1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5 * Copyright (C) 2013-2016 Universita` di Pisa
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *   1. Redistributions of source code must retain the above copyright
12 *      notice, this list of conditions and the following disclaimer.
13 *   2. Redistributions in binary form must reproduce the above copyright
14 *      notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * $FreeBSD$
32 *
33 * The header contains the definitions of constants and function
34 * prototypes used only in kernelspace.
35 */
36
37#ifndef _NET_NETMAP_KERN_H_
38#define _NET_NETMAP_KERN_H_
39
40#if defined(linux)
41
42#if defined(CONFIG_NETMAP_EXTMEM)
43#define WITH_EXTMEM
44#endif
45#if  defined(CONFIG_NETMAP_VALE)
46#define WITH_VALE
47#endif
48#if defined(CONFIG_NETMAP_PIPE)
49#define WITH_PIPES
50#endif
51#if defined(CONFIG_NETMAP_MONITOR)
52#define WITH_MONITOR
53#endif
54#if defined(CONFIG_NETMAP_GENERIC)
55#define WITH_GENERIC
56#endif
57#if defined(CONFIG_NETMAP_PTNETMAP)
58#define WITH_PTNETMAP
59#endif
60#if defined(CONFIG_NETMAP_SINK)
61#define WITH_SINK
62#endif
63#if defined(CONFIG_NETMAP_NULL)
64#define WITH_NMNULL
65#endif
66
67#elif defined (_WIN32)
68#define WITH_VALE	// comment out to disable VALE support
69#define WITH_PIPES
70#define WITH_MONITOR
71#define WITH_GENERIC
72#define WITH_NMNULL
73
74#else	/* neither linux nor windows */
75#define WITH_VALE	// comment out to disable VALE support
76#define WITH_PIPES
77#define WITH_MONITOR
78#define WITH_GENERIC
79#define WITH_EXTMEM
80#define WITH_NMNULL
81#endif
82
83#if defined(__FreeBSD__)
84#include <sys/selinfo.h>
85
86#define likely(x)	__builtin_expect((long)!!(x), 1L)
87#define unlikely(x)	__builtin_expect((long)!!(x), 0L)
88#define __user
89
90#define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
91
92#define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
93#define NM_MTX_INIT(m)		sx_init(&(m), #m)
94#define NM_MTX_DESTROY(m)	sx_destroy(&(m))
95#define NM_MTX_LOCK(m)		sx_xlock(&(m))
96#define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
97#define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
98#define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
99
100#define	NM_SELINFO_T	struct nm_selinfo
101#define NM_SELRECORD_T	struct thread
102#define	MBUF_LEN(m)	((m)->m_pkthdr.len)
103#define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
104#define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
105#define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
106
107#define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
108/* atomic operations */
109#include <machine/atomic.h>
110#define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
111#define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
112
113#if __FreeBSD_version >= 1100030
114#define	WNA(_ifp)	(_ifp)->if_netmap
115#else /* older FreeBSD */
116#define	WNA(_ifp)	(_ifp)->if_pspare[0]
117#endif /* older FreeBSD */
118
119#if __FreeBSD_version >= 1100005
120struct netmap_adapter *netmap_getna(if_t ifp);
121#endif
122
123#if __FreeBSD_version >= 1100027
124#define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
125#define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
126#else
127#define MBUF_REFCNT(m)		((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
128#define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
129#endif
130
131#define MBUF_QUEUED(m)		1
132
133struct nm_selinfo {
134	/* Support for select(2) and poll(2). */
135	struct selinfo si;
136	/* Support for kqueue(9). See comments in netmap_freebsd.c */
137	struct taskqueue *ntfytq;
138	struct task ntfytask;
139	struct mtx m;
140	char mtxname[32];
141	int kqueue_users;
142};
143
144
145struct hrtimer {
146    /* Not used in FreeBSD. */
147};
148
149#define NM_BNS_GET(b)
150#define NM_BNS_PUT(b)
151
152#elif defined (linux)
153
154#define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
155#define	NM_SELINFO_T	wait_queue_head_t
156#define	MBUF_LEN(m)	((m)->len)
157#define MBUF_TRANSMIT(na, ifp, m)							\
158	({										\
159		/* Avoid infinite recursion with generic. */				\
160		m->priority = NM_MAGIC_PRIORITY_TX;					\
161		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
162		0;									\
163	})
164
165/* See explanation in nm_os_generic_xmit_frame. */
166#define	GEN_TX_MBUF_IFP(m)	((struct ifnet *)skb_shinfo(m)->destructor_arg)
167
168#define NM_ATOMIC_T	volatile long unsigned int
169
170#define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
171#define NM_MTX_INIT(m)	mutex_init(&(m))
172#define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
173#define NM_MTX_LOCK(m)		mutex_lock(&(m))
174#define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
175#define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
176
177#ifndef DEV_NETMAP
178#define DEV_NETMAP
179#endif /* DEV_NETMAP */
180
181#elif defined (__APPLE__)
182
183#warning apple support is incomplete.
184#define likely(x)	__builtin_expect(!!(x), 1)
185#define unlikely(x)	__builtin_expect(!!(x), 0)
186#define	NM_LOCK_T	IOLock *
187#define	NM_SELINFO_T	struct selinfo
188#define	MBUF_LEN(m)	((m)->m_pkthdr.len)
189
190#elif defined (_WIN32)
191#include "../../../WINDOWS/win_glue.h"
192
193#define NM_SELRECORD_T		IO_STACK_LOCATION
194#define NM_SELINFO_T		win_SELINFO		// see win_glue.h
195#define NM_LOCK_T		win_spinlock_t	// see win_glue.h
196#define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
197
198#define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
199#define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
200#define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
201#define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
202#define NM_MTX_ASSERT(m)	assert(&m.Count>0)
203
204//These linknames are for the NDIS driver
205#define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
206#define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
207
208//Definition of internal driver-to-driver ioctl codes
209#define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
210#define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
211
212typedef struct hrtimer{
213	KTIMER timer;
214	BOOLEAN active;
215	KDPC deferred_proc;
216};
217
218/* MSVC does not have likely/unlikely support */
219#ifdef _MSC_VER
220#define likely(x)	(x)
221#define unlikely(x)	(x)
222#else
223#define likely(x)	__builtin_expect((long)!!(x), 1L)
224#define unlikely(x)	__builtin_expect((long)!!(x), 0L)
225#endif //_MSC_VER
226
227#else
228
229#error unsupported platform
230
231#endif /* end - platform-specific code */
232
233#ifndef _WIN32 /* support for emulated sysctl */
234#define SYSBEGIN(x)
235#define SYSEND
236#endif /* _WIN32 */
237
238#define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
239
240#define	NMG_LOCK_T		NM_MTX_T
241#define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
242#define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
243#define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
244#define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
245#define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
246
247#if defined(__FreeBSD__)
248#define nm_prerr_int	printf
249#define nm_prinf_int	printf
250#elif defined (_WIN32)
251#define nm_prerr_int	DbgPrint
252#define nm_prinf_int	DbgPrint
253#elif defined(linux)
254#define nm_prerr_int(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
255#define nm_prinf_int(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
256#endif
257
258#define nm_prinf(format, ...)					\
259	do {							\
260		struct timeval __xxts;				\
261		microtime(&__xxts);				\
262		nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
263		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
264		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
265	} while (0)
266
267#define nm_prerr(format, ...)					\
268	do {							\
269		struct timeval __xxts;				\
270		microtime(&__xxts);				\
271		nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
272		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
273		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
274	} while (0)
275
276/* Disabled printf (used to be nm_prdis). */
277#define nm_prdis(format, ...)
278
279/* Rate limited, lps indicates how many per second. */
280#define nm_prlim(lps, format, ...)				\
281	do {							\
282		static int t0, __cnt;				\
283		if (t0 != time_second) {			\
284			t0 = time_second;			\
285			__cnt = 0;				\
286		}						\
287		if (__cnt++ < lps)				\
288			nm_prinf(format, ##__VA_ARGS__);	\
289	} while (0)
290
291struct netmap_adapter;
292struct nm_bdg_fwd;
293struct nm_bridge;
294struct netmap_priv_d;
295struct nm_bdg_args;
296
297/* os-specific NM_SELINFO_T initialzation/destruction functions */
298int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
299void nm_os_selinfo_uninit(NM_SELINFO_T *);
300
301const char *nm_dump_buf(char *p, int len, int lim, char *dst);
302
303void nm_os_selwakeup(NM_SELINFO_T *si);
304void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
305
306int nm_os_ifnet_init(void);
307void nm_os_ifnet_fini(void);
308void nm_os_ifnet_lock(void);
309void nm_os_ifnet_unlock(void);
310
311unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
312
313void nm_os_get_module(void);
314void nm_os_put_module(void);
315
316void netmap_make_zombie(struct ifnet *);
317void netmap_undo_zombie(struct ifnet *);
318
319/* os independent alloc/realloc/free */
320void *nm_os_malloc(size_t);
321void *nm_os_vmalloc(size_t);
322void *nm_os_realloc(void *, size_t new_size, size_t old_size);
323void nm_os_free(void *);
324void nm_os_vfree(void *);
325
326/* os specific attach/detach enter/exit-netmap-mode routines */
327void nm_os_onattach(struct ifnet *);
328void nm_os_ondetach(struct ifnet *);
329void nm_os_onenter(struct ifnet *);
330void nm_os_onexit(struct ifnet *);
331
332/* passes a packet up to the host stack.
333 * If the packet is sent (or dropped) immediately it returns NULL,
334 * otherwise it links the packet to prev and returns m.
335 * In this case, a final call with m=NULL and prev != NULL will send up
336 * the entire chain to the host stack.
