1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include "opt_inet.h"
33#include "opt_inet6.h"
34#include "opt_wlan.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/endian.h>
42
43#include <sys/socket.h>
44
45#include <net/bpf.h>
46#include <net/ethernet.h>
47#include <net/if.h>
48#include <net/if_var.h>
49#include <net/if_llc.h>
50#include <net/if_media.h>
51#include <net/if_vlan_var.h>
52
53#include <net80211/ieee80211_var.h>
54#include <net80211/ieee80211_regdomain.h>
55#ifdef IEEE80211_SUPPORT_SUPERG
56#include <net80211/ieee80211_superg.h>
57#endif
58#ifdef IEEE80211_SUPPORT_TDMA
59#include <net80211/ieee80211_tdma.h>
60#endif
61#include <net80211/ieee80211_wds.h>
62#include <net80211/ieee80211_mesh.h>
63#include <net80211/ieee80211_vht.h>
64
65#if defined(INET) || defined(INET6)
66#include <netinet/in.h>
67#endif
68
69#ifdef INET
70#include <netinet/if_ether.h>
71#include <netinet/in_systm.h>
72#include <netinet/ip.h>
73#endif
74#ifdef INET6
75#include <netinet/ip6.h>
76#endif
77
78#include <security/mac/mac_framework.h>
79
80#define	ETHER_HEADER_COPY(dst, src) \
81	memcpy(dst, src, sizeof(struct ether_header))
82
83static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
84	u_int hdrsize, u_int ciphdrsize, u_int mtu);
85static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
86
87#ifdef IEEE80211_DEBUG
88/*
89 * Decide if an outbound management frame should be
90 * printed when debugging is enabled.  This filters some
91 * of the less interesting frames that come frequently
92 * (e.g. beacons).
93 */
94static __inline int
95doprint(struct ieee80211vap *vap, int subtype)
96{
97	switch (subtype) {
98	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
99		return (vap->iv_opmode == IEEE80211_M_IBSS);
100	}
101	return 1;
102}
103#endif
104
105/*
106 * Transmit a frame to the given destination on the given VAP.
107 *
108 * It's up to the caller to figure out the details of who this
109 * is going to and resolving the node.
110 *
111 * This routine takes care of queuing it for power save,
112 * A-MPDU state stuff, fast-frames state stuff, encapsulation
113 * if required, then passing it up to the driver layer.
114 *
115 * This routine (for now) consumes the mbuf and frees the node
116 * reference; it ideally will return a TX status which reflects
117 * whether the mbuf was consumed or not, so the caller can
118 * free the mbuf (if appropriate) and the node reference (again,
119 * if appropriate.)
120 */
121int
122ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
123    struct ieee80211_node *ni)
124{
125	struct ieee80211com *ic = vap->iv_ic;
126	struct ifnet *ifp = vap->iv_ifp;
127	int mcast;
128	int do_ampdu = 0;
129	int do_amsdu = 0;
130	int do_ampdu_amsdu = 0;
131	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132	int do_ff = 0;
133
134	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
135	    (m->m_flags & M_PWR_SAV) == 0) {
136		/*
137		 * Station in power save mode; pass the frame
138		 * to the 802.11 layer and continue.  We'll get
139		 * the frame back when the time is right.
140		 * XXX lose WDS vap linkage?
141		 */
142		if (ieee80211_pwrsave(ni, m) != 0)
143			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
144		ieee80211_free_node(ni);
145
146		/*
147		 * We queued it fine, so tell the upper layer
148		 * that we consumed it.
149		 */
150		return (0);
151	}
152	/* calculate priority so drivers can find the tx queue */
153	if (ieee80211_classify(ni, m)) {
154		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
155		    ni->ni_macaddr, NULL,
156		    "%s", "classification failure");
157		vap->iv_stats.is_tx_classify++;
158		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
159		m_freem(m);
160		ieee80211_free_node(ni);
161
162		/* XXX better status? */
163		return (0);
164	}
165	/*
166	 * Stash the node pointer.  Note that we do this after
167	 * any call to ieee80211_dwds_mcast because that code
168	 * uses any existing value for rcvif to identify the
169	 * interface it (might have been) received on.
170	 */
171	m->m_pkthdr.rcvif = (void *)ni;
172	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
173
174	BPF_MTAP(ifp, m);		/* 802.3 tx */
175
176
177	/*
178	 * Figure out if we can do A-MPDU, A-MSDU or FF.
179	 *
180	 * A-MPDU depends upon vap/node config.
181	 * A-MSDU depends upon vap/node config.
182	 * FF depends upon vap config, IE and whether
183	 *  it's 11abg (and not 11n/11ac/etc.)
184	 *
185	 * Note that these flags indiciate whether we can do
186	 * it at all, rather than the situation (eg traffic type.)
187	 */
188	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
189	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
190	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
191	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
192	do_ff =
193	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
194	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
195	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
196
197	/*
198	 * Check if A-MPDU tx aggregation is setup or if we
199	 * should try to enable it.  The sta must be associated
200	 * with HT and A-MPDU enabled for use.  When the policy
201	 * routine decides we should enable A-MPDU we issue an
202	 * ADDBA request and wait for a reply.  The frame being
203	 * encapsulated will go out w/o using A-MPDU, or possibly
204	 * it might be collected by the driver and held/retransmit.
205	 * The default ic_ampdu_enable routine handles staggering
206	 * ADDBA requests in case the receiver NAK's us or we are
207	 * otherwise unable to establish a BA stream.
208	 *
209	 * Don't treat group-addressed frames as candidates for aggregation;
210	 * net80211 doesn't support 802.11aa-2012 and so group addressed
211	 * frames will always have sequence numbers allocated from the NON_QOS
212	 * TID.
213	 */
214	if (do_ampdu) {
215		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
216			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
217			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
218
219			ieee80211_txampdu_count_packet(tap);
220			if (IEEE80211_AMPDU_RUNNING(tap)) {
221				/*
222				 * Operational, mark frame for aggregation.
223				 *
224				 * XXX do tx aggregation here
225				 */
226				m->m_flags |= M_AMPDU_MPDU;
227			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
228			    ic->ic_ampdu_enable(ni, tap)) {
229				/*
230				 * Not negotiated yet, request service.
231				 */
232				ieee80211_ampdu_request(ni, tap);
233				/* XXX hold frame for reply? */
234			}
235			/*
236			 * Now update the no-ampdu flag.  A-MPDU may have been
237			 * started or administratively disabled above; so now we
238			 * know whether we're running yet or not.
239			 *
240			 * This will let us know whether we should be doing A-MSDU
241			 * at this point.  We only do A-MSDU if we're either not
242			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
243			 * is available.
244			 *
245			 * Whilst here, update the amsdu-ampdu flag.  The above may
246			 * have also set or cleared the amsdu-in-ampdu txa_flags
247			 * combination so we can correctly do A-MPDU + A-MSDU.
248			 */
249			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
250			    || (IEEE80211_AMPDU_NACKED(tap)));
251			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
252		}
253	}
254
255#ifdef IEEE80211_SUPPORT_SUPERG
256	/*
257	 * Check for AMSDU/FF; queue for aggregation
258	 *
259	 * Note: we don't bother trying to do fast frames or
260	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
261	 * likely could do it for FF (because it's a magic
262	 * atheros tunnel LLC type) but I don't think we're going
263	 * to really need to.  For A-MSDU we'd have to set the
264	 * A-MSDU QoS bit in the wifi header, so we just plain
265	 * can't do it.
266	 */
267	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
268		if ((! mcast) &&
269		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
270		    ieee80211_amsdu_tx_ok(ni)) {
271			m = ieee80211_amsdu_check(ni, m);
272			if (m == NULL) {
273				/* NB: any ni ref held on stageq */
274				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
275				    "%s: amsdu_check queued frame\n",
276				    __func__);
277				return (0);
278			}
279		} else if ((! mcast) && do_ff) {
280			m = ieee80211_ff_check(ni, m);
281			if (m == NULL) {
282				/* NB: any ni ref held on stageq */
283				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
284				    "%s: ff_check queued frame\n",
285				    __func__);
286				return (0);
287			}
288		}
289	}
290#endif /* IEEE80211_SUPPORT_SUPERG */
291
292	/*
293	 * Grab the TX lock - serialise the TX process from this
294	 * point (where TX state is being checked/modified)
295	 * through to driver queue.
296	 */
297	IEEE80211_TX_LOCK(ic);
298
299	/*
300	 * XXX make the encap and transmit code a separate function
301	 * so things like the FF (and later A-MSDU) path can just call
302	 * it for flushed frames.
303	 */
304	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
305		/*
306		 * Encapsulate the packet in prep for transmission.
307		 */
308		m = ieee80211_encap(vap, ni, m);
309		if (m == NULL) {
310			/* NB: stat+msg handled in ieee80211_encap */
311			IEEE80211_TX_UNLOCK(ic);
312			ieee80211_free_node(ni);
313			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
314			return (ENOBUFS);
315		}
316	}
317	(void) ieee80211_parent_xmitpkt(ic, m);
318
319	/*
320	 * Unlock at this point - no need to hold it across
321	 * ieee80211_free_node() (ie, the comlock)
322	 */
323	IEEE80211_TX_UNLOCK(ic);
324	ic->ic_lastdata = ticks;
325
326	return (0);
327}
328
329
330
331/*
332 * Send the given mbuf through the given vap.
333 *
334 * This consumes the mbuf regardless of whether the transmit
335 * was successful or not.
336 *
337 * This does none of the initial checks that ieee80211_start()
338 * does (eg CAC timeout, interface wakeup) - the caller must
339 * do this first.
340 */
341static int
342ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
343{
344#define	IS_DWDS(vap) \
345	(vap->iv_opmode == IEEE80211_M_WDS && \
346	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
347	struct ieee80211com *ic = vap->iv_ic;
348	struct ifnet *ifp = vap->iv_ifp;
349	struct ieee80211_node *ni;
350	struct ether_header *eh;
351
352	/*
353	 * Cancel any background scan.
354	 */
355	if (ic->ic_flags & IEEE80211_F_SCAN)
356		ieee80211_cancel_anyscan(vap);
357	/*
358	 * Find the node for the destination so we can do
359	 * things like power save and fast frames aggregation.
360	 *
361	 * NB: past this point various code assumes the first
362	 *     mbuf has the 802.3 header present (and contiguous).
363	 */
364	ni = NULL;
365	if (m->m_len < sizeof(struct ether_header) &&
366	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
367		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
368		    "discard frame, %s\n", "m_pullup failed");
369		vap->iv_stats.is_tx_nobuf++;	/* XXX */
370		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
371		return (ENOBUFS);
372	}
373	eh = mtod(m, struct ether_header *);
374	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
375		if (IS_DWDS(vap)) {
376			/*
377			 * Only unicast frames from the above go out
378			 * DWDS vaps; multicast frames are handled by
379			 * dispatching the frame as it comes through
380			 * the AP vap (see below).
381			 */
382			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
383			    eh->ether_dhost, "mcast", "%s", "on DWDS");
384			vap->iv_stats.is_dwds_mcast++;
385			m_freem(m);
386			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
387			/* XXX better status? */
388			return (ENOBUFS);
389		}
390		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
391			/*
392			 * Spam DWDS vap's w/ multicast traffic.
393			 */
394			/* XXX only if dwds in use? */
395			ieee80211_dwds_mcast(vap, m);
396		}
397	}
398#ifdef IEEE80211_SUPPORT_MESH
399	if (vap->iv_opmode != IEEE80211_M_MBSS) {
400#endif
401		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
402		if (ni == NULL) {
403			/* NB: ieee80211_find_txnode does stat+msg */
404			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
405			m_freem(m);
406			/* XXX better status? */
407			return (ENOBUFS);
408		}
409		if (ni->ni_associd == 0 &&
410		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
411			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
412			    eh->ether_dhost, NULL,
413			    "sta not associated (type 0x%04x)",
414			    htons(eh->ether_type));
415			vap->iv_stats.is_tx_notassoc++;
416			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
417			m_freem(m);
418			ieee80211_free_node(ni);
419			/* XXX better status? */
420			return (ENOBUFS);
421		}
422#ifdef IEEE80211_SUPPORT_MESH
423	} else {
424		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
425			/*
426			 * Proxy station only if configured.
427			 */
428			if (!ieee80211_mesh_isproxyena(vap)) {
429				IEEE80211_DISCARD_MAC(vap,
430				    IEEE80211_MSG_OUTPUT |
431				    IEEE80211_MSG_MESH,
432				    eh->ether_dhost, NULL,
433				    "%s", "proxy not enabled");
434				vap->iv_stats.is_mesh_notproxy++;
435				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
436				m_freem(m);
437				/* XXX better status? */
438				return (ENOBUFS);
439			}
440			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
441			    "forward frame from DS SA(%6D), DA(%6D)\n",
442			    eh->ether_shost, ":",
443			    eh->ether_dhost, ":");
444			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
445		}
446		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
447		if (ni == NULL) {
448			/*
449			 * NB: ieee80211_mesh_discover holds/disposes
450			 * frame (e.g. queueing on path discovery).
451			 */
452			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
453			/* XXX better status? */
454			return (ENOBUFS);
455		}
456	}
457#endif
458
459	/*
460	 * We've resolved the sender, so attempt to transmit it.
461	 */
462
463	if (vap->iv_state == IEEE80211_S_SLEEP) {
464		/*
465		 * In power save; queue frame and then  wakeup device
466		 * for transmit.
467		 */
468		ic->ic_lastdata = ticks;
469		if (ieee80211_pwrsave(ni, m) != 0)
470			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
471		ieee80211_free_node(ni);
472		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
473		return (0);
474	}
475
476	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
477		return (ENOBUFS);
478	return (0);
479#undef	IS_DWDS
480}
481
482/*
483 * Start method for vap's.  All packets from the stack come
484 * through here.  We handle common processing of the packets
485 * before dispatching them to the underlying device.
486 *
487 * if_transmit() requires that the mbuf be consumed by this call
488 * regardless of the return condition.
489 */
490int
491ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
492{
493	struct ieee80211vap *vap = ifp->if_softc;
494	struct ieee80211com *ic = vap->iv_ic;
495
496	/*
497	 * No data frames go out unless we're running.
498	 * Note in particular this covers CAC and CSA
499	 * states (though maybe we should check muting
500	 * for CSA).
501	 */
502	if (vap->iv_state != IEEE80211_S_RUN &&
503	    vap->iv_state != IEEE80211_S_SLEEP) {
504		IEEE80211_LOCK(ic);
505		/* re-check under the com lock to avoid races */
506		if (vap->iv_state != IEEE80211_S_RUN &&
507		    vap->iv_state != IEEE80211_S_SLEEP) {
508			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
509			    "%s: ignore queue, in %s state\n",
510			    __func__, ieee80211_state_name[vap->iv_state]);
511			vap->iv_stats.is_tx_badstate++;
512			IEEE80211_UNLOCK(ic);
513			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
514			m_freem(m);
515			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
516			return (ENETDOWN);
517		}
518		IEEE80211_UNLOCK(ic);
519	}
520
521	/*
522	 * Sanitize mbuf flags for net80211 use.  We cannot
523	 * clear M_PWR_SAV or M_MORE_DATA because these may
524	 * be set for frames that are re-submitted from the
525	 * power save queue.
526	 *
527	 * NB: This must be done before ieee80211_classify as
528	 *     it marks EAPOL in frames with M_EAPOL.
529	 */
530	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
531
532	/*
533	 * Bump to the packet transmission path.
534	 * The mbuf will be consumed here.
535	 */
536	return (ieee80211_start_pkt(vap, m));
537}
538
539void
540ieee80211_vap_qflush(struct ifnet *ifp)
541{
542
543	/* Empty for now */
544}
545
546/*
547 * 802.11 raw output routine.
548 *
549 * XXX TODO: this (and other send routines) should correctly
550 * XXX keep the pwr mgmt bit set if it decides to call into the
551 * XXX driver to send a frame whilst the state is SLEEP.
552 *
553 * Otherwise the peer may decide that we're awake and flood us
554 * with traffic we are still too asleep to receive!
555 */
556int
557ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
558    struct mbuf *m, const struct ieee80211_bpf_params *params)
559{
560	struct ieee80211com *ic = vap->iv_ic;
561	int error;
562
563	/*
564	 * Set node - the caller has taken a reference, so ensure
565	 * that the mbuf has the same node value that
566	 * it would if it were going via the normal path.
