1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Berkeley Software Design Inc's name may not be used to endorse or
15 *    promote products derived from this software without specific prior
16 *    written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32 */
33
34/*
35 * Implementation of turnstiles used to hold queue of threads blocked on
36 * non-sleepable locks.  Sleepable locks use condition variables to
37 * implement their queues.  Turnstiles differ from a sleep queue in that
38 * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
39 * when one thread is enqueued onto a turnstile, it can lend its priority
40 * to the owning thread.
41 *
42 * We wish to avoid bloating locks with an embedded turnstile and we do not
43 * want to use back-pointers in the locks for the same reason.  Thus, we
44 * use a similar approach to that of Solaris 7 as described in Solaris
45 * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
46 * in a hash table based on the address of the lock.  Each entry in the
47 * hash table is a linked-lists of turnstiles and is called a turnstile
48 * chain.  Each chain contains a spin mutex that protects all of the
49 * turnstiles in the chain.
50 *
51 * Each time a thread is created, a turnstile is allocated from a UMA zone
52 * and attached to that thread.  When a thread blocks on a lock, if it is the
53 * first thread to block, it lends its turnstile to the lock.  If the lock
54 * already has a turnstile, then it gives its turnstile to the lock's
55 * turnstile's free list.  When a thread is woken up, it takes a turnstile from
56 * the free list if there are any other waiters.  If it is the only thread
57 * blocked on the lock, then it reclaims the turnstile associated with the lock
58 * and removes it from the hash table.
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD$");
63
64#include "opt_ddb.h"
65#include "opt_turnstile_profiling.h"
66#include "opt_sched.h"
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kdb.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/queue.h>
77#include <sys/sched.h>
78#include <sys/sdt.h>
79#include <sys/sysctl.h>
80#include <sys/turnstile.h>
81
82#include <vm/uma.h>
83
84#ifdef DDB
85#include <ddb/ddb.h>
86#include <sys/lockmgr.h>
87#include <sys/sx.h>
88#endif
89
90/*
91 * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
92 * number chosen because the sleep queue's use the same value for the
93 * shift.  Basically, we ignore the lower 8 bits of the address.
94 * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
95 */
96#define	TC_TABLESIZE	128			/* Must be power of 2. */
97#define	TC_MASK		(TC_TABLESIZE - 1)
98#define	TC_SHIFT	8
99#define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
100#define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
101
102/*
103 * There are three different lists of turnstiles as follows.  The list
104 * connected by ts_link entries is a per-thread list of all the turnstiles
105 * attached to locks that we own.  This is used to fixup our priority when
106 * a lock is released.  The other two lists use the ts_hash entries.  The
107 * first of these two is the turnstile chain list that a turnstile is on
108 * when it is attached to a lock.  The second list to use ts_hash is the
109 * free list hung off of a turnstile that is attached to a lock.
110 *
111 * Each turnstile contains three lists of threads.  The two ts_blocked lists
112 * are linked list of threads blocked on the turnstile's lock.  One list is
113 * for exclusive waiters, and the other is for shared waiters.  The
114 * ts_pending list is a linked list of threads previously awakened by
115 * turnstile_signal() or turnstile_wait() that are waiting to be put on
116 * the run queue.
117 *
118 * Locking key:
119 *  c - turnstile chain lock
120 *  q - td_contested lock
121 */
122struct turnstile {
123	struct mtx ts_lock;			/* Spin lock for self. */
124	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
125	struct threadqueue ts_pending;		/* (c) Pending threads. */
126	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
127	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
128	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
129	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
130	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
131};
132
133struct turnstile_chain {
134	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
135	struct mtx tc_lock;			/* Spin lock for this chain. */
136#ifdef TURNSTILE_PROFILING
137	u_int	tc_depth;			/* Length of tc_queues. */
138	u_int	tc_max_depth;			/* Max length of tc_queues. */
139#endif
140};
141
142#ifdef TURNSTILE_PROFILING
143u_int turnstile_max_depth;
144static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
145    "turnstile profiling");
146static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
147    "turnstile chain stats");
148SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
149    &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
150#endif
151static struct mtx td_contested_lock;
152static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
153static uma_zone_t turnstile_zone;
154
155/*
156 * Prototypes for non-exported routines.
157 */
158static void	init_turnstile0(void *dummy);
159#ifdef TURNSTILE_PROFILING
160static void	init_turnstile_profiling(void *arg);
161#endif
162static void	propagate_priority(struct thread *td);
163static int	turnstile_adjust_thread(struct turnstile *ts,
164		    struct thread *td);
165static struct thread *turnstile_first_waiter(struct turnstile *ts);
166static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
167#ifdef INVARIANTS
168static void	turnstile_dtor(void *mem, int size, void *arg);
169#endif
170static int	turnstile_init(void *mem, int size, int flags);
171static void	turnstile_fini(void *mem, int size);
172
173SDT_PROVIDER_DECLARE(sched);
174SDT_PROBE_DEFINE(sched, , , sleep);
175SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
176    "struct proc *");
177
178/*
179 * Walks the chain of turnstiles and their owners to propagate the priority
180 * of the thread being blocked to all the threads holding locks that have to
181 * release their locks before this thread can run again.
