1/*-
2 * Copyright (c) 2005 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Copyright (c) 2009 The FreeBSD Foundation
6 * All rights reserved.
7 *
8 * Portions of this software were developed by Ed Schouten
9 * under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_acpi.h"
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include <sys/param.h>
39#include <sys/kernel.h>
40#include <sys/systm.h>
41#include <sys/bus.h>
42#include <sys/module.h>
43#include <sys/rman.h>
44
45#include <dev/vt/vt.h>
46#include <dev/vt/colors/vt_termcolors.h>
47#include <dev/vt/hw/vga/vt_vga_reg.h>
48#include <dev/pci/pcivar.h>
49
50#include <machine/bus.h>
51#if defined(__amd64__) || defined(__i386__)
52#include <contrib/dev/acpica/include/acpi.h>
53#include <machine/md_var.h>
54#endif
55
56struct vga_softc {
57	bus_space_tag_t		 vga_fb_tag;
58	bus_space_handle_t	 vga_fb_handle;
59	bus_space_tag_t		 vga_reg_tag;
60	bus_space_handle_t	 vga_reg_handle;
61	int			 vga_wmode;
62	term_color_t		 vga_curfg, vga_curbg;
63	boolean_t		 vga_enabled;
64};
65
66/* Convenience macros. */
67#define	MEM_READ1(sc, ofs) \
68	bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
69#define	MEM_WRITE1(sc, ofs, val) \
70	bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
71#define	MEM_WRITE2(sc, ofs, val) \
72	bus_space_write_2(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
73#define	REG_READ1(sc, reg) \
74	bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
75#define	REG_WRITE1(sc, reg, val) \
76	bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
77
78#define	VT_VGA_WIDTH	640
79#define	VT_VGA_HEIGHT	480
80#define	VT_VGA_MEMSIZE	(VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
81
82/*
83 * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
84 * memory).
85 */
86#define	VT_VGA_PIXELS_BLOCK	8
87
88/*
89 * We use an off-screen addresses to:
90 *     o  store the background color;
91 *     o  store pixels pattern.
92 * Those addresses are then loaded in the latches once.
93 */
94#define	VT_VGA_BGCOLOR_OFFSET	VT_VGA_MEMSIZE
95
96static vd_probe_t	vga_probe;
97static vd_init_t	vga_init;
98static vd_blank_t	vga_blank;
99static vd_bitblt_text_t	vga_bitblt_text;
100static vd_invalidate_text_t	vga_invalidate_text;
101static vd_bitblt_bmp_t	vga_bitblt_bitmap;
102static vd_drawrect_t	vga_drawrect;
103static vd_setpixel_t	vga_setpixel;
104static vd_postswitch_t	vga_postswitch;
105
106static const struct vt_driver vt_vga_driver = {
107	.vd_name	= "vga",
108	.vd_probe	= vga_probe,
109	.vd_init	= vga_init,
110	.vd_blank	= vga_blank,
111	.vd_bitblt_text	= vga_bitblt_text,
112	.vd_invalidate_text = vga_invalidate_text,
113	.vd_bitblt_bmp	= vga_bitblt_bitmap,
114	.vd_drawrect	= vga_drawrect,
115	.vd_setpixel	= vga_setpixel,
116	.vd_postswitch	= vga_postswitch,
117	.vd_priority	= VD_PRIORITY_GENERIC,
118};
119
120/*
121 * Driver supports both text mode and graphics mode.  Make sure the
122 * buffer is always big enough to support both.
123 */
124static struct vga_softc vga_conssoftc;
125VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
126
127static inline void
128vga_setwmode(struct vt_device *vd, int wmode)
129{
130	struct vga_softc *sc = vd->vd_softc;
131
132	if (sc->vga_wmode == wmode)
133		return;
134
135	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
136	REG_WRITE1(sc, VGA_GC_DATA, wmode);
137	sc->vga_wmode = wmode;
138
139	switch (wmode) {
140	case 3:
141		/* Re-enable all plans. */
142		REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
143		REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
144		    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
145		break;
146	}
147}
148
149static inline void
150vga_setfg(struct vt_device *vd, term_color_t color)
151{
152	struct vga_softc *sc = vd->vd_softc;
153
154	vga_setwmode(vd, 3);
155
156	if (sc->vga_curfg == color)
157		return;
158
159	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
160	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
161	sc->vga_curfg = color;
162}
163
164static inline void
165vga_setbg(struct vt_device *vd, term_color_t color)
166{
167	struct vga_softc *sc = vd->vd_softc;
168
169	vga_setwmode(vd, 3);
170
171	if (sc->vga_curbg == color)
172		return;
173
174	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
175	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
176
177	/*
178	 * Write 8 pixels using the background color to an off-screen
179	 * byte in the video memory.
180	 */
181	MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
182
183	/*
184	 * Read those 8 pixels back to load the background color in the
185	 * latches register.