567	 */
568	m->m_pkthdr.rcvif = (void *)ni;
569
570	/*
571	 * Attempt to add bpf transmit parameters.
572	 *
573	 * For now it's ok to fail; the raw_xmit api still takes
574	 * them as an option.
575	 *
576	 * Later on when ic_raw_xmit() has params removed,
577	 * they'll have to be added - so fail the transmit if
578	 * they can't be.
579	 */
580	if (params)
581		(void) ieee80211_add_xmit_params(m, params);
582
583	error = ic->ic_raw_xmit(ni, m, params);
584	if (error) {
585		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
586		ieee80211_free_node(ni);
587	}
588	return (error);
589}
590
591static int
592ieee80211_validate_frame(struct mbuf *m,
593    const struct ieee80211_bpf_params *params)
594{
595	struct ieee80211_frame *wh;
596	int type;
597
598	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
599		return (EINVAL);
600
601	wh = mtod(m, struct ieee80211_frame *);
602	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
603	    IEEE80211_FC0_VERSION_0)
604		return (EINVAL);
605
606	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
607	if (type != IEEE80211_FC0_TYPE_DATA) {
608		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
609		    IEEE80211_FC1_DIR_NODS)
610			return (EINVAL);
611
612		if (type != IEEE80211_FC0_TYPE_MGT &&
613		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
614			return (EINVAL);
615
616		/* XXX skip other field checks? */
617	}
618
619	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
620	    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
621		int subtype;
622
623		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
624
625		/*
626		 * See IEEE Std 802.11-2012,
627		 * 8.2.4.1.9 'Protected Frame field'
628		 */
629		/* XXX no support for robust management frames yet. */
630		if (!(type == IEEE80211_FC0_TYPE_DATA ||
631		    (type == IEEE80211_FC0_TYPE_MGT &&
632		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
633			return (EINVAL);
634
635		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
636	}
637
638	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
639		return (EINVAL);
640
641	return (0);
642}
643
644static int
645ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
646{
647	struct ieee80211com *ic = ni->ni_ic;
648
649	if (IEEE80211_IS_HT_RATE(rate)) {
650		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
651			return (EINVAL);
652
653		rate = IEEE80211_RV(rate);
654		if (rate <= 31) {
655			if (rate > ic->ic_txstream * 8 - 1)
656				return (EINVAL);
657
658			return (0);
659		}
660
661		if (rate == 32) {
662			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
663				return (EINVAL);
664
665			return (0);
666		}
667
668		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
669			return (EINVAL);
670
671		switch (ic->ic_txstream) {
672		case 0:
673		case 1:
674			return (EINVAL);
675		case 2:
676			if (rate > 38)
677				return (EINVAL);
678
679			return (0);
680		case 3:
681			if (rate > 52)
682				return (EINVAL);
683
684			return (0);
685		case 4:
686		default:
687			if (rate > 76)
688				return (EINVAL);
689
690			return (0);
691		}
692	}
693
694	if (!ieee80211_isratevalid(ic->ic_rt, rate))
695		return (EINVAL);
696
697	return (0);
698}
699
700static int
701ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
702    const struct ieee80211_bpf_params *params)
703{
704	int error;
705
706	if (!params)
707		return (0);	/* nothing to do */
708
709	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
710	if (params->ibp_rate0 != 0) {
711		error = ieee80211_validate_rate(ni, params->ibp_rate0);
712		if (error != 0)
713			return (error);
714	} else {
715		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
716		/* XXX __DECONST? */
717		(void) m;
718	}
719
720	if (params->ibp_rate1 != 0 &&
721	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
722		return (error);
723
724	if (params->ibp_rate2 != 0 &&
725	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
726		return (error);
727
728	if (params->ibp_rate3 != 0 &&
729	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
730		return (error);
731
732	return (0);
733}
734
735/*
736 * 802.11 output routine. This is (currently) used only to
737 * connect bpf write calls to the 802.11 layer for injecting
738 * raw 802.11 frames.
739 */
740int
741ieee80211_output(struct ifnet *ifp, struct mbuf *m,
742	const struct sockaddr *dst, struct route *ro)
743{
744#define senderr(e) do { error = (e); goto bad;} while (0)
745	const struct ieee80211_bpf_params *params = NULL;
746	struct ieee80211_node *ni = NULL;
747	struct ieee80211vap *vap;
748	struct ieee80211_frame *wh;
749	struct ieee80211com *ic = NULL;
750	int error;
751	int ret;
752
753	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
754		/*
755		 * Short-circuit requests if the vap is marked OACTIVE
756		 * as this can happen because a packet came down through
757		 * ieee80211_start before the vap entered RUN state in
758		 * which case it's ok to just drop the frame.  This
759		 * should not be necessary but callers of if_output don't
760		 * check OACTIVE.
761		 */
762		senderr(ENETDOWN);
763	}
764	vap = ifp->if_softc;
765	ic = vap->iv_ic;
766	/*
767	 * Hand to the 802.3 code if not tagged as
768	 * a raw 802.11 frame.
769	 */
770	if (dst->sa_family != AF_IEEE80211)
771		return vap->iv_output(ifp, m, dst, ro);
772#ifdef MAC
773	error = mac_ifnet_check_transmit(ifp, m);
774	if (error)
775		senderr(error);
776#endif
777	if (ifp->if_flags & IFF_MONITOR)
778		senderr(ENETDOWN);
779	if (!IFNET_IS_UP_RUNNING(ifp))
780		senderr(ENETDOWN);
781	if (vap->iv_state == IEEE80211_S_CAC) {
782		IEEE80211_DPRINTF(vap,
783		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
784		    "block %s frame in CAC state\n", "raw data");
785		vap->iv_stats.is_tx_badstate++;
786		senderr(EIO);		/* XXX */
787	} else if (vap->iv_state == IEEE80211_S_SCAN)
788		senderr(EIO);
789	/* XXX bypass bridge, pfil, carp, etc. */
790
791	/*
792	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
793	 * present by setting the sa_len field of the sockaddr (yes,
794	 * this is a hack).
795	 * NB: we assume sa_data is suitably aligned to cast.
796	 */
797	if (dst->sa_len != 0)
798		params = (const struct ieee80211_bpf_params *)dst->sa_data;
799
800	error = ieee80211_validate_frame(m, params);
801	if (error != 0)
802		senderr(error);
803
804	wh = mtod(m, struct ieee80211_frame *);
805
806	/* locate destination node */
807	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
808	case IEEE80211_FC1_DIR_NODS:
809	case IEEE80211_FC1_DIR_FROMDS:
810		ni = ieee80211_find_txnode(vap, wh->i_addr1);
811		break;
812	case IEEE80211_FC1_DIR_TODS:
813	case IEEE80211_FC1_DIR_DSTODS:
814		ni = ieee80211_find_txnode(vap, wh->i_addr3);
815		break;
816	default:
817		senderr(EDOOFUS);
818	}
819	if (ni == NULL) {
820		/*
821		 * Permit packets w/ bpf params through regardless
822		 * (see below about sa_len).
823		 */
824		if (dst->sa_len == 0)
825			senderr(EHOSTUNREACH);
826		ni = ieee80211_ref_node(vap->iv_bss);
827	}
828
829	/*
830	 * Sanitize mbuf for net80211 flags leaked from above.
831	 *
832	 * NB: This must be done before ieee80211_classify as
833	 *     it marks EAPOL in frames with M_EAPOL.
834	 */
835	m->m_flags &= ~M_80211_TX;
836	m->m_flags |= M_ENCAP;		/* mark encapsulated */
837
838	if (IEEE80211_IS_DATA(wh)) {
839		/* calculate priority so drivers can find the tx queue */
840		if (ieee80211_classify(ni, m))
841			senderr(EIO);		/* XXX */
842
843		/* NB: ieee80211_encap does not include 802.11 header */
844		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
845		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
846	} else
847		M_WME_SETAC(m, WME_AC_BE);
848
849	error = ieee80211_sanitize_rates(ni, m, params);
850	if (error != 0)
851		senderr(error);
852
853	IEEE80211_NODE_STAT(ni, tx_data);
854	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
855		IEEE80211_NODE_STAT(ni, tx_mcast);
856		m->m_flags |= M_MCAST;
857	} else
858		IEEE80211_NODE_STAT(ni, tx_ucast);
859
860	IEEE80211_TX_LOCK(ic);
861	ret = ieee80211_raw_output(vap, ni, m, params);
862	IEEE80211_TX_UNLOCK(ic);
863	return (ret);
864bad:
865	if (m != NULL)
866		m_freem(m);
867	if (ni != NULL)
868		ieee80211_free_node(ni);
869	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
870	return error;
871#undef senderr
872}
873
874/*
875 * Set the direction field and address fields of an outgoing
876 * frame.  Note this should be called early on in constructing
877 * a frame as it sets i_fc[1]; other bits can then be or'd in.
878 */
879void
880ieee80211_send_setup(
881	struct ieee80211_node *ni,
882	struct mbuf *m,
883	int type, int tid,
884	const uint8_t sa[IEEE80211_ADDR_LEN],
885	const uint8_t da[IEEE80211_ADDR_LEN],
886	const uint8_t bssid[IEEE80211_ADDR_LEN])
887{
888#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
889	struct ieee80211vap *vap = ni->ni_vap;
890	struct ieee80211_tx_ampdu *tap;
891	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
892	ieee80211_seq seqno;
893
894	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
895
896	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
897	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
898		switch (vap->iv_opmode) {
899		case IEEE80211_M_STA:
900			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
901			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
902			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
903			IEEE80211_ADDR_COPY(wh->i_addr3, da);
904			break;
905		case IEEE80211_M_IBSS:
906		case IEEE80211_M_AHDEMO:
907			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
908			IEEE80211_ADDR_COPY(wh->i_addr1, da);
909			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
910			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
911			break;
912		case IEEE80211_M_HOSTAP:
913			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
914			IEEE80211_ADDR_COPY(wh->i_addr1, da);
915			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
916			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
917			break;
918		case IEEE80211_M_WDS:
919			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
920			IEEE80211_ADDR_COPY(wh->i_addr1, da);
921			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
922			IEEE80211_ADDR_COPY(wh->i_addr3, da);
923			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
924			break;
925		case IEEE80211_M_MBSS:
926#ifdef IEEE80211_SUPPORT_MESH
927			if (IEEE80211_IS_MULTICAST(da)) {
928				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
929				/* XXX next hop */
930				IEEE80211_ADDR_COPY(wh->i_addr1, da);
931				IEEE80211_ADDR_COPY(wh->i_addr2,
932				    vap->iv_myaddr);
933			} else {
934				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
935				IEEE80211_ADDR_COPY(wh->i_addr1, da);
936				IEEE80211_ADDR_COPY(wh->i_addr2,
937				    vap->iv_myaddr);
938				IEEE80211_ADDR_COPY(wh->i_addr3, da);
939				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
940			}
941#endif
942			break;
943		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
944			break;
945		}
946	} else {
947		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
948		IEEE80211_ADDR_COPY(wh->i_addr1, da);
949		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
950#ifdef IEEE80211_SUPPORT_MESH
951		if (vap->iv_opmode == IEEE80211_M_MBSS)
952			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
953		else
954#endif
955			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
956	}
957	*(uint16_t *)&wh->i_dur[0] = 0;
958
959	/*
960	 * XXX TODO: this is what the TX lock is for.
961	 * Here we're incrementing sequence numbers, and they
962	 * need to be in lock-step with what the driver is doing
963	 * both in TX ordering and crypto encap (IV increment.)
964	 *
965	 * If the driver does seqno itself, then we can skip
966	 * assigning sequence numbers here, and we can avoid
967	 * requiring the TX lock.
968	 */
969	tap = &ni->ni_tx_ampdu[tid];
970	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
971		m->m_flags |= M_AMPDU_MPDU;
972
973		/* NB: zero out i_seq field (for s/w encryption etc) */
974		*(uint16_t *)&wh->i_seq[0] = 0;
975	} else {
976		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
977				      type & IEEE80211_FC0_SUBTYPE_MASK))
978			/*
979			 * 802.11-2012 9.3.2.10 - QoS multicast frames
980			 * come out of a different seqno space.
981			 */
982			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
983				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
984			} else {
985				seqno = ni->ni_txseqs[tid]++;
986			}
987		else
988			seqno = 0;
989
990		*(uint16_t *)&wh->i_seq[0] =
991		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
992		M_SEQNO_SET(m, seqno);
993	}
994
995	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
996		m->m_flags |= M_MCAST;
997#undef WH4
998}
999
1000/*
1001 * Send a management frame to the specified node.  The node pointer
1002 * must have a reference as the pointer will be passed to the driver
1003 * and potentially held for a long time.  If the frame is successfully
1004 * dispatched to the driver, then it is responsible for freeing the
1005 * reference (and potentially free'ing up any associated storage);
1006 * otherwise deal with reclaiming any reference (on error).
1007 */
1008int
1009ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1010	struct ieee80211_bpf_params *params)
1011{
1012	struct ieee80211vap *vap = ni->ni_vap;
1013	struct ieee80211com *ic = ni->ni_ic;
1014	struct ieee80211_frame *wh;
1015	int ret;
1016
1017	KASSERT(ni != NULL, ("null node"));
1018
1019	if (vap->iv_state == IEEE80211_S_CAC) {
1020		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1021		    ni, "block %s frame in CAC state",
1022			ieee80211_mgt_subtype_name(type));
1023		vap->iv_stats.is_tx_badstate++;
1024		ieee80211_free_node(ni);
1025		m_freem(m);
1026		return EIO;		/* XXX */
1027	}
1028
1029	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
1030	if (m == NULL) {
1031		ieee80211_free_node(ni);
1032		return ENOMEM;
1033	}
1034
1035	IEEE80211_TX_LOCK(ic);
1036
1037	wh = mtod(m, struct ieee80211_frame *);
1038	ieee80211_send_setup(ni, m,
1039	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1040	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1041	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1042		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1043		    "encrypting frame (%s)", __func__);
1044		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1045	}
1046	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1047
1048	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1049	M_WME_SETAC(m, params->ibp_pri);
1050
1051#ifdef IEEE80211_DEBUG
1052	/* avoid printing too many frames */
1053	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1054	    ieee80211_msg_dumppkts(vap)) {
1055		printf("[%s] send %s on channel %u\n",
1056		    ether_sprintf(wh->i_addr1),
1057		    ieee80211_mgt_subtype_name(type),
1058		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1059	}
1060#endif
1061	IEEE80211_NODE_STAT(ni, tx_mgmt);
1062
1063	ret = ieee80211_raw_output(vap, ni, m, params);
1064	IEEE80211_TX_UNLOCK(ic);
1065	return (ret);
1066}
1067
1068static void
1069ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1070    int status)
1071{
1072	struct ieee80211vap *vap = ni->ni_vap;
1073
1074	wakeup(vap);
1075}
1076
1077/*
1078 * Send a null data frame to the specified node.  If the station
1079 * is setup for QoS then a QoS Null Data frame is constructed.
1080 * If this is a WDS station then a 4-address frame is constructed.
1081 *
1082 * NB: the caller is assumed to have setup a node reference
1083 *     for use; this is necessary to deal with a race condition
1084 *     when probing for inactive stations.  Like ieee80211_mgmt_output
1085 *     we must cleanup any node reference on error;  however we
1086 *     can safely just unref it as we know it will never be the
1087 *     last reference to the node.
