    &stcb->asoc.shared_keys);
1503}
1504
1505/*
1506 * compute and fill in the HMAC digest for a packet
1507 */
1508void
1509sctp_fill_hmac_digest_m(struct mbuf *m, uint32_t auth_offset,
1510    struct sctp_auth_chunk *auth, struct sctp_tcb *stcb, uint16_t keyid)
1511{
1512	uint32_t digestlen;
1513	sctp_sharedkey_t *skey;
1514	sctp_key_t *key;
1515
1516	if ((stcb == NULL) || (auth == NULL))
1517		return;
1518
1519	/* zero the digest + chunk padding */
1520	digestlen = sctp_get_hmac_digest_len(stcb->asoc.peer_hmac_id);
1521	memset(auth->hmac, 0, SCTP_SIZE32(digestlen));
1522
1523	/* is the desired key cached? */
1524	if ((keyid != stcb->asoc.authinfo.assoc_keyid) ||
1525	    (stcb->asoc.authinfo.assoc_key == NULL)) {
1526		if (stcb->asoc.authinfo.assoc_key != NULL) {
1527			/* free the old cached key */
1528			sctp_free_key(stcb->asoc.authinfo.assoc_key);
1529		}
1530		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys, keyid);
1531		/* the only way skey is NULL is if null key id 0 is used */
1532		if (skey != NULL)
1533			key = skey->key;
1534		else
1535			key = NULL;
1536		/* compute a new assoc key and cache it */
1537		stcb->asoc.authinfo.assoc_key =
1538		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1539		    stcb->asoc.authinfo.peer_random, key);
1540		stcb->asoc.authinfo.assoc_keyid = keyid;
1541		SCTPDBG(SCTP_DEBUG_AUTH1, "caching key id %u\n",
1542		    stcb->asoc.authinfo.assoc_keyid);
1543#ifdef SCTP_DEBUG
1544		if (SCTP_AUTH_DEBUG)
1545			sctp_print_key(stcb->asoc.authinfo.assoc_key,
1546			    "Assoc Key");
1547#endif
1548	}
1549
1550	/* set in the active key id */
1551	auth->shared_key_id = htons(keyid);
1552
1553	/* compute and fill in the digest */
1554	(void)sctp_compute_hmac_m(stcb->asoc.peer_hmac_id, stcb->asoc.authinfo.assoc_key,
1555	    m, auth_offset, auth->hmac);
1556}
1557
1558
1559static void
1560sctp_zero_m(struct mbuf *m, uint32_t m_offset, uint32_t size)
1561{
1562	struct mbuf *m_tmp;
1563	uint8_t *data;
1564
1565	/* sanity check */
1566	if (m == NULL)
1567		return;
1568
1569	/* find the correct starting mbuf and offset (get start position) */
1570	m_tmp = m;
1571	while ((m_tmp != NULL) && (m_offset >= (uint32_t)SCTP_BUF_LEN(m_tmp))) {
1572		m_offset -= SCTP_BUF_LEN(m_tmp);
1573		m_tmp = SCTP_BUF_NEXT(m_tmp);
1574	}
1575	/* now use the rest of the mbuf chain */
1576	while ((m_tmp != NULL) && (size > 0)) {
1577		data = mtod(m_tmp, uint8_t *)+m_offset;
1578		if (size > (uint32_t)(SCTP_BUF_LEN(m_tmp) - m_offset)) {
1579			memset(data, 0, SCTP_BUF_LEN(m_tmp) - m_offset);
1580			size -= SCTP_BUF_LEN(m_tmp) - m_offset;
1581		} else {
1582			memset(data, 0, size);
1583			size = 0;
1584		}
1585		/* clear the offset since it's only for the first mbuf */
1586		m_offset = 0;
1587		m_tmp = SCTP_BUF_NEXT(m_tmp);
1588	}
1589}
1590
1591/*-
1592 * process the incoming Authentication chunk
1593 * return codes:
1594 *   -1 on any authentication error
1595 *    0 on authentication verification
1596 */
1597int
1598sctp_handle_auth(struct sctp_tcb *stcb, struct sctp_auth_chunk *auth,
1599    struct mbuf *m, uint32_t offset)
1600{
1601	uint16_t chunklen;
1602	uint16_t shared_key_id;
1603	uint16_t hmac_id;