337 */
338void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
339
340int nm_os_mbuf_has_seg_offld(struct mbuf *m);
341int nm_os_mbuf_has_csum_offld(struct mbuf *m);
342
343#include "netmap_mbq.h"
344
345extern NMG_LOCK_T	netmap_global_lock;
346
347enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
348
349static __inline const char*
350nm_txrx2str(enum txrx t)
351{
352	return (t== NR_RX ? "RX" : "TX");
353}
354
355static __inline enum txrx
356nm_txrx_swap(enum txrx t)
357{
358	return (t== NR_RX ? NR_TX : NR_RX);
359}
360
361#define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
362
363#ifdef WITH_MONITOR
364struct netmap_zmon_list {
365	struct netmap_kring *next;
366	struct netmap_kring *prev;
367};
368#endif /* WITH_MONITOR */
369
370/*
371 * private, kernel view of a ring. Keeps track of the status of
372 * a ring across system calls.
373 *
374 *	nr_hwcur	index of the next buffer to refill.
375 *			It corresponds to ring->head
376 *			at the time the system call returns.
377 *
378 *	nr_hwtail	index of the first buffer owned by the kernel.
379 *			On RX, hwcur->hwtail are receive buffers
380 *			not yet released. hwcur is advanced following
381 *			ring->head, hwtail is advanced on incoming packets,
382 *			and a wakeup is generated when hwtail passes ring->cur
383 *			    On TX, hwcur->rcur have been filled by the sender
384 *			but not sent yet to the NIC; rcur->hwtail are available
385 *			for new transmissions, and hwtail->hwcur-1 are pending
386 *			transmissions not yet acknowledged.
387 *
388 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
389 * This is so that, on a reset, buffers owned by userspace are not
390 * modified by the kernel. In particular:
391 * RX rings: the next empty buffer (hwtail + hwofs) coincides with
392 * 	the next empty buffer as known by the hardware (next_to_check or so).
393 * TX rings: hwcur + hwofs coincides with next_to_send
394 *
395 * The following fields are used to implement lock-free copy of packets
396 * from input to output ports in VALE switch:
397 *	nkr_hwlease	buffer after the last one being copied.
398 *			A writer in nm_bdg_flush reserves N buffers
399 *			from nr_hwlease, advances it, then does the
400 *			copy outside the lock.
401 *			In RX rings (used for VALE ports),
402 *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
403 *			In TX rings (used for NIC or host stack ports)
404 *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
405 *	nkr_leases	array of nkr_num_slots where writers can report
406 *			completion of their block. NR_NOSLOT (~0) indicates
407 *			that the writer has not finished yet
408 *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
409 *
410 * The kring is manipulated by txsync/rxsync and generic netmap function.
411 *
412 * Concurrent rxsync or txsync on the same ring are prevented through
413 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
414 * for NIC rings, and for TX rings attached to the host stack.
415 *
416 * RX rings attached to the host stack use an mbq (rx_queue) on both
417 * rxsync_from_host() and netmap_transmit(). The mbq is protected
418 * by its internal lock.
419 *
420 * RX rings attached to the VALE switch are accessed by both senders
421 * and receiver. They are protected through the q_lock on the RX ring.
422 */
423struct netmap_kring {
424	struct netmap_ring	*ring;
425
426	uint32_t	nr_hwcur;  /* should be nr_hwhead */
427	uint32_t	nr_hwtail;
428
429	/*
430	 * Copies of values in user rings, so we do not need to look
431	 * at the ring (which could be modified). These are set in the
432	 * *sync_prologue()/finalize() routines.
433	 */
434	uint32_t	rhead;
435	uint32_t	rcur;
436	uint32_t	rtail;
437
438	uint32_t	nr_kflags;	/* private driver flags */
439#define NKR_PENDINTR	0x1		// Pending interrupt.
440#define NKR_EXCLUSIVE	0x2		/* exclusive binding */
441#define NKR_FORWARD	0x4		/* (host ring only) there are
442					   packets to forward
443					 */
444#define NKR_NEEDRING	0x8		/* ring needed even if users==0
445					 * (used internally by pipes and
446					 *  by ptnetmap host ports)
447					 */
448#define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
449#define NKR_FAKERING	0x20		/* don't allocate/free buffers */
450
451	uint32_t	nr_mode;
452	uint32_t	nr_pending_mode;
453#define NKR_NETMAP_OFF	0x0
454#define NKR_NETMAP_ON	0x1
455
456	uint32_t	nkr_num_slots;
457
458	/*
459	 * On a NIC reset, the NIC ring indexes may be reset but the
460	 * indexes in the netmap rings remain the same. nkr_hwofs
461	 * keeps track of the offset between the two.
462	 */
463	int32_t		nkr_hwofs;
464
465	/* last_reclaim is opaque marker to help reduce the frequency
466	 * of operations such as reclaiming tx buffers. A possible use
467	 * is set it to ticks and do the reclaim only once per tick.
468	 */
469	uint64_t	last_reclaim;
470
471
472	NM_SELINFO_T	si;		/* poll/select wait queue */
473	NM_LOCK_T	q_lock;		/* protects kring and ring. */
474	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
475
476	/* the adapter the owns this kring */
477	struct netmap_adapter *na;
478
479	/* the adapter that wants to be notified when this kring has
480	 * new slots avaialable. This is usually the same as the above,
481	 * but wrappers may let it point to themselves
482	 */
483	struct netmap_adapter *notify_na;
484
485	/* The following fields are for VALE switch support */
486	struct nm_bdg_fwd *nkr_ft;
487	uint32_t	*nkr_leases;
488#define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
489	uint32_t	nkr_hwlease;
490	uint32_t	nkr_lease_idx;
491
492	/* while nkr_stopped is set, no new [tr]xsync operations can
493	 * be started on this kring.
494	 * This is used by netmap_disable_all_rings()
495	 * to find a synchronization point where critical data
496	 * structures pointed to by the kring can be added or removed
497	 */
498	volatile int nkr_stopped;
499
500	/* Support for adapters without native netmap support.
501	 * On tx rings we preallocate an array of tx buffers
502	 * (same size as the netmap ring), on rx rings we
503	 * store incoming mbufs in a queue that is drained by
504	 * a rxsync.
505	 */
506	struct mbuf	**tx_pool;
507	struct mbuf	*tx_event;	/* TX event used as a notification */
508	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
509	struct mbq	rx_queue;       /* intercepted rx mbufs. */
510
511	uint32_t	users;		/* existing bindings for this ring */
512
513	uint32_t	ring_id;	/* kring identifier */
514	enum txrx	tx;		/* kind of ring (tx or rx) */
515	char name[64];			/* diagnostic */
516
517	/* [tx]sync callback for this kring.
518	 * The default nm_kring_create callback (netmap_krings_create)
519	 * sets the nm_sync callback of each hardware tx(rx) kring to
520	 * the corresponding nm_txsync(nm_rxsync) taken from the
521	 * netmap_adapter; moreover, it sets the sync callback
522	 * of the host tx(rx) ring to netmap_txsync_to_host
523	 * (netmap_rxsync_from_host).
524	 *
525	 * Overrides: the above configuration is not changed by
526	 * any of the nm_krings_create callbacks.
527	 */
528	int (*nm_sync)(struct netmap_kring *kring, int flags);
529	int (*nm_notify)(struct netmap_kring *kring, int flags);
530
531#ifdef WITH_PIPES
532	struct netmap_kring *pipe;	/* if this is a pipe ring,
533					 * pointer to the other end
534					 */
535	uint32_t pipe_tail;		/* hwtail updated by the other end */
536#endif /* WITH_PIPES */
537
538	int (*save_notify)(struct netmap_kring *kring, int flags);
539
540#ifdef WITH_MONITOR
541	/* array of krings that are monitoring this kring */
542	struct netmap_kring **monitors;
543	uint32_t max_monitors; /* current size of the monitors array */
544	uint32_t n_monitors;	/* next unused entry in the monitor array */
545	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
546	uint32_t mon_tail;  /* last seen slot on rx */
547
548	/* circular list of zero-copy monitors */
549	struct netmap_zmon_list zmon_list[NR_TXRX];
550
551	/*
552	 * Monitors work by intercepting the sync and notify callbacks of the
553	 * monitored krings. This is implemented by replacing the pointers
554	 * above and saving the previous ones in mon_* pointers below
555	 */
556	int (*mon_sync)(struct netmap_kring *kring, int flags);
557	int (*mon_notify)(struct netmap_kring *kring, int flags);
558
559#endif
560}
561#ifdef _WIN32
562__declspec(align(64));
563#else
564__attribute__((__aligned__(64)));
565#endif
566
567/* return 1 iff the kring needs to be turned on */
568static inline int
569nm_kring_pending_on(struct netmap_kring *kring)
570{
571	return kring->nr_pending_mode == NKR_NETMAP_ON &&
572	       kring->nr_mode == NKR_NETMAP_OFF;
573}
574
575/* return 1 iff the kring needs to be turned off */
576static inline int
577nm_kring_pending_off(struct netmap_kring *kring)
578{
579	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
580	       kring->nr_mode == NKR_NETMAP_ON;
581}
582
583/* return the next index, with wraparound */
584static inline uint32_t
585nm_next(uint32_t i, uint32_t lim)
586{
587	return unlikely (i == lim) ? 0 : i + 1;
588}
589
590
591/* return the previous index, with wraparound */
592static inline uint32_t
593nm_prev(uint32_t i, uint32_t lim)
594{
595	return unlikely (i == 0) ? lim : i - 1;
596}
597
598
599/*
600 *
601 * Here is the layout for the Rx and Tx rings.
602
603       RxRING                            TxRING
604
605      +-----------------+            +-----------------+
606      |                 |            |                 |
607      |      free       |            |      free       |
608      +-----------------+            +-----------------+
609head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
610      |                 |            | yet             |
611      +-----------------+            |                 |
612 cur->| available to    |            |                 |
613      | user, not read  |            +-----------------+
614      | yet             |       cur->| (being          |
615      |                 |            |  prepared)      |
616      |                 |            |                 |
617      +-----------------+            +     ------      +
618tail->|                 |<-hwtail    |                 |<-hwlease
619      | (being          | ...        |                 | ...
