1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-3-Clause
6 *
7 * Copyright (c) 2000, 2001 by Greg Ansley
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice immediately at the beginning of the file, without modification,
14 *    this list of conditions, and the following disclaimer.
15 * 2. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30/*-
31 * Copyright (c) 2002, 2006 by Matthew Jacob
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions are
36 * met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
40 *    substantially similar to the "NO WARRANTY" disclaimer below
41 *    ("Disclaimer") and any redistribution must be conditioned upon including
42 *    a substantially similar Disclaimer requirement for further binary
43 *    redistribution.
44 * 3. Neither the names of the above listed copyright holders nor the names
45 *    of any contributors may be used to endorse or promote products derived
46 *    from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
49 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
52 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
58 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 *
60 * Support from Chris Ellsworth in order to make SAS adapters work
61 * is gratefully acknowledged.
62 *
63 *
64 * Support from LSI-Logic has also gone a great deal toward making this a
65 * workable subsystem and is gratefully acknowledged.
66 */
67/*-
68 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
69 * Copyright (c) 2005, WHEEL Sp. z o.o.
70 * Copyright (c) 2004, 2005 Justin T. Gibbs
71 * All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions are
75 * met:
76 * 1. Redistributions of source code must retain the above copyright
77 *    notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
79 *    substantially similar to the "NO WARRANTY" disclaimer below
80 *    ("Disclaimer") and any redistribution must be conditioned upon including
81 *    a substantially similar Disclaimer requirement for further binary
82 *    redistribution.
83 * 3. Neither the names of the above listed copyright holders nor the names
84 *    of any contributors may be used to endorse or promote products derived
85 *    from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
88 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
91 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
92 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
93 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
94 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
95 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
96 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
97 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
98 */
99
100#include <sys/cdefs.h>
101__FBSDID("$FreeBSD$");
102
103#include <dev/mpt/mpt.h>
104#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
105#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
106
107#include <dev/mpt/mpilib/mpi.h>
108#include <dev/mpt/mpilib/mpi_ioc.h>
109#include <dev/mpt/mpilib/mpi_fc.h>
110#include <dev/mpt/mpilib/mpi_targ.h>
111
112#include <sys/sysctl.h>
113
114#define MPT_MAX_TRYS 3
115#define MPT_MAX_WAIT 300000
116
117static int maxwait_ack = 0;
118static int maxwait_int = 0;
119static int maxwait_state = 0;
120
121static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
122mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
123
124static mpt_reply_handler_t mpt_default_reply_handler;
125static mpt_reply_handler_t mpt_config_reply_handler;
126static mpt_reply_handler_t mpt_handshake_reply_handler;
127static mpt_reply_handler_t mpt_event_reply_handler;
128static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
129			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
130static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
131static int mpt_soft_reset(struct mpt_softc *mpt);
132static void mpt_hard_reset(struct mpt_softc *mpt);
133static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
134static void mpt_dma_buf_free(struct mpt_softc *mpt);
135static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
136static int mpt_enable_ioc(struct mpt_softc *mpt, int);
137
138/************************* Personality Module Support *************************/
139/*
140 * We include one extra entry that is guaranteed to be NULL
141 * to simplify our itterator.
142 */
143static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
144static __inline struct mpt_personality*
145	mpt_pers_find(struct mpt_softc *, u_int);
146static __inline struct mpt_personality*
147	mpt_pers_find_reverse(struct mpt_softc *, u_int);
148
149static __inline struct mpt_personality *
150mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
151{
152	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
153		("mpt_pers_find: starting position out of range"));
154
155	while (start_at < MPT_MAX_PERSONALITIES
156	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
157		start_at++;
158	}
159	return (mpt_personalities[start_at]);
160}
161
162/*
163 * Used infrequently, so no need to optimize like a forward
164 * traversal where we use the MAX+1 is guaranteed to be NULL
165 * trick.
