1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2001 Atsushi Onoe
5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32/*
33 * IEEE 802.11 generic handler
34 */
35#include "opt_wlan.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/kernel.h>
40#include <sys/malloc.h>
41#include <sys/socket.h>
42#include <sys/sbuf.h>
43
44#include <machine/stdarg.h>
45
46#include <net/if.h>
47#include <net/if_var.h>
48#include <net/if_dl.h>
49#include <net/if_media.h>
50#include <net/if_types.h>
51#include <net/ethernet.h>
52
53#include <net80211/ieee80211_var.h>
54#include <net80211/ieee80211_regdomain.h>
55#ifdef IEEE80211_SUPPORT_SUPERG
56#include <net80211/ieee80211_superg.h>
57#endif
58#include <net80211/ieee80211_ratectl.h>
59#include <net80211/ieee80211_vht.h>
60
61#include <net/bpf.h>
62
63const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
64	[IEEE80211_MODE_AUTO]	  = "auto",
65	[IEEE80211_MODE_11A]	  = "11a",
66	[IEEE80211_MODE_11B]	  = "11b",
67	[IEEE80211_MODE_11G]	  = "11g",
68	[IEEE80211_MODE_FH]	  = "FH",
69	[IEEE80211_MODE_TURBO_A]  = "turboA",
70	[IEEE80211_MODE_TURBO_G]  = "turboG",
71	[IEEE80211_MODE_STURBO_A] = "sturboA",
72	[IEEE80211_MODE_HALF]	  = "half",
73	[IEEE80211_MODE_QUARTER]  = "quarter",
74	[IEEE80211_MODE_11NA]	  = "11na",
75	[IEEE80211_MODE_11NG]	  = "11ng",
76	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
77	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
78};
79/* map ieee80211_opmode to the corresponding capability bit */
80const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
81	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
82	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
83	[IEEE80211_M_STA]	= IEEE80211_C_STA,
84	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
85	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
86	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
87#ifdef IEEE80211_SUPPORT_MESH
88	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
89#endif
90};
91
92const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
93	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
94
95static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
96static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
97static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
98static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
99static	int ieee80211_media_setup(struct ieee80211com *ic,
100		struct ifmedia *media, int caps, int addsta,
101		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
102static	int media_status(enum ieee80211_opmode,
103		const struct ieee80211_channel *);
104static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
105
106MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
107
108/*
109 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
110 */
111#define	B(r)	((r) | IEEE80211_RATE_BASIC)
112static const struct ieee80211_rateset ieee80211_rateset_11a =
113	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
114static const struct ieee80211_rateset ieee80211_rateset_half =
115	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
116static const struct ieee80211_rateset ieee80211_rateset_quarter =
117	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
118static const struct ieee80211_rateset ieee80211_rateset_11b =
119	{ 4, { B(2), B(4), B(11), B(22) } };
120/* NB: OFDM rates are handled specially based on mode */
121static const struct ieee80211_rateset ieee80211_rateset_11g =
122	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
123#undef B
124
125static int set_vht_extchan(struct ieee80211_channel *c);
126
127/*
128 * Fill in 802.11 available channel set, mark
129 * all available channels as active, and pick
130 * a default channel if not already specified.
131 */
132void
133ieee80211_chan_init(struct ieee80211com *ic)
134{
135#define	DEFAULTRATES(m, def) do { \
136	if (ic->ic_sup_rates[m].rs_nrates == 0) \
137		ic->ic_sup_rates[m] = def; \
138} while (0)
139	struct ieee80211_channel *c;
140	int i;
141
142	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
143		("invalid number of channels specified: %u", ic->ic_nchans));
144	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
145	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
146	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
147	for (i = 0; i < ic->ic_nchans; i++) {
148		c = &ic->ic_channels[i];
149		KASSERT(c->ic_flags != 0, ("channel with no flags"));
150		/*
151		 * Help drivers that work only with frequencies by filling
152		 * in IEEE channel #'s if not already calculated.  Note this
153		 * mimics similar work done in ieee80211_setregdomain when
154		 * changing regulatory state.
155		 */
156		if (c->ic_ieee == 0)
157			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
158
159		/*
160		 * Setup the HT40/VHT40 upper/lower bits.
161		 * The VHT80/... math is done elsewhere.
162		 */
163		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
164			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
165			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
166			    c->ic_flags);
167
168		/* Update VHT math */
169		/*
170		 * XXX VHT again, note that this assumes VHT80/... channels
171		 * are legit already.
172		 */
173		set_vht_extchan(c);
174
175		/* default max tx power to max regulatory */
176		if (c->ic_maxpower == 0)
177			c->ic_maxpower = 2*c->ic_maxregpower;
178		setbit(ic->ic_chan_avail, c->ic_ieee);
179		/*
180		 * Identify mode capabilities.
181		 */
182		if (IEEE80211_IS_CHAN_A(c))
183			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
184		if (IEEE80211_IS_CHAN_B(c))
185			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
186		if (IEEE80211_IS_CHAN_ANYG(c))
187			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
188		if (IEEE80211_IS_CHAN_FHSS(c))
189			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
190		if (IEEE80211_IS_CHAN_108A(c))
191			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
192		if (IEEE80211_IS_CHAN_108G(c))
193			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
194		if (IEEE80211_IS_CHAN_ST(c))
195			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
196		if (IEEE80211_IS_CHAN_HALF(c))
197			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
198		if (IEEE80211_IS_CHAN_QUARTER(c))
199			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
200		if (IEEE80211_IS_CHAN_HTA(c))
201			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
202		if (IEEE80211_IS_CHAN_HTG(c))
203			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
204		if (IEEE80211_IS_CHAN_VHTA(c))
205			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
206		if (IEEE80211_IS_CHAN_VHTG(c))
207			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
208	}
209	/* initialize candidate channels to all available */
210	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
211		sizeof(ic->ic_chan_avail));
212
213	/* sort channel table to allow lookup optimizations */
214	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
215
216	/* invalidate any previous state */
217	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
218	ic->ic_prevchan = NULL;
219	ic->ic_csa_newchan = NULL;
220	/* arbitrarily pick the first channel */
221	ic->ic_curchan = &ic->ic_channels[0];
222	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
223
224	/* fillin well-known rate sets if driver has not specified */
225	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
226	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
227	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
228	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
229	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
230	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
231	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
232	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
233	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
234	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
235	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
236	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
237
238	/*
239	 * Setup required information to fill the mcsset field, if driver did
240	 * not. Assume a 2T2R setup for historic reasons.
241	 */
242	if (ic->ic_rxstream == 0)
243		ic->ic_rxstream = 2;
244	if (ic->ic_txstream == 0)
245		ic->ic_txstream = 2;
246
247	ieee80211_init_suphtrates(ic);
248
249	/*
250	 * Set auto mode to reset active channel state and any desired channel.
251	 */
252	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
253#undef DEFAULTRATES
254}
255
256static void
257null_update_mcast(struct ieee80211com *ic)
258{
259
260	ic_printf(ic, "need multicast update callback\n");
261}
262
263static void
264null_update_promisc(struct ieee80211com *ic)
265{
266
267	ic_printf(ic, "need promiscuous mode update callback\n");
268}
269
270static void
271null_update_chw(struct ieee80211com *ic)
272{
273
274	ic_printf(ic, "%s: need callback\n", __func__);
275}
276
277int
278ic_printf(struct ieee80211com *ic, const char * fmt, ...)
279{
280	va_list ap;
281	int retval;
282
283	retval = printf("%s: ", ic->ic_name);
284	va_start(ap, fmt);
285	retval += vprintf(fmt, ap);
286	va_end(ap);
287	return (retval);
288}
289
290static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
291static struct mtx ic_list_mtx;
292MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
293
294static int
295sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
296{
297	struct ieee80211com *ic;
298	struct sbuf sb;
299	char *sp;
300	int error;
301
302	error = sysctl_wire_old_buffer(req, 0);
303	if (error)
304		return (error);
305	sbuf_new_for_sysctl(&sb, NULL, 8, req);
306	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
307	sp = "";
308	mtx_lock(&ic_list_mtx);
309	LIST_FOREACH(ic, &ic_head, ic_next) {
310		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
311		sp = " ";
312	}
313	mtx_unlock(&ic_list_mtx);
314	error = sbuf_finish(&sb);
315	sbuf_delete(&sb);
316	return (error);
317}
318
319SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
320    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
321    sysctl_ieee80211coms, "A", "names of available 802.11 devices");
322
323/*
324 * Attach/setup the common net80211 state.  Called by
325 * the driver on attach to prior to creating any vap's.
326 */
327void
328ieee80211_ifattach(struct ieee80211com *ic)
329{
330
331	IEEE80211_LOCK_INIT(ic, ic->ic_name);
332	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
333	TAILQ_INIT(&ic->ic_vaps);
334
335	/* Create a taskqueue for all state changes */
336	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
337	    taskqueue_thread_enqueue, &ic->ic_tq);
338	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
339	    ic->ic_name);
340	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
341	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
342	/*
343	 * Fill in 802.11 available channel set, mark all
344	 * available channels as active, and pick a default
345	 * channel if not already specified.
346	 */
347	ieee80211_chan_init(ic);
348
349	ic->ic_update_mcast = null_update_mcast;
350	ic->ic_update_promisc = null_update_promisc;
351	ic->ic_update_chw = null_update_chw;
352
353	ic->ic_hash_key = arc4random();
354	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
355	ic->ic_lintval = ic->ic_bintval;
356	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
357
358	ieee80211_crypto_attach(ic);
359	ieee80211_node_attach(ic);
360	ieee80211_power_attach(ic);
361	ieee80211_proto_attach(ic);
362#ifdef IEEE80211_SUPPORT_SUPERG
363	ieee80211_superg_attach(ic);
364#endif
365	ieee80211_ht_attach(ic);
366	ieee80211_vht_attach(ic);
367	ieee80211_scan_attach(ic);
368	ieee80211_regdomain_attach(ic);
369	ieee80211_dfs_attach(ic);
370
371	ieee80211_sysctl_attach(ic);
372
373	mtx_lock(&ic_list_mtx);
374	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
375	mtx_unlock(&ic_list_mtx);
376}
377
378/*
379 * Detach net80211 state on device detach.  Tear down
380 * all vap's and reclaim all common state prior to the
381 * device state going away.  Note we may call back into
382 * driver; it must be prepared for this.