620      |  prepared)      | ...        |                 | ...
621      +-----------------+ ...        |                 | ...
622      |                 |<-hwlease   +-----------------+
623      |                 |      tail->|                 |<-hwtail
624      |                 |            |                 |
625      |                 |            |                 |
626      |                 |            |                 |
627      +-----------------+            +-----------------+
628
629 * The cur/tail (user view) and hwcur/hwtail (kernel view)
630 * are used in the normal operation of the card.
631 *
632 * When a ring is the output of a switch port (Rx ring for
633 * a VALE port, Tx ring for the host stack or NIC), slots
634 * are reserved in blocks through 'hwlease' which points
635 * to the next unused slot.
636 * On an Rx ring, hwlease is always after hwtail,
637 * and completions cause hwtail to advance.
638 * On a Tx ring, hwlease is always between cur and hwtail,
639 * and completions cause cur to advance.
640 *
641 * nm_kr_space() returns the maximum number of slots that
642 * can be assigned.
643 * nm_kr_lease() reserves the required number of buffers,
644 *    advances nkr_hwlease and also returns an entry in
645 *    a circular array where completions should be reported.
646 */
647
648struct lut_entry;
649#ifdef __FreeBSD__
650#define plut_entry lut_entry
651#endif
652
653struct netmap_lut {
654	struct lut_entry *lut;
655	struct plut_entry *plut;
656	uint32_t objtotal;	/* max buffer index */
657	uint32_t objsize;	/* buffer size */
658};
659
660struct netmap_vp_adapter; // forward
661struct nm_bridge;
662
663/* Struct to be filled by nm_config callbacks. */
664struct nm_config_info {
665	unsigned num_tx_rings;
666	unsigned num_rx_rings;
667	unsigned num_tx_descs;
668	unsigned num_rx_descs;
669	unsigned rx_buf_maxsize;
670};
671
672/*
673 * default type for the magic field.
674 * May be overriden in glue code.
675 */
676#ifndef NM_OS_MAGIC
677#define NM_OS_MAGIC uint32_t
678#endif /* !NM_OS_MAGIC */
679
680/*
681 * The "struct netmap_adapter" extends the "struct adapter"
682 * (or equivalent) device descriptor.
683 * It contains all base fields needed to support netmap operation.
684 * There are in fact different types of netmap adapters
685 * (native, generic, VALE switch...) so a netmap_adapter is
686 * just the first field in the derived type.
687 */
688struct netmap_adapter {
689	/*
690	 * On linux we do not have a good way to tell if an interface
691	 * is netmap-capable. So we always use the following trick:
692	 * NA(ifp) points here, and the first entry (which hopefully
693	 * always exists and is at least 32 bits) contains a magic
694	 * value which we can use to detect that the interface is good.
695	 */
696	NM_OS_MAGIC magic;
697	uint32_t na_flags;	/* enabled, and other flags */
698#define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
699				 * useful during initialization
700				 */
701#define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
702#define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
703				 * forwarding packets coming from this
704				 * interface
705				 */
706#define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
707				 * that cannot be changed
708				 */
709#define NAF_NATIVE      16      /* the adapter is native.
710				 * Virtual ports (non persistent vale ports,
711				 * pipes, monitors...) should never use
712				 * this flag.
713				 */
714#define	NAF_NETMAP_ON	32	/* netmap is active (either native or
715				 * emulated). Where possible (e.g. FreeBSD)
716				 * IFCAP_NETMAP also mirrors this flag.
717				 */
718#define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
719#define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
720/* free */
721#define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
722#define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
723#define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
724				  * cannot be registered from userspace
725				  */
726	int active_fds; /* number of user-space descriptors using this
727			 interface, which is equal to the number of
728			 struct netmap_if objs in the mapped region. */
729
730	u_int num_rx_rings; /* number of adapter receive rings */
731	u_int num_tx_rings; /* number of adapter transmit rings */
732	u_int num_host_rx_rings; /* number of host receive rings */
733	u_int num_host_tx_rings; /* number of host transmit rings */
734
735	u_int num_tx_desc;  /* number of descriptor in each queue */
736	u_int num_rx_desc;
737
738	/* tx_rings and rx_rings are private but allocated as a
739	 * contiguous chunk of memory. Each array has N+K entries,
740	 * N for the hardware rings and K for the host rings.
741	 */
742	struct netmap_kring **tx_rings; /* array of TX rings. */
743	struct netmap_kring **rx_rings; /* array of RX rings. */
744
745	void *tailroom;		       /* space below the rings array */
746				       /* (used for leases) */
747
748
749	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
750
751	/* count users of the global wait queues */
752	int si_users[NR_TXRX];
753
754	void *pdev; /* used to store pci device */
755
756	/* copy of if_qflush and if_transmit pointers, to intercept
757	 * packets from the network stack when netmap is active.
758	 */
759	int     (*if_transmit)(struct ifnet *, struct mbuf *);
760
761	/* copy of if_input for netmap_send_up() */
762	void     (*if_input)(struct ifnet *, struct mbuf *);
763
764	/* Back reference to the parent ifnet struct. Used for
765	 * hardware ports (emulated netmap included). */
766	struct ifnet *ifp; /* adapter is ifp->if_softc */
767
768	/*---- callbacks for this netmap adapter -----*/
769	/*
770	 * nm_dtor() is the cleanup routine called when destroying
771	 *	the adapter.
772	 *	Called with NMG_LOCK held.
773	 *
774	 * nm_register() is called on NIOCREGIF and close() to enter
775	 *	or exit netmap mode on the NIC
776	 *	Called with NNG_LOCK held.
777	 *
778	 * nm_txsync() pushes packets to the underlying hw/switch
779	 *
780	 * nm_rxsync() collects packets from the underlying hw/switch
781	 *
782	 * nm_config() returns configuration information from the OS
783	 *	Called with NMG_LOCK held.
784	 *
785	 * nm_krings_create() create and init the tx_rings and
786	 * 	rx_rings arrays of kring structures. In particular,
787	 * 	set the nm_sync callbacks for each ring.
788	 * 	There is no need to also allocate the corresponding
789	 * 	netmap_rings, since netmap_mem_rings_create() will always
790	 * 	be called to provide the missing ones.
791	 *	Called with NNG_LOCK held.
792	 *
793	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
794	 * 	arrays
795	 *	Called with NMG_LOCK held.
796	 *
797	 * nm_notify() is used to act after data have become available
798	 * 	(or the stopped state of the ring has changed)
799	 *	For hw devices this is typically a selwakeup(),
800	 *	but for NIC/host ports attached to a switch (or vice-versa)
801	 *	we also need to invoke the 'txsync' code downstream.
802	 *      This callback pointer is actually used only to initialize
803	 *      kring->nm_notify.
804	 *      Return values are the same as for netmap_rx_irq().
805	 */
806	void (*nm_dtor)(struct netmap_adapter *);
807
808	int (*nm_register)(struct netmap_adapter *, int onoff);
809	void (*nm_intr)(struct netmap_adapter *, int onoff);
810
811	int (*nm_txsync)(struct netmap_kring *kring, int flags);
812	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
813	int (*nm_notify)(struct netmap_kring *kring, int flags);
814#define NAF_FORCE_READ      1
815#define NAF_FORCE_RECLAIM   2
816#define NAF_CAN_FORWARD_DOWN 4
817	/* return configuration information */
818	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
819	int (*nm_krings_create)(struct netmap_adapter *);
820	void (*nm_krings_delete)(struct netmap_adapter *);
821	/*
822	 * nm_bdg_attach() initializes the na_vp field to point
823	 *      to an adapter that can be attached to a VALE switch. If the
824	 *      current adapter is already a VALE port, na_vp is simply a cast;
825	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
826	 *      If applicable, this callback also initializes na_hostvp,
827	 *      that can be used to connect the adapter host rings to the
828	 *      switch.
829	 *      Called with NMG_LOCK held.
830	 *
831	 * nm_bdg_ctl() is called on the actual attach/detach to/from
832	 *      to/from the switch, to perform adapter-specific
833	 *      initializations
834	 *      Called with NMG_LOCK held.
835	 */
836	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
837			struct nm_bridge *);
838	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
839
840	/* adapter used to attach this adapter to a VALE switch (if any) */
841	struct netmap_vp_adapter *na_vp;
842	/* adapter used to attach the host rings of this adapter
843	 * to a VALE switch (if any) */
844	struct netmap_vp_adapter *na_hostvp;
845
846	/* standard refcount to control the lifetime of the adapter
847	 * (it should be equal to the lifetime of the corresponding ifp)
848	 */
849	int na_refcount;
850
851	/* memory allocator (opaque)
852	 * We also cache a pointer to the lut_entry for translating
853	 * buffer addresses, the total number of buffers and the buffer size.
