1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
5 * Copyright (c) 1997, 1998, 1999
6 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD$");
38
39/*
40 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
41 * available from http://www.sis.com.tw.
42 *
43 * This driver also supports the NatSemi DP83815. Datasheets are
44 * available from http://www.national.com.
45 *
46 * Written by Bill Paul <wpaul@ee.columbia.edu>
47 * Electrical Engineering Department
48 * Columbia University, New York City
49 */
50/*
51 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
52 * simple TX and RX descriptors of 3 longwords in size. The receiver
53 * has a single perfect filter entry for the station address and a
54 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
55 * transceiver while the 7016 requires an external transceiver chip.
56 * Both chips offer the standard bit-bang MII interface as well as
57 * an enchanced PHY interface which simplifies accessing MII registers.
58 *
59 * The only downside to this chipset is that RX descriptors must be
60 * longword aligned.
61 */
62
63#ifdef HAVE_KERNEL_OPTION_HEADERS
64#include "opt_device_polling.h"
65#endif
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/bus.h>
70#include <sys/endian.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/malloc.h>
74#include <sys/mbuf.h>
75#include <sys/module.h>
76#include <sys/socket.h>
77#include <sys/sockio.h>
78#include <sys/sysctl.h>
79
80#include <net/if.h>
81#include <net/if_var.h>
82#include <net/if_arp.h>
83#include <net/ethernet.h>
84#include <net/if_dl.h>
85#include <net/if_media.h>
86#include <net/if_types.h>
87#include <net/if_vlan_var.h>
88
89#include <net/bpf.h>
90
91#include <machine/bus.h>
92#include <machine/resource.h>
93#include <sys/rman.h>
94
95#include <dev/mii/mii.h>
96#include <dev/mii/mii_bitbang.h>
97#include <dev/mii/miivar.h>
98
99#include <dev/pci/pcireg.h>
100#include <dev/pci/pcivar.h>
101
102#define SIS_USEIOSPACE
103
104#include <dev/sis/if_sisreg.h>
105
106MODULE_DEPEND(sis, pci, 1, 1, 1);
107MODULE_DEPEND(sis, ether, 1, 1, 1);
108MODULE_DEPEND(sis, miibus, 1, 1, 1);
109
110/* "device miibus" required.  See GENERIC if you get errors here. */
111#include "miibus_if.h"
112
113#define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
114#define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
115#define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
116
117/*
118 * register space access macros
119 */
120#define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
121
122#define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
123
124#define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
125
126#define	CSR_BARRIER(sc, reg, length, flags)				\
127	bus_barrier(sc->sis_res[0], reg, length, flags)
128
129/*
130 * Various supported device vendors/types and their names.
131 */
132static const struct sis_type sis_devs[] = {
133	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
134	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
135	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
136	{ 0, 0, NULL }
137};
138
139static int sis_detach(device_t);
140static __inline void sis_discard_rxbuf(struct sis_rxdesc *);
141static int sis_dma_alloc(struct sis_softc *);
142static void sis_dma_free(struct sis_softc *);
143static int sis_dma_ring_alloc(struct sis_softc *, bus_size_t, bus_size_t,
144    bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
145static void sis_dmamap_cb(void *, bus_dma_segment_t *, int, int);
146#ifndef __NO_STRICT_ALIGNMENT
147static __inline void sis_fixup_rx(struct mbuf *);
148#endif
149static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
150static int sis_ifmedia_upd(struct ifnet *);
151static void sis_init(void *);
152static void sis_initl(struct sis_softc *);
153static void sis_intr(void *);
154static int sis_ioctl(struct ifnet *, u_long, caddr_t);
155static uint32_t sis_mii_bitbang_read(device_t);
156static void sis_mii_bitbang_write(device_t, uint32_t);
157static int sis_newbuf(struct sis_softc *, struct sis_rxdesc *);
158static int sis_resume(device_t);
159static int sis_rxeof(struct sis_softc *);
160static void sis_rxfilter(struct sis_softc *);
161static void sis_rxfilter_ns(struct sis_softc *);
162static void sis_rxfilter_sis(struct sis_softc *);
163static void sis_start(struct ifnet *);
164static void sis_startl(struct ifnet *);
165static void sis_stop(struct sis_softc *);
166static int sis_suspend(device_t);
167static void sis_add_sysctls(struct sis_softc *);
168static void sis_watchdog(struct sis_softc *);
169static void sis_wol(struct sis_softc *);
170
171/*
172 * MII bit-bang glue
173 */
174static const struct mii_bitbang_ops sis_mii_bitbang_ops = {
175	sis_mii_bitbang_read,
176	sis_mii_bitbang_write,
177	{
178		SIS_MII_DATA,		/* MII_BIT_MDO */
179		SIS_MII_DATA,		/* MII_BIT_MDI */
180		SIS_MII_CLK,		/* MII_BIT_MDC */
181		SIS_MII_DIR,		/* MII_BIT_DIR_HOST_PHY */
182		0,			/* MII_BIT_DIR_PHY_HOST */
183	}
184};
185
186static struct resource_spec sis_res_spec[] = {
187#ifdef SIS_USEIOSPACE
188	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
189#else
190	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
191#endif
192	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
193	{ -1, 0 }
194};
195
196#define SIS_SETBIT(sc, reg, x)				\
197	CSR_WRITE_4(sc, reg,				\
198		CSR_READ_4(sc, reg) | (x))
199
200#define SIS_CLRBIT(sc, reg, x)				\
201	CSR_WRITE_4(sc, reg,				\
202		CSR_READ_4(sc, reg) & ~(x))
203
204#define SIO_SET(x)					\
205	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
206
207#define SIO_CLR(x)					\
208	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
209
210/*
211 * Routine to reverse the bits in a word. Stolen almost
212 * verbatim from /usr/games/fortune.
213 */
214static uint16_t
215sis_reverse(uint16_t n)
216{
217	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
218	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
219	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
220	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
221
222	return (n);
223}
224
225static void
226sis_delay(struct sis_softc *sc)
227{
228	int			idx;
229
230	for (idx = (300 / 33) + 1; idx > 0; idx--)
231		CSR_READ_4(sc, SIS_CSR);
232}
233
234static void
235sis_eeprom_idle(struct sis_softc *sc)
236{
237	int		i;
238
239	SIO_SET(SIS_EECTL_CSEL);
240	sis_delay(sc);
241	SIO_SET(SIS_EECTL_CLK);
242	sis_delay(sc);
243
244	for (i = 0; i < 25; i++) {
245		SIO_CLR(SIS_EECTL_CLK);
246		sis_delay(sc);
247		SIO_SET(SIS_EECTL_CLK);
248		sis_delay(sc);
249	}
250
251	SIO_CLR(SIS_EECTL_CLK);
252	sis_delay(sc);
253	SIO_CLR(SIS_EECTL_CSEL);
254	sis_delay(sc);
255	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
256}
257
258/*
259 * Send a read command and address to the EEPROM, check for ACK.
260 */
261static void
262sis_eeprom_putbyte(struct sis_softc *sc, int addr)
263{
264	int		d, i;
265
266	d = addr | SIS_EECMD_READ;
267
268	/*
269	 * Feed in each bit and stobe the clock.
270	 */
271	for (i = 0x400; i; i >>= 1) {
272		if (d & i) {
273			SIO_SET(SIS_EECTL_DIN);
274		} else {
275			SIO_CLR(SIS_EECTL_DIN);
276		}
277		sis_delay(sc);
278		SIO_SET(SIS_EECTL_CLK);
279		sis_delay(sc);
280		SIO_CLR(SIS_EECTL_CLK);
281		sis_delay(sc);
282	}
283}
284
285/*
286 * Read a word of data stored in the EEPROM at address 'addr.'
287 */
288static void
289sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
290{
291	int		i;
292	uint16_t	word = 0;
293
294	/* Force EEPROM to idle state. */
295	sis_eeprom_idle(sc);
296
297	/* Enter EEPROM access mode. */
298	sis_delay(sc);
299	SIO_CLR(SIS_EECTL_CLK);
300	sis_delay(sc);
301	SIO_SET(SIS_EECTL_CSEL);
302	sis_delay(sc);
303
304	/*
305	 * Send address of word we want to read.
306	 */
307	sis_eeprom_putbyte(sc, addr);
308
309	/*
310	 * Start reading bits from EEPROM.
311	 */
312	for (i = 0x8000; i; i >>= 1) {
313		SIO_SET(SIS_EECTL_CLK);
314		sis_delay(sc);
315		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
316			word |= i;
317		sis_delay(sc);
318		SIO_CLR(SIS_EECTL_CLK);
319		sis_delay(sc);
320	}
321
322	/* Turn off EEPROM access mode. */
323	sis_eeprom_idle(sc);
324
325	*dest = word;
326}
327
328/*
329 * Read a sequence of words from the EEPROM.