383 */
384void
385ieee80211_ifdetach(struct ieee80211com *ic)
386{
387	struct ieee80211vap *vap;
388
389	/*
390	 * We use this as an indicator that ifattach never had a chance to be
391	 * called, e.g. early driver attach failed and ifdetach was called
392	 * during subsequent detach.  Never fear, for we have nothing to do
393	 * here.
394	 */
395	if (ic->ic_tq == NULL)
396		return;
397
398	mtx_lock(&ic_list_mtx);
399	LIST_REMOVE(ic, ic_next);
400	mtx_unlock(&ic_list_mtx);
401
402	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
403
404	/*
405	 * The VAP is responsible for setting and clearing
406	 * the VIMAGE context.
407	 */
408	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
409		ieee80211_com_vdetach(vap);
410		ieee80211_vap_destroy(vap);
411	}
412	ieee80211_waitfor_parent(ic);
413
414	ieee80211_sysctl_detach(ic);
415	ieee80211_dfs_detach(ic);
416	ieee80211_regdomain_detach(ic);
417	ieee80211_scan_detach(ic);
418#ifdef IEEE80211_SUPPORT_SUPERG
419	ieee80211_superg_detach(ic);
420#endif
421	ieee80211_vht_detach(ic);
422	ieee80211_ht_detach(ic);
423	/* NB: must be called before ieee80211_node_detach */
424	ieee80211_proto_detach(ic);
425	ieee80211_crypto_detach(ic);
426	ieee80211_power_detach(ic);
427	ieee80211_node_detach(ic);
428
429	counter_u64_free(ic->ic_ierrors);
430	counter_u64_free(ic->ic_oerrors);
431
432	taskqueue_free(ic->ic_tq);
433	IEEE80211_TX_LOCK_DESTROY(ic);
434	IEEE80211_LOCK_DESTROY(ic);
435}
436
437struct ieee80211com *
438ieee80211_find_com(const char *name)
439{
440	struct ieee80211com *ic;
441
442	mtx_lock(&ic_list_mtx);
443	LIST_FOREACH(ic, &ic_head, ic_next)
444		if (strcmp(ic->ic_name, name) == 0)
445			break;
446	mtx_unlock(&ic_list_mtx);
447
448	return (ic);
449}
450
451void
452ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
453{
454	struct ieee80211com *ic;
455
456	mtx_lock(&ic_list_mtx);
457	LIST_FOREACH(ic, &ic_head, ic_next)
458		(*f)(arg, ic);
459	mtx_unlock(&ic_list_mtx);
460}
461
462/*
463 * Default reset method for use with the ioctl support.  This
464 * method is invoked after any state change in the 802.11
465 * layer that should be propagated to the hardware but not
466 * require re-initialization of the 802.11 state machine (e.g
467 * rescanning for an ap).  We always return ENETRESET which
468 * should cause the driver to re-initialize the device. Drivers
469 * can override this method to implement more optimized support.
470 */
471static int
472default_reset(struct ieee80211vap *vap, u_long cmd)
473{
474	return ENETRESET;
475}
476
477/*
478 * Default for updating the VAP default TX key index.
479 *
480 * Drivers that support TX offload as well as hardware encryption offload
481 * may need to be informed of key index changes separate from the key
482 * update.
483 */
484static void
485default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
486{
487
488	/* XXX assert validity */
489	/* XXX assert we're in a key update block */
490	vap->iv_def_txkey = kid;
491}
492
493/*
494 * Add underlying device errors to vap errors.
495 */
496static uint64_t
497ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
498{
499	struct ieee80211vap *vap = ifp->if_softc;
500	struct ieee80211com *ic = vap->iv_ic;
501	uint64_t rv;
502
503	rv = if_get_counter_default(ifp, cnt);
504	switch (cnt) {
505	case IFCOUNTER_OERRORS:
506		rv += counter_u64_fetch(ic->ic_oerrors);
507		break;
508	case IFCOUNTER_IERRORS:
509		rv += counter_u64_fetch(ic->ic_ierrors);
510		break;
511	default:
512		break;
513	}
514
515	return (rv);
516}
517
518/*
519 * Prepare a vap for use.  Drivers use this call to
520 * setup net80211 state in new vap's prior attaching
521 * them with ieee80211_vap_attach (below).
522 */
523int
524ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
525    const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
526    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
527{
528	struct ifnet *ifp;
529
530	ifp = if_alloc(IFT_ETHER);
531	if (ifp == NULL) {
532		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
533		return ENOMEM;
534	}
535	if_initname(ifp, name, unit);
536	ifp->if_softc = vap;			/* back pointer */
537	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
538	ifp->if_transmit = ieee80211_vap_transmit;
539	ifp->if_qflush = ieee80211_vap_qflush;
540	ifp->if_ioctl = ieee80211_ioctl;
541	ifp->if_init = ieee80211_init;
542	ifp->if_get_counter = ieee80211_get_counter;
543
544	vap->iv_ifp = ifp;
545	vap->iv_ic = ic;
546	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
547	vap->iv_flags_ext = ic->ic_flags_ext;
548	vap->iv_flags_ven = ic->ic_flags_ven;
549	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
550
551	/* 11n capabilities - XXX methodize */
552	vap->iv_htcaps = ic->ic_htcaps;
553	vap->iv_htextcaps = ic->ic_htextcaps;
554
555	/* 11ac capabilities - XXX methodize */
556	vap->iv_vhtcaps = ic->ic_vhtcaps;
557	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
558
559	vap->iv_opmode = opmode;
560	vap->iv_caps |= ieee80211_opcap[opmode];
561	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
562	switch (opmode) {
563	case IEEE80211_M_WDS:
564		/*
565		 * WDS links must specify the bssid of the far end.
566		 * For legacy operation this is a static relationship.
567		 * For non-legacy operation the station must associate
568		 * and be authorized to pass traffic.  Plumbing the
569		 * vap to the proper node happens when the vap
570		 * transitions to RUN state.
571		 */
572		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
573		vap->iv_flags |= IEEE80211_F_DESBSSID;
574		if (flags & IEEE80211_CLONE_WDSLEGACY)
575			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
576		break;
577#ifdef IEEE80211_SUPPORT_TDMA
578	case IEEE80211_M_AHDEMO:
579		if (flags & IEEE80211_CLONE_TDMA) {
580			/* NB: checked before clone operation allowed */
581			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
582			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
583			/*
584			 * Propagate TDMA capability to mark vap; this
585			 * cannot be removed and is used to distinguish
586			 * regular ahdemo operation from ahdemo+tdma.
587			 */
588			vap->iv_caps |= IEEE80211_C_TDMA;
589		}
590		break;
591#endif
592	default:
593		break;
594	}
595	/* auto-enable s/w beacon miss support */
596	if (flags & IEEE80211_CLONE_NOBEACONS)
597		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
598	/* auto-generated or user supplied MAC address */
599	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
600		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
601	/*
602	 * Enable various functionality by default if we're
603	 * capable; the driver can override us if it knows better.
604	 */
605	if (vap->iv_caps & IEEE80211_C_WME)
606		vap->iv_flags |= IEEE80211_F_WME;
607	if (vap->iv_caps & IEEE80211_C_BURST)
608		vap->iv_flags |= IEEE80211_F_BURST;
609	/* NB: bg scanning only makes sense for station mode right now */
610	if (vap->iv_opmode == IEEE80211_M_STA &&
611	    (vap->iv_caps & IEEE80211_C_BGSCAN))
612		vap->iv_flags |= IEEE80211_F_BGSCAN;
613	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
614	/* NB: DFS support only makes sense for ap mode right now */
615	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
616	    (vap->iv_caps & IEEE80211_C_DFS))
617		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
618	/* NB: only flip on U-APSD for hostap/sta for now */
619	if ((vap->iv_opmode == IEEE80211_M_STA)
620	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
621		if (vap->iv_caps & IEEE80211_C_UAPSD)
622			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
623	}
624
625	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
626	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
627	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
628	/*
629	 * Install a default reset method for the ioctl support;
630	 * the driver can override this.
631	 */
632	vap->iv_reset = default_reset;
633
634	/*
635	 * Install a default crypto key update method, the driver
636	 * can override this.
637	 */
638	vap->iv_update_deftxkey = default_update_deftxkey;
639
640	ieee80211_sysctl_vattach(vap);
641	ieee80211_crypto_vattach(vap);
642	ieee80211_node_vattach(vap);
643	ieee80211_power_vattach(vap);
644	ieee80211_proto_vattach(vap);
645#ifdef IEEE80211_SUPPORT_SUPERG
646	ieee80211_superg_vattach(vap);
647#endif
648	ieee80211_ht_vattach(vap);
649	ieee80211_vht_vattach(vap);
650	ieee80211_scan_vattach(vap);
651	ieee80211_regdomain_vattach(vap);
652	ieee80211_radiotap_vattach(vap);
653	ieee80211_vap_reset_erp(vap);
654	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
655
656	return 0;
657}
658
659/*
660 * Activate a vap.  State should have been prepared with a
661 * call to ieee80211_vap_setup and by the driver.  On return
662 * from this call the vap is ready for use.
663 */
664int
665ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
666    ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
667{
668	struct ifnet *ifp = vap->iv_ifp;
669	struct ieee80211com *ic = vap->iv_ic;
670	struct ifmediareq imr;
671	int maxrate;
672
673	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
674	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
675	    __func__, ieee80211_opmode_name[vap->iv_opmode],
676	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
677
678	/*
679	 * Do late attach work that cannot happen until after
680	 * the driver has had a chance to override defaults.