854	 */
855 	struct netmap_mem_d *nm_mem;
856	struct netmap_mem_d *nm_mem_prev;
857	struct netmap_lut na_lut;
858
859	/* additional information attached to this adapter
860	 * by other netmap subsystems. Currently used by
861	 * bwrap, LINUX/v1000 and ptnetmap
862	 */
863	void *na_private;
864
865	/* array of pipes that have this adapter as a parent */
866	struct netmap_pipe_adapter **na_pipes;
867	int na_next_pipe;	/* next free slot in the array */
868	int na_max_pipes;	/* size of the array */
869
870	/* Offset of ethernet header for each packet. */
871	u_int virt_hdr_len;
872
873	/* Max number of bytes that the NIC can store in the buffer
874	 * referenced by each RX descriptor. This translates to the maximum
875	 * bytes that a single netmap slot can reference. Larger packets
876	 * require NS_MOREFRAG support. */
877	unsigned rx_buf_maxsize;
878
879	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
880
881#ifdef WITH_MONITOR
882	unsigned long	monitor_id;	/* debugging */
883#endif
884};
885
886static __inline u_int
887nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
888{
889	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
890}
891
892static __inline void
893nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
894{
895	if (t == NR_TX)
896		na->num_tx_desc = v;
897	else
898		na->num_rx_desc = v;
899}
900
901static __inline u_int
902nma_get_nrings(struct netmap_adapter *na, enum txrx t)
903{
904	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
905}
906
907static __inline u_int
908nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
909{
910	return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
911}
912
913static __inline void
914nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
915{
916	if (t == NR_TX)
917		na->num_tx_rings = v;
918	else
919		na->num_rx_rings = v;
920}
921
922static __inline void
923nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
924{
925	if (t == NR_TX)
926		na->num_host_tx_rings = v;
927	else
928		na->num_host_rx_rings = v;
929}
930
931static __inline struct netmap_kring**
932NMR(struct netmap_adapter *na, enum txrx t)
933{
934	return (t == NR_TX ? na->tx_rings : na->rx_rings);
935}
936
937int nma_intr_enable(struct netmap_adapter *na, int onoff);
938
939/*
940 * If the NIC is owned by the kernel
941 * (i.e., bridge), neither another bridge nor user can use it;
942 * if the NIC is owned by a user, only users can share it.
943 * Evaluation must be done under NMG_LOCK().
944 */
945#define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
946#define NETMAP_OWNED_BY_ANY(na) \
947	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
948
949/*
950 * derived netmap adapters for various types of ports
951 */
952struct netmap_vp_adapter {	/* VALE software port */
953	struct netmap_adapter up;
954
955	/*
956	 * Bridge support:
957	 *
958	 * bdg_port is the port number used in the bridge;
959	 * na_bdg points to the bridge this NA is attached to.
960	 */
961	int bdg_port;
962	struct nm_bridge *na_bdg;
963	int retry;
964	int autodelete; /* remove the ifp on last reference */
965
966	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
967	u_int mfs;
968	/* Last source MAC on this port */
969	uint64_t last_smac;
970};
971
972
973struct netmap_hw_adapter {	/* physical device */
974	struct netmap_adapter up;
975
976#ifdef linux
977	struct net_device_ops nm_ndo;
978	struct ethtool_ops    nm_eto;
979#endif
980	const struct ethtool_ops*   save_ethtool;
981
982	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
983};
984
985#ifdef WITH_GENERIC
986/* Mitigation support. */
987struct nm_generic_mit {
988	struct hrtimer mit_timer;
989	int mit_pending;
990	int mit_ring_idx;  /* index of the ring being mitigated */
991	struct netmap_adapter *mit_na;  /* backpointer */
992};
993
994struct netmap_generic_adapter {	/* emulated device */
995	struct netmap_hw_adapter up;
996
997	/* Pointer to a previously used netmap adapter. */
998	struct netmap_adapter *prev;
999
1000	/* Emulated netmap adapters support:
1001	 *  - save_if_input saves the if_input hook (FreeBSD);
1002	 *  - mit implements rx interrupt mitigation;
1003	 */
1004	void (*save_if_input)(struct ifnet *, struct mbuf *);
1005
1006	struct nm_generic_mit *mit;
1007#ifdef linux
1008        netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
1009#endif
1010	/* Is the adapter able to use multiple RX slots to scatter
1011	 * each packet pushed up by the driver? */
1012	int rxsg;
1013
1014	/* Is the transmission path controlled by a netmap-aware
1015	 * device queue (i.e. qdisc on linux)? */
1016	int txqdisc;
1017};
1018#endif  /* WITH_GENERIC */
1019
1020static __inline u_int
1021netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1022{
1023	return nma_get_nrings(na, t) +
1024		!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1025}
1026
1027/* account for fake rings */
1028static __inline u_int
1029netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1030{
1031	return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1032}
1033
1034int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1035		struct nm_bridge *);
1036struct nm_bdg_polling_state;
1037/*
1038 * Bridge wrapper for non VALE ports attached to a VALE switch.
1039 *
1040 * The real device must already have its own netmap adapter (hwna).
1041 * The bridge wrapper and the hwna adapter share the same set of
1042 * netmap rings and buffers, but they have two separate sets of
1043 * krings descriptors, with tx/rx meanings swapped:
1044 *
1045 *                                  netmap
1046 *           bwrap     krings       rings      krings      hwna
1047 *         +------+   +------+     +-----+    +------+   +------+
1048 *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1049 *         |      |   +------+ \ / +-----+    +------+   |      |
1050 *         |      |             X                        |      |
1051 *         |      |            / \                       |      |
1052 *         |      |   +------+/   \+-----+    +------+   |      |
1053 *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1054 *         |      |   +------+     +-----+    +------+   |      |
1055 *         +------+                                      +------+
1056 *
1057 * - packets coming from the bridge go to the brwap rx rings,
1058 *   which are also the hwna tx rings.  The bwrap notify callback
1059 *   will then complete the hwna tx (see netmap_bwrap_notify).
1060 *
1061 * - packets coming from the outside go to the hwna rx rings,
1062 *   which are also the bwrap tx rings.  The (overwritten) hwna
1063 *   notify method will then complete the bridge tx
1064 *   (see netmap_bwrap_intr_notify).
1065 *
1066 *   The bridge wrapper may optionally connect the hwna 'host' rings
1067 *   to the bridge. This is done by using a second port in the
1068 *   bridge and connecting it to the 'host' netmap_vp_adapter
1069 *   contained in the netmap_bwrap_adapter. The brwap host adapter
1070 *   cross-links the hwna host rings in the same way as shown above.
1071 *
1072 * - packets coming from the bridge and directed to the host stack
1073 *   are handled by the bwrap host notify callback
1074 *   (see netmap_bwrap_host_notify)
1075 *
1076 * - packets coming from the host stack are still handled by the
1077 *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1078 *   but are diverted to the host adapter depending on the ring number.
1079 *
1080 */
1081struct netmap_bwrap_adapter {
1082	struct netmap_vp_adapter up;
1083	struct netmap_vp_adapter host;  /* for host rings */
1084	struct netmap_adapter *hwna;	/* the underlying device */
1085
1086	/*
1087	 * When we attach a physical interface to the bridge, we
1088	 * allow the controlling process to terminate, so we need
1089	 * a place to store the n_detmap_priv_d data structure.
1090	 * This is only done when physical interfaces
1091	 * are attached to a bridge.
1092	 */
1093	struct netmap_priv_d *na_kpriv;
1094	struct nm_bdg_polling_state *na_polling_state;
1095	/* we overwrite the hwna->na_vp pointer, so we save
1096	 * here its original value, to be restored at detach
1097	 */
1098	struct netmap_vp_adapter *saved_na_vp;
1099};
1100int nm_bdg_polling(struct nmreq_header *hdr);
1101
1102#ifdef WITH_VALE
1103int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token);
1104int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token);
1105int netmap_vale_list(struct nmreq_header *hdr);
1106int netmap_vi_create(struct nmreq_header *hdr, int);
1107int nm_vi_create(struct nmreq_header *);
1108int nm_vi_destroy(const char *name);
1109#else /* !WITH_VALE */
1110#define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1111#endif /* WITH_VALE */
1112
1113#ifdef WITH_PIPES
1114
1115#define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1116
1117struct netmap_pipe_adapter {
1118	/* pipe identifier is up.name */
1119	struct netmap_adapter up;
1120
1121#define NM_PIPE_ROLE_MASTER	0x1
1122#define NM_PIPE_ROLE_SLAVE	0x2
1123	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1124
1125	struct netmap_adapter *parent; /* adapter that owns the memory */
1126	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1127	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1128	struct ifnet *parent_ifp;	/* maybe null */
1129
1130	u_int parent_slot; /* index in the parent pipe array */
1131};
1132
1133#endif /* WITH_PIPES */
1134
1135#ifdef WITH_NMNULL
1136struct netmap_null_adapter {
1137	struct netmap_adapter up;
1138};
1139#endif /* WITH_NMNULL */
1140
1141
1142/* return slots reserved to rx clients; used in drivers */
1143static inline uint32_t
1144nm_kr_rxspace(struct netmap_kring *k)
1145{
1146	int space = k->nr_hwtail - k->nr_hwcur;
1147	if (space < 0)
1148		space += k->nkr_num_slots;
1149	nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1150
1151	return space;
1152}
1153
1154/* return slots reserved to tx clients */
1155#define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1156
1157
1158/* True if no space in the tx ring, only valid after txsync_prologue */
1159static inline int
1160nm_kr_txempty(struct netmap_kring *kring)
1161{
1162	return kring->rhead == kring->nr_hwtail;
1163}
1164
1165/* True if no more completed slots in the rx ring, only valid after
1166 * rxsync_prologue */
1167#define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1168
1169/* True if the application needs to wait for more space on the ring
1170 * (more received packets or more free tx slots).
1171 * Only valid after *xsync_prologue. */
1172static inline int
1173nm_kr_wouldblock(struct netmap_kring *kring)
1174{
1175	return kring->rcur == kring->nr_hwtail;
1176}
1177
1178/*
1179 * protect against multiple threads using the same ring.
1180 * also check that the ring has not been stopped or locked
1181 */
1182#define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1183#define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1184#define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1185
1186
1187/* release the previously acquired right to use the *sync() methods of the ring */
1188static __inline void nm_kr_put(struct netmap_kring *kr)
1189{
1190	NM_ATOMIC_CLEAR(&kr->nr_busy);
1191}
1192
1193
1194/* true if the ifp that backed the adapter has disappeared (e.g., the
1195 * driver has been unloaded)
1196 */
1197static inline int nm_iszombie(struct netmap_adapter *na);
1198
1199/* try to obtain exclusive right to issue the *sync() operations on the ring.