1604	sctp_sharedkey_t *skey;
1605	uint32_t digestlen;
1606	uint8_t digest[SCTP_AUTH_DIGEST_LEN_MAX];
1607	uint8_t computed_digest[SCTP_AUTH_DIGEST_LEN_MAX];
1608
1609	/* auth is checked for NULL by caller */
1610	chunklen = ntohs(auth->ch.chunk_length);
1611	if (chunklen < sizeof(*auth)) {
1612		SCTP_STAT_INCR(sctps_recvauthfailed);
1613		return (-1);
1614	}
1615	SCTP_STAT_INCR(sctps_recvauth);
1616
1617	/* get the auth params */
1618	shared_key_id = ntohs(auth->shared_key_id);
1619	hmac_id = ntohs(auth->hmac_id);
1620	SCTPDBG(SCTP_DEBUG_AUTH1,
1621	    "SCTP AUTH Chunk: shared key %u, HMAC id %u\n",
1622	    shared_key_id, hmac_id);
1623
1624	/* is the indicated HMAC supported? */
1625	if (!sctp_auth_is_supported_hmac(stcb->asoc.local_hmacs, hmac_id)) {
1626		struct mbuf *op_err;
1627		struct sctp_error_auth_invalid_hmac *cause;
1628
1629		SCTP_STAT_INCR(sctps_recvivalhmacid);
1630		SCTPDBG(SCTP_DEBUG_AUTH1,
1631		    "SCTP Auth: unsupported HMAC id %u\n",
1632		    hmac_id);
1633		/*
1634		 * report this in an Error Chunk: Unsupported HMAC
1635		 * Identifier
1636		 */
1637		op_err = sctp_get_mbuf_for_msg(sizeof(struct sctp_error_auth_invalid_hmac),
1638		    0, M_NOWAIT, 1, MT_HEADER);
1639		if (op_err != NULL) {
1640			/* pre-reserve some space */
1641			SCTP_BUF_RESV_UF(op_err, sizeof(struct sctp_chunkhdr));
1642			/* fill in the error */
1643			cause = mtod(op_err, struct sctp_error_auth_invalid_hmac *);
1644			cause->cause.code = htons(SCTP_CAUSE_UNSUPPORTED_HMACID);
1645			cause->cause.length = htons(sizeof(struct sctp_error_auth_invalid_hmac));
1646			cause->hmac_id = ntohs(hmac_id);
1647			SCTP_BUF_LEN(op_err) = sizeof(struct sctp_error_auth_invalid_hmac);
1648			/* queue it */
1649			sctp_queue_op_err(stcb, op_err);
1650		}
1651		return (-1);
1652	}
1653	/* get the indicated shared key, if available */
1654	if ((stcb->asoc.authinfo.recv_key == NULL) ||
1655	    (stcb->asoc.authinfo.recv_keyid != shared_key_id)) {
1656		/* find the shared key on the assoc first */
1657		skey = sctp_find_sharedkey(&stcb->asoc.shared_keys,
1658		    shared_key_id);
1659		/* if the shared key isn't found, discard the chunk */
1660		if (skey == NULL) {
1661			SCTP_STAT_INCR(sctps_recvivalkeyid);
1662			SCTPDBG(SCTP_DEBUG_AUTH1,
1663			    "SCTP Auth: unknown key id %u\n",
1664			    shared_key_id);
1665			return (-1);
1666		}
1667		/* generate a notification if this is a new key id */
1668		if (stcb->asoc.authinfo.recv_keyid != shared_key_id)
1669			/*
1670			 * sctp_ulp_notify(SCTP_NOTIFY_AUTH_NEW_KEY, stcb,
1671			 * shared_key_id, (void
1672			 * *)stcb->asoc.authinfo.recv_keyid);
1673			 */
1674			sctp_notify_authentication(stcb, SCTP_AUTH_NEW_KEY,
1675			    shared_key_id, stcb->asoc.authinfo.recv_keyid,
1676			    SCTP_SO_NOT_LOCKED);
1677		/* compute a new recv assoc key and cache it */
1678		if (stcb->asoc.authinfo.recv_key != NULL)
1679			sctp_free_key(stcb->asoc.authinfo.recv_key);
1680		stcb->asoc.authinfo.recv_key =
1681		    sctp_compute_hashkey(stcb->asoc.authinfo.random,
1682		    stcb->asoc.authinfo.peer_random, skey->key);
1683		stcb->asoc.authinfo.recv_keyid = shared_key_id;
1684#ifdef SCTP_DEBUG
1685		if (SCTP_AUTH_DEBUG)
