1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31/*
32 * IEEE 802.11 support (FreeBSD-specific code)
33 */
34#include "opt_wlan.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/eventhandler.h>
39#include <sys/kernel.h>
40#include <sys/linker.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/module.h>
44#include <sys/priv.h>
45#include <sys/proc.h>
46#include <sys/sysctl.h>
47
48#include <sys/socket.h>
49
50#include <net/bpf.h>
51#include <net/if.h>
52#include <net/if_var.h>
53#include <net/if_dl.h>
54#include <net/if_clone.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57#include <net/ethernet.h>
58#include <net/route.h>
59#include <net/vnet.h>
60
61#include <net80211/ieee80211_var.h>
62#include <net80211/ieee80211_input.h>
63
64SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
65
66#ifdef IEEE80211_DEBUG
67static int	ieee80211_debug = 0;
68SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
69	    0, "debugging printfs");
70#endif
71
72static const char wlanname[] = "wlan";
73static struct if_clone *wlan_cloner;
74
75/*
76 * priv(9) NET80211 checks.
77 * Return 0 if operation is allowed, E* (usually EPERM) otherwise.
78 */
79int
80ieee80211_priv_check_vap_getkey(u_long cmd __unused,
81     struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
82{
83
84	return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
85}
86
87int
88ieee80211_priv_check_vap_manage(u_long cmd __unused,
89     struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
90{
91
92	return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
93}
94
95int
96ieee80211_priv_check_vap_setmac(u_long cmd __unused,
97     struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
98{
99
100	return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
101}
102
103int
104ieee80211_priv_check_create_vap(u_long cmd __unused,
105    struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
106{
107
108	return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
109}
110
111static int
112wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
113{
114	struct ieee80211_clone_params cp;
115	struct ieee80211vap *vap;
116	struct ieee80211com *ic;
117	int error;
118
119	error = ieee80211_priv_check_create_vap(0, NULL, NULL);
120	if (error)
121		return error;
122
123	error = copyin(params, &cp, sizeof(cp));
124	if (error)
125		return error;
126	ic = ieee80211_find_com(cp.icp_parent);
127	if (ic == NULL)
128		return ENXIO;
129	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
130		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
131		    cp.icp_opmode);
132		return EINVAL;
133	}
134	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
135		ic_printf(ic, "%s mode not supported\n",
136		    ieee80211_opmode_name[cp.icp_opmode]);
137		return EOPNOTSUPP;
138	}
139	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
140#ifdef IEEE80211_SUPPORT_TDMA
141	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
142#else
143	    (1)
144#endif
145	) {
146		ic_printf(ic, "TDMA not supported\n");
147		return EOPNOTSUPP;
148	}
149	vap = ic->ic_vap_create(ic, wlanname, unit,
150			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
151			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
152			    cp.icp_macaddr : ic->ic_macaddr);
153
154	return (vap == NULL ? EIO : 0);
155}
156
157static void
158wlan_clone_destroy(struct ifnet *ifp)
159{
160	struct ieee80211vap *vap = ifp->if_softc;
161	struct ieee80211com *ic = vap->iv_ic;
162
163	ic->ic_vap_delete(vap);
164}
165
166void
167ieee80211_vap_destroy(struct ieee80211vap *vap)
168{
169	CURVNET_SET(vap->iv_ifp->if_vnet);
170	if_clone_destroyif(wlan_cloner, vap->iv_ifp);
171	CURVNET_RESTORE();
172}
173
174int
175ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
176{
177	int msecs = ticks_to_msecs(*(int *)arg1);
178	int error;
179
180	error = sysctl_handle_int(oidp, &msecs, 0, req);
181	if (error || !req->newptr)
182		return error;
183	*(int *)arg1 = msecs_to_ticks(msecs);
184	return 0;
185}
186
187static int
188ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
189{
190	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
191	int error;
192
193	error = sysctl_handle_int(oidp, &inact, 0, req);
194	if (error || !req->newptr)
195		return error;
196	*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
197	return 0;
198}
199
200static int
201ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
202{
203	struct ieee80211com *ic = arg1;
204
205	return SYSCTL_OUT_STR(req, ic->ic_name);
206}
207
208static int
209ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
210{
211	struct ieee80211com *ic = arg1;
212	int t = 0, error;
213
214	error = sysctl_handle_int(oidp, &t, 0, req);
215	if (error || !req->newptr)
216		return error;
217	IEEE80211_LOCK(ic);
218	ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
219	IEEE80211_UNLOCK(ic);
220	return 0;
221}
222
223/*
224 * For now, just restart everything.
