1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include "opt_ktrace.h"
43#include "opt_kstack_pages.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/eventhandler.h>
49#include <sys/fcntl.h>
50#include <sys/filedesc.h>
51#include <sys/jail.h>
52#include <sys/kernel.h>
53#include <sys/kthread.h>
54#include <sys/sysctl.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mutex.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/procdesc.h>
61#include <sys/pioctl.h>
62#include <sys/ptrace.h>
63#include <sys/racct.h>
64#include <sys/resourcevar.h>
65#include <sys/sched.h>
66#include <sys/syscall.h>
67#include <sys/vmmeter.h>
68#include <sys/vnode.h>
69#include <sys/acct.h>
70#include <sys/ktr.h>
71#include <sys/ktrace.h>
72#include <sys/unistd.h>
73#include <sys/sdt.h>
74#include <sys/sx.h>
75#include <sys/sysent.h>
76#include <sys/signalvar.h>
77
78#include <security/audit/audit.h>
79#include <security/mac/mac_framework.h>
80
81#include <vm/vm.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_extern.h>
85#include <vm/uma.h>
86
87#ifdef KDTRACE_HOOKS
88#include <sys/dtrace_bsd.h>
89dtrace_fork_func_t	dtrace_fasttrap_fork;
90#endif
91
92SDT_PROVIDER_DECLARE(proc);
93SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
94
95#ifndef _SYS_SYSPROTO_H_
96struct fork_args {
97	int     dummy;
98};
99#endif
100
101EVENTHANDLER_LIST_DECLARE(process_fork);
102
103/* ARGSUSED */
104int
105sys_fork(struct thread *td, struct fork_args *uap)
106{
107	struct fork_req fr;
108	int error, pid;
109
110	bzero(&fr, sizeof(fr));
111	fr.fr_flags = RFFDG | RFPROC;
112	fr.fr_pidp = &pid;
113	error = fork1(td, &fr);
114	if (error == 0) {
115		td->td_retval[0] = pid;
116		td->td_retval[1] = 0;
117	}
118	return (error);
119}
120
121/* ARGUSED */
122int
123sys_pdfork(struct thread *td, struct pdfork_args *uap)
124{
125	struct fork_req fr;
126	int error, fd, pid;
127
128	bzero(&fr, sizeof(fr));
129	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
130	fr.fr_pidp = &pid;
131	fr.fr_pd_fd = &fd;
132	fr.fr_pd_flags = uap->flags;
133	/*
134	 * It is necessary to return fd by reference because 0 is a valid file
135	 * descriptor number, and the child needs to be able to distinguish
136	 * itself from the parent using the return value.
137	 */
138	error = fork1(td, &fr);
139	if (error == 0) {
140		td->td_retval[0] = pid;
141		td->td_retval[1] = 0;
142		error = copyout(&fd, uap->fdp, sizeof(fd));
143	}
144	return (error);
145}
146
147/* ARGSUSED */
148int
149sys_vfork(struct thread *td, struct vfork_args *uap)
150{
151	struct fork_req fr;
152	int error, pid;
153
154	bzero(&fr, sizeof(fr));
155	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
156	fr.fr_pidp = &pid;
157	error = fork1(td, &fr);
158	if (error == 0) {
159		td->td_retval[0] = pid;
160		td->td_retval[1] = 0;
161	}
162	return (error);
163}
164
165int
166sys_rfork(struct thread *td, struct rfork_args *uap)
167{
168	struct fork_req fr;
169	int error, pid;
170
171	/* Don't allow kernel-only flags. */
172	if ((uap->flags & RFKERNELONLY) != 0)
173		return (EINVAL);
174	/* RFSPAWN must not appear with others */
175	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
176		return (EINVAL);
177
178	AUDIT_ARG_FFLAGS(uap->flags);
179	bzero(&fr, sizeof(fr));
180	if ((uap->flags & RFSPAWN) != 0) {
181		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
182		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
183	} else {
184		fr.fr_flags = uap->flags;
185	}
186	fr.fr_pidp = &pid;
187	error = fork1(td, &fr);
188	if (error == 0) {
189		td->td_retval[0] = pid;
190		td->td_retval[1] = 0;
191	}
192	return (error);
193}
194
195int	nprocs = 1;		/* process 0 */
196int	lastpid = 0;
197SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
198    "Last used PID");
199
200/*
201 * Random component to lastpid generation.  We mix in a random factor to make
202 * it a little harder to predict.  We sanity check the modulus value to avoid
203 * doing it in critical paths.  Don't let it be too small or we pointlessly
204 * waste randomness entropy, and don't let it be impossibly large.  Using a
205 * modulus that is too big causes a LOT more process table scans and slows
206 * down fork processing as the pidchecked caching is defeated.