1088 */
1089int
1090ieee80211_send_nulldata(struct ieee80211_node *ni)
1091{
1092	struct ieee80211vap *vap = ni->ni_vap;
1093	struct ieee80211com *ic = ni->ni_ic;
1094	struct mbuf *m;
1095	struct ieee80211_frame *wh;
1096	int hdrlen;
1097	uint8_t *frm;
1098	int ret;
1099
1100	if (vap->iv_state == IEEE80211_S_CAC) {
1101		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1102		    ni, "block %s frame in CAC state", "null data");
1103		ieee80211_unref_node(&ni);
1104		vap->iv_stats.is_tx_badstate++;
1105		return EIO;		/* XXX */
1106	}
1107
1108	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1109		hdrlen = sizeof(struct ieee80211_qosframe);
1110	else
1111		hdrlen = sizeof(struct ieee80211_frame);
1112	/* NB: only WDS vap's get 4-address frames */
1113	if (vap->iv_opmode == IEEE80211_M_WDS)
1114		hdrlen += IEEE80211_ADDR_LEN;
1115	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1116		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1117
1118	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1119	if (m == NULL) {
1120		/* XXX debug msg */
1121		ieee80211_unref_node(&ni);
1122		vap->iv_stats.is_tx_nobuf++;
1123		return ENOMEM;
1124	}
1125	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1126	    ("leading space %zd", M_LEADINGSPACE(m)));
1127	M_PREPEND(m, hdrlen, M_NOWAIT);
1128	if (m == NULL) {
1129		/* NB: cannot happen */
1130		ieee80211_free_node(ni);
1131		return ENOMEM;
1132	}
1133
1134	IEEE80211_TX_LOCK(ic);
1135
1136	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1137	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1138		const int tid = WME_AC_TO_TID(WME_AC_BE);
1139		uint8_t *qos;
1140
1141		ieee80211_send_setup(ni, m,
1142		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1143		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1144
1145		if (vap->iv_opmode == IEEE80211_M_WDS)
1146			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1147		else
1148			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1149		qos[0] = tid & IEEE80211_QOS_TID;
1150		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1151			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1152		qos[1] = 0;
1153	} else {
1154		ieee80211_send_setup(ni, m,
1155		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1156		    IEEE80211_NONQOS_TID,
1157		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1158	}
1159	if (vap->iv_opmode != IEEE80211_M_WDS) {
1160		/* NB: power management bit is never sent by an AP */
1161		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1162		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1163			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1164	}
1165	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1166	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1167		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1168		    NULL);
1169	}
1170	m->m_len = m->m_pkthdr.len = hdrlen;
1171	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1172
1173	M_WME_SETAC(m, WME_AC_BE);
1174
1175	IEEE80211_NODE_STAT(ni, tx_data);
1176
1177	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1178	    "send %snull data frame on channel %u, pwr mgt %s",
1179	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1180	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1181	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1182
1183	ret = ieee80211_raw_output(vap, ni, m, NULL);
1184	IEEE80211_TX_UNLOCK(ic);
1185	return (ret);
1186}
1187
1188/*
1189 * Assign priority to a frame based on any vlan tag assigned
1190 * to the station and/or any Diffserv setting in an IP header.
1191 * Finally, if an ACM policy is setup (in station mode) it's
1192 * applied.
1193 */
1194int
1195ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1196{
1197	const struct ether_header *eh = NULL;
1198	uint16_t ether_type;
1199	int v_wme_ac, d_wme_ac, ac;
1200
1201	if (__predict_false(m->m_flags & M_ENCAP)) {
1202		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1203		struct llc *llc;
1204		int hdrlen, subtype;
1205
1206		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1207		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1208			ac = WME_AC_BE;
1209			goto done;
1210		}
1211
1212		hdrlen = ieee80211_hdrsize(wh);
1213		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1214			return 1;
1215
1216		llc = (struct llc *)mtodo(m, hdrlen);
1217		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1218		    llc->llc_ssap != LLC_SNAP_LSAP ||
1219		    llc->llc_control != LLC_UI ||
1220		    llc->llc_snap.org_code[0] != 0 ||
1221		    llc->llc_snap.org_code[1] != 0 ||
1222		    llc->llc_snap.org_code[2] != 0)
1223			return 1;
1224
1225		ether_type = llc->llc_snap.ether_type;
1226	} else {
1227		eh = mtod(m, struct ether_header *);
1228		ether_type = eh->ether_type;
1229	}
1230
1231	/*
1232	 * Always promote PAE/EAPOL frames to high priority.
1233	 */
1234	if (ether_type == htons(ETHERTYPE_PAE)) {
1235		/* NB: mark so others don't need to check header */
1236		m->m_flags |= M_EAPOL;
1237		ac = WME_AC_VO;
1238		goto done;
1239	}
1240	/*
1241	 * Non-qos traffic goes to BE.
1242	 */
1243	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1244		ac = WME_AC_BE;
1245		goto done;
1246	}
1247
1248	/*
1249	 * If node has a vlan tag then all traffic
1250	 * to it must have a matching tag.
1251	 */
1252	v_wme_ac = 0;
1253	if (ni->ni_vlan != 0) {
1254		 if ((m->m_flags & M_VLANTAG) == 0) {
1255			IEEE80211_NODE_STAT(ni, tx_novlantag);
1256			return 1;
1257		}
1258		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1259		    EVL_VLANOFTAG(ni->ni_vlan)) {
1260			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1261			return 1;
1262		}
1263		/* map vlan priority to AC */
1264		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1265	}
1266
1267	/* XXX m_copydata may be too slow for fast path */
1268#ifdef INET
1269	if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
1270		uint8_t tos;
1271		/*
1272		 * IP frame, map the DSCP bits from the TOS field.
1273		 */
1274		/* NB: ip header may not be in first mbuf */
1275		m_copydata(m, sizeof(struct ether_header) +
1276		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1277		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1278		d_wme_ac = TID_TO_WME_AC(tos);
1279	} else {
1280#endif /* INET */
1281#ifdef INET6
1282	if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
1283		uint32_t flow;
1284		uint8_t tos;
1285		/*
1286		 * IPv6 frame, map the DSCP bits from the traffic class field.
1287		 */
1288		m_copydata(m, sizeof(struct ether_header) +
1289		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1290		    (caddr_t) &flow);
1291		tos = (uint8_t)(ntohl(flow) >> 20);
1292		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1293		d_wme_ac = TID_TO_WME_AC(tos);
1294	} else {
1295#endif /* INET6 */
1296		d_wme_ac = WME_AC_BE;
1297#ifdef INET6
1298	}
1299#endif
1300#ifdef INET
1301	}
1302#endif
1303	/*
1304	 * Use highest priority AC.
1305	 */
1306	if (v_wme_ac > d_wme_ac)
1307		ac = v_wme_ac;
1308	else
1309		ac = d_wme_ac;
1310
1311	/*
1312	 * Apply ACM policy.
1313	 */
1314	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1315		static const int acmap[4] = {
1316			WME_AC_BK,	/* WME_AC_BE */
1317			WME_AC_BK,	/* WME_AC_BK */
1318			WME_AC_BE,	/* WME_AC_VI */
1319			WME_AC_VI,	/* WME_AC_VO */
1320		};
1321		struct ieee80211com *ic = ni->ni_ic;
1322
1323		while (ac != WME_AC_BK &&
1324		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1325			ac = acmap[ac];
1326	}
1327done:
1328	M_WME_SETAC(m, ac);
1329	return 0;
1330}
1331
1332/*
1333 * Insure there is sufficient contiguous space to encapsulate the
1334 * 802.11 data frame.  If room isn't already there, arrange for it.
1335 * Drivers and cipher modules assume we have done the necessary work
1336 * and fail rudely if they don't find the space they need.
1337 */
1338struct mbuf *
1339ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1340	struct ieee80211_key *key, struct mbuf *m)
1341{
1342#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1343	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1344
1345	if (key != NULL) {
1346		/* XXX belongs in crypto code? */
1347		needed_space += key->wk_cipher->ic_header;
1348		/* XXX frags */
1349		/*
1350		 * When crypto is being done in the host we must insure
1351		 * the data are writable for the cipher routines; clone
1352		 * a writable mbuf chain.
1353		 * XXX handle SWMIC specially
1354		 */
1355		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1356			m = m_unshare(m, M_NOWAIT);
1357			if (m == NULL) {
1358				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1359				    "%s: cannot get writable mbuf\n", __func__);
1360				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1361				return NULL;
1362			}
1363		}
1364	}
1365	/*
1366	 * We know we are called just before stripping an Ethernet
1367	 * header and prepending an LLC header.  This means we know
1368	 * there will be
1369	 *	sizeof(struct ether_header) - sizeof(struct llc)
1370	 * bytes recovered to which we need additional space for the
1371	 * 802.11 header and any crypto header.
1372	 */
1373	/* XXX check trailing space and copy instead? */
1374	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1375		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1376		if (n == NULL) {
1377			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1378			    "%s: cannot expand storage\n", __func__);
1379			vap->iv_stats.is_tx_nobuf++;
1380			m_freem(m);
1381			return NULL;
1382		}
1383		KASSERT(needed_space <= MHLEN,
1384		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1385		/*
1386		 * Setup new mbuf to have leading space to prepend the
1387		 * 802.11 header and any crypto header bits that are
1388		 * required (the latter are added when the driver calls
1389		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1390		 */
1391		/* NB: must be first 'cuz it clobbers m_data */
1392		m_move_pkthdr(n, m);
1393		n->m_len = 0;			/* NB: m_gethdr does not set */
1394		n->m_data += needed_space;
1395		/*
1396		 * Pull up Ethernet header to create the expected layout.
1397		 * We could use m_pullup but that's overkill (i.e. we don't
1398		 * need the actual data) and it cannot fail so do it inline
1399		 * for speed.
1400		 */
1401		/* NB: struct ether_header is known to be contiguous */
1402		n->m_len += sizeof(struct ether_header);
1403		m->m_len -= sizeof(struct ether_header);
1404		m->m_data += sizeof(struct ether_header);
1405		/*
1406		 * Replace the head of the chain.
1407		 */
1408		n->m_next = m;
1409		m = n;
1410	}
1411	return m;
1412#undef TO_BE_RECLAIMED
1413}
1414
1415/*
1416 * Return the transmit key to use in sending a unicast frame.
1417 * If a unicast key is set we use that.  When no unicast key is set
1418 * we fall back to the default transmit key.
1419 */
1420static __inline struct ieee80211_key *
1421ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1422	struct ieee80211_node *ni)
1423{
1424	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1425		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1426		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1427			return NULL;
1428		return &vap->iv_nw_keys[vap->iv_def_txkey];
1429	} else {
1430		return &ni->ni_ucastkey;
1431	}
1432}
1433
1434/*
1435 * Return the transmit key to use in sending a multicast frame.
1436 * Multicast traffic always uses the group key which is installed as
1437 * the default tx key.
1438 */
1439static __inline struct ieee80211_key *
1440ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1441	struct ieee80211_node *ni)
1442{
1443	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1444	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1445		return NULL;
1446	return &vap->iv_nw_keys[vap->iv_def_txkey];
1447}
1448
1449/*
1450 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1451 * If an error is encountered NULL is returned.  The caller is required
1452 * to provide a node reference and pullup the ethernet header in the
1453 * first mbuf.
1454 *
1455 * NB: Packet is assumed to be processed by ieee80211_classify which
1456 *     marked EAPOL frames w/ M_EAPOL.
1457 */
1458struct mbuf *
1459ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1460    struct mbuf *m)
1461{
1462#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1463#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1464	struct ieee80211com *ic = ni->ni_ic;
1465#ifdef IEEE80211_SUPPORT_MESH
1466	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1467	struct ieee80211_meshcntl_ae10 *mc;
1468	struct ieee80211_mesh_route *rt = NULL;
1469	int dir = -1;
1470#endif
1471	struct ether_header eh;
1472	struct ieee80211_frame *wh;
1473	struct ieee80211_key *key;
1474	struct llc *llc;
1475	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1476	ieee80211_seq seqno;
1477	int meshhdrsize, meshae;
1478	uint8_t *qos;
1479	int is_amsdu = 0;
1480
1481	IEEE80211_TX_LOCK_ASSERT(ic);
1482
1483	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1484
1485	/*
1486	 * Copy existing Ethernet header to a safe place.  The
1487	 * rest of the code assumes it's ok to strip it when
1488	 * reorganizing state for the final encapsulation.
1489	 */
1490	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1491	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1492
1493	/*
1494	 * Insure space for additional headers.  First identify
1495	 * transmit key to use in calculating any buffer adjustments
1496	 * required.  This is also used below to do privacy
1497	 * encapsulation work.  Then calculate the 802.11 header
1498	 * size and any padding required by the driver.
1499	 *
1500	 * Note key may be NULL if we fall back to the default
1501	 * transmit key and that is not set.  In that case the
1502	 * buffer may not be expanded as needed by the cipher
1503	 * routines, but they will/should discard it.
1504	 */
1505	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1506		if (vap->iv_opmode == IEEE80211_M_STA ||
1507		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1508		    (vap->iv_opmode == IEEE80211_M_WDS &&
1509		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1510			key = ieee80211_crypto_getucastkey(vap, ni);
1511		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1512		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1513			/*
1514			 * Use ucastkey for DWDS transmit nodes, multicast
1515			 * or otherwise.
1516			 *
1517			 * This is required to ensure that multicast frames
1518			 * from a DWDS AP to a DWDS STA is encrypted with
1519			 * a key that can actually work.
1520			 *
1521			 * There's no default key for multicast traffic
1522			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1523			 * AP VAP, the dynamically created per-STA WDS node)
1524			 * so encap fails and transmit fails.
1525			 */
1526			key = ieee80211_crypto_getucastkey(vap, ni);
1527		} else {
1528			key = ieee80211_crypto_getmcastkey(vap, ni);
1529		}
1530		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1531			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1532			    eh.ether_dhost,
1533			    "no default transmit key (%s) deftxkey %u",
1534			    __func__, vap->iv_def_txkey);
1535			vap->iv_stats.is_tx_nodefkey++;
1536			goto bad;
1537		}
1538	} else
1539		key = NULL;
1540	/*
1541	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1542	 * frames so suppress use.  This may be an issue if other
1543	 * ap's require all data frames to be QoS-encapsulated
1544	 * once negotiated in which case we'll need to make this
1545	 * configurable.
1546	 *
1547	 * Don't send multicast QoS frames.
1548	 * Technically multicast frames can be QoS if all stations in the
1549	 * BSS are also QoS.
1550	 *
1551	 * NB: mesh data frames are QoS, including multicast frames.
1552	 */
1553	addqos =
1554	    (((is_mcast == 0) && (ni->ni_flags &
1555	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1556	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1557	    (m->m_flags & M_EAPOL) == 0;
1558
1559	if (addqos)
1560		hdrsize = sizeof(struct ieee80211_qosframe);
1561	else
1562		hdrsize = sizeof(struct ieee80211_frame);
1563#ifdef IEEE80211_SUPPORT_MESH
1564	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1565		/*
1566		 * Mesh data frames are encapsulated according to the
1567		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1568		 * o Group Addressed data (aka multicast) originating
1569		 *   at the local sta are sent w/ 3-address format and
1570		 *   address extension mode 00
1571		 * o Individually Addressed data (aka unicast) originating
1572		 *   at the local sta are sent w/ 4-address format and
1573		 *   address extension mode 00
1574		 * o Group Addressed data forwarded from a non-mesh sta are
1575		 *   sent w/ 3-address format and address extension mode 01
1576		 * o Individually Address data from another sta are sent
1577		 *   w/ 4-address format and address extension mode 10
1578		 */
1579		is4addr = 0;		/* NB: don't use, disable */
1580		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1581			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1582			KASSERT(rt != NULL, ("route is NULL"));
1583			dir = IEEE80211_FC1_DIR_DSTODS;
1584			hdrsize += IEEE80211_ADDR_LEN;
1585			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1586				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1587				    vap->iv_myaddr)) {
1588					IEEE80211_NOTE_MAC(vap,
1589					    IEEE80211_MSG_MESH,
1590					    eh.ether_dhost,
1591					    "%s", "trying to send to ourself");
1592					goto bad;
1593				}
1594				meshae = IEEE80211_MESH_AE_10;
1595				meshhdrsize =
1596				    sizeof(struct ieee80211_meshcntl_ae10);
1597			} else {
1598				meshae = IEEE80211_MESH_AE_00;
1599				meshhdrsize =
1600				    sizeof(struct ieee80211_meshcntl);
1601			}
1602		} else {
1603			dir = IEEE80211_FC1_DIR_FROMDS;
1604			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1605				/* proxy group */
1606				meshae = IEEE80211_MESH_AE_01;
1607				meshhdrsize =
1608				    sizeof(struct ieee80211_meshcntl_ae01);
1609			} else {
1610				/* group */
1611				meshae = IEEE80211_MESH_AE_00;
1612				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1613			}
1614		}
1615	} else {
1616#endif
1617		/*
1618		 * 4-address frames need to be generated for:
1619		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1620		 * o packets sent through a vap marked for relaying
1621		 *   (e.g. a station operating with dynamic WDS)
1622		 */
1623		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1624		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1625		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1626		if (is4addr)
1627			hdrsize += IEEE80211_ADDR_LEN;
1628		meshhdrsize = meshae = 0;
1629#ifdef IEEE80211_SUPPORT_MESH
1630	}
1631#endif
1632	/*
1633	 * Honor driver DATAPAD requirement.