225 *
226 * Later on, it'd be nice to have a separate VAP restart to
227 * full-device restart.
228 */
229static int
230ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
231{
232	struct ieee80211vap *vap = arg1;
233	int t = 0, error;
234
235	error = sysctl_handle_int(oidp, &t, 0, req);
236	if (error || !req->newptr)
237		return error;
238
239	ieee80211_restart_all(vap->iv_ic);
240	return 0;
241}
242
243void
244ieee80211_sysctl_attach(struct ieee80211com *ic)
245{
246}
247
248void
249ieee80211_sysctl_detach(struct ieee80211com *ic)
250{
251}
252
253void
254ieee80211_sysctl_vattach(struct ieee80211vap *vap)
255{
256	struct ifnet *ifp = vap->iv_ifp;
257	struct sysctl_ctx_list *ctx;
258	struct sysctl_oid *oid;
259	char num[14];			/* sufficient for 32 bits */
260
261	ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
262		M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
263	if (ctx == NULL) {
264		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
265			__func__);
266		return;
267	}
268	sysctl_ctx_init(ctx);
269	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
270	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
271		OID_AUTO, num, CTLFLAG_RD, NULL, "");
272	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
273		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
274		ieee80211_sysctl_parent, "A", "parent device");
275	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
276		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
277		"driver capabilities");
278#ifdef IEEE80211_DEBUG
279	vap->iv_debug = ieee80211_debug;
280	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
281		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
282		"control debugging printfs");
283#endif
284	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
285		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
286		"consecutive beacon misses before scanning");
287	/* XXX inherit from tunables */
288	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
289		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
290		ieee80211_sysctl_inact, "I",
291		"station inactivity timeout (sec)");
292	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
293		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
294		ieee80211_sysctl_inact, "I",
295		"station inactivity probe timeout (sec)");
296	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
297		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
298		ieee80211_sysctl_inact, "I",
299		"station authentication timeout (sec)");
300	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
301		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
302		ieee80211_sysctl_inact, "I",
303		"station initial state timeout (sec)");
304	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
305		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
306			"ampdu_mintraffic_bk", CTLFLAG_RW,
307			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
308			"BK traffic tx aggr threshold (pps)");
309		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
310			"ampdu_mintraffic_be", CTLFLAG_RW,
311			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
312			"BE traffic tx aggr threshold (pps)");
313		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
314			"ampdu_mintraffic_vo", CTLFLAG_RW,
315			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
316			"VO traffic tx aggr threshold (pps)");
317		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
318			"ampdu_mintraffic_vi", CTLFLAG_RW,
319			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
320			"VI traffic tx aggr threshold (pps)");
321	}
322
323	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
324		"force_restart", CTLTYPE_INT | CTLFLAG_RW, vap, 0,
325		ieee80211_sysctl_vap_restart, "I",
326		"force a VAP restart");
327
328	if (vap->iv_caps & IEEE80211_C_DFS) {
329		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
330			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
331			ieee80211_sysctl_radar, "I", "simulate radar event");
332	}
333	vap->iv_sysctl = ctx;
334	vap->iv_oid = oid;
335}
336
337void
338ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
339{
340
341	if (vap->iv_sysctl != NULL) {
342		sysctl_ctx_free(vap->iv_sysctl);
343		IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