207 */
208static int randompid = 0;
209
210static int
211sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
212{
213	int error, pid;
214
215	error = sysctl_wire_old_buffer(req, sizeof(int));
216	if (error != 0)
217		return(error);
218	sx_xlock(&allproc_lock);
219	pid = randompid;
220	error = sysctl_handle_int(oidp, &pid, 0, req);
221	if (error == 0 && req->newptr != NULL) {
222		if (pid == 0)
223			randompid = 0;
224		else if (pid == 1)
225			/* generate a random PID modulus between 100 and 1123 */
226			randompid = 100 + arc4random() % 1024;
227		else if (pid < 0 || pid > pid_max - 100)
228			/* out of range */
229			randompid = pid_max - 100;
230		else if (pid < 100)
231			/* Make it reasonable */
232			randompid = 100;
233		else
234			randompid = pid;
235	}
236	sx_xunlock(&allproc_lock);
237	return (error);
238}
239
240SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
241    0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
242
243static int
244fork_findpid(int flags)
245{
246	struct proc *p;
247	int trypid;
248	static int pidchecked = 0;
249
250	/*
251	 * Requires allproc_lock in order to iterate over the list
252	 * of processes, and proctree_lock to access p_pgrp.
253	 */
254	sx_assert(&allproc_lock, SX_LOCKED);
255	sx_assert(&proctree_lock, SX_LOCKED);
256
257	/*
258	 * Find an unused process ID.  We remember a range of unused IDs
259	 * ready to use (from lastpid+1 through pidchecked-1).
260	 *
261	 * If RFHIGHPID is set (used during system boot), do not allocate
262	 * low-numbered pids.
263	 */
264	trypid = lastpid + 1;
265	if (flags & RFHIGHPID) {
266		if (trypid < 10)
267			trypid = 10;
268	} else {
269		if (randompid)
270			trypid += arc4random() % randompid;
271	}
272retry:
273	/*
274	 * If the process ID prototype has wrapped around,
275	 * restart somewhat above 0, as the low-numbered procs
276	 * tend to include daemons that don't exit.
277	 */
278	if (trypid >= pid_max) {
279		trypid = trypid % pid_max;
280		if (trypid < 100)
281			trypid += 100;
282		pidchecked = 0;
283	}
284	if (trypid >= pidchecked) {
285		int doingzomb = 0;
286
287		pidchecked = PID_MAX;
288		/*
289		 * Scan the active and zombie procs to check whether this pid
290		 * is in use.  Remember the lowest pid that's greater
291		 * than trypid, so we can avoid checking for a while.
292		 *
293		 * Avoid reuse of the process group id, session id or
294		 * the reaper subtree id.  Note that for process group
295		 * and sessions, the amount of reserved pids is
296		 * limited by process limit.  For the subtree ids, the
297		 * id is kept reserved only while there is a
298		 * non-reaped process in the subtree, so amount of
299		 * reserved pids is limited by process limit times
300		 * two.
301		 */
302		p = LIST_FIRST(&allproc);
303again:
304		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
305			while (p->p_pid == trypid ||
306			    p->p_reapsubtree == trypid ||
307			    (p->p_pgrp != NULL &&
308			    (p->p_pgrp->pg_id == trypid ||
309			    (p->p_session != NULL &&
310			    p->p_session->s_sid == trypid)))) {
311				trypid++;
312				if (trypid >= pidchecked)
313					goto retry;
314			}
315			if (p->p_pid > trypid && pidchecked > p->p_pid)
316				pidchecked = p->p_pid;
317			if (p->p_pgrp != NULL) {
318				if (p->p_pgrp->pg_id > trypid &&
319				    pidchecked > p->p_pgrp->pg_id)
320					pidchecked = p->p_pgrp->pg_id;
321				if (p->p_session != NULL &&
322				    p->p_session->s_sid > trypid &&
323				    pidchecked > p->p_session->s_sid)
324					pidchecked = p->p_session->s_sid;
325			}
326		}
327		if (!doingzomb) {
328			doingzomb = 1;
329			p = LIST_FIRST(&zombproc);
330			goto again;
331		}
332	}
333
334	/*
335	 * RFHIGHPID does not mess with the lastpid counter during boot.
