1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)if_ethersubr.c	8.1 (Berkeley) 6/10/93
32 * $FreeBSD$
33 */
34
35#include "opt_inet.h"
36#include "opt_inet6.h"
37#include "opt_netgraph.h"
38#include "opt_mbuf_profiling.h"
39#include "opt_rss.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/eventhandler.h>
45#include <sys/jail.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/module.h>
50#include <sys/mbuf.h>
51#include <sys/proc.h>
52#include <sys/priv.h>
53#include <sys/random.h>
54#include <sys/socket.h>
55#include <sys/sockio.h>
56#include <sys/sysctl.h>
57#include <sys/uuid.h>
58
59#include <net/ieee_oui.h>
60#include <net/if.h>
61#include <net/if_var.h>
62#include <net/if_arp.h>
63#include <net/netisr.h>
64#include <net/route.h>
65#include <net/if_llc.h>
66#include <net/if_dl.h>
67#include <net/if_types.h>
68#include <net/bpf.h>
69#include <net/ethernet.h>
70#include <net/if_bridgevar.h>
71#include <net/if_vlan_var.h>
72#include <net/if_llatbl.h>
73#include <net/pfil.h>
74#include <net/rss_config.h>
75#include <net/vnet.h>
76
77#include <netpfil/pf/pf_mtag.h>
78
79#if defined(INET) || defined(INET6)
80#include <netinet/in.h>
81#include <netinet/in_var.h>
82#include <netinet/if_ether.h>
83#include <netinet/ip_carp.h>
84#include <netinet/ip_var.h>
85#endif
86#ifdef INET6
87#include <netinet6/nd6.h>
88#endif
89#include <security/mac/mac_framework.h>
90
91#include <crypto/sha1.h>
92
93#ifdef CTASSERT
94CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
95CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
96#endif
97
98VNET_DEFINE(struct pfil_head, link_pfil_hook);	/* Packet filter hooks */
99
100/* netgraph node hooks for ng_ether(4) */
101void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
102void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
103int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
104void	(*ng_ether_attach_p)(struct ifnet *ifp);
105void	(*ng_ether_detach_p)(struct ifnet *ifp);
106
107void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
108
109/* if_bridge(4) support */
110void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
111
112/* if_lagg(4) support */
113struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
114
115static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
116			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
117
118static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
119		struct sockaddr *);
120static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
121
122
123#define senderr(e) do { error = (e); goto bad;} while (0)
124
125static void
126update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
127{
128	int csum_flags = 0;
129
130	if (src->m_pkthdr.csum_flags & CSUM_IP)
131		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
132	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
133		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
134	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
135		csum_flags |= CSUM_SCTP_VALID;
136	dst->m_pkthdr.csum_flags |= csum_flags;
137	if (csum_flags & CSUM_DATA_VALID)
138		dst->m_pkthdr.csum_data = 0xffff;
139}
140
141/*
142 * Handle link-layer encapsulation requests.
143 */
144static int
145ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
146{
147	struct ether_header *eh;
148	struct arphdr *ah;
149	uint16_t etype;
150	const u_char *lladdr;
151
152	if (req->rtype != IFENCAP_LL)
153		return (EOPNOTSUPP);
154
155	if (req->bufsize < ETHER_HDR_LEN)
156		return (ENOMEM);
157
158	eh = (struct ether_header *)req->buf;
159	lladdr = req->lladdr;
160	req->lladdr_off = 0;
161
162	switch (req->family) {
163	case AF_INET:
164		etype = htons(ETHERTYPE_IP);
165		break;
166	case AF_INET6:
167		etype = htons(ETHERTYPE_IPV6);
168		break;
169	case AF_ARP:
170		ah = (struct arphdr *)req->hdata;
171		ah->ar_hrd = htons(ARPHRD_ETHER);
172
173		switch(ntohs(ah->ar_op)) {
174		case ARPOP_REVREQUEST:
175		case ARPOP_REVREPLY:
176			etype = htons(ETHERTYPE_REVARP);
177			break;
178		case ARPOP_REQUEST:
179		case ARPOP_REPLY:
180		default:
181			etype = htons(ETHERTYPE_ARP);
182			break;
183		}
184
185		if (req->flags & IFENCAP_FLAG_BROADCAST)
186			lladdr = ifp->if_broadcastaddr;
187		break;
188	default:
189		return (EAFNOSUPPORT);
190	}
191
192	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
193	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
194	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
195	req->bufsize = sizeof(struct ether_header);
196
197	return (0);
198}
199
200
201static int
202ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
203	const struct sockaddr *dst, struct route *ro, u_char *phdr,
204	uint32_t *pflags, struct llentry **plle)
205{
206	struct ether_header *eh;
207	uint32_t lleflags = 0;
208	int error = 0;
209#if defined(INET) || defined(INET6)
210	uint16_t etype;
211#endif
212
213	if (plle)
214		*plle = NULL;
215	eh = (struct ether_header *)phdr;
216
217	switch (dst->sa_family) {
218#ifdef INET
219	case AF_INET:
220		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
221			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
222			    plle);
223		else {
224			if (m->m_flags & M_BCAST)
225				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
226				    ETHER_ADDR_LEN);
227			else {
228				const struct in_addr *a;
229				a = &(((const struct sockaddr_in *)dst)->sin_addr);
230				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
231			}
232			etype = htons(ETHERTYPE_IP);
233			memcpy(&eh->ether_type, &etype, sizeof(etype));
234			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
235		}
236		break;
237#endif
238#ifdef INET6
239	case AF_INET6:
240		if ((m->m_flags & M_MCAST) == 0)
241			error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags,
242			    plle);
243		else {
244			const struct in6_addr *a6;
245			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
246			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
247			etype = htons(ETHERTYPE_IPV6);
248			memcpy(&eh->ether_type, &etype, sizeof(etype));
249			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
250		}
251		break;
252#endif
253	default:
254		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
255		if (m != NULL)
256			m_freem(m);
257		return (EAFNOSUPPORT);
258	}
259
260	if (error == EHOSTDOWN) {
261		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
262			error = EHOSTUNREACH;
263	}
264
265	if (error != 0)
266		return (error);
267
268	*pflags = RT_MAY_LOOP;
269	if (lleflags & LLE_IFADDR)
270		*pflags |= RT_L2_ME;
271
272	return (0);
273}
274
275/*
276 * Ethernet output routine.