330 */
331static void
332sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
333{
334	int			i;
335	uint16_t		word = 0, *ptr;
336
337	for (i = 0; i < cnt; i++) {
338		sis_eeprom_getword(sc, off + i, &word);
339		ptr = (uint16_t *)(dest + (i * 2));
340		if (swap)
341			*ptr = ntohs(word);
342		else
343			*ptr = word;
344	}
345}
346
347#if defined(__i386__) || defined(__amd64__)
348static device_t
349sis_find_bridge(device_t dev)
350{
351	devclass_t		pci_devclass;
352	device_t		*pci_devices;
353	int			pci_count = 0;
354	device_t		*pci_children;
355	int			pci_childcount = 0;
356	device_t		*busp, *childp;
357	device_t		child = NULL;
358	int			i, j;
359
360	if ((pci_devclass = devclass_find("pci")) == NULL)
361		return (NULL);
362
363	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
364
365	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
366		if (device_get_children(*busp, &pci_children, &pci_childcount))
367			continue;
368		for (j = 0, childp = pci_children;
369		    j < pci_childcount; j++, childp++) {
370			if (pci_get_vendor(*childp) == SIS_VENDORID &&
371			    pci_get_device(*childp) == 0x0008) {
372				child = *childp;
373				free(pci_children, M_TEMP);
374				goto done;
375			}
376		}
377		free(pci_children, M_TEMP);
378	}
379
380done:
381	free(pci_devices, M_TEMP);
382	return (child);
383}
384
385static void
386sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
387{
388	device_t		bridge;
389	uint8_t			reg;
390	int			i;
391	bus_space_tag_t		btag;
392
393	bridge = sis_find_bridge(dev);
394	if (bridge == NULL)
395		return;
396	reg = pci_read_config(bridge, 0x48, 1);
397	pci_write_config(bridge, 0x48, reg|0x40, 1);
398
399	/* XXX */
400#if defined(__amd64__) || defined(__i386__)
401	btag = X86_BUS_SPACE_IO;
402#endif
403
404	for (i = 0; i < cnt; i++) {
405		bus_space_write_1(btag, 0x0, 0x70, i + off);
406		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
407	}
408
409	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
410}
411
412static void
413sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
414{
415	uint32_t		filtsave, csrsave;
416
417	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
418	csrsave = CSR_READ_4(sc, SIS_CSR);
419
420	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
421	CSR_WRITE_4(sc, SIS_CSR, 0);
422
423	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
424
425	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
426	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
427	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
428	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
429	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
430	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
431
432	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
433	CSR_WRITE_4(sc, SIS_CSR, csrsave);
434}
435#endif
436
437/*
438 * Read the MII serial port for the MII bit-bang module.
439 */
440static uint32_t
441sis_mii_bitbang_read(device_t dev)
442{
443	struct sis_softc	*sc;
444	uint32_t		val;
445
446	sc = device_get_softc(dev);
447
448	val = CSR_READ_4(sc, SIS_EECTL);
449	CSR_BARRIER(sc, SIS_EECTL, 4,
450	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
451	return (val);
452}
453
454/*
455 * Write the MII serial port for the MII bit-bang module.
456 */
457static void
458sis_mii_bitbang_write(device_t dev, uint32_t val)
459{
460	struct sis_softc	*sc;
461
462	sc = device_get_softc(dev);
463
464	CSR_WRITE_4(sc, SIS_EECTL, val);
465	CSR_BARRIER(sc, SIS_EECTL, 4,
466	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
467}
468
469static int
470sis_miibus_readreg(device_t dev, int phy, int reg)
471{
472	struct sis_softc	*sc;
473
474	sc = device_get_softc(dev);
475
476	if (sc->sis_type == SIS_TYPE_83815) {
477		if (phy != 0)
478			return (0);
479		/*
480		 * The NatSemi chip can take a while after
481		 * a reset to come ready, during which the BMSR
482		 * returns a value of 0. This is *never* supposed
483		 * to happen: some of the BMSR bits are meant to
484		 * be hardwired in the on position, and this can
485		 * confuse the miibus code a bit during the probe
486		 * and attach phase. So we make an effort to check
487		 * for this condition and wait for it to clear.
488		 */
489		if (!CSR_READ_4(sc, NS_BMSR))
490			DELAY(1000);
491		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
492	}
493
494	/*
495	 * Chipsets < SIS_635 seem not to be able to read/write
496	 * through mdio. Use the enhanced PHY access register
497	 * again for them.
498	 */
499	if (sc->sis_type == SIS_TYPE_900 &&
500	    sc->sis_rev < SIS_REV_635) {
501		int i, val = 0;
502
503		if (phy != 0)
504			return (0);
505
506		CSR_WRITE_4(sc, SIS_PHYCTL,
507		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
508		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
509
510		for (i = 0; i < SIS_TIMEOUT; i++) {
511			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
512				break;
513		}
514
515		if (i == SIS_TIMEOUT) {
516			device_printf(sc->sis_dev,
517			    "PHY failed to come ready\n");
518			return (0);
519		}
520
521		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
522
523		if (val == 0xFFFF)
524			return (0);
525
526		return (val);
527	} else
528		return (mii_bitbang_readreg(dev, &sis_mii_bitbang_ops, phy,
529		    reg));
530}
531
532static int
533sis_miibus_writereg(device_t dev, int phy, int reg, int data)
534{
535	struct sis_softc	*sc;
536
537	sc = device_get_softc(dev);
538
539	if (sc->sis_type == SIS_TYPE_83815) {
540		if (phy != 0)
541			return (0);
542		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
543		return (0);
544	}
545
546	/*
547	 * Chipsets < SIS_635 seem not to be able to read/write
548	 * through mdio. Use the enhanced PHY access register
549	 * again for them.
550	 */
551	if (sc->sis_type == SIS_TYPE_900 &&
552	    sc->sis_rev < SIS_REV_635) {
553		int i;
554
555		if (phy != 0)
556			return (0);
557
558		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
559		    (reg << 6) | SIS_PHYOP_WRITE);
560		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
561
562		for (i = 0; i < SIS_TIMEOUT; i++) {
563			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
564				break;
565		}
566
567		if (i == SIS_TIMEOUT)
568			device_printf(sc->sis_dev,
569			    "PHY failed to come ready\n");
570	} else
571		mii_bitbang_writereg(dev, &sis_mii_bitbang_ops, phy, reg,
572		    data);
573	return (0);
574}
575
576static void
577sis_miibus_statchg(device_t dev)
578{
579	struct sis_softc	*sc;
580	struct mii_data		*mii;
581	struct ifnet		*ifp;
582	uint32_t		reg;
583
584	sc = device_get_softc(dev);
585	SIS_LOCK_ASSERT(sc);
586
587	mii = device_get_softc(sc->sis_miibus);
588	ifp = sc->sis_ifp;
589	if (mii == NULL || ifp == NULL ||
590	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591		return;
592
593	sc->sis_flags &= ~SIS_FLAG_LINK;
594	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595	    (IFM_ACTIVE | IFM_AVALID)) {
596		switch (IFM_SUBTYPE(mii->mii_media_active)) {
597		case IFM_10_T:
598			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
599			sc->sis_flags |= SIS_FLAG_LINK;
600			break;
601		case IFM_100_TX:
602			CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
603			sc->sis_flags |= SIS_FLAG_LINK;
604			break;
605		default:
606			break;
607		}
608	}
609
610	if ((sc->sis_flags & SIS_FLAG_LINK) == 0) {
611		/*
612		 * Stopping MACs seem to reset SIS_TX_LISTPTR and
613		 * SIS_RX_LISTPTR which in turn requires resetting
614		 * TX/RX buffers.  So just don't do anything for
615		 * lost link.
616		 */
617		return;
618	}
619
620	/* Set full/half duplex mode. */
621	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
622		SIS_SETBIT(sc, SIS_TX_CFG,
623		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
624		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
625	} else {
626		SIS_CLRBIT(sc, SIS_TX_CFG,
627		    (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR));
628		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
629	}
630
631	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
632		/*
633		 * MPII03.D: Half Duplex Excessive Collisions.
634		 * Also page 49 in 83816 manual
635		 */
636		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
637	}
638
639	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
640	    IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
641		/*
642		 * Short Cable Receive Errors (MP21.E)
643		 */
644		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
645		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
646		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
647		DELAY(100);
648		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
649		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
650			device_printf(sc->sis_dev,
651			    "Applying short cable fix (reg=%x)\n", reg);
652			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
653			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
654		}
655		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
656	}
657	/* Enable TX/RX MACs. */
658	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
659	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE);
660}
661
662static uint32_t
663sis_mchash(struct sis_softc *sc, const uint8_t *addr)
664{
665	uint32_t		crc;
666
667	/* Compute CRC for the address value. */
668	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
669
670	/*
671	 * return the filter bit position
672	 *
673	 * The NatSemi chip has a 512-bit filter, which is
674	 * different than the SiS, so we special-case it.
675	 */
676	if (sc->sis_type == SIS_TYPE_83815)
677		return (crc >> 23);
678	else if (sc->sis_rev >= SIS_REV_635 ||
679	    sc->sis_rev == SIS_REV_900B)
680		return (crc >> 24);
681	else
682		return (crc >> 25);
683}
684
685static void
686sis_rxfilter(struct sis_softc *sc)
687{
688
689	SIS_LOCK_ASSERT(sc);
690
691	if (sc->sis_type == SIS_TYPE_83815)
692		sis_rxfilter_ns(sc);
693	else
694		sis_rxfilter_sis(sc);
695}
696
697static void
698sis_rxfilter_ns(struct sis_softc *sc)
699{
700	struct ifnet		*ifp;
701	struct ifmultiaddr	*ifma;
702	uint32_t		h, i, filter;
703	int			bit, index;
704
705	ifp = sc->sis_ifp;
706	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
707	if (filter & SIS_RXFILTCTL_ENABLE) {
708		/*
709		 * Filter should be disabled to program other bits.