336	 */
337	if (flags & RFHIGHPID)
338		pidchecked = 0;
339	else
340		lastpid = trypid;
341
342	return (trypid);
343}
344
345static int
346fork_norfproc(struct thread *td, int flags)
347{
348	int error;
349	struct proc *p1;
350
351	KASSERT((flags & RFPROC) == 0,
352	    ("fork_norfproc called with RFPROC set"));
353	p1 = td->td_proc;
354
355	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
356	    (flags & (RFCFDG | RFFDG))) {
357		PROC_LOCK(p1);
358		if (thread_single(p1, SINGLE_BOUNDARY)) {
359			PROC_UNLOCK(p1);
360			return (ERESTART);
361		}
362		PROC_UNLOCK(p1);
363	}
364
365	error = vm_forkproc(td, NULL, NULL, NULL, flags);
366	if (error)
367		goto fail;
368
369	/*
370	 * Close all file descriptors.
371	 */
372	if (flags & RFCFDG) {
373		struct filedesc *fdtmp;
374		fdtmp = fdinit(td->td_proc->p_fd, false);
375		fdescfree(td);
376		p1->p_fd = fdtmp;
377	}
378
379	/*
380	 * Unshare file descriptors (from parent).
381	 */
382	if (flags & RFFDG)
383		fdunshare(td);
384
385fail:
386	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
387	    (flags & (RFCFDG | RFFDG))) {
388		PROC_LOCK(p1);
389		thread_single_end(p1, SINGLE_BOUNDARY);
390		PROC_UNLOCK(p1);
391	}
392	return (error);
393}
394
395static void
396do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
397    struct vmspace *vm2, struct file *fp_procdesc)
398{
399	struct proc *p1, *pptr;
400	int trypid;
401	struct filedesc *fd;
402	struct filedesc_to_leader *fdtol;
403	struct sigacts *newsigacts;
404
405	sx_assert(&proctree_lock, SX_LOCKED);
406	sx_assert(&allproc_lock, SX_XLOCKED);
407
408	p1 = td->td_proc;
409
410	trypid = fork_findpid(fr->fr_flags);
411
412	p2->p_state = PRS_NEW;		/* protect against others */
413	p2->p_pid = trypid;
414	AUDIT_ARG_PID(p2->p_pid);
415	LIST_INSERT_HEAD(&allproc, p2, p_list);
416	allproc_gen++;
417	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
418	PROC_LOCK(p2);
419	PROC_LOCK(p1);
420
421	sx_xunlock(&allproc_lock);
422	sx_xunlock(&proctree_lock);
423
424	bcopy(&p1->p_startcopy, &p2->p_startcopy,
425	    __rangeof(struct proc, p_startcopy, p_endcopy));
426	p2->p_fctl0 = p1->p_fctl0;
427	pargs_hold(p2->p_args);
428
429	PROC_UNLOCK(p1);
430
431	bzero(&p2->p_startzero,
432	    __rangeof(struct proc, p_startzero, p_endzero));
433
434	/* Tell the prison that we exist. */
435	prison_proc_hold(p2->p_ucred->cr_prison);
436
437	PROC_UNLOCK(p2);
438
439	tidhash_add(td2);
440
441	/*
442	 * Malloc things while we don't hold any locks.
443	 */
444	if (fr->fr_flags & RFSIGSHARE)
445		newsigacts = NULL;
446	else
447		newsigacts = sigacts_alloc();
448
449	/*
450	 * Copy filedesc.
451	 */
452	if (fr->fr_flags & RFCFDG) {
453		fd = fdinit(p1->p_fd, false);
454		fdtol = NULL;
455	} else if (fr->fr_flags & RFFDG) {
456		fd = fdcopy(p1->p_fd);
457		fdtol = NULL;
458	} else {
459		fd = fdshare(p1->p_fd);
460		if (p1->p_fdtol == NULL)
461			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
462			    p1->p_leader);
463		if ((fr->fr_flags & RFTHREAD) != 0) {
464			/*
465			 * Shared file descriptor table, and shared
466			 * process leaders.
467			 */
468			fdtol = p1->p_fdtol;
469			FILEDESC_XLOCK(p1->p_fd);
470			fdtol->fdl_refcount++;
471			FILEDESC_XUNLOCK(p1->p_fd);
472		} else {
473			/*
474			 * Shared file descriptor table, and different
475			 * process leaders.
