1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * Implementation of sleep queues used to hold queue of threads blocked on
30 * a wait channel.  Sleep queues are different from turnstiles in that wait
31 * channels are not owned by anyone, so there is no priority propagation.
32 * Sleep queues can also provide a timeout and can also be interrupted by
33 * signals.  That said, there are several similarities between the turnstile
34 * and sleep queue implementations.  (Note: turnstiles were implemented
35 * first.)  For example, both use a hash table of the same size where each
36 * bucket is referred to as a "chain" that contains both a spin lock and
37 * a linked list of queues.  An individual queue is located by using a hash
38 * to pick a chain, locking the chain, and then walking the chain searching
39 * for the queue.  This means that a wait channel object does not need to
40 * embed its queue head just as locks do not embed their turnstile queue
41 * head.  Threads also carry around a sleep queue that they lend to the
42 * wait channel when blocking.  Just as in turnstiles, the queue includes
43 * a free list of the sleep queues of other threads blocked on the same
44 * wait channel in the case of multiple waiters.
45 *
46 * Some additional functionality provided by sleep queues include the
47 * ability to set a timeout.  The timeout is managed using a per-thread
48 * callout that resumes a thread if it is asleep.  A thread may also
49 * catch signals while it is asleep (aka an interruptible sleep).  The
50 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51 * sleep queues also provide some extra assertions.  One is not allowed to
52 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53 * must consistently use the same lock to synchronize with a wait channel,
54 * though this check is currently only a warning for sleep/wakeup due to
55 * pre-existing abuse of that API.  The same lock must also be held when
56 * awakening threads, though that is currently only enforced for condition
57 * variables.
58 */
59
60#include <sys/cdefs.h>
61__FBSDID("$FreeBSD$");
62
63#include "opt_sleepqueue_profiling.h"
64#include "opt_ddb.h"
65#include "opt_sched.h"
66#include "opt_stack.h"
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/kernel.h>
72#include <sys/ktr.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sbuf.h>
76#include <sys/sched.h>
77#include <sys/sdt.h>
78#include <sys/signalvar.h>
79#include <sys/sleepqueue.h>
80#include <sys/stack.h>
81#include <sys/sysctl.h>
82#include <sys/time.h>
83
84#include <machine/atomic.h>
85
86#include <vm/uma.h>
87
88#ifdef DDB
89#include <ddb/ddb.h>
90#endif
91
92
93/*
94 * Constants for the hash table of sleep queue chains.
95 * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96 */
97#ifndef SC_TABLESIZE
98#define	SC_TABLESIZE	256
99#endif
100CTASSERT(powerof2(SC_TABLESIZE));
101#define	SC_MASK		(SC_TABLESIZE - 1)
102#define	SC_SHIFT	8
103#define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
104			    SC_MASK)
105#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
106#define NR_SLEEPQS      2
107/*
108 * There are two different lists of sleep queues.  Both lists are connected
109 * via the sq_hash entries.  The first list is the sleep queue chain list
110 * that a sleep queue is on when it is attached to a wait channel.  The
111 * second list is the free list hung off of a sleep queue that is attached
112 * to a wait channel.
113 *
114 * Each sleep queue also contains the wait channel it is attached to, the
115 * list of threads blocked on that wait channel, flags specific to the
116 * wait channel, and the lock used to synchronize with a wait channel.
117 * The flags are used to catch mismatches between the various consumers
118 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
119 * The lock pointer is only used when invariants are enabled for various
120 * debugging checks.
121 *
122 * Locking key:
123 *  c - sleep queue chain lock
124 */
125struct sleepqueue {
126	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
127	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
128	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
129	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
130	void	*sq_wchan;			/* (c) Wait channel. */
131	int	sq_type;			/* (c) Queue type. */
132#ifdef INVARIANTS
133	struct lock_object *sq_lock;		/* (c) Associated lock. */
134#endif
135};
136
137struct sleepqueue_chain {
138	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
139	struct mtx sc_lock;			/* Spin lock for this chain. */
140#ifdef SLEEPQUEUE_PROFILING
141	u_int	sc_depth;			/* Length of sc_queues. */
142	u_int	sc_max_depth;			/* Max length of sc_queues. */
143#endif
144} __aligned(CACHE_LINE_SIZE);
145
146#ifdef SLEEPQUEUE_PROFILING
147u_int sleepq_max_depth;
148static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
149static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
150    "sleepq chain stats");
151SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
152    0, "maxmimum depth achieved of a single chain");
153
154static void	sleepq_profile(const char *wmesg);
155static int	prof_enabled;
156#endif
157static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
158static uma_zone_t sleepq_zone;
159
160/*
161 * Prototypes for non-exported routines.
162 */
163static int	sleepq_catch_signals(void *wchan, int pri);
164static int	sleepq_check_signals(void);
165static int	sleepq_check_timeout(void);
166#ifdef INVARIANTS
167static void	sleepq_dtor(void *mem, int size, void *arg);
168#endif
169static int	sleepq_init(void *mem, int size, int flags);
170static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
171		    int pri);
172static void	sleepq_switch(void *wchan, int pri);
173static void	sleepq_timeout(void *arg);
174
175SDT_PROBE_DECLARE(sched, , , sleep);
176SDT_PROBE_DECLARE(sched, , , wakeup);
177
178/*
179 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
180 * Note that it must happen after sleepinit() has been fully executed, so
181 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
182 */
183#ifdef SLEEPQUEUE_PROFILING
184static void
185init_sleepqueue_profiling(void)
186{
187	char chain_name[10];
188	struct sysctl_oid *chain_oid;
189	u_int i;
190
191	for (i = 0; i < SC_TABLESIZE; i++) {
192		snprintf(chain_name, sizeof(chain_name), "%u", i);
193		chain_oid = SYSCTL_ADD_NODE(NULL,
194		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
195		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
196		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
197		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
198		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
199		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
200		    NULL);
201	}
202}
203
204SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
205    init_sleepqueue_profiling, NULL);
206#endif
207
208/*
209 * Early initialization of sleep queues that is called from the sleepinit()
210 * SYSINIT.