186	 */
187	MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
188
189	sc->vga_curbg = color;
190
191	/*
192         * The Set/Reset register doesn't contain the fg color anymore,
193         * store an invalid color.
194	 */
195	sc->vga_curfg = 0xff;
196}
197
198/*
199 * Binary searchable table for Unicode to CP437 conversion.
200 */
201
202struct unicp437 {
203	uint16_t	unicode_base;
204	uint8_t		cp437_base;
205	uint8_t		length;
206};
207
208static const struct unicp437 cp437table[] = {
209	{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
210	{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
211	{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
212	{ 0x00a6, 0x7c, 0x00 },
213	{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
214	{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
215	{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
216	{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
217	{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
218	{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
219	{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
220	{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
221	{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
222	{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
223	{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
224	{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
225	{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
226	{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
227	{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
228	{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
229	{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
230	{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
231	{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
232	{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
233	{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
234	{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
235	{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
236	{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
237	{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
238	{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
239	{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
240	{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
241	{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
242	{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
243	{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
244	{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
245	{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
246	{ 0x2013, 0x2d, 0x00 },
247	{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
248	{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
249	{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
250	{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
251	{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
252	{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
253	{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
254	{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
255	{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
256	{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
257	{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
258	{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
259	{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
260	{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
261	{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
262	{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
263	{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
264	{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
265	{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
266	{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
267	{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
268	{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
269	{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
270	{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
271	{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
272	{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
273	{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
274	{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
275	{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
276	{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
277	{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
278	{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
279	{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
280	{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
281	{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
282	{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
283	{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
284	{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
285	{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
286	{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
287	{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
288	{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
289	{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
290	{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
291	{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
292	{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
293	{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
294	{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
295	{ 0x266c, 0x0e, 0x00 }, { 0x2713, 0xfb, 0x00 },
296	{ 0x27e8, 0x3c, 0x00 }, { 0x27e9, 0x3e, 0x00 },
297};
298
299static uint8_t
300vga_get_cp437(term_char_t c)
301{
302	int min, mid, max;
303
304	min = 0;
305	max = nitems(cp437table) - 1;
306
307	if (c < cp437table[0].unicode_base ||
308	    c > cp437table[max].unicode_base + cp437table[max].length)
309		return '?';
310
311	while (max >= min) {
312		mid = (min + max) / 2;
313		if (c < cp437table[mid].unicode_base)
314			max = mid - 1;
315		else if (c > cp437table[mid].unicode_base +
316		    cp437table[mid].length)
317			min = mid + 1;
318		else
319			return (c - cp437table[mid].unicode_base +
320			    cp437table[mid].cp437_base);
321	}
322
323	return '?';
324}
325
326static void
327vga_blank(struct vt_device *vd, term_color_t color)
328{
329	struct vga_softc *sc = vd->vd_softc;
330	u_int ofs;
331
332	vga_setfg(vd, color);
333	for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
334		MEM_WRITE1(sc, ofs, 0xff);
335}
336
337static inline void
338vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
339    uint8_t v)
340{
341	struct vga_softc *sc = vd->vd_softc;
342
343	/* Skip empty writes, in order to avoid palette changes. */
344	if (v != 0x00) {
345		vga_setfg(vd, color);
346		/*
347		 * When this MEM_READ1() gets disabled, all sorts of
348		 * artifacts occur.  This is because this read loads the
349		 * set of 8 pixels that are about to be changed.  There
350		 * is one scenario where we can avoid the read, namely
351		 * if all pixels are about to be overwritten anyway.
352		 */
353		if (v != 0xff) {
354			MEM_READ1(sc, dst);
355
356			/* The bg color was trashed by the reads. */
357			sc->vga_curbg = 0xff;
358		}
359		MEM_WRITE1(sc, dst, v);
360	}
361}
362
363static void
364vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
365{
366
367	if (vd->vd_flags & VDF_TEXTMODE)
368		return;
369
370	vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
371	    0x80 >> (x % 8));
372}
373
374static void
375vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
376    term_color_t color)
377{
378	int x, y;
379
380	if (vd->vd_flags & VDF_TEXTMODE)
381		return;
382
383	for (y = y1; y <= y2; y++) {
384		if (fill || (y == y1) || (y == y2)) {
385			for (x = x1; x <= x2; x++)
386				vga_setpixel(vd, x, y, color);
387		} else {
388			vga_setpixel(vd, x1, y, color);
389			vga_setpixel(vd, x2, y, color);
390		}
391	}
392}
393
394static void
395vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
396    unsigned int src_x, unsigned int x_count, unsigned int dst_x,
397    uint8_t *pattern, uint8_t *mask)
398{
399	unsigned int n;
400
401	n = src_x / 8;
402
403	/*
404	 * This mask has bits set, where a pixel (ether 0 or 1)
405	 * comes from the source bitmap.