344		vap->iv_sysctl = NULL;
345	}
346}
347
348int
349ieee80211_com_vincref(struct ieee80211vap *vap)
350{
351	uint32_t ostate;
352
353	ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
354
355	if (ostate & IEEE80211_COM_DETACHED) {
356		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
357		return (ENETDOWN);
358	}
359
360	if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
361	    IEEE80211_COM_REF_MAX) {
362		atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
363		return (EOVERFLOW);
364	}
365
366	return (0);
367}
368
369void
370ieee80211_com_vdecref(struct ieee80211vap *vap)
371{
372	uint32_t ostate;
373
374	ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
375
376	KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
377	    ("com reference counter underflow"));
378
379	(void) ostate;
380}
381
382void
383ieee80211_com_vdetach(struct ieee80211vap *vap)
384{
385	int sleep_time;
386
387	sleep_time = msecs_to_ticks(250);
388	atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
389	while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
390	    IEEE80211_COM_REF) != 0)
391		pause("comref", sleep_time);
392}
393
394int
395ieee80211_node_dectestref(struct ieee80211_node *ni)
396{
397	/* XXX need equivalent of atomic_dec_and_test */
398	atomic_subtract_int(&ni->ni_refcnt, 1);
399	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
400}
401
402void
403ieee80211_drain_ifq(struct ifqueue *ifq)
404{
405	struct ieee80211_node *ni;
406	struct mbuf *m;
407
408	for (;;) {
409		IF_DEQUEUE(ifq, m);
410		if (m == NULL)
411			break;
412
413		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
414		KASSERT(ni != NULL, ("frame w/o node"));
415		ieee80211_free_node(ni);
416		m->m_pkthdr.rcvif = NULL;
417
418		m_freem(m);
419	}
420}
421
422void
423ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
424{
425	struct ieee80211_node *ni;
426	struct mbuf *m, **mprev;
427
428	IF_LOCK(ifq);
429	mprev = &ifq->ifq_head;
430	while ((m = *mprev) != NULL) {
431		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
432		if (ni != NULL && ni->ni_vap == vap) {
433			*mprev = m->m_nextpkt;		/* remove from list */
434			ifq->ifq_len--;
435
436			m_freem(m);
437			ieee80211_free_node(ni);	/* reclaim ref */
438		} else
439			mprev = &m->m_nextpkt;
440	}
441	/* recalculate tail ptr */
442	m = ifq->ifq_head;
443	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
444		;
445	ifq->ifq_tail = m;
446	IF_UNLOCK(ifq);
447}
448
449/*
450 * As above, for mbufs allocated with m_gethdr/MGETHDR
451 * or initialized by M_COPY_PKTHDR.
452 */
453#define	MC_ALIGN(m, len)						\
454do {									\
455	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
456} while (/* CONSTCOND */ 0)
457
458/*
459 * Allocate and setup a management frame of the specified
460 * size.  We return the mbuf and a pointer to the start
461 * of the contiguous data area that's been reserved based
462 * on the packet length.  The data area is forced to 32-bit
463 * alignment and the buffer length to a multiple of 4 bytes.
464 * This is done mainly so beacon frames (that require this)
465 * can use this interface too.
466 */
467struct mbuf *
468ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
469{
470	struct mbuf *m;
471	u_int len;
472
473	/*
474	 * NB: we know the mbuf routines will align the data area
475	 *     so we don't need to do anything special.
476	 */
477	len = roundup2(headroom + pktlen, 4);
478	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
479	if (len < MINCLSIZE) {
480		m = m_gethdr(M_NOWAIT, MT_DATA);
481		/*
482		 * Align the data in case additional headers are added.
483		 * This should only happen when a WEP header is added
484		 * which only happens for shared key authentication mgt
485		 * frames which all fit in MHLEN.
486		 */
487		if (m != NULL)
488			M_ALIGN(m, len);
489	} else {
490		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
491		if (m != NULL)
492			MC_ALIGN(m, len);
493	}
494	if (m != NULL) {
495		m->m_data += headroom;
496		*frm = m->m_data;
497	}
498	return m;
499}
500
501#ifndef __NO_STRICT_ALIGNMENT
502/*
503 * Re-align the payload in the mbuf.  This is mainly used (right now)
504 * to handle IP header alignment requirements on certain architectures.