211 */
212void
213init_sleepqueues(void)
214{
215	int i;
216
217	for (i = 0; i < SC_TABLESIZE; i++) {
218		LIST_INIT(&sleepq_chains[i].sc_queues);
219		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
220		    MTX_SPIN | MTX_RECURSE);
221	}
222	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
223#ifdef INVARIANTS
224	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
225#else
226	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
227#endif
228
229	thread0.td_sleepqueue = sleepq_alloc();
230}
231
232/*
233 * Get a sleep queue for a new thread.
234 */
235struct sleepqueue *
236sleepq_alloc(void)
237{
238
239	return (uma_zalloc(sleepq_zone, M_WAITOK));
240}
241
242/*
243 * Free a sleep queue when a thread is destroyed.
244 */
245void
246sleepq_free(struct sleepqueue *sq)
247{
248
249	uma_zfree(sleepq_zone, sq);
250}
251
252/*
253 * Lock the sleep queue chain associated with the specified wait channel.
254 */
255void
256sleepq_lock(void *wchan)
257{
258	struct sleepqueue_chain *sc;
259
260	sc = SC_LOOKUP(wchan);
261	mtx_lock_spin(&sc->sc_lock);
262}
263
264/*
265 * Look up the sleep queue associated with a given wait channel in the hash
266 * table locking the associated sleep queue chain.  If no queue is found in
267 * the table, NULL is returned.
268 */
269struct sleepqueue *
270sleepq_lookup(void *wchan)
271{
272	struct sleepqueue_chain *sc;
273	struct sleepqueue *sq;
274
275	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
276	sc = SC_LOOKUP(wchan);
277	mtx_assert(&sc->sc_lock, MA_OWNED);
278	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
279		if (sq->sq_wchan == wchan)
280			return (sq);
281	return (NULL);
282}
283
284/*
285 * Unlock the sleep queue chain associated with a given wait channel.
286 */
287void
288sleepq_release(void *wchan)
289{
290	struct sleepqueue_chain *sc;
291
292	sc = SC_LOOKUP(wchan);
293	mtx_unlock_spin(&sc->sc_lock);
294}
295
296/*
297 * Places the current thread on the sleep queue for the specified wait
298 * channel.  If INVARIANTS is enabled, then it associates the passed in
299 * lock with the sleepq to make sure it is held when that sleep queue is
300 * woken up.
301 */
302void
303sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
304    int queue)
305{
306	struct sleepqueue_chain *sc;
307	struct sleepqueue *sq;
308	struct thread *td;
309
310	td = curthread;
311	sc = SC_LOOKUP(wchan);
312	mtx_assert(&sc->sc_lock, MA_OWNED);
313	MPASS(td->td_sleepqueue != NULL);
314	MPASS(wchan != NULL);
315	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
316
317	/* If this thread is not allowed to sleep, die a horrible death. */
318	KASSERT(td->td_no_sleeping == 0,
319	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
320	    __func__, td, wchan));
321
322	/* Look up the sleep queue associated with the wait channel 'wchan'. */
323	sq = sleepq_lookup(wchan);
324
325	/*
326	 * If the wait channel does not already have a sleep queue, use
327	 * this thread's sleep queue.  Otherwise, insert the current thread
328	 * into the sleep queue already in use by this wait channel.
329	 */
330	if (sq == NULL) {
331#ifdef INVARIANTS
332		int i;
333
334		sq = td->td_sleepqueue;
335		for (i = 0; i < NR_SLEEPQS; i++) {
336			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
337			    ("thread's sleep queue %d is not empty", i));
338			KASSERT(sq->sq_blockedcnt[i] == 0,
339			    ("thread's sleep queue %d count mismatches", i));
340		}
341		KASSERT(LIST_EMPTY(&sq->sq_free),
342		    ("thread's sleep queue has a non-empty free list"));
343		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
344		sq->sq_lock = lock;
345#endif
346#ifdef SLEEPQUEUE_PROFILING
347		sc->sc_depth++;
348		if (sc->sc_depth > sc->sc_max_depth) {
349			sc->sc_max_depth = sc->sc_depth;
350			if (sc->sc_max_depth > sleepq_max_depth)
351				sleepq_max_depth = sc->sc_max_depth;
352		}
353#endif
354		sq = td->td_sleepqueue;
355		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
356		sq->sq_wchan = wchan;
357		sq->sq_type = flags & SLEEPQ_TYPE;
358	} else {
359		MPASS(wchan == sq->sq_wchan);
360		MPASS(lock == sq->sq_lock);
361		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
362		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
363	}
364	thread_lock(td);
365	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
366	sq->sq_blockedcnt[queue]++;
367	td->td_sleepqueue = NULL;
368	td->td_sqqueue = queue;
369	td->td_wchan = wchan;
370	td->td_wmesg = wmesg;
371	if (flags & SLEEPQ_INTERRUPTIBLE) {
372		td->td_flags |= TDF_SINTR;
373		td->td_flags &= ~TDF_SLEEPABORT;
374	}
375	thread_unlock(td);
376}
377
378/*
379 * Sets a timeout that will remove the current thread from the specified
380 * sleep queue after timo ticks if the thread has not already been awakened.