1200 * The right is obtained and must be later relinquished via nm_kr_put() if and
1201 * only if nm_kr_tryget() returns 0.
1202 * If can_sleep is 1 there are only two other possible outcomes:
1203 * - the function returns NM_KR_BUSY
1204 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1205 *   (if non-null)
1206 * In both cases the caller will typically skip the ring, possibly collecting
1207 * errors along the way.
1208 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1209 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1210 * untouched: ideally, the caller should try again at a later time.
1211 */
1212static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1213{
1214	int busy = 1, stopped;
1215	/* check a first time without taking the lock
1216	 * to avoid starvation for nm_kr_get()
1217	 */
1218retry:
1219	stopped = kr->nkr_stopped;
1220	if (unlikely(stopped)) {
1221		goto stop;
1222	}
1223	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1224	/* we should not return NM_KR_BUSY if the ring was
1225	 * actually stopped, so check another time after
1226	 * the barrier provided by the atomic operation
1227	 */
1228	stopped = kr->nkr_stopped;
1229	if (unlikely(stopped)) {
1230		goto stop;
1231	}
1232
1233	if (unlikely(nm_iszombie(kr->na))) {
1234		stopped = NM_KR_STOPPED;
1235		goto stop;
1236	}
1237
1238	return unlikely(busy) ? NM_KR_BUSY : 0;
1239
1240stop:
1241	if (!busy)
1242		nm_kr_put(kr);
1243	if (stopped == NM_KR_STOPPED) {
1244/* if POLLERR is defined we want to use it to simplify netmap_poll().
1245 * Otherwise, any non-zero value will do.
1246 */
1247#ifdef POLLERR
1248#define NM_POLLERR POLLERR
1249#else
1250#define NM_POLLERR 1
1251#endif /* POLLERR */
1252		if (perr)
1253			*perr |= NM_POLLERR;
1254#undef NM_POLLERR
1255	} else if (can_sleep) {
1256		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1257		goto retry;
1258	}
1259	return stopped;
1260}
1261
1262/* put the ring in the 'stopped' state and wait for the current user (if any) to
1263 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1264 */
1265static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1266{
1267	kr->nkr_stopped = stopped;
1268	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1269		tsleep(kr, 0, "NM_KR_GET", 4);
1270}
1271
1272/* restart a ring after a stop */
1273static __inline void nm_kr_start(struct netmap_kring *kr)
1274{
1275	kr->nkr_stopped = 0;
1276	nm_kr_put(kr);
1277}
1278
1279
1280/*
1281 * The following functions are used by individual drivers to
1282 * support netmap operation.
1283 *
1284 * netmap_attach() initializes a struct netmap_adapter, allocating the
1285 * 	struct netmap_ring's and the struct selinfo.
1286 *
1287 * netmap_detach() frees the memory allocated by netmap_attach().
1288 *
1289 * netmap_transmit() replaces the if_transmit routine of the interface,
1290 *	and is used to intercept packets coming from the stack.
1291 *
1292 * netmap_load_map/netmap_reload_map are helper routines to set/reset
1293 *	the dmamap for a packet buffer
1294 *
1295 * netmap_reset() is a helper routine to be called in the hw driver
1296 *	when reinitializing a ring. It should not be called by
1297 *	virtual ports (vale, pipes, monitor)
1298 */
1299int netmap_attach(struct netmap_adapter *);
1300int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1301void netmap_detach(struct ifnet *);
1302int netmap_transmit(struct ifnet *, struct mbuf *);
1303struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1304	enum txrx tx, u_int n, u_int new_cur);
1305int netmap_ring_reinit(struct netmap_kring *);
1306int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1307
1308/* Return codes for netmap_*x_irq. */
1309enum {
1310	/* Driver should do normal interrupt processing, e.g. because
1311	 * the interface is not in netmap mode. */
1312	NM_IRQ_PASS = 0,
1313	/* Port is in netmap mode, and the interrupt work has been
1314	 * completed. The driver does not have to notify netmap
1315	 * again before the next interrupt. */
1316	NM_IRQ_COMPLETED = -1,
1317	/* Port is in netmap mode, but the interrupt work has not been
1318	 * completed. The driver has to make sure netmap will be
1319	 * notified again soon, even if no more interrupts come (e.g.
1320	 * on Linux the driver should not call napi_complete()). */
1321	NM_IRQ_RESCHED = -2,
1322};
1323
1324/* default functions to handle rx/tx interrupts */
1325int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1326#define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1327int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1328
1329
1330#ifdef WITH_VALE
1331/* functions used by external modules to interface with VALE */
1332#define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1333#define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1334#define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1335#define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1336const char *netmap_bdg_name(struct netmap_vp_adapter *);
1337#else /* !WITH_VALE */
1338#define netmap_vp_to_ifp(_vp)	NULL
1339#define netmap_ifp_to_vp(_ifp)	NULL
1340#define netmap_ifp_to_host_vp(_ifp) NULL
1341#define netmap_bdg_idx(_vp)	-1
1342#endif /* WITH_VALE */
1343
1344static inline int
1345nm_netmap_on(struct netmap_adapter *na)
1346{
1347	return na && na->na_flags & NAF_NETMAP_ON;
1348}
1349
1350static inline int
1351nm_native_on(struct netmap_adapter *na)
1352{
1353	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1354}
1355
1356static inline struct netmap_kring *
1357netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t)
1358{
1359	struct netmap_kring *kring = NULL;
1360
1361	if (!nm_native_on(na))
1362		return NULL;
1363
1364	if (t == NR_RX && q < na->num_rx_rings)
1365		kring = na->rx_rings[q];
1366	else if (t == NR_TX && q < na->num_tx_rings)
1367		kring = na->tx_rings[q];
1368	else
1369		return NULL;
1370
1371	return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL;
1372}
1373
1374static inline int
1375nm_iszombie(struct netmap_adapter *na)
1376{
1377	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1378}
1379
1380static inline void
1381nm_update_hostrings_mode(struct netmap_adapter *na)
1382{
1383	/* Process nr_mode and nr_pending_mode for host rings. */
1384	na->tx_rings[na->num_tx_rings]->nr_mode =
1385		na->tx_rings[na->num_tx_rings]->nr_pending_mode;
1386	na->rx_rings[na->num_rx_rings]->nr_mode =
1387		na->rx_rings[na->num_rx_rings]->nr_pending_mode;
1388}
1389
1390void nm_set_native_flags(struct netmap_adapter *);
1391void nm_clear_native_flags(struct netmap_adapter *);
1392
1393void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
1394
1395/*
1396 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1397 * kthreads.
1398 * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1399 * from host kring.
1400 * The user-space ring pointers (head/cur/tail) are shared through
1401 * CSB between host and guest.
1402 */
1403
1404/*
1405 * validates parameters in the ring/kring, returns a value for head
1406 * If any error, returns ring_size to force a reinit.
1407 */
1408uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1409
1410
1411/*
1412 * validates parameters in the ring/kring, returns a value for head
1413 * If any error, returns ring_size lim to force a reinit.
1414 */
1415uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1416
1417
1418/* check/fix address and len in tx rings */
1419#if 1 /* debug version */
1420#define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1421	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1422		nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1423			kring->ring_id, nm_i, slot->buf_idx, len);	\
1424		if (_l > NETMAP_BUF_SIZE(_na))				\
1425			_l = NETMAP_BUF_SIZE(_na);			\
1426	} } while (0)
1427#else /* no debug version */
1428#define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1429		if (_l > NETMAP_BUF_SIZE(_na))				\
1430			_l = NETMAP_BUF_SIZE(_na);			\
1431	} while (0)
1432#endif
1433
1434
1435/*---------------------------------------------------------------*/
1436/*
1437 * Support routines used by netmap subsystems
1438 * (native drivers, VALE, generic, pipes, monitors, ...)
1439 */
1440
1441
1442/* common routine for all functions that create a netmap adapter. It performs
1443 * two main tasks:
1444 * - if the na points to an ifp, mark the ifp as netmap capable
1445 *   using na as its native adapter;
1446 * - provide defaults for the setup callbacks and the memory allocator
1447 */
1448int netmap_attach_common(struct netmap_adapter *);
1449/* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1450 * coming from a struct nmreq_register
1451 */
1452int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr);
1453/* update the ring parameters (number and size of tx and rx rings).
1454 * It calls the nm_config callback, if available.
1455 */
1456int netmap_update_config(struct netmap_adapter *na);
1457/* create and initialize the common fields of the krings array.
1458 * using the information that must be already available in the na.
1459 * tailroom can be used to request the allocation of additional
1460 * tailroom bytes after the krings array. This is used by
1461 * netmap_vp_adapter's (i.e., VALE ports) to make room for
1462 * leasing-related data structures
1463 */
1464int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1465/* deletes the kring array of the adapter. The array must have
1466 * been created using netmap_krings_create
1467 */
1468void netmap_krings_delete(struct netmap_adapter *na);
1469
1470int netmap_hw_krings_create(struct netmap_adapter *na);
1471void netmap_hw_krings_delete(struct netmap_adapter *na);
1472
1473/* set the stopped/enabled status of ring
1474 * When stopping, they also wait for all current activity on the ring to
1475 * terminate. The status change is then notified using the na nm_notify
1476 * callback.