1634	 */
1635	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1636		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1637	else
1638		hdrspace = hdrsize;
1639
1640	if (__predict_true((m->m_flags & M_FF) == 0)) {
1641		/*
1642		 * Normal frame.
1643		 */
1644		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1645		if (m == NULL) {
1646			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1647			goto bad;
1648		}
1649		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1650		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1651		llc = mtod(m, struct llc *);
1652		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1653		llc->llc_control = LLC_UI;
1654		llc->llc_snap.org_code[0] = 0;
1655		llc->llc_snap.org_code[1] = 0;
1656		llc->llc_snap.org_code[2] = 0;
1657		llc->llc_snap.ether_type = eh.ether_type;
1658	} else {
1659#ifdef IEEE80211_SUPPORT_SUPERG
1660		/*
1661		 * Aggregated frame.  Check if it's for AMSDU or FF.
1662		 *
1663		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1664		 * anywhere for some reason.  But, since 11n requires
1665		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1666		 */
1667		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1668		if (ieee80211_amsdu_tx_ok(ni)) {
1669			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1670			is_amsdu = 1;
1671		} else {
1672			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1673		}
1674		if (m == NULL)
1675#endif
1676			goto bad;
1677	}
1678	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1679
1680	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1681	if (m == NULL) {
1682		vap->iv_stats.is_tx_nobuf++;
1683		goto bad;
1684	}
1685	wh = mtod(m, struct ieee80211_frame *);
1686	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1687	*(uint16_t *)wh->i_dur = 0;
1688	qos = NULL;	/* NB: quiet compiler */
1689	if (is4addr) {
1690		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1691		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1692		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1693		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1694		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1695	} else switch (vap->iv_opmode) {
1696	case IEEE80211_M_STA:
1697		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1698		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1699		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1700		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1701		break;
1702	case IEEE80211_M_IBSS:
1703	case IEEE80211_M_AHDEMO:
1704		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1705		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1706		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1707		/*
1708		 * NB: always use the bssid from iv_bss as the
1709		 *     neighbor's may be stale after an ibss merge
1710		 */
1711		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1712		break;
1713	case IEEE80211_M_HOSTAP:
1714		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1715		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1716		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1717		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1718		break;
1719#ifdef IEEE80211_SUPPORT_MESH
1720	case IEEE80211_M_MBSS:
1721		/* NB: offset by hdrspace to deal with DATAPAD */
1722		mc = (struct ieee80211_meshcntl_ae10 *)
1723		     (mtod(m, uint8_t *) + hdrspace);
1724		wh->i_fc[1] = dir;
1725		switch (meshae) {
1726		case IEEE80211_MESH_AE_00:	/* no proxy */
1727			mc->mc_flags = 0;
1728			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1729				IEEE80211_ADDR_COPY(wh->i_addr1,
1730				    ni->ni_macaddr);
1731				IEEE80211_ADDR_COPY(wh->i_addr2,
1732				    vap->iv_myaddr);
1733				IEEE80211_ADDR_COPY(wh->i_addr3,
1734				    eh.ether_dhost);
1735				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1736				    eh.ether_shost);
1737				qos =((struct ieee80211_qosframe_addr4 *)
1738				    wh)->i_qos;
1739			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1740				 /* mcast */
1741				IEEE80211_ADDR_COPY(wh->i_addr1,
1742				    eh.ether_dhost);
1743				IEEE80211_ADDR_COPY(wh->i_addr2,
1744				    vap->iv_myaddr);
1745				IEEE80211_ADDR_COPY(wh->i_addr3,
1746				    eh.ether_shost);
1747				qos = ((struct ieee80211_qosframe *)
1748				    wh)->i_qos;
1749			}
1750			break;
1751		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1752			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1753			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1754			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1755			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1756			mc->mc_flags = 1;
1757			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1758			    eh.ether_shost);
1759			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1760			break;
1761		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1762			KASSERT(rt != NULL, ("route is NULL"));
1763			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1764			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1765			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1766			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1767			mc->mc_flags = IEEE80211_MESH_AE_10;
1768			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1769			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1770			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1771			break;
1772		default:
1773			KASSERT(0, ("meshae %d", meshae));
1774			break;
1775		}
1776		mc->mc_ttl = ms->ms_ttl;
1777		ms->ms_seq++;
1778		le32enc(mc->mc_seq, ms->ms_seq);
1779		break;
1780#endif
1781	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1782	default:
1783		goto bad;
1784	}
1785	if (m->m_flags & M_MORE_DATA)
1786		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1787	if (addqos) {
1788		int ac, tid;
1789
1790		if (is4addr) {
1791			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1792		/* NB: mesh case handled earlier */
1793		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1794			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1795		ac = M_WME_GETAC(m);
1796		/* map from access class/queue to 11e header priorty value */
1797		tid = WME_AC_TO_TID(ac);
1798		qos[0] = tid & IEEE80211_QOS_TID;
1799		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1800			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1801#ifdef IEEE80211_SUPPORT_MESH
1802		if (vap->iv_opmode == IEEE80211_M_MBSS)
1803			qos[1] = IEEE80211_QOS_MC;
1804		else
1805#endif
1806			qos[1] = 0;
1807		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1808
1809		/*
1810		 * If this is an A-MSDU then ensure we set the
1811		 * relevant field.
1812		 */
1813		if (is_amsdu)
1814			qos[0] |= IEEE80211_QOS_AMSDU;
1815
1816		/*
1817		 * XXX TODO TX lock is needed for atomic updates of sequence
1818		 * numbers.  If the driver does it, then don't do it here;
1819		 * and we don't need the TX lock held.
1820		 */
1821		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1822			/*
1823			 * 802.11-2012 9.3.2.10 -
1824			 *
1825			 * If this is a multicast frame then we need
1826			 * to ensure that the sequence number comes from
1827			 * a separate seqno space and not the TID space.
1828			 *
1829			 * Otherwise multicast frames may actually cause
1830			 * holes in the TX blockack window space and
1831			 * upset various things.
1832			 */
1833			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1834				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1835			else
1836				seqno = ni->ni_txseqs[tid]++;
1837
1838			/*
1839			 * NB: don't assign a sequence # to potential
1840			 * aggregates; we expect this happens at the
1841			 * point the frame comes off any aggregation q
1842			 * as otherwise we may introduce holes in the
1843			 * BA sequence space and/or make window accouting
1844			 * more difficult.
1845			 *
1846			 * XXX may want to control this with a driver
1847			 * capability; this may also change when we pull
1848			 * aggregation up into net80211
1849			 */
1850			*(uint16_t *)wh->i_seq =
1851			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1852			M_SEQNO_SET(m, seqno);
1853		} else {
1854			/* NB: zero out i_seq field (for s/w encryption etc) */
1855			*(uint16_t *)wh->i_seq = 0;
1856		}
1857	} else {
1858		/*
1859		 * XXX TODO TX lock is needed for atomic updates of sequence
1860		 * numbers.  If the driver does it, then don't do it here;
1861		 * and we don't need the TX lock held.
1862		 */
1863		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1864		*(uint16_t *)wh->i_seq =
1865		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1866		M_SEQNO_SET(m, seqno);
1867
1868		/*
1869		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1870		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1871		 */
1872		if (is_amsdu)
1873			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1874			    __func__);
1875	}
1876
1877	/*
1878	 * Check if xmit fragmentation is required.
1879	 *
1880	 * If the hardware does fragmentation offload, then don't bother
1881	 * doing it here.
1882	 */
1883	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1884		txfrag = 0;
1885	else
1886		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1887		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1888		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1889		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1890
1891	if (key != NULL) {
1892		/*
1893		 * IEEE 802.1X: send EAPOL frames always in the clear.
1894		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1895		 */
1896		if ((m->m_flags & M_EAPOL) == 0 ||
1897		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1898		     (vap->iv_opmode == IEEE80211_M_STA ?
1899		      !IEEE80211_KEY_UNDEFINED(key) :
1900		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1901			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1902			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1903				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1904				    eh.ether_dhost,
1905				    "%s", "enmic failed, discard frame");
1906				vap->iv_stats.is_crypto_enmicfail++;
1907				goto bad;
1908			}
1909		}
1910	}
1911	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1912	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1913		goto bad;
1914
1915	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1916
1917	IEEE80211_NODE_STAT(ni, tx_data);
1918	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1919		IEEE80211_NODE_STAT(ni, tx_mcast);
1920		m->m_flags |= M_MCAST;
1921	} else
1922		IEEE80211_NODE_STAT(ni, tx_ucast);
1923	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1924
1925	return m;
1926bad:
1927	if (m != NULL)
1928		m_freem(m);
1929	return NULL;
1930#undef WH4
1931#undef MC01
1932}
1933
1934void
1935ieee80211_free_mbuf(struct mbuf *m)
1936{
1937	struct mbuf *next;
1938
1939	if (m == NULL)
1940		return;
1941
1942	do {
1943		next = m->m_nextpkt;
1944		m->m_nextpkt = NULL;
1945		m_freem(m);
1946	} while ((m = next) != NULL);
1947}
1948
1949/*
1950 * Fragment the frame according to the specified mtu.
1951 * The size of the 802.11 header (w/o padding) is provided
1952 * so we don't need to recalculate it.  We create a new
1953 * mbuf for each fragment and chain it through m_nextpkt;
1954 * we might be able to optimize this by reusing the original
1955 * packet's mbufs but that is significantly more complicated.
1956 */
1957static int
1958ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1959	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1960{
1961	struct ieee80211com *ic = vap->iv_ic;
1962	struct ieee80211_frame *wh, *whf;
1963	struct mbuf *m, *prev;
1964	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1965	u_int hdrspace;
1966
1967	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1968	KASSERT(m0->m_pkthdr.len > mtu,
1969		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1970
1971	/*
1972	 * Honor driver DATAPAD requirement.
1973	 */
1974	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1975		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1976	else
1977		hdrspace = hdrsize;
1978
1979	wh = mtod(m0, struct ieee80211_frame *);
1980	/* NB: mark the first frag; it will be propagated below */
1981	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1982	totalhdrsize = hdrspace + ciphdrsize;
1983	fragno = 1;
1984	off = mtu - ciphdrsize;
1985	remainder = m0->m_pkthdr.len - off;
1986	prev = m0;
1987	do {
1988		fragsize = MIN(totalhdrsize + remainder, mtu);
1989		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1990		if (m == NULL)
1991			goto bad;
1992		/* leave room to prepend any cipher header */
1993		m_align(m, fragsize - ciphdrsize);
1994
1995		/*
1996		 * Form the header in the fragment.  Note that since
1997		 * we mark the first fragment with the MORE_FRAG bit
1998		 * it automatically is propagated to each fragment; we
1999		 * need only clear it on the last fragment (done below).
2000		 * NB: frag 1+ dont have Mesh Control field present.
2001		 */
2002		whf = mtod(m, struct ieee80211_frame *);
2003		memcpy(whf, wh, hdrsize);
2004#ifdef IEEE80211_SUPPORT_MESH
2005		if (vap->iv_opmode == IEEE80211_M_MBSS)
2006			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2007#endif
2008		*(uint16_t *)&whf->i_seq[0] |= htole16(
2009			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2010				IEEE80211_SEQ_FRAG_SHIFT);
2011		fragno++;
2012
2013		payload = fragsize - totalhdrsize;
2014		/* NB: destination is known to be contiguous */
2015
2016		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2017		m->m_len = hdrspace + payload;
2018		m->m_pkthdr.len = hdrspace + payload;
2019		m->m_flags |= M_FRAG;
2020
2021		/* chain up the fragment */
2022		prev->m_nextpkt = m;
2023		prev = m;
2024
2025		/* deduct fragment just formed */
2026		remainder -= payload;
2027		off += payload;
2028	} while (remainder != 0);
2029
2030	/* set the last fragment */
2031	m->m_flags |= M_LASTFRAG;
2032	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2033
2034	/* strip first mbuf now that everything has been copied */
2035	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2036	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2037
2038	vap->iv_stats.is_tx_fragframes++;
2039	vap->iv_stats.is_tx_frags += fragno-1;
2040
2041	return 1;
2042bad:
2043	/* reclaim fragments but leave original frame for caller to free */
2044	ieee80211_free_mbuf(m0->m_nextpkt);
2045	m0->m_nextpkt = NULL;
2046	return 0;
2047}
2048
2049/*
2050 * Add a supported rates element id to a frame.
2051 */
2052uint8_t *
2053ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2054{
2055	int nrates;
2056
2057	*frm++ = IEEE80211_ELEMID_RATES;
2058	nrates = rs->rs_nrates;
2059	if (nrates > IEEE80211_RATE_SIZE)
2060		nrates = IEEE80211_RATE_SIZE;
2061	*frm++ = nrates;
2062	memcpy(frm, rs->rs_rates, nrates);
2063	return frm + nrates;
2064}
2065
2066/*
2067 * Add an extended supported rates element id to a frame.
2068 */
2069uint8_t *
2070ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2071{
2072	/*
2073	 * Add an extended supported rates element if operating in 11g mode.
2074	 */
2075	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2076		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2077		*frm++ = IEEE80211_ELEMID_XRATES;
2078		*frm++ = nrates;
2079		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2080		frm += nrates;
2081	}
2082	return frm;
2083}
2084
2085/*
2086 * Add an ssid element to a frame.
2087 */
2088uint8_t *
2089ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2090{
2091	*frm++ = IEEE80211_ELEMID_SSID;
2092	*frm++ = len;
2093	memcpy(frm, ssid, len);
2094	return frm + len;
2095}
2096
2097/*
2098 * Add an erp element to a frame.
2099 */
2100static uint8_t *
2101ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2102{
2103	struct ieee80211com *ic = vap->iv_ic;
2104	uint8_t erp;
2105
2106	*frm++ = IEEE80211_ELEMID_ERP;
2107	*frm++ = 1;
2108	erp = 0;
2109
2110	/*
2111	 * TODO:  This uses the global flags for now because
2112	 * the per-VAP flags are fine for per-VAP, but don't
2113	 * take into account which VAPs share the same channel
2114	 * and which are on different channels.
2115	 *
2116	 * ERP and HT/VHT protection mode is a function of
2117	 * how many stations are on a channel, not specifically
2118	 * the VAP or global.  But, until we grow that status,
2119	 * the global flag will have to do.
2120	 */
2121	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2122		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2123
2124	/*
2125	 * TODO: same as above; these should be based not
2126	 * on the vap or ic flags, but instead on a combination
2127	 * of per-VAP and channels.
2128	 */
2129	if (ic->ic_flags & IEEE80211_F_USEPROT)
2130		erp |= IEEE80211_ERP_USE_PROTECTION;
2131	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2132		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2133	*frm++ = erp;
2134	return frm;
2135}
2136
2137/*
2138 * Add a CFParams element to a frame.
2139 */
2140static uint8_t *
2141ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2142{
2143#define	ADDSHORT(frm, v) do {	\
2144	le16enc(frm, v);	\
2145	frm += 2;		\
2146} while (0)
2147	*frm++ = IEEE80211_ELEMID_CFPARMS;
2148	*frm++ = 6;
2149	*frm++ = 0;		/* CFP count */
2150	*frm++ = 2;		/* CFP period */
2151	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2152	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2153	return frm;
2154#undef ADDSHORT
2155}
2156
2157static __inline uint8_t *
2158add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2159{
2160	memcpy(frm, ie->ie_data, ie->ie_len);
2161	return frm + ie->ie_len;
2162}
2163
2164static __inline uint8_t *
2165add_ie(uint8_t *frm, const uint8_t *ie)
2166{
2167	memcpy(frm, ie, 2 + ie[1]);
2168	return frm + 2 + ie[1];
2169}
2170
2171#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2172/*
2173 * Add a WME information element to a frame.