381 */
382void
383sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
384    int flags)
385{
386	struct sleepqueue_chain *sc __unused;
387	struct thread *td;
388	sbintime_t pr1;
389
390	td = curthread;
391	sc = SC_LOOKUP(wchan);
392	mtx_assert(&sc->sc_lock, MA_OWNED);
393	MPASS(TD_ON_SLEEPQ(td));
394	MPASS(td->td_sleepqueue == NULL);
395	MPASS(wchan != NULL);
396	if (cold && td == &thread0)
397		panic("timed sleep before timers are working");
398	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
399	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
400	thread_lock(td);
401	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
402	thread_unlock(td);
403	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
404	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
405	    C_DIRECT_EXEC);
406}
407
408/*
409 * Return the number of actual sleepers for the specified queue.
410 */
411u_int
412sleepq_sleepcnt(void *wchan, int queue)
413{
414	struct sleepqueue *sq;
415
416	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
417	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
418	sq = sleepq_lookup(wchan);
419	if (sq == NULL)
420		return (0);
421	return (sq->sq_blockedcnt[queue]);
422}
423
424/*
425 * Marks the pending sleep of the current thread as interruptible and
426 * makes an initial check for pending signals before putting a thread
427 * to sleep. Enters and exits with the thread lock held.  Thread lock
428 * may have transitioned from the sleepq lock to a run lock.
429 */
430static int
431sleepq_catch_signals(void *wchan, int pri)
432{
433	struct sleepqueue_chain *sc;
434	struct sleepqueue *sq;
435	struct thread *td;
436	struct proc *p;
437	struct sigacts *ps;
438	int sig, ret;
439
440	ret = 0;
441	td = curthread;
442	p = curproc;
443	sc = SC_LOOKUP(wchan);
444	mtx_assert(&sc->sc_lock, MA_OWNED);
445	MPASS(wchan != NULL);
446	if ((td->td_pflags & TDP_WAKEUP) != 0) {
447		td->td_pflags &= ~TDP_WAKEUP;
448		ret = EINTR;
449		thread_lock(td);
450		goto out;
451	}
452
453	/*
454	 * See if there are any pending signals or suspension requests for this
455	 * thread.  If not, we can switch immediately.
456	 */
457	thread_lock(td);
458	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
459		thread_unlock(td);
460		mtx_unlock_spin(&sc->sc_lock);
461		CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
462			(void *)td, (long)p->p_pid, td->td_name);
463		PROC_LOCK(p);
464		/*
465		 * Check for suspension first. Checking for signals and then
466		 * suspending could result in a missed signal, since a signal
467		 * can be delivered while this thread is suspended.
468		 */
469		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
470			ret = thread_suspend_check(1);
471			MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
472			if (ret != 0) {
473				PROC_UNLOCK(p);
474				mtx_lock_spin(&sc->sc_lock);
475				thread_lock(td);
476				goto out;
477			}
478		}
479		if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
480			ps = p->p_sigacts;
481			mtx_lock(&ps->ps_mtx);
482			sig = cursig(td);
483			if (sig == -1) {
484				mtx_unlock(&ps->ps_mtx);
485				KASSERT((td->td_flags & TDF_SBDRY) != 0,
486				    ("lost TDF_SBDRY"));
487				KASSERT(TD_SBDRY_INTR(td),
488				    ("lost TDF_SERESTART of TDF_SEINTR"));
489				KASSERT((td->td_flags &
490				    (TDF_SEINTR | TDF_SERESTART)) !=
491				    (TDF_SEINTR | TDF_SERESTART),
492				    ("both TDF_SEINTR and TDF_SERESTART"));
493				ret = TD_SBDRY_ERRNO(td);
494			} else if (sig != 0) {
495				ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
496				    EINTR : ERESTART;
497				mtx_unlock(&ps->ps_mtx);
498			} else {
499				mtx_unlock(&ps->ps_mtx);
500			}
501
502			/*
503			 * Do not go into sleep if this thread was the
504			 * ptrace(2) attach leader.  cursig() consumed
505			 * SIGSTOP from PT_ATTACH, but we usually act
506			 * on the signal by interrupting sleep, and
507			 * should do that here as well.
508			 */
509			if ((td->td_dbgflags & TDB_FSTP) != 0) {
510				if (ret == 0)
511					ret = EINTR;
512				td->td_dbgflags &= ~TDB_FSTP;
513			}
514		}
515		/*
516		 * Lock the per-process spinlock prior to dropping the PROC_LOCK
517		 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
518		 * thread_lock() are currently held in tdsendsignal().
519		 */
520		PROC_SLOCK(p);
521		mtx_lock_spin(&sc->sc_lock);
522		PROC_UNLOCK(p);
523		thread_lock(td);
524		PROC_SUNLOCK(p);
525	}
526	if (ret == 0) {
527		sleepq_switch(wchan, pri);
528		return (0);
529	}
530out:
531	/*
532	 * There were pending signals and this thread is still
533	 * on the sleep queue, remove it from the sleep queue.
534	 */
535	if (TD_ON_SLEEPQ(td)) {
536		sq = sleepq_lookup(wchan);
537		if (sleepq_resume_thread(sq, td, 0)) {
538#ifdef INVARIANTS
539			/*
540			 * This thread hasn't gone to sleep yet, so it
541			 * should not be swapped out.