166 */
167static __inline struct mpt_personality *
168mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
169{
170	while (start_at < MPT_MAX_PERSONALITIES
171	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
172		start_at--;
173	}
174	if (start_at < MPT_MAX_PERSONALITIES)
175		return (mpt_personalities[start_at]);
176	return (NULL);
177}
178
179#define MPT_PERS_FOREACH(mpt, pers)				\
180	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
181	     pers != NULL;					\
182	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
183
184#define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
185	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
186	     pers != NULL;						\
187	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
188
189static mpt_load_handler_t      mpt_stdload;
190static mpt_probe_handler_t     mpt_stdprobe;
191static mpt_attach_handler_t    mpt_stdattach;
192static mpt_enable_handler_t    mpt_stdenable;
193static mpt_ready_handler_t     mpt_stdready;
194static mpt_event_handler_t     mpt_stdevent;
195static mpt_reset_handler_t     mpt_stdreset;
196static mpt_shutdown_handler_t  mpt_stdshutdown;
197static mpt_detach_handler_t    mpt_stddetach;
198static mpt_unload_handler_t    mpt_stdunload;
199static struct mpt_personality mpt_default_personality =
200{
201	.load		= mpt_stdload,
202	.probe		= mpt_stdprobe,
203	.attach		= mpt_stdattach,
204	.enable		= mpt_stdenable,
205	.ready		= mpt_stdready,
206	.event		= mpt_stdevent,
207	.reset		= mpt_stdreset,
208	.shutdown	= mpt_stdshutdown,
209	.detach		= mpt_stddetach,
210	.unload		= mpt_stdunload
211};
212
213static mpt_load_handler_t      mpt_core_load;
214static mpt_attach_handler_t    mpt_core_attach;
215static mpt_enable_handler_t    mpt_core_enable;
216static mpt_reset_handler_t     mpt_core_ioc_reset;
217static mpt_event_handler_t     mpt_core_event;
218static mpt_shutdown_handler_t  mpt_core_shutdown;
219static mpt_shutdown_handler_t  mpt_core_detach;
220static mpt_unload_handler_t    mpt_core_unload;
221static struct mpt_personality mpt_core_personality =
222{
223	.name		= "mpt_core",
224	.load		= mpt_core_load,
225//	.attach		= mpt_core_attach,
226//	.enable		= mpt_core_enable,
227	.event		= mpt_core_event,
228	.reset		= mpt_core_ioc_reset,
229	.shutdown	= mpt_core_shutdown,
230	.detach		= mpt_core_detach,
231	.unload		= mpt_core_unload,
232};
233
234/*
235 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
236 * ordering information.  We want the core to always register FIRST.
237 * other modules are set to SI_ORDER_SECOND.
238 */
239static moduledata_t mpt_core_mod = {
240	"mpt_core", mpt_modevent, &mpt_core_personality
241};
242DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
243MODULE_VERSION(mpt_core, 1);
244
245#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
246
247int
248mpt_modevent(module_t mod, int type, void *data)
249{
250	struct mpt_personality *pers;
251	int error;
252
253	pers = (struct mpt_personality *)data;
254
255	error = 0;
256	switch (type) {
257	case MOD_LOAD:
258	{
259		mpt_load_handler_t **def_handler;
260		mpt_load_handler_t **pers_handler;
261		int i;
262
263		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
264			if (mpt_personalities[i] == NULL)
265				break;
266		}
267		if (i >= MPT_MAX_PERSONALITIES) {
268			error = ENOMEM;
269			break;
270		}
271		pers->id = i;
272		mpt_personalities[i] = pers;
273
274		/* Install standard/noop handlers for any NULL entries. */
275		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
276		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
277		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
278			if (*pers_handler == NULL)
279				*pers_handler = *def_handler;
280			pers_handler++;
281			def_handler++;
282		}
283
284		error = (pers->load(pers));
285		if (error != 0)
286			mpt_personalities[i] = NULL;
287		break;
288	}
289	case MOD_SHUTDOWN:
290		break;
291	case MOD_QUIESCE:
292		break;
293	case MOD_UNLOAD:
294		error = pers->unload(pers);
295		mpt_personalities[pers->id] = NULL;
296		break;
297	default:
298		error = EINVAL;
299		break;
300	}
301	return (error);
302}
303
304static int
305mpt_stdload(struct mpt_personality *pers)
306{
307
308	/* Load is always successful. */
309	return (0);
310}
311
312static int
313mpt_stdprobe(struct mpt_softc *mpt)
314{
315
316	/* Probe is always successful. */
317	return (0);
318}
319
320static int
321mpt_stdattach(struct mpt_softc *mpt)
322{
323
324	/* Attach is always successful. */
325	return (0);
326}
327
328static int
329mpt_stdenable(struct mpt_softc *mpt)
330{
331
332	/* Enable is always successful. */
333	return (0);
334}
335
336static void
337mpt_stdready(struct mpt_softc *mpt)
338{
339
340}
341
342static int
343mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344{
345
346	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347	/* Event was not for us. */
348	return (0);
349}
350
351static void
352mpt_stdreset(struct mpt_softc *mpt, int type)
353{
354
355}
356
357static void
358mpt_stdshutdown(struct mpt_softc *mpt)
359{
360
361}
362
363static void
364mpt_stddetach(struct mpt_softc *mpt)
365{
366
367}
368
369static int
370mpt_stdunload(struct mpt_personality *pers)
371{
372
373	/* Unload is always successful. */
374	return (0);
375}
376
377/*
378 * Post driver attachment, we may want to perform some global actions.