710		 */
711		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
712		CSR_READ_4(sc, SIS_RXFILT_CTL);
713	}
714	filter &= ~(NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT |
715	    NS_RXFILTCTL_MCHASH | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
716	    SIS_RXFILTCTL_ALLMULTI);
717
718	if (ifp->if_flags & IFF_BROADCAST)
719		filter |= SIS_RXFILTCTL_BROAD;
720	/*
721	 * For the NatSemi chip, we have to explicitly enable the
722	 * reception of ARP frames, as well as turn on the 'perfect
723	 * match' filter where we store the station address, otherwise
724	 * we won't receive unicasts meant for this host.
725	 */
726	filter |= NS_RXFILTCTL_ARP | NS_RXFILTCTL_PERFECT;
727
728	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
729		filter |= SIS_RXFILTCTL_ALLMULTI;
730		if (ifp->if_flags & IFF_PROMISC)
731			filter |= SIS_RXFILTCTL_ALLPHYS;
732	} else {
733		/*
734		 * We have to explicitly enable the multicast hash table
735		 * on the NatSemi chip if we want to use it, which we do.
736		 */
737		filter |= NS_RXFILTCTL_MCHASH;
738
739		/* first, zot all the existing hash bits */
740		for (i = 0; i < 32; i++) {
741			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
742			    (i * 2));
743			CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
744		}
745
746		if_maddr_rlock(ifp);
747		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
748			if (ifma->ifma_addr->sa_family != AF_LINK)
749				continue;
750			h = sis_mchash(sc,
751			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
752			index = h >> 3;
753			bit = h & 0x1F;
754			CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO +
755			    index);
756			if (bit > 0xF)
757				bit -= 0x10;
758			SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
759		}
760		if_maddr_runlock(ifp);
761	}
762
763	/* Turn the receive filter on */
764	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
765	CSR_READ_4(sc, SIS_RXFILT_CTL);
766}
767
768static void
769sis_rxfilter_sis(struct sis_softc *sc)
770{
771	struct ifnet		*ifp;
772	struct ifmultiaddr	*ifma;
773	uint32_t		filter, h, i, n;
774	uint16_t		hashes[16];
775
776	ifp = sc->sis_ifp;
777
778	/* hash table size */
779	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
780		n = 16;
781	else
782		n = 8;
783
784	filter = CSR_READ_4(sc, SIS_RXFILT_CTL);
785	if (filter & SIS_RXFILTCTL_ENABLE) {
786		CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter & ~SIS_RXFILTCTL_ENABLE);
787		CSR_READ_4(sc, SIS_RXFILT_CTL);
788	}
789	filter &= ~(SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD |
790	    SIS_RXFILTCTL_ALLMULTI);
791	if (ifp->if_flags & IFF_BROADCAST)
792		filter |= SIS_RXFILTCTL_BROAD;
793
794	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
795		filter |= SIS_RXFILTCTL_ALLMULTI;
796		if (ifp->if_flags & IFF_PROMISC)
797			filter |= SIS_RXFILTCTL_ALLPHYS;
798		for (i = 0; i < n; i++)
799			hashes[i] = ~0;
800	} else {
801		for (i = 0; i < n; i++)
802			hashes[i] = 0;
803		i = 0;
804		if_maddr_rlock(ifp);
805		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
806			if (ifma->ifma_addr->sa_family != AF_LINK)
807			continue;
808			h = sis_mchash(sc,
809			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
810			hashes[h >> 4] |= 1 << (h & 0xf);
811			i++;
812		}
813		if_maddr_runlock(ifp);
814		if (i > n) {
815			filter |= SIS_RXFILTCTL_ALLMULTI;
816			for (i = 0; i < n; i++)
817				hashes[i] = ~0;
818		}
819	}
820
821	for (i = 0; i < n; i++) {
822		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
823		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
824	}
825
826	/* Turn the receive filter on */
827	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filter | SIS_RXFILTCTL_ENABLE);
828	CSR_READ_4(sc, SIS_RXFILT_CTL);
829}
830
831static void
832sis_reset(struct sis_softc *sc)
833{
834	int		i;
835
836	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
837
838	for (i = 0; i < SIS_TIMEOUT; i++) {
839		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
840			break;
841	}
842
843	if (i == SIS_TIMEOUT)
844		device_printf(sc->sis_dev, "reset never completed\n");
845
846	/* Wait a little while for the chip to get its brains in order. */
847	DELAY(1000);
848
849	/*
850	 * If this is a NetSemi chip, make sure to clear
851	 * PME mode.
852	 */
853	if (sc->sis_type == SIS_TYPE_83815) {
854		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
855		CSR_WRITE_4(sc, NS_CLKRUN, 0);
856	} else {
857		/* Disable WOL functions. */
858		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, 0);
859	}
860}
861
862/*
863 * Probe for an SiS chip. Check the PCI vendor and device
864 * IDs against our list and return a device name if we find a match.
865 */
866static int
867sis_probe(device_t dev)
868{
869	const struct sis_type	*t;
870
871	t = sis_devs;
872
873	while (t->sis_name != NULL) {
874		if ((pci_get_vendor(dev) == t->sis_vid) &&
875		    (pci_get_device(dev) == t->sis_did)) {
876			device_set_desc(dev, t->sis_name);
877			return (BUS_PROBE_DEFAULT);
878		}
879		t++;
880	}
881
882	return (ENXIO);
883}
884
885/*
886 * Attach the interface. Allocate softc structures, do ifmedia
887 * setup and ethernet/BPF attach.
888 */
889static int
890sis_attach(device_t dev)
891{
892	u_char			eaddr[ETHER_ADDR_LEN];
893	struct sis_softc	*sc;
894	struct ifnet		*ifp;
895	int			error = 0, pmc, waittime = 0;
896
897	waittime = 0;
898	sc = device_get_softc(dev);
899
900	sc->sis_dev = dev;
901
902	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
903	    MTX_DEF);
904	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
905
906	if (pci_get_device(dev) == SIS_DEVICEID_900)
907		sc->sis_type = SIS_TYPE_900;
908	if (pci_get_device(dev) == SIS_DEVICEID_7016)
909		sc->sis_type = SIS_TYPE_7016;
910	if (pci_get_vendor(dev) == NS_VENDORID)
911		sc->sis_type = SIS_TYPE_83815;
912
913	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
914	/*
915	 * Map control/status registers.
916	 */
917	pci_enable_busmaster(dev);
918
919	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
920	if (error) {
921		device_printf(dev, "couldn't allocate resources\n");
922		goto fail;
923	}
924
925	/* Reset the adapter. */
926	sis_reset(sc);
927
928	if (sc->sis_type == SIS_TYPE_900 &&
929	    (sc->sis_rev == SIS_REV_635 ||
930	    sc->sis_rev == SIS_REV_900B)) {
931		SIO_SET(SIS_CFG_RND_CNT);
932		SIO_SET(SIS_CFG_PERR_DETECT);
933	}
934
935	/*
936	 * Get station address from the EEPROM.
937	 */
938	switch (pci_get_vendor(dev)) {
939	case NS_VENDORID:
940		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
941
942		/* We can't update the device description, so spew */
943		if (sc->sis_srr == NS_SRR_15C)
944			device_printf(dev, "Silicon Revision: DP83815C\n");
945		else if (sc->sis_srr == NS_SRR_15D)
946			device_printf(dev, "Silicon Revision: DP83815D\n");
947		else if (sc->sis_srr == NS_SRR_16A)
948			device_printf(dev, "Silicon Revision: DP83816A\n");
949		else
950			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
951
952		/*
953		 * Reading the MAC address out of the EEPROM on
954		 * the NatSemi chip takes a bit more work than
955		 * you'd expect. The address spans 4 16-bit words,
956		 * with the first word containing only a single bit.
957		 * You have to shift everything over one bit to
958		 * get it aligned properly. Also, the bits are
959		 * stored backwards (the LSB is really the MSB,
960		 * and so on) so you have to reverse them in order
961		 * to get the MAC address into the form we want.
962		 * Why? Who the hell knows.
963		 */
964		{
965			uint16_t		tmp[4];
966
967			sis_read_eeprom(sc, (caddr_t)&tmp,
968			    NS_EE_NODEADDR, 4, 0);
969
970			/* Shift everything over one bit. */
971			tmp[3] = tmp[3] >> 1;
972			tmp[3] |= tmp[2] << 15;
973			tmp[2] = tmp[2] >> 1;
974			tmp[2] |= tmp[1] << 15;
975			tmp[1] = tmp[1] >> 1;
976			tmp[1] |= tmp[0] << 15;
977
978			/* Now reverse all the bits. */
979			tmp[3] = sis_reverse(tmp[3]);
980			tmp[2] = sis_reverse(tmp[2]);
981			tmp[1] = sis_reverse(tmp[1]);
982
983			eaddr[0] = (tmp[1] >> 0) & 0xFF;
984			eaddr[1] = (tmp[1] >> 8) & 0xFF;
985			eaddr[2] = (tmp[2] >> 0) & 0xFF;
986			eaddr[3] = (tmp[2] >> 8) & 0xFF;
987			eaddr[4] = (tmp[3] >> 0) & 0xFF;
988			eaddr[5] = (tmp[3] >> 8) & 0xFF;
989		}
990		break;
991	case SIS_VENDORID:
992	default:
993#if defined(__i386__) || defined(__amd64__)
994		/*
995		 * If this is a SiS 630E chipset with an embedded
996		 * SiS 900 controller, we have to read the MAC address
997		 * from the APC CMOS RAM. Our method for doing this
998		 * is very ugly since we have to reach out and grab
999		 * ahold of hardware for which we cannot properly
1000		 * allocate resources. This code is only compiled on
1001		 * the i386 architecture since the SiS 630E chipset
1002		 * is for x86 motherboards only. Note that there are
1003		 * a lot of magic numbers in this hack. These are
1004		 * taken from SiS's Linux driver. I'd like to replace
1005		 * them with proper symbolic definitions, but that
1006		 * requires some datasheets that I don't have access
1007		 * to at the moment.