277 * Encapsulate a packet of type family for the local net.
278 * Use trailer local net encapsulation if enough data in first
279 * packet leaves a multiple of 512 bytes of data in remainder.
280 */
281int
282ether_output(struct ifnet *ifp, struct mbuf *m,
283	const struct sockaddr *dst, struct route *ro)
284{
285	int error = 0;
286	char linkhdr[ETHER_HDR_LEN], *phdr;
287	struct ether_header *eh;
288	struct pf_mtag *t;
289	bool loop_copy;
290	int hlen;	/* link layer header length */
291	uint32_t pflags;
292	struct llentry *lle = NULL;
293	int addref = 0;
294
295	phdr = NULL;
296	pflags = 0;
297	if (ro != NULL) {
298		/* XXX BPF uses ro_prepend */
299		if (ro->ro_prepend != NULL) {
300			phdr = ro->ro_prepend;
301			hlen = ro->ro_plen;
302		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
303			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
304				lle = ro->ro_lle;
305				if (lle != NULL &&
306				    (lle->la_flags & LLE_VALID) == 0) {
307					LLE_FREE(lle);
308					lle = NULL;	/* redundant */
309					ro->ro_lle = NULL;
310				}
311				if (lle == NULL) {
312					/* if we lookup, keep cache */
313					addref = 1;
314				} else
315					/*
316					 * Notify LLE code that
317					 * the entry was used
318					 * by datapath.
319					 */
320					llentry_mark_used(lle);
321			}
322			if (lle != NULL) {
323				phdr = lle->r_linkdata;
324				hlen = lle->r_hdrlen;
325				pflags = lle->r_flags;
326			}
327		}
328	}
329
330#ifdef MAC
331	error = mac_ifnet_check_transmit(ifp, m);
332	if (error)
333		senderr(error);
334#endif
335
336	M_PROFILE(m);
337	if (ifp->if_flags & IFF_MONITOR)
338		senderr(ENETDOWN);
339	if (!((ifp->if_flags & IFF_UP) &&
340	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
341		senderr(ENETDOWN);
342
343	if (phdr == NULL) {
344		/* No prepend data supplied. Try to calculate ourselves. */
345		phdr = linkhdr;
346		hlen = ETHER_HDR_LEN;
347		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
348		    addref ? &lle : NULL);
349		if (addref && lle != NULL)
350			ro->ro_lle = lle;
351		if (error != 0)
352			return (error == EWOULDBLOCK ? 0 : error);
353	}
354
355	if ((pflags & RT_L2_ME) != 0) {
356		update_mbuf_csumflags(m, m);
357		return (if_simloop(ifp, m, dst->sa_family, 0));
358	}
359	loop_copy = (pflags & RT_MAY_LOOP) != 0;
360
361	/*
362	 * Add local net header.  If no space in first mbuf,
363	 * allocate another.
364	 *
365	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
366	 * This is done because BPF code shifts m_data pointer
367	 * to the end of ethernet header prior to calling if_output().
368	 */
369	M_PREPEND(m, hlen, M_NOWAIT);
370	if (m == NULL)
371		senderr(ENOBUFS);
372	if ((pflags & RT_HAS_HEADER) == 0) {
373		eh = mtod(m, struct ether_header *);
374		memcpy(eh, phdr, hlen);
375	}
376
377	/*
378	 * If a simplex interface, and the packet is being sent to our
379	 * Ethernet address or a broadcast address, loopback a copy.
380	 * XXX To make a simplex device behave exactly like a duplex
381	 * device, we should copy in the case of sending to our own
382	 * ethernet address (thus letting the original actually appear
383	 * on the wire). However, we don't do that here for security
384	 * reasons and compatibility with the original behavior.