681	 */
682	ieee80211_node_latevattach(vap);
683	ieee80211_power_latevattach(vap);
684
685	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
686	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
687	ieee80211_media_status(ifp, &imr);
688	/* NB: strip explicit mode; we're actually in autoselect */
689	ifmedia_set(&vap->iv_media,
690	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
691	if (maxrate)
692		ifp->if_baudrate = IF_Mbps(maxrate);
693
694	ether_ifattach(ifp, macaddr);
695	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
696	/* hook output method setup by ether_ifattach */
697	vap->iv_output = ifp->if_output;
698	ifp->if_output = ieee80211_output;
699	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
700
701	IEEE80211_LOCK(ic);
702	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
703	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
704#ifdef IEEE80211_SUPPORT_SUPERG
705	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
706#endif
707	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
708	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
709	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
710	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
711
712	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
713	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
714	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
715	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
716	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
717	IEEE80211_UNLOCK(ic);
718
719	return 1;
720}
721
722/*
723 * Tear down vap state and reclaim the ifnet.
724 * The driver is assumed to have prepared for
725 * this; e.g. by turning off interrupts for the
726 * underlying device.
727 */
728void
729ieee80211_vap_detach(struct ieee80211vap *vap)
730{
731	struct ieee80211com *ic = vap->iv_ic;
732	struct ifnet *ifp = vap->iv_ifp;
733
734	CURVNET_SET(ifp->if_vnet);
735
736	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
737	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
738
739	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
740	ether_ifdetach(ifp);
741
742	ieee80211_stop(vap);
743
744	/*
745	 * Flush any deferred vap tasks.
746	 */
747	ieee80211_draintask(ic, &vap->iv_nstate_task);
748	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
749	ieee80211_draintask(ic, &vap->iv_wme_task);
750	ieee80211_draintask(ic, &ic->ic_parent_task);
751
752	/* XXX band-aid until ifnet handles this for us */
753	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
754
755	IEEE80211_LOCK(ic);
756	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
757	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
758	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
759#ifdef IEEE80211_SUPPORT_SUPERG
760	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
761#endif
762	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
763	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
764	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
765	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
766
767	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
768	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
769	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
770	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
771	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
772
773	/* NB: this handles the bpfdetach done below */
774	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
775	if (vap->iv_ifflags & IFF_PROMISC)
776		ieee80211_promisc(vap, false);
777	if (vap->iv_ifflags & IFF_ALLMULTI)
778		ieee80211_allmulti(vap, false);
779	IEEE80211_UNLOCK(ic);
780
781	ifmedia_removeall(&vap->iv_media);
782
783	ieee80211_radiotap_vdetach(vap);
784	ieee80211_regdomain_vdetach(vap);
785	ieee80211_scan_vdetach(vap);
786#ifdef IEEE80211_SUPPORT_SUPERG
787	ieee80211_superg_vdetach(vap);
788#endif
789	ieee80211_vht_vdetach(vap);
790	ieee80211_ht_vdetach(vap);
791	/* NB: must be before ieee80211_node_vdetach */
792	ieee80211_proto_vdetach(vap);
793	ieee80211_crypto_vdetach(vap);
794	ieee80211_power_vdetach(vap);
795	ieee80211_node_vdetach(vap);
796	ieee80211_sysctl_vdetach(vap);
797
798	if_free(ifp);
799
800	CURVNET_RESTORE();
801}
802
803/*
804 * Count number of vaps in promisc, and issue promisc on
805 * parent respectively.
806 */
807void
808ieee80211_promisc(struct ieee80211vap *vap, bool on)
809{
810	struct ieee80211com *ic = vap->iv_ic;
811
812	IEEE80211_LOCK_ASSERT(ic);
813
814	if (on) {
815		if (++ic->ic_promisc == 1)
816			ieee80211_runtask(ic, &ic->ic_promisc_task);
817	} else {
818		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
819		    __func__, ic));
820		if (--ic->ic_promisc == 0)
821			ieee80211_runtask(ic, &ic->ic_promisc_task);
822	}
823}
824
825/*
826 * Count number of vaps in allmulti, and issue allmulti on
827 * parent respectively.
828 */
829void
830ieee80211_allmulti(struct ieee80211vap *vap, bool on)
831{
832	struct ieee80211com *ic = vap->iv_ic;
833
834	IEEE80211_LOCK_ASSERT(ic);
835
836	if (on) {
837		if (++ic->ic_allmulti == 1)
838			ieee80211_runtask(ic, &ic->ic_mcast_task);
839	} else {
840		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
841		    __func__, ic));
842		if (--ic->ic_allmulti == 0)
843			ieee80211_runtask(ic, &ic->ic_mcast_task);
844	}
845}
846
847/*
848 * Synchronize flag bit state in the com structure
849 * according to the state of all vap's.  This is used,
850 * for example, to handle state changes via ioctls.
851 */
852static void
853ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
854{
855	struct ieee80211vap *vap;
856	int bit;
857
858	IEEE80211_LOCK_ASSERT(ic);
859
860	bit = 0;
861	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
862		if (vap->iv_flags & flag) {
863			bit = 1;
864			break;
865		}
866	if (bit)
867		ic->ic_flags |= flag;
868	else
869		ic->ic_flags &= ~flag;
870}
871
872void
873ieee80211_syncflag(struct ieee80211vap *vap, int flag)
874{
875	struct ieee80211com *ic = vap->iv_ic;
876
877	IEEE80211_LOCK(ic);
878	if (flag < 0) {
879		flag = -flag;
880		vap->iv_flags &= ~flag;
881	} else
882		vap->iv_flags |= flag;
883	ieee80211_syncflag_locked(ic, flag);
884	IEEE80211_UNLOCK(ic);
885}
886
887/*
888 * Synchronize flags_ht bit state in the com structure
889 * according to the state of all vap's.  This is used,
890 * for example, to handle state changes via ioctls.
891 */
892static void
893ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
894{
895	struct ieee80211vap *vap;
896	int bit;
897
898	IEEE80211_LOCK_ASSERT(ic);
899
900	bit = 0;
901	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
902		if (vap->iv_flags_ht & flag) {
903			bit = 1;
904			break;
905		}
906	if (bit)
907		ic->ic_flags_ht |= flag;
908	else
909		ic->ic_flags_ht &= ~flag;
910}
911
912void
913ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
914{
915	struct ieee80211com *ic = vap->iv_ic;
916
917	IEEE80211_LOCK(ic);
918	if (flag < 0) {
919		flag = -flag;
920		vap->iv_flags_ht &= ~flag;
921	} else
922		vap->iv_flags_ht |= flag;
923	ieee80211_syncflag_ht_locked(ic, flag);
924	IEEE80211_UNLOCK(ic);
925}
926
927/*
928 * Synchronize flags_vht bit state in the com structure
929 * according to the state of all vap's.  This is used,
930 * for example, to handle state changes via ioctls.
931 */
932static void
933ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
934{
935	struct ieee80211vap *vap;
936	int bit;
937
938	IEEE80211_LOCK_ASSERT(ic);
939
940	bit = 0;
941	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
942		if (vap->iv_flags_vht & flag) {
943			bit = 1;
944			break;
945		}
946	if (bit)
947		ic->ic_flags_vht |= flag;
948	else
949		ic->ic_flags_vht &= ~flag;
950}
951
952void
953ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
954{
955	struct ieee80211com *ic = vap->iv_ic;
956
957	IEEE80211_LOCK(ic);
958	if (flag < 0) {
959		flag = -flag;
960		vap->iv_flags_vht &= ~flag;
961	} else
962		vap->iv_flags_vht |= flag;
963	ieee80211_syncflag_vht_locked(ic, flag);
964	IEEE80211_UNLOCK(ic);
965}
966
967/*
968 * Synchronize flags_ext bit state in the com structure
969 * according to the state of all vap's.  This is used,
970 * for example, to handle state changes via ioctls.
971 */
972static void
973ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
974{
975	struct ieee80211vap *vap;
976	int bit;
977
978	IEEE80211_LOCK_ASSERT(ic);
979
980	bit = 0;
981	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
982		if (vap->iv_flags_ext & flag) {
983			bit = 1;
984			break;
985		}
986	if (bit)
987		ic->ic_flags_ext |= flag;
988	else
989		ic->ic_flags_ext &= ~flag;
990}
991
992void
993ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
994{
995	struct ieee80211com *ic = vap->iv_ic;
996
997	IEEE80211_LOCK(ic);
998	if (flag < 0) {
999		flag = -flag;
1000		vap->iv_flags_ext &= ~flag;
1001	} else
1002		vap->iv_flags_ext |= flag;
1003	ieee80211_syncflag_ext_locked(ic, flag);
1004	IEEE80211_UNLOCK(ic);
1005}
1006
1007static __inline int
1008mapgsm(u_int freq, u_int flags)
1009{
1010	freq *= 10;
1011	if (flags & IEEE80211_CHAN_QUARTER)
1012		freq += 5;
1013	else if (flags & IEEE80211_CHAN_HALF)
1014		freq += 10;
1015	else
1016		freq += 20;
1017	/* NB: there is no 907/20 wide but leave room */
1018	return (freq - 906*10) / 5;
1019}
1020
1021static __inline int
1022mappsb(u_int freq, u_int flags)
1023{
1024	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1025}
1026
1027/*
1028 * Convert MHz frequency to IEEE channel number.
1029 */
1030int
1031ieee80211_mhz2ieee(u_int freq, u_int flags)
1032{
1033#define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1034	if (flags & IEEE80211_CHAN_GSM)
1035		return mapgsm(freq, flags);
1036	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1037		if (freq == 2484)
1038			return 14;
1039		if (freq < 2484)
1040			return ((int) freq - 2407) / 5;
1041		else
1042			return 15 + ((freq - 2512) / 20);
1043	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1044		if (freq <= 5000) {
1045			/* XXX check regdomain? */
1046			if (IS_FREQ_IN_PSB(freq))
1047				return mappsb(freq, flags);
1048			return (freq - 4000) / 5;
1049		} else
1050			return (freq - 5000) / 5;
1051	} else {				/* either, guess */
1052		if (freq == 2484)
1053			return 14;
1054		if (freq < 2484) {
1055			if (907 <= freq && freq <= 922)
1056				return mapgsm(freq, flags);
1057			return ((int) freq - 2407) / 5;
1058		}
1059		if (freq < 5000) {
1060			if (IS_FREQ_IN_PSB(freq))
1061				return mappsb(freq, flags);
1062			else if (freq > 4900)
1063				return (freq - 4000) / 5;
1064			else
1065				return 15 + ((freq - 2512) / 20);
1066		}
1067		return (freq - 5000) / 5;
1068	}
1069#undef IS_FREQ_IN_PSB
1070}
1071
1072/*
1073 * Convert channel to IEEE channel number.