505 */
506struct mbuf *
507ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
508{
509	int pktlen, space;
510	struct mbuf *n;
511
512	pktlen = m->m_pkthdr.len;
513	space = pktlen + align;
514	if (space < MINCLSIZE)
515		n = m_gethdr(M_NOWAIT, MT_DATA);
516	else {
517		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
518		    space <= MCLBYTES ?     MCLBYTES :
519#if MJUMPAGESIZE != MCLBYTES
520		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
521#endif
522		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
523	}
524	if (__predict_true(n != NULL)) {
525		m_move_pkthdr(n, m);
526		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
527		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
528		n->m_len = pktlen;
529	} else {
530		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
531		    mtod(m, const struct ieee80211_frame *), NULL,
532		    "%s", "no mbuf to realign");
533		vap->iv_stats.is_rx_badalign++;
534	}
535	m_freem(m);
536	return n;
537}
538#endif /* !__NO_STRICT_ALIGNMENT */
539
540int
541ieee80211_add_callback(struct mbuf *m,
542	void (*func)(struct ieee80211_node *, void *, int), void *arg)
543{
544	struct m_tag *mtag;
545	struct ieee80211_cb *cb;
546
547	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
548			sizeof(struct ieee80211_cb), M_NOWAIT);
549	if (mtag == NULL)
550		return 0;
551
552	cb = (struct ieee80211_cb *)(mtag+1);
553	cb->func = func;
554	cb->arg = arg;
555	m_tag_prepend(m, mtag);
556	m->m_flags |= M_TXCB;
557	return 1;
558}
559
560int
561ieee80211_add_xmit_params(struct mbuf *m,
562    const struct ieee80211_bpf_params *params)
563{
564	struct m_tag *mtag;
565	struct ieee80211_tx_params *tx;
566
567	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
568	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
569	if (mtag == NULL)
570		return (0);
571
572	tx = (struct ieee80211_tx_params *)(mtag+1);
573	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
574	m_tag_prepend(m, mtag);
575	return (1);
576}
577
578int
579ieee80211_get_xmit_params(struct mbuf *m,
580    struct ieee80211_bpf_params *params)
581{
582	struct m_tag *mtag;
583	struct ieee80211_tx_params *tx;
584
585	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
586	    NULL);
587	if (mtag == NULL)
588		return (-1);
589	tx = (struct ieee80211_tx_params *)(mtag + 1);
590	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
591	return (0);
592}
593
594void
595ieee80211_process_callback(struct ieee80211_node *ni,
596	struct mbuf *m, int status)
597{
598	struct m_tag *mtag;
599
600	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
601	if (mtag != NULL) {
602		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
603		cb->func(ni, cb->arg, status);
604	}
605}
606
607/*
608 * Add RX parameters to the given mbuf.
609 *
610 * Returns 1 if OK, 0 on error.
611 */
612int
613ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
614{
615	struct m_tag *mtag;
616	struct ieee80211_rx_params *rx;
617
618	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
619	    sizeof(struct ieee80211_rx_stats), M_NOWAIT);
620	if (mtag == NULL)
621		return (0);
622
623	rx = (struct ieee80211_rx_params *)(mtag + 1);
624	memcpy(&rx->params, rxs, sizeof(*rxs));
625	m_tag_prepend(m, mtag);
626	return (1);
627}
628
629int
630ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
631{
632	struct m_tag *mtag;
633	struct ieee80211_rx_params *rx;
634
635	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
636	    NULL);
637	if (mtag == NULL)
638		return (-1);
639	rx = (struct ieee80211_rx_params *)(mtag + 1);
640	memcpy(rxs, &rx->params, sizeof(*rxs));
641	return (0);
642}
643
644const struct ieee80211_rx_stats *
645ieee80211_get_rx_params_ptr(struct mbuf *m)
646{
647	struct m_tag *mtag;
648	struct ieee80211_rx_params *rx;
649
650	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
651	    NULL);
652	if (mtag == NULL)
653		return (NULL);
654	rx = (struct ieee80211_rx_params *)(mtag + 1);
655	return (&rx->params);
656}
657
658
659/*
660 * Add TOA parameters to the given mbuf.
661 */
662int
663ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
664{
665	struct m_tag *mtag;
666	struct ieee80211_toa_params *rp;
667
668	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
669	    sizeof(struct ieee80211_toa_params), M_NOWAIT);
670	if (mtag == NULL)
671		return (0);
672
673	rp = (struct ieee80211_toa_params *)(mtag + 1);
674	memcpy(rp, p, sizeof(*rp));
675	m_tag_prepend(m, mtag);
676	return (1);
677}
678
679int
680ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
681{
682	struct m_tag *mtag;
683	struct ieee80211_toa_params *rp;
684
685	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
686	    NULL);
687	if (mtag == NULL)
688		return (0);
689	rp = (struct ieee80211_toa_params *)(mtag + 1);
690	if (p != NULL)
691		memcpy(p, rp, sizeof(*p));
692	return (1);
693}
694
695/*
696 * Transmit a frame to the parent interface.