385	 */
386	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
387	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
388		struct mbuf *n;
389
390		/*
391		 * Because if_simloop() modifies the packet, we need a
392		 * writable copy through m_dup() instead of a readonly
393		 * one as m_copy[m] would give us. The alternative would
394		 * be to modify if_simloop() to handle the readonly mbuf,
395		 * but performancewise it is mostly equivalent (trading
396		 * extra data copying vs. extra locking).
397		 *
398		 * XXX This is a local workaround.  A number of less
399		 * often used kernel parts suffer from the same bug.
400		 * See PR kern/105943 for a proposed general solution.
401		 */
402		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
403			update_mbuf_csumflags(m, n);
404			(void)if_simloop(ifp, n, dst->sa_family, hlen);
405		} else
406			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
407	}
408
409       /*
410	* Bridges require special output handling.
411	*/
412	if (ifp->if_bridge) {
413		BRIDGE_OUTPUT(ifp, m, error);
414		return (error);
415	}
416
417#if defined(INET) || defined(INET6)
418	if (ifp->if_carp &&
419	    (error = (*carp_output_p)(ifp, m, dst)))
420		goto bad;
421#endif
422
423	/* Handle ng_ether(4) processing, if any */
424	if (ifp->if_l2com != NULL) {
425		KASSERT(ng_ether_output_p != NULL,
426		    ("ng_ether_output_p is NULL"));
427		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
428bad:			if (m != NULL)
429				m_freem(m);
430			return (error);
431		}
432		if (m == NULL)
433			return (0);
434	}
435
436	/* Continue with link-layer output */
437	return ether_output_frame(ifp, m);
438}
439
440static bool
441ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
442{
443	struct ether_header *eh;
444
445	eh = mtod(*mp, struct ether_header *);
446	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN ||
447	    ether_8021q_frame(mp, ifp, ifp, 0, pcp))
448		return (true);
449	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
450	return (false);
451}
452
453/*
454 * Ethernet link layer output routine to send a raw frame to the device.
455 *
456 * This assumes that the 14 byte Ethernet header is present and contiguous
457 * in the first mbuf (if BRIDGE'ing).
458 */
459int
460ether_output_frame(struct ifnet *ifp, struct mbuf *m)
461{
462	int error;
463	uint8_t pcp;
464
465	pcp = ifp->if_pcp;
466	if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN &&
467	    !ether_set_pcp(&m, ifp, pcp))
468		return (0);
469
470	if (PFIL_HOOKED(&V_link_pfil_hook)) {
471		error = pfil_run_hooks(&V_link_pfil_hook, &m, ifp,
472		    PFIL_OUT, 0, NULL);
473		if (error != 0)
474			return (EACCES);
475
476		if (m == NULL)
477			return (0);
478	}
479
480	/*
481	 * Queue message on interface, update output statistics if
482	 * successful, and start output if interface not yet active.
483	 */
484	return ((ifp->if_transmit)(ifp, m));
485}
486
487/*
488 * Process a received Ethernet packet; the packet is in the
489 * mbuf chain m with the ethernet header at the front.
490 */
491static void
492ether_input_internal(struct ifnet *ifp, struct mbuf *m)
493{
494	struct ether_header *eh;
495	u_short etype;
496
497	if ((ifp->if_flags & IFF_UP) == 0) {
498		m_freem(m);
499		return;
500	}
501#ifdef DIAGNOSTIC
502	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
503		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
504		m_freem(m);
505		return;
506	}
507#endif
508	if (m->m_len < ETHER_HDR_LEN) {
509		/* XXX maybe should pullup? */
510		if_printf(ifp, "discard frame w/o leading ethernet "
511				"header (len %u pkt len %u)\n",
512				m->m_len, m->m_pkthdr.len);
513		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
514		m_freem(m);
515		return;
516	}
517	eh = mtod(m, struct ether_header *);
518	etype = ntohs(eh->ether_type);
519	random_harvest_queue_ether(m, sizeof(*m));
520
521	CURVNET_SET_QUIET(ifp->if_vnet);
522
523	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
524		if (ETHER_IS_BROADCAST(eh->ether_dhost))
525			m->m_flags |= M_BCAST;
526		else
527			m->m_flags |= M_MCAST;
528		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
529	}
530
531#ifdef MAC
532	/*
533	 * Tag the mbuf with an appropriate MAC label before any other
534	 * consumers can get to it.
535	 */
536	mac_ifnet_create_mbuf(ifp, m);
537#endif
538
539	/*
540	 * Give bpf a chance at the packet.
541	 */
542	ETHER_BPF_MTAP(ifp, m);
543
544	/*
545	 * If the CRC is still on the packet, trim it off. We do this once
546	 * and once only in case we are re-entered. Nothing else on the
547	 * Ethernet receive path expects to see the FCS.