379 * Here is the hook to do so.
380 */
381
382static void
383mpt_postattach(void *unused)
384{
385	struct mpt_softc *mpt;
386	struct mpt_personality *pers;
387
388	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389		MPT_PERS_FOREACH(mpt, pers)
390			pers->ready(mpt);
391	}
392}
393SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394
395/******************************* Bus DMA Support ******************************/
396void
397mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398{
399	struct mpt_map_info *map_info;
400
401	map_info = (struct mpt_map_info *)arg;
402	map_info->error = error;
403	map_info->phys = segs->ds_addr;
404}
405
406/**************************** Reply/Event Handling ****************************/
407int
408mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409		     mpt_handler_t handler, uint32_t *phandler_id)
410{
411
412	switch (type) {
413	case MPT_HANDLER_REPLY:
414	{
415		u_int cbi;
416		u_int free_cbi;
417
418		if (phandler_id == NULL)
419			return (EINVAL);
420
421		free_cbi = MPT_HANDLER_ID_NONE;
422		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423			/*
424			 * If the same handler is registered multiple
425			 * times, don't error out.  Just return the
426			 * index of the original registration.
427			 */
428			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429				*phandler_id = MPT_CBI_TO_HID(cbi);
430				return (0);
431			}
432
433			/*
434			 * Fill from the front in the hope that
435			 * all registered handlers consume only a
436			 * single cache line.
437			 *
438			 * We don't break on the first empty slot so
439			 * that the full table is checked to see if
440			 * this handler was previously registered.
441			 */
442			if (free_cbi == MPT_HANDLER_ID_NONE &&
443			    (mpt_reply_handlers[cbi]
444			  == mpt_default_reply_handler))
445				free_cbi = cbi;
446		}
447		if (free_cbi == MPT_HANDLER_ID_NONE) {
448			return (ENOMEM);
449		}
450		mpt_reply_handlers[free_cbi] = handler.reply_handler;
451		*phandler_id = MPT_CBI_TO_HID(free_cbi);
452		break;
453	}
454	default:
455		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456		return (EINVAL);
457	}
458	return (0);
459}
460
461int
462mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463		       mpt_handler_t handler, uint32_t handler_id)
464{
465
466	switch (type) {
467	case MPT_HANDLER_REPLY:
468	{
469		u_int cbi;
470
471		cbi = MPT_CBI(handler_id);
472		if (cbi >= MPT_NUM_REPLY_HANDLERS
473		 || mpt_reply_handlers[cbi] != handler.reply_handler)
474			return (ENOENT);
475		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476		break;
477	}
478	default:
479		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480		return (EINVAL);
481	}
482	return (0);
483}
484
485static int
486mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488{
489
490	mpt_prt(mpt,
491	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492	    req, req->serno, reply_desc, reply_frame);
493
494	if (reply_frame != NULL)
495		mpt_dump_reply_frame(mpt, reply_frame);
496
497	mpt_prt(mpt, "Reply Frame Ignored\n");
498
499	return (/*free_reply*/TRUE);
500}
501
502static int
503mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505{
506
507	if (req != NULL) {
508		if (reply_frame != NULL) {
509			MSG_CONFIG *cfgp;
510			MSG_CONFIG_REPLY *reply;
511
512			cfgp = (MSG_CONFIG *)req->req_vbuf;
513			reply = (MSG_CONFIG_REPLY *)reply_frame;
514			req->IOCStatus = le16toh(reply_frame->IOCStatus);
515			bcopy(&reply->Header, &cfgp->Header,
516			      sizeof(cfgp->Header));
517			cfgp->ExtPageLength = reply->ExtPageLength;
518			cfgp->ExtPageType = reply->ExtPageType;
519		}
520		req->state &= ~REQ_STATE_QUEUED;
521		req->state |= REQ_STATE_DONE;
522		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524			wakeup(req);