1074 */
1075int
1076ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1077{
1078	if (c == NULL) {
1079		ic_printf(ic, "invalid channel (NULL)\n");
1080		return 0;		/* XXX */
1081	}
1082	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1083}
1084
1085/*
1086 * Convert IEEE channel number to MHz frequency.
1087 */
1088u_int
1089ieee80211_ieee2mhz(u_int chan, u_int flags)
1090{
1091	if (flags & IEEE80211_CHAN_GSM)
1092		return 907 + 5 * (chan / 10);
1093	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1094		if (chan == 14)
1095			return 2484;
1096		if (chan < 14)
1097			return 2407 + chan*5;
1098		else
1099			return 2512 + ((chan-15)*20);
1100	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1101		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1102			chan -= 37;
1103			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1104		}
1105		return 5000 + (chan*5);
1106	} else {				/* either, guess */
1107		/* XXX can't distinguish PSB+GSM channels */
1108		if (chan == 14)
1109			return 2484;
1110		if (chan < 14)			/* 0-13 */
1111			return 2407 + chan*5;
1112		if (chan < 27)			/* 15-26 */
1113			return 2512 + ((chan-15)*20);
1114		return 5000 + (chan*5);
1115	}
1116}
1117
1118static __inline void
1119set_extchan(struct ieee80211_channel *c)
1120{
1121
1122	/*
1123	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1124	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1125	 */
1126	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1127		c->ic_extieee = c->ic_ieee + 4;
1128	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1129		c->ic_extieee = c->ic_ieee - 4;
1130	else
1131		c->ic_extieee = 0;
1132}
1133
1134/*
1135 * Populate the freq1/freq2 fields as appropriate for VHT channels.
1136 *
1137 * This for now uses a hard-coded list of 80MHz wide channels.
1138 *
1139 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1140 * wide channel we've already decided upon.
1141 *
1142 * For VHT80 and VHT160, there are only a small number of fixed
1143 * 80/160MHz wide channels, so we just use those.
1144 *
1145 * This is all likely very very wrong - both the regulatory code
1146 * and this code needs to ensure that all four channels are
1147 * available and valid before the VHT80 (and eight for VHT160) channel
1148 * is created.
1149 */
1150
1151struct vht_chan_range {
1152	uint16_t freq_start;
1153	uint16_t freq_end;
1154};
1155
1156struct vht_chan_range vht80_chan_ranges[] = {
1157	{ 5170, 5250 },
1158	{ 5250, 5330 },
1159	{ 5490, 5570 },
1160	{ 5570, 5650 },
1161	{ 5650, 5730 },
1162	{ 5735, 5815 },
1163	{ 0, 0 }
1164};
1165
1166struct vht_chan_range vht160_chan_ranges[] = {
1167	{ 5170, 5330 },
1168	{ 5490, 5650 },
1169	{ 0, 0 }
1170};
1171
1172static int
1173set_vht_extchan(struct ieee80211_channel *c)
1174{
1175	int i;
1176
1177	if (! IEEE80211_IS_CHAN_VHT(c))
1178		return (0);
1179
1180	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1181		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1182		    __func__, c->ic_ieee, c->ic_flags);
1183	}
1184
1185	if (IEEE80211_IS_CHAN_VHT160(c)) {
1186		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1187			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1188			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1189				int midpoint;
1190
1191				midpoint = vht160_chan_ranges[i].freq_start + 80;
1192				c->ic_vht_ch_freq1 =
1193				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1194				c->ic_vht_ch_freq2 = 0;
1195#if 0
1196				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1197				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1198				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1199#endif
1200				return (1);
1201			}
1202		}
1203		return (0);
1204	}
1205
1206	if (IEEE80211_IS_CHAN_VHT80(c)) {
1207		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1208			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1209			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1210				int midpoint;
1211
1212				midpoint = vht80_chan_ranges[i].freq_start + 40;
1213				c->ic_vht_ch_freq1 =
1214				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1215				c->ic_vht_ch_freq2 = 0;
1216#if 0
1217				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1218				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1219				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1220#endif
1221				return (1);
1222			}
1223		}
1224		return (0);
1225	}
1226
1227	if (IEEE80211_IS_CHAN_VHT40(c)) {
1228		if (IEEE80211_IS_CHAN_HT40U(c))
1229			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1230		else if (IEEE80211_IS_CHAN_HT40D(c))
1231			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1232		else
1233			return (0);
1234		return (1);
1235	}
1236
1237	if (IEEE80211_IS_CHAN_VHT20(c)) {
1238		c->ic_vht_ch_freq1 = c->ic_ieee;
1239		return (1);
1240	}
1241
1242	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1243	    __func__, c->ic_ieee, c->ic_flags);
1244
1245	return (0);
1246}
1247
1248/*
1249 * Return whether the current channel could possibly be a part of
1250 * a VHT80/VHT160 channel.
1251 *
1252 * This doesn't check that the whole range is in the allowed list
1253 * according to regulatory.
1254 */
1255static bool
1256is_vht160_valid_freq(uint16_t freq)
1257{
1258	int i;
1259
1260	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1261		if (freq >= vht160_chan_ranges[i].freq_start &&
1262		    freq < vht160_chan_ranges[i].freq_end)
1263			return (true);
1264	}
1265	return (false);
1266}
1267
1268static int
1269is_vht80_valid_freq(uint16_t freq)
1270{
1271	int i;
1272	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1273		if (freq >= vht80_chan_ranges[i].freq_start &&
1274		    freq < vht80_chan_ranges[i].freq_end)
1275			return (1);
1276	}
1277	return (0);
1278}
1279
1280static int
1281addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1282    uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1283{
1284	struct ieee80211_channel *c;
1285
1286	if (*nchans >= maxchans)
1287		return (ENOBUFS);
1288
1289#if 0
1290	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1291	    __func__, *nchans, ieee, freq, flags);
1292#endif
1293
1294	c = &chans[(*nchans)++];
1295	c->ic_ieee = ieee;
1296	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1297	c->ic_maxregpower = maxregpower;
1298	c->ic_maxpower = 2 * maxregpower;
1299	c->ic_flags = flags;
1300	c->ic_vht_ch_freq1 = 0;
1301	c->ic_vht_ch_freq2 = 0;
1302	set_extchan(c);
1303	set_vht_extchan(c);
1304
1305	return (0);
1306}
1307
1308static int
1309copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1310    uint32_t flags)
1311{
1312	struct ieee80211_channel *c;
1313
1314	KASSERT(*nchans > 0, ("channel list is empty\n"));
1315
1316	if (*nchans >= maxchans)
1317		return (ENOBUFS);
1318
1319#if 0
1320	printf("%s: %d: flags=0x%08x\n",
1321	    __func__, *nchans, flags);
1322#endif
1323
1324	c = &chans[(*nchans)++];
1325	c[0] = c[-1];
1326	c->ic_flags = flags;
1327	c->ic_vht_ch_freq1 = 0;
1328	c->ic_vht_ch_freq2 = 0;
1329	set_extchan(c);
1330	set_vht_extchan(c);
1331
1332	return (0);
1333}
1334
1335/*
1336 * XXX VHT-2GHz
1337 */
1338static void
1339getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1340{
1341	int nmodes;
1342
1343	nmodes = 0;
1344	if (isset(bands, IEEE80211_MODE_11B))
1345		flags[nmodes++] = IEEE80211_CHAN_B;
1346	if (isset(bands, IEEE80211_MODE_11G))
1347		flags[nmodes++] = IEEE80211_CHAN_G;
1348	if (isset(bands, IEEE80211_MODE_11NG))
1349		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1350	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1351		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1352		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1353	}
1354	flags[nmodes] = 0;
1355}
1356
1357static void
1358getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1359{
1360	int nmodes;
1361
1362	/*
1363	 * The addchan_list() function seems to expect the flags array to
1364	 * be in channel width order, so the VHT bits are interspersed
1365	 * as appropriate to maintain said order.
1366	 *
1367	 * It also assumes HT40U is before HT40D.
1368	 */
1369	nmodes = 0;
1370
1371	/* 20MHz */
1372	if (isset(bands, IEEE80211_MODE_11A))
1373		flags[nmodes++] = IEEE80211_CHAN_A;
1374	if (isset(bands, IEEE80211_MODE_11NA))
1375		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1376	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1377		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1378		    IEEE80211_CHAN_VHT20;
1379	}
1380
1381	/* 40MHz */
1382	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1383		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1384	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1385	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1386		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1387		    IEEE80211_CHAN_VHT40U;
1388	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1389		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1390	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1391	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1392		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1393		    IEEE80211_CHAN_VHT40D;
1394
1395	/* 80MHz */
1396	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1397	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1398		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1399		    IEEE80211_CHAN_VHT80;
1400		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1401		    IEEE80211_CHAN_VHT80;
1402	}
1403
1404	/* VHT160 */
1405	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1406	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1407		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1408		    IEEE80211_CHAN_VHT160;
1409		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1410		    IEEE80211_CHAN_VHT160;
1411	}
1412
1413	/* VHT80+80 */
1414	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1415	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1416		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1417		    IEEE80211_CHAN_VHT80P80;
1418		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1419		    IEEE80211_CHAN_VHT80P80;
1420	}
1421
1422	flags[nmodes] = 0;
1423}
1424
1425static void
1426getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1427{
1428
1429	flags[0] = 0;
1430	if (isset(bands, IEEE80211_MODE_11A) ||
1431	    isset(bands, IEEE80211_MODE_11NA) ||
1432	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1433		if (isset(bands, IEEE80211_MODE_11B) ||
1434		    isset(bands, IEEE80211_MODE_11G) ||
1435		    isset(bands, IEEE80211_MODE_11NG) ||
1436		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1437			return;
1438
1439		getflags_5ghz(bands, flags, cbw_flags);
1440	} else
1441		getflags_2ghz(bands, flags, cbw_flags);
1442}
1443
1444/*
1445 * Add one 20 MHz channel into specified channel list.