476			 */
477			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
478			    p1->p_fd, p2);
479		}
480	}
481	/*
482	 * Make a proc table entry for the new process.
483	 * Start by zeroing the section of proc that is zero-initialized,
484	 * then copy the section that is copied directly from the parent.
485	 */
486
487	PROC_LOCK(p2);
488	PROC_LOCK(p1);
489
490	bzero(&td2->td_startzero,
491	    __rangeof(struct thread, td_startzero, td_endzero));
492	td2->td_pflags2 = 0;
493	td2->td_errno = 0;
494
495	bcopy(&td->td_startcopy, &td2->td_startcopy,
496	    __rangeof(struct thread, td_startcopy, td_endcopy));
497
498	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
499	td2->td_sigstk = td->td_sigstk;
500	td2->td_flags = TDF_INMEM;
501	td2->td_lend_user_pri = PRI_MAX;
502
503#ifdef VIMAGE
504	td2->td_vnet = NULL;
505	td2->td_vnet_lpush = NULL;
506#endif
507
508	/*
509	 * Allow the scheduler to initialize the child.
510	 */
511	thread_lock(td);
512	sched_fork(td, td2);
513	thread_unlock(td);
514
515	/*
516	 * Duplicate sub-structures as needed.
517	 * Increase reference counts on shared objects.
518	 */
519	p2->p_flag = P_INMEM;
520	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
521	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
522	    P2_TRAPCAP |
523	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC);
524	p2->p_swtick = ticks;
525	if (p1->p_flag & P_PROFIL)
526		startprofclock(p2);
527
528	if (fr->fr_flags & RFSIGSHARE) {
529		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
530	} else {
531		sigacts_copy(newsigacts, p1->p_sigacts);
532		p2->p_sigacts = newsigacts;
533		if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) {
534			mtx_lock(&p2->p_sigacts->ps_mtx);
535			sig_drop_caught(p2);
536			mtx_unlock(&p2->p_sigacts->ps_mtx);
537		}
538	}
539
540	if (fr->fr_flags & RFTSIGZMB)
541	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
542	else if (fr->fr_flags & RFLINUXTHPN)
543	        p2->p_sigparent = SIGUSR1;
544	else
545	        p2->p_sigparent = SIGCHLD;
546
547	p2->p_textvp = p1->p_textvp;
548	p2->p_fd = fd;
549	p2->p_fdtol = fdtol;
550
551	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
552		p2->p_flag |= P_PROTECTED;
553		p2->p_flag2 |= P2_INHERIT_PROTECTED;
554	}
555
556	/*
557	 * p_limit is copy-on-write.  Bump its refcount.
558	 */
559	lim_fork(p1, p2);
560
561	thread_cow_get_proc(td2, p2);
562
563	pstats_fork(p1->p_stats, p2->p_stats);
564
565	PROC_UNLOCK(p1);
566	PROC_UNLOCK(p2);
567
568	/* Bump references to the text vnode (for procfs). */
569	if (p2->p_textvp)
570		vrefact(p2->p_textvp);
571
572	/*
573	 * Set up linkage for kernel based threading.
574	 */
575	if ((fr->fr_flags & RFTHREAD) != 0) {
576		mtx_lock(&ppeers_lock);
577		p2->p_peers = p1->p_peers;
578		p1->p_peers = p2;
579		p2->p_leader = p1->p_leader;
580		mtx_unlock(&ppeers_lock);
581		PROC_LOCK(p1->p_leader);
582		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
583			PROC_UNLOCK(p1->p_leader);
584			/*
585			 * The task leader is exiting, so process p1 is
586			 * going to be killed shortly.  Since p1 obviously
587			 * isn't dead yet, we know that the leader is either
588			 * sending SIGKILL's to all the processes in this
589			 * task or is sleeping waiting for all the peers to
590			 * exit.  We let p1 complete the fork, but we need
591			 * to go ahead and kill the new process p2 since
592			 * the task leader may not get a chance to send
593			 * SIGKILL to it.  We leave it on the list so that
594			 * the task leader will wait for this new process
595			 * to commit suicide.