525		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526			/*
527			 * Whew- we can free this request (late completion)
528			 */
529			mpt_free_request(mpt, req);
530		}
531	}
532
533	return (TRUE);
534}
535
536static int
537mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539{
540
541	/* Nothing to be done. */
542	return (TRUE);
543}
544
545static int
546mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548{
549	int free_reply;
550
551	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553
554	free_reply = TRUE;
555	switch (reply_frame->Function) {
556	case MPI_FUNCTION_EVENT_NOTIFICATION:
557	{
558		MSG_EVENT_NOTIFY_REPLY *msg;
559		struct mpt_personality *pers;
560		u_int handled;
561
562		handled = 0;
563		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564		msg->EventDataLength = le16toh(msg->EventDataLength);
565		msg->IOCStatus = le16toh(msg->IOCStatus);
566		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567		msg->Event = le32toh(msg->Event);
568		MPT_PERS_FOREACH(mpt, pers)
569			handled += pers->event(mpt, req, msg);
570
571		if (handled == 0 && mpt->mpt_pers_mask == 0) {
572			mpt_lprt(mpt, MPT_PRT_INFO,
573				"No Handlers For Any Event Notify Frames. "
574				"Event %#x (ACK %sequired).\n",
575				msg->Event, msg->AckRequired? "r" : "not r");
576		} else if (handled == 0) {
577			mpt_lprt(mpt,
578				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579				"Unhandled Event Notify Frame. Event %#x "
580				"(ACK %sequired).\n",
581				msg->Event, msg->AckRequired? "r" : "not r");
582		}
583
584		if (msg->AckRequired) {
585			request_t *ack_req;
586			uint32_t context;
587
588			context = req->index | MPT_REPLY_HANDLER_EVENTS;
589			ack_req = mpt_get_request(mpt, FALSE);
590			if (ack_req == NULL) {
591				struct mpt_evtf_record *evtf;
592
593				evtf = (struct mpt_evtf_record *)reply_frame;
594				evtf->context = context;
595				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596				free_reply = FALSE;
597				break;
598			}
599			mpt_send_event_ack(mpt, ack_req, msg, context);
600			/*
601			 * Don't check for CONTINUATION_REPLY here
602			 */
603			return (free_reply);
604		}
605		break;
606	}
607	case MPI_FUNCTION_PORT_ENABLE:
608		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609		break;
610	case MPI_FUNCTION_EVENT_ACK:
611		break;
612	default:
613		mpt_prt(mpt, "unknown event function: %x\n",
614			reply_frame->Function);
615		break;
616	}
617
618	/*
619	 * I'm not sure that this continuation stuff works as it should.
620	 *
621	 * I've had FC async events occur that free the frame up because
622	 * the continuation bit isn't set, and then additional async events
623	 * then occur using the same context. As you might imagine, this
624	 * leads to Very Bad Thing.
625	 *
626	 *  Let's just be safe for now and not free them up until we figure
627	 * out what's actually happening here.
628	 */
629#if	0
630	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632		mpt_free_request(mpt, req);
633		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634		    reply_frame->Function, req, req->serno);
635		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636			MSG_EVENT_NOTIFY_REPLY *msg =
637			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639			    msg->Event, msg->AckRequired);
640		}
641	} else {
642		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643		    reply_frame->Function, req, req->serno);
644		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645			MSG_EVENT_NOTIFY_REPLY *msg =
646			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648			    msg->Event, msg->AckRequired);
649		}
650		mpt_prtc(mpt, "\n");
651	}
652#endif
653	return (free_reply);
654}
655
656/*
657 * Process an asynchronous event from the IOC.