1008		 */
1009		if (sc->sis_rev == SIS_REV_630S ||
1010		    sc->sis_rev == SIS_REV_630E ||
1011		    sc->sis_rev == SIS_REV_630EA1)
1012			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1013
1014		else if (sc->sis_rev == SIS_REV_635 ||
1015			 sc->sis_rev == SIS_REV_630ET)
1016			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1017		else if (sc->sis_rev == SIS_REV_96x) {
1018			/* Allow to read EEPROM from LAN. It is shared
1019			 * between a 1394 controller and the NIC and each
1020			 * time we access it, we need to set SIS_EECMD_REQ.
1021			 */
1022			SIO_SET(SIS_EECMD_REQ);
1023			for (waittime = 0; waittime < SIS_TIMEOUT;
1024			    waittime++) {
1025				/* Force EEPROM to idle state. */
1026				sis_eeprom_idle(sc);
1027				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1028					sis_read_eeprom(sc, (caddr_t)&eaddr,
1029					    SIS_EE_NODEADDR, 3, 0);
1030					break;
1031				}
1032				DELAY(1);
1033			}
1034			/*
1035			 * Set SIS_EECTL_CLK to high, so a other master
1036			 * can operate on the i2c bus.
1037			 */
1038			SIO_SET(SIS_EECTL_CLK);
1039			/* Refuse EEPROM access by LAN */
1040			SIO_SET(SIS_EECMD_DONE);
1041		} else
1042#endif
1043			sis_read_eeprom(sc, (caddr_t)&eaddr,
1044			    SIS_EE_NODEADDR, 3, 0);
1045		break;
1046	}
1047
1048	sis_add_sysctls(sc);
1049
1050	/* Allocate DMA'able memory. */
1051	if ((error = sis_dma_alloc(sc)) != 0)
1052		goto fail;
1053
1054	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1055	if (ifp == NULL) {
1056		device_printf(dev, "can not if_alloc()\n");
1057		error = ENOSPC;
1058		goto fail;
1059	}
1060	ifp->if_softc = sc;
1061	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1062	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1063	ifp->if_ioctl = sis_ioctl;
1064	ifp->if_start = sis_start;
1065	ifp->if_init = sis_init;
1066	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1067	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1068	IFQ_SET_READY(&ifp->if_snd);
1069
1070	if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) == 0) {
1071		if (sc->sis_type == SIS_TYPE_83815)
1072			ifp->if_capabilities |= IFCAP_WOL;
1073		else
1074			ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1075		ifp->if_capenable = ifp->if_capabilities;
1076	}
1077
1078	/*
1079	 * Do MII setup.
1080	 */
1081	error = mii_attach(dev, &sc->sis_miibus, ifp, sis_ifmedia_upd,
1082	    sis_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1083	if (error != 0) {
1084		device_printf(dev, "attaching PHYs failed\n");
1085		goto fail;
1086	}
1087
1088	/*
1089	 * Call MI attach routine.
1090	 */
1091	ether_ifattach(ifp, eaddr);
1092
1093	/*
1094	 * Tell the upper layer(s) we support long frames.
1095	 */
1096	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1097	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1098	ifp->if_capenable = ifp->if_capabilities;
1099#ifdef DEVICE_POLLING
1100	ifp->if_capabilities |= IFCAP_POLLING;
1101#endif
1102
1103	/* Hook interrupt last to avoid having to lock softc */
1104	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1105	    NULL, sis_intr, sc, &sc->sis_intrhand);
1106
1107	if (error) {
1108		device_printf(dev, "couldn't set up irq\n");
1109		ether_ifdetach(ifp);
1110		goto fail;
1111	}
1112
1113fail:
1114	if (error)
1115		sis_detach(dev);
1116
1117	return (error);
1118}
1119
1120/*
1121 * Shutdown hardware and free up resources. This can be called any
1122 * time after the mutex has been initialized. It is called in both
1123 * the error case in attach and the normal detach case so it needs
1124 * to be careful about only freeing resources that have actually been
1125 * allocated.
1126 */
1127static int
1128sis_detach(device_t dev)
1129{
1130	struct sis_softc	*sc;
1131	struct ifnet		*ifp;
1132
1133	sc = device_get_softc(dev);
1134	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1135	ifp = sc->sis_ifp;
1136
1137#ifdef DEVICE_POLLING
1138	if (ifp->if_capenable & IFCAP_POLLING)
1139		ether_poll_deregister(ifp);
1140#endif
1141
1142	/* These should only be active if attach succeeded. */
1143	if (device_is_attached(dev)) {
1144		SIS_LOCK(sc);
1145		sis_stop(sc);
1146		SIS_UNLOCK(sc);
1147		callout_drain(&sc->sis_stat_ch);
1148		ether_ifdetach(ifp);
1149	}
1150	if (sc->sis_miibus)
1151		device_delete_child(dev, sc->sis_miibus);
1152	bus_generic_detach(dev);
1153
1154	if (sc->sis_intrhand)
1155		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1156	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1157
1158	if (ifp)
1159		if_free(ifp);
1160
1161	sis_dma_free(sc);
1162
1163	mtx_destroy(&sc->sis_mtx);
1164
1165	return (0);
1166}
1167
1168struct sis_dmamap_arg {
1169	bus_addr_t	sis_busaddr;
1170};
1171
1172static void
1173sis_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1174{
1175	struct sis_dmamap_arg	*ctx;
1176
1177	if (error != 0)
1178		return;
1179
1180	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1181
1182	ctx = (struct sis_dmamap_arg *)arg;
1183	ctx->sis_busaddr = segs[0].ds_addr;
1184}
1185
1186static int
1187sis_dma_ring_alloc(struct sis_softc *sc, bus_size_t alignment,
1188    bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
1189    bus_addr_t *paddr, const char *msg)
1190{
1191	struct sis_dmamap_arg	ctx;
1192	int			error;
1193
1194	error = bus_dma_tag_create(sc->sis_parent_tag, alignment, 0,
1195	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1,
1196	    maxsize, 0, NULL, NULL, tag);
1197	if (error != 0) {
1198		device_printf(sc->sis_dev,
1199		    "could not create %s dma tag\n", msg);
1200		return (ENOMEM);
1201	}
1202	/* Allocate DMA'able memory for ring. */
1203	error = bus_dmamem_alloc(*tag, (void **)ring,
1204	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
1205	if (error != 0) {
1206		device_printf(sc->sis_dev,
1207		    "could not allocate DMA'able memory for %s\n", msg);
1208		return (ENOMEM);
1209	}
1210	/* Load the address of the ring. */
1211	ctx.sis_busaddr = 0;
1212	error = bus_dmamap_load(*tag, *map, *ring, maxsize, sis_dmamap_cb,
1213	    &ctx, BUS_DMA_NOWAIT);
1214	if (error != 0) {
1215		device_printf(sc->sis_dev,
1216		    "could not load DMA'able memory for %s\n", msg);
1217		return (ENOMEM);
1218	}
1219	*paddr = ctx.sis_busaddr;
1220	return (0);
1221}
1222
1223static int
1224sis_dma_alloc(struct sis_softc *sc)
1225{
1226	struct sis_rxdesc	*rxd;
1227	struct sis_txdesc	*txd;
1228	int			error, i;
1229
1230	/* Allocate the parent bus DMA tag appropriate for PCI. */
1231	error = bus_dma_tag_create(bus_get_dma_tag(sc->sis_dev),
1232	    1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1233	    NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
1234	    0, NULL, NULL, &sc->sis_parent_tag);
1235	if (error != 0) {
1236		device_printf(sc->sis_dev,
1237		    "could not allocate parent dma tag\n");
1238		return (ENOMEM);
1239	}
1240
1241	/* Create RX ring. */
1242	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_RX_LIST_SZ,
1243	    &sc->sis_rx_list_tag, (uint8_t **)&sc->sis_rx_list,
1244	    &sc->sis_rx_list_map, &sc->sis_rx_paddr, "RX ring");
1245	if (error)
1246		return (error);
1247
1248	/* Create TX ring. */
1249	error = sis_dma_ring_alloc(sc, SIS_DESC_ALIGN, SIS_TX_LIST_SZ,
1250	    &sc->sis_tx_list_tag, (uint8_t **)&sc->sis_tx_list,
1251	    &sc->sis_tx_list_map, &sc->sis_tx_paddr, "TX ring");
1252	if (error)
1253		return (error);
1254
1255	/* Create tag for RX mbufs. */
1256	error = bus_dma_tag_create(sc->sis_parent_tag, SIS_RX_BUF_ALIGN, 0,
1257	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1258	    MCLBYTES, 0, NULL, NULL, &sc->sis_rx_tag);
1259	if (error) {
1260		device_printf(sc->sis_dev, "could not allocate RX dma tag\n");
1261		return (error);
1262	}
1263
1264	/* Create tag for TX mbufs. */
1265	error = bus_dma_tag_create(sc->sis_parent_tag, 1, 0,
1266	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1267	    MCLBYTES * SIS_MAXTXSEGS, SIS_MAXTXSEGS, MCLBYTES, 0, NULL, NULL,
1268	    &sc->sis_tx_tag);
1269	if (error) {
1270		device_printf(sc->sis_dev, "could not allocate TX dma tag\n");
1271		return (error);