1686			sctp_print_key(stcb->asoc.authinfo.recv_key, "Recv Key");
1687#endif
1688	}
1689	/* validate the digest length */
1690	digestlen = sctp_get_hmac_digest_len(hmac_id);
1691	if (chunklen < (sizeof(*auth) + digestlen)) {
1692		/* invalid digest length */
1693		SCTP_STAT_INCR(sctps_recvauthfailed);
1694		SCTPDBG(SCTP_DEBUG_AUTH1,
1695		    "SCTP Auth: chunk too short for HMAC\n");
1696		return (-1);
1697	}
1698	/* save a copy of the digest, zero the pseudo header, and validate */
1699	memcpy(digest, auth->hmac, digestlen);
1700	sctp_zero_m(m, offset + sizeof(*auth), SCTP_SIZE32(digestlen));
1701	(void)sctp_compute_hmac_m(hmac_id, stcb->asoc.authinfo.recv_key,
1702	    m, offset, computed_digest);
1703
1704	/* compare the computed digest with the one in the AUTH chunk */
1705	if (timingsafe_bcmp(digest, computed_digest, digestlen) != 0) {
1706		SCTP_STAT_INCR(sctps_recvauthfailed);
1707		SCTPDBG(SCTP_DEBUG_AUTH1,
1708		    "SCTP Auth: HMAC digest check failed\n");
1709		return (-1);
1710	}
1711	return (0);
1712}
1713
1714/*
1715 * Generate NOTIFICATION
1716 */
1717void
1718sctp_notify_authentication(struct sctp_tcb *stcb, uint32_t indication,
1719    uint16_t keyid, uint16_t alt_keyid, int so_locked)
1720{
1721	struct mbuf *m_notify;
1722	struct sctp_authkey_event *auth;
1723	struct sctp_queued_to_read *control;
1724
1725	if ((stcb == NULL) ||
1726	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
1727	    (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_SOCKET_ALLGONE) ||
1728	    (stcb->asoc.state & SCTP_STATE_CLOSED_SOCKET)
1729	    ) {
1730		/* If the socket is gone we are out of here */
1731		return;
1732	}
1733
1734	if (sctp_stcb_is_feature_off(stcb->sctp_ep, stcb, SCTP_PCB_FLAGS_AUTHEVNT))
1735		/* event not enabled */
1736		return;
1737
1738	m_notify = sctp_get_mbuf_for_msg(sizeof(struct sctp_authkey_event),
1739	    0, M_NOWAIT, 1, MT_HEADER);
1740	if (m_notify == NULL)
1741		/* no space left */
1742		return;
1743
1744	SCTP_BUF_LEN(m_notify) = 0;
1745	auth = mtod(m_notify, struct sctp_authkey_event *);
1746	memset(auth, 0, sizeof(struct sctp_authkey_event));
1747	auth->auth_type = SCTP_AUTHENTICATION_EVENT;
1748	auth->auth_flags = 0;
1749	auth->auth_length = sizeof(*auth);
1750	auth->auth_keynumber = keyid;
1751	auth->auth_altkeynumber = alt_keyid;
1752	auth->auth_indication = indication;
1753	auth->auth_assoc_id = sctp_get_associd(stcb);
1754
1755	SCTP_BUF_LEN(m_notify) = sizeof(*auth);
1756	SCTP_BUF_NEXT(m_notify) = NULL;
1757
1758	/* append to socket */
1759	control = sctp_build_readq_entry(stcb, stcb->asoc.primary_destination,
1760	    0, 0, stcb->asoc.context, 0, 0, 0, m_notify);
1761	if (control == NULL) {
1762		/* no memory */
1763		sctp_m_freem(m_notify);
1764		return;
1765	}
1766	control->length = SCTP_BUF_LEN(m_notify);
1767	control->spec_flags = M_NOTIFICATION;
1768	/* not that we need this */
1769	control->tail_mbuf = m_notify;
1770	sctp_add_to_readq(stcb->sctp_ep, stcb, control,
1771	    &stcb->sctp_socket->so_rcv, 1, SCTP_READ_LOCK_NOT_HELD, so_locked);
1772}
1773
1774
1775/*-
1776 * validates the AUTHentication related parameters in an INIT/INIT-ACK
1777 * Note: currently only used for INIT as INIT-ACK is handled inline