182 */
183static void
184propagate_priority(struct thread *td)
185{
186	struct turnstile *ts;
187	int pri;
188
189	THREAD_LOCK_ASSERT(td, MA_OWNED);
190	pri = td->td_priority;
191	ts = td->td_blocked;
192	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
193	/*
194	 * Grab a recursive lock on this turnstile chain so it stays locked
195	 * for the whole operation.  The caller expects us to return with
196	 * the original lock held.  We only ever lock down the chain so
197	 * the lock order is constant.
198	 */
199	mtx_lock_spin(&ts->ts_lock);
200	for (;;) {
201		td = ts->ts_owner;
202
203		if (td == NULL) {
204			/*
205			 * This might be a read lock with no owner.  There's
206			 * not much we can do, so just bail.
207			 */
208			mtx_unlock_spin(&ts->ts_lock);
209			return;
210		}
211
212		thread_lock_flags(td, MTX_DUPOK);
213		mtx_unlock_spin(&ts->ts_lock);
214		MPASS(td->td_proc != NULL);
215		MPASS(td->td_proc->p_magic == P_MAGIC);
216
217		/*
218		 * If the thread is asleep, then we are probably about
219		 * to deadlock.  To make debugging this easier, show
220		 * backtrace of misbehaving thread and panic to not
221		 * leave the kernel deadlocked.
222		 */
223		if (TD_IS_SLEEPING(td)) {
224			printf(
225		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
226			    td->td_tid, td->td_proc->p_pid);
227			kdb_backtrace_thread(td);
228			panic("sleeping thread");
229		}
230
231		/*
232		 * If this thread already has higher priority than the
233		 * thread that is being blocked, we are finished.
234		 */
235		if (td->td_priority <= pri) {
236			thread_unlock(td);
237			return;
238		}
239
240		/*
241		 * Bump this thread's priority.
242		 */
243		sched_lend_prio(td, pri);
244
245		/*
246		 * If lock holder is actually running or on the run queue
247		 * then we are done.
248		 */
249		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
250			MPASS(td->td_blocked == NULL);
251			thread_unlock(td);
252			return;
253		}
254
255#ifndef SMP
256		/*
257		 * For UP, we check to see if td is curthread (this shouldn't
258		 * ever happen however as it would mean we are in a deadlock.)
259		 */
260		KASSERT(td != curthread, ("Deadlock detected"));
261#endif
262
263		/*
264		 * If we aren't blocked on a lock, we should be.
265		 */
266		KASSERT(TD_ON_LOCK(td), (
267		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
268		    td->td_tid, td->td_name, td->td_state,
269		    ts->ts_lockobj->lo_name));
270
271		/*
272		 * Pick up the lock that td is blocked on.
273		 */
274		ts = td->td_blocked;
275		MPASS(ts != NULL);
276		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
277		/* Resort td on the list if needed. */
278		if (!turnstile_adjust_thread(ts, td)) {
279			mtx_unlock_spin(&ts->ts_lock);
280			return;
281		}
282		/* The thread lock is released as ts lock above. */
283	}
284}
285
286/*
287 * Adjust the thread's position on a turnstile after its priority has been
288 * changed.
289 */
290static int
291turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
292{
293	struct thread *td1, *td2;
294	int queue;
295
296	THREAD_LOCK_ASSERT(td, MA_OWNED);
297	MPASS(TD_ON_LOCK(td));
298
299	/*
300	 * This thread may not be blocked on this turnstile anymore
301	 * but instead might already be woken up on another CPU
302	 * that is waiting on the thread lock in turnstile_unpend() to
303	 * finish waking this thread up.  We can detect this case
304	 * by checking to see if this thread has been given a
305	 * turnstile by either turnstile_signal() or
306	 * turnstile_broadcast().  In this case, treat the thread as
307	 * if it was already running.
308	 */
309	if (td->td_turnstile != NULL)
310		return (0);
311
312	/*
313	 * Check if the thread needs to be moved on the blocked chain.
314	 * It needs to be moved if either its priority is lower than
315	 * the previous thread or higher than the next thread.
316	 */
317	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
318	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
319	td2 = TAILQ_NEXT(td, td_lockq);
320	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
321	    (td2 != NULL && td->td_priority > td2->td_priority)) {
322
323		/*
324		 * Remove thread from blocked chain and determine where
325		 * it should be moved to.