1272	}
1273
1274	/* Create DMA maps for RX buffers. */
1275	error = bus_dmamap_create(sc->sis_rx_tag, 0, &sc->sis_rx_sparemap);
1276	if (error) {
1277		device_printf(sc->sis_dev,
1278		    "can't create spare DMA map for RX\n");
1279		return (error);
1280	}
1281	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1282		rxd = &sc->sis_rxdesc[i];
1283		rxd->rx_m = NULL;
1284		error = bus_dmamap_create(sc->sis_rx_tag, 0, &rxd->rx_dmamap);
1285		if (error) {
1286			device_printf(sc->sis_dev,
1287			    "can't create DMA map for RX\n");
1288			return (error);
1289		}
1290	}
1291
1292	/* Create DMA maps for TX buffers. */
1293	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1294		txd = &sc->sis_txdesc[i];
1295		txd->tx_m = NULL;
1296		error = bus_dmamap_create(sc->sis_tx_tag, 0, &txd->tx_dmamap);
1297		if (error) {
1298			device_printf(sc->sis_dev,
1299			    "can't create DMA map for TX\n");
1300			return (error);
1301		}
1302	}
1303
1304	return (0);
1305}
1306
1307static void
1308sis_dma_free(struct sis_softc *sc)
1309{
1310	struct sis_rxdesc	*rxd;
1311	struct sis_txdesc	*txd;
1312	int			i;
1313
1314	/* Destroy DMA maps for RX buffers. */
1315	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1316		rxd = &sc->sis_rxdesc[i];
1317		if (rxd->rx_dmamap)
1318			bus_dmamap_destroy(sc->sis_rx_tag, rxd->rx_dmamap);
1319	}
1320	if (sc->sis_rx_sparemap)
1321		bus_dmamap_destroy(sc->sis_rx_tag, sc->sis_rx_sparemap);
1322
1323	/* Destroy DMA maps for TX buffers. */
1324	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1325		txd = &sc->sis_txdesc[i];
1326		if (txd->tx_dmamap)
1327			bus_dmamap_destroy(sc->sis_tx_tag, txd->tx_dmamap);
1328	}
1329
1330	if (sc->sis_rx_tag)
1331		bus_dma_tag_destroy(sc->sis_rx_tag);
1332	if (sc->sis_tx_tag)
1333		bus_dma_tag_destroy(sc->sis_tx_tag);
1334
1335	/* Destroy RX ring. */
1336	if (sc->sis_rx_paddr)
1337		bus_dmamap_unload(sc->sis_rx_list_tag, sc->sis_rx_list_map);
1338	if (sc->sis_rx_list)
1339		bus_dmamem_free(sc->sis_rx_list_tag, sc->sis_rx_list,
1340		    sc->sis_rx_list_map);
1341
1342	if (sc->sis_rx_list_tag)
1343		bus_dma_tag_destroy(sc->sis_rx_list_tag);
1344
1345	/* Destroy TX ring. */
1346	if (sc->sis_tx_paddr)
1347		bus_dmamap_unload(sc->sis_tx_list_tag, sc->sis_tx_list_map);
1348
1349	if (sc->sis_tx_list)
1350		bus_dmamem_free(sc->sis_tx_list_tag, sc->sis_tx_list,
1351		    sc->sis_tx_list_map);
1352
1353	if (sc->sis_tx_list_tag)
1354		bus_dma_tag_destroy(sc->sis_tx_list_tag);
1355
1356	/* Destroy the parent tag. */
1357	if (sc->sis_parent_tag)
1358		bus_dma_tag_destroy(sc->sis_parent_tag);
1359}
1360
1361/*
1362 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1363 * we arrange the descriptors in a closed ring, so that the last descriptor
1364 * points back to the first.
1365 */
1366static int
1367sis_ring_init(struct sis_softc *sc)
1368{
1369	struct sis_rxdesc	*rxd;
1370	struct sis_txdesc	*txd;
1371	bus_addr_t		next;
1372	int			error, i;
1373
1374	bzero(&sc->sis_tx_list[0], SIS_TX_LIST_SZ);
1375	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1376		txd = &sc->sis_txdesc[i];
1377		txd->tx_m = NULL;
1378		if (i == SIS_TX_LIST_CNT - 1)
1379			next = SIS_TX_RING_ADDR(sc, 0);
1380		else
1381			next = SIS_TX_RING_ADDR(sc, i + 1);
1382		sc->sis_tx_list[i].sis_next = htole32(SIS_ADDR_LO(next));
1383	}
1384	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1385	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1386	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1387
1388	sc->sis_rx_cons = 0;
1389	bzero(&sc->sis_rx_list[0], SIS_RX_LIST_SZ);
1390	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1391		rxd = &sc->sis_rxdesc[i];
1392		rxd->rx_desc = &sc->sis_rx_list[i];
1393		if (i == SIS_RX_LIST_CNT - 1)
1394			next = SIS_RX_RING_ADDR(sc, 0);
1395		else
1396			next = SIS_RX_RING_ADDR(sc, i + 1);
1397		rxd->rx_desc->sis_next = htole32(SIS_ADDR_LO(next));
1398		error = sis_newbuf(sc, rxd);
1399		if (error)
1400			return (error);
1401	}
1402	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1403	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1404
1405	return (0);
1406}
1407
1408/*
1409 * Initialize an RX descriptor and attach an MBUF cluster.
1410 */
1411static int
1412sis_newbuf(struct sis_softc *sc, struct sis_rxdesc *rxd)
1413{
1414	struct mbuf		*m;
1415	bus_dma_segment_t	segs[1];
1416	bus_dmamap_t		map;
1417	int nsegs;
1418
1419	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1420	if (m == NULL)
1421		return (ENOBUFS);
1422	m->m_len = m->m_pkthdr.len = SIS_RXLEN;
1423#ifndef __NO_STRICT_ALIGNMENT
1424	m_adj(m, SIS_RX_BUF_ALIGN);
1425#endif
1426
1427	if (bus_dmamap_load_mbuf_sg(sc->sis_rx_tag, sc->sis_rx_sparemap, m,
1428	    segs, &nsegs, 0) != 0) {
1429		m_freem(m);
1430		return (ENOBUFS);
1431	}
1432	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1433
1434	if (rxd->rx_m != NULL) {
1435		bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
1436		    BUS_DMASYNC_POSTREAD);
1437		bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
1438	}
1439	map = rxd->rx_dmamap;
1440	rxd->rx_dmamap = sc->sis_rx_sparemap;
1441	sc->sis_rx_sparemap = map;
1442	bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD);
1443	rxd->rx_m = m;
1444	rxd->rx_desc->sis_ptr = htole32(SIS_ADDR_LO(segs[0].ds_addr));
1445	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1446	return (0);
1447}
1448
1449static __inline void
1450sis_discard_rxbuf(struct sis_rxdesc *rxd)
1451{
1452
1453	rxd->rx_desc->sis_cmdsts = htole32(SIS_RXLEN);
1454}
1455
1456#ifndef __NO_STRICT_ALIGNMENT
1457static __inline void
1458sis_fixup_rx(struct mbuf *m)
1459{
1460	uint16_t		*src, *dst;
1461	int			i;
1462
1463	src = mtod(m, uint16_t *);
1464	dst = src - (SIS_RX_BUF_ALIGN - ETHER_ALIGN) / sizeof(*src);
1465
1466	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1467		*dst++ = *src++;
1468
1469	m->m_data -= SIS_RX_BUF_ALIGN - ETHER_ALIGN;
1470}
1471#endif
1472
1473/*
1474 * A frame has been uploaded: pass the resulting mbuf chain up to
1475 * the higher level protocols.
1476 */
1477static int
1478sis_rxeof(struct sis_softc *sc)
1479{
1480	struct mbuf		*m;
1481	struct ifnet		*ifp;
1482	struct sis_rxdesc	*rxd;
1483	struct sis_desc		*cur_rx;
1484	int			prog, rx_cons, rx_npkts = 0, total_len;
1485	uint32_t		rxstat;
1486
1487	SIS_LOCK_ASSERT(sc);
1488
1489	bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1490	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1491
1492	rx_cons = sc->sis_rx_cons;
1493	ifp = sc->sis_ifp;
1494
1495	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1496	    SIS_INC(rx_cons, SIS_RX_LIST_CNT), prog++) {
1497#ifdef DEVICE_POLLING
1498		if (ifp->if_capenable & IFCAP_POLLING) {
1499			if (sc->rxcycles <= 0)
1500				break;
1501			sc->rxcycles--;
1502		}
1503#endif
1504		cur_rx = &sc->sis_rx_list[rx_cons];
1505		rxstat = le32toh(cur_rx->sis_cmdsts);
1506		if ((rxstat & SIS_CMDSTS_OWN) == 0)
1507			break;
1508		rxd = &sc->sis_rxdesc[rx_cons];
1509
1510		total_len = (rxstat & SIS_CMDSTS_BUFLEN) - ETHER_CRC_LEN;
1511		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1512		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1513		    ETHER_CRC_LEN))
1514			rxstat &= ~SIS_RXSTAT_GIANT;
1515		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1516			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1517			if (rxstat & SIS_RXSTAT_COLL)
1518				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1519			sis_discard_rxbuf(rxd);
1520			continue;
1521		}
1522
1523		/* Add a new receive buffer to the ring. */
1524		m = rxd->rx_m;
1525		if (sis_newbuf(sc, rxd) != 0) {
1526			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1527			sis_discard_rxbuf(rxd);
1528			continue;
1529		}
1530
1531		/* No errors; receive the packet. */
1532		m->m_pkthdr.len = m->m_len = total_len;
1533#ifndef __NO_STRICT_ALIGNMENT
1534		/*
1535		 * On architectures without alignment problems we try to
1536		 * allocate a new buffer for the receive ring, and pass up
1537		 * the one where the packet is already, saving the expensive
1538		 * copy operation.