596			 */
597			PROC_LOCK(p2);
598			kern_psignal(p2, SIGKILL);
599			PROC_UNLOCK(p2);
600		} else
601			PROC_UNLOCK(p1->p_leader);
602	} else {
603		p2->p_peers = NULL;
604		p2->p_leader = p2;
605	}
606
607	sx_xlock(&proctree_lock);
608	PGRP_LOCK(p1->p_pgrp);
609	PROC_LOCK(p2);
610	PROC_LOCK(p1);
611
612	/*
613	 * Preserve some more flags in subprocess.  P_PROFIL has already
614	 * been preserved.
615	 */
616	p2->p_flag |= p1->p_flag & P_SUGID;
617	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
618	SESS_LOCK(p1->p_session);
619	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
620		p2->p_flag |= P_CONTROLT;
621	SESS_UNLOCK(p1->p_session);
622	if (fr->fr_flags & RFPPWAIT)
623		p2->p_flag |= P_PPWAIT;
624
625	p2->p_pgrp = p1->p_pgrp;
626	LIST_INSERT_AFTER(p1, p2, p_pglist);
627	PGRP_UNLOCK(p1->p_pgrp);
628	LIST_INIT(&p2->p_children);
629	LIST_INIT(&p2->p_orphans);
630
631	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
632
633	/*
634	 * If PF_FORK is set, the child process inherits the
635	 * procfs ioctl flags from its parent.
636	 */
637	if (p1->p_pfsflags & PF_FORK) {
638		p2->p_stops = p1->p_stops;
639		p2->p_pfsflags = p1->p_pfsflags;
640	}
641
642	/*
643	 * This begins the section where we must prevent the parent
644	 * from being swapped.
645	 */
646	_PHOLD(p1);
647	PROC_UNLOCK(p1);
648
649	/*
650	 * Attach the new process to its parent.
651	 *
652	 * If RFNOWAIT is set, the newly created process becomes a child
653	 * of init.  This effectively disassociates the child from the
654	 * parent.
655	 */
656	if ((fr->fr_flags & RFNOWAIT) != 0) {
657		pptr = p1->p_reaper;
658		p2->p_reaper = pptr;
659	} else {
660		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
661		    p1 : p1->p_reaper;
662		pptr = p1;
663	}
664	p2->p_pptr = pptr;
665	p2->p_oppid = pptr->p_pid;
666	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
667	LIST_INIT(&p2->p_reaplist);
668	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
669	if (p2->p_reaper == p1)
670		p2->p_reapsubtree = p2->p_pid;
671	sx_xunlock(&proctree_lock);
672
673	/* Inform accounting that we have forked. */
674	p2->p_acflag = AFORK;
675	PROC_UNLOCK(p2);
676
677#ifdef KTRACE
678	ktrprocfork(p1, p2);
679#endif
680
681	/*
682	 * Finish creating the child process.  It will return via a different
683	 * execution path later.  (ie: directly into user mode)
684	 */
685	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
686
687	if (fr->fr_flags == (RFFDG | RFPROC)) {
688		VM_CNT_INC(v_forks);
689		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
690		    p2->p_vmspace->vm_ssize);
691	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
692		VM_CNT_INC(v_vforks);
693		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
694		    p2->p_vmspace->vm_ssize);
695	} else if (p1 == &proc0) {
696		VM_CNT_INC(v_kthreads);
697		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
698		    p2->p_vmspace->vm_ssize);
699	} else {
700		VM_CNT_INC(v_rforks);
701		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
702		    p2->p_vmspace->vm_ssize);
703	}
704
705	/*
706	 * Associate the process descriptor with the process before anything
707	 * can happen that might cause that process to need the descriptor.
708	 * However, don't do this until after fork(2) can no longer fail.
709	 */
710	if (fr->fr_flags & RFPROCDESC)
711		procdesc_new(p2, fr->fr_pd_flags);
712
713	/*
714	 * Both processes are set up, now check if any loadable modules want
715	 * to adjust anything.
716	 */
717	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
718
719	/*
720	 * Set the child start time and mark the process as being complete.
721	 */
722	PROC_LOCK(p2);
723	PROC_LOCK(p1);
724	microuptime(&p2->p_stats->p_start);
725	PROC_SLOCK(p2);
726	p2->p_state = PRS_NORMAL;
727	PROC_SUNLOCK(p2);
728
729#ifdef KDTRACE_HOOKS
730	/*
731	 * Tell the DTrace fasttrap provider about the new process so that any
732	 * tracepoints inherited from the parent can be removed. We have to do
733	 * this only after p_state is PRS_NORMAL since the fasttrap module will
734	 * use pfind() later on.