326		 */
327		queue = td->td_tsqueue;
328		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
329		mtx_lock_spin(&td_contested_lock);
330		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
331		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
332			MPASS(td1->td_proc->p_magic == P_MAGIC);
333			if (td1->td_priority > td->td_priority)
334				break;
335		}
336
337		if (td1 == NULL)
338			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
339		else
340			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
341		mtx_unlock_spin(&td_contested_lock);
342		if (td1 == NULL)
343			CTR3(KTR_LOCK,
344		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
345			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
346		else
347			CTR4(KTR_LOCK,
348		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
349			    td->td_tid, td1->td_tid, ts->ts_lockobj,
350			    ts->ts_lockobj->lo_name);
351	}
352	return (1);
353}
354
355/*
356 * Early initialization of turnstiles.  This is not done via a SYSINIT()
357 * since this needs to be initialized very early when mutexes are first
358 * initialized.
359 */
360void
361init_turnstiles(void)
362{
363	int i;
364
365	for (i = 0; i < TC_TABLESIZE; i++) {
366		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
367		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
368		    NULL, MTX_SPIN);
369	}
370	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
371	LIST_INIT(&thread0.td_contested);
372	thread0.td_turnstile = NULL;
373}
374
375#ifdef TURNSTILE_PROFILING
376static void
377init_turnstile_profiling(void *arg)
378{
379	struct sysctl_oid *chain_oid;
380	char chain_name[10];
381	int i;
382
383	for (i = 0; i < TC_TABLESIZE; i++) {
384		snprintf(chain_name, sizeof(chain_name), "%d", i);
385		chain_oid = SYSCTL_ADD_NODE(NULL,
386		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
387		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
388		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
389		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
390		    NULL);
391		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
392		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
393		    0, NULL);
394	}
395}
396SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
397    init_turnstile_profiling, NULL);
398#endif
399
400static void
401init_turnstile0(void *dummy)
402{
403
404	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
405	    NULL,
406#ifdef INVARIANTS
407	    turnstile_dtor,
408#else
409	    NULL,
410#endif
411	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
412	thread0.td_turnstile = turnstile_alloc();
413}
414SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
415
416/*
417 * Update a thread on the turnstile list after it's priority has been changed.
418 * The old priority is passed in as an argument.
419 */
420void
421turnstile_adjust(struct thread *td, u_char oldpri)
422{
423	struct turnstile *ts;
424
425	MPASS(TD_ON_LOCK(td));
426
427	/*
428	 * Pick up the lock that td is blocked on.
429	 */
430	ts = td->td_blocked;
431	MPASS(ts != NULL);
432	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
433	mtx_assert(&ts->ts_lock, MA_OWNED);
434
435	/* Resort the turnstile on the list. */
436	if (!turnstile_adjust_thread(ts, td))
437		return;
438	/*
439	 * If our priority was lowered and we are at the head of the
440	 * turnstile, then propagate our new priority up the chain.
441	 * Note that we currently don't try to revoke lent priorities
442	 * when our priority goes up.
443	 */
444	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
445	    td->td_tsqueue == TS_SHARED_QUEUE);
446	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
447	    td->td_priority < oldpri) {
448		propagate_priority(td);
449	}
450}
451
452/*
453 * Set the owner of the lock this turnstile is attached to.
454 */
455static void
456turnstile_setowner(struct turnstile *ts, struct thread *owner)
457{
458
459	mtx_assert(&td_contested_lock, MA_OWNED);
460	MPASS(ts->ts_owner == NULL);
461
462	/* A shared lock might not have an owner. */
463	if (owner == NULL)
464		return;
465
466	MPASS(owner->td_proc->p_magic == P_MAGIC);
467	ts->ts_owner = owner;
468	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
469}
470
471#ifdef INVARIANTS
472/*
473 * UMA zone item deallocator.
474 */
475static void
476turnstile_dtor(void *mem, int size, void *arg)
477{
478	struct turnstile *ts;
479
480	ts = mem;
481	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
482	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
483	MPASS(TAILQ_EMPTY(&ts->ts_pending));
484}
485#endif
486
487/*
488 * UMA zone item initializer.
489 */
490static int
491turnstile_init(void *mem, int size, int flags)
492{
493	struct turnstile *ts;
494
495	bzero(mem, size);
496	ts = mem;
497	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
498	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
499	TAILQ_INIT(&ts->ts_pending);
500	LIST_INIT(&ts->ts_free);
501	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
502	return (0);
503}
504
505static void
506turnstile_fini(void *mem, int size)
507{
508	struct turnstile *ts;
509
510	ts = mem;
511	mtx_destroy(&ts->ts_lock);
512}
513
514/*
515 * Get a turnstile for a new thread.
516 */
517struct turnstile *
518turnstile_alloc(void)
519{
520
521	return (uma_zalloc(turnstile_zone, M_WAITOK));
522}
523
524/*
525 * Free a turnstile when a thread is destroyed.