542			 */
543			panic("not waking up swapper");
544#endif
545		}
546	}
547	mtx_unlock_spin(&sc->sc_lock);
548	MPASS(td->td_lock != &sc->sc_lock);
549	return (ret);
550}
551
552/*
553 * Switches to another thread if we are still asleep on a sleep queue.
554 * Returns with thread lock.
555 */
556static void
557sleepq_switch(void *wchan, int pri)
558{
559	struct sleepqueue_chain *sc;
560	struct sleepqueue *sq;
561	struct thread *td;
562	bool rtc_changed;
563
564	td = curthread;
565	sc = SC_LOOKUP(wchan);
566	mtx_assert(&sc->sc_lock, MA_OWNED);
567	THREAD_LOCK_ASSERT(td, MA_OWNED);
568
569	/*
570	 * If we have a sleep queue, then we've already been woken up, so
571	 * just return.
572	 */
573	if (td->td_sleepqueue != NULL) {
574		mtx_unlock_spin(&sc->sc_lock);
575		return;
576	}
577
578	/*
579	 * If TDF_TIMEOUT is set, then our sleep has been timed out
580	 * already but we are still on the sleep queue, so dequeue the
581	 * thread and return.
582	 *
583	 * Do the same if the real-time clock has been adjusted since this
584	 * thread calculated its timeout based on that clock.  This handles
585	 * the following race:
586	 * - The Ts thread needs to sleep until an absolute real-clock time.
587	 *   It copies the global rtc_generation into curthread->td_rtcgen,
588	 *   reads the RTC, and calculates a sleep duration based on that time.
589	 *   See umtxq_sleep() for an example.
590	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
591	 *   threads that are sleeping until an absolute real-clock time.
592	 *   See tc_setclock() and the POSIX specification of clock_settime().
593	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
594	 *   so Tc has finished waking, so this thread must test td_rtcgen.
595	 * (The declaration of td_rtcgen refers to this comment.)
596	 */
597	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
598	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
599		if (rtc_changed) {
600			td->td_rtcgen = 0;
601		}
602		MPASS(TD_ON_SLEEPQ(td));
603		sq = sleepq_lookup(wchan);
604		if (sleepq_resume_thread(sq, td, 0)) {
605#ifdef INVARIANTS
606			/*
607			 * This thread hasn't gone to sleep yet, so it
608			 * should not be swapped out.
609			 */
610			panic("not waking up swapper");
611#endif
612		}
613		mtx_unlock_spin(&sc->sc_lock);
614		return;
615	}
616#ifdef SLEEPQUEUE_PROFILING
617	if (prof_enabled)
618		sleepq_profile(td->td_wmesg);
619#endif
620	MPASS(td->td_sleepqueue == NULL);
621	sched_sleep(td, pri);
622	thread_lock_set(td, &sc->sc_lock);
623	SDT_PROBE0(sched, , , sleep);
624	TD_SET_SLEEPING(td);
625	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
626	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
627	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
628	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
629}
630
631/*
632 * Check to see if we timed out.
633 */
634static int
635sleepq_check_timeout(void)
636{
637	struct thread *td;
638	int res;
639
640	td = curthread;
641	THREAD_LOCK_ASSERT(td, MA_OWNED);
642
643	/*
644	 * If TDF_TIMEOUT is set, we timed out.  But recheck
645	 * td_sleeptimo anyway.
646	 */
647	res = 0;
648	if (td->td_sleeptimo != 0) {
649		if (td->td_sleeptimo <= sbinuptime())
650			res = EWOULDBLOCK;
651		td->td_sleeptimo = 0;
652	}
653	if (td->td_flags & TDF_TIMEOUT)
654		td->td_flags &= ~TDF_TIMEOUT;
655	else
656		/*
657		 * We ignore the situation where timeout subsystem was
658		 * unable to stop our callout.  The struct thread is
659		 * type-stable, the callout will use the correct
660		 * memory when running.  The checks of the
661		 * td_sleeptimo value in this function and in
662		 * sleepq_timeout() ensure that the thread does not
663		 * get spurious wakeups, even if the callout was reset
664		 * or thread reused.
665		 */
666		callout_stop(&td->td_slpcallout);
667	return (res);
668}
669
670/*
671 * Check to see if we were awoken by a signal.
672 */
673static int
674sleepq_check_signals(void)
675{
676	struct thread *td;
677
678	td = curthread;
679	THREAD_LOCK_ASSERT(td, MA_OWNED);
680
681	/* We are no longer in an interruptible sleep. */
682	if (td->td_flags & TDF_SINTR)
683		td->td_flags &= ~TDF_SINTR;
684
685	if (td->td_flags & TDF_SLEEPABORT) {
686		td->td_flags &= ~TDF_SLEEPABORT;
687		return (td->td_intrval);
688	}
689
690	return (0);
691}
692
693/*
694 * Block the current thread until it is awakened from its sleep queue.
695 */
696void
697sleepq_wait(void *wchan, int pri)
698{
699	struct thread *td;
700
701	td = curthread;
702	MPASS(!(td->td_flags & TDF_SINTR));
703	thread_lock(td);
704	sleepq_switch(wchan, pri);
705	thread_unlock(td);
706}
707
708/*
709 * Block the current thread until it is awakened from its sleep queue
710 * or it is interrupted by a signal.
711 */
712int
713sleepq_wait_sig(void *wchan, int pri)
714{
715	int rcatch;
716	int rval;
717
718	rcatch = sleepq_catch_signals(wchan, pri);
719	rval = sleepq_check_signals();
720	thread_unlock(curthread);
721	if (rcatch)
722		return (rcatch);
723	return (rval);
724}
725
726/*
727 * Block the current thread until it is awakened from its sleep queue
728 * or it times out while waiting.