658 */
659static int
660mpt_core_event(struct mpt_softc *mpt, request_t *req,
661	       MSG_EVENT_NOTIFY_REPLY *msg)
662{
663
664	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665                 msg->Event & 0xFF);
666	switch(msg->Event & 0xFF) {
667	case MPI_EVENT_NONE:
668		break;
669	case MPI_EVENT_LOG_DATA:
670	{
671		int i;
672
673		/* Some error occurred that LSI wants logged */
674		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675			msg->IOCLogInfo);
676		mpt_prt(mpt, "\tEvtLogData: Event Data:");
677		for (i = 0; i < msg->EventDataLength; i++)
678			mpt_prtc(mpt, "  %08x", msg->Data[i]);
679		mpt_prtc(mpt, "\n");
680		break;
681	}
682	case MPI_EVENT_EVENT_CHANGE:
683		/*
684		 * This is just an acknowledgement
685		 * of our mpt_send_event_request.
686		 */
687		break;
688	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689		break;
690	default:
691		return (0);
692		break;
693	}
694	return (1);
695}
696
697static void
698mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700{
701	MSG_EVENT_ACK *ackp;
702
703	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704	memset(ackp, 0, sizeof (*ackp));
705	ackp->Function = MPI_FUNCTION_EVENT_ACK;
706	ackp->Event = htole32(msg->Event);
707	ackp->EventContext = htole32(msg->EventContext);
708	ackp->MsgContext = htole32(context);
709	mpt_check_doorbell(mpt);
710	mpt_send_cmd(mpt, ack_req);
711}
712
713/***************************** Interrupt Handling *****************************/
714void
715mpt_intr(void *arg)
716{
717	struct mpt_softc *mpt;
718	uint32_t reply_desc;
719	int ntrips = 0;
720
721	mpt = (struct mpt_softc *)arg;
722	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723	MPT_LOCK_ASSERT(mpt);
724
725	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726		request_t	  *req;
727		MSG_DEFAULT_REPLY *reply_frame;
728		uint32_t	   reply_baddr;
729		uint32_t           ctxt_idx;
730		u_int		   cb_index;
731		u_int		   req_index;
732		u_int		   offset;
733		int		   free_rf;
734
735		req = NULL;
736		reply_frame = NULL;
737		reply_baddr = 0;
738		offset = 0;
739		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740			/*
741			 * Ensure that the reply frame is coherent.
742			 */
743			reply_baddr = MPT_REPLY_BADDR(reply_desc);
744			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745			bus_dmamap_sync_range(mpt->reply_dmat,
746			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747			    BUS_DMASYNC_POSTREAD);
748			reply_frame = MPT_REPLY_OTOV(mpt, offset);
749			ctxt_idx = le32toh(reply_frame->MsgContext);
750		} else {
751			uint32_t type;
752
753			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754			ctxt_idx = reply_desc;
755			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756				    reply_desc);
757
758			switch (type) {
759			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761				break;
762			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763				ctxt_idx = GET_IO_INDEX(reply_desc);
764				if (mpt->tgt_cmd_ptrs == NULL) {
765					mpt_prt(mpt,
766					    "mpt_intr: no target cmd ptrs\n");
767					reply_desc = MPT_REPLY_EMPTY;
768					break;
769				}
770				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771					mpt_prt(mpt,
772					    "mpt_intr: bad tgt cmd ctxt %u\n",
773					    ctxt_idx);
774					reply_desc = MPT_REPLY_EMPTY;
775					ntrips = 1000;
776					break;
777				}
778				req = mpt->tgt_cmd_ptrs[ctxt_idx];
779				if (req == NULL) {
780					mpt_prt(mpt, "no request backpointer "
781					    "at index %u", ctxt_idx);
782					reply_desc = MPT_REPLY_EMPTY;
783					ntrips = 1000;
784					break;
785				}
786				/*
787				 * Reformulate ctxt_idx to be just as if
788				 * it were another type of context reply
789				 * so the code below will find the request
790				 * via indexing into the pool.