526 */
527void
528turnstile_free(struct turnstile *ts)
529{
530
531	uma_zfree(turnstile_zone, ts);
532}
533
534/*
535 * Lock the turnstile chain associated with the specified lock.
536 */
537void
538turnstile_chain_lock(struct lock_object *lock)
539{
540	struct turnstile_chain *tc;
541
542	tc = TC_LOOKUP(lock);
543	mtx_lock_spin(&tc->tc_lock);
544}
545
546struct turnstile *
547turnstile_trywait(struct lock_object *lock)
548{
549	struct turnstile_chain *tc;
550	struct turnstile *ts;
551
552	tc = TC_LOOKUP(lock);
553	mtx_lock_spin(&tc->tc_lock);
554	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
555		if (ts->ts_lockobj == lock) {
556			mtx_lock_spin(&ts->ts_lock);
557			return (ts);
558		}
559
560	ts = curthread->td_turnstile;
561	MPASS(ts != NULL);
562	mtx_lock_spin(&ts->ts_lock);
563	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
564	ts->ts_lockobj = lock;
565
566	return (ts);
567}
568
569bool
570turnstile_lock(struct turnstile *ts, struct lock_object **lockp,
571    struct thread **tdp)
572{
573	struct turnstile_chain *tc;
574	struct lock_object *lock;
575
576	if ((lock = ts->ts_lockobj) == NULL)
577		return (false);
578	tc = TC_LOOKUP(lock);
579	mtx_lock_spin(&tc->tc_lock);
580	mtx_lock_spin(&ts->ts_lock);
581	if (__predict_false(lock != ts->ts_lockobj)) {
582		mtx_unlock_spin(&tc->tc_lock);
583		mtx_unlock_spin(&ts->ts_lock);
584		return (false);
585	}
586	*lockp = lock;
587	*tdp = ts->ts_owner;
588	return (true);
589}
590
591void
592turnstile_unlock(struct turnstile *ts, struct lock_object *lock)
593{
594	struct turnstile_chain *tc;
595
596	mtx_assert(&ts->ts_lock, MA_OWNED);
597	mtx_unlock_spin(&ts->ts_lock);
598	if (ts == curthread->td_turnstile)
599		ts->ts_lockobj = NULL;
600	tc = TC_LOOKUP(lock);
601	mtx_unlock_spin(&tc->tc_lock);
602}
603
604void
605turnstile_assert(struct turnstile *ts)
606{
607	MPASS(ts->ts_lockobj == NULL);
608}
609
610void
611turnstile_cancel(struct turnstile *ts)
612{
613	struct turnstile_chain *tc;
614	struct lock_object *lock;
615
616	mtx_assert(&ts->ts_lock, MA_OWNED);
617
618	mtx_unlock_spin(&ts->ts_lock);
619	lock = ts->ts_lockobj;
620	if (ts == curthread->td_turnstile)
621		ts->ts_lockobj = NULL;
622	tc = TC_LOOKUP(lock);
623	mtx_unlock_spin(&tc->tc_lock);
624}
625
626/*
627 * Look up the turnstile for a lock in the hash table locking the associated
628 * turnstile chain along the way.  If no turnstile is found in the hash
629 * table, NULL is returned.
630 */
631struct turnstile *
632turnstile_lookup(struct lock_object *lock)
633{
634	struct turnstile_chain *tc;
635	struct turnstile *ts;
636
637	tc = TC_LOOKUP(lock);
638	mtx_assert(&tc->tc_lock, MA_OWNED);
639	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
640		if (ts->ts_lockobj == lock) {
641			mtx_lock_spin(&ts->ts_lock);
642			return (ts);
643		}
644	return (NULL);
645}
646
647/*
648 * Unlock the turnstile chain associated with a given lock.
649 */
650void
651turnstile_chain_unlock(struct lock_object *lock)
652{
653	struct turnstile_chain *tc;
654
655	tc = TC_LOOKUP(lock);
656	mtx_unlock_spin(&tc->tc_lock);
657}
658
659/*
660 * Return a pointer to the thread waiting on this turnstile with the
661 * most important priority or NULL if the turnstile has no waiters.
662 */
663static struct thread *
664turnstile_first_waiter(struct turnstile *ts)
665{
666	struct thread *std, *xtd;
667
668	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
669	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
670	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
671		return (std);
672	return (xtd);
673}
674
675/*
676 * Take ownership of a turnstile and adjust the priority of the new
677 * owner appropriately.
678 */
679void
680turnstile_claim(struct turnstile *ts)
681{
682	struct thread *td, *owner;
683	struct turnstile_chain *tc;
684
685	mtx_assert(&ts->ts_lock, MA_OWNED);
686	MPASS(ts != curthread->td_turnstile);
687
688	owner = curthread;
689	mtx_lock_spin(&td_contested_lock);
690	turnstile_setowner(ts, owner);
691	mtx_unlock_spin(&td_contested_lock);
692
693	td = turnstile_first_waiter(ts);
694	MPASS(td != NULL);
695	MPASS(td->td_proc->p_magic == P_MAGIC);
696	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
697
698	/*
699	 * Update the priority of the new owner if needed.