548	 */
549	if (m->m_flags & M_HASFCS) {
550		m_adj(m, -ETHER_CRC_LEN);
551		m->m_flags &= ~M_HASFCS;
552	}
553
554	if (!(ifp->if_capenable & IFCAP_HWSTATS))
555		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
556
557	/* Allow monitor mode to claim this frame, after stats are updated. */
558	if (ifp->if_flags & IFF_MONITOR) {
559		m_freem(m);
560		CURVNET_RESTORE();
561		return;
562	}
563
564	/* Handle input from a lagg(4) port */
565	if (ifp->if_type == IFT_IEEE8023ADLAG) {
566		KASSERT(lagg_input_ethernet_p != NULL,
567		    ("%s: if_lagg not loaded!", __func__));
568		m = (*lagg_input_ethernet_p)(ifp, m);
569		if (m != NULL)
570			ifp = m->m_pkthdr.rcvif;
571		else {
572			CURVNET_RESTORE();
573			return;
574		}
575	}
576
577	/*
578	 * If the hardware did not process an 802.1Q tag, do this now,
579	 * to allow 802.1P priority frames to be passed to the main input
580	 * path correctly.
581	 * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels.
582	 */
583	if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) {
584		struct ether_vlan_header *evl;
585
586		if (m->m_len < sizeof(*evl) &&
587		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
588#ifdef DIAGNOSTIC
589			if_printf(ifp, "cannot pullup VLAN header\n");
590#endif
591			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
592			CURVNET_RESTORE();
593			return;
594		}
595
596		evl = mtod(m, struct ether_vlan_header *);
597		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
598		m->m_flags |= M_VLANTAG;
599
600		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
601		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
602		m_adj(m, ETHER_VLAN_ENCAP_LEN);
603		eh = mtod(m, struct ether_header *);
604	}
605
606	M_SETFIB(m, ifp->if_fib);
607
608	/* Allow ng_ether(4) to claim this frame. */
609	if (ifp->if_l2com != NULL) {
610		KASSERT(ng_ether_input_p != NULL,
611		    ("%s: ng_ether_input_p is NULL", __func__));
612		m->m_flags &= ~M_PROMISC;
613		(*ng_ether_input_p)(ifp, &m);
614		if (m == NULL) {
615			CURVNET_RESTORE();
616			return;
617		}
618		eh = mtod(m, struct ether_header *);
619	}
620
621	/*
622	 * Allow if_bridge(4) to claim this frame.
623	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
624	 * and the frame should be delivered locally.
625	 */
626	if (ifp->if_bridge != NULL) {
627		m->m_flags &= ~M_PROMISC;
628		BRIDGE_INPUT(ifp, m);
629		if (m == NULL) {
630			CURVNET_RESTORE();
631			return;
632		}
633		eh = mtod(m, struct ether_header *);
634	}
635
636#if defined(INET) || defined(INET6)
637	/*
638	 * Clear M_PROMISC on frame so that carp(4) will see it when the
639	 * mbuf flows up to Layer 3.
640	 * FreeBSD's implementation of carp(4) uses the inprotosw
641	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
642	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
643	 * is outside the scope of the M_PROMISC test below.
644	 * TODO: Maintain a hash table of ethernet addresses other than
645	 * ether_dhost which may be active on this ifp.
646	 */
647	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
648		m->m_flags &= ~M_PROMISC;
649	} else
650#endif
651	{
652		/*
653		 * If the frame received was not for our MAC address, set the
654		 * M_PROMISC flag on the mbuf chain. The frame may need to
655		 * be seen by the rest of the Ethernet input path in case of
656		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
657		 * seen by upper protocol layers.
658		 */
659		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
660		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
661			m->m_flags |= M_PROMISC;
662	}
663
664	ether_demux(ifp, m);
665	CURVNET_RESTORE();
666}
667
668/*
669 * Ethernet input dispatch; by default, direct dispatch here regardless of
670 * global configuration.  However, if RSS is enabled, hook up RSS affinity
671 * so that when deferred or hybrid dispatch is enabled, we can redistribute
672 * load based on RSS.
673 *
674 * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
675 * not it had already done work distribution via multi-queue.  Then we could
676 * direct dispatch in the event load balancing was already complete and
677 * handle the case of interfaces with different capabilities better.
678 *
679 * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
680 * at multiple layers?
681 *
682 * XXXRW: For now, enable all this only if RSS is compiled in, although it
683 * works fine without RSS.  Need to characterise the performance overhead
684 * of the detour through the netisr code in the event the result is always
685 * direct dispatch.