1778 * with sctp_load_addresses_from_init()
1779 */
1780int
1781sctp_validate_init_auth_params(struct mbuf *m, int offset, int limit)
1782{
1783	struct sctp_paramhdr *phdr, param_buf;
1784	uint16_t ptype, plen;
1785	int peer_supports_asconf = 0;
1786	int peer_supports_auth = 0;
1787	int got_random = 0, got_hmacs = 0, got_chklist = 0;
1788	uint8_t saw_asconf = 0;
1789	uint8_t saw_asconf_ack = 0;
1790
1791	/* go through each of the params. */
1792	phdr = sctp_get_next_param(m, offset, &param_buf, sizeof(param_buf));
1793	while (phdr) {
1794		ptype = ntohs(phdr->param_type);
1795		plen = ntohs(phdr->param_length);
1796
1797		if (offset + plen > limit) {
1798			break;
1799		}
1800		if (plen < sizeof(struct sctp_paramhdr)) {
1801			break;
1802		}
1803		if (ptype == SCTP_SUPPORTED_CHUNK_EXT) {
1804			/* A supported extension chunk */
1805			struct sctp_supported_chunk_types_param *pr_supported;
1806			uint8_t local_store[SCTP_SMALL_CHUNK_STORE];
1807			int num_ent, i;
1808
1809			if (plen > sizeof(local_store)) {
1810				break;
1811			}
1812			phdr = sctp_get_next_param(m, offset,
1813			    (struct sctp_paramhdr *)&local_store,
1814			    plen);
1815			if (phdr == NULL) {
1816				return (-1);
1817			}
1818			pr_supported = (struct sctp_supported_chunk_types_param *)phdr;
1819			num_ent = plen - sizeof(struct sctp_paramhdr);
1820			for (i = 0; i < num_ent; i++) {
1821				switch (pr_supported->chunk_types[i]) {
1822				case SCTP_ASCONF:
1823				case SCTP_ASCONF_ACK:
1824					peer_supports_asconf = 1;
1825					break;
1826				default:
1827					/* one we don't care about */
1828					break;
1829				}
1830			}
1831		} else if (ptype == SCTP_RANDOM) {
1832			/* enforce the random length */
1833			if (plen != (sizeof(struct sctp_auth_random) +
1834			    SCTP_AUTH_RANDOM_SIZE_REQUIRED)) {
1835				SCTPDBG(SCTP_DEBUG_AUTH1,
1836				    "SCTP: invalid RANDOM len\n");
1837				return (-1);
1838			}
1839			got_random = 1;
1840		} else if (ptype == SCTP_HMAC_LIST) {
1841			struct sctp_auth_hmac_algo *hmacs;
1842			uint8_t store[SCTP_PARAM_BUFFER_SIZE];
1843			int num_hmacs;
1844
1845			if (plen > sizeof(store)) {
1846				break;
1847			}
1848			phdr = sctp_get_next_param(m, offset,
1849			    (struct sctp_paramhdr *)store,
1850			    plen);
1851			if (phdr == NULL) {
1852				return (-1);
1853			}
1854			hmacs = (struct sctp_auth_hmac_algo *)phdr;
1855			num_hmacs = (plen - sizeof(*hmacs)) / sizeof(hmacs->hmac_ids[0]);
1856			/* validate the hmac list */
1857			if (sctp_verify_hmac_param(hmacs, num_hmacs)) {
1858				SCTPDBG(SCTP_DEBUG_AUTH1,
1859				    "SCTP: invalid HMAC param\n");
1860				return (-1);
1861			}
1862			got_hmacs = 1;
1863		} else if (ptype == SCTP_CHUNK_LIST) {
1864			struct sctp_auth_chunk_list *chunks;
1865			uint8_t chunks_store[SCTP_SMALL_CHUNK_STORE];
1866			int i, num_chunks;
1867
1868			if (plen > sizeof(chunks_store)) {
1869				break;
1870			}
1871			phdr = sctp_get_next_param(m, offset,
1872			    (struct sctp_paramhdr *)chunks_store,
1873			    plen);
1874			if (phdr == NULL) {
1875				return (-1);
1876			}
1877			/*-
1878			 * Flip through the list and mark that the
1879			 * peer supports asconf/asconf_ack.