1477 */
1478void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1479/* set the stopped/enabled status of all rings of the adapter. */
1480void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1481/* convenience wrappers for netmap_set_all_rings */
1482void netmap_disable_all_rings(struct ifnet *);
1483void netmap_enable_all_rings(struct ifnet *);
1484
1485int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1486int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1487		struct nmreq_header *);
1488void netmap_do_unregif(struct netmap_priv_d *priv);
1489
1490u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1491int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1492		struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1493void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1494int netmap_get_hw_na(struct ifnet *ifp,
1495		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1496
1497#ifdef WITH_VALE
1498uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1499		struct netmap_vp_adapter *, void *private_data);
1500
1501/* these are redefined in case of no VALE support */
1502int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1503		struct netmap_mem_d *nmd, int create);
1504void *netmap_vale_create(const char *bdg_name, int *return_status);
1505int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1506
1507#else /* !WITH_VALE */
1508#define netmap_bdg_learning(_1, _2, _3, _4)	0
1509#define	netmap_get_vale_na(_1, _2, _3, _4)	0
1510#define netmap_bdg_create(_1, _2)	NULL
1511#define netmap_bdg_destroy(_1, _2)	0
1512#endif /* !WITH_VALE */
1513
1514#ifdef WITH_PIPES
1515/* max number of pipes per device */
1516#define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1517void netmap_pipe_dealloc(struct netmap_adapter *);
1518int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1519			struct netmap_mem_d *nmd, int create);
1520#else /* !WITH_PIPES */
1521#define NM_MAXPIPES	0
1522#define netmap_pipe_alloc(_1, _2) 	0
1523#define netmap_pipe_dealloc(_1)
1524#define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1525	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1526#endif
1527
1528#ifdef WITH_MONITOR
1529int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1530		struct netmap_mem_d *nmd, int create);
1531void netmap_monitor_stop(struct netmap_adapter *na);
1532#else
1533#define netmap_get_monitor_na(hdr, _2, _3, _4) \
1534	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1535#endif
1536
1537#ifdef WITH_NMNULL
1538int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1539		struct netmap_mem_d *nmd, int create);
1540#else /* !WITH_NMNULL */
1541#define netmap_get_null_na(hdr, _2, _3, _4) \
1542	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1543#endif /* WITH_NMNULL */
1544
1545#ifdef CONFIG_NET_NS
1546struct net *netmap_bns_get(void);
1547void netmap_bns_put(struct net *);
1548void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1549#else
1550extern struct nm_bridge *nm_bridges;
1551#define netmap_bns_get()
1552#define netmap_bns_put(_1)
1553#define netmap_bns_getbridges(b, n) \
1554	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1555#endif
1556
1557/* Various prototypes */
1558int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1559int netmap_init(void);
1560void netmap_fini(void);
1561int netmap_get_memory(struct netmap_priv_d* p);
1562void netmap_dtor(void *data);
1563
1564int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1565		struct thread *, int nr_body_is_user);
1566int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1567			struct thread *td);
1568size_t nmreq_size_by_type(uint16_t nr_reqtype);
1569
1570/* netmap_adapter creation/destruction */
1571
1572// #define NM_DEBUG_PUTGET 1
1573
1574#ifdef NM_DEBUG_PUTGET
1575
1576#define NM_DBG(f) __##f
1577
1578void __netmap_adapter_get(struct netmap_adapter *na);
1579
1580#define netmap_adapter_get(na) 				\
1581	do {						\
1582		struct netmap_adapter *__na = na;	\
1583		nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1584		__netmap_adapter_get(__na);		\
1585	} while (0)
1586
1587int __netmap_adapter_put(struct netmap_adapter *na);
1588
1589#define netmap_adapter_put(na)				\
1590	({						\
1591		struct netmap_adapter *__na = na;	\
1592		nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1593		__netmap_adapter_put(__na);		\
1594	})
1595
1596#else /* !NM_DEBUG_PUTGET */
1597
1598#define NM_DBG(f) f
1599void netmap_adapter_get(struct netmap_adapter *na);
1600int netmap_adapter_put(struct netmap_adapter *na);
1601
1602#endif /* !NM_DEBUG_PUTGET */
1603
1604
1605/*
1606 * module variables
1607 */
1608#define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1609#define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1610extern int netmap_no_pendintr;
1611extern int netmap_verbose;
1612#ifdef CONFIG_NETMAP_DEBUG
1613extern int netmap_debug;		/* for debugging */
1614#else /* !CONFIG_NETMAP_DEBUG */
1615#define netmap_debug (0)
1616#endif /* !CONFIG_NETMAP_DEBUG */
1617enum {                                  /* debug flags */
1618	NM_DEBUG_ON = 1,		/* generic debug messsages */
1619	NM_DEBUG_HOST = 0x2,            /* debug host stack */
1620	NM_DEBUG_RXSYNC = 0x10,         /* debug on rxsync/txsync */
1621	NM_DEBUG_TXSYNC = 0x20,
1622	NM_DEBUG_RXINTR = 0x100,        /* debug on rx/tx intr (driver) */
1623	NM_DEBUG_TXINTR = 0x200,
1624	NM_DEBUG_NIC_RXSYNC = 0x1000,   /* debug on rx/tx intr (driver) */
1625	NM_DEBUG_NIC_TXSYNC = 0x2000,
1626	NM_DEBUG_MEM = 0x4000,		/* verbose memory allocations/deallocations */
1627	NM_DEBUG_VALE = 0x8000,		/* debug messages from memory allocators */
1628	NM_DEBUG_BDG = NM_DEBUG_VALE,
1629};
1630
1631extern int netmap_txsync_retry;
1632extern int netmap_generic_hwcsum;
1633extern int netmap_generic_mit;
1634extern int netmap_generic_ringsize;
1635extern int netmap_generic_rings;
1636#ifdef linux
1637extern int netmap_generic_txqdisc;
1638#endif
1639
1640/*
1641 * NA returns a pointer to the struct netmap adapter from the ifp.
1642 * WNA is os-specific and must be defined in glue code.
1643 */
1644#define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1645
1646/*
1647 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1648 * based on the WNA field.
1649 * Glue code may override this by defining its own NM_ATTACH_NA
1650 */
1651#ifndef NM_ATTACH_NA
1652/*
1653 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1654 * overload another pointer in the netdev.
1655 *
1656 * We check if NA(ifp) is set and its first element has a related
1657 * magic value. The capenable is within the struct netmap_adapter.
1658 */
1659#define	NETMAP_MAGIC	0x52697a7a
1660
1661#define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1662	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1663
1664#define	NM_ATTACH_NA(ifp, na) do {					\
1665	WNA(ifp) = na;							\
1666	if (NA(ifp))							\
1667		NA(ifp)->magic = 					\
1668			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1669} while(0)
1670#define NM_RESTORE_NA(ifp, na) 	WNA(ifp) = na;
1671
1672#define NM_DETACH_NA(ifp)	do { WNA(ifp) = NULL; } while (0)
1673#define NM_NA_CLASH(ifp)	(NA(ifp) && !NM_NA_VALID(ifp))
1674#endif /* !NM_ATTACH_NA */
1675
1676
1677#define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1678
1679#if defined(__FreeBSD__)
1680
1681/* Assigns the device IOMMU domain to an allocator.
1682 * Returns -ENOMEM in case the domain is different */
1683#define nm_iommu_group_id(dev) (0)
1684
1685/* Callback invoked by the dma machinery after a successful dmamap_load */
1686static void netmap_dmamap_cb(__unused void *arg,
1687    __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1688{
1689}
1690
1691/* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1692 * XXX can we do it without a callback ?
1693 */
1694static inline int
1695netmap_load_map(struct netmap_adapter *na,
1696	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1697{
1698	if (map)
1699		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1700		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1701	return 0;
1702}
1703
1704static inline void
1705netmap_unload_map(struct netmap_adapter *na,
1706        bus_dma_tag_t tag, bus_dmamap_t map)
1707{
1708	if (map)
1709		bus_dmamap_unload(tag, map);
1710}
1711
1712#define netmap_sync_map(na, tag, map, sz, t)
1713
1714/* update the map when a buffer changes. */
1715static inline void
1716netmap_reload_map(struct netmap_adapter *na,
1717	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1718{
1719	if (map) {
1720		bus_dmamap_unload(tag, map);
1721		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1722		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1723	}
1724}
1725
1726#elif defined(_WIN32)
1727
1728#else /* linux */
1729
1730int nm_iommu_group_id(bus_dma_tag_t dev);
1731#include <linux/dma-mapping.h>
1732
1733/*
1734 * on linux we need
1735 *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1736 *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1737 */
1738#if 0
1739	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1740	/* set time_stamp *before* dma to help avoid a possible race */
1741	buffer_info->time_stamp = jiffies;
1742	buffer_info->mapped_as_page = false;
1743	buffer_info->length = len;
1744	//buffer_info->next_to_watch = l;
1745	/* reload dma map */
1746	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1747			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1748	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1749			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1750
1751	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1752		nm_prerr("dma mapping error");
1753		/* goto dma_error; See e1000_put_txbuf() */
1754		/* XXX reset */
1755	}
1756	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1757
1758#endif
1759
1760static inline int
1761netmap_load_map(struct netmap_adapter *na,
1762	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1763{
1764	if (map) {
1765		*map = dma_map_single(na->pdev, buf, size,
1766				      DMA_BIDIRECTIONAL);
1767		if (dma_mapping_error(na->pdev, *map)) {
1768			*map = 0;
1769			return ENOMEM;
1770		}
1771	}
1772	return 0;
1773}
1774
1775static inline void
1776netmap_unload_map(struct netmap_adapter *na,
1777	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1778{
1779	if (*map) {
1780		dma_unmap_single(na->pdev, *map, sz,
1781				 DMA_BIDIRECTIONAL);
1782	}
1783}
1784
1785#ifdef NETMAP_LINUX_HAVE_DMASYNC
1786static inline void
1787netmap_sync_map_cpu(struct netmap_adapter *na,
1788	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1789{
1790	if (*map) {
1791		dma_sync_single_for_cpu(na->pdev, *map, sz,
1792			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1793	}
1794}
1795
1796static inline void
1797netmap_sync_map_dev(struct netmap_adapter *na,
1798	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1799{
1800	if (*map) {
1801		dma_sync_single_for_device(na->pdev, *map, sz,
1802			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1803	}
1804}
1805
1806static inline void
1807netmap_reload_map(struct netmap_adapter *na,
1808	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1809{
1810	u_int sz = NETMAP_BUF_SIZE(na);
1811
1812	if (*map) {
1813		dma_unmap_single(na->pdev, *map, sz,
1814				DMA_BIDIRECTIONAL);
1815	}
1816
1817	*map = dma_map_single(na->pdev, buf, sz,
1818				DMA_BIDIRECTIONAL);
1819}
1820#else /* !NETMAP_LINUX_HAVE_DMASYNC */
1821#define netmap_sync_map_cpu(na, tag, map, sz, t)
1822#define netmap_sync_map_dev(na, tag, map, sz, t)
1823#endif /* NETMAP_LINUX_HAVE_DMASYNC */
1824
1825#endif /* linux */
1826
1827
1828/*
1829 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1830 */
1831static inline int
1832netmap_idx_n2k(struct netmap_kring *kr, int idx)
1833{
1834	int n = kr->nkr_num_slots;
1835
1836	if (likely(kr->nkr_hwofs == 0)) {
1837		return idx;
1838	}
1839
1840	idx += kr->nkr_hwofs;
1841	if (idx < 0)
1842		return idx + n;
1843	else if (idx < n)
1844		return idx;
1845	else
1846		return idx - n;
1847}
1848
1849
1850static inline int
1851netmap_idx_k2n(struct netmap_kring *kr, int idx)
1852{
1853	int n = kr->nkr_num_slots;
1854
1855	if (likely(kr->nkr_hwofs == 0)) {
1856		return idx;
1857	}
1858
1859	idx -= kr->nkr_hwofs;
1860	if (idx < 0)
1861		return idx + n;
1862	else if (idx < n)
1863		return idx;
1864	else
1865		return idx - n;
1866}
1867
1868
1869/* Entries of the look-up table. */
1870#ifdef __FreeBSD__
1871struct lut_entry {
1872	void *vaddr;		/* virtual address. */
1873	vm_paddr_t paddr;	/* physical address. */
1874};
1875#else /* linux & _WIN32 */
1876/* dma-mapping in linux can assign a buffer a different address
1877 * depending on the device, so we need to have a separate
1878 * physical-address look-up table for each na.