406	 */
407	if (mask != NULL) {
408		*mask = (0xff
409		    >> (8 - x_count))
410		    << (8 - x_count - dst_x);
411	}
412
413	if (n == (src_x + x_count - 1) / 8) {
414		/* All the pixels we want are in the same byte. */
415		*pattern = src[n];
416		if (dst_x >= src_x)
417			*pattern >>= (dst_x - src_x % 8);
418		else
419			*pattern <<= (src_x % 8 - dst_x);
420	} else {
421		/* The pixels we want are split into two bytes. */
422		if (dst_x >= src_x % 8) {
423			*pattern =
424			    src[n] << (8 - dst_x - src_x % 8) |
425			    src[n + 1] >> (dst_x - src_x % 8);
426		} else {
427			*pattern =
428			    src[n] << (src_x % 8 - dst_x) |
429			    src[n + 1] >> (8 - src_x % 8 - dst_x);
430		}
431	}
432}
433
434static void
435vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
436    const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
437    unsigned int src_x, unsigned int dst_x, unsigned int x_count,
438    unsigned int src_y, unsigned int dst_y, unsigned int y_count,
439    term_color_t fg, term_color_t bg, int overwrite)
440{
441	unsigned int i, bytes;
442	uint8_t pattern, relevant_bits, mask;
443
444	bytes = (src_width + 7) / 8;
445
446	for (i = 0; i < y_count; ++i) {
447		vga_compute_shifted_pattern(src + (src_y + i) * bytes,
448		    bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
449
450		if (src_mask == NULL) {
451			/*
452			 * No src mask. Consider that all wanted bits
453			 * from the source are "authoritative".
454			 */
455			mask = relevant_bits;
456		} else {
457			/*
458			 * There's an src mask. We shift it the same way
459			 * we shifted the source pattern.
460			 */
461			vga_compute_shifted_pattern(
462			    src_mask + (src_y + i) * bytes,
463			    bytes, src_x, x_count, dst_x,
464			    &mask, NULL);
465
466			/* Now, only keep the wanted bits among them. */
467			mask &= relevant_bits;
468		}
469
470		/*
471		 * Clear bits from the pattern which must be
472		 * transparent, according to the source mask.
473		 */
474		pattern &= mask;
475
476		/* Set the bits in the 2-colors array. */
477		if (overwrite)
478			pattern_2colors[dst_y + i] &= ~mask;
479		pattern_2colors[dst_y + i] |= pattern;
480
481		if (pattern_ncolors == NULL)
482			continue;
483
484		/*
485		 * Set the same bits in the n-colors array. This one
486		 * supports transparency, when a given bit is cleared in
487		 * all colors.
488		 */
489		if (overwrite) {
490			/*
491			 * Ensure that the pixels used by this bitmap are
492			 * cleared in other colors.
493			 */
494			for (int j = 0; j < 16; ++j)
495				pattern_ncolors[(dst_y + i) * 16 + j] &=
496				    ~mask;
497		}
498		pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
499		pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
500	}
501}
502
503static void
504vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
505    term_color_t fg, term_color_t bg,
506    unsigned int x, unsigned int y, unsigned int height)
507{
508	unsigned int i, offset;
509	struct vga_softc *sc;
510
511	/*
512	 * The great advantage of Write Mode 3 is that we just need
513	 * to load the foreground in the Set/Reset register, load the
514	 * background color in the latches register (this is done
515	 * through a write in offscreen memory followed by a read of
516	 * that data), then write the pattern to video memory. This
517	 * pattern indicates if the pixel should use the foreground
518	 * color (bit set) or the background color (bit cleared).
519	 */
520
521	vga_setbg(vd, bg);
522	vga_setfg(vd, fg);
523
524	sc = vd->vd_softc;
525	offset = (VT_VGA_WIDTH * y + x) / 8;
526
527	for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
528		MEM_WRITE1(sc, offset, masks[i]);
529	}
530}
531
532static void
533vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
534    unsigned int x, unsigned int y, unsigned int height)
535{
536	unsigned int i, j, plan, color, offset;
537	struct vga_softc *sc;
538	uint8_t mask, plans[height * 4];
539
540	sc = vd->vd_softc;
541
542	memset(plans, 0, sizeof(plans));
543
544	/*
545         * To write a group of pixels using 3 or more colors, we select
546         * Write Mode 0 and write one byte to each plan separately.
547	 */
548
549	/*
550	 * We first compute each byte: each plan contains one bit of the
551	 * color code for each of the 8 pixels.