791				 */
792				ctxt_idx =
793				    req->index | mpt->scsi_tgt_handler_id;
794				req = NULL;
795				break;
796			case MPI_CONTEXT_REPLY_TYPE_LAN:
797				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798				    reply_desc);
799				reply_desc = MPT_REPLY_EMPTY;
800				break;
801			default:
802				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803				reply_desc = MPT_REPLY_EMPTY;
804				break;
805			}
806			if (reply_desc == MPT_REPLY_EMPTY) {
807				if (ntrips++ > 1000) {
808					break;
809				}
810				continue;
811			}
812		}
813
814		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816		if (req_index < MPT_MAX_REQUESTS(mpt)) {
817			req = &mpt->request_pool[req_index];
818		} else {
819			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820			    " 0x%x)\n", req_index, reply_desc);
821		}
822
823		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825		free_rf = mpt_reply_handlers[cb_index](mpt, req,
826		    reply_desc, reply_frame);
827
828		if (reply_frame != NULL && free_rf) {
829			bus_dmamap_sync_range(mpt->reply_dmat,
830			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831			    BUS_DMASYNC_PREREAD);
832			mpt_free_reply(mpt, reply_baddr);
833		}
834
835		/*
836		 * If we got ourselves disabled, don't get stuck in a loop
837		 */
838		if (mpt->disabled) {
839			mpt_disable_ints(mpt);
840			break;
841		}
842		if (ntrips++ > 1000) {
843			break;
844		}
845	}
846	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847}
848
849/******************************* Error Recovery *******************************/
850void
851mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852			    u_int iocstatus)
853{
854	MSG_DEFAULT_REPLY  ioc_status_frame;
855	request_t	  *req;
856
857	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859	ioc_status_frame.IOCStatus = iocstatus;
860	while((req = TAILQ_FIRST(chain)) != NULL) {
861		MSG_REQUEST_HEADER *msg_hdr;
862		u_int		    cb_index;
863
864		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867		ioc_status_frame.Function = msg_hdr->Function;
868		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871		    &ioc_status_frame);
872		if (mpt_req_on_pending_list(mpt, req) != 0)
873			TAILQ_REMOVE(chain, req, links);
874	}
875}
876
877/********************************* Diagnostics ********************************/
878/*
879 * Perform a diagnostic dump of a reply frame.
880 */
881void
882mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883{
884
885	mpt_prt(mpt, "Address Reply:\n");
886	mpt_print_reply(reply_frame);
887}
888
889/******************************* Doorbell Access ******************************/
890static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892
893static __inline uint32_t
894mpt_rd_db(struct mpt_softc *mpt)
895{
896
897	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898}
899
900static __inline uint32_t
901mpt_rd_intr(struct mpt_softc *mpt)
902{
903
904	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905}
906
907/* Busy wait for a door bell to be read by IOC */
908static int
909mpt_wait_db_ack(struct mpt_softc *mpt)
910{
911	int i;
912
913	for (i=0; i < MPT_MAX_WAIT; i++) {
914		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916			return (MPT_OK);
917		}
918		DELAY(200);
919	}
920	return (MPT_FAIL);
921}
922
923/* Busy wait for a door bell interrupt */
924static int
925mpt_wait_db_int(struct mpt_softc *mpt)
926{
927	int i;
928
929	for (i = 0; i < MPT_MAX_WAIT; i++) {
930		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931			maxwait_int = i > maxwait_int ? i : maxwait_int;
932			return MPT_OK;
933		}
934		DELAY(100);
935	}
936	return (MPT_FAIL);
937}
938
939/* Wait for IOC to transition to a give state */
940void
941mpt_check_doorbell(struct mpt_softc *mpt)
942{
943	uint32_t db = mpt_rd_db(mpt);
944
945	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946		mpt_prt(mpt, "Device not running\n");
947		mpt_print_db(db);
948	}
949}
950
951/* Wait for IOC to transition to a give state */
952static int
953mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954{
955	int i;
956
957	for (i = 0; i < MPT_MAX_WAIT; i++) {
958		uint32_t db = mpt_rd_db(mpt);
959		if (MPT_STATE(db) == state) {
960			maxwait_state = i > maxwait_state ? i : maxwait_state;
961			return (MPT_OK);
962		}
963		DELAY(100);
964	}
965	return (MPT_FAIL);
966}
967
968
969/************************* Initialization/Configuration ************************/
970static int mpt_download_fw(struct mpt_softc *mpt);
971
972/* Issue the reset COMMAND to the IOC */
973static int
974mpt_soft_reset(struct mpt_softc *mpt)
975{
976
977	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978
979	/* Have to use hard reset if we are not in Running state */
980	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981		mpt_prt(mpt, "soft reset failed: device not running\n");
982		return (MPT_FAIL);
983	}
984
985	/* If door bell is in use we don't have a chance of getting
986	 * a word in since the IOC probably crashed in message
987	 * processing. So don't waste our time.