735	 */
736	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
737		dtrace_fasttrap_fork(p1, p2);
738#endif
739	/*
740	 * Hold the process so that it cannot exit after we make it runnable,
741	 * but before we wait for the debugger.
742	 */
743	_PHOLD(p2);
744	if (fr->fr_flags & RFPPWAIT) {
745		td->td_pflags |= TDP_RFPPWAIT;
746		td->td_rfppwait_p = p2;
747		td->td_dbgflags |= TDB_VFORK;
748	}
749	PROC_UNLOCK(p2);
750
751	/*
752	 * Now can be swapped.
753	 */
754	_PRELE(p1);
755	PROC_UNLOCK(p1);
756
757	/*
758	 * Tell any interested parties about the new process.
759	 */
760	knote_fork(p1->p_klist, p2->p_pid);
761	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
762
763	if (fr->fr_flags & RFPROCDESC) {
764		procdesc_finit(p2->p_procdesc, fp_procdesc);
765		fdrop(fp_procdesc, td);
766	}
767
768	/*
769	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
770	 * synced with forks in progress so it is OK if we miss it
771	 * if being set atm.
772	 */
773	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
774		sx_xlock(&proctree_lock);
775		PROC_LOCK(p2);
776
777		/*
778		 * p1->p_ptevents & p1->p_pptr are protected by both
779		 * process and proctree locks for modifications,
780		 * so owning proctree_lock allows the race-free read.
781		 */
782		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
783			/*
784			 * Arrange for debugger to receive the fork event.
785			 *
786			 * We can report PL_FLAG_FORKED regardless of
787			 * P_FOLLOWFORK settings, but it does not make a sense
788			 * for runaway child.
789			 */
790			td->td_dbgflags |= TDB_FORK;
791			td->td_dbg_forked = p2->p_pid;
792			td2->td_dbgflags |= TDB_STOPATFORK;
793			proc_set_traced(p2, true);
794			CTR2(KTR_PTRACE,
795			    "do_fork: attaching to new child pid %d: oppid %d",
796			    p2->p_pid, p2->p_oppid);
797			proc_reparent(p2, p1->p_pptr, false);
798		}
799		PROC_UNLOCK(p2);
800		sx_xunlock(&proctree_lock);
801	}
802
803	if ((fr->fr_flags & RFSTOPPED) == 0) {
804		/*
805		 * If RFSTOPPED not requested, make child runnable and
806		 * add to run queue.
807		 */
808		thread_lock(td2);
809		TD_SET_CAN_RUN(td2);
810		sched_add(td2, SRQ_BORING);
811		thread_unlock(td2);
812		if (fr->fr_pidp != NULL)
813			*fr->fr_pidp = p2->p_pid;
814	} else {
815		*fr->fr_procp = p2;
816	}
817
818	PROC_LOCK(p2);
819	_PRELE(p2);
820	racct_proc_fork_done(p2);
821	PROC_UNLOCK(p2);
822}
823
824int
825fork1(struct thread *td, struct fork_req *fr)
826{
827	struct proc *p1, *newproc;
828	struct thread *td2;
829	struct vmspace *vm2;
830	struct file *fp_procdesc;
831	vm_ooffset_t mem_charged;
832	int error, nprocs_new, ok;
833	static int curfail;
834	static struct timeval lastfail;
835	int flags, pages;
836
837	flags = fr->fr_flags;
838	pages = fr->fr_pages;
839
840	if ((flags & RFSTOPPED) != 0)
841		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
842	else
843		MPASS(fr->fr_procp == NULL);
844
845	/* Check for the undefined or unimplemented flags. */
846	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
847		return (EINVAL);
848
849	/* Signal value requires RFTSIGZMB. */
850	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
851		return (EINVAL);
852
853	/* Can't copy and clear. */
854	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
855		return (EINVAL);
856
857	/* Check the validity of the signal number. */
858	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
859		return (EINVAL);
860
861	if ((flags & RFPROCDESC) != 0) {
862		/* Can't not create a process yet get a process descriptor. */
863		if ((flags & RFPROC) == 0)
864			return (EINVAL);
865
866		/* Must provide a place to put a procdesc if creating one. */
867		if (fr->fr_pd_fd == NULL)
868			return (EINVAL);
869
870		/* Check if we are using supported flags. */
871		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
872			return (EINVAL);
873	}
874
875	p1 = td->td_proc;
876
877	/*
878	 * Here we don't create a new process, but we divorce
879	 * certain parts of a process from itself.