1880			 */
1881			chunks = (struct sctp_auth_chunk_list *)phdr;
1882			num_chunks = plen - sizeof(*chunks);
1883			for (i = 0; i < num_chunks; i++) {
1884				/* record asconf/asconf-ack if listed */
1885				if (chunks->chunk_types[i] == SCTP_ASCONF)
1886					saw_asconf = 1;
1887				if (chunks->chunk_types[i] == SCTP_ASCONF_ACK)
1888					saw_asconf_ack = 1;
1889
1890			}
1891			if (num_chunks)
1892				got_chklist = 1;
1893		}
1894
1895		offset += SCTP_SIZE32(plen);
1896		if (offset >= limit) {
1897			break;
1898		}
1899		phdr = sctp_get_next_param(m, offset, &param_buf,
1900		    sizeof(param_buf));
1901	}
1902	/* validate authentication required parameters */
1903	if (got_random && got_hmacs) {
1904		peer_supports_auth = 1;
1905	} else {
1906		peer_supports_auth = 0;
1907	}
1908	if (!peer_supports_auth && got_chklist) {
1909		SCTPDBG(SCTP_DEBUG_AUTH1,
1910		    "SCTP: peer sent chunk list w/o AUTH\n");
1911		return (-1);
1912	}
1913	if (peer_supports_asconf && !peer_supports_auth) {
1914		SCTPDBG(SCTP_DEBUG_AUTH1,
1915		    "SCTP: peer supports ASCONF but not AUTH\n");
1916		return (-1);
1917	} else if ((peer_supports_asconf) && (peer_supports_auth) &&
1918	    ((saw_asconf == 0) || (saw_asconf_ack == 0))) {
1919		return (-2);
1920	}
1921	return (0);
1922}
1923
1924void
1925sctp_initialize_auth_params(struct sctp_inpcb *inp, struct sctp_tcb *stcb)
1926{
1927	uint16_t chunks_len = 0;
1928	uint16_t hmacs_len = 0;
1929	uint16_t random_len = SCTP_AUTH_RANDOM_SIZE_DEFAULT;
1930	sctp_key_t *new_key;
1931	uint16_t keylen;
1932
1933	/* initialize hmac list from endpoint */
1934	stcb->asoc.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs);
1935	if (stcb->asoc.local_hmacs != NULL) {
1936		hmacs_len = stcb->asoc.local_hmacs->num_algo *
1937		    sizeof(stcb->asoc.local_hmacs->hmac[0]);
1938	}
1939	/* initialize auth chunks list from endpoint */
1940	stcb->asoc.local_auth_chunks =
1941	    sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks);
1942	if (stcb->asoc.local_auth_chunks != NULL) {
1943		int i;
1944
1945		for (i = 0; i < 256; i++) {
1946			if (stcb->asoc.local_auth_chunks->chunks[i])
1947				chunks_len++;
1948		}
1949	}
1950	/* copy defaults from the endpoint */
1951	stcb->asoc.authinfo.active_keyid = inp->sctp_ep.default_keyid;
1952
1953	/* copy out the shared key list (by reference) from the endpoint */
1954	(void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys,
1955	    &stcb->asoc.shared_keys);
1956
1957	/* now set the concatenated key (random + chunks + hmacs) */
1958	/* key includes parameter headers */
1959	keylen = (3 * sizeof(struct sctp_paramhdr)) + random_len + chunks_len +
1960	    hmacs_len;
1961	new_key = sctp_alloc_key(keylen);
1962	if (new_key != NULL) {
1963		struct sctp_paramhdr *ph;
1964		int plen;
1965
1966		/* generate and copy in the RANDOM */
1967		ph = (struct sctp_paramhdr *)new_key->key;
1968		ph->param_type = htons(SCTP_RANDOM);
1969		plen = sizeof(*ph) + random_len;
1970		ph->param_length = htons(plen);
1971		SCTP_READ_RANDOM(new_key->key + sizeof(*ph), random_len);
1972		keylen = plen;
1973
1974		/* append in the AUTH chunks */
1975		/* NOTE: currently we always have chunks to list */
1976		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1977		ph->param_type = htons(SCTP_CHUNK_LIST);
1978		plen = sizeof(*ph) + chunks_len;
1979		ph->param_length = htons(plen);
1980		keylen += sizeof(*ph);
1981		if (stcb->asoc.local_auth_chunks) {
1982			int i;
1983
1984			for (i = 0; i < 256; i++) {
1985				if (stcb->asoc.local_auth_chunks->chunks[i])
1986					new_key->key[keylen++] = i;
1987			}
1988		}
1989
1990		/* append in the HMACs */
1991		ph = (struct sctp_paramhdr *)(new_key->key + keylen);
1992		ph->param_type = htons(SCTP_HMAC_LIST);
1993		plen = sizeof(*ph) + hmacs_len;
1994		ph->param_length = htons(plen);
1995		keylen += sizeof(*ph);
1996		(void)sctp_serialize_hmaclist(stcb->asoc.local_hmacs,
1997		    new_key->key + keylen);
1998	}
1999	if (stcb->asoc.authinfo.random != NULL)
2000		sctp_free_key(stcb->asoc.authinfo.random);
2001	stcb->asoc.authinfo.random = new_key;
2002	stcb->asoc.authinfo.random_len = random_len;
2003}
2004