1539		 */
1540		sis_fixup_rx(m);
1541#endif
1542		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1543		m->m_pkthdr.rcvif = ifp;
1544
1545		SIS_UNLOCK(sc);
1546		(*ifp->if_input)(ifp, m);
1547		SIS_LOCK(sc);
1548		rx_npkts++;
1549	}
1550
1551	if (prog > 0) {
1552		sc->sis_rx_cons = rx_cons;
1553		bus_dmamap_sync(sc->sis_rx_list_tag, sc->sis_rx_list_map,
1554		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1555	}
1556
1557	return (rx_npkts);
1558}
1559
1560/*
1561 * A frame was downloaded to the chip. It's safe for us to clean up
1562 * the list buffers.
1563 */
1564
1565static void
1566sis_txeof(struct sis_softc *sc)
1567{
1568	struct ifnet		*ifp;
1569	struct sis_desc		*cur_tx;
1570	struct sis_txdesc	*txd;
1571	uint32_t		cons, txstat;
1572
1573	SIS_LOCK_ASSERT(sc);
1574
1575	cons = sc->sis_tx_cons;
1576	if (cons == sc->sis_tx_prod)
1577		return;
1578
1579	ifp = sc->sis_ifp;
1580	bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1581	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1582
1583	/*
1584	 * Go through our tx list and free mbufs for those
1585	 * frames that have been transmitted.
1586	 */
1587	for (; cons != sc->sis_tx_prod; SIS_INC(cons, SIS_TX_LIST_CNT)) {
1588		cur_tx = &sc->sis_tx_list[cons];
1589		txstat = le32toh(cur_tx->sis_cmdsts);
1590		if ((txstat & SIS_CMDSTS_OWN) != 0)
1591			break;
1592		txd = &sc->sis_txdesc[cons];
1593		if (txd->tx_m != NULL) {
1594			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
1595			    BUS_DMASYNC_POSTWRITE);
1596			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1597			m_freem(txd->tx_m);
1598			txd->tx_m = NULL;
1599			if ((txstat & SIS_CMDSTS_PKT_OK) != 0) {
1600				if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1601				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1602				    (txstat & SIS_TXSTAT_COLLCNT) >> 16);
1603			} else {
1604				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1605				if (txstat & SIS_TXSTAT_EXCESSCOLLS)
1606					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1607				if (txstat & SIS_TXSTAT_OUTOFWINCOLL)
1608					if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1609			}
1610		}
1611		sc->sis_tx_cnt--;
1612		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1613	}
1614	sc->sis_tx_cons = cons;
1615	if (sc->sis_tx_cnt == 0)
1616		sc->sis_watchdog_timer = 0;
1617}
1618
1619static void
1620sis_tick(void *xsc)
1621{
1622	struct sis_softc	*sc;
1623	struct mii_data		*mii;
1624
1625	sc = xsc;
1626	SIS_LOCK_ASSERT(sc);
1627
1628	mii = device_get_softc(sc->sis_miibus);
1629	mii_tick(mii);
1630	sis_watchdog(sc);
1631	if ((sc->sis_flags & SIS_FLAG_LINK) == 0)
1632		sis_miibus_statchg(sc->sis_dev);
1633	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1634}
1635
1636#ifdef DEVICE_POLLING
1637static poll_handler_t sis_poll;
1638
1639static int
1640sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1641{
1642	struct	sis_softc *sc = ifp->if_softc;
1643	int rx_npkts = 0;
1644
1645	SIS_LOCK(sc);
1646	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1647		SIS_UNLOCK(sc);
1648		return (rx_npkts);
1649	}
1650
1651	/*
1652	 * On the sis, reading the status register also clears it.
1653	 * So before returning to intr mode we must make sure that all
1654	 * possible pending sources of interrupts have been served.
1655	 * In practice this means run to completion the *eof routines,
1656	 * and then call the interrupt routine
1657	 */
1658	sc->rxcycles = count;
1659	rx_npkts = sis_rxeof(sc);
1660	sis_txeof(sc);
1661	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1662		sis_startl(ifp);
1663
1664	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1665		uint32_t	status;
1666
1667		/* Reading the ISR register clears all interrupts. */
1668		status = CSR_READ_4(sc, SIS_ISR);
1669
1670		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1671			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1672
1673		if (status & (SIS_ISR_RX_IDLE))
1674			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1675
1676		if (status & SIS_ISR_SYSERR) {
1677			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1678			sis_initl(sc);
1679		}
1680	}
1681
1682	SIS_UNLOCK(sc);
1683	return (rx_npkts);
1684}
1685#endif /* DEVICE_POLLING */
1686
1687static void
1688sis_intr(void *arg)
1689{
1690	struct sis_softc	*sc;
1691	struct ifnet		*ifp;
1692	uint32_t		status;
1693
1694	sc = arg;
1695	ifp = sc->sis_ifp;
1696
1697	SIS_LOCK(sc);
1698#ifdef DEVICE_POLLING
1699	if (ifp->if_capenable & IFCAP_POLLING) {
1700		SIS_UNLOCK(sc);
1701		return;
1702	}
1703#endif
1704
1705	/* Reading the ISR register clears all interrupts. */
1706	status = CSR_READ_4(sc, SIS_ISR);
1707	if ((status & SIS_INTRS) == 0) {
1708		/* Not ours. */
1709		SIS_UNLOCK(sc);
1710		return;
1711	}
1712
1713	/* Disable interrupts. */
1714	CSR_WRITE_4(sc, SIS_IER, 0);
1715
1716	for (;(status & SIS_INTRS) != 0;) {
1717		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1718			break;
1719		if (status &
1720		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1721		    SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1722			sis_txeof(sc);
1723
1724		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1725		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1726			sis_rxeof(sc);
1727
1728		if (status & SIS_ISR_RX_OFLOW)
1729			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1730
1731		if (status & (SIS_ISR_RX_IDLE))
1732			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1733
1734		if (status & SIS_ISR_SYSERR) {
1735			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1736			sis_initl(sc);
1737			SIS_UNLOCK(sc);
1738			return;
1739		}
1740		status = CSR_READ_4(sc, SIS_ISR);
1741	}
1742
1743	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1744		/* Re-enable interrupts. */
1745		CSR_WRITE_4(sc, SIS_IER, 1);
1746
1747		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1748			sis_startl(ifp);
1749	}
1750
1751	SIS_UNLOCK(sc);
1752}
1753
1754/*
1755 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1756 * pointers to the fragment pointers.
1757 */
1758static int
1759sis_encap(struct sis_softc *sc, struct mbuf **m_head)
1760{
1761	struct mbuf		*m;
1762	struct sis_txdesc	*txd;
1763	struct sis_desc		*f;
1764	bus_dma_segment_t	segs[SIS_MAXTXSEGS];
1765	bus_dmamap_t		map;
1766	int			error, i, frag, nsegs, prod;
1767	int			padlen;
1768
1769	prod = sc->sis_tx_prod;
1770	txd = &sc->sis_txdesc[prod];
1771	if ((sc->sis_flags & SIS_FLAG_MANUAL_PAD) != 0 &&
1772	    (*m_head)->m_pkthdr.len < SIS_MIN_FRAMELEN) {
1773		m = *m_head;
1774		padlen = SIS_MIN_FRAMELEN - m->m_pkthdr.len;
1775		if (M_WRITABLE(m) == 0) {
1776			/* Get a writable copy. */
1777			m = m_dup(*m_head, M_NOWAIT);
1778			m_freem(*m_head);
1779			if (m == NULL) {
1780				*m_head = NULL;
1781				return (ENOBUFS);
1782			}
1783			*m_head = m;
1784		}
1785		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1786			m = m_defrag(m, M_NOWAIT);
1787			if (m == NULL) {
1788				m_freem(*m_head);
1789				*m_head = NULL;
1790				return (ENOBUFS);
1791			}
1792		}
1793		/*
1794		 * Manually pad short frames, and zero the pad space
1795		 * to avoid leaking data.