552	 *
553	 * For example, if the 8 pixels are like this:
554	 *     GBBBBBBY
555	 * where:
556	 *     G (gray)   = 0b0111
557	 *     B (black)  = 0b0000
558	 *     Y (yellow) = 0b0011
559	 *
560	 * The corresponding for bytes are:
561	 *             GBBBBBBY
562	 *     Plan 0: 10000001 = 0x81
563	 *     Plan 1: 10000001 = 0x81
564	 *     Plan 2: 10000000 = 0x80
565	 *     Plan 3: 00000000 = 0x00
566	 *             |  |   |
567	 *             |  |   +-> 0b0011 (Y)
568	 *             |  +-----> 0b0000 (B)
569	 *             +--------> 0b0111 (G)
570	 */
571
572	for (i = 0; i < height; ++i) {
573		for (color = 0; color < 16; ++color) {
574			mask = masks[i * 16 + color];
575			if (mask == 0x00)
576				continue;
577
578			for (j = 0; j < 8; ++j) {
579				if (!((mask >> (7 - j)) & 0x1))
580					continue;
581
582				/* The pixel "j" uses color "color". */
583				for (plan = 0; plan < 4; ++plan)
584					plans[i * 4 + plan] |=
585					    ((color >> plan) & 0x1) << (7 - j);
586			}
587		}
588	}
589
590	/*
591	 * The bytes are ready: we now switch to Write Mode 0 and write
592	 * all bytes, one plan at a time.
593	 */
594	vga_setwmode(vd, 0);
595
596	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
597	for (plan = 0; plan < 4; ++plan) {
598		/* Select plan. */
599		REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan);
600
601		/* Write all bytes for this plan, from Y to Y+height. */
602		for (i = 0; i < height; ++i) {
603			offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
604			MEM_WRITE1(sc, offset, plans[i * 4 + plan]);
605		}
606	}
607}
608
609static void
610vga_bitblt_one_text_pixels_block(struct vt_device *vd,
611    const struct vt_window *vw, unsigned int x, unsigned int y)
612{
613	const struct vt_buf *vb;
614	const struct vt_font *vf;
615	unsigned int i, col, row, src_x, x_count;
616	unsigned int used_colors_list[16], used_colors;
617	uint8_t pattern_2colors[vw->vw_font->vf_height];
618	uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
619	term_char_t c;
620	term_color_t fg, bg;
621	const uint8_t *src;
622
623	vb = &vw->vw_buf;
624	vf = vw->vw_font;
625
626	/*
627	 * The current pixels block.
628	 *
629	 * We fill it with portions of characters, because both "grids"
630	 * may not match.
631	 *
632	 * i is the index in this pixels block.
633	 */
634
635	i = x;
636	used_colors = 0;
637	memset(used_colors_list, 0, sizeof(used_colors_list));
638	memset(pattern_2colors, 0, sizeof(pattern_2colors));
639	memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
640
641	if (i < vw->vw_draw_area.tr_begin.tp_col) {
642		/*
643		 * i is in the margin used to center the text area on
644		 * the screen.
645		 */
646
647		i = vw->vw_draw_area.tr_begin.tp_col;
648	}
649
650	while (i < x + VT_VGA_PIXELS_BLOCK &&
651	    i < vw->vw_draw_area.tr_end.tp_col) {
652		/*
653		 * Find which character is drawn on this pixel in the
654		 * pixels block.
655		 *
656		 * While here, record what colors it uses.
657		 */
658
659		col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
660		row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
661
662		c = VTBUF_GET_FIELD(vb, row, col);
663		src = vtfont_lookup(vf, c);
664
665		vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
666		if ((used_colors_list[fg] & 0x1) != 0x1)
667			used_colors++;
668		if ((used_colors_list[bg] & 0x2) != 0x2)
669			used_colors++;
670		used_colors_list[fg] |= 0x1;
671		used_colors_list[bg] |= 0x2;
672
673		/*
674		 * Compute the portion of the character we want to draw,
675		 * because the pixels block may start in the middle of a
676		 * character.
677		 *
678		 * The first pixel to draw in the character is
679		 *     the current position -
680		 *     the start position of the character
681		 *
682		 * The last pixel to draw is either
683		 *     - the last pixel of the character, or
684		 *     - the pixel of the character matching the end of
685		 *       the pixels block
686		 * whichever comes first. This position is then
687		 * changed to be relative to the start position of the
688		 * character.
689		 */
690
691		src_x = i -
692		    (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
693		x_count = min(min(
694		    (col + 1) * vf->vf_width +
695		    vw->vw_draw_area.tr_begin.tp_col,
696		    x + VT_VGA_PIXELS_BLOCK),
697		    vw->vw_draw_area.tr_end.tp_col);
698		x_count -= col * vf->vf_width +
699		    vw->vw_draw_area.tr_begin.tp_col;
700		x_count -= src_x;
701
702		/* Copy a portion of the character. */
703		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
704		    src, NULL, vf->vf_width,
705		    src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
706		    0, 0, vf->vf_height, fg, bg, 0);
707
708		/* We move to the next portion. */
709		i += x_count;
710	}
711
712#ifndef SC_NO_CUTPASTE
713	/*
714	 * Copy the mouse pointer bitmap if it's over the current pixels
715	 * block.
716	 *
717	 * We use the saved cursor position (saved in vt_flush()), because
718	 * the current position could be different than the one used
719	 * to mark the area dirty.