697 */
698int
699ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
700{
701	int error;
702
703	/*
704	 * Assert the IC TX lock is held - this enforces the
705	 * processing -> queuing order is maintained
706	 */
707	IEEE80211_TX_LOCK_ASSERT(ic);
708	error = ic->ic_transmit(ic, m);
709	if (error) {
710		struct ieee80211_node *ni;
711
712		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
713
714		/* XXX number of fragments */
715		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
716		ieee80211_free_node(ni);
717		ieee80211_free_mbuf(m);
718	}
719	return (error);
720}
721
722/*
723 * Transmit a frame to the VAP interface.
724 */
725int
726ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
727{
728	struct ifnet *ifp = vap->iv_ifp;
729
730	/*
731	 * When transmitting via the VAP, we shouldn't hold
732	 * any IC TX lock as the VAP TX path will acquire it.
733	 */
734	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
735
736	return (ifp->if_transmit(ifp, m));
737
738}
739
740#include <sys/libkern.h>
741
742void
743get_random_bytes(void *p, size_t n)
744{
745	uint8_t *dp = p;
746
747	while (n > 0) {
748		uint32_t v = arc4random();
749		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
750		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
751		dp += sizeof(uint32_t), n -= nb;
752	}
753}
754
755/*
756 * Helper function for events that pass just a single mac address.
757 */
758static void
759notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
760{
761	struct ieee80211_join_event iev;
762
763	CURVNET_SET(ifp->if_vnet);
764	memset(&iev, 0, sizeof(iev));
765	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
766	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
767	CURVNET_RESTORE();
768}
769
770void
771ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
772{
773	struct ieee80211vap *vap = ni->ni_vap;
774	struct ifnet *ifp = vap->iv_ifp;
775
776	CURVNET_SET_QUIET(ifp->if_vnet);
777	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
778	    (ni == vap->iv_bss) ? "bss " : "");
779
780	if (ni == vap->iv_bss) {
781		notify_macaddr(ifp, newassoc ?
782		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
783		if_link_state_change(ifp, LINK_STATE_UP);
784	} else {
785		notify_macaddr(ifp, newassoc ?
786		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
787	}
788	CURVNET_RESTORE();
789}
790
791void
792ieee80211_notify_node_leave(struct ieee80211_node *ni)
793{
794	struct ieee80211vap *vap = ni->ni_vap;
795	struct ifnet *ifp = vap->iv_ifp;
796
797	CURVNET_SET_QUIET(ifp->if_vnet);
798	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
799	    (ni == vap->iv_bss) ? "bss " : "");
800
801	if (ni == vap->iv_bss) {
802		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
803		if_link_state_change(ifp, LINK_STATE_DOWN);
804	} else {
805		/* fire off wireless event station leaving */
806		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
807	}
808	CURVNET_RESTORE();
809}
810
811void
812ieee80211_notify_scan_done(struct ieee80211vap *vap)
813{
814	struct ifnet *ifp = vap->iv_ifp;
815
816	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
817
818	/* dispatch wireless event indicating scan completed */
819	CURVNET_SET(ifp->if_vnet);
820	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
821	CURVNET_RESTORE();
822}
823
824void
825ieee80211_notify_replay_failure(struct ieee80211vap *vap,
826	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
827	u_int64_t rsc, int tid)
828{
829	struct ifnet *ifp = vap->iv_ifp;
830
831	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
832	    "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
833	    k->wk_cipher->ic_name, tid,
834	    (intmax_t) rsc,
835	    (intmax_t) rsc,
836	    (intmax_t) k->wk_keyrsc[tid],
837	    (intmax_t) k->wk_keyrsc[tid],
838	    k->wk_keyix, k->wk_rxkeyix);
839
840	if (ifp != NULL) {		/* NB: for cipher test modules */
841		struct ieee80211_replay_event iev;
842
843		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
844		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
845		iev.iev_cipher = k->wk_cipher->ic_cipher;