729 */
730int
731sleepq_timedwait(void *wchan, int pri)
732{
733	struct thread *td;
734	int rval;
735
736	td = curthread;
737	MPASS(!(td->td_flags & TDF_SINTR));
738	thread_lock(td);
739	sleepq_switch(wchan, pri);
740	rval = sleepq_check_timeout();
741	thread_unlock(td);
742
743	return (rval);
744}
745
746/*
747 * Block the current thread until it is awakened from its sleep queue,
748 * it is interrupted by a signal, or it times out waiting to be awakened.
749 */
750int
751sleepq_timedwait_sig(void *wchan, int pri)
752{
753	int rcatch, rvalt, rvals;
754
755	rcatch = sleepq_catch_signals(wchan, pri);
756	rvalt = sleepq_check_timeout();
757	rvals = sleepq_check_signals();
758	thread_unlock(curthread);
759	if (rcatch)
760		return (rcatch);
761	if (rvals)
762		return (rvals);
763	return (rvalt);
764}
765
766/*
767 * Returns the type of sleepqueue given a waitchannel.
768 */
769int
770sleepq_type(void *wchan)
771{
772	struct sleepqueue *sq;
773	int type;
774
775	MPASS(wchan != NULL);
776
777	sleepq_lock(wchan);
778	sq = sleepq_lookup(wchan);
779	if (sq == NULL) {
780		sleepq_release(wchan);
781		return (-1);
782	}
783	type = sq->sq_type;
784	sleepq_release(wchan);
785	return (type);
786}
787
788/*
789 * Removes a thread from a sleep queue and makes it
790 * runnable.
791 */
792static int
793sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
794{
795	struct sleepqueue_chain *sc __unused;
796
797	MPASS(td != NULL);
798	MPASS(sq->sq_wchan != NULL);
799	MPASS(td->td_wchan == sq->sq_wchan);
800	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
801	THREAD_LOCK_ASSERT(td, MA_OWNED);
802	sc = SC_LOOKUP(sq->sq_wchan);
803	mtx_assert(&sc->sc_lock, MA_OWNED);
804
805	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
806
807	/* Remove the thread from the queue. */
808	sq->sq_blockedcnt[td->td_sqqueue]--;
809	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
810
811	/*
812	 * Get a sleep queue for this thread.  If this is the last waiter,
813	 * use the queue itself and take it out of the chain, otherwise,
814	 * remove a queue from the free list.
815	 */
816	if (LIST_EMPTY(&sq->sq_free)) {
817		td->td_sleepqueue = sq;
818#ifdef INVARIANTS
819		sq->sq_wchan = NULL;
820#endif
821#ifdef SLEEPQUEUE_PROFILING
822		sc->sc_depth--;
823#endif
824	} else
825		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
826	LIST_REMOVE(td->td_sleepqueue, sq_hash);
827
828	td->td_wmesg = NULL;
829	td->td_wchan = NULL;
830	td->td_flags &= ~TDF_SINTR;
831
832	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
833	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
834
835	/* Adjust priority if requested. */
836	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
837	if (pri != 0 && td->td_priority > pri &&
838	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
839		sched_prio(td, pri);
840
841	/*
842	 * Note that thread td might not be sleeping if it is running
843	 * sleepq_catch_signals() on another CPU or is blocked on its
844	 * proc lock to check signals.  There's no need to mark the
845	 * thread runnable in that case.
846	 */
847	if (TD_IS_SLEEPING(td)) {
848		TD_CLR_SLEEPING(td);
849		return (setrunnable(td));
850	}
851	return (0);
852}
853
854#ifdef INVARIANTS
855/*
856 * UMA zone item deallocator.
857 */
858static void
859sleepq_dtor(void *mem, int size, void *arg)
860{
861	struct sleepqueue *sq;
862	int i;
863
864	sq = mem;
865	for (i = 0; i < NR_SLEEPQS; i++) {
866		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
867		MPASS(sq->sq_blockedcnt[i] == 0);
868	}
869}
870#endif
871
872/*
873 * UMA zone item initializer.
874 */
875static int
876sleepq_init(void *mem, int size, int flags)
877{
878	struct sleepqueue *sq;
879	int i;
880
881	bzero(mem, size);
882	sq = mem;
883	for (i = 0; i < NR_SLEEPQS; i++) {
884		TAILQ_INIT(&sq->sq_blocked[i]);
885		sq->sq_blockedcnt[i] = 0;
886	}
887	LIST_INIT(&sq->sq_free);
888	return (0);
889}
890
891/*
892 * Find thread sleeping on a wait channel and resume it.
893 */
894int
895sleepq_signal(void *wchan, int flags, int pri, int queue)
896{
897	struct sleepqueue_chain *sc;
898	struct sleepqueue *sq;
899	struct threadqueue *head;
900	struct thread *td, *besttd;
901	int wakeup_swapper;
902
903	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
904	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
905	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
906	sq = sleepq_lookup(wchan);
907	if (sq == NULL)
908		return (0);
909	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
910	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
911
912	head = &sq->sq_blocked[queue];
913	if (flags & SLEEPQ_UNFAIR) {
914		/*
915		 * Find the most recently sleeping thread, but try to
916		 * skip threads still in process of context switch to
917		 * avoid spinning on the thread lock.
918		 */
919		sc = SC_LOOKUP(wchan);
920		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
921		while (besttd->td_lock != &sc->sc_lock) {
922			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
923			if (td == NULL)
924				break;
925			besttd = td;
926		}
927	} else {
928		/*
929		 * Find the highest priority thread on the queue.  If there
930		 * is a tie, use the thread that first appears in the queue
931		 * as it has been sleeping the longest since threads are
932		 * always added to the tail of sleep queues.