700	 */
701	thread_lock(owner);
702	if (td->td_priority < owner->td_priority)
703		sched_lend_prio(owner, td->td_priority);
704	thread_unlock(owner);
705	tc = TC_LOOKUP(ts->ts_lockobj);
706	mtx_unlock_spin(&ts->ts_lock);
707	mtx_unlock_spin(&tc->tc_lock);
708}
709
710/*
711 * Block the current thread on the turnstile assicated with 'lock'.  This
712 * function will context switch and not return until this thread has been
713 * woken back up.  This function must be called with the appropriate
714 * turnstile chain locked and will return with it unlocked.
715 */
716void
717turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
718{
719	struct turnstile_chain *tc;
720	struct thread *td, *td1;
721	struct lock_object *lock;
722
723	td = curthread;
724	mtx_assert(&ts->ts_lock, MA_OWNED);
725	if (owner)
726		MPASS(owner->td_proc->p_magic == P_MAGIC);
727	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
728
729	/*
730	 * If the lock does not already have a turnstile, use this thread's
731	 * turnstile.  Otherwise insert the current thread into the
732	 * turnstile already in use by this lock.
733	 */
734	tc = TC_LOOKUP(ts->ts_lockobj);
735	mtx_assert(&tc->tc_lock, MA_OWNED);
736	if (ts == td->td_turnstile) {
737#ifdef TURNSTILE_PROFILING
738		tc->tc_depth++;
739		if (tc->tc_depth > tc->tc_max_depth) {
740			tc->tc_max_depth = tc->tc_depth;
741			if (tc->tc_max_depth > turnstile_max_depth)
742				turnstile_max_depth = tc->tc_max_depth;
743		}
744#endif
745		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
746		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
747		    ("thread's turnstile has pending threads"));
748		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
749		    ("thread's turnstile has exclusive waiters"));
750		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
751		    ("thread's turnstile has shared waiters"));
752		KASSERT(LIST_EMPTY(&ts->ts_free),
753		    ("thread's turnstile has a non-empty free list"));
754		MPASS(ts->ts_lockobj != NULL);
755		mtx_lock_spin(&td_contested_lock);
756		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
757		turnstile_setowner(ts, owner);
758		mtx_unlock_spin(&td_contested_lock);
759	} else {
760		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
761			if (td1->td_priority > td->td_priority)
762				break;
763		mtx_lock_spin(&td_contested_lock);
764		if (td1 != NULL)
765			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
766		else
767			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
768		MPASS(owner == ts->ts_owner);
769		mtx_unlock_spin(&td_contested_lock);
770		MPASS(td->td_turnstile != NULL);
771		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
772	}
773	thread_lock(td);
774	thread_lock_set(td, &ts->ts_lock);
775	td->td_turnstile = NULL;
776
777	/* Save who we are blocked on and switch. */
778	lock = ts->ts_lockobj;
779	td->td_tsqueue = queue;
780	td->td_blocked = ts;
781	td->td_lockname = lock->lo_name;
782	td->td_blktick = ticks;
783	TD_SET_LOCK(td);
784	mtx_unlock_spin(&tc->tc_lock);
785	propagate_priority(td);
786
787	if (LOCK_LOG_TEST(lock, 0))
788		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
789		    td->td_tid, lock, lock->lo_name);
790
791	SDT_PROBE0(sched, , , sleep);
792
793	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
794	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
795
796	if (LOCK_LOG_TEST(lock, 0))
797		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
798		    __func__, td->td_tid, lock, lock->lo_name);
799	thread_unlock(td);
800}
801
802/*
803 * Pick the highest priority thread on this turnstile and put it on the
804 * pending list.  This must be called with the turnstile chain locked.
805 */
806int
807turnstile_signal(struct turnstile *ts, int queue)
808{
809	struct turnstile_chain *tc __unused;
810	struct thread *td;
811	int empty;
812
813	MPASS(ts != NULL);
814	mtx_assert(&ts->ts_lock, MA_OWNED);
815	MPASS(curthread->td_proc->p_magic == P_MAGIC);
816	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
817	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
818
819	/*
820	 * Pick the highest priority thread blocked on this lock and
821	 * move it to the pending list.
822	 */
823	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
824	MPASS(td->td_proc->p_magic == P_MAGIC);
825	mtx_lock_spin(&td_contested_lock);
826	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
827	mtx_unlock_spin(&td_contested_lock);
828	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
829
830	/*
831	 * If the turnstile is now empty, remove it from its chain and
832	 * give it to the about-to-be-woken thread.  Otherwise take a
833	 * turnstile from the free list and give it to the thread.