1879 * We can still share the vaddrs, though, therefore we split
1880 * the lut_entry structure.
1881 */
1882struct lut_entry {
1883	void *vaddr;		/* virtual address. */
1884};
1885
1886struct plut_entry {
1887	vm_paddr_t paddr;	/* physical address. */
1888};
1889#endif /* linux & _WIN32 */
1890
1891struct netmap_obj_pool;
1892
1893/*
1894 * NMB return the virtual address of a buffer (buffer 0 on bad index)
1895 * PNMB also fills the physical address
1896 */
1897static inline void *
1898NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1899{
1900	struct lut_entry *lut = na->na_lut.lut;
1901	uint32_t i = slot->buf_idx;
1902	return (unlikely(i >= na->na_lut.objtotal)) ?
1903		lut[0].vaddr : lut[i].vaddr;
1904}
1905
1906static inline void *
1907PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1908{
1909	uint32_t i = slot->buf_idx;
1910	struct lut_entry *lut = na->na_lut.lut;
1911	struct plut_entry *plut = na->na_lut.plut;
1912	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1913
1914#ifdef _WIN32
1915	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1916#else
1917	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1918#endif
1919	return ret;
1920}
1921
1922
1923/*
1924 * Structure associated to each netmap file descriptor.
1925 * It is created on open and left unbound (np_nifp == NULL).
1926 * A successful NIOCREGIF will set np_nifp and the first few fields;
1927 * this is protected by a global lock (NMG_LOCK) due to low contention.
1928 *
1929 * np_refs counts the number of references to the structure: one for the fd,
1930 * plus (on FreeBSD) one for each active mmap which we track ourselves
1931 * (linux automatically tracks them, but FreeBSD does not).
1932 * np_refs is protected by NMG_LOCK.
1933 *
1934 * Read access to the structure is lock free, because ni_nifp once set
1935 * can only go to 0 when nobody is using the entry anymore. Readers
1936 * must check that np_nifp != NULL before using the other fields.
1937 */
1938struct netmap_priv_d {
1939	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1940
1941	struct netmap_adapter	*np_na;
1942	struct ifnet	*np_ifp;
1943	uint32_t	np_flags;	/* from the ioctl */
1944	u_int		np_qfirst[NR_TXRX],
1945			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1946	uint16_t	np_txpoll;
1947	uint16_t        np_kloop_state;	/* use with NMG_LOCK held */
1948#define NM_SYNC_KLOOP_RUNNING	(1 << 0)
1949#define NM_SYNC_KLOOP_STOPPING	(1 << 1)
1950	int             np_sync_flags; /* to be passed to nm_sync */
1951
1952	int		np_refs;	/* use with NMG_LOCK held */
1953
1954	/* pointers to the selinfo to be used for selrecord.
1955	 * Either the local or the global one depending on the
1956	 * number of rings.
1957	 */
1958	NM_SELINFO_T *np_si[NR_TXRX];
1959
1960	/* In the optional CSB mode, the user must specify the start address
1961	 * of two arrays of Communication Status Block (CSB) entries, for the
1962	 * two directions (kernel read application write, and kernel write
1963	 * application read).
1964	 * The number of entries must agree with the number of rings bound to
1965	 * the netmap file descriptor. The entries corresponding to the TX
1966	 * rings are laid out before the ones corresponding to the RX rings.
1967	 *
1968	 * Array of CSB entries for application --> kernel communication
1969	 * (N entries). */
1970	struct nm_csb_atok	*np_csb_atok_base;
1971	/* Array of CSB entries for kernel --> application communication
1972	 * (N entries). */
1973	struct nm_csb_ktoa	*np_csb_ktoa_base;
1974
1975#ifdef linux
1976	struct file	*np_filp;  /* used by sync kloop */
1977#endif /* linux */
1978};
1979
1980struct netmap_priv_d *netmap_priv_new(void);
1981void netmap_priv_delete(struct netmap_priv_d *);
1982
1983static inline int nm_kring_pending(struct netmap_priv_d *np)
1984{
1985	struct netmap_adapter *na = np->np_na;
1986	enum txrx t;
1987	int i;
1988
1989	for_rx_tx(t) {
1990		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
1991			struct netmap_kring *kring = NMR(na, t)[i];
1992			if (kring->nr_mode != kring->nr_pending_mode) {
1993				return 1;
1994			}
1995		}
1996	}
1997	return 0;
1998}
1999
2000/* call with NMG_LOCK held */
2001static __inline int
2002nm_si_user(struct netmap_priv_d *priv, enum txrx t)
2003{
2004	return (priv->np_na != NULL &&
2005		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
2006}
2007
2008#ifdef WITH_PIPES
2009int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
2010int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
2011int netmap_pipe_krings_create_both(struct netmap_adapter *na,
2012				  struct netmap_adapter *ona);
2013void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
2014				    struct netmap_adapter *ona);
2015int netmap_pipe_reg_both(struct netmap_adapter *na,
2016			 struct netmap_adapter *ona);
2017#endif /* WITH_PIPES */
2018
2019#ifdef WITH_MONITOR
2020
2021struct netmap_monitor_adapter {
2022	struct netmap_adapter up;
2023
2024	struct netmap_priv_d priv;
2025	uint32_t flags;
2026};
2027
2028#endif /* WITH_MONITOR */
2029
2030
2031#ifdef WITH_GENERIC
2032/*
2033 * generic netmap emulation for devices that do not have
2034 * native netmap support.
2035 */
2036int generic_netmap_attach(struct ifnet *ifp);
2037int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
2038
2039int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2040int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2041
2042int na_is_generic(struct netmap_adapter *na);
2043
2044/*
2045 * the generic transmit routine is passed a structure to optionally
2046 * build a queue of descriptors, in an OS-specific way.
2047 * The payload is at addr, if non-null, and the routine should send or queue
2048 * the packet, returning 0 if successful, 1 on failure.
2049 *
2050 * At the end, if head is non-null, there will be an additional call
2051 * to the function with addr = NULL; this should tell the OS-specific
2052 * routine to send the queue and free any resources. Failure is ignored.
2053 */
2054struct nm_os_gen_arg {
2055	struct ifnet *ifp;
2056	void *m;	/* os-specific mbuf-like object */
2057	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2058	void *addr;	/* payload of current packet */
2059	u_int len;	/* packet length */
2060	u_int ring_nr;	/* packet length */
2061	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
2062};
2063
2064int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2065int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
2066void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
2067void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2068
2069static inline struct ifnet*
2070netmap_generic_getifp(struct netmap_generic_adapter *gna)
2071{
2072        if (gna->prev)
2073            return gna->prev->ifp;
2074
2075        return gna->up.up.ifp;
2076}
2077
2078void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2079
2080//#define RATE_GENERIC  /* Enables communication statistics for generic. */
2081#ifdef RATE_GENERIC
2082void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2083#else
2084#define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2085#endif
2086
2087/*
2088 * netmap_mitigation API. This is used by the generic adapter
2089 * to reduce the number of interrupt requests/selwakeup
2090 * to clients on incoming packets.
2091 */
2092void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2093                                struct netmap_adapter *na);
2094void nm_os_mitigation_start(struct nm_generic_mit *mit);
2095void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2096int nm_os_mitigation_active(struct nm_generic_mit *mit);
2097void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2098#else /* !WITH_GENERIC */
2099#define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2100#define na_is_generic(na)		(0)
2101#endif /* WITH_GENERIC */
2102
2103/* Shared declarations for the VALE switch. */
2104
2105/*
2106 * Each transmit queue accumulates a batch of packets into
2107 * a structure before forwarding. Packets to the same
2108 * destination are put in a list using ft_next as a link field.
2109 * ft_frags and ft_next are valid only on the first fragment.