933		 */
934		besttd = td = TAILQ_FIRST(head);
935		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
936			if (td->td_priority < besttd->td_priority)
937				besttd = td;
938		}
939	}
940	MPASS(besttd != NULL);
941	thread_lock(besttd);
942	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
943	thread_unlock(besttd);
944	return (wakeup_swapper);
945}
946
947static bool
948match_any(struct thread *td __unused)
949{
950
951	return (true);
952}
953
954/*
955 * Resume all threads sleeping on a specified wait channel.
956 */
957int
958sleepq_broadcast(void *wchan, int flags, int pri, int queue)
959{
960	struct sleepqueue *sq;
961
962	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
963	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
964	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
965	sq = sleepq_lookup(wchan);
966	if (sq == NULL)
967		return (0);
968	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
969	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
970
971	return (sleepq_remove_matching(sq, queue, match_any, pri));
972}
973
974/*
975 * Resume threads on the sleep queue that match the given predicate.
976 */
977int
978sleepq_remove_matching(struct sleepqueue *sq, int queue,
979    bool (*matches)(struct thread *), int pri)
980{
981	struct thread *td, *tdn;
982	int wakeup_swapper;
983
984	/*
985	 * The last thread will be given ownership of sq and may
986	 * re-enqueue itself before sleepq_resume_thread() returns,
987	 * so we must cache the "next" queue item at the beginning
988	 * of the final iteration.
989	 */
990	wakeup_swapper = 0;
991	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
992		thread_lock(td);
993		if (matches(td))
994			wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
995		thread_unlock(td);
996	}
997
998	return (wakeup_swapper);
999}
1000
1001/*
1002 * Time sleeping threads out.  When the timeout expires, the thread is
1003 * removed from the sleep queue and made runnable if it is still asleep.
1004 */
1005static void
1006sleepq_timeout(void *arg)
1007{
1008	struct sleepqueue_chain *sc __unused;
1009	struct sleepqueue *sq;
1010	struct thread *td;
1011	void *wchan;
1012	int wakeup_swapper;
1013
1014	td = arg;
1015	wakeup_swapper = 0;
1016	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1017	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1018
1019	thread_lock(td);
1020
1021	if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) {
1022		/*
1023		 * The thread does not want a timeout (yet).
1024		 */
1025	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1026		/*
1027		 * See if the thread is asleep and get the wait
1028		 * channel if it is.
1029		 */
1030		wchan = td->td_wchan;
1031		sc = SC_LOOKUP(wchan);
1032		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1033		sq = sleepq_lookup(wchan);
1034		MPASS(sq != NULL);
1035		td->td_flags |= TDF_TIMEOUT;
1036		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1037	} else if (TD_ON_SLEEPQ(td)) {
1038		/*
1039		 * If the thread is on the SLEEPQ but isn't sleeping
1040		 * yet, it can either be on another CPU in between
1041		 * sleepq_add() and one of the sleepq_*wait*()
1042		 * routines or it can be in sleepq_catch_signals().
1043		 */
1044		td->td_flags |= TDF_TIMEOUT;
1045	}
1046
1047	thread_unlock(td);
1048	if (wakeup_swapper)
1049		kick_proc0();
1050}
1051
1052/*
1053 * Resumes a specific thread from the sleep queue associated with a specific
1054 * wait channel if it is on that queue.
1055 */
1056void
1057sleepq_remove(struct thread *td, void *wchan)
1058{
1059	struct sleepqueue *sq;
1060	int wakeup_swapper;
1061
1062	/*
1063	 * Look up the sleep queue for this wait channel, then re-check
1064	 * that the thread is asleep on that channel, if it is not, then
1065	 * bail.
1066	 */
1067	MPASS(wchan != NULL);
1068	sleepq_lock(wchan);
1069	sq = sleepq_lookup(wchan);
1070	/*
1071	 * We can not lock the thread here as it may be sleeping on a
1072	 * different sleepq.  However, holding the sleepq lock for this
1073	 * wchan can guarantee that we do not miss a wakeup for this
1074	 * channel.  The asserts below will catch any false positives.
1075	 */
1076	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1077		sleepq_release(wchan);
1078		return;
1079	}
1080	/* Thread is asleep on sleep queue sq, so wake it up. */
1081	thread_lock(td);
1082	MPASS(sq != NULL);
1083	MPASS(td->td_wchan == wchan);
1084	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1085	thread_unlock(td);
1086	sleepq_release(wchan);
1087	if (wakeup_swapper)
1088		kick_proc0();
1089}
1090
1091/*
1092 * Abort a thread as if an interrupt had occurred.  Only abort
1093 * interruptible waits (unfortunately it isn't safe to abort others).
1094 */
1095int
1096sleepq_abort(struct thread *td, int intrval)
1097{
1098	struct sleepqueue *sq;
1099	void *wchan;
1100
1101	THREAD_LOCK_ASSERT(td, MA_OWNED);
1102	MPASS(TD_ON_SLEEPQ(td));
1103	MPASS(td->td_flags & TDF_SINTR);
1104	MPASS(intrval == EINTR || intrval == ERESTART);
1105
1106	/*
1107	 * If the TDF_TIMEOUT flag is set, just leave. A
1108	 * timeout is scheduled anyhow.