834	 */
835	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
836	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
837	if (empty) {
838		tc = TC_LOOKUP(ts->ts_lockobj);
839		mtx_assert(&tc->tc_lock, MA_OWNED);
840		MPASS(LIST_EMPTY(&ts->ts_free));
841#ifdef TURNSTILE_PROFILING
842		tc->tc_depth--;
843#endif
844	} else
845		ts = LIST_FIRST(&ts->ts_free);
846	MPASS(ts != NULL);
847	LIST_REMOVE(ts, ts_hash);
848	td->td_turnstile = ts;
849
850	return (empty);
851}
852
853/*
854 * Put all blocked threads on the pending list.  This must be called with
855 * the turnstile chain locked.
856 */
857void
858turnstile_broadcast(struct turnstile *ts, int queue)
859{
860	struct turnstile_chain *tc __unused;
861	struct turnstile *ts1;
862	struct thread *td;
863
864	MPASS(ts != NULL);
865	mtx_assert(&ts->ts_lock, MA_OWNED);
866	MPASS(curthread->td_proc->p_magic == P_MAGIC);
867	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
868	/*
869	 * We must have the chain locked so that we can remove the empty
870	 * turnstile from the hash queue.
871	 */
872	tc = TC_LOOKUP(ts->ts_lockobj);
873	mtx_assert(&tc->tc_lock, MA_OWNED);
874	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
875
876	/*
877	 * Transfer the blocked list to the pending list.
878	 */
879	mtx_lock_spin(&td_contested_lock);
880	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
881	mtx_unlock_spin(&td_contested_lock);
882
883	/*
884	 * Give a turnstile to each thread.  The last thread gets
885	 * this turnstile if the turnstile is empty.
886	 */
887	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
888		if (LIST_EMPTY(&ts->ts_free)) {
889			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
890			ts1 = ts;
891#ifdef TURNSTILE_PROFILING
892			tc->tc_depth--;
893#endif
894		} else
895			ts1 = LIST_FIRST(&ts->ts_free);
896		MPASS(ts1 != NULL);
897		LIST_REMOVE(ts1, ts_hash);
898		td->td_turnstile = ts1;
899	}
900}
901
902static u_char
903turnstile_calc_unlend_prio_locked(struct thread *td)
904{
905	struct turnstile *nts;
906	u_char cp, pri;
907
908	THREAD_LOCK_ASSERT(td, MA_OWNED);
909	mtx_assert(&td_contested_lock, MA_OWNED);
910
911	pri = PRI_MAX;
912	LIST_FOREACH(nts, &td->td_contested, ts_link) {
913		cp = turnstile_first_waiter(nts)->td_priority;
914		if (cp < pri)
915			pri = cp;
916	}
917	return (pri);
918}
919
920/*
921 * Wakeup all threads on the pending list and adjust the priority of the
922 * current thread appropriately.  This must be called with the turnstile
923 * chain locked.
924 */
925void
926turnstile_unpend(struct turnstile *ts)
927{
928	TAILQ_HEAD( ,thread) pending_threads;
929	struct thread *td;
930	u_char pri;
931
932	MPASS(ts != NULL);
933	mtx_assert(&ts->ts_lock, MA_OWNED);
934	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
935	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
936
937	/*
938	 * Move the list of pending threads out of the turnstile and
939	 * into a local variable.
940	 */
941	TAILQ_INIT(&pending_threads);
942	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
943#ifdef INVARIANTS
944	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
945	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
946		ts->ts_lockobj = NULL;
947#endif
948	/*
949	 * Adjust the priority of curthread based on other contested
950	 * locks it owns.  Don't lower the priority below the base
951	 * priority however.
952	 */
953	td = curthread;
954	thread_lock(td);
955	mtx_lock_spin(&td_contested_lock);
956	/*
957	 * Remove the turnstile from this thread's list of contested locks
958	 * since this thread doesn't own it anymore.  New threads will
959	 * not be blocking on the turnstile until it is claimed by a new
960	 * owner.  There might not be a current owner if this is a shared
961	 * lock.
962	 */
963	if (ts->ts_owner != NULL) {
964		ts->ts_owner = NULL;
965		LIST_REMOVE(ts, ts_link);
966	}
967	pri = turnstile_calc_unlend_prio_locked(td);
968	mtx_unlock_spin(&td_contested_lock);
969	sched_unlend_prio(td, pri);
970	thread_unlock(td);
971	/*
972	 * Wake up all the pending threads.  If a thread is not blocked
973	 * on a lock, then it is currently executing on another CPU in
974	 * turnstile_wait() or sitting on a run queue waiting to resume
975	 * in turnstile_wait().  Set a flag to force it to try to acquire
976	 * the lock again instead of blocking.