686 */
687static void
688ether_nh_input(struct mbuf *m)
689{
690
691	M_ASSERTPKTHDR(m);
692	KASSERT(m->m_pkthdr.rcvif != NULL,
693	    ("%s: NULL interface pointer", __func__));
694	ether_input_internal(m->m_pkthdr.rcvif, m);
695}
696
697static struct netisr_handler	ether_nh = {
698	.nh_name = "ether",
699	.nh_handler = ether_nh_input,
700	.nh_proto = NETISR_ETHER,
701#ifdef RSS
702	.nh_policy = NETISR_POLICY_CPU,
703	.nh_dispatch = NETISR_DISPATCH_DIRECT,
704	.nh_m2cpuid = rss_m2cpuid,
705#else
706	.nh_policy = NETISR_POLICY_SOURCE,
707	.nh_dispatch = NETISR_DISPATCH_DIRECT,
708#endif
709};
710
711static void
712ether_init(__unused void *arg)
713{
714
715	netisr_register(&ether_nh);
716}
717SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
718
719static void
720vnet_ether_init(__unused void *arg)
721{
722	int i;
723
724	/* Initialize packet filter hooks. */
725	V_link_pfil_hook.ph_type = PFIL_TYPE_AF;
726	V_link_pfil_hook.ph_af = AF_LINK;
727	if ((i = pfil_head_register(&V_link_pfil_hook)) != 0)
728		printf("%s: WARNING: unable to register pfil link hook, "
729			"error %d\n", __func__, i);
730#ifdef VIMAGE
731	netisr_register_vnet(&ether_nh);
732#endif
733}
734VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
735    vnet_ether_init, NULL);
736
737#ifdef VIMAGE
738static void
739vnet_ether_pfil_destroy(__unused void *arg)
740{
741	int i;
742
743	if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0)
744		printf("%s: WARNING: unable to unregister pfil link hook, "
745			"error %d\n", __func__, i);
746}
747VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
748    vnet_ether_pfil_destroy, NULL);
749
750static void
751vnet_ether_destroy(__unused void *arg)
752{
753
754	netisr_unregister_vnet(&ether_nh);
755}
756VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
757    vnet_ether_destroy, NULL);
758#endif
759
760
761
762static void
763ether_input(struct ifnet *ifp, struct mbuf *m)
764{
765
766	struct mbuf *mn;
767
768	/*
769	 * The drivers are allowed to pass in a chain of packets linked with
770	 * m_nextpkt. We split them up into separate packets here and pass
771	 * them up. This allows the drivers to amortize the receive lock.
772	 */
773	while (m) {
774		mn = m->m_nextpkt;
775		m->m_nextpkt = NULL;
776
777		/*
778		 * We will rely on rcvif being set properly in the deferred context,
779		 * so assert it is correct here.
780		 */
781		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
782		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
783		CURVNET_SET_QUIET(ifp->if_vnet);
784		netisr_dispatch(NETISR_ETHER, m);
785		CURVNET_RESTORE();
786		m = mn;
787	}
788}
789
790/*
791 * Upper layer processing for a received Ethernet packet.
792 */
793void
794ether_demux(struct ifnet *ifp, struct mbuf *m)
795{
796	struct ether_header *eh;
797	int i, isr;
798	u_short ether_type;
799
800	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
801
802	/* Do not grab PROMISC frames in case we are re-entered. */
803	if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) {
804		i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, 0,
805		    NULL);
806
807		if (i != 0 || m == NULL)
808			return;
809	}
810
811	eh = mtod(m, struct ether_header *);
812	ether_type = ntohs(eh->ether_type);
813
814	/*
815	 * If this frame has a VLAN tag other than 0, call vlan_input()
816	 * if its module is loaded. Otherwise, drop.
817	 */
818	if ((m->m_flags & M_VLANTAG) &&
819	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
820		if (ifp->if_vlantrunk == NULL) {
821			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
822			m_freem(m);
823			return;
824		}
825		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
826		    __func__));
827		/* Clear before possibly re-entering ether_input(). */
828		m->m_flags &= ~M_PROMISC;
829		(*vlan_input_p)(ifp, m);
830		return;
831	}
832
833	/*
834	 * Pass promiscuously received frames to the upper layer if the user
835	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
836	 */
837	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
838		m_freem(m);
839		return;
840	}
841
842	/*
843	 * Reset layer specific mbuf flags to avoid confusing upper layers.
844	 * Strip off Ethernet header.
845	 */
846	m->m_flags &= ~M_VLANTAG;
847	m_clrprotoflags(m);
848	m_adj(m, ETHER_HDR_LEN);
849
850	/*
851	 * Dispatch frame to upper layer.
852	 */
853	switch (ether_type) {
854#ifdef INET
855	case ETHERTYPE_IP:
856		isr = NETISR_IP;
857		break;
858
859	case ETHERTYPE_ARP:
860		if (ifp->if_flags & IFF_NOARP) {
861			/* Discard packet if ARP is disabled on interface */
862			m_freem(m);
863			return;
864		}
865		isr = NETISR_ARP;
866		break;
867#endif
868#ifdef INET6
869	case ETHERTYPE_IPV6:
870		isr = NETISR_IPV6;
871		break;
872#endif
873	default:
874		goto discard;
875	}
876	netisr_dispatch(isr, m);
877	return;
878
879discard:
880	/*
881	 * Packet is to be discarded.  If netgraph is present,
882	 * hand the packet to it for last chance processing;
883	 * otherwise dispose of it.
884	 */
885	if (ifp->if_l2com != NULL) {
886		KASSERT(ng_ether_input_orphan_p != NULL,
887		    ("ng_ether_input_orphan_p is NULL"));
888		/*
889		 * Put back the ethernet header so netgraph has a
890		 * consistent view of inbound packets.
891		 */
892		M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
893		(*ng_ether_input_orphan_p)(ifp, m);
894		return;
895	}
896	m_freem(m);
897}
898
899/*
900 * Convert Ethernet address to printable (loggable) representation.
901 * This routine is for compatibility; it's better to just use
902 *
903 *	printf("%6D", <pointer to address>, ":");
904 *
905 * since there's no static buffer involved.