988	 */
989	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991		return (MPT_FAIL);
992	}
993
994	/* Send the reset request to the IOC */
995	mpt_write(mpt, MPT_OFFSET_DOORBELL,
996	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997	if (mpt_wait_db_ack(mpt) != MPT_OK) {
998		mpt_prt(mpt, "soft reset failed: ack timeout\n");
999		return (MPT_FAIL);
1000	}
1001
1002	/* Wait for the IOC to reload and come out of reset state */
1003	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005		return (MPT_FAIL);
1006	}
1007
1008	return MPT_OK;
1009}
1010
1011static int
1012mpt_enable_diag_mode(struct mpt_softc *mpt)
1013{
1014	int try;
1015
1016	try = 20;
1017	while (--try) {
1018
1019		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020			break;
1021
1022		/* Enable diagnostic registers */
1023		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029
1030		DELAY(100000);
1031	}
1032	if (try == 0)
1033		return (EIO);
1034	return (0);
1035}
1036
1037static void
1038mpt_disable_diag_mode(struct mpt_softc *mpt)
1039{
1040
1041	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042}
1043
1044/* This is a magic diagnostic reset that resets all the ARM
1045 * processors in the chip.
1046 */
1047static void
1048mpt_hard_reset(struct mpt_softc *mpt)
1049{
1050	int error;
1051	int wait;
1052	uint32_t diagreg;
1053
1054	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055
1056	if (mpt->is_1078) {
1057		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1058		DELAY(1000);
1059		return;
1060	}
1061
1062	error = mpt_enable_diag_mode(mpt);
1063	if (error) {
1064		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1065		mpt_prt(mpt, "Trying to reset anyway.\n");
1066	}
1067
1068	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1069
1070	/*
1071	 * This appears to be a workaround required for some
1072	 * firmware or hardware revs.
1073	 */
1074	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1075	DELAY(1000);
1076
1077	/* Diag. port is now active so we can now hit the reset bit */
1078	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1079
1080        /*
1081         * Ensure that the reset has finished.  We delay 1ms
1082         * prior to reading the register to make sure the chip
1083         * has sufficiently completed its reset to handle register
1084         * accesses.
1085         */
1086	wait = 5000;
1087	do {
1088		DELAY(1000);
1089		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1090	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1091
1092	if (wait == 0) {
1093		mpt_prt(mpt, "WARNING - Failed hard reset! "
1094			"Trying to initialize anyway.\n");
1095	}
1096
1097	/*
1098	 * If we have firmware to download, it must be loaded before
1099	 * the controller will become operational.  Do so now.
1100	 */
1101	if (mpt->fw_image != NULL) {
1102
1103		error = mpt_download_fw(mpt);
1104
1105		if (error) {
1106			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1107			mpt_prt(mpt, "Trying to initialize anyway.\n");
1108		}
1109	}
1110
1111	/*
1112	 * Reseting the controller should have disabled write
1113	 * access to the diagnostic registers, but disable
1114	 * manually to be sure.
1115	 */
1116	mpt_disable_diag_mode(mpt);
1117}
1118
1119static void
1120mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1121{
1122
1123	/*
1124	 * Complete all pending requests with a status
1125	 * appropriate for an IOC reset.
1126	 */
1127	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1128				   MPI_IOCSTATUS_INVALID_STATE);
1129}
1130
1131/*
1132 * Reset the IOC when needed. Try software command first then if needed
1133 * poke at the magic diagnostic reset. Note that a hard reset resets
1134 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1135 * fouls up the PCI configuration registers.
1136 */
1137int
1138mpt_reset(struct mpt_softc *mpt, int reinit)
1139{
1140	struct	mpt_personality *pers;
1141	int	ret;
1142	int	retry_cnt = 0;
1143
1144	/*
1145	 * Try a soft reset. If that fails, get out the big hammer.
1146	 */
1147 again:
1148	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1149		int	cnt;
1150		for (cnt = 0; cnt < 5; cnt++) {
1151			/* Failed; do a hard reset */
1152			mpt_hard_reset(mpt);
1153
1154			/*
1155			 * Wait for the IOC to reload
1156			 * and come out of reset state
1157			 */
1158			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1159			if (ret == MPT_OK) {
1160				break;
1161			}
1162			/*
1163			 * Okay- try to check again...