977	 */
978	while (!TAILQ_EMPTY(&pending_threads)) {
979		td = TAILQ_FIRST(&pending_threads);
980		TAILQ_REMOVE(&pending_threads, td, td_lockq);
981		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
982		thread_lock(td);
983		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
984		MPASS(td->td_proc->p_magic == P_MAGIC);
985		MPASS(TD_ON_LOCK(td));
986		TD_CLR_LOCK(td);
987		MPASS(TD_CAN_RUN(td));
988		td->td_blocked = NULL;
989		td->td_lockname = NULL;
990		td->td_blktick = 0;
991#ifdef INVARIANTS
992		td->td_tsqueue = 0xff;
993#endif
994		sched_add(td, SRQ_BORING);
995		thread_unlock(td);
996	}
997	mtx_unlock_spin(&ts->ts_lock);
998}
999
1000/*
1001 * Give up ownership of a turnstile.  This must be called with the
1002 * turnstile chain locked.
1003 */
1004void
1005turnstile_disown(struct turnstile *ts)
1006{
1007	struct thread *td;
1008	u_char pri;
1009
1010	MPASS(ts != NULL);
1011	mtx_assert(&ts->ts_lock, MA_OWNED);
1012	MPASS(ts->ts_owner == curthread);
1013	MPASS(TAILQ_EMPTY(&ts->ts_pending));
1014	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
1015	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
1016
1017	/*
1018	 * Remove the turnstile from this thread's list of contested locks
1019	 * since this thread doesn't own it anymore.  New threads will
1020	 * not be blocking on the turnstile until it is claimed by a new
1021	 * owner.
1022	 */
1023	mtx_lock_spin(&td_contested_lock);
1024	ts->ts_owner = NULL;
1025	LIST_REMOVE(ts, ts_link);
1026	mtx_unlock_spin(&td_contested_lock);
1027
1028	/*
1029	 * Adjust the priority of curthread based on other contested
1030	 * locks it owns.  Don't lower the priority below the base
1031	 * priority however.
1032	 */
1033	td = curthread;
1034	thread_lock(td);
1035	mtx_unlock_spin(&ts->ts_lock);
1036	mtx_lock_spin(&td_contested_lock);
1037	pri = turnstile_calc_unlend_prio_locked(td);
1038	mtx_unlock_spin(&td_contested_lock);
1039	sched_unlend_prio(td, pri);
1040	thread_unlock(td);
1041}
1042
1043/*
1044 * Return the first thread in a turnstile.
1045 */
1046struct thread *
1047turnstile_head(struct turnstile *ts, int queue)
1048{
1049#ifdef INVARIANTS
1050
1051	MPASS(ts != NULL);
1052	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1053	mtx_assert(&ts->ts_lock, MA_OWNED);
1054#endif
1055	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1056}
1057
1058/*
1059 * Returns true if a sub-queue of a turnstile is empty.
1060 */
1061int
1062turnstile_empty(struct turnstile *ts, int queue)
1063{
1064#ifdef INVARIANTS
1065
1066	MPASS(ts != NULL);
1067	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1068	mtx_assert(&ts->ts_lock, MA_OWNED);
1069#endif
1070	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1071}
1072
1073#ifdef DDB
1074static void
1075print_thread(struct thread *td, const char *prefix)
1076{
1077
1078	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1079	    td->td_proc->p_pid, td->td_name);
1080}
1081
1082static void
1083print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1084{
1085	struct thread *td;
1086
1087	db_printf("%s:\n", header);
1088	if (TAILQ_EMPTY(queue)) {
1089		db_printf("%sempty\n", prefix);
1090		return;
1091	}
1092	TAILQ_FOREACH(td, queue, td_lockq) {
1093		print_thread(td, prefix);
1094	}
1095}
1096
1097DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1098{
1099	struct turnstile_chain *tc;
1100	struct turnstile *ts;
1101	struct lock_object *lock;
1102	int i;
1103
1104	if (!have_addr)
1105		return;
1106
1107	/*
1108	 * First, see if there is an active turnstile for the lock indicated
1109	 * by the address.
1110	 */
1111	lock = (struct lock_object *)addr;
1112	tc = TC_LOOKUP(lock);
1113	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1114		if (ts->ts_lockobj == lock)
1115			goto found;
1116
1117	/*
1118	 * Second, see if there is an active turnstile at the address
1119	 * indicated.
1120	 */
1121	for (i = 0; i < TC_TABLESIZE; i++)
1122		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1123			if (ts == (struct turnstile *)addr)
1124				goto found;
1125		}
1126
1127	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1128	return;
1129found:
1130	lock = ts->ts_lockobj;
1131	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1132	    lock->lo_name);
1133	if (ts->ts_owner)
1134		print_thread(ts->ts_owner, "Lock Owner: ");
1135	else
1136		db_printf("Lock Owner: none\n");
1137	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1138	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1139	    "\t");
1140	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1141
1142}
1143
1144/*
1145 * Show all the threads a particular thread is waiting on based on
1146 * non-spin locks.