906 */
907char *
908ether_sprintf(const u_char *ap)
909{
910	static char etherbuf[18];
911	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
912	return (etherbuf);
913}
914
915/*
916 * Perform common duties while attaching to interface list
917 */
918void
919ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
920{
921	int i;
922	struct ifaddr *ifa;
923	struct sockaddr_dl *sdl;
924
925	ifp->if_addrlen = ETHER_ADDR_LEN;
926	ifp->if_hdrlen = ETHER_HDR_LEN;
927	ifp->if_mtu = ETHERMTU;
928	if_attach(ifp);
929	ifp->if_output = ether_output;
930	ifp->if_input = ether_input;
931	ifp->if_resolvemulti = ether_resolvemulti;
932	ifp->if_requestencap = ether_requestencap;
933#ifdef VIMAGE
934	ifp->if_reassign = ether_reassign;
935#endif
936	if (ifp->if_baudrate == 0)
937		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
938	ifp->if_broadcastaddr = etherbroadcastaddr;
939
940	ifa = ifp->if_addr;
941	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
942	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
943	sdl->sdl_type = IFT_ETHER;
944	sdl->sdl_alen = ifp->if_addrlen;
945	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
946
947	if (ifp->if_hw_addr != NULL)
948		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
949
950	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
951	if (ng_ether_attach_p != NULL)
952		(*ng_ether_attach_p)(ifp);
953
954	/* Announce Ethernet MAC address if non-zero. */
955	for (i = 0; i < ifp->if_addrlen; i++)
956		if (lla[i] != 0)
957			break;
958	if (i != ifp->if_addrlen)
959		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
960
961	uuid_ether_add(LLADDR(sdl));
962
963	/* Add necessary bits are setup; announce it now. */
964	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
965	if (IS_DEFAULT_VNET(curvnet))
966		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
967}
968
969/*
970 * Perform common duties while detaching an Ethernet interface
971 */
972void
973ether_ifdetach(struct ifnet *ifp)
974{
975	struct sockaddr_dl *sdl;
976
977	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
978	uuid_ether_del(LLADDR(sdl));
979
980	if (ifp->if_l2com != NULL) {
981		KASSERT(ng_ether_detach_p != NULL,
982		    ("ng_ether_detach_p is NULL"));
983		(*ng_ether_detach_p)(ifp);
984	}
985
986	bpfdetach(ifp);
987	if_detach(ifp);
988}
989
990#ifdef VIMAGE
991void
992ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
993{
994
995	if (ifp->if_l2com != NULL) {
996		KASSERT(ng_ether_detach_p != NULL,
997		    ("ng_ether_detach_p is NULL"));
998		(*ng_ether_detach_p)(ifp);
999	}
1000
1001	if (ng_ether_attach_p != NULL) {
1002		CURVNET_SET_QUIET(new_vnet);
1003		(*ng_ether_attach_p)(ifp);
1004		CURVNET_RESTORE();
1005	}
1006}
1007#endif
1008
1009SYSCTL_DECL(_net_link);
1010SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
1011
1012#if 0
1013/*
1014 * This is for reference.  We have a table-driven version
1015 * of the little-endian crc32 generator, which is faster
1016 * than the double-loop.
1017 */
1018uint32_t
1019ether_crc32_le(const uint8_t *buf, size_t len)
1020{
1021	size_t i;
1022	uint32_t crc;
1023	int bit;
1024	uint8_t data;
1025
1026	crc = 0xffffffff;	/* initial value */
1027
1028	for (i = 0; i < len; i++) {
1029		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1030			carry = (crc ^ data) & 1;
1031			crc >>= 1;
1032			if (carry)
1033				crc = (crc ^ ETHER_CRC_POLY_LE);
1034		}
1035	}
1036
1037	return (crc);
1038}
1039#else
1040uint32_t
1041ether_crc32_le(const uint8_t *buf, size_t len)
1042{
1043	static const uint32_t crctab[] = {
1044		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1045		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1046		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1047		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1048	};
1049	size_t i;
1050	uint32_t crc;
1051
1052	crc = 0xffffffff;	/* initial value */
1053
1054	for (i = 0; i < len; i++) {
1055		crc ^= buf[i];
1056		crc = (crc >> 4) ^ crctab[crc & 0xf];
1057		crc = (crc >> 4) ^ crctab[crc & 0xf];
1058	}
1059
1060	return (crc);
1061}
1062#endif
1063
1064uint32_t
1065ether_crc32_be(const uint8_t *buf, size_t len)
1066{
1067	size_t i;
1068	uint32_t crc, carry;
1069	int bit;
1070	uint8_t data;
1071
1072	crc = 0xffffffff;	/* initial value */
1073
1074	for (i = 0; i < len; i++) {
1075		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1076			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1077			crc <<= 1;
1078			if (carry)
1079				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1080		}
1081	}
1082
1083	return (crc);
1084}
1085
1086int
1087ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1088{
1089	struct ifaddr *ifa = (struct ifaddr *) data;
1090	struct ifreq *ifr = (struct ifreq *) data;
1091	int error = 0;
1092
1093	switch (command) {
1094	case SIOCSIFADDR:
1095		ifp->if_flags |= IFF_UP;
1096
1097		switch (ifa->ifa_addr->sa_family) {
1098#ifdef INET
1099		case AF_INET:
1100			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1101			arp_ifinit(ifp, ifa);
1102			break;
1103#endif
1104		default:
1105			ifp->if_init(ifp->if_softc);
1106			break;
1107		}
1108		break;
1109
1110	case SIOCGIFADDR:
1111		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1112		    ETHER_ADDR_LEN);
1113		break;
1114
1115	case SIOCSIFMTU:
1116		/*
1117		 * Set the interface MTU.