2110 */
2111struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2112	void *ft_buf;		/* netmap or indirect buffer */
2113	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2114	uint16_t ft_offset;	/* dst port (unused) */
2115	uint16_t ft_flags;	/* flags, e.g. indirect */
2116	uint16_t ft_len;	/* src fragment len */
2117	uint16_t ft_next;	/* next packet to same destination */
2118};
2119
2120/* struct 'virtio_net_hdr' from linux. */
2121struct nm_vnet_hdr {
2122#define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2123#define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2124    uint8_t flags;
2125#define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2126#define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2127#define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2128#define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2129#define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2130    uint8_t gso_type;
2131    uint16_t hdr_len;
2132    uint16_t gso_size;
2133    uint16_t csum_start;
2134    uint16_t csum_offset;
2135};
2136
2137#define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2138
2139/* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2140
2141struct nm_iphdr {
2142	uint8_t		version_ihl;
2143	uint8_t		tos;
2144	uint16_t	tot_len;
2145	uint16_t	id;
2146	uint16_t	frag_off;
2147	uint8_t		ttl;
2148	uint8_t		protocol;
2149	uint16_t	check;
2150	uint32_t	saddr;
2151	uint32_t	daddr;
2152	/*The options start here. */
2153};
2154
2155struct nm_tcphdr {
2156	uint16_t	source;
2157	uint16_t	dest;
2158	uint32_t	seq;
2159	uint32_t	ack_seq;
2160	uint8_t		doff;  /* Data offset + Reserved */
2161	uint8_t		flags;
2162	uint16_t	window;
2163	uint16_t	check;
2164	uint16_t	urg_ptr;
2165};
2166
2167struct nm_udphdr {
2168	uint16_t	source;
2169	uint16_t	dest;
2170	uint16_t	len;
2171	uint16_t	check;
2172};
2173
2174struct nm_ipv6hdr {
2175	uint8_t		priority_version;
2176	uint8_t		flow_lbl[3];
2177
2178	uint16_t	payload_len;
2179	uint8_t		nexthdr;
2180	uint8_t		hop_limit;
2181
2182	uint8_t		saddr[16];
2183	uint8_t		daddr[16];
2184};
2185
2186/* Type used to store a checksum (in host byte order) that hasn't been
2187 * folded yet.
2188 */
2189#define rawsum_t uint32_t
2190
2191rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2192uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2193void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2194		      size_t datalen, uint16_t *check);
2195void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2196		      size_t datalen, uint16_t *check);
2197uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2198
2199void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2200			   struct netmap_vp_adapter *dst_na,
2201			   const struct nm_bdg_fwd *ft_p,
2202			   struct netmap_ring *dst_ring,
2203			   u_int *j, u_int lim, u_int *howmany);
2204
2205/* persistent virtual port routines */
2206int nm_os_vi_persist(const char *, struct ifnet **);
2207void nm_os_vi_detach(struct ifnet *);
2208void nm_os_vi_init_index(void);
2209
2210/*
2211 * kernel thread routines
2212 */
2213struct nm_kctx; /* OS-specific kernel context - opaque */
2214typedef void (*nm_kctx_worker_fn_t)(void *data);
2215
2216/* kthread configuration */
2217struct nm_kctx_cfg {
2218	long			type;		/* kthread type/identifier */
2219	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2220	void			*worker_private;/* worker parameter */
2221	int			attach_user;	/* attach kthread to user process */
2222};
2223/* kthread configuration */
2224struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2225					void *opaque);
2226int nm_os_kctx_worker_start(struct nm_kctx *);
2227void nm_os_kctx_worker_stop(struct nm_kctx *);
2228void nm_os_kctx_destroy(struct nm_kctx *);
2229void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2230u_int nm_os_ncpus(void);
2231
2232int netmap_sync_kloop(struct netmap_priv_d *priv,
2233		      struct nmreq_header *hdr);
2234int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2235
2236#ifdef WITH_PTNETMAP
2237/* ptnetmap guest routines */
2238
2239/*
2240 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2241 */
2242struct ptnetmap_memdev;
2243int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2244                          uint64_t *);
2245void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2246uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2247
2248/*
2249 * netmap adapter for guest ptnetmap ports
2250 */
2251struct netmap_pt_guest_adapter {
2252        /* The netmap adapter to be used by netmap applications.
2253	 * This field must be the first, to allow upcast. */
2254	struct netmap_hw_adapter hwup;
2255
2256        /* The netmap adapter to be used by the driver. */
2257        struct netmap_hw_adapter dr;
2258
2259	/* Reference counter to track users of backend netmap port: the
2260	 * network stack and netmap clients.
2261	 * Used to decide when we need (de)allocate krings/rings and
2262	 * start (stop) ptnetmap kthreads. */
2263	int backend_users;
2264
2265};
2266
2267int netmap_pt_guest_attach(struct netmap_adapter *na,
2268			unsigned int nifp_offset,
2269			unsigned int memid);
2270bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2271			struct nm_csb_ktoa *ktoa,
2272			struct netmap_kring *kring, int flags);
2273bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2274			struct nm_csb_ktoa *ktoa,
2275			struct netmap_kring *kring, int flags);
2276int ptnet_nm_krings_create(struct netmap_adapter *na);
2277void ptnet_nm_krings_delete(struct netmap_adapter *na);
2278void ptnet_nm_dtor(struct netmap_adapter *na);
2279
2280/* Helper function wrapping nm_sync_kloop_appl_read(). */
2281static inline void
2282ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2283{
2284	struct netmap_ring *ring = kring->ring;
2285
2286	/* Update hwcur and hwtail as known by the host. */
2287        nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2288
2289	/* nm_sync_finalize */
2290	ring->tail = kring->rtail = kring->nr_hwtail;
2291}
2292#endif /* WITH_PTNETMAP */
2293
2294#ifdef __FreeBSD__
2295/*
2296 * FreeBSD mbuf allocator/deallocator in emulation mode:
2297 */
2298#if __FreeBSD_version < 1100000
2299
2300/*
2301 * For older versions of FreeBSD:
2302 *
2303 * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
2304 * so that the destructor, if invoked, will not free the packet.
2305 * In principle we should set the destructor only on demand,
2306 * but since there might be a race we better do it on allocation.
2307 * As a consequence, we also need to set the destructor or we
2308 * would leak buffers.
2309 */
2310
2311/* mbuf destructor, also need to change the type to EXT_EXTREF,
2312 * add an M_NOFREE flag, and then clear the flag and
2313 * chain into uma_zfree(zone_pack, mf)
2314 * (or reinstall the buffer ?)
2315 */
2316#define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2317	(m)->m_ext.ext_free = (void *)fn;	\
2318	(m)->m_ext.ext_type = EXT_EXTREF;	\
2319} while (0)
2320
2321static int
2322void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
2323{
2324	/* restore original mbuf */
2325	m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
2326	m->m_ext.ext_arg1 = NULL;
2327	m->m_ext.ext_type = EXT_PACKET;
2328	m->m_ext.ext_free = NULL;
2329	if (MBUF_REFCNT(m) == 0)
2330		SET_MBUF_REFCNT(m, 1);
2331	uma_zfree(zone_pack, m);
2332
2333	return 0;
2334}
2335
2336static inline struct mbuf *
2337nm_os_get_mbuf(struct ifnet *ifp, int len)
2338{
2339	struct mbuf *m;
2340
2341	(void)ifp;
2342	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2343	if (m) {
2344		/* m_getcl() (mb_ctor_mbuf) has an assert that checks that
2345		 * M_NOFREE flag is not specified as third argument,
2346		 * so we have to set M_NOFREE after m_getcl(). */
2347		m->m_flags |= M_NOFREE;
2348		m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
2349		m->m_ext.ext_free = (void *)void_mbuf_dtor;
2350		m->m_ext.ext_type = EXT_EXTREF;
2351		nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
2352	}
2353	return m;
2354}
2355
2356#else /* __FreeBSD_version >= 1100000 */
2357
2358/*
2359 * Newer versions of FreeBSD, using a straightforward scheme.
2360 *
2361 * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2362 * by the driver. We also attach a customly-provided external storage,
2363 * which in this case is a netmap buffer. When calling m_extadd(), however
2364 * we pass a NULL address, since the real address (and length) will be
2365 * filled in by nm_os_generic_xmit_frame() right before calling
2366 * if_transmit().
2367 *
2368 * The dtor function does nothing, however we need it since mb_free_ext()
2369 * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2370 */
2371
2372#if __FreeBSD_version <= 1200050
2373static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
2374#else  /* __FreeBSD_version >= 1200051 */
2375/* The arg1 and arg2 pointers argument were removed by r324446, which
2376 * in included since version 1200051. */
2377static void void_mbuf_dtor(struct mbuf *m) { }
2378#endif /* __FreeBSD_version >= 1200051 */
2379
2380#define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
2381	(m)->m_ext.ext_free = (fn != NULL) ?		\
2382	    (void *)fn : (void *)void_mbuf_dtor;	\
2383} while (0)
2384
2385static inline struct mbuf *
2386nm_os_get_mbuf(struct ifnet *ifp, int len)
2387{
2388	struct mbuf *m;
2389
2390	(void)ifp;
2391	(void)len;
2392
2393	m = m_gethdr(M_NOWAIT, MT_DATA);
2394	if (m == NULL) {
2395		return m;
2396	}
2397
2398	m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
2399		 NULL, NULL, 0, EXT_NET_DRV);
2400
2401	return m;
2402}
2403
2404#endif /* __FreeBSD_version >= 1100000 */
2405#endif /* __FreeBSD__ */
2406
2407struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t);
2408
2409int netmap_init_bridges(void);
2410void netmap_uninit_bridges(void);
2411
2412/* Functions to read and write CSB fields from the kernel. */
2413#if defined (linux)
2414#define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2415#define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2416#else  /* ! linux */
2417#define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
2418#define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
2419#endif /* ! linux */
2420
2421#endif /* _NET_NETMAP_KERN_H_ */
2422