880	 */
881	if ((flags & RFPROC) == 0) {
882		if (fr->fr_procp != NULL)
883			*fr->fr_procp = NULL;
884		else if (fr->fr_pidp != NULL)
885			*fr->fr_pidp = 0;
886		return (fork_norfproc(td, flags));
887	}
888
889	fp_procdesc = NULL;
890	newproc = NULL;
891	vm2 = NULL;
892
893	/*
894	 * Increment the nprocs resource before allocations occur.
895	 * Although process entries are dynamically created, we still
896	 * keep a global limit on the maximum number we will
897	 * create. There are hard-limits as to the number of processes
898	 * that can run, established by the KVA and memory usage for
899	 * the process data.
900	 *
901	 * Don't allow a nonprivileged user to use the last ten
902	 * processes; don't let root exceed the limit.
903	 */
904	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
905	if (nprocs_new >= maxproc - 10) {
906		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC, 0) != 0 ||
907		    nprocs_new >= maxproc) {
908			error = EAGAIN;
909			sx_xlock(&allproc_lock);
910			if (ppsratecheck(&lastfail, &curfail, 1)) {
911				printf("maxproc limit exceeded by uid %u "
912				    "(pid %d); see tuning(7) and "
913				    "login.conf(5)\n",
914				    td->td_ucred->cr_ruid, p1->p_pid);
915			}
916			sx_xunlock(&allproc_lock);
917			goto fail2;
918		}
919	}
920
921	/*
922	 * If required, create a process descriptor in the parent first; we
923	 * will abandon it if something goes wrong. We don't finit() until
924	 * later.
925	 */
926	if (flags & RFPROCDESC) {
927		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
928		    fr->fr_pd_flags, fr->fr_pd_fcaps);
929		if (error != 0)
930			goto fail2;
931	}
932
933	mem_charged = 0;
934	if (pages == 0)
935		pages = kstack_pages;
936	/* Allocate new proc. */
937	newproc = uma_zalloc(proc_zone, M_WAITOK);
938	td2 = FIRST_THREAD_IN_PROC(newproc);
939	if (td2 == NULL) {
940		td2 = thread_alloc(pages);
941		if (td2 == NULL) {
942			error = ENOMEM;
943			goto fail2;
944		}
945		proc_linkup(newproc, td2);
946	} else {
947		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
948			if (td2->td_kstack != 0)
949				vm_thread_dispose(td2);
950			if (!thread_alloc_stack(td2, pages)) {
951				error = ENOMEM;
952				goto fail2;
953			}
954		}
955	}
956
957	if ((flags & RFMEM) == 0) {
958		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
959		if (vm2 == NULL) {
960			error = ENOMEM;
961			goto fail2;
962		}
963		if (!swap_reserve(mem_charged)) {
964			/*
965			 * The swap reservation failed. The accounting
966			 * from the entries of the copied vm2 will be
967			 * subtracted in vmspace_free(), so force the
968			 * reservation there.
969			 */
970			swap_reserve_force(mem_charged);
971			error = ENOMEM;
972			goto fail2;
973		}
974	} else
975		vm2 = NULL;
976
977	/*
978	 * XXX: This is ugly; when we copy resource usage, we need to bump
979	 *      per-cred resource counters.
980	 */
981	proc_set_cred_init(newproc, crhold(td->td_ucred));
982
983	/*
984	 * Initialize resource accounting for the child process.
985	 */
986	error = racct_proc_fork(p1, newproc);
987	if (error != 0) {
988		error = EAGAIN;
989		goto fail1;
990	}
991
992#ifdef MAC
993	mac_proc_init(newproc);
994#endif
995	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
996	STAILQ_INIT(&newproc->p_ktr);
997
998	/* We have to lock the process tree while we look for a pid. */
999	sx_xlock(&proctree_lock);
1000	sx_xlock(&allproc_lock);
1001
1002	/*
1003	 * Increment the count of procs running with this uid. Don't allow
1004	 * a nonprivileged user to exceed their current limit.
1005	 *
1006	 * XXXRW: Can we avoid privilege here if it's not needed?