1109	 */
1110	if (td->td_flags & TDF_TIMEOUT)
1111		return (0);
1112
1113	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1114	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1115	td->td_intrval = intrval;
1116	td->td_flags |= TDF_SLEEPABORT;
1117	/*
1118	 * If the thread has not slept yet it will find the signal in
1119	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1120	 * we have to do it here.
1121	 */
1122	if (!TD_IS_SLEEPING(td))
1123		return (0);
1124	wchan = td->td_wchan;
1125	MPASS(wchan != NULL);
1126	sq = sleepq_lookup(wchan);
1127	MPASS(sq != NULL);
1128
1129	/* Thread is asleep on sleep queue sq, so wake it up. */
1130	return (sleepq_resume_thread(sq, td, 0));
1131}
1132
1133void
1134sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1135{
1136	struct sleepqueue_chain *sc;
1137	struct sleepqueue *sq, *sq1;
1138	int i, wakeup_swapper;
1139
1140	wakeup_swapper = 0;
1141	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1142		if (LIST_EMPTY(&sc->sc_queues)) {
1143			continue;
1144		}
1145		mtx_lock_spin(&sc->sc_lock);
1146		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1147			for (i = 0; i < NR_SLEEPQS; ++i) {
1148				wakeup_swapper |= sleepq_remove_matching(sq, i,
1149				    matches, 0);
1150			}
1151		}
1152		mtx_unlock_spin(&sc->sc_lock);
1153	}
1154	if (wakeup_swapper) {
1155		kick_proc0();
1156	}
1157}
1158
1159/*
1160 * Prints the stacks of all threads presently sleeping on wchan/queue to
1161 * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1162 * printed.  Typically, this will equal the number of threads sleeping on the
1163 * queue, but may be less if sb overflowed before all stacks were printed.
1164 */
1165#ifdef STACK
1166int
1167sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
1168    int *count_stacks_printed)
1169{
1170	struct thread *td, *td_next;
1171	struct sleepqueue *sq;
1172	struct stack **st;
1173	struct sbuf **td_infos;
1174	int i, stack_idx, error, stacks_to_allocate;
1175	bool finished;
1176
1177	error = 0;
1178	finished = false;
1179
1180	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1181	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1182
1183	stacks_to_allocate = 10;
1184	for (i = 0; i < 3 && !finished ; i++) {
1185		/* We cannot malloc while holding the queue's spinlock, so
1186		 * we do our mallocs now, and hope it is enough.  If it
1187		 * isn't, we will free these, drop the lock, malloc more,
1188		 * and try again, up to a point.  After that point we will
1189		 * give up and report ENOMEM. We also cannot write to sb
1190		 * during this time since the client may have set the
1191		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1192		 * malloc as we print to it.  So we defer actually printing
1193		 * to sb until after we drop the spinlock.
1194		 */
1195
1196		/* Where we will store the stacks. */
1197		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1198		    M_TEMP, M_WAITOK);
1199		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1200		    stack_idx++)
1201			st[stack_idx] = stack_create(M_WAITOK);
1202
1203		/* Where we will store the td name, tid, etc. */
1204		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1205		    M_TEMP, M_WAITOK);
1206		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1207		    stack_idx++)
1208			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1209			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1210			    SBUF_FIXEDLEN);
1211
1212		sleepq_lock(wchan);
1213		sq = sleepq_lookup(wchan);
1214		if (sq == NULL) {
1215			/* This sleepq does not exist; exit and return ENOENT. */
1216			error = ENOENT;
1217			finished = true;
1218			sleepq_release(wchan);
1219			goto loop_end;
1220		}
1221
1222		stack_idx = 0;
1223		/* Save thread info */
1224		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1225		    td_next) {
1226			if (stack_idx >= stacks_to_allocate)
1227				goto loop_end;
1228
1229			/* Note the td_lock is equal to the sleepq_lock here. */
1230			stack_save_td(st[stack_idx], td);
1231
1232			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1233			    td->td_tid, td->td_name, td);
1234
1235			++stack_idx;
1236		}
1237
1238		finished = true;
1239		sleepq_release(wchan);
1240
1241		/* Print the stacks */
1242		for (i = 0; i < stack_idx; i++) {
1243			sbuf_finish(td_infos[i]);
1244			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1245			stack_sbuf_print(sb, st[i]);
1246			sbuf_printf(sb, "\n");
1247
1248			error = sbuf_error(sb);
1249			if (error == 0)
1250				*count_stacks_printed = stack_idx;
1251		}
1252
1253loop_end:
1254		if (!finished)
1255			sleepq_release(wchan);
1256		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1257		    stack_idx++)
1258			stack_destroy(st[stack_idx]);
1259		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1260		    stack_idx++)
1261			sbuf_delete(td_infos[stack_idx]);
1262		free(st, M_TEMP);
1263		free(td_infos, M_TEMP);
1264		stacks_to_allocate *= 10;
1265	}
1266
1267	if (!finished && error == 0)
1268		error = ENOMEM;
1269
1270	return (error);
1271}
1272#endif
1273
1274#ifdef SLEEPQUEUE_PROFILING
1275#define	SLEEPQ_PROF_LOCATIONS	1024
1276#define	SLEEPQ_SBUFSIZE		512
1277struct sleepq_prof {
1278	LIST_ENTRY(sleepq_prof) sp_link;
1279	const char	*sp_wmesg;
1280	long		sp_count;
1281};
1282
1283LIST_HEAD(sqphead, sleepq_prof);
1284
1285struct sqphead sleepq_prof_free;
1286struct sqphead sleepq_hash[SC_TABLESIZE];