1446 * You MUST NOT mix bands when calling this.  It will not add 5ghz
1447 * channels if you have any B/G/N band bit set.
1448 * The _cbw() variant does also support HT40/VHT80/160/80+80.
1449 */
1450int
1451ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1452    int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1453    uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1454{
1455	uint32_t flags[IEEE80211_MODE_MAX];
1456	int i, error;
1457
1458	getflags(bands, flags, cbw_flags);
1459	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1460
1461	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1462	    flags[0] | chan_flags);
1463	for (i = 1; flags[i] != 0 && error == 0; i++) {
1464		error = copychan_prev(chans, maxchans, nchans,
1465		    flags[i] | chan_flags);
1466	}
1467
1468	return (error);
1469}
1470
1471int
1472ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1473    int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1474    uint32_t chan_flags, const uint8_t bands[])
1475{
1476
1477	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1478	    maxregpower, chan_flags, bands, 0));
1479}
1480
1481static struct ieee80211_channel *
1482findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1483    uint32_t flags)
1484{
1485	struct ieee80211_channel *c;
1486	int i;
1487
1488	flags &= IEEE80211_CHAN_ALLTURBO;
1489	/* brute force search */
1490	for (i = 0; i < nchans; i++) {
1491		c = &chans[i];
1492		if (c->ic_freq == freq &&
1493		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1494			return c;
1495	}
1496	return NULL;
1497}
1498
1499/*
1500 * Add 40 MHz channel pair into specified channel list.
1501 */
1502/* XXX VHT */
1503int
1504ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1505    int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1506{
1507	struct ieee80211_channel *cent, *extc;
1508	uint16_t freq;
1509	int error;
1510
1511	freq = ieee80211_ieee2mhz(ieee, flags);
1512
1513	/*
1514	 * Each entry defines an HT40 channel pair; find the
1515	 * center channel, then the extension channel above.
1516	 */
1517	flags |= IEEE80211_CHAN_HT20;
1518	cent = findchannel(chans, *nchans, freq, flags);
1519	if (cent == NULL)
1520		return (EINVAL);
1521
1522	extc = findchannel(chans, *nchans, freq + 20, flags);
1523	if (extc == NULL)
1524		return (ENOENT);
1525
1526	flags &= ~IEEE80211_CHAN_HT;
1527	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1528	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1529	if (error != 0)
1530		return (error);
1531
1532	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1533	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1534
1535	return (error);
1536}
1537
1538/*
1539 * Fetch the center frequency for the primary channel.
1540 */
1541uint32_t
1542ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1543{
1544
1545	return (c->ic_freq);
1546}
1547
1548/*
1549 * Fetch the center frequency for the primary BAND channel.
1550 *
1551 * For 5, 10, 20MHz channels it'll be the normally configured channel
1552 * frequency.
1553 *
1554 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1555 * wide channel, not the centre of the primary channel (that's ic_freq).
1556 *
1557 * For 80+80MHz channels this will be the centre of the primary
1558 * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1559 */
1560uint32_t
1561ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1562{
1563
1564	/*
1565	 * VHT - use the pre-calculated centre frequency
1566	 * of the given channel.
1567	 */
1568	if (IEEE80211_IS_CHAN_VHT(c))
1569		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1570
1571	if (IEEE80211_IS_CHAN_HT40U(c)) {
1572		return (c->ic_freq + 10);
1573	}
1574	if (IEEE80211_IS_CHAN_HT40D(c)) {
1575		return (c->ic_freq - 10);
1576	}
1577
1578	return (c->ic_freq);
1579}
1580
1581/*
1582 * For now, no 80+80 support; it will likely always return 0.
1583 */
1584uint32_t
1585ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1586{
1587
1588	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1589		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1590
1591	return (0);
1592}
1593
1594/*
1595 * Adds channels into specified channel list (ieee[] array must be sorted).
1596 * Channels are already sorted.
1597 */
1598static int
1599add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1600    const uint8_t ieee[], int nieee, uint32_t flags[])
1601{
1602	uint16_t freq;
1603	int i, j, error;
1604	int is_vht;
1605
1606	for (i = 0; i < nieee; i++) {
1607		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1608		for (j = 0; flags[j] != 0; j++) {
1609			/*
1610			 * Notes:
1611			 * + HT40 and VHT40 channels occur together, so
1612			 *   we need to be careful that we actually allow that.
1613			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1614			 *   make sure it's not skipped because of the overlap
1615			 *   check used for (V)HT40.
1616			 */
1617			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1618
1619			/* XXX TODO FIXME VHT80P80. */
1620
1621			/* Test for VHT160 analogue to the VHT80 below. */
1622			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1623				if (! is_vht160_valid_freq(freq))
1624					continue;
1625
1626			/*
1627			 * Test for VHT80.
1628			 * XXX This is all very broken right now.
1629			 * What we /should/ do is:
1630			 *
1631			 * + check that the frequency is in the list of
1632			 *   allowed VHT80 ranges; and
1633			 * + the other 3 channels in the list are actually
1634			 *   also available.
1635			 */
1636			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1637				if (! is_vht80_valid_freq(freq))
1638					continue;
1639
1640			/*
1641			 * Test for (V)HT40.
1642			 *
1643			 * This is also a fall through from VHT80; as we only
1644			 * allow a VHT80 channel if the VHT40 combination is
1645			 * also valid.  If the VHT40 form is not valid then
1646			 * we certainly can't do VHT80..
1647			 */
1648			if (flags[j] & IEEE80211_CHAN_HT40D)
1649				/*
1650				 * Can't have a "lower" channel if we are the
1651				 * first channel.
1652				 *
1653				 * Can't have a "lower" channel if it's below/
1654				 * within 20MHz of the first channel.
1655				 *
1656				 * Can't have a "lower" channel if the channel
1657				 * below it is not 20MHz away.
1658				 */
1659				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1660				    freq - 20 !=
1661				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1662					continue;
1663			if (flags[j] & IEEE80211_CHAN_HT40U)
1664				/*
1665				 * Can't have an "upper" channel if we are
1666				 * the last channel.
1667				 *
1668				 * Can't have an "upper" channel be above the
1669				 * last channel in the list.
1670				 *
1671				 * Can't have an "upper" channel if the next
1672				 * channel according to the math isn't 20MHz
1673				 * away.  (Likely for channel 13/14.)
1674				 */
1675				if (i == nieee - 1 ||
1676				    ieee[i] + 4 > ieee[nieee - 1] ||
1677				    freq + 20 !=
1678				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1679					continue;
1680
1681			if (j == 0) {
1682				error = addchan(chans, maxchans, nchans,
1683				    ieee[i], freq, 0, flags[j]);
1684			} else {
1685				error = copychan_prev(chans, maxchans, nchans,
1686				    flags[j]);
1687			}
1688			if (error != 0)
1689				return (error);
1690		}
1691	}
1692
1693	return (0);
1694}
1695
1696int
1697ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1698    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1699    int cbw_flags)
1700{
1701	uint32_t flags[IEEE80211_MODE_MAX];
1702
1703	/* XXX no VHT for now */
1704	getflags_2ghz(bands, flags, cbw_flags);
1705	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1706
1707	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1708}
1709
1710int
1711ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1712    int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1713{
1714	const uint8_t default_chan_list[] =
1715	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1716
1717	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1718	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1719}
1720
1721int
1722ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1723    int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1724    int cbw_flags)
1725{
1726	/*
1727	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1728	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1729	 */
1730	uint32_t flags[2 * IEEE80211_MODE_MAX];
1731
1732	getflags_5ghz(bands, flags, cbw_flags);
1733	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1734
1735	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1736}
1737
1738/*
1739 * Locate a channel given a frequency+flags.  We cache
1740 * the previous lookup to optimize switching between two
1741 * channels--as happens with dynamic turbo.
1742 */
1743struct ieee80211_channel *
1744ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1745{
1746	struct ieee80211_channel *c;
1747
1748	flags &= IEEE80211_CHAN_ALLTURBO;
1749	c = ic->ic_prevchan;
1750	if (c != NULL && c->ic_freq == freq &&
1751	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1752		return c;
1753	/* brute force search */
1754	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1755}
1756
1757/*
1758 * Locate a channel given a channel number+flags.  We cache
1759 * the previous lookup to optimize switching between two
1760 * channels--as happens with dynamic turbo.
1761 */
1762struct ieee80211_channel *
1763ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1764{
1765	struct ieee80211_channel *c;
1766	int i;
1767
1768	flags &= IEEE80211_CHAN_ALLTURBO;
1769	c = ic->ic_prevchan;
1770	if (c != NULL && c->ic_ieee == ieee &&
1771	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1772		return c;
1773	/* brute force search */
1774	for (i = 0; i < ic->ic_nchans; i++) {
1775		c = &ic->ic_channels[i];
1776		if (c->ic_ieee == ieee &&
1777		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1778			return c;
1779	}
1780	return NULL;
1781}
1782
1783/*
1784 * Lookup a channel suitable for the given rx status.
1785 *
1786 * This is used to find a channel for a frame (eg beacon, probe
1787 * response) based purely on the received PHY information.
1788 *
1789 * For now it tries to do it based on R_FREQ / R_IEEE.
1790 * This is enough for 11bg and 11a (and thus 11ng/11na)
1791 * but it will not be enough for GSM, PSB channels and the
1792 * like.  It also doesn't know about legacy-turbog and
1793 * legacy-turbo modes, which some offload NICs actually
1794 * support in weird ways.
1795 *
1796 * Takes the ic and rxstatus; returns the channel or NULL
1797 * if not found.
1798 *
1799 * XXX TODO: Add support for that when the need arises.