846		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
847			iev.iev_keyix = k->wk_rxkeyix;
848		else
849			iev.iev_keyix = k->wk_keyix;
850		iev.iev_keyrsc = k->wk_keyrsc[tid];
851		iev.iev_rsc = rsc;
852		CURVNET_SET(ifp->if_vnet);
853		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
854		CURVNET_RESTORE();
855	}
856}
857
858void
859ieee80211_notify_michael_failure(struct ieee80211vap *vap,
860	const struct ieee80211_frame *wh, u_int keyix)
861{
862	struct ifnet *ifp = vap->iv_ifp;
863
864	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
865	    "michael MIC verification failed <keyix %u>", keyix);
866	vap->iv_stats.is_rx_tkipmic++;
867
868	if (ifp != NULL) {		/* NB: for cipher test modules */
869		struct ieee80211_michael_event iev;
870
871		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
872		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
873		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
874		iev.iev_keyix = keyix;
875		CURVNET_SET(ifp->if_vnet);
876		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
877		CURVNET_RESTORE();
878	}
879}
880
881void
882ieee80211_notify_wds_discover(struct ieee80211_node *ni)
883{
884	struct ieee80211vap *vap = ni->ni_vap;
885	struct ifnet *ifp = vap->iv_ifp;
886
887	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
888}
889
890void
891ieee80211_notify_csa(struct ieee80211com *ic,
892	const struct ieee80211_channel *c, int mode, int count)
893{
894	struct ieee80211_csa_event iev;
895	struct ieee80211vap *vap;
896	struct ifnet *ifp;
897
898	memset(&iev, 0, sizeof(iev));
899	iev.iev_flags = c->ic_flags;
900	iev.iev_freq = c->ic_freq;
901	iev.iev_ieee = c->ic_ieee;
902	iev.iev_mode = mode;
903	iev.iev_count = count;
904	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
905		ifp = vap->iv_ifp;
906		CURVNET_SET(ifp->if_vnet);
907		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
908		CURVNET_RESTORE();
909	}
910}
911
912void
913ieee80211_notify_radar(struct ieee80211com *ic,
914	const struct ieee80211_channel *c)
915{
916	struct ieee80211_radar_event iev;
917	struct ieee80211vap *vap;
918	struct ifnet *ifp;
919
920	memset(&iev, 0, sizeof(iev));
921	iev.iev_flags = c->ic_flags;
922	iev.iev_freq = c->ic_freq;
923	iev.iev_ieee = c->ic_ieee;
924	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
925		ifp = vap->iv_ifp;
926		CURVNET_SET(ifp->if_vnet);
927		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
928		CURVNET_RESTORE();
929	}
930}
931
932void
933ieee80211_notify_cac(struct ieee80211com *ic,
934	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
935{
936	struct ieee80211_cac_event iev;
937	struct ieee80211vap *vap;
938	struct ifnet *ifp;
939
940	memset(&iev, 0, sizeof(iev));
941	iev.iev_flags = c->ic_flags;
942	iev.iev_freq = c->ic_freq;
943	iev.iev_ieee = c->ic_ieee;
944	iev.iev_type = type;
945	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
946		ifp = vap->iv_ifp;
947		CURVNET_SET(ifp->if_vnet);
948		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
949		CURVNET_RESTORE();
950	}
951}
952
953void
954ieee80211_notify_node_deauth(struct ieee80211_node *ni)
955{
956	struct ieee80211vap *vap = ni->ni_vap;
957	struct ifnet *ifp = vap->iv_ifp;
958
959	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
960
961	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
962}
963
964void
965ieee80211_notify_node_auth(struct ieee80211_node *ni)
966{
967	struct ieee80211vap *vap = ni->ni_vap;
968	struct ifnet *ifp = vap->iv_ifp;
969
970	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
971
972	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
973}
974
975void
976ieee80211_notify_country(struct ieee80211vap *vap,
977	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
978{
979	struct ifnet *ifp = vap->iv_ifp;
980	struct ieee80211_country_event iev;
981
982	memset(&iev, 0, sizeof(iev));
983	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
984	iev.iev_cc[0] = cc[0];
985	iev.iev_cc[1] = cc[1];
986	CURVNET_SET(ifp->if_vnet);
987	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