720	 */
721	term_rect_t drawn_area;
722
723	drawn_area.tr_begin.tp_col = x;
724	drawn_area.tr_begin.tp_row = y;
725	drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
726	drawn_area.tr_end.tp_row = y + vf->vf_height;
727	if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
728		struct vt_mouse_cursor *cursor;
729		unsigned int mx, my;
730		unsigned int dst_x, src_y, dst_y, y_count;
731
732		cursor = vd->vd_mcursor;
733		mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
734		my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
735
736		/* Compute the portion of the cursor we want to copy. */
737		src_x = x > mx ? x - mx : 0;
738		dst_x = mx > x ? mx - x : 0;
739		x_count = min(min(min(
740		    cursor->width - src_x,
741		    x + VT_VGA_PIXELS_BLOCK - mx),
742		    vw->vw_draw_area.tr_end.tp_col - mx),
743		    VT_VGA_PIXELS_BLOCK);
744
745		/*
746		 * The cursor isn't aligned on the Y-axis with
747		 * characters, so we need to compute the vertical
748		 * start/count.
749		 */
750		src_y = y > my ? y - my : 0;
751		dst_y = my > y ? my - y : 0;
752		y_count = min(
753		    min(cursor->height - src_y, y + vf->vf_height - my),
754		    vf->vf_height);
755
756		/* Copy the cursor portion. */
757		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
758		    cursor->map, cursor->mask, cursor->width,
759		    src_x, dst_x, x_count, src_y, dst_y, y_count,
760		    vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
761
762		if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
763			used_colors++;
764		if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
765			used_colors++;
766	}
767#endif
768
769	/*
770	 * The pixels block is completed, we can now draw it on the
771	 * screen.
772	 */
773	if (used_colors == 2)
774		vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
775		    x, y, vf->vf_height);
776	else
777		vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
778		    x, y, vf->vf_height);
779}
780
781static void
782vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
783    const term_rect_t *area)
784{
785	const struct vt_font *vf;
786	unsigned int col, row;
787	unsigned int x1, y1, x2, y2, x, y;
788
789	vf = vw->vw_font;
790
791	/*
792	 * Compute the top-left pixel position aligned with the video
793	 * adapter pixels block size.
794	 *
795	 * This is calculated from the top-left column of te dirty area:
796	 *
797	 *     1. Compute the top-left pixel of the character:
798	 *        col * font width + x offset
799	 *
800	 *        NOTE: x offset is used to center the text area on the
801	 *        screen. It's expressed in pixels, not in characters
802	 *        col/row!
803	 *
804	 *     2. Find the pixel further on the left marking the start of
805	 *        an aligned pixels block (eg. chunk of 8 pixels):
806	 *        character's x / blocksize * blocksize
807	 *
808	 *        The division, being made on integers, achieves the
809	 *        alignment.
810	 *
811	 * For the Y-axis, we need to compute the character's y
812	 * coordinate, but we don't need to align it.
813	 */
814
815	col = area->tr_begin.tp_col;
816	row = area->tr_begin.tp_row;
817	x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
818	     / VT_VGA_PIXELS_BLOCK)
819	    * VT_VGA_PIXELS_BLOCK;
820	y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
821
822	/*
823	 * Compute the bottom right pixel position, again, aligned with
824	 * the pixels block size.
825	 *
826	 * The same rules apply, we just add 1 to base the computation
827	 * on the "right border" of the dirty area.
828	 */
829
830	col = area->tr_end.tp_col;
831	row = area->tr_end.tp_row;
832	x2 = (int)howmany(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col,
833	    VT_VGA_PIXELS_BLOCK)
834	    * VT_VGA_PIXELS_BLOCK;
835	y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
836
837	/* Clip the area to the screen size. */
838	x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
839	y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
840
841	/*
842	 * Now, we take care of N pixels line at a time (the first for
843	 * loop, N = font height), and for these lines, draw one pixels
844	 * block at a time (the second for loop), not a character at a
845	 * time.
846	 *
847	 * Therefore, on the X-axis, characters my be drawn partially if
848	 * they are not aligned on 8-pixels boundary.
849	 *
850	 * However, the operation is repeated for the full height of the
851	 * font before moving to the next character, because it allows
852	 * to keep the color settings and write mode, before perhaps
853	 * changing them with the next one.
854	 */
855
856	for (y = y1; y < y2; y += vf->vf_height) {
857		for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
858			vga_bitblt_one_text_pixels_block(vd, vw, x, y);
859		}
860	}
861}
862
863static void
864vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
865    const term_rect_t *area)
866{
867	struct vga_softc *sc;
868	const struct vt_buf *vb;
869	unsigned int col, row;
870	term_char_t c;
871	term_color_t fg, bg;
872	uint8_t ch, attr;
873	size_t z;
874
875	sc = vd->vd_softc;
876	vb = &vw->vw_buf;
877
878	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
879		for (col = area->tr_begin.tp_col;
880		    col < area->tr_end.tp_col;
881		    ++col) {
882			/*
883			 * Get next character and its associated fg/bg
884			 * colors.