1800 */
1801struct ieee80211_channel *
1802ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1803    const struct ieee80211_rx_stats *rxs)
1804{
1805	struct ieee80211com *ic = vap->iv_ic;
1806	uint32_t flags;
1807	struct ieee80211_channel *c;
1808
1809	if (rxs == NULL)
1810		return (NULL);
1811
1812	/*
1813	 * Strictly speaking we only use freq for now,
1814	 * however later on we may wish to just store
1815	 * the ieee for verification.
1816	 */
1817	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1818		return (NULL);
1819	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1820		return (NULL);
1821
1822	/*
1823	 * If the rx status contains a valid ieee/freq, then
1824	 * ensure we populate the correct channel information
1825	 * in rxchan before passing it up to the scan infrastructure.
1826	 * Offload NICs will pass up beacons from all channels
1827	 * during background scans.
1828	 */
1829
1830	/* Determine a band */
1831	/* XXX should be done by the driver? */
1832	if (rxs->c_freq < 3000) {
1833		flags = IEEE80211_CHAN_G;
1834	} else {
1835		flags = IEEE80211_CHAN_A;
1836	}
1837
1838	/* Channel lookup */
1839	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1840
1841	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1842	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1843	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1844
1845	return (c);
1846}
1847
1848static void
1849addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1850{
1851#define	ADD(_ic, _s, _o) \
1852	ifmedia_add(media, \
1853		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1854	static const u_int mopts[IEEE80211_MODE_MAX] = {
1855	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1856	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1857	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1858	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1859	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1860	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1861	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1862	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1863	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1864	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1865	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1866	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1867	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1868	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1869	};
1870	u_int mopt;
1871
1872	mopt = mopts[mode];
1873	if (addsta)
1874		ADD(ic, mword, mopt);	/* STA mode has no cap */
1875	if (caps & IEEE80211_C_IBSS)
1876		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1877	if (caps & IEEE80211_C_HOSTAP)
1878		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1879	if (caps & IEEE80211_C_AHDEMO)
1880		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1881	if (caps & IEEE80211_C_MONITOR)
1882		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1883	if (caps & IEEE80211_C_WDS)
1884		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1885	if (caps & IEEE80211_C_MBSS)
1886		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1887#undef ADD
1888}
1889
1890/*
1891 * Setup the media data structures according to the channel and
1892 * rate tables.
1893 */
1894static int
1895ieee80211_media_setup(struct ieee80211com *ic,
1896	struct ifmedia *media, int caps, int addsta,
1897	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1898{
1899	int i, j, rate, maxrate, mword, r;
1900	enum ieee80211_phymode mode;
1901	const struct ieee80211_rateset *rs;
1902	struct ieee80211_rateset allrates;
1903
1904	/*
1905	 * Fill in media characteristics.
1906	 */
1907	ifmedia_init(media, 0, media_change, media_stat);
1908	maxrate = 0;
1909	/*
1910	 * Add media for legacy operating modes.
1911	 */
1912	memset(&allrates, 0, sizeof(allrates));
1913	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1914		if (isclr(ic->ic_modecaps, mode))
1915			continue;
1916		addmedia(media, caps, addsta, mode, IFM_AUTO);
1917		if (mode == IEEE80211_MODE_AUTO)
1918			continue;
1919		rs = &ic->ic_sup_rates[mode];
1920		for (i = 0; i < rs->rs_nrates; i++) {
1921			rate = rs->rs_rates[i];
1922			mword = ieee80211_rate2media(ic, rate, mode);
1923			if (mword == 0)
1924				continue;
1925			addmedia(media, caps, addsta, mode, mword);
1926			/*
1927			 * Add legacy rate to the collection of all rates.
1928			 */
1929			r = rate & IEEE80211_RATE_VAL;
1930			for (j = 0; j < allrates.rs_nrates; j++)
1931				if (allrates.rs_rates[j] == r)
1932					break;
1933			if (j == allrates.rs_nrates) {
1934				/* unique, add to the set */
1935				allrates.rs_rates[j] = r;
1936				allrates.rs_nrates++;
1937			}
1938			rate = (rate & IEEE80211_RATE_VAL) / 2;
1939			if (rate > maxrate)
1940				maxrate = rate;
1941		}
1942	}
1943	for (i = 0; i < allrates.rs_nrates; i++) {
1944		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1945				IEEE80211_MODE_AUTO);
1946		if (mword == 0)
1947			continue;
1948		/* NB: remove media options from mword */
1949		addmedia(media, caps, addsta,
1950		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1951	}
1952	/*
1953	 * Add HT/11n media.  Note that we do not have enough
1954	 * bits in the media subtype to express the MCS so we
1955	 * use a "placeholder" media subtype and any fixed MCS
1956	 * must be specified with a different mechanism.
1957	 */
1958	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1959		if (isclr(ic->ic_modecaps, mode))
1960			continue;
1961		addmedia(media, caps, addsta, mode, IFM_AUTO);
1962		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1963	}
1964	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1965	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1966		addmedia(media, caps, addsta,
1967		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1968		i = ic->ic_txstream * 8 - 1;
1969		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1970		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1971			rate = ieee80211_htrates[i].ht40_rate_400ns;
1972		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1973			rate = ieee80211_htrates[i].ht40_rate_800ns;
1974		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1975			rate = ieee80211_htrates[i].ht20_rate_400ns;
1976		else
1977			rate = ieee80211_htrates[i].ht20_rate_800ns;
1978		if (rate > maxrate)
1979			maxrate = rate;
1980	}
1981
1982	/*
1983	 * Add VHT media.
1984	 * XXX-BZ skip "VHT_2GHZ" for now.
1985	 */
1986	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
1987	    mode++) {
1988		if (isclr(ic->ic_modecaps, mode))
1989			continue;
1990		addmedia(media, caps, addsta, mode, IFM_AUTO);
1991		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1992	}
1993	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
1994	       addmedia(media, caps, addsta,
1995		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
1996
1997		/* XXX TODO: VHT maxrate */
1998	}
1999
2000	return maxrate;
2001}
2002
2003/* XXX inline or eliminate? */
2004const struct ieee80211_rateset *
2005ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2006{
2007	/* XXX does this work for 11ng basic rates? */
2008	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2009}
2010
2011/* XXX inline or eliminate? */
2012const struct ieee80211_htrateset *
2013ieee80211_get_suphtrates(struct ieee80211com *ic,
2014    const struct ieee80211_channel *c)
2015{
2016	return &ic->ic_sup_htrates;
2017}
2018
2019void
2020ieee80211_announce(struct ieee80211com *ic)
2021{
2022	int i, rate, mword;
2023	enum ieee80211_phymode mode;
2024	const struct ieee80211_rateset *rs;
2025
2026	/* NB: skip AUTO since it has no rates */
2027	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2028		if (isclr(ic->ic_modecaps, mode))
2029			continue;
2030		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2031		rs = &ic->ic_sup_rates[mode];
2032		for (i = 0; i < rs->rs_nrates; i++) {
2033			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2034			if (mword == 0)
2035				continue;
2036			rate = ieee80211_media2rate(mword);
2037			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2038			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2039		}
2040		printf("\n");
2041	}
2042	ieee80211_ht_announce(ic);
2043	ieee80211_vht_announce(ic);
2044}
2045
2046void
2047ieee80211_announce_channels(struct ieee80211com *ic)
2048{
2049	const struct ieee80211_channel *c;
2050	char type;
2051	int i, cw;
2052
2053	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2054	for (i = 0; i < ic->ic_nchans; i++) {
2055		c = &ic->ic_channels[i];
2056		if (IEEE80211_IS_CHAN_ST(c))
2057			type = 'S';
2058		else if (IEEE80211_IS_CHAN_108A(c))
2059			type = 'T';
2060		else if (IEEE80211_IS_CHAN_108G(c))
2061			type = 'G';
2062		else if (IEEE80211_IS_CHAN_HT(c))
2063			type = 'n';
2064		else if (IEEE80211_IS_CHAN_A(c))
2065			type = 'a';
2066		else if (IEEE80211_IS_CHAN_ANYG(c))
2067			type = 'g';
2068		else if (IEEE80211_IS_CHAN_B(c))
2069			type = 'b';
2070		else
2071			type = 'f';
2072		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2073			cw = 40;
2074		else if (IEEE80211_IS_CHAN_HALF(c))
2075			cw = 10;
2076		else if (IEEE80211_IS_CHAN_QUARTER(c))
2077			cw = 5;
2078		else
2079			cw = 20;
2080		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2081			, c->ic_ieee, c->ic_freq, type
2082			, cw
2083			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2084			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2085			, c->ic_maxregpower
2086			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2087			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2088		);
2089	}
2090}
2091
2092static int
2093media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2094{
2095	switch (IFM_MODE(ime->ifm_media)) {
2096	case IFM_IEEE80211_11A:
2097		*mode = IEEE80211_MODE_11A;
2098		break;
2099	case IFM_IEEE80211_11B:
2100		*mode = IEEE80211_MODE_11B;
2101		break;
2102	case IFM_IEEE80211_11G:
2103		*mode = IEEE80211_MODE_11G;
2104		break;
2105	case IFM_IEEE80211_FH:
2106		*mode = IEEE80211_MODE_FH;
2107		break;
2108	case IFM_IEEE80211_11NA:
2109		*mode = IEEE80211_MODE_11NA;
2110		break;
2111	case IFM_IEEE80211_11NG:
2112		*mode = IEEE80211_MODE_11NG;
2113		break;
2114	case IFM_IEEE80211_VHT2G:
2115		*mode = IEEE80211_MODE_VHT_2GHZ;
2116		break;
2117	case IFM_IEEE80211_VHT5G:
2118		*mode = IEEE80211_MODE_VHT_5GHZ;
2119		break;
2120	case IFM_AUTO:
2121		*mode = IEEE80211_MODE_AUTO;
2122		break;
2123	default:
2124		return 0;
2125	}
2126	/*
2127	 * Turbo mode is an ``option''.