1164			 */
1165			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1166			if (ret == MPT_OK) {
1167				break;
1168			}
1169			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1170			    retry_cnt, cnt);
1171		}
1172	}
1173
1174	if (retry_cnt == 0) {
1175		/*
1176		 * Invoke reset handlers.  We bump the reset count so
1177		 * that mpt_wait_req() understands that regardless of
1178		 * the specified wait condition, it should stop its wait.
1179		 */
1180		mpt->reset_cnt++;
1181		MPT_PERS_FOREACH(mpt, pers)
1182			pers->reset(mpt, ret);
1183	}
1184
1185	if (reinit) {
1186		ret = mpt_enable_ioc(mpt, 1);
1187		if (ret == MPT_OK) {
1188			mpt_enable_ints(mpt);
1189		}
1190	}
1191	if (ret != MPT_OK && retry_cnt++ < 2) {
1192		goto again;
1193	}
1194	return ret;
1195}
1196
1197/* Return a command buffer to the free queue */
1198void
1199mpt_free_request(struct mpt_softc *mpt, request_t *req)
1200{
1201	request_t *nxt;
1202	struct mpt_evtf_record *record;
1203	uint32_t offset, reply_baddr;
1204
1205	if (req == NULL || req != &mpt->request_pool[req->index]) {
1206		panic("mpt_free_request: bad req ptr");
1207	}
1208	if ((nxt = req->chain) != NULL) {
1209		req->chain = NULL;
1210		mpt_free_request(mpt, nxt);	/* NB: recursion */
1211	}
1212	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1213	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1214	MPT_LOCK_ASSERT(mpt);
1215	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1216	    ("mpt_free_request: req %p:%u func %x already on freelist",
1217	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1218	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1219	    ("mpt_free_request: req %p:%u func %x on pending list",
1220	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1221#ifdef	INVARIANTS
1222	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1223#endif
1224
1225	req->ccb = NULL;
1226	if (LIST_EMPTY(&mpt->ack_frames)) {
1227		/*
1228		 * Insert free ones at the tail
1229		 */
1230		req->serno = 0;
1231		req->state = REQ_STATE_FREE;
1232#ifdef	INVARIANTS
1233		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1234#endif
1235		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1236		if (mpt->getreqwaiter != 0) {
1237			mpt->getreqwaiter = 0;
1238			wakeup(&mpt->request_free_list);
1239		}
1240		return;
1241	}
1242
1243	/*
1244	 * Process an ack frame deferred due to resource shortage.
1245	 */
1246	record = LIST_FIRST(&mpt->ack_frames);
1247	LIST_REMOVE(record, links);
1248	req->state = REQ_STATE_ALLOCATED;
1249	mpt_assign_serno(mpt, req);
1250	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1251	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1252	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1253	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1254	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1255	mpt_free_reply(mpt, reply_baddr);
1256}
1257
1258/* Get a command buffer from the free queue */
1259request_t *
1260mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1261{
1262	request_t *req;
1263
1264retry:
1265	MPT_LOCK_ASSERT(mpt);
1266	req = TAILQ_FIRST(&mpt->request_free_list);
1267	if (req != NULL) {
1268		KASSERT(req == &mpt->request_pool[req->index],
1269		    ("mpt_get_request: corrupted request free list"));
1270		KASSERT(req->state == REQ_STATE_FREE,
1271		    ("req %p:%u not free on free list %x index %d function %x",
1272		    req, req->serno, req->state, req->index,
1273		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1274		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1275		req->state = REQ_STATE_ALLOCATED;
1276		req->chain = NULL;
1277		mpt_assign_serno(mpt, req);
1278	} else if (sleep_ok != 0) {
1279		mpt->getreqwaiter = 1;
1280		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1281		goto retry;
1282	}
1283	return (req);
1284}
1285
1286/* Pass the command to the IOC */
1287void
1288mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1289{
1290
1291	if (mpt->verbose > MPT_PRT_DEBUG2) {
1292		mpt_dump_request(mpt, req);
1293	}
1294	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1295	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1296	req->state |= REQ_STATE_QUEUED;
1297	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1298	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1299	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1300	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1301	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1302	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1303	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1304	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1305}
1306
1307/*
1308 * Wait for a request to complete.
1309 *
1310 * Inputs:
1311 *	mpt		softc of controller executing request
1312 *	req		request to wait for
1313 *	sleep_ok	nonzero implies may sleep in this context
1314 *	time_ms		timeout in ms.  0 implies no timeout