1118		 */
1119		if (ifr->ifr_mtu > ETHERMTU) {
1120			error = EINVAL;
1121		} else {
1122			ifp->if_mtu = ifr->ifr_mtu;
1123		}
1124		break;
1125
1126	case SIOCSLANPCP:
1127		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1128		if (error != 0)
1129			break;
1130		if (ifr->ifr_lan_pcp > 7 &&
1131		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1132			error = EINVAL;
1133		} else {
1134			ifp->if_pcp = ifr->ifr_lan_pcp;
1135			/* broadcast event about PCP change */
1136			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1137		}
1138		break;
1139
1140	case SIOCGLANPCP:
1141		ifr->ifr_lan_pcp = ifp->if_pcp;
1142		break;
1143
1144	default:
1145		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1146		break;
1147	}
1148	return (error);
1149}
1150
1151static int
1152ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1153	struct sockaddr *sa)
1154{
1155	struct sockaddr_dl *sdl;
1156#ifdef INET
1157	struct sockaddr_in *sin;
1158#endif
1159#ifdef INET6
1160	struct sockaddr_in6 *sin6;
1161#endif
1162	u_char *e_addr;
1163
1164	switch(sa->sa_family) {
1165	case AF_LINK:
1166		/*
1167		 * No mapping needed. Just check that it's a valid MC address.
1168		 */
1169		sdl = (struct sockaddr_dl *)sa;
1170		e_addr = LLADDR(sdl);
1171		if (!ETHER_IS_MULTICAST(e_addr))
1172			return EADDRNOTAVAIL;
1173		*llsa = NULL;
1174		return 0;
1175
1176#ifdef INET
1177	case AF_INET:
1178		sin = (struct sockaddr_in *)sa;
1179		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1180			return EADDRNOTAVAIL;
1181		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1182		sdl->sdl_alen = ETHER_ADDR_LEN;
1183		e_addr = LLADDR(sdl);
1184		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1185		*llsa = (struct sockaddr *)sdl;
1186		return 0;
1187#endif
1188#ifdef INET6
1189	case AF_INET6:
1190		sin6 = (struct sockaddr_in6 *)sa;
1191		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1192			/*
1193			 * An IP6 address of 0 means listen to all
1194			 * of the Ethernet multicast address used for IP6.
1195			 * (This is used for multicast routers.)
1196			 */
1197			ifp->if_flags |= IFF_ALLMULTI;
1198			*llsa = NULL;
1199			return 0;
1200		}
1201		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1202			return EADDRNOTAVAIL;
1203		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1204		sdl->sdl_alen = ETHER_ADDR_LEN;
1205		e_addr = LLADDR(sdl);
1206		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1207		*llsa = (struct sockaddr *)sdl;
1208		return 0;
1209#endif
1210
1211	default:
1212		/*
1213		 * Well, the text isn't quite right, but it's the name
1214		 * that counts...
1215		 */
1216		return EAFNOSUPPORT;
1217	}
1218}
1219
1220static moduledata_t ether_mod = {
1221	.name = "ether",
1222};
1223
1224void
1225ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1226{
1227	struct ether_vlan_header vlan;
1228	struct mbuf mv, mb;
1229
1230	KASSERT((m->m_flags & M_VLANTAG) != 0,
1231	    ("%s: vlan information not present", __func__));
1232	KASSERT(m->m_len >= sizeof(struct ether_header),
1233	    ("%s: mbuf not large enough for header", __func__));
1234	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1235	vlan.evl_proto = vlan.evl_encap_proto;
1236	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1237	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1238	m->m_len -= sizeof(struct ether_header);
1239	m->m_data += sizeof(struct ether_header);
1240	/*
1241	 * If a data link has been supplied by the caller, then we will need to
1242	 * re-create a stack allocated mbuf chain with the following structure:
1243	 *
1244	 * (1) mbuf #1 will contain the supplied data link
1245	 * (2) mbuf #2 will contain the vlan header
1246	 * (3) mbuf #3 will contain the original mbuf's packet data
1247	 *
1248	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1249	 */
1250	if (data != NULL) {
1251		mv.m_next = m;
1252		mv.m_data = (caddr_t)&vlan;
1253		mv.m_len = sizeof(vlan);
1254		mb.m_next = &mv;
1255		mb.m_data = data;
1256		mb.m_len = dlen;
1257		bpf_mtap(bp, &mb);
1258	} else
1259		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1260	m->m_len += sizeof(struct ether_header);
1261	m->m_data -= sizeof(struct ether_header);
1262}
1263
1264struct mbuf *
1265ether_vlanencap(struct mbuf *m, uint16_t tag)
1266{
1267	struct ether_vlan_header *evl;
1268
1269	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1270	if (m == NULL)
1271		return (NULL);
1272	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1273
1274	if (m->m_len < sizeof(*evl)) {
1275		m = m_pullup(m, sizeof(*evl));
1276		if (m == NULL)
1277			return (NULL);
1278	}
1279
1280	/*
1281	 * Transform the Ethernet header into an Ethernet header
1282	 * with 802.1Q encapsulation.