1287static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1288static struct mtx sleepq_prof_lock;
1289MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1290
1291static void
1292sleepq_profile(const char *wmesg)
1293{
1294	struct sleepq_prof *sp;
1295
1296	mtx_lock_spin(&sleepq_prof_lock);
1297	if (prof_enabled == 0)
1298		goto unlock;
1299	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1300		if (sp->sp_wmesg == wmesg)
1301			goto done;
1302	sp = LIST_FIRST(&sleepq_prof_free);
1303	if (sp == NULL)
1304		goto unlock;
1305	sp->sp_wmesg = wmesg;
1306	LIST_REMOVE(sp, sp_link);
1307	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1308done:
1309	sp->sp_count++;
1310unlock:
1311	mtx_unlock_spin(&sleepq_prof_lock);
1312	return;
1313}
1314
1315static void
1316sleepq_prof_reset(void)
1317{
1318	struct sleepq_prof *sp;
1319	int enabled;
1320	int i;
1321
1322	mtx_lock_spin(&sleepq_prof_lock);
1323	enabled = prof_enabled;
1324	prof_enabled = 0;
1325	for (i = 0; i < SC_TABLESIZE; i++)
1326		LIST_INIT(&sleepq_hash[i]);
1327	LIST_INIT(&sleepq_prof_free);
1328	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1329		sp = &sleepq_profent[i];
1330		sp->sp_wmesg = NULL;
1331		sp->sp_count = 0;
1332		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1333	}
1334	prof_enabled = enabled;
1335	mtx_unlock_spin(&sleepq_prof_lock);
1336}
1337
1338static int
1339enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1340{
1341	int error, v;
1342
1343	v = prof_enabled;
1344	error = sysctl_handle_int(oidp, &v, v, req);
1345	if (error)
1346		return (error);
1347	if (req->newptr == NULL)
1348		return (error);
1349	if (v == prof_enabled)
1350		return (0);
1351	if (v == 1)
1352		sleepq_prof_reset();
1353	mtx_lock_spin(&sleepq_prof_lock);
1354	prof_enabled = !!v;
1355	mtx_unlock_spin(&sleepq_prof_lock);
1356
1357	return (0);
1358}
1359
1360static int
1361reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1362{
1363	int error, v;
1364
1365	v = 0;
1366	error = sysctl_handle_int(oidp, &v, 0, req);
1367	if (error)
1368		return (error);
1369	if (req->newptr == NULL)
1370		return (error);
1371	if (v == 0)
1372		return (0);
1373	sleepq_prof_reset();
1374
1375	return (0);
1376}
1377
1378static int
1379dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1380{
1381	struct sleepq_prof *sp;
1382	struct sbuf *sb;
1383	int enabled;
1384	int error;
1385	int i;
1386
1387	error = sysctl_wire_old_buffer(req, 0);
1388	if (error != 0)
1389		return (error);
1390	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1391	sbuf_printf(sb, "\nwmesg\tcount\n");
1392	enabled = prof_enabled;
1393	mtx_lock_spin(&sleepq_prof_lock);
1394	prof_enabled = 0;
1395	mtx_unlock_spin(&sleepq_prof_lock);
1396	for (i = 0; i < SC_TABLESIZE; i++) {
1397		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1398			sbuf_printf(sb, "%s\t%ld\n",
1399			    sp->sp_wmesg, sp->sp_count);
1400		}
1401	}
1402	mtx_lock_spin(&sleepq_prof_lock);
1403	prof_enabled = enabled;
1404	mtx_unlock_spin(&sleepq_prof_lock);
1405
1406	error = sbuf_finish(sb);
1407	sbuf_delete(sb);
1408	return (error);
1409}
1410
1411SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1412    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1413SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1414    NULL, 0, reset_sleepq_prof_stats, "I",
1415    "Reset sleepqueue profiling statistics");
1416SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1417    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1418#endif
1419
1420#ifdef DDB
1421DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1422{
1423	struct sleepqueue_chain *sc;
1424	struct sleepqueue *sq;
1425#ifdef INVARIANTS
1426	struct lock_object *lock;
1427#endif
1428	struct thread *td;
1429	void *wchan;
1430	int i;
1431
1432	if (!have_addr)
1433		return;
1434
1435	/*
1436	 * First, see if there is an active sleep queue for the wait channel
1437	 * indicated by the address.
1438	 */
1439	wchan = (void *)addr;
1440	sc = SC_LOOKUP(wchan);
1441	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1442		if (sq->sq_wchan == wchan)
1443			goto found;
1444
1445	/*
1446	 * Second, see if there is an active sleep queue at the address
1447	 * indicated.
1448	 */
1449	for (i = 0; i < SC_TABLESIZE; i++)
1450		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1451			if (sq == (struct sleepqueue *)addr)
1452				goto found;
1453		}
1454
1455	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1456	return;
1457found:
1458	db_printf("Wait channel: %p\n", sq->sq_wchan);
1459	db_printf("Queue type: %d\n", sq->sq_type);
1460#ifdef INVARIANTS
1461	if (sq->sq_lock) {
1462		lock = sq->sq_lock;
1463		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1464		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1465	}
1466#endif
1467	db_printf("Blocked threads:\n");
1468	for (i = 0; i < NR_SLEEPQS; i++) {
1469		db_printf("\nQueue[%d]:\n", i);
1470		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1471			db_printf("\tempty\n");
1472		else
1473			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1474				      td_slpq) {
1475				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1476					  td->td_tid, td->td_proc->p_pid,
1477					  td->td_name);
1478			}
1479		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1480	}
1481}
1482
1483/* Alias 'show sleepqueue' to 'show sleepq'. */
1484DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1485#endif
1486