2174 */
2175uint8_t *
2176ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2177    struct ieee80211_node *ni)
2178{
2179	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2180	struct ieee80211vap *vap = ni->ni_vap;
2181
2182	*frm++ = IEEE80211_ELEMID_VENDOR;
2183	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2184	memcpy(frm, oui, sizeof(oui));
2185	frm += sizeof(oui);
2186	*frm++ = WME_INFO_OUI_SUBTYPE;
2187	*frm++ = WME_VERSION;
2188
2189	/* QoS info field depends upon operating mode */
2190	switch (vap->iv_opmode) {
2191	case IEEE80211_M_HOSTAP:
2192		*frm = wme->wme_bssChanParams.cap_info;
2193		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2194			*frm |= WME_CAPINFO_UAPSD_EN;
2195		frm++;
2196		break;
2197	case IEEE80211_M_STA:
2198		/*
2199		 * NB: UAPSD drivers must set this up in their
2200		 * VAP creation method.
2201		 */
2202		*frm++ = vap->iv_uapsdinfo;
2203		break;
2204	default:
2205		*frm++ = 0;
2206		break;
2207	}
2208
2209	return frm;
2210}
2211
2212/*
2213 * Add a WME parameters element to a frame.
2214 */
2215static uint8_t *
2216ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2217    int uapsd_enable)
2218{
2219#define	ADDSHORT(frm, v) do {	\
2220	le16enc(frm, v);	\
2221	frm += 2;		\
2222} while (0)
2223	/* NB: this works 'cuz a param has an info at the front */
2224	static const struct ieee80211_wme_info param = {
2225		.wme_id		= IEEE80211_ELEMID_VENDOR,
2226		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2227		.wme_oui	= { WME_OUI_BYTES },
2228		.wme_type	= WME_OUI_TYPE,
2229		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2230		.wme_version	= WME_VERSION,
2231	};
2232	int i;
2233
2234	memcpy(frm, &param, sizeof(param));
2235	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2236	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2237	if (uapsd_enable)
2238		*frm |= WME_CAPINFO_UAPSD_EN;
2239	frm++;
2240	*frm++ = 0;					/* reserved field */
2241	/* XXX TODO - U-APSD bits - SP, flags below */
2242	for (i = 0; i < WME_NUM_AC; i++) {
2243		const struct wmeParams *ac =
2244		       &wme->wme_bssChanParams.cap_wmeParams[i];
2245		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2246		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2247		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2248		       ;
2249		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2250			    WME_PARAM_LOGCWMAX)
2251		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2252			    WME_PARAM_LOGCWMIN)
2253		       ;
2254		ADDSHORT(frm, ac->wmep_txopLimit);
2255	}
2256	return frm;
2257#undef ADDSHORT
2258}
2259#undef WME_OUI_BYTES
2260
2261/*
2262 * Add an 11h Power Constraint element to a frame.
2263 */
2264static uint8_t *
2265ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2266{
2267	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2268	/* XXX per-vap tx power limit? */
2269	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2270
2271	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2272	frm[1] = 1;
2273	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2274	return frm + 3;
2275}
2276
2277/*
2278 * Add an 11h Power Capability element to a frame.
2279 */
2280static uint8_t *
2281ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2282{
2283	frm[0] = IEEE80211_ELEMID_PWRCAP;
2284	frm[1] = 2;
2285	frm[2] = c->ic_minpower;
2286	frm[3] = c->ic_maxpower;
2287	return frm + 4;
2288}
2289
2290/*
2291 * Add an 11h Supported Channels element to a frame.
2292 */
2293static uint8_t *
2294ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2295{
2296	static const int ielen = 26;
2297
2298	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2299	frm[1] = ielen;
2300	/* XXX not correct */
2301	memcpy(frm+2, ic->ic_chan_avail, ielen);
2302	return frm + 2 + ielen;
2303}
2304
2305/*
2306 * Add an 11h Quiet time element to a frame.
2307 */
2308static uint8_t *
2309ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2310{
2311	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2312
2313	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2314	quiet->len = 6;
2315
2316	/*
2317	 * Only update every beacon interval - otherwise probe responses
2318	 * would update the quiet count value.
2319	 */
2320	if (update) {
2321		if (vap->iv_quiet_count_value == 1)
2322			vap->iv_quiet_count_value = vap->iv_quiet_count;
2323		else if (vap->iv_quiet_count_value > 1)
2324			vap->iv_quiet_count_value--;
2325	}
2326
2327	if (vap->iv_quiet_count_value == 0) {
2328		/* value 0 is reserved as per 802.11h standerd */
2329		vap->iv_quiet_count_value = 1;
2330	}
2331
2332	quiet->tbttcount = vap->iv_quiet_count_value;
2333	quiet->period = vap->iv_quiet_period;
2334	quiet->duration = htole16(vap->iv_quiet_duration);
2335	quiet->offset = htole16(vap->iv_quiet_offset);
2336	return frm + sizeof(*quiet);
2337}
2338
2339/*
2340 * Add an 11h Channel Switch Announcement element to a frame.
2341 * Note that we use the per-vap CSA count to adjust the global
2342 * counter so we can use this routine to form probe response
2343 * frames and get the current count.
2344 */
2345static uint8_t *
2346ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2347{
2348	struct ieee80211com *ic = vap->iv_ic;
2349	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2350
2351	csa->csa_ie = IEEE80211_ELEMID_CSA;
2352	csa->csa_len = 3;
2353	csa->csa_mode = 1;		/* XXX force quiet on channel */
2354	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2355	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2356	return frm + sizeof(*csa);
2357}
2358
2359/*
2360 * Add an 11h country information element to a frame.
2361 */
2362static uint8_t *
2363ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2364{
2365
2366	if (ic->ic_countryie == NULL ||
2367	    ic->ic_countryie_chan != ic->ic_bsschan) {
2368		/*
2369		 * Handle lazy construction of ie.  This is done on
2370		 * first use and after a channel change that requires
2371		 * re-calculation.
2372		 */
2373		if (ic->ic_countryie != NULL)
2374			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2375		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2376		if (ic->ic_countryie == NULL)
2377			return frm;
2378		ic->ic_countryie_chan = ic->ic_bsschan;
2379	}
2380	return add_appie(frm, ic->ic_countryie);
2381}
2382
2383uint8_t *
2384ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2385{
2386	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2387		return (add_ie(frm, vap->iv_wpa_ie));
2388	else {
2389		/* XXX else complain? */
2390		return (frm);
2391	}
2392}
2393
2394uint8_t *
2395ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2396{
2397	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2398		return (add_ie(frm, vap->iv_rsn_ie));
2399	else {
2400		/* XXX else complain? */
2401		return (frm);
2402	}
2403}
2404
2405uint8_t *
2406ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2407{
2408	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2409		*frm++ = IEEE80211_ELEMID_QOS;
2410		*frm++ = 1;
2411		*frm++ = 0;
2412	}
2413
2414	return (frm);
2415}
2416
2417/*
2418 * Send a probe request frame with the specified ssid
2419 * and any optional information element data.
2420 */
2421int
2422ieee80211_send_probereq(struct ieee80211_node *ni,
2423	const uint8_t sa[IEEE80211_ADDR_LEN],
2424	const uint8_t da[IEEE80211_ADDR_LEN],
2425	const uint8_t bssid[IEEE80211_ADDR_LEN],
2426	const uint8_t *ssid, size_t ssidlen)
2427{
2428	struct ieee80211vap *vap = ni->ni_vap;
2429	struct ieee80211com *ic = ni->ni_ic;
2430	struct ieee80211_node *bss;
2431	const struct ieee80211_txparam *tp;
2432	struct ieee80211_bpf_params params;
2433	const struct ieee80211_rateset *rs;
2434	struct mbuf *m;
2435	uint8_t *frm;
2436	int ret;
2437
2438	bss = ieee80211_ref_node(vap->iv_bss);
2439
2440	if (vap->iv_state == IEEE80211_S_CAC) {
2441		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2442		    "block %s frame in CAC state", "probe request");
2443		vap->iv_stats.is_tx_badstate++;
2444		ieee80211_free_node(bss);
2445		return EIO;		/* XXX */
2446	}
2447
2448	/*
2449	 * Hold a reference on the node so it doesn't go away until after
2450	 * the xmit is complete all the way in the driver.  On error we
2451	 * will remove our reference.
2452	 */
2453	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2454		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2455		__func__, __LINE__,
2456		ni, ether_sprintf(ni->ni_macaddr),
2457		ieee80211_node_refcnt(ni)+1);
2458	ieee80211_ref_node(ni);
2459
2460	/*
2461	 * prreq frame format
2462	 *	[tlv] ssid
2463	 *	[tlv] supported rates
2464	 *	[tlv] RSN (optional)
2465	 *	[tlv] extended supported rates
2466	 *	[tlv] HT cap (optional)
2467	 *	[tlv] VHT cap (optional)
2468	 *	[tlv] WPA (optional)
2469	 *	[tlv] user-specified ie's
2470	 */
2471	m = ieee80211_getmgtframe(&frm,
2472		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2473	       	 2 + IEEE80211_NWID_LEN
2474	       + 2 + IEEE80211_RATE_SIZE
2475	       + sizeof(struct ieee80211_ie_htcap)
2476	       + sizeof(struct ieee80211_ie_vhtcap)
2477	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2478	       + sizeof(struct ieee80211_ie_wpa)
2479	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2480	       + sizeof(struct ieee80211_ie_wpa)
2481	       + (vap->iv_appie_probereq != NULL ?
2482		   vap->iv_appie_probereq->ie_len : 0)
2483	);
2484	if (m == NULL) {
2485		vap->iv_stats.is_tx_nobuf++;
2486		ieee80211_free_node(ni);
2487		ieee80211_free_node(bss);
2488		return ENOMEM;
2489	}
2490
2491	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2492	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2493	frm = ieee80211_add_rates(frm, rs);
2494	frm = ieee80211_add_rsn(frm, vap);
2495	frm = ieee80211_add_xrates(frm, rs);
2496
2497	/*
2498	 * Note: we can't use bss; we don't have one yet.
2499	 *
2500	 * So, we should announce our capabilities
2501	 * in this channel mode (2g/5g), not the
2502	 * channel details itself.
2503	 */
2504	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2505	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2506		struct ieee80211_channel *c;
2507
2508		/*
2509		 * Get the HT channel that we should try upgrading to.
2510		 * If we can do 40MHz then this'll upgrade it appropriately.
2511		 */
2512		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2513		    vap->iv_flags_ht);
2514		frm = ieee80211_add_htcap_ch(frm, vap, c);
2515	}
2516
2517	/*
2518	 * XXX TODO: need to figure out what/how to update the
2519	 * VHT channel.
2520	 */
2521#if 0
2522	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2523		struct ieee80211_channel *c;
2524
2525		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2526		    vap->iv_flags_ht);
2527		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2528		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2529	}
2530#endif
2531
2532	frm = ieee80211_add_wpa(frm, vap);
2533	if (vap->iv_appie_probereq != NULL)
2534		frm = add_appie(frm, vap->iv_appie_probereq);
2535	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2536
2537	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2538	    ("leading space %zd", M_LEADINGSPACE(m)));
2539	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2540	if (m == NULL) {
2541		/* NB: cannot happen */
2542		ieee80211_free_node(ni);
2543		ieee80211_free_node(bss);
2544		return ENOMEM;
2545	}
2546
2547	IEEE80211_TX_LOCK(ic);
2548	ieee80211_send_setup(ni, m,
2549	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2550	     IEEE80211_NONQOS_TID, sa, da, bssid);
2551	/* XXX power management? */
2552	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2553
2554	M_WME_SETAC(m, WME_AC_BE);
2555
2556	IEEE80211_NODE_STAT(ni, tx_probereq);
2557	IEEE80211_NODE_STAT(ni, tx_mgmt);
2558
2559	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2560	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2561	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2562	    ether_sprintf(bssid),
2563	    sa, ":",
2564	    da, ":",
2565	    ssidlen, ssid);
2566
2567	memset(&params, 0, sizeof(params));
2568	params.ibp_pri = M_WME_GETAC(m);
2569	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2570	params.ibp_rate0 = tp->mgmtrate;
2571	if (IEEE80211_IS_MULTICAST(da)) {
2572		params.ibp_flags |= IEEE80211_BPF_NOACK;
2573		params.ibp_try0 = 1;
2574	} else
2575		params.ibp_try0 = tp->maxretry;
2576	params.ibp_power = ni->ni_txpower;
2577	ret = ieee80211_raw_output(vap, ni, m, &params);
2578	IEEE80211_TX_UNLOCK(ic);
2579	ieee80211_free_node(bss);
2580	return (ret);
2581}
2582
2583/*
2584 * Calculate capability information for mgt frames.
2585 */
2586uint16_t
2587ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2588{
2589	uint16_t capinfo;
2590
2591	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2592
2593	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2594		capinfo = IEEE80211_CAPINFO_ESS;
2595	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2596		capinfo = IEEE80211_CAPINFO_IBSS;
2597	else
2598		capinfo = 0;
2599	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2600		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2601	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2602	    IEEE80211_IS_CHAN_2GHZ(chan))
2603		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2604	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2605		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2606	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2607		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2608	return capinfo;
2609}
2610
2611/*
2612 * Send a management frame.  The node is for the destination (or ic_bss
2613 * when in station mode).  Nodes other than ic_bss have their reference
2614 * count bumped to reflect our use for an indeterminant time.
2615 */
2616int
2617ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2618{
2619#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2620#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2621	struct ieee80211vap *vap = ni->ni_vap;
2622	struct ieee80211com *ic = ni->ni_ic;
2623	struct ieee80211_node *bss = vap->iv_bss;
2624	struct ieee80211_bpf_params params;
2625	struct mbuf *m;
2626	uint8_t *frm;
2627	uint16_t capinfo;
2628	int has_challenge, is_shared_key, ret, status;
2629
2630	KASSERT(ni != NULL, ("null node"));
2631
2632	/*
2633	 * Hold a reference on the node so it doesn't go away until after
2634	 * the xmit is complete all the way in the driver.  On error we
2635	 * will remove our reference.
2636	 */
2637	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2638		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2639		__func__, __LINE__,
2640		ni, ether_sprintf(ni->ni_macaddr),
2641		ieee80211_node_refcnt(ni)+1);
2642	ieee80211_ref_node(ni);
2643
2644	memset(&params, 0, sizeof(params));
2645	switch (type) {
2646
2647	case IEEE80211_FC0_SUBTYPE_AUTH:
2648		status = arg >> 16;
2649		arg &= 0xffff;
2650		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2651		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2652		    ni->ni_challenge != NULL);
2653
2654		/*
2655		 * Deduce whether we're doing open authentication or
2656		 * shared key authentication.  We do the latter if
2657		 * we're in the middle of a shared key authentication
2658		 * handshake or if we're initiating an authentication
2659		 * request and configured to use shared key.
2660		 */
2661		is_shared_key = has_challenge ||
2662		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2663		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2664		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2665
2666		m = ieee80211_getmgtframe(&frm,
2667			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2668			  3 * sizeof(uint16_t)
2669			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2670				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2671		);
2672		if (m == NULL)
2673			senderr(ENOMEM, is_tx_nobuf);
2674
2675		((uint16_t *)frm)[0] =
2676		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2677		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2678		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2679		((uint16_t *)frm)[2] = htole16(status);/* status */
2680
2681		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2682			((uint16_t *)frm)[3] =
2683			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2684			    IEEE80211_ELEMID_CHALLENGE);
2685			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2686			    IEEE80211_CHALLENGE_LEN);
2687			m->m_pkthdr.len = m->m_len =
2688				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2689			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2690				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2691				    "request encrypt frame (%s)", __func__);
2692				/* mark frame for encryption */
2693				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2694			}
2695		} else
2696			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2697
2698		/* XXX not right for shared key */
2699		if (status == IEEE80211_STATUS_SUCCESS)
2700			IEEE80211_NODE_STAT(ni, tx_auth);
2701		else
2702			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2703
2704		if (vap->iv_opmode == IEEE80211_M_STA)
2705			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2706				(void *) vap->iv_state);
2707		break;
2708
2709	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2710		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2711		    "send station deauthenticate (reason: %d (%s))", arg,
2712		    ieee80211_reason_to_string(arg));
2713		m = ieee80211_getmgtframe(&frm,
2714			ic->ic_headroom + sizeof(struct ieee80211_frame),
2715			sizeof(uint16_t));
2716		if (m == NULL)
2717			senderr(ENOMEM, is_tx_nobuf);
2718		*(uint16_t *)frm = htole16(arg);	/* reason */
2719		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2720
2721		IEEE80211_NODE_STAT(ni, tx_deauth);
2722		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2723
2724		ieee80211_node_unauthorize(ni);		/* port closed */
2725		break;
2726
2727	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2728	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2729		/*
2730		 * asreq frame format
2731		 *	[2] capability information
2732		 *	[2] listen interval
2733		 *	[6*] current AP address (reassoc only)
2734		 *	[tlv] ssid
2735		 *	[tlv] supported rates
2736		 *	[tlv] extended supported rates
2737		 *	[4] power capability (optional)
2738		 *	[28] supported channels (optional)
2739		 *	[tlv] HT capabilities
2740		 *	[tlv] VHT capabilities
2741		 *	[tlv] WME (optional)
2742		 *	[tlv] Vendor OUI HT capabilities (optional)
2743		 *	[tlv] Atheros capabilities (if negotiated)
2744		 *	[tlv] AppIE's (optional)
2745		 */
2746		m = ieee80211_getmgtframe(&frm,
2747			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2748			 sizeof(uint16_t)
2749		       + sizeof(uint16_t)
2750		       + IEEE80211_ADDR_LEN
2751		       + 2 + IEEE80211_NWID_LEN
2752		       + 2 + IEEE80211_RATE_SIZE
2753		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2754		       + 4
2755		       + 2 + 26
2756		       + sizeof(struct ieee80211_wme_info)
2757		       + sizeof(struct ieee80211_ie_htcap)
2758		       + sizeof(struct ieee80211_ie_vhtcap)
2759		       + 4 + sizeof(struct ieee80211_ie_htcap)
2760#ifdef IEEE80211_SUPPORT_SUPERG
2761		       + sizeof(struct ieee80211_ath_ie)
2762#endif
2763		       + (vap->iv_appie_wpa != NULL ?