885			 */
886			c = VTBUF_GET_FIELD(vb, row, col);
887			vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
888			    &fg, &bg);
889
890			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
891			if (vd->vd_drawn && (vd->vd_drawn[z] == c) &&
892			    vd->vd_drawnfg && (vd->vd_drawnfg[z] == fg) &&
893			    vd->vd_drawnbg && (vd->vd_drawnbg[z] == bg))
894				continue;
895
896			/*
897			 * Convert character to CP437, which is the
898			 * character set used by the VGA hardware by
899			 * default.
900			 */
901			ch = vga_get_cp437(TCHAR_CHARACTER(c));
902
903			/* Convert colors to VGA attributes. */
904			attr =
905			    cons_to_vga_colors[bg] << 4 |
906			    cons_to_vga_colors[fg];
907
908			MEM_WRITE2(sc, (row * 80 + col) * 2 + 0,
909			    ch + ((uint16_t)(attr) << 8));
910
911			if (vd->vd_drawn)
912				vd->vd_drawn[z] = c;
913			if (vd->vd_drawnfg)
914				vd->vd_drawnfg[z] = fg;
915			if (vd->vd_drawnbg)
916				vd->vd_drawnbg[z] = bg;
917		}
918	}
919}
920
921static void
922vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
923    const term_rect_t *area)
924{
925
926	if (!(vd->vd_flags & VDF_TEXTMODE)) {
927		vga_bitblt_text_gfxmode(vd, vw, area);
928	} else {
929		vga_bitblt_text_txtmode(vd, vw, area);
930	}
931}
932
933void
934vga_invalidate_text(struct vt_device *vd, const term_rect_t *area)
935{
936	unsigned int col, row;
937	size_t z;
938
939	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
940		for (col = area->tr_begin.tp_col;
941		    col < area->tr_end.tp_col;
942		    ++col) {
943			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
944			if (vd->vd_drawn)
945				vd->vd_drawn[z] = 0;
946			if (vd->vd_drawnfg)
947				vd->vd_drawnfg[z] = 0;
948			if (vd->vd_drawnbg)
949				vd->vd_drawnbg[z] = 0;
950		}
951	}
952}
953
954static void
955vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
956    const uint8_t *pattern, const uint8_t *mask,
957    unsigned int width, unsigned int height,
958    unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
959{
960	unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
961	uint8_t pattern_2colors;
962
963	/* Align coordinates with the 8-pxels grid. */
964	x1 = rounddown(x, VT_VGA_PIXELS_BLOCK);
965	y1 = y;
966
967	x2 = roundup(x + width, VT_VGA_PIXELS_BLOCK);
968	y2 = y + height;
969	x2 = min(x2, vd->vd_width - 1);
970	y2 = min(y2, vd->vd_height - 1);
971
972	for (j = y1; j < y2; ++j) {
973		src_x = 0;
974		dst_x = x - x1;
975		x_count = VT_VGA_PIXELS_BLOCK - dst_x;
976
977		for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
978			pattern_2colors = 0;
979
980			vga_copy_bitmap_portion(
981			    &pattern_2colors, NULL,
982			    pattern, mask, width,
983			    src_x, dst_x, x_count,
984			    j - y1, 0, 1, fg, bg, 0);
985
986			vga_bitblt_pixels_block_2colors(vd,
987			    &pattern_2colors, fg, bg,
988			    i, j, 1);
989
990			src_x += x_count;
991			dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
992			x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
993		}
994	}
995}
996
997static void
998vga_initialize_graphics(struct vt_device *vd)
999{
1000	struct vga_softc *sc = vd->vd_softc;
1001
1002	/* Clock select. */
1003	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
1004	    VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
1005	/* Set sequencer clocking and memory mode. */
1006	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
1007	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
1008	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
1009	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
1010
1011	/* Set the graphics controller in graphics mode. */
1012	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
1013	REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
1014	/* Program the CRT controller. */
1015	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
1016	REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f);			/* 760 */
1017	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
1018	REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f);			/* 640 - 8 */
1019	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
1020	REG_WRITE1(sc, VGA_CRTC_DATA, 0x50);			/* 640 */
1021	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
1022	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
1023	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
1024	REG_WRITE1(sc, VGA_CRTC_DATA, 0x54);			/* 672 */
1025	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
1026	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
1027	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
1028	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b);			/* 523 */
1029	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
1030	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
1031	    VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
1032	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
1033	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
1034	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
1035	REG_WRITE1(sc, VGA_CRTC_DATA, 0xea);			/* 480 + 10 */
1036	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1037	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
1038	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
1039	REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf);			/* 480 - 1*/
1040	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
1041	REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
1042	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
1043	REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7);			/* 480 + 7 */
1044	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
1045	REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
1046	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1047	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
1048	    VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
1049	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
1050	REG_WRITE1(sc, VGA_CRTC_DATA, 0xff);			/* 480 + 31 */
1051
1052	REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
1053
1054	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
1055	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
1056	    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
1057	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
1058	REG_WRITE1(sc, VGA_SEQ_DATA, 0);
1059
1060	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
1061	REG_WRITE1(sc, VGA_GC_DATA, 0);
1062	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1063	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1064	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
1065	REG_WRITE1(sc, VGA_GC_DATA, 0);
1066	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
1067	REG_WRITE1(sc, VGA_GC_DATA, 0);
1068	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
1069	REG_WRITE1(sc, VGA_GC_DATA, 0);
1070	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1071	REG_WRITE1(sc, VGA_GC_DATA, 0);
1072	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
1073	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1074	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
1075	REG_WRITE1(sc, VGA_GC_DATA, 0xff);
1076}
1077
1078static int
1079vga_initialize(struct vt_device *vd, int textmode)
1080{
1081	struct vga_softc *sc = vd->vd_softc;
1082	uint8_t x;
1083	int timeout;
1084
1085	/* Make sure the VGA adapter is not in monochrome emulation mode. */
1086	x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
1087	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
1088
1089	/* Unprotect CRTC registers 0-7. */
1090	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1091	x = REG_READ1(sc, VGA_CRTC_DATA);
1092	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
1093
1094	/*
1095	 * Wait for the vertical retrace.