1796		 */
1797		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1798		m->m_pkthdr.len += padlen;
1799		m->m_len = m->m_pkthdr.len;
1800		*m_head = m;
1801	}
1802	error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1803	    *m_head, segs, &nsegs, 0);
1804	if (error == EFBIG) {
1805		m = m_collapse(*m_head, M_NOWAIT, SIS_MAXTXSEGS);
1806		if (m == NULL) {
1807			m_freem(*m_head);
1808			*m_head = NULL;
1809			return (ENOBUFS);
1810		}
1811		*m_head = m;
1812		error = bus_dmamap_load_mbuf_sg(sc->sis_tx_tag, txd->tx_dmamap,
1813		    *m_head, segs, &nsegs, 0);
1814		if (error != 0) {
1815			m_freem(*m_head);
1816			*m_head = NULL;
1817			return (error);
1818		}
1819	} else if (error != 0)
1820		return (error);
1821
1822	/* Check for descriptor overruns. */
1823	if (sc->sis_tx_cnt + nsegs > SIS_TX_LIST_CNT - 1) {
1824		bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
1825		return (ENOBUFS);
1826	}
1827
1828	bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE);
1829
1830	frag = prod;
1831	for (i = 0; i < nsegs; i++) {
1832		f = &sc->sis_tx_list[prod];
1833		if (i == 0)
1834			f->sis_cmdsts = htole32(segs[i].ds_len |
1835			    SIS_CMDSTS_MORE);
1836		else
1837			f->sis_cmdsts = htole32(segs[i].ds_len |
1838			    SIS_CMDSTS_OWN | SIS_CMDSTS_MORE);
1839		f->sis_ptr = htole32(SIS_ADDR_LO(segs[i].ds_addr));
1840		SIS_INC(prod, SIS_TX_LIST_CNT);
1841		sc->sis_tx_cnt++;
1842	}
1843
1844	/* Update producer index. */
1845	sc->sis_tx_prod = prod;
1846
1847	/* Remove MORE flag on the last descriptor. */
1848	prod = (prod - 1) & (SIS_TX_LIST_CNT - 1);
1849	f = &sc->sis_tx_list[prod];
1850	f->sis_cmdsts &= ~htole32(SIS_CMDSTS_MORE);
1851
1852	/* Lastly transfer ownership of packet to the controller. */
1853	f = &sc->sis_tx_list[frag];
1854	f->sis_cmdsts |= htole32(SIS_CMDSTS_OWN);
1855
1856	/* Swap the last and the first dmamaps. */
1857	map = txd->tx_dmamap;
1858	txd->tx_dmamap = sc->sis_txdesc[prod].tx_dmamap;
1859	sc->sis_txdesc[prod].tx_dmamap = map;
1860	sc->sis_txdesc[prod].tx_m = *m_head;
1861
1862	return (0);
1863}
1864
1865static void
1866sis_start(struct ifnet *ifp)
1867{
1868	struct sis_softc	*sc;
1869
1870	sc = ifp->if_softc;
1871	SIS_LOCK(sc);
1872	sis_startl(ifp);
1873	SIS_UNLOCK(sc);
1874}
1875
1876static void
1877sis_startl(struct ifnet *ifp)
1878{
1879	struct sis_softc	*sc;
1880	struct mbuf		*m_head;
1881	int			queued;
1882
1883	sc = ifp->if_softc;
1884
1885	SIS_LOCK_ASSERT(sc);
1886
1887	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1888	    IFF_DRV_RUNNING || (sc->sis_flags & SIS_FLAG_LINK) == 0)
1889		return;
1890
1891	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1892	    sc->sis_tx_cnt < SIS_TX_LIST_CNT - 4;) {
1893		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1894		if (m_head == NULL)
1895			break;
1896
1897		if (sis_encap(sc, &m_head) != 0) {
1898			if (m_head == NULL)
1899				break;
1900			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1901			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1902			break;
1903		}
1904
1905		queued++;
1906
1907		/*
1908		 * If there's a BPF listener, bounce a copy of this frame
1909		 * to him.
1910		 */
1911		BPF_MTAP(ifp, m_head);
1912	}
1913
1914	if (queued) {
1915		/* Transmit */
1916		bus_dmamap_sync(sc->sis_tx_list_tag, sc->sis_tx_list_map,
1917		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1918		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1919
1920		/*
1921		 * Set a timeout in case the chip goes out to lunch.
1922		 */
1923		sc->sis_watchdog_timer = 5;
1924	}
1925}
1926
1927static void
1928sis_init(void *xsc)
1929{
1930	struct sis_softc	*sc = xsc;
1931
1932	SIS_LOCK(sc);
1933	sis_initl(sc);
1934	SIS_UNLOCK(sc);
1935}
1936
1937static void
1938sis_initl(struct sis_softc *sc)
1939{
1940	struct ifnet		*ifp = sc->sis_ifp;
1941	struct mii_data		*mii;
1942	uint8_t			*eaddr;
1943
1944	SIS_LOCK_ASSERT(sc);
1945
1946	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1947		return;
1948
1949	/*
1950	 * Cancel pending I/O and free all RX/TX buffers.
1951	 */
1952	sis_stop(sc);
1953	/*
1954	 * Reset the chip to a known state.
1955	 */
1956	sis_reset(sc);
1957#ifdef notyet
1958	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1959		/*
1960		 * Configure 400usec of interrupt holdoff.  This is based
1961		 * on emperical tests on a Soekris 4801.
1962 		 */
1963		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1964	}
1965#endif
1966
1967	mii = device_get_softc(sc->sis_miibus);
1968
1969	/* Set MAC address */
1970	eaddr = IF_LLADDR(sc->sis_ifp);
1971	if (sc->sis_type == SIS_TYPE_83815) {
1972		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1973		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1974		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1975		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1976		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1977		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1978	} else {
1979		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1980		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[0] | eaddr[1] << 8);
1981		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1982		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[2] | eaddr[3] << 8);
1983		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1984		CSR_WRITE_4(sc, SIS_RXFILT_DATA, eaddr[4] | eaddr[5] << 8);
1985	}
1986
1987	/* Init circular TX/RX lists. */
1988	if (sis_ring_init(sc) != 0) {
1989		device_printf(sc->sis_dev,
1990		    "initialization failed: no memory for rx buffers\n");
1991		sis_stop(sc);
1992		return;
1993	}
1994
1995	if (sc->sis_type == SIS_TYPE_83815) {
1996		if (sc->sis_manual_pad != 0)
1997			sc->sis_flags |= SIS_FLAG_MANUAL_PAD;
1998		else
1999			sc->sis_flags &= ~SIS_FLAG_MANUAL_PAD;
2000	}
2001
2002	/*
2003	 * Short Cable Receive Errors (MP21.E)
2004	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
2005	 * recommends the following register settings "for optimum
2006	 * performance." for rev 15C.  Set this also for 15D parts as
2007	 * they require it in practice.
2008	 */
2009	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
2010		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2011		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2012		/* set val for c2 */
2013		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2014		/* load/kill c2 */
2015		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2016		/* rais SD off, from 4 to c */
2017		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2018		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2019	}
2020
2021	sis_rxfilter(sc);
2022
2023	/*
2024	 * Load the address of the RX and TX lists.
2025	 */
2026	CSR_WRITE_4(sc, SIS_RX_LISTPTR, SIS_ADDR_LO(sc->sis_rx_paddr));
2027	CSR_WRITE_4(sc, SIS_TX_LISTPTR, SIS_ADDR_LO(sc->sis_tx_paddr));
2028
2029	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2030	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2031	 * for TX/RX DMA should be no larger than 16 double words.
2032	 */
2033	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2034		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2035	} else {
2036		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2037	}
2038
2039	/* Accept Long Packets for VLAN support */
2040	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2041
2042	/*
2043	 * Assume 100Mbps link, actual MAC configuration is done
2044	 * after getting a valid link.
2045	 */
2046	CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2047
2048	/*
2049	 * Enable interrupts.
2050	 */
2051	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2052#ifdef DEVICE_POLLING
2053	/*
2054	 * ... only enable interrupts if we are not polling, make sure
2055	 * they are off otherwise.
2056	 */
2057	if (ifp->if_capenable & IFCAP_POLLING)
2058		CSR_WRITE_4(sc, SIS_IER, 0);
2059	else
2060#endif
2061	CSR_WRITE_4(sc, SIS_IER, 1);
2062
2063	/* Clear MAC disable. */
2064	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE);
2065
2066	sc->sis_flags &= ~SIS_FLAG_LINK;
2067	mii_mediachg(mii);
2068
2069	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2070	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2071
2072	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2073}
2074
2075/*
2076 * Set media options.
2077 */
2078static int
2079sis_ifmedia_upd(struct ifnet *ifp)
2080{
2081	struct sis_softc	*sc;
2082	struct mii_data		*mii;
2083	struct mii_softc	*miisc;
2084	int			error;
2085
2086	sc = ifp->if_softc;
2087
2088	SIS_LOCK(sc);
2089	mii = device_get_softc(sc->sis_miibus);
2090	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2091		PHY_RESET(miisc);
2092	error = mii_mediachg(mii);
2093	SIS_UNLOCK(sc);
2094
2095	return (error);
2096}
2097
2098/*
2099 * Report current media status.