2764				vap->iv_appie_wpa->ie_len : 0)
2765		       + (vap->iv_appie_assocreq != NULL ?
2766				vap->iv_appie_assocreq->ie_len : 0)
2767		);
2768		if (m == NULL)
2769			senderr(ENOMEM, is_tx_nobuf);
2770
2771		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2772		    ("wrong mode %u", vap->iv_opmode));
2773		capinfo = IEEE80211_CAPINFO_ESS;
2774		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2775			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2776		/*
2777		 * NB: Some 11a AP's reject the request when
2778		 *     short preamble is set.
2779		 */
2780		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2781		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2782			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2783		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2784		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2785			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2786		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2787		    (vap->iv_flags & IEEE80211_F_DOTH))
2788			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2789		*(uint16_t *)frm = htole16(capinfo);
2790		frm += 2;
2791
2792		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2793		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2794						    bss->ni_intval));
2795		frm += 2;
2796
2797		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2798			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2799			frm += IEEE80211_ADDR_LEN;
2800		}
2801
2802		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2803		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2804		frm = ieee80211_add_rsn(frm, vap);
2805		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2806		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2807			frm = ieee80211_add_powercapability(frm,
2808			    ic->ic_curchan);
2809			frm = ieee80211_add_supportedchannels(frm, ic);
2810		}
2811
2812		/*
2813		 * Check the channel - we may be using an 11n NIC with an
2814		 * 11n capable station, but we're configured to be an 11b
2815		 * channel.
2816		 */
2817		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2818		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2819		    ni->ni_ies.htcap_ie != NULL &&
2820		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2821			frm = ieee80211_add_htcap(frm, ni);
2822		}
2823
2824		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2825		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2826		    ni->ni_ies.vhtcap_ie != NULL &&
2827		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2828			frm = ieee80211_add_vhtcap(frm, ni);
2829		}
2830
2831		frm = ieee80211_add_wpa(frm, vap);
2832		if ((ic->ic_flags & IEEE80211_F_WME) &&
2833		    ni->ni_ies.wme_ie != NULL)
2834			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2835
2836		/*
2837		 * Same deal - only send HT info if we're on an 11n
2838		 * capable channel.
2839		 */
2840		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2841		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2842		    ni->ni_ies.htcap_ie != NULL &&
2843		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2844			frm = ieee80211_add_htcap_vendor(frm, ni);
2845		}
2846#ifdef IEEE80211_SUPPORT_SUPERG
2847		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2848			frm = ieee80211_add_ath(frm,
2849				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2850				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2851				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2852				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2853		}
2854#endif /* IEEE80211_SUPPORT_SUPERG */
2855		if (vap->iv_appie_assocreq != NULL)
2856			frm = add_appie(frm, vap->iv_appie_assocreq);
2857		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2858
2859		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2860			(void *) vap->iv_state);
2861		break;
2862
2863	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2864	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2865		/*
2866		 * asresp frame format
2867		 *	[2] capability information
2868		 *	[2] status
2869		 *	[2] association ID
2870		 *	[tlv] supported rates
2871		 *	[tlv] extended supported rates
2872		 *	[tlv] HT capabilities (standard, if STA enabled)
2873		 *	[tlv] HT information (standard, if STA enabled)
2874		 *	[tlv] VHT capabilities (standard, if STA enabled)
2875		 *	[tlv] VHT information (standard, if STA enabled)
2876		 *	[tlv] WME (if configured and STA enabled)
2877		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2878		 *	[tlv] HT information (vendor OUI, if STA enabled)
2879		 *	[tlv] Atheros capabilities (if STA enabled)
2880		 *	[tlv] AppIE's (optional)
2881		 */
2882		m = ieee80211_getmgtframe(&frm,
2883			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2884			 sizeof(uint16_t)
2885		       + sizeof(uint16_t)
2886		       + sizeof(uint16_t)
2887		       + 2 + IEEE80211_RATE_SIZE
2888		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2889		       + sizeof(struct ieee80211_ie_htcap) + 4
2890		       + sizeof(struct ieee80211_ie_htinfo) + 4
2891		       + sizeof(struct ieee80211_ie_vhtcap)
2892		       + sizeof(struct ieee80211_ie_vht_operation)
2893		       + sizeof(struct ieee80211_wme_param)
2894#ifdef IEEE80211_SUPPORT_SUPERG
2895		       + sizeof(struct ieee80211_ath_ie)
2896#endif
2897		       + (vap->iv_appie_assocresp != NULL ?
2898				vap->iv_appie_assocresp->ie_len : 0)
2899		);
2900		if (m == NULL)
2901			senderr(ENOMEM, is_tx_nobuf);
2902
2903		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2904		*(uint16_t *)frm = htole16(capinfo);
2905		frm += 2;
2906
2907		*(uint16_t *)frm = htole16(arg);	/* status */
2908		frm += 2;
2909
2910		if (arg == IEEE80211_STATUS_SUCCESS) {
2911			*(uint16_t *)frm = htole16(ni->ni_associd);
2912			IEEE80211_NODE_STAT(ni, tx_assoc);
2913		} else
2914			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2915		frm += 2;
2916
2917		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2918		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2919		/* NB: respond according to what we received */
2920		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2921			frm = ieee80211_add_htcap(frm, ni);
2922			frm = ieee80211_add_htinfo(frm, ni);
2923		}
2924		if ((vap->iv_flags & IEEE80211_F_WME) &&
2925		    ni->ni_ies.wme_ie != NULL)
2926			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2927			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2928		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2929			frm = ieee80211_add_htcap_vendor(frm, ni);
2930			frm = ieee80211_add_htinfo_vendor(frm, ni);
2931		}
2932		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2933			frm = ieee80211_add_vhtcap(frm, ni);
2934			frm = ieee80211_add_vhtinfo(frm, ni);
2935		}
2936#ifdef IEEE80211_SUPPORT_SUPERG
2937		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2938			frm = ieee80211_add_ath(frm,
2939				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2940				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2941				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2942				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2943#endif /* IEEE80211_SUPPORT_SUPERG */
2944		if (vap->iv_appie_assocresp != NULL)
2945			frm = add_appie(frm, vap->iv_appie_assocresp);
2946		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2947		break;
2948
2949	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2950		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2951		    "send station disassociate (reason: %d (%s))", arg,
2952		    ieee80211_reason_to_string(arg));
2953		m = ieee80211_getmgtframe(&frm,
2954			ic->ic_headroom + sizeof(struct ieee80211_frame),
2955			sizeof(uint16_t));
2956		if (m == NULL)
2957			senderr(ENOMEM, is_tx_nobuf);
2958		*(uint16_t *)frm = htole16(arg);	/* reason */
2959		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2960
2961		IEEE80211_NODE_STAT(ni, tx_disassoc);
2962		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2963		break;
2964
2965	default:
2966		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2967		    "invalid mgmt frame type %u", type);
2968		senderr(EINVAL, is_tx_unknownmgt);
2969		/* NOTREACHED */
2970	}
2971
2972	/* NB: force non-ProbeResp frames to the highest queue */
2973	params.ibp_pri = WME_AC_VO;
2974	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2975	/* NB: we know all frames are unicast */
2976	params.ibp_try0 = bss->ni_txparms->maxretry;
2977	params.ibp_power = bss->ni_txpower;
2978	return ieee80211_mgmt_output(ni, m, type, &params);
2979bad:
2980	ieee80211_free_node(ni);
2981	return ret;
2982#undef senderr
2983#undef HTFLAGS
2984}
2985
2986/*
2987 * Return an mbuf with a probe response frame in it.
2988 * Space is left to prepend and 802.11 header at the
2989 * front but it's left to the caller to fill in.
2990 */
2991struct mbuf *
2992ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2993{
2994	struct ieee80211vap *vap = bss->ni_vap;
2995	struct ieee80211com *ic = bss->ni_ic;
2996	const struct ieee80211_rateset *rs;
2997	struct mbuf *m;
2998	uint16_t capinfo;
2999	uint8_t *frm;
3000
3001	/*
3002	 * probe response frame format
3003	 *	[8] time stamp
3004	 *	[2] beacon interval
3005	 *	[2] cabability information
3006	 *	[tlv] ssid
3007	 *	[tlv] supported rates
3008	 *	[tlv] parameter set (FH/DS)
3009	 *	[tlv] parameter set (IBSS)
3010	 *	[tlv] country (optional)
3011	 *	[3] power control (optional)
3012	 *	[5] channel switch announcement (CSA) (optional)
3013	 *	[tlv] extended rate phy (ERP)
3014	 *	[tlv] extended supported rates
3015	 *	[tlv] RSN (optional)
3016	 *	[tlv] HT capabilities
3017	 *	[tlv] HT information
3018	 *	[tlv] VHT capabilities
3019	 *	[tlv] VHT information
3020	 *	[tlv] WPA (optional)
3021	 *	[tlv] WME (optional)
3022	 *	[tlv] Vendor OUI HT capabilities (optional)
3023	 *	[tlv] Vendor OUI HT information (optional)
3024	 *	[tlv] Atheros capabilities
3025	 *	[tlv] AppIE's (optional)
3026	 *	[tlv] Mesh ID (MBSS)
3027	 *	[tlv] Mesh Conf (MBSS)
3028	 */
3029	m = ieee80211_getmgtframe(&frm,
3030		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3031		 8
3032	       + sizeof(uint16_t)
3033	       + sizeof(uint16_t)
3034	       + 2 + IEEE80211_NWID_LEN
3035	       + 2 + IEEE80211_RATE_SIZE
3036	       + 7	/* max(7,3) */
3037	       + IEEE80211_COUNTRY_MAX_SIZE
3038	       + 3
3039	       + sizeof(struct ieee80211_csa_ie)
3040	       + sizeof(struct ieee80211_quiet_ie)
3041	       + 3
3042	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3043	       + sizeof(struct ieee80211_ie_wpa)
3044	       + sizeof(struct ieee80211_ie_htcap)
3045	       + sizeof(struct ieee80211_ie_htinfo)
3046	       + sizeof(struct ieee80211_ie_wpa)
3047	       + sizeof(struct ieee80211_wme_param)
3048	       + 4 + sizeof(struct ieee80211_ie_htcap)
3049	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3050	       +  sizeof(struct ieee80211_ie_vhtcap)
3051	       +  sizeof(struct ieee80211_ie_vht_operation)
3052#ifdef IEEE80211_SUPPORT_SUPERG
3053	       + sizeof(struct ieee80211_ath_ie)
3054#endif
3055#ifdef IEEE80211_SUPPORT_MESH
3056	       + 2 + IEEE80211_MESHID_LEN
3057	       + sizeof(struct ieee80211_meshconf_ie)
3058#endif
3059	       + (vap->iv_appie_proberesp != NULL ?
3060			vap->iv_appie_proberesp->ie_len : 0)
3061	);
3062	if (m == NULL) {
3063		vap->iv_stats.is_tx_nobuf++;
3064		return NULL;
3065	}
3066
3067	memset(frm, 0, 8);	/* timestamp should be filled later */
3068	frm += 8;
3069	*(uint16_t *)frm = htole16(bss->ni_intval);
3070	frm += 2;
3071	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3072	*(uint16_t *)frm = htole16(capinfo);
3073	frm += 2;
3074
3075	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3076	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3077	frm = ieee80211_add_rates(frm, rs);
3078
3079	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3080		*frm++ = IEEE80211_ELEMID_FHPARMS;
3081		*frm++ = 5;
3082		*frm++ = bss->ni_fhdwell & 0x00ff;
3083		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3084		*frm++ = IEEE80211_FH_CHANSET(
3085		    ieee80211_chan2ieee(ic, bss->ni_chan));
3086		*frm++ = IEEE80211_FH_CHANPAT(
3087		    ieee80211_chan2ieee(ic, bss->ni_chan));
3088		*frm++ = bss->ni_fhindex;
3089	} else {
3090		*frm++ = IEEE80211_ELEMID_DSPARMS;
3091		*frm++ = 1;
3092		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3093	}
3094
3095	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3096		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3097		*frm++ = 2;
3098		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3099	}
3100	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3101	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3102		frm = ieee80211_add_countryie(frm, ic);
3103	if (vap->iv_flags & IEEE80211_F_DOTH) {
3104		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3105			frm = ieee80211_add_powerconstraint(frm, vap);
3106		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3107			frm = ieee80211_add_csa(frm, vap);
3108	}
3109	if (vap->iv_flags & IEEE80211_F_DOTH) {
3110		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3111		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3112			if (vap->iv_quiet)
3113				frm = ieee80211_add_quiet(frm, vap, 0);
3114		}
3115	}
3116	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3117		frm = ieee80211_add_erp(frm, vap);
3118	frm = ieee80211_add_xrates(frm, rs);
3119	frm = ieee80211_add_rsn(frm, vap);
3120	/*
3121	 * NB: legacy 11b clients do not get certain ie's.
3122	 *     The caller identifies such clients by passing
3123	 *     a token in legacy to us.  Could expand this to be
3124	 *     any legacy client for stuff like HT ie's.
3125	 */
3126	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3127	    legacy != IEEE80211_SEND_LEGACY_11B) {
3128		frm = ieee80211_add_htcap(frm, bss);
3129		frm = ieee80211_add_htinfo(frm, bss);
3130	}
3131	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3132	    legacy != IEEE80211_SEND_LEGACY_11B) {
3133		frm = ieee80211_add_vhtcap(frm, bss);
3134		frm = ieee80211_add_vhtinfo(frm, bss);
3135	}
3136	frm = ieee80211_add_wpa(frm, vap);
3137	if (vap->iv_flags & IEEE80211_F_WME)
3138		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3139		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3140	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3141	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3142	    legacy != IEEE80211_SEND_LEGACY_11B) {
3143		frm = ieee80211_add_htcap_vendor(frm, bss);
3144		frm = ieee80211_add_htinfo_vendor(frm, bss);
3145	}
3146#ifdef IEEE80211_SUPPORT_SUPERG
3147	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3148	    legacy != IEEE80211_SEND_LEGACY_11B)
3149		frm = ieee80211_add_athcaps(frm, bss);
3150#endif
3151	if (vap->iv_appie_proberesp != NULL)
3152		frm = add_appie(frm, vap->iv_appie_proberesp);
3153#ifdef IEEE80211_SUPPORT_MESH
3154	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3155		frm = ieee80211_add_meshid(frm, vap);
3156		frm = ieee80211_add_meshconf(frm, vap);
3157	}
3158#endif
3159	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3160
3161	return m;
3162}
3163
3164/*
3165 * Send a probe response frame to the specified mac address.
3166 * This does not go through the normal mgt frame api so we
3167 * can specify the destination address and re-use the bss node
3168 * for the sta reference.