1147 */
1148static void
1149print_lockchain(struct thread *td, const char *prefix)
1150{
1151	struct lock_object *lock;
1152	struct lock_class *class;
1153	struct turnstile *ts;
1154	struct thread *owner;
1155
1156	/*
1157	 * Follow the chain.  We keep walking as long as the thread is
1158	 * blocked on a lock that has an owner.
1159	 */
1160	while (!db_pager_quit) {
1161		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1162		    td->td_proc->p_pid, td->td_name);
1163		switch (td->td_state) {
1164		case TDS_INACTIVE:
1165			db_printf("is inactive\n");
1166			return;
1167		case TDS_CAN_RUN:
1168			db_printf("can run\n");
1169			return;
1170		case TDS_RUNQ:
1171			db_printf("is on a run queue\n");
1172			return;
1173		case TDS_RUNNING:
1174			db_printf("running on CPU %d\n", td->td_oncpu);
1175			return;
1176		case TDS_INHIBITED:
1177			if (TD_ON_LOCK(td)) {
1178				ts = td->td_blocked;
1179				lock = ts->ts_lockobj;
1180				class = LOCK_CLASS(lock);
1181				db_printf("blocked on lock %p (%s) \"%s\"\n",
1182				    lock, class->lc_name, lock->lo_name);
1183				if (ts->ts_owner == NULL)
1184					return;
1185				td = ts->ts_owner;
1186				break;
1187			} else if (TD_ON_SLEEPQ(td)) {
1188				if (!lockmgr_chain(td, &owner) &&
1189				    !sx_chain(td, &owner)) {
1190					db_printf("sleeping on %p \"%s\"\n",
1191					    td->td_wchan, td->td_wmesg);
1192					return;
1193				}
1194				if (owner == NULL)
1195					return;
1196				td = owner;
1197				break;
1198			}
1199			db_printf("inhibited\n");
1200			return;
1201		default:
1202			db_printf("??? (%#x)\n", td->td_state);
1203			return;
1204		}
1205	}
1206}
1207
1208DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1209{
1210	struct thread *td;
1211
1212	/* Figure out which thread to start with. */
1213	if (have_addr)
1214		td = db_lookup_thread(addr, true);
1215	else
1216		td = kdb_thread;
1217
1218	print_lockchain(td, "");
1219}
1220DB_SHOW_ALIAS(sleepchain, db_show_lockchain);
1221
1222DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1223{
1224	struct thread *td;
1225	struct proc *p;
1226	int i;
1227
1228	i = 1;
1229	FOREACH_PROC_IN_SYSTEM(p) {
1230		FOREACH_THREAD_IN_PROC(p, td) {
1231			if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested))
1232			    || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) {
1233				db_printf("chain %d:\n", i++);
1234				print_lockchain(td, " ");
1235			}
1236			if (db_pager_quit)
1237				return;
1238		}
1239	}
1240}
1241DB_SHOW_ALIAS(allchains, db_show_allchains)
1242
1243static void	print_waiters(struct turnstile *ts, int indent);
1244
1245static void
1246print_waiter(struct thread *td, int indent)
1247{
1248	struct turnstile *ts;
1249	int i;
1250
1251	if (db_pager_quit)
1252		return;
1253	for (i = 0; i < indent; i++)
1254		db_printf(" ");
1255	print_thread(td, "thread ");
1256	LIST_FOREACH(ts, &td->td_contested, ts_link)
1257		print_waiters(ts, indent + 1);
1258}
1259
1260static void
1261print_waiters(struct turnstile *ts, int indent)
1262{
1263	struct lock_object *lock;
1264	struct lock_class *class;
1265	struct thread *td;
1266	int i;
1267
1268	if (db_pager_quit)
1269		return;
1270	lock = ts->ts_lockobj;
1271	class = LOCK_CLASS(lock);
1272	for (i = 0; i < indent; i++)
1273		db_printf(" ");
1274	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1275	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1276		print_waiter(td, indent + 1);
1277	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1278		print_waiter(td, indent + 1);
1279	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1280		print_waiter(td, indent + 1);
1281}
1282
1283DB_SHOW_COMMAND(locktree, db_show_locktree)
1284{
1285	struct lock_object *lock;
1286	struct lock_class *class;
1287	struct turnstile_chain *tc;
1288	struct turnstile *ts;
1289
1290	if (!have_addr)
1291		return;
1292	lock = (struct lock_object *)addr;
1293	tc = TC_LOOKUP(lock);
1294	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1295		if (ts->ts_lockobj == lock)
1296			break;
1297	if (ts == NULL) {
1298		class = LOCK_CLASS(lock);
1299		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1300		    lock->lo_name);
1301	} else
1302		print_waiters(ts, 0);
1303}
1304#endif
1305