988	CURVNET_RESTORE();
989}
990
991void
992ieee80211_notify_radio(struct ieee80211com *ic, int state)
993{
994	struct ieee80211_radio_event iev;
995	struct ieee80211vap *vap;
996	struct ifnet *ifp;
997
998	memset(&iev, 0, sizeof(iev));
999	iev.iev_state = state;
1000	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1001		ifp = vap->iv_ifp;
1002		CURVNET_SET(ifp->if_vnet);
1003		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1004		CURVNET_RESTORE();
1005	}
1006}
1007
1008void
1009ieee80211_notify_ifnet_change(struct ieee80211vap *vap)
1010{
1011	struct ifnet *ifp = vap->iv_ifp;
1012
1013	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1014	    "interface state change");
1015
1016	CURVNET_SET(ifp->if_vnet);
1017	rt_ifmsg(ifp);
1018	CURVNET_RESTORE();
1019}
1020
1021void
1022ieee80211_load_module(const char *modname)
1023{
1024
1025#ifdef notyet
1026	(void)kern_kldload(curthread, modname, NULL);
1027#else
1028	printf("%s: load the %s module by hand for now.\n", __func__, modname);
1029#endif
1030}
1031
1032static eventhandler_tag wlan_bpfevent;
1033static eventhandler_tag wlan_ifllevent;
1034
1035static void
1036bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1037{
1038	/* NB: identify vap's by if_init */
1039	if (dlt == DLT_IEEE802_11_RADIO &&
1040	    ifp->if_init == ieee80211_init) {
1041		struct ieee80211vap *vap = ifp->if_softc;
1042		/*
1043		 * Track bpf radiotap listener state.  We mark the vap
1044		 * to indicate if any listener is present and the com
1045		 * to indicate if any listener exists on any associated
1046		 * vap.  This flag is used by drivers to prepare radiotap
1047		 * state only when needed.
1048		 */
1049		if (attach) {
1050			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1051			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1052				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1053		} else if (!bpf_peers_present(vap->iv_rawbpf)) {
1054			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1055			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1056				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1057		}
1058	}
1059}
1060
1061/*
1062 * Change MAC address on the vap (if was not started).
1063 */
1064static void
1065wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1066{
1067	/* NB: identify vap's by if_init */
1068	if (ifp->if_init == ieee80211_init &&
1069	    (ifp->if_flags & IFF_UP) == 0) {
1070		struct ieee80211vap *vap = ifp->if_softc;
1071
1072		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1073	}
1074}
1075
1076/*
1077 * Fetch the VAP name.
1078 *
1079 * This returns a const char pointer suitable for debugging,
1080 * but don't expect it to stick around for much longer.
1081 */
1082const char *
1083ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1084{
1085	if (vap->iv_ifp == NULL)
1086		return "(none)";
1087	return vap->iv_ifp->if_xname;
1088}
1089
1090/*
1091 * Module glue.
1092 *
1093 * NB: the module name is "wlan" for compatibility with NetBSD.
1094 */
1095static int
1096wlan_modevent(module_t mod, int type, void *unused)
1097{
1098	switch (type) {
1099	case MOD_LOAD:
1100		if (bootverbose)
1101			printf("wlan: <802.11 Link Layer>\n");
1102		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1103		    bpf_track, 0, EVENTHANDLER_PRI_ANY);
1104		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1105		    wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1106		wlan_cloner = if_clone_simple(wlanname, wlan_clone_create,
1107		    wlan_clone_destroy, 0);
1108		return 0;
1109	case MOD_UNLOAD:
1110		if_clone_detach(wlan_cloner);
1111		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1112		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1113		return 0;
1114	}
1115	return EINVAL;
1116}
1117
1118static moduledata_t wlan_mod = {
1119	wlanname,
1120	wlan_modevent,
1121	0
1122};
1123DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1124MODULE_VERSION(wlan, 1);
1125MODULE_DEPEND(wlan, ether, 1, 1, 1);
1126#ifdef	IEEE80211_ALQ
1127MODULE_DEPEND(wlan, alq, 1, 1, 1);
1128#endif	/* IEEE80211_ALQ */
1129
1130