3169 */
3170int
3171ieee80211_send_proberesp(struct ieee80211vap *vap,
3172	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3173{
3174	struct ieee80211_node *bss = vap->iv_bss;
3175	struct ieee80211com *ic = vap->iv_ic;
3176	struct mbuf *m;
3177	int ret;
3178
3179	if (vap->iv_state == IEEE80211_S_CAC) {
3180		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3181		    "block %s frame in CAC state", "probe response");
3182		vap->iv_stats.is_tx_badstate++;
3183		return EIO;		/* XXX */
3184	}
3185
3186	/*
3187	 * Hold a reference on the node so it doesn't go away until after
3188	 * the xmit is complete all the way in the driver.  On error we
3189	 * will remove our reference.
3190	 */
3191	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3192	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3193	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3194	    ieee80211_node_refcnt(bss)+1);
3195	ieee80211_ref_node(bss);
3196
3197	m = ieee80211_alloc_proberesp(bss, legacy);
3198	if (m == NULL) {
3199		ieee80211_free_node(bss);
3200		return ENOMEM;
3201	}
3202
3203	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3204	KASSERT(m != NULL, ("no room for header"));
3205
3206	IEEE80211_TX_LOCK(ic);
3207	ieee80211_send_setup(bss, m,
3208	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3209	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3210	/* XXX power management? */
3211	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3212
3213	M_WME_SETAC(m, WME_AC_BE);
3214
3215	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3216	    "send probe resp on channel %u to %s%s\n",
3217	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3218	    legacy ? " <legacy>" : "");
3219	IEEE80211_NODE_STAT(bss, tx_mgmt);
3220
3221	ret = ieee80211_raw_output(vap, bss, m, NULL);
3222	IEEE80211_TX_UNLOCK(ic);
3223	return (ret);
3224}
3225
3226/*
3227 * Allocate and build a RTS (Request To Send) control frame.
3228 */
3229struct mbuf *
3230ieee80211_alloc_rts(struct ieee80211com *ic,
3231	const uint8_t ra[IEEE80211_ADDR_LEN],
3232	const uint8_t ta[IEEE80211_ADDR_LEN],
3233	uint16_t dur)
3234{
3235	struct ieee80211_frame_rts *rts;
3236	struct mbuf *m;
3237
3238	/* XXX honor ic_headroom */
3239	m = m_gethdr(M_NOWAIT, MT_DATA);
3240	if (m != NULL) {
3241		rts = mtod(m, struct ieee80211_frame_rts *);
3242		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3243			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3244		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3245		*(u_int16_t *)rts->i_dur = htole16(dur);
3246		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3247		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3248
3249		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3250	}
3251	return m;
3252}
3253
3254/*
3255 * Allocate and build a CTS (Clear To Send) control frame.
3256 */
3257struct mbuf *
3258ieee80211_alloc_cts(struct ieee80211com *ic,
3259	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3260{
3261	struct ieee80211_frame_cts *cts;
3262	struct mbuf *m;
3263
3264	/* XXX honor ic_headroom */
3265	m = m_gethdr(M_NOWAIT, MT_DATA);
3266	if (m != NULL) {
3267		cts = mtod(m, struct ieee80211_frame_cts *);
3268		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3269			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3270		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3271		*(u_int16_t *)cts->i_dur = htole16(dur);
3272		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3273
3274		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3275	}
3276	return m;
3277}
3278
3279/*
3280 * Wrapper for CTS/RTS frame allocation.
3281 */
3282struct mbuf *
3283ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3284    uint8_t rate, int prot)
3285{
3286	struct ieee80211com *ic = ni->ni_ic;
3287	struct ieee80211vap *vap = ni->ni_vap;
3288	const struct ieee80211_frame *wh;
3289	struct mbuf *mprot;
3290	uint16_t dur;
3291	int pktlen, isshort;
3292
3293	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3294	    prot == IEEE80211_PROT_CTSONLY,
3295	    ("wrong protection type %d", prot));
3296
3297	wh = mtod(m, const struct ieee80211_frame *);
3298	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3299	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3300	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3301	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3302
3303	if (prot == IEEE80211_PROT_RTSCTS) {
3304		/* NB: CTS is the same size as an ACK */
3305		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3306		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3307	} else
3308		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3309
3310	return (mprot);
3311}
3312
3313static void
3314ieee80211_tx_mgt_timeout(void *arg)
3315{
3316	struct ieee80211vap *vap = arg;
3317
3318	IEEE80211_LOCK(vap->iv_ic);
3319	if (vap->iv_state != IEEE80211_S_INIT &&
3320	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3321		/*
3322		 * NB: it's safe to specify a timeout as the reason here;
3323		 *     it'll only be used in the right state.
3324		 */
3325		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3326			IEEE80211_SCAN_FAIL_TIMEOUT);
3327	}
3328	IEEE80211_UNLOCK(vap->iv_ic);
3329}
3330
3331/*
3332 * This is the callback set on net80211-sourced transmitted
3333 * authentication request frames.
3334 *
3335 * This does a couple of things:
3336 *
3337 * + If the frame transmitted was a success, it schedules a future
3338 *   event which will transition the interface to scan.
3339 *   If a state transition _then_ occurs before that event occurs,
3340 *   said state transition will cancel this callout.
3341 *
3342 * + If the frame transmit was a failure, it immediately schedules
3343 *   the transition back to scan.
3344 */
3345static void
3346ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3347{
3348	struct ieee80211vap *vap = ni->ni_vap;
3349	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3350
3351	/*
3352	 * Frame transmit completed; arrange timer callback.  If
3353	 * transmit was successfully we wait for response.  Otherwise
3354	 * we arrange an immediate callback instead of doing the
3355	 * callback directly since we don't know what state the driver
3356	 * is in (e.g. what locks it is holding).  This work should
3357	 * not be too time-critical and not happen too often so the
3358	 * added overhead is acceptable.
3359	 *
3360	 * XXX what happens if !acked but response shows up before callback?
3361	 */
3362	if (vap->iv_state == ostate) {
3363		callout_reset(&vap->iv_mgtsend,
3364			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3365			ieee80211_tx_mgt_timeout, vap);
3366	}
3367}
3368
3369static void
3370ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3371	struct ieee80211_node *ni)
3372{
3373	struct ieee80211vap *vap = ni->ni_vap;
3374	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3375	struct ieee80211com *ic = ni->ni_ic;
3376	struct ieee80211_rateset *rs = &ni->ni_rates;
3377	uint16_t capinfo;
3378
3379	/*
3380	 * beacon frame format
3381	 *
3382	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3383	 * vendor extensions should be at the end, etc.
3384	 *
3385	 *	[8] time stamp
3386	 *	[2] beacon interval
3387	 *	[2] cabability information
3388	 *	[tlv] ssid
3389	 *	[tlv] supported rates
3390	 *	[3] parameter set (DS)
3391	 *	[8] CF parameter set (optional)
3392	 *	[tlv] parameter set (IBSS/TIM)
3393	 *	[tlv] country (optional)
3394	 *	[3] power control (optional)
3395	 *	[5] channel switch announcement (CSA) (optional)
3396	 * XXX TODO: Quiet
3397	 * XXX TODO: IBSS DFS
3398	 * XXX TODO: TPC report
3399	 *	[tlv] extended rate phy (ERP)
3400	 *	[tlv] extended supported rates
3401	 *	[tlv] RSN parameters
3402	 * XXX TODO: BSSLOAD
3403	 * (XXX EDCA parameter set, QoS capability?)
3404	 * XXX TODO: AP channel report
3405	 *
3406	 *	[tlv] HT capabilities
3407	 *	[tlv] HT information
3408	 *	XXX TODO: 20/40 BSS coexistence
3409	 * Mesh:
3410	 * XXX TODO: Meshid
3411	 * XXX TODO: mesh config
3412	 * XXX TODO: mesh awake window
3413	 * XXX TODO: beacon timing (mesh, etc)
3414	 * XXX TODO: MCCAOP Advertisement Overview
3415	 * XXX TODO: MCCAOP Advertisement
3416	 * XXX TODO: Mesh channel switch parameters
3417	 * VHT:
3418	 * XXX TODO: VHT capabilities
3419	 * XXX TODO: VHT operation
3420	 * XXX TODO: VHT transmit power envelope
3421	 * XXX TODO: channel switch wrapper element
3422	 * XXX TODO: extended BSS load element
3423	 *
3424	 * XXX Vendor-specific OIDs (e.g. Atheros)
3425	 *	[tlv] WPA parameters
3426	 *	[tlv] WME parameters
3427	 *	[tlv] Vendor OUI HT capabilities (optional)
3428	 *	[tlv] Vendor OUI HT information (optional)
3429	 *	[tlv] Atheros capabilities (optional)
3430	 *	[tlv] TDMA parameters (optional)
3431	 *	[tlv] Mesh ID (MBSS)
3432	 *	[tlv] Mesh Conf (MBSS)
3433	 *	[tlv] application data (optional)
3434	 */
3435
3436	memset(bo, 0, sizeof(*bo));
3437
3438	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3439	frm += 8;
3440	*(uint16_t *)frm = htole16(ni->ni_intval);
3441	frm += 2;
3442	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3443	bo->bo_caps = (uint16_t *)frm;
3444	*(uint16_t *)frm = htole16(capinfo);
3445	frm += 2;
3446	*frm++ = IEEE80211_ELEMID_SSID;
3447	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3448		*frm++ = ni->ni_esslen;
3449		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3450		frm += ni->ni_esslen;
3451	} else
3452		*frm++ = 0;
3453	frm = ieee80211_add_rates(frm, rs);
3454	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3455		*frm++ = IEEE80211_ELEMID_DSPARMS;
3456		*frm++ = 1;
3457		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3458	}
3459	if (ic->ic_flags & IEEE80211_F_PCF) {
3460		bo->bo_cfp = frm;
3461		frm = ieee80211_add_cfparms(frm, ic);
3462	}
3463	bo->bo_tim = frm;
3464	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3465		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3466		*frm++ = 2;
3467		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3468		bo->bo_tim_len = 0;
3469	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3470	    vap->iv_opmode == IEEE80211_M_MBSS) {
3471		/* TIM IE is the same for Mesh and Hostap */
3472		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3473
3474		tie->tim_ie = IEEE80211_ELEMID_TIM;
3475		tie->tim_len = 4;	/* length */
3476		tie->tim_count = 0;	/* DTIM count */
3477		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3478		tie->tim_bitctl = 0;	/* bitmap control */
3479		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3480		frm += sizeof(struct ieee80211_tim_ie);
3481		bo->bo_tim_len = 1;
3482	}
3483	bo->bo_tim_trailer = frm;
3484	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3485	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3486		frm = ieee80211_add_countryie(frm, ic);
3487	if (vap->iv_flags & IEEE80211_F_DOTH) {
3488		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3489			frm = ieee80211_add_powerconstraint(frm, vap);
3490		bo->bo_csa = frm;
3491		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3492			frm = ieee80211_add_csa(frm, vap);
3493	} else
3494		bo->bo_csa = frm;
3495
3496	bo->bo_quiet = NULL;
3497	if (vap->iv_flags & IEEE80211_F_DOTH) {
3498		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3499		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3500		    (vap->iv_quiet == 1)) {
3501			/*
3502			 * We only insert the quiet IE offset if
3503			 * the quiet IE is enabled.  Otherwise don't
3504			 * put it here or we'll just overwrite
3505			 * some other beacon contents.
3506			 */
3507			if (vap->iv_quiet) {
3508				bo->bo_quiet = frm;
3509				frm = ieee80211_add_quiet(frm,vap, 0);
3510			}
3511		}
3512	}
3513
3514	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3515		bo->bo_erp = frm;
3516		frm = ieee80211_add_erp(frm, vap);
3517	}
3518	frm = ieee80211_add_xrates(frm, rs);
3519	frm = ieee80211_add_rsn(frm, vap);
3520	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3521		frm = ieee80211_add_htcap(frm, ni);
3522		bo->bo_htinfo = frm;
3523		frm = ieee80211_add_htinfo(frm, ni);
3524	}
3525
3526	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3527		frm = ieee80211_add_vhtcap(frm, ni);
3528		bo->bo_vhtinfo = frm;
3529		frm = ieee80211_add_vhtinfo(frm, ni);
3530		/* Transmit power envelope */
3531		/* Channel switch wrapper element */
3532		/* Extended bss load element */
3533	}
3534
3535	frm = ieee80211_add_wpa(frm, vap);
3536	if (vap->iv_flags & IEEE80211_F_WME) {
3537		bo->bo_wme = frm;
3538		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3539		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3540	}
3541	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3542	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3543		frm = ieee80211_add_htcap_vendor(frm, ni);
3544		frm = ieee80211_add_htinfo_vendor(frm, ni);
3545	}
3546
3547#ifdef IEEE80211_SUPPORT_SUPERG
3548	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3549		bo->bo_ath = frm;
3550		frm = ieee80211_add_athcaps(frm, ni);
3551	}
3552#endif
3553#ifdef IEEE80211_SUPPORT_TDMA
3554	if (vap->iv_caps & IEEE80211_C_TDMA) {
3555		bo->bo_tdma = frm;
3556		frm = ieee80211_add_tdma(frm, vap);
3557	}
3558#endif
3559	if (vap->iv_appie_beacon != NULL) {
3560		bo->bo_appie = frm;
3561		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3562		frm = add_appie(frm, vap->iv_appie_beacon);
3563	}
3564
3565	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3566#ifdef IEEE80211_SUPPORT_MESH
3567	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3568		frm = ieee80211_add_meshid(frm, vap);
3569		bo->bo_meshconf = frm;
3570		frm = ieee80211_add_meshconf(frm, vap);
3571	}
3572#endif
3573	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3574	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3575	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3576}
3577
3578/*
3579 * Allocate a beacon frame and fillin the appropriate bits.
3580 */
3581struct mbuf *
3582ieee80211_beacon_alloc(struct ieee80211_node *ni)
3583{
3584	struct ieee80211vap *vap = ni->ni_vap;
3585	struct ieee80211com *ic = ni->ni_ic;
3586	struct ifnet *ifp = vap->iv_ifp;
3587	struct ieee80211_frame *wh;
3588	struct mbuf *m;
3589	int pktlen;
3590	uint8_t *frm;
3591
3592	/*
3593	 * Update the "We're putting the quiet IE in the beacon" state.
3594	 */
3595	if (vap->iv_quiet == 1)
3596		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3597	else if (vap->iv_quiet == 0)
3598		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3599
3600	/*
3601	 * beacon frame format
3602	 *
3603	 * Note: This needs updating for 802.11-2012.
3604	 *
3605	 *	[8] time stamp
3606	 *	[2] beacon interval
3607	 *	[2] cabability information
3608	 *	[tlv] ssid
3609	 *	[tlv] supported rates
3610	 *	[3] parameter set (DS)
3611	 *	[8] CF parameter set (optional)
3612	 *	[tlv] parameter set (IBSS/TIM)
3613	 *	[tlv] country (optional)
3614	 *	[3] power control (optional)
3615	 *	[5] channel switch announcement (CSA) (optional)
3616	 *	[tlv] extended rate phy (ERP)
3617	 *	[tlv] extended supported rates
3618	 *	[tlv] RSN parameters
3619	 *	[tlv] HT capabilities
3620	 *	[tlv] HT information
3621	 *	[tlv] VHT capabilities
3622	 *	[tlv] VHT operation
3623	 *	[tlv] Vendor OUI HT capabilities (optional)
3624	 *	[tlv] Vendor OUI HT information (optional)
3625	 * XXX Vendor-specific OIDs (e.g. Atheros)
3626	 *	[tlv] WPA parameters
3627	 *	[tlv] WME parameters
3628	 *	[tlv] TDMA parameters (optional)
3629	 *	[tlv] Mesh ID (MBSS)
3630	 *	[tlv] Mesh Conf (MBSS)
3631	 *	[tlv] application data (optional)
3632	 * NB: we allocate the max space required for the TIM bitmap.
3633	 * XXX how big is this?