1007	 */
1008	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
1009	if (error == 0)
1010		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
1011	else {
1012		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
1013		    lim_cur(td, RLIMIT_NPROC));
1014	}
1015	if (ok) {
1016		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1017		return (0);
1018	}
1019
1020	error = EAGAIN;
1021	sx_xunlock(&allproc_lock);
1022	sx_xunlock(&proctree_lock);
1023#ifdef MAC
1024	mac_proc_destroy(newproc);
1025#endif
1026	racct_proc_exit(newproc);
1027fail1:
1028	crfree(newproc->p_ucred);
1029	newproc->p_ucred = NULL;
1030fail2:
1031	if (vm2 != NULL)
1032		vmspace_free(vm2);
1033	uma_zfree(proc_zone, newproc);
1034	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1035		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1036		fdrop(fp_procdesc, td);
1037	}
1038	atomic_add_int(&nprocs, -1);
1039	pause("fork", hz / 2);
1040	return (error);
1041}
1042
1043/*
1044 * Handle the return of a child process from fork1().  This function
1045 * is called from the MD fork_trampoline() entry point.
1046 */
1047void
1048fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1049    struct trapframe *frame)
1050{
1051	struct proc *p;
1052	struct thread *td;
1053	struct thread *dtd;
1054
1055	td = curthread;
1056	p = td->td_proc;
1057	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1058
1059	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1060	    td, td_get_sched(td), p->p_pid, td->td_name);
1061
1062	sched_fork_exit(td);
1063	/*
1064	* Processes normally resume in mi_switch() after being
1065	* cpu_switch()'ed to, but when children start up they arrive here
1066	* instead, so we must do much the same things as mi_switch() would.
1067	*/
1068	if ((dtd = PCPU_GET(deadthread))) {
1069		PCPU_SET(deadthread, NULL);
1070		thread_stash(dtd);
1071	}
1072	thread_unlock(td);
1073
1074	/*
1075	 * cpu_fork_kthread_handler intercepts this function call to
1076	 * have this call a non-return function to stay in kernel mode.
1077	 * initproc has its own fork handler, but it does return.
1078	 */
1079	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1080	callout(arg, frame);
1081
1082	/*
1083	 * Check if a kernel thread misbehaved and returned from its main
1084	 * function.
1085	 */
1086	if (p->p_flag & P_KPROC) {
1087		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1088		    td->td_name, p->p_pid);
1089		kthread_exit();
1090	}
1091	mtx_assert(&Giant, MA_NOTOWNED);
1092
1093	if (p->p_sysent->sv_schedtail != NULL)
1094		(p->p_sysent->sv_schedtail)(td);
1095	td->td_pflags &= ~TDP_FORKING;
1096}
1097
1098/*
1099 * Simplified back end of syscall(), used when returning from fork()
1100 * directly into user mode.  This function is passed in to fork_exit()
1101 * as the first parameter and is called when returning to a new
1102 * userland process.
1103 */
1104void
1105fork_return(struct thread *td, struct trapframe *frame)
1106{
1107	struct proc *p;
1108
1109	p = td->td_proc;
1110	if (td->td_dbgflags & TDB_STOPATFORK) {
1111		PROC_LOCK(p);
1112		if ((p->p_flag & P_TRACED) != 0) {
1113			/*
1114			 * Inform the debugger if one is still present.
1115			 */
1116			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1117			ptracestop(td, SIGSTOP, NULL);
1118			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1119		} else {
1120			/*
1121			 * ... otherwise clear the request.
1122			 */
1123			td->td_dbgflags &= ~TDB_STOPATFORK;
1124		}
1125		PROC_UNLOCK(p);
1126	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1127 		/*
1128		 * This is the start of a new thread in a traced
1129		 * process.  Report a system call exit event.
1130		 */
1131		PROC_LOCK(p);
1132		td->td_dbgflags |= TDB_SCX;
1133		_STOPEVENT(p, S_SCX, td->td_sa.code);
1134		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1135		    (td->td_dbgflags & TDB_BORN) != 0)
1136			ptracestop(td, SIGTRAP, NULL);
1137		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1138		PROC_UNLOCK(p);
1139	}
1140
1141	/*
1142	 * If the prison was killed mid-fork, die along with it.
1143	 */
1144	if (td->td_ucred->cr_prison->pr_flags & PR_REMOVE)
1145		exit1(td, 0, SIGKILL);
1146
1147	userret(td, frame);
1148
1149#ifdef KTRACE
1150	if (KTRPOINT(td, KTR_SYSRET))
1151		ktrsysret(SYS_fork, 0, 0);
1152#endif
1153}
1154