1096	 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
1097	 * the side-effect of clearing the internal flip-flip of the attribute
1098	 * controller's write register. This means that because this code is
1099	 * here, we know for sure that the first write to the attribute
1100	 * controller will be a write to the address register. Removing this
1101	 * code therefore also removes that guarantee and appropriate measures
1102	 * need to be taken.
1103	 */
1104	timeout = 10000;
1105	do {
1106		DELAY(10);
1107		x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
1108		x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
1109	} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE) && --timeout != 0);
1110	if (timeout == 0) {
1111		printf("Timeout initializing vt_vga\n");
1112		return (ENXIO);
1113	}
1114
1115	/* Now, disable the sync. signals. */
1116	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1117	x = REG_READ1(sc, VGA_CRTC_DATA);
1118	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
1119
1120	/* Asynchronous sequencer reset. */
1121	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1122	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
1123
1124	if (!textmode)
1125		vga_initialize_graphics(vd);
1126
1127	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
1128	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1129	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
1130	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
1131	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
1132	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1133	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
1134	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1135	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
1136	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1137	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
1138	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1139	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
1140	REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
1141	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
1142	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
1143
1144	if (textmode) {
1145		/* Set the attribute controller to blink disable. */
1146		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1147		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1148	} else {
1149		/* Set the attribute controller in graphics mode. */
1150		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1151		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
1152		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
1153		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1154	}
1155	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
1156	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1157	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
1158	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
1159	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
1160	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
1161	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
1162	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
1163	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
1164	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
1165	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
1166	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
1167	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
1168	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
1169	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
1170	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1171
1172	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
1173	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1174	    VGA_AC_PAL_SB);
1175	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
1176	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1177	    VGA_AC_PAL_SB | VGA_AC_PAL_B);
1178	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
1179	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1180	    VGA_AC_PAL_SB | VGA_AC_PAL_G);
1181	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
1182	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1183	    VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
1184	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
1185	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1186	    VGA_AC_PAL_SB | VGA_AC_PAL_R);
1187	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
1188	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1189	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
1190	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
1191	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1192	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
1193	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
1194	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1195	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1196
1197	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
1198	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1199	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
1200	REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
1201	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
1202	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1203
1204	if (!textmode) {
1205		u_int ofs;
1206
1207		/*
1208		 * Done.  Clear the frame buffer.  All bit planes are
1209		 * enabled, so a single-paged loop should clear all
1210		 * planes.
1211		 */
1212		for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
1213			MEM_WRITE1(sc, ofs, 0);
1214		}
1215	}
1216
1217	/* Re-enable the sequencer. */
1218	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1219	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
1220	/* Re-enable the sync signals. */
1221	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1222	x = REG_READ1(sc, VGA_CRTC_DATA);
1223	REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
1224
1225	if (!textmode) {
1226		/* Switch to write mode 3, because we'll mainly do bitblt. */
1227		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1228		REG_WRITE1(sc, VGA_GC_DATA, 3);
1229		sc->vga_wmode = 3;
1230
1231		/*
1232		 * In Write Mode 3, Enable Set/Reset is ignored, but we
1233		 * use Write Mode 0 to write a group of 8 pixels using
1234		 * 3 or more colors. In this case, we want to disable
1235		 * Set/Reset: set Enable Set/Reset to 0.
1236		 */
1237		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1238		REG_WRITE1(sc, VGA_GC_DATA, 0x00);
1239
1240		/*
1241		 * Clear the colors we think are loaded into Set/Reset or
1242		 * the latches.