2128	 * XXX does not apply to AUTO
2129	 */
2130	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2131		if (*mode == IEEE80211_MODE_11A) {
2132			if (flags & IEEE80211_F_TURBOP)
2133				*mode = IEEE80211_MODE_TURBO_A;
2134			else
2135				*mode = IEEE80211_MODE_STURBO_A;
2136		} else if (*mode == IEEE80211_MODE_11G)
2137			*mode = IEEE80211_MODE_TURBO_G;
2138		else
2139			return 0;
2140	}
2141	/* XXX HT40 +/- */
2142	return 1;
2143}
2144
2145/*
2146 * Handle a media change request on the vap interface.
2147 */
2148int
2149ieee80211_media_change(struct ifnet *ifp)
2150{
2151	struct ieee80211vap *vap = ifp->if_softc;
2152	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2153	uint16_t newmode;
2154
2155	if (!media2mode(ime, vap->iv_flags, &newmode))
2156		return EINVAL;
2157	if (vap->iv_des_mode != newmode) {
2158		vap->iv_des_mode = newmode;
2159		/* XXX kick state machine if up+running */
2160	}
2161	return 0;
2162}
2163
2164/*
2165 * Common code to calculate the media status word
2166 * from the operating mode and channel state.
2167 */
2168static int
2169media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2170{
2171	int status;
2172
2173	status = IFM_IEEE80211;
2174	switch (opmode) {
2175	case IEEE80211_M_STA:
2176		break;
2177	case IEEE80211_M_IBSS:
2178		status |= IFM_IEEE80211_ADHOC;
2179		break;
2180	case IEEE80211_M_HOSTAP:
2181		status |= IFM_IEEE80211_HOSTAP;
2182		break;
2183	case IEEE80211_M_MONITOR:
2184		status |= IFM_IEEE80211_MONITOR;
2185		break;
2186	case IEEE80211_M_AHDEMO:
2187		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2188		break;
2189	case IEEE80211_M_WDS:
2190		status |= IFM_IEEE80211_WDS;
2191		break;
2192	case IEEE80211_M_MBSS:
2193		status |= IFM_IEEE80211_MBSS;
2194		break;
2195	}
2196	if (IEEE80211_IS_CHAN_HTA(chan)) {
2197		status |= IFM_IEEE80211_11NA;
2198	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2199		status |= IFM_IEEE80211_11NG;
2200	} else if (IEEE80211_IS_CHAN_A(chan)) {
2201		status |= IFM_IEEE80211_11A;
2202	} else if (IEEE80211_IS_CHAN_B(chan)) {
2203		status |= IFM_IEEE80211_11B;
2204	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2205		status |= IFM_IEEE80211_11G;
2206	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2207		status |= IFM_IEEE80211_FH;
2208	}
2209	/* XXX else complain? */
2210
2211	if (IEEE80211_IS_CHAN_TURBO(chan))
2212		status |= IFM_IEEE80211_TURBO;
2213#if 0
2214	if (IEEE80211_IS_CHAN_HT20(chan))
2215		status |= IFM_IEEE80211_HT20;
2216	if (IEEE80211_IS_CHAN_HT40(chan))
2217		status |= IFM_IEEE80211_HT40;
2218#endif
2219	return status;
2220}
2221
2222void
2223ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2224{
2225	struct ieee80211vap *vap = ifp->if_softc;
2226	struct ieee80211com *ic = vap->iv_ic;
2227	enum ieee80211_phymode mode;
2228
2229	imr->ifm_status = IFM_AVALID;
2230	/*
2231	 * NB: use the current channel's mode to lock down a xmit
2232	 * rate only when running; otherwise we may have a mismatch
2233	 * in which case the rate will not be convertible.
2234	 */
2235	if (vap->iv_state == IEEE80211_S_RUN ||
2236	    vap->iv_state == IEEE80211_S_SLEEP) {
2237		imr->ifm_status |= IFM_ACTIVE;
2238		mode = ieee80211_chan2mode(ic->ic_curchan);
2239	} else
2240		mode = IEEE80211_MODE_AUTO;
2241	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2242	/*
2243	 * Calculate a current rate if possible.
2244	 */
2245	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2246		/*
2247		 * A fixed rate is set, report that.
2248		 */
2249		imr->ifm_active |= ieee80211_rate2media(ic,
2250			vap->iv_txparms[mode].ucastrate, mode);
2251	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2252		/*
2253		 * In station mode report the current transmit rate.
2254		 */
2255		imr->ifm_active |= ieee80211_rate2media(ic,
2256			vap->iv_bss->ni_txrate, mode);
2257	} else
2258		imr->ifm_active |= IFM_AUTO;
2259	if (imr->ifm_status & IFM_ACTIVE)
2260		imr->ifm_current = imr->ifm_active;
2261}
2262
2263/*
2264 * Set the current phy mode and recalculate the active channel
2265 * set based on the available channels for this mode.  Also
2266 * select a new default/current channel if the current one is
2267 * inappropriate for this mode.
2268 */
2269int
2270ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2271{
2272	/*
2273	 * Adjust basic rates in 11b/11g supported rate set.
2274	 * Note that if operating on a hal/quarter rate channel
2275	 * this is a noop as those rates sets are different
2276	 * and used instead.
2277	 */
2278	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2279		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2280
2281	ic->ic_curmode = mode;
2282	ieee80211_reset_erp(ic);	/* reset global ERP state */
2283
2284	return 0;
2285}
2286
2287/*
2288 * Return the phy mode for with the specified channel.
2289 */
2290enum ieee80211_phymode
2291ieee80211_chan2mode(const struct ieee80211_channel *chan)
2292{
2293
2294	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2295		return IEEE80211_MODE_VHT_2GHZ;
2296	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2297		return IEEE80211_MODE_VHT_5GHZ;
2298	else if (IEEE80211_IS_CHAN_HTA(chan))
2299		return IEEE80211_MODE_11NA;
2300	else if (IEEE80211_IS_CHAN_HTG(chan))
2301		return IEEE80211_MODE_11NG;
2302	else if (IEEE80211_IS_CHAN_108G(chan))
2303		return IEEE80211_MODE_TURBO_G;
2304	else if (IEEE80211_IS_CHAN_ST(chan))
2305		return IEEE80211_MODE_STURBO_A;
2306	else if (IEEE80211_IS_CHAN_TURBO(chan))
2307		return IEEE80211_MODE_TURBO_A;
2308	else if (IEEE80211_IS_CHAN_HALF(chan))
2309		return IEEE80211_MODE_HALF;
2310	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2311		return IEEE80211_MODE_QUARTER;
2312	else if (IEEE80211_IS_CHAN_A(chan))
2313		return IEEE80211_MODE_11A;
2314	else if (IEEE80211_IS_CHAN_ANYG(chan))
2315		return IEEE80211_MODE_11G;
2316	else if (IEEE80211_IS_CHAN_B(chan))
2317		return IEEE80211_MODE_11B;
2318	else if (IEEE80211_IS_CHAN_FHSS(chan))
2319		return IEEE80211_MODE_FH;
2320
2321	/* NB: should not get here */
2322	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2323		__func__, chan->ic_freq, chan->ic_flags);
2324	return IEEE80211_MODE_11B;
2325}
2326
2327struct ratemedia {
2328	u_int	match;	/* rate + mode */
2329	u_int	media;	/* if_media rate */
2330};
2331
2332static int
2333findmedia(const struct ratemedia rates[], int n, u_int match)
2334{
2335	int i;
2336
2337	for (i = 0; i < n; i++)
2338		if (rates[i].match == match)
2339			return rates[i].media;
2340	return IFM_AUTO;
2341}
2342
2343/*
2344 * Convert IEEE80211 rate value to ifmedia subtype.
2345 * Rate is either a legacy rate in units of 0.5Mbps
2346 * or an MCS index.