3634	 */
3635	pktlen =   8					/* time stamp */
3636		 + sizeof(uint16_t)			/* beacon interval */
3637		 + sizeof(uint16_t)			/* capabilities */
3638		 + 2 + ni->ni_esslen			/* ssid */
3639	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3640	         + 2 + 1				/* DS parameters */
3641		 + 2 + 6				/* CF parameters */
3642		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3643		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3644		 + 2 + 1				/* power control */
3645		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3646		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3647		 + 2 + 1				/* ERP */
3648	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3649		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3650			2*sizeof(struct ieee80211_ie_wpa) : 0)
3651		 /* XXX conditional? */
3652		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3653		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3654		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3655		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3656		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3657			sizeof(struct ieee80211_wme_param) : 0)
3658#ifdef IEEE80211_SUPPORT_SUPERG
3659		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3660#endif
3661#ifdef IEEE80211_SUPPORT_TDMA
3662		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3663			sizeof(struct ieee80211_tdma_param) : 0)
3664#endif
3665#ifdef IEEE80211_SUPPORT_MESH
3666		 + 2 + ni->ni_meshidlen
3667		 + sizeof(struct ieee80211_meshconf_ie)
3668#endif
3669		 + IEEE80211_MAX_APPIE
3670		 ;
3671	m = ieee80211_getmgtframe(&frm,
3672		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3673	if (m == NULL) {
3674		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3675			"%s: cannot get buf; size %u\n", __func__, pktlen);
3676		vap->iv_stats.is_tx_nobuf++;
3677		return NULL;
3678	}
3679	ieee80211_beacon_construct(m, frm, ni);
3680
3681	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3682	KASSERT(m != NULL, ("no space for 802.11 header?"));
3683	wh = mtod(m, struct ieee80211_frame *);
3684	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3685	    IEEE80211_FC0_SUBTYPE_BEACON;
3686	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3687	*(uint16_t *)wh->i_dur = 0;
3688	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3689	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3690	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3691	*(uint16_t *)wh->i_seq = 0;
3692
3693	return m;
3694}
3695
3696/*
3697 * Update the dynamic parts of a beacon frame based on the current state.
3698 */
3699int
3700ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3701{
3702	struct ieee80211vap *vap = ni->ni_vap;
3703	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3704	struct ieee80211com *ic = ni->ni_ic;
3705	int len_changed = 0;
3706	uint16_t capinfo;
3707	struct ieee80211_frame *wh;
3708	ieee80211_seq seqno;
3709
3710	IEEE80211_LOCK(ic);
3711	/*
3712	 * Handle 11h channel change when we've reached the count.
3713	 * We must recalculate the beacon frame contents to account
3714	 * for the new channel.  Note we do this only for the first
3715	 * vap that reaches this point; subsequent vaps just update
3716	 * their beacon state to reflect the recalculated channel.
3717	 */
3718	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3719	    vap->iv_csa_count == ic->ic_csa_count) {
3720		vap->iv_csa_count = 0;
3721		/*
3722		 * Effect channel change before reconstructing the beacon
3723		 * frame contents as many places reference ni_chan.
3724		 */
3725		if (ic->ic_csa_newchan != NULL)
3726			ieee80211_csa_completeswitch(ic);
3727		/*
3728		 * NB: ieee80211_beacon_construct clears all pending
3729		 * updates in bo_flags so we don't need to explicitly
3730		 * clear IEEE80211_BEACON_CSA.
3731		 */
3732		ieee80211_beacon_construct(m,
3733		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3734
3735		/* XXX do WME aggressive mode processing? */
3736		IEEE80211_UNLOCK(ic);
3737		return 1;		/* just assume length changed */
3738	}
3739
3740	/*
3741	 * Handle the quiet time element being added and removed.
3742	 * Again, for now we just cheat and reconstruct the whole
3743	 * beacon - that way the gap is provided as appropriate.
3744	 *
3745	 * So, track whether we have already added the IE versus
3746	 * whether we want to be adding the IE.
3747	 */
3748	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3749	    (vap->iv_quiet == 0)) {
3750		/*
3751		 * Quiet time beacon IE enabled, but it's disabled;
3752		 * recalc
3753		 */
3754		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3755		ieee80211_beacon_construct(m,
3756		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3757		/* XXX do WME aggressive mode processing? */
3758		IEEE80211_UNLOCK(ic);
3759		return 1;		/* just assume length changed */
3760	}
3761
3762	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3763	    (vap->iv_quiet == 1)) {
3764		/*
3765		 * Quiet time beacon IE disabled, but it's now enabled;
3766		 * recalc
3767		 */
3768		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3769		ieee80211_beacon_construct(m,
3770		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3771		/* XXX do WME aggressive mode processing? */
3772		IEEE80211_UNLOCK(ic);
3773		return 1;		/* just assume length changed */
3774	}
3775
3776	wh = mtod(m, struct ieee80211_frame *);
3777
3778	/*
3779	 * XXX TODO Strictly speaking this should be incremented with the TX
3780	 * lock held so as to serialise access to the non-qos TID sequence
3781	 * number space.
3782	 *
3783	 * If the driver identifies it does its own TX seqno management then
3784	 * we can skip this (and still not do the TX seqno.)
3785	 */
3786	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3787	*(uint16_t *)&wh->i_seq[0] =
3788		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3789	M_SEQNO_SET(m, seqno);
3790
3791	/* XXX faster to recalculate entirely or just changes? */
3792	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3793	*bo->bo_caps = htole16(capinfo);
3794
3795	if (vap->iv_flags & IEEE80211_F_WME) {
3796		struct ieee80211_wme_state *wme = &ic->ic_wme;
3797
3798		/*
3799		 * Check for aggressive mode change.  When there is
3800		 * significant high priority traffic in the BSS
3801		 * throttle back BE traffic by using conservative
3802		 * parameters.  Otherwise BE uses aggressive params
3803		 * to optimize performance of legacy/non-QoS traffic.
3804		 */
3805		if (wme->wme_flags & WME_F_AGGRMODE) {
3806			if (wme->wme_hipri_traffic >
3807			    wme->wme_hipri_switch_thresh) {
3808				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3809				    "%s: traffic %u, disable aggressive mode\n",
3810				    __func__, wme->wme_hipri_traffic);
3811				wme->wme_flags &= ~WME_F_AGGRMODE;
3812				ieee80211_wme_updateparams_locked(vap);
3813				wme->wme_hipri_traffic =
3814					wme->wme_hipri_switch_hysteresis;
3815			} else
3816				wme->wme_hipri_traffic = 0;
3817		} else {
3818			if (wme->wme_hipri_traffic <=
3819			    wme->wme_hipri_switch_thresh) {
3820				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3821				    "%s: traffic %u, enable aggressive mode\n",
3822				    __func__, wme->wme_hipri_traffic);
3823				wme->wme_flags |= WME_F_AGGRMODE;
3824				ieee80211_wme_updateparams_locked(vap);
3825				wme->wme_hipri_traffic = 0;
3826			} else
3827				wme->wme_hipri_traffic =
3828					wme->wme_hipri_switch_hysteresis;
3829		}
3830		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3831			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3832			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3833			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3834		}
3835	}
3836
3837	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3838		ieee80211_ht_update_beacon(vap, bo);
3839		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3840	}
3841#ifdef IEEE80211_SUPPORT_TDMA
3842	if (vap->iv_caps & IEEE80211_C_TDMA) {
3843		/*
3844		 * NB: the beacon is potentially updated every TBTT.
3845		 */
3846		ieee80211_tdma_update_beacon(vap, bo);
3847	}
3848#endif
3849#ifdef IEEE80211_SUPPORT_MESH
3850	if (vap->iv_opmode == IEEE80211_M_MBSS)
3851		ieee80211_mesh_update_beacon(vap, bo);
3852#endif
3853
3854	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3855	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3856		struct ieee80211_tim_ie *tie =
3857			(struct ieee80211_tim_ie *) bo->bo_tim;
3858		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3859			u_int timlen, timoff, i;
3860			/*
3861			 * ATIM/DTIM needs updating.  If it fits in the
3862			 * current space allocated then just copy in the
3863			 * new bits.  Otherwise we need to move any trailing
3864			 * data to make room.  Note that we know there is
3865			 * contiguous space because ieee80211_beacon_allocate
3866			 * insures there is space in the mbuf to write a
3867			 * maximal-size virtual bitmap (based on iv_max_aid).
3868			 */
3869			/*
3870			 * Calculate the bitmap size and offset, copy any
3871			 * trailer out of the way, and then copy in the
3872			 * new bitmap and update the information element.
3873			 * Note that the tim bitmap must contain at least
3874			 * one byte and any offset must be even.
3875			 */
3876			if (vap->iv_ps_pending != 0) {
3877				timoff = 128;		/* impossibly large */
3878				for (i = 0; i < vap->iv_tim_len; i++)
3879					if (vap->iv_tim_bitmap[i]) {
3880						timoff = i &~ 1;
3881						break;
3882					}
3883				KASSERT(timoff != 128, ("tim bitmap empty!"));
3884				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3885					if (vap->iv_tim_bitmap[i])
3886						break;
3887				timlen = 1 + (i - timoff);
3888			} else {
3889				timoff = 0;
3890				timlen = 1;
3891			}
3892
3893			/*
3894			 * TODO: validate this!
3895			 */
3896			if (timlen != bo->bo_tim_len) {
3897				/* copy up/down trailer */
3898				int adjust = tie->tim_bitmap+timlen
3899					   - bo->bo_tim_trailer;
3900				ovbcopy(bo->bo_tim_trailer,
3901				    bo->bo_tim_trailer+adjust,
3902				    bo->bo_tim_trailer_len);
3903				bo->bo_tim_trailer += adjust;
3904				bo->bo_erp += adjust;
3905				bo->bo_htinfo += adjust;
3906				bo->bo_vhtinfo += adjust;
3907#ifdef IEEE80211_SUPPORT_SUPERG
3908				bo->bo_ath += adjust;
3909#endif
3910#ifdef IEEE80211_SUPPORT_TDMA
3911				bo->bo_tdma += adjust;
3912#endif
3913#ifdef IEEE80211_SUPPORT_MESH
3914				bo->bo_meshconf += adjust;
3915#endif
3916				bo->bo_appie += adjust;
3917				bo->bo_wme += adjust;
3918				bo->bo_csa += adjust;
3919				bo->bo_quiet += adjust;
3920				bo->bo_tim_len = timlen;
3921
3922				/* update information element */
3923				tie->tim_len = 3 + timlen;
3924				tie->tim_bitctl = timoff;
3925				len_changed = 1;
3926			}
3927			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3928				bo->bo_tim_len);
3929
3930			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3931
3932			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3933				"%s: TIM updated, pending %u, off %u, len %u\n",
3934				__func__, vap->iv_ps_pending, timoff, timlen);
3935		}
3936		/* count down DTIM period */
3937		if (tie->tim_count == 0)
3938			tie->tim_count = tie->tim_period - 1;
3939		else
3940			tie->tim_count--;
3941		/* update state for buffered multicast frames on DTIM */
3942		if (mcast && tie->tim_count == 0)
3943			tie->tim_bitctl |= 1;
3944		else
3945			tie->tim_bitctl &= ~1;
3946		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3947			struct ieee80211_csa_ie *csa =
3948			    (struct ieee80211_csa_ie *) bo->bo_csa;
3949
3950			/*
3951			 * Insert or update CSA ie.  If we're just starting
3952			 * to count down to the channel switch then we need
3953			 * to insert the CSA ie.  Otherwise we just need to
3954			 * drop the count.  The actual change happens above
3955			 * when the vap's count reaches the target count.
3956			 */
3957			if (vap->iv_csa_count == 0) {
3958				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3959				bo->bo_erp += sizeof(*csa);
3960				bo->bo_htinfo += sizeof(*csa);
3961				bo->bo_vhtinfo += sizeof(*csa);
3962				bo->bo_wme += sizeof(*csa);
3963#ifdef IEEE80211_SUPPORT_SUPERG
3964				bo->bo_ath += sizeof(*csa);
3965#endif
3966#ifdef IEEE80211_SUPPORT_TDMA
3967				bo->bo_tdma += sizeof(*csa);
3968#endif
3969#ifdef IEEE80211_SUPPORT_MESH
3970				bo->bo_meshconf += sizeof(*csa);
3971#endif
3972				bo->bo_appie += sizeof(*csa);
3973				bo->bo_csa_trailer_len += sizeof(*csa);
3974				bo->bo_quiet += sizeof(*csa);
3975				bo->bo_tim_trailer_len += sizeof(*csa);
3976				m->m_len += sizeof(*csa);
3977				m->m_pkthdr.len += sizeof(*csa);
3978
3979				ieee80211_add_csa(bo->bo_csa, vap);
3980			} else
3981				csa->csa_count--;
3982			vap->iv_csa_count++;
3983			/* NB: don't clear IEEE80211_BEACON_CSA */
3984		}
3985
3986		/*
3987		 * Only add the quiet time IE if we've enabled it
3988		 * as appropriate.
3989		 */
3990		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3991		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3992			if (vap->iv_quiet &&
3993			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3994				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3995			}
3996		}
3997		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3998			/*
3999			 * ERP element needs updating.
4000			 */
4001			(void) ieee80211_add_erp(bo->bo_erp, vap);
4002			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4003		}
4004#ifdef IEEE80211_SUPPORT_SUPERG
4005		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4006			ieee80211_add_athcaps(bo->bo_ath, ni);
4007			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4008		}
4009#endif
4010	}
4011	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4012		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4013		int aielen;
4014		uint8_t *frm;
4015
4016		aielen = 0;
4017		if (aie != NULL)
4018			aielen += aie->ie_len;
4019		if (aielen != bo->bo_appie_len) {
4020			/* copy up/down trailer */
4021			int adjust = aielen - bo->bo_appie_len;
4022			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4023				bo->bo_tim_trailer_len);
4024			bo->bo_tim_trailer += adjust;
4025			bo->bo_appie += adjust;
4026			bo->bo_appie_len = aielen;
4027
4028			len_changed = 1;
4029		}
4030		frm = bo->bo_appie;
4031		if (aie != NULL)
4032			frm  = add_appie(frm, aie);
4033		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4034	}
4035	IEEE80211_UNLOCK(ic);
4036
4037	return len_changed;
4038}
4039
4040/*
4041 * Do Ethernet-LLC encapsulation for each payload in a fast frame
4042 * tunnel encapsulation.  The frame is assumed to have an Ethernet
4043 * header at the front that must be stripped before prepending the
4044 * LLC followed by the Ethernet header passed in (with an Ethernet
4045 * type that specifies the payload size).
4046 */
4047struct mbuf *
4048ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4049	const struct ether_header *eh)
4050{
4051	struct llc *llc;
4052	uint16_t payload;
4053
4054	/* XXX optimize by combining m_adj+M_PREPEND */
4055	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4056	llc = mtod(m, struct llc *);
4057	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4058	llc->llc_control = LLC_UI;
4059	llc->llc_snap.org_code[0] = 0;
4060	llc->llc_snap.org_code[1] = 0;
4061	llc->llc_snap.org_code[2] = 0;
4062	llc->llc_snap.ether_type = eh->ether_type;
4063	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4064
4065	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
4066	if (m == NULL) {		/* XXX cannot happen */
4067		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4068			"%s: no space for ether_header\n", __func__);
4069		vap->iv_stats.is_tx_nobuf++;
4070		return NULL;
4071	}
4072	ETHER_HEADER_COPY(mtod(m, void *), eh);
4073	mtod(m, struct ether_header *)->ether_type = htons(payload);
4074	return m;
4075}
4076
4077/*
4078 * Complete an mbuf transmission.
4079 *
4080 * For now, this simply processes a completed frame after the
4081 * driver has completed it's transmission and/or retransmission.
4082 * It assumes the frame is an 802.11 encapsulated frame.
4083 *
4084 * Later on it will grow to become the exit path for a given frame
4085 * from the driver and, depending upon how it's been encapsulated
4086 * and already transmitted, it may end up doing A-MPDU retransmission,
4087 * power save requeuing, etc.
4088 *
4089 * In order for the above to work, the driver entry point to this
4090 * must not hold any driver locks.  Thus, the driver needs to delay
4091 * any actual mbuf completion until it can release said locks.
4092 *
4093 * This frees the mbuf and if the mbuf has a node reference,
4094 * the node reference will be freed.
4095 */
4096void
4097ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4098{
4099
4100	if (ni != NULL) {
4101		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4102
4103		if (status == 0) {
4104			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4105			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4106			if (m->m_flags & M_MCAST)
4107				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4108		} else
4109			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4110		if (m->m_flags & M_TXCB)
4111			ieee80211_process_callback(ni, m, status);
4112		ieee80211_free_node(ni);
4113	}
4114	m_freem(m);
4115}
4116