1243		 */
1244		sc->vga_curfg = sc->vga_curbg = 0xff;
1245	}
1246
1247	return (0);
1248}
1249
1250static bool
1251vga_acpi_disabled(void)
1252{
1253#if defined(__amd64__) || defined(__i386__)
1254	uint16_t flags;
1255	int ignore;
1256
1257	ignore = 0;
1258	TUNABLE_INT_FETCH("hw.vga.acpi_ignore_no_vga", &ignore);
1259	if (ignore || !acpi_get_fadt_bootflags(&flags))
1260 		return (false);
1261	return ((flags & ACPI_FADT_NO_VGA) != 0);
1262#else
1263	return (false);
1264#endif
1265}
1266
1267static int
1268vga_probe(struct vt_device *vd)
1269{
1270
1271	return (vga_acpi_disabled() ? CN_DEAD : CN_INTERNAL);
1272}
1273
1274static int
1275vga_init(struct vt_device *vd)
1276{
1277	struct vga_softc *sc;
1278	int textmode;
1279
1280	if (vd->vd_softc == NULL)
1281		vd->vd_softc = (void *)&vga_conssoftc;
1282	sc = vd->vd_softc;
1283
1284	if (vd->vd_flags & VDF_DOWNGRADE && vd->vd_video_dev != NULL)
1285		vga_pci_repost(vd->vd_video_dev);
1286
1287#if defined(__amd64__) || defined(__i386__)
1288	sc->vga_fb_tag = X86_BUS_SPACE_MEM;
1289	sc->vga_reg_tag = X86_BUS_SPACE_IO;
1290#else
1291# error "Architecture not yet supported!"
1292#endif
1293
1294	bus_space_map(sc->vga_reg_tag, VGA_REG_BASE, VGA_REG_SIZE, 0,
1295	    &sc->vga_reg_handle);
1296
1297	/*
1298	 * If "hw.vga.textmode" is not set and we're running on hypervisor,
1299	 * we use text mode by default, this is because when we're on
1300	 * hypervisor, vt(4) is usually much slower in graphics mode than
1301	 * in text mode, especially when we're on Hyper-V.
1302	 */
1303	textmode = vm_guest != VM_GUEST_NO;
1304	TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
1305	if (textmode) {
1306		vd->vd_flags |= VDF_TEXTMODE;
1307		vd->vd_width = 80;
1308		vd->vd_height = 25;
1309		bus_space_map(sc->vga_fb_tag, VGA_TXT_BASE, VGA_TXT_SIZE, 0,
1310		    &sc->vga_fb_handle);
1311	} else {
1312		vd->vd_width = VT_VGA_WIDTH;
1313		vd->vd_height = VT_VGA_HEIGHT;
1314		bus_space_map(sc->vga_fb_tag, VGA_MEM_BASE, VGA_MEM_SIZE, 0,
1315		    &sc->vga_fb_handle);
1316	}
1317	if (vga_initialize(vd, textmode) != 0)
1318		return (CN_DEAD);
1319	sc->vga_enabled = true;
1320
1321	return (CN_INTERNAL);
1322}
1323
1324static void
1325vga_postswitch(struct vt_device *vd)
1326{
1327
1328	/* Reinit VGA mode, to restore view after app which change mode. */
1329	vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
1330	/* Ask vt(9) to update chars on visible area. */
1331	vd->vd_flags |= VDF_INVALID;
1332}
1333
1334/* Dummy NewBus functions to reserve the resources used by the vt_vga driver */
1335static void
1336vtvga_identify(driver_t *driver, device_t parent)
1337{
1338
1339	if (!vga_conssoftc.vga_enabled)
1340		return;
1341
1342	if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL)
1343		panic("Unable to attach vt_vga console");
1344}
1345
1346static int
1347vtvga_probe(device_t dev)
1348{
1349
1350	device_set_desc(dev, "VT VGA driver");
1351
1352	return (BUS_PROBE_NOWILDCARD);
1353}
1354
1355static int
1356vtvga_attach(device_t dev)
1357{
1358	struct resource *pseudo_phys_res;
1359	int res_id;
1360
1361	res_id = 0;
1362	pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
1363	    &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1,
1364	    VGA_MEM_SIZE, RF_ACTIVE);
1365	if (pseudo_phys_res == NULL)
1366		panic("Unable to reserve vt_vga memory");
1367	return (0);
1368}
1369
1370/*-------------------- Private Device Attachment Data  -----------------------*/
1371static device_method_t vtvga_methods[] = {
1372	/* Device interface */
1373	DEVMETHOD(device_identify,	vtvga_identify),
1374	DEVMETHOD(device_probe,         vtvga_probe),
1375	DEVMETHOD(device_attach,        vtvga_attach),
1376
1377	DEVMETHOD_END
1378};
1379
1380DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0);
1381devclass_t vtvga_devclass;
1382
1383DRIVER_MODULE(vtvga, nexus, vtvga_driver, vtvga_devclass, NULL, NULL);
1384