2347 */
2348int
2349ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2350{
2351	static const struct ratemedia rates[] = {
2352		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2353		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2354		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2355		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2356		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2357		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2358		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2359		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2360		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2361		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2362		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2363		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2364		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2365		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2366		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2367		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2368		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2369		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2370		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2371		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2372		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2373		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2374		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2375		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2376		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2377		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2378		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2379		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2380		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2381		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2382		/* NB: OFDM72 doesn't really exist so we don't handle it */
2383	};
2384	static const struct ratemedia htrates[] = {
2385		{   0, IFM_IEEE80211_MCS },
2386		{   1, IFM_IEEE80211_MCS },
2387		{   2, IFM_IEEE80211_MCS },
2388		{   3, IFM_IEEE80211_MCS },
2389		{   4, IFM_IEEE80211_MCS },
2390		{   5, IFM_IEEE80211_MCS },
2391		{   6, IFM_IEEE80211_MCS },
2392		{   7, IFM_IEEE80211_MCS },
2393		{   8, IFM_IEEE80211_MCS },
2394		{   9, IFM_IEEE80211_MCS },
2395		{  10, IFM_IEEE80211_MCS },
2396		{  11, IFM_IEEE80211_MCS },
2397		{  12, IFM_IEEE80211_MCS },
2398		{  13, IFM_IEEE80211_MCS },
2399		{  14, IFM_IEEE80211_MCS },
2400		{  15, IFM_IEEE80211_MCS },
2401		{  16, IFM_IEEE80211_MCS },
2402		{  17, IFM_IEEE80211_MCS },
2403		{  18, IFM_IEEE80211_MCS },
2404		{  19, IFM_IEEE80211_MCS },
2405		{  20, IFM_IEEE80211_MCS },
2406		{  21, IFM_IEEE80211_MCS },
2407		{  22, IFM_IEEE80211_MCS },
2408		{  23, IFM_IEEE80211_MCS },
2409		{  24, IFM_IEEE80211_MCS },
2410		{  25, IFM_IEEE80211_MCS },
2411		{  26, IFM_IEEE80211_MCS },
2412		{  27, IFM_IEEE80211_MCS },
2413		{  28, IFM_IEEE80211_MCS },
2414		{  29, IFM_IEEE80211_MCS },
2415		{  30, IFM_IEEE80211_MCS },
2416		{  31, IFM_IEEE80211_MCS },
2417		{  32, IFM_IEEE80211_MCS },
2418		{  33, IFM_IEEE80211_MCS },
2419		{  34, IFM_IEEE80211_MCS },
2420		{  35, IFM_IEEE80211_MCS },
2421		{  36, IFM_IEEE80211_MCS },
2422		{  37, IFM_IEEE80211_MCS },
2423		{  38, IFM_IEEE80211_MCS },
2424		{  39, IFM_IEEE80211_MCS },
2425		{  40, IFM_IEEE80211_MCS },
2426		{  41, IFM_IEEE80211_MCS },
2427		{  42, IFM_IEEE80211_MCS },
2428		{  43, IFM_IEEE80211_MCS },
2429		{  44, IFM_IEEE80211_MCS },
2430		{  45, IFM_IEEE80211_MCS },
2431		{  46, IFM_IEEE80211_MCS },
2432		{  47, IFM_IEEE80211_MCS },
2433		{  48, IFM_IEEE80211_MCS },
2434		{  49, IFM_IEEE80211_MCS },
2435		{  50, IFM_IEEE80211_MCS },
2436		{  51, IFM_IEEE80211_MCS },
2437		{  52, IFM_IEEE80211_MCS },
2438		{  53, IFM_IEEE80211_MCS },
2439		{  54, IFM_IEEE80211_MCS },
2440		{  55, IFM_IEEE80211_MCS },
2441		{  56, IFM_IEEE80211_MCS },
2442		{  57, IFM_IEEE80211_MCS },
2443		{  58, IFM_IEEE80211_MCS },
2444		{  59, IFM_IEEE80211_MCS },
2445		{  60, IFM_IEEE80211_MCS },
2446		{  61, IFM_IEEE80211_MCS },
2447		{  62, IFM_IEEE80211_MCS },
2448		{  63, IFM_IEEE80211_MCS },
2449		{  64, IFM_IEEE80211_MCS },
2450		{  65, IFM_IEEE80211_MCS },
2451		{  66, IFM_IEEE80211_MCS },
2452		{  67, IFM_IEEE80211_MCS },
2453		{  68, IFM_IEEE80211_MCS },
2454		{  69, IFM_IEEE80211_MCS },
2455		{  70, IFM_IEEE80211_MCS },
2456		{  71, IFM_IEEE80211_MCS },
2457		{  72, IFM_IEEE80211_MCS },
2458		{  73, IFM_IEEE80211_MCS },
2459		{  74, IFM_IEEE80211_MCS },
2460		{  75, IFM_IEEE80211_MCS },
2461		{  76, IFM_IEEE80211_MCS },
2462	};
2463	static const struct ratemedia vhtrates[] = {
2464		{   0, IFM_IEEE80211_VHT },
2465		{   1, IFM_IEEE80211_VHT },
2466		{   2, IFM_IEEE80211_VHT },
2467		{   3, IFM_IEEE80211_VHT },
2468		{   4, IFM_IEEE80211_VHT },
2469		{   5, IFM_IEEE80211_VHT },
2470		{   6, IFM_IEEE80211_VHT },
2471		{   7, IFM_IEEE80211_VHT },
2472		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2473		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2474#if 0
2475		/* Some QCA and BRCM seem to support this; offspec. */
2476		{  10, IFM_IEEE80211_VHT },
2477		{  11, IFM_IEEE80211_VHT },
2478#endif
2479	};
2480	int m;
2481
2482	/*
2483	 * Check 11ac/11n rates first for match as an MCS.
2484	 */
2485	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2486		if (rate & IFM_IEEE80211_VHT) {
2487			rate &= ~IFM_IEEE80211_VHT;
2488			m = findmedia(vhtrates, nitems(vhtrates), rate);
2489			if (m != IFM_AUTO)
2490				return (m | IFM_IEEE80211_VHT);
2491		}
2492	} else if (mode == IEEE80211_MODE_11NA) {
2493		if (rate & IEEE80211_RATE_MCS) {
2494			rate &= ~IEEE80211_RATE_MCS;
2495			m = findmedia(htrates, nitems(htrates), rate);
2496			if (m != IFM_AUTO)
2497				return m | IFM_IEEE80211_11NA;
2498		}
2499	} else if (mode == IEEE80211_MODE_11NG) {
2500		/* NB: 12 is ambiguous, it will be treated as an MCS */
2501		if (rate & IEEE80211_RATE_MCS) {
2502			rate &= ~IEEE80211_RATE_MCS;
2503			m = findmedia(htrates, nitems(htrates), rate);
2504			if (m != IFM_AUTO)
2505				return m | IFM_IEEE80211_11NG;
2506		}
2507	}
2508	rate &= IEEE80211_RATE_VAL;
2509	switch (mode) {
2510	case IEEE80211_MODE_11A:
2511	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2512	case IEEE80211_MODE_QUARTER:
2513	case IEEE80211_MODE_11NA:
2514	case IEEE80211_MODE_TURBO_A:
2515	case IEEE80211_MODE_STURBO_A:
2516		return findmedia(rates, nitems(rates),
2517		    rate | IFM_IEEE80211_11A);
2518	case IEEE80211_MODE_11B:
2519		return findmedia(rates, nitems(rates),
2520		    rate | IFM_IEEE80211_11B);
2521	case IEEE80211_MODE_FH:
2522		return findmedia(rates, nitems(rates),
2523		    rate | IFM_IEEE80211_FH);
2524	case IEEE80211_MODE_AUTO:
2525		/* NB: ic may be NULL for some drivers */
2526		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2527			return findmedia(rates, nitems(rates),
2528			    rate | IFM_IEEE80211_FH);
2529		/* NB: hack, 11g matches both 11b+11a rates */
2530		/* fall thru... */
2531	case IEEE80211_MODE_11G:
2532	case IEEE80211_MODE_11NG:
2533	case IEEE80211_MODE_TURBO_G:
2534		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2535	case IEEE80211_MODE_VHT_2GHZ:
2536	case IEEE80211_MODE_VHT_5GHZ:
2537		/* XXX TODO: need to figure out mapping for VHT rates */
2538		return IFM_AUTO;
2539	}
2540	return IFM_AUTO;
2541}
2542
2543int
2544ieee80211_media2rate(int mword)
2545{
2546	static const int ieeerates[] = {
2547		-1,		/* IFM_AUTO */
2548		0,		/* IFM_MANUAL */
2549		0,		/* IFM_NONE */
2550		2,		/* IFM_IEEE80211_FH1 */
2551		4,		/* IFM_IEEE80211_FH2 */
2552		2,		/* IFM_IEEE80211_DS1 */
2553		4,		/* IFM_IEEE80211_DS2 */
2554		11,		/* IFM_IEEE80211_DS5 */
2555		22,		/* IFM_IEEE80211_DS11 */
2556		44,		/* IFM_IEEE80211_DS22 */
2557		12,		/* IFM_IEEE80211_OFDM6 */
2558		18,		/* IFM_IEEE80211_OFDM9 */
2559		24,		/* IFM_IEEE80211_OFDM12 */
2560		36,		/* IFM_IEEE80211_OFDM18 */
2561		48,		/* IFM_IEEE80211_OFDM24 */
2562		72,		/* IFM_IEEE80211_OFDM36 */
2563		96,		/* IFM_IEEE80211_OFDM48 */
2564		108,		/* IFM_IEEE80211_OFDM54 */
2565		144,		/* IFM_IEEE80211_OFDM72 */
2566		0,		/* IFM_IEEE80211_DS354k */
2567		0,		/* IFM_IEEE80211_DS512k */
2568		6,		/* IFM_IEEE80211_OFDM3 */
2569		9,		/* IFM_IEEE80211_OFDM4 */
2570		54,		/* IFM_IEEE80211_OFDM27 */
2571		-1,		/* IFM_IEEE80211_MCS */
2572		-1,		/* IFM_IEEE80211_VHT */
2573	};
2574	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2575		ieeerates[IFM_SUBTYPE(mword)] : 0;
2576}
2577
2578/*
2579 * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2580 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2581 */
2582#define	mix(a, b, c)							\
2583do {									\
2584	a -= b; a -= c; a ^= (c >> 13);					\
2585	b -= c; b -= a; b ^= (a << 8);					\
2586	c -= a; c -= b; c ^= (b >> 13);					\
2587	a -= b; a -= c; a ^= (c >> 12);					\
2588	b -= c; b -= a; b ^= (a << 16);					\
2589	c -= a; c -= b; c ^= (b >> 5);					\
2590	a -= b; a -= c; a ^= (c >> 3);					\
2591	b -= c; b -= a; b ^= (a << 10);					\
2592	c -= a; c -= b; c ^= (b >> 15);					\
2593} while (/*CONSTCOND*/0)
2594
2595uint32_t
2596ieee80211_mac_hash(const struct ieee80211com *ic,
2597	const uint8_t addr[IEEE80211_ADDR_LEN])
2598{
2599	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2600
2601	b += addr[5] << 8;
2602	b += addr[4];
2603	a += addr[3] << 24;
2604	a += addr[2] << 16;
2605	a += addr[1] << 8;
2606	a += addr[0];
2607
2608	mix(a, b, c);
2609
2610	return c;
2611}
2612#undef mix
2613
2614char
2615ieee80211_channel_type_char(const struct ieee80211_channel *c)
2616{
2617	if (IEEE80211_IS_CHAN_ST(c))
2618		return 'S';
2619	if (IEEE80211_IS_CHAN_108A(c))
2620		return 'T';
2621	if (IEEE80211_IS_CHAN_108G(c))
2622		return 'G';
2623	if (IEEE80211_IS_CHAN_VHT(c))
2624		return 'v';
2625	if (IEEE80211_IS_CHAN_HT(c))
2626		return 'n';
2627	if (IEEE80211_IS_CHAN_A(c))
2628		return 'a';
2629	if (IEEE80211_IS_CHAN_ANYG(c))
2630		return 'g';
2631	if (IEEE80211_IS_CHAN_B(c))
2632		return 'b';
2633	return 'f';
2634}
2635