1283	 */
1284	evl = mtod(m, struct ether_vlan_header *);
1285	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1286	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1287	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1288	evl->evl_tag = htons(tag);
1289	return (m);
1290}
1291
1292static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
1293    "IEEE 802.1Q VLAN");
1294static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
1295    "for consistency");
1296
1297VNET_DEFINE_STATIC(int, soft_pad);
1298#define	V_soft_pad	VNET(soft_pad)
1299SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1300    &VNET_NAME(soft_pad), 0,
1301    "pad short frames before tagging");
1302
1303/*
1304 * For now, make preserving PCP via an mbuf tag optional, as it increases
1305 * per-packet memory allocations and frees.  In the future, it would be
1306 * preferable to reuse ether_vtag for this, or similar.
1307 */
1308int vlan_mtag_pcp = 0;
1309SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW,
1310    &vlan_mtag_pcp, 0,
1311    "Retain VLAN PCP information as packets are passed up the stack");
1312
1313bool
1314ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1315    uint16_t vid, uint8_t pcp)
1316{
1317	struct m_tag *mtag;
1318	int n;
1319	uint16_t tag;
1320	static const char pad[8];	/* just zeros */
1321
1322	/*
1323	 * Pad the frame to the minimum size allowed if told to.
1324	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1325	 * paragraph C.4.4.3.b.  It can help to work around buggy
1326	 * bridges that violate paragraph C.4.4.3.a from the same
1327	 * document, i.e., fail to pad short frames after untagging.
1328	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1329	 * untagging it will produce a 62-byte frame, which is a runt
1330	 * and requires padding.  There are VLAN-enabled network
1331	 * devices that just discard such runts instead or mishandle
1332	 * them somehow.
1333	 */
1334	if (V_soft_pad && p->if_type == IFT_ETHER) {
1335		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1336		     n > 0; n -= sizeof(pad)) {
1337			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1338				break;
1339		}
1340		if (n > 0) {
1341			m_freem(*mp);
1342			*mp = NULL;
1343			if_printf(ife, "cannot pad short frame");
1344			return (false);
1345		}
1346	}
1347
1348	/*
1349	 * If PCP is set in mbuf, use it
1350	 */
1351	if ((*mp)->m_flags & M_VLANTAG) {
1352		pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1353	}
1354
1355	/*
1356	 * If underlying interface can do VLAN tag insertion itself,
1357	 * just pass the packet along. However, we need some way to
1358	 * tell the interface where the packet came from so that it
1359	 * knows how to find the VLAN tag to use, so we attach a
1360	 * packet tag that holds it.
1361	 */
1362	if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1363	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1364		tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0);
1365	else
1366		tag = EVL_MAKETAG(vid, pcp, 0);
1367	if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1368		(*mp)->m_pkthdr.ether_vtag = tag;
1369		(*mp)->m_flags |= M_VLANTAG;
1370	} else {
1371		*mp = ether_vlanencap(*mp, tag);
1372		if (*mp == NULL) {
1373			if_printf(ife, "unable to prepend 802.1Q header");
1374			return (false);
1375		}
1376	}
1377	return (true);
1378}
1379
1380/*
1381 * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1382 * cryptographic hash function on the containing jail's name, UUID and the
1383 * interface name to attempt to provide a unique but stable address.
1384 * Pseudo-interfaces which require a MAC address should use this function to
1385 * allocate non-locally-administered addresses.
1386 */
1387void
1388ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1389{
1390	SHA1_CTX ctx;
1391	char *buf;
1392	char uuid[HOSTUUIDLEN + 1];
1393	uint64_t addr;
1394	int i, sz;
1395	char digest[SHA1_RESULTLEN];
1396	char jailname[MAXHOSTNAMELEN];
1397
1398	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1399	/* If each (vnet) jail would also have a unique hostuuid this would not
1400	 * be necessary. */
1401	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1402	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp),
1403	    jailname);
1404	if (sz < 0) {
1405		/* Fall back to a random mac address. */
1406		arc4rand(hwaddr, sizeof(*hwaddr), 0);
1407		hwaddr->octet[0] = 0x02;
1408		return;
1409	}
1410
1411	SHA1Init(&ctx);
1412	SHA1Update(&ctx, buf, sz);
1413	SHA1Final(digest, &ctx);
1414	free(buf, M_TEMP);
1415
1416	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1417	    OUI_FREEBSD_GENERATED_MASK;
1418	addr = OUI_FREEBSD(addr);
1419	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1420		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1421		    0xFF;
1422	}
1423}
1424
1425DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1426MODULE_VERSION(ether, 1);
1427