2100 */
2101static void
2102sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2103{
2104	struct sis_softc	*sc;
2105	struct mii_data		*mii;
2106
2107	sc = ifp->if_softc;
2108
2109	SIS_LOCK(sc);
2110	mii = device_get_softc(sc->sis_miibus);
2111	mii_pollstat(mii);
2112	ifmr->ifm_active = mii->mii_media_active;
2113	ifmr->ifm_status = mii->mii_media_status;
2114	SIS_UNLOCK(sc);
2115}
2116
2117static int
2118sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2119{
2120	struct sis_softc	*sc = ifp->if_softc;
2121	struct ifreq		*ifr = (struct ifreq *) data;
2122	struct mii_data		*mii;
2123	int			error = 0, mask;
2124
2125	switch (command) {
2126	case SIOCSIFFLAGS:
2127		SIS_LOCK(sc);
2128		if (ifp->if_flags & IFF_UP) {
2129			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2130			    ((ifp->if_flags ^ sc->sis_if_flags) &
2131			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2132				sis_rxfilter(sc);
2133			else
2134				sis_initl(sc);
2135		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2136			sis_stop(sc);
2137		sc->sis_if_flags = ifp->if_flags;
2138		SIS_UNLOCK(sc);
2139		break;
2140	case SIOCADDMULTI:
2141	case SIOCDELMULTI:
2142		SIS_LOCK(sc);
2143		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2144			sis_rxfilter(sc);
2145		SIS_UNLOCK(sc);
2146		break;
2147	case SIOCGIFMEDIA:
2148	case SIOCSIFMEDIA:
2149		mii = device_get_softc(sc->sis_miibus);
2150		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2151		break;
2152	case SIOCSIFCAP:
2153		SIS_LOCK(sc);
2154		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2155#ifdef DEVICE_POLLING
2156		if ((mask & IFCAP_POLLING) != 0 &&
2157		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2158			ifp->if_capenable ^= IFCAP_POLLING;
2159			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2160				error = ether_poll_register(sis_poll, ifp);
2161				if (error != 0) {
2162					SIS_UNLOCK(sc);
2163					break;
2164				}
2165				/* Disable interrupts. */
2166				CSR_WRITE_4(sc, SIS_IER, 0);
2167                        } else {
2168                                error = ether_poll_deregister(ifp);
2169                                /* Enable interrupts. */
2170				CSR_WRITE_4(sc, SIS_IER, 1);
2171                        }
2172		}
2173#endif /* DEVICE_POLLING */
2174		if ((mask & IFCAP_WOL) != 0 &&
2175		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2176			if ((mask & IFCAP_WOL_UCAST) != 0)
2177				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2178			if ((mask & IFCAP_WOL_MCAST) != 0)
2179				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2180			if ((mask & IFCAP_WOL_MAGIC) != 0)
2181				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2182		}
2183		SIS_UNLOCK(sc);
2184		break;
2185	default:
2186		error = ether_ioctl(ifp, command, data);
2187		break;
2188	}
2189
2190	return (error);
2191}
2192
2193static void
2194sis_watchdog(struct sis_softc *sc)
2195{
2196
2197	SIS_LOCK_ASSERT(sc);
2198
2199	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2200		return;
2201
2202	device_printf(sc->sis_dev, "watchdog timeout\n");
2203	if_inc_counter(sc->sis_ifp, IFCOUNTER_OERRORS, 1);
2204
2205	sc->sis_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2206	sis_initl(sc);
2207
2208	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2209		sis_startl(sc->sis_ifp);
2210}
2211
2212/*
2213 * Stop the adapter and free any mbufs allocated to the
2214 * RX and TX lists.
2215 */
2216static void
2217sis_stop(struct sis_softc *sc)
2218{
2219	struct ifnet *ifp;
2220	struct sis_rxdesc *rxd;
2221	struct sis_txdesc *txd;
2222	int i;
2223
2224	SIS_LOCK_ASSERT(sc);
2225
2226	ifp = sc->sis_ifp;
2227	sc->sis_watchdog_timer = 0;
2228
2229	callout_stop(&sc->sis_stat_ch);
2230
2231	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2232	CSR_WRITE_4(sc, SIS_IER, 0);
2233	CSR_WRITE_4(sc, SIS_IMR, 0);
2234	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2235	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2236	DELAY(1000);
2237	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2238	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2239
2240	sc->sis_flags &= ~SIS_FLAG_LINK;
2241
2242	/*
2243	 * Free data in the RX lists.
2244	 */
2245	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2246		rxd = &sc->sis_rxdesc[i];
2247		if (rxd->rx_m != NULL) {
2248			bus_dmamap_sync(sc->sis_rx_tag, rxd->rx_dmamap,
2249			    BUS_DMASYNC_POSTREAD);
2250			bus_dmamap_unload(sc->sis_rx_tag, rxd->rx_dmamap);
2251			m_freem(rxd->rx_m);
2252			rxd->rx_m = NULL;
2253		}
2254	}
2255
2256	/*
2257	 * Free the TX list buffers.
2258	 */
2259	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2260		txd = &sc->sis_txdesc[i];
2261		if (txd->tx_m != NULL) {
2262			bus_dmamap_sync(sc->sis_tx_tag, txd->tx_dmamap,
2263			    BUS_DMASYNC_POSTWRITE);
2264			bus_dmamap_unload(sc->sis_tx_tag, txd->tx_dmamap);
2265			m_freem(txd->tx_m);
2266			txd->tx_m = NULL;
2267		}
2268	}
2269}
2270
2271/*
2272 * Stop all chip I/O so that the kernel's probe routines don't
2273 * get confused by errant DMAs when rebooting.
2274 */
2275static int
2276sis_shutdown(device_t dev)
2277{
2278
2279	return (sis_suspend(dev));
2280}
2281
2282static int
2283sis_suspend(device_t dev)
2284{
2285	struct sis_softc	*sc;
2286
2287	sc = device_get_softc(dev);
2288	SIS_LOCK(sc);
2289	sis_stop(sc);
2290	sis_wol(sc);
2291	SIS_UNLOCK(sc);
2292	return (0);
2293}
2294
2295static int
2296sis_resume(device_t dev)
2297{
2298	struct sis_softc	*sc;
2299	struct ifnet		*ifp;
2300
2301	sc = device_get_softc(dev);
2302	SIS_LOCK(sc);
2303	ifp = sc->sis_ifp;
2304	if ((ifp->if_flags & IFF_UP) != 0) {
2305		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2306		sis_initl(sc);
2307	}
2308	SIS_UNLOCK(sc);
2309	return (0);
2310}
2311
2312static void
2313sis_wol(struct sis_softc *sc)
2314{
2315	struct ifnet		*ifp;
2316	uint32_t		val;
2317	uint16_t		pmstat;
2318	int			pmc;
2319
2320	ifp = sc->sis_ifp;
2321	if ((ifp->if_capenable & IFCAP_WOL) == 0)
2322		return;
2323
2324	if (sc->sis_type == SIS_TYPE_83815) {
2325		/* Reset RXDP. */
2326		CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2327
2328		/* Configure WOL events. */
2329		CSR_READ_4(sc, NS_WCSR);
2330		val = 0;
2331		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2332			val |= NS_WCSR_WAKE_UCAST;
2333		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2334			val |= NS_WCSR_WAKE_MCAST;
2335		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2336			val |= NS_WCSR_WAKE_MAGIC;
2337		CSR_WRITE_4(sc, NS_WCSR, val);
2338		/* Enable PME and clear PMESTS. */
2339		val = CSR_READ_4(sc, NS_CLKRUN);
2340		val |= NS_CLKRUN_PMEENB | NS_CLKRUN_PMESTS;
2341		CSR_WRITE_4(sc, NS_CLKRUN, val);
2342		/* Enable silent RX mode. */
2343		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2344	} else {
2345		if (pci_find_cap(sc->sis_dev, PCIY_PMG, &pmc) != 0)
2346			return;
2347		val = 0;
2348		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2349			val |= SIS_PWRMAN_WOL_MAGIC;
2350		CSR_WRITE_4(sc, SIS_PWRMAN_CTL, val);
2351		/* Request PME. */
2352		pmstat = pci_read_config(sc->sis_dev,
2353		    pmc + PCIR_POWER_STATUS, 2);
2354		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2355		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2356			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2357		pci_write_config(sc->sis_dev,
2358		    pmc + PCIR_POWER_STATUS, pmstat, 2);
2359	}
2360}
2361
2362static void
2363sis_add_sysctls(struct sis_softc *sc)
2364{
2365	struct sysctl_ctx_list *ctx;
2366	struct sysctl_oid_list *children;
2367	int unit;
2368
2369	ctx = device_get_sysctl_ctx(sc->sis_dev);
2370	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sis_dev));
2371
2372	unit = device_get_unit(sc->sis_dev);
2373	/*
2374	 * Unlike most other controllers, NS DP83815/DP83816 controllers
2375	 * seem to pad with 0xFF when it encounter short frames.  According
2376	 * to RFC 1042 the pad bytes should be 0x00.  Turning this tunable
2377	 * on will have driver pad manully but it's disabled by default
2378	 * because it will consume extra CPU cycles for short frames.
2379	 */
2380	sc->sis_manual_pad = 0;
2381	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "manual_pad",
2382	    CTLFLAG_RWTUN, &sc->sis_manual_pad, 0, "Manually pad short frames");
2383}
2384
2385static device_method_t sis_methods[] = {
2386	/* Device interface */
2387	DEVMETHOD(device_probe,		sis_probe),
2388	DEVMETHOD(device_attach,	sis_attach),
2389	DEVMETHOD(device_detach,	sis_detach),
2390	DEVMETHOD(device_shutdown,	sis_shutdown),
2391	DEVMETHOD(device_suspend,	sis_suspend),
2392	DEVMETHOD(device_resume,	sis_resume),
2393
2394	/* MII interface */
2395	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2396	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2397	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2398
2399	DEVMETHOD_END
2400};
2401
2402static driver_t sis_driver = {
2403	"sis",
2404	sis_methods,
2405	sizeof(struct sis_softc)
2406};
2407
2408static devclass_t sis_devclass;
2409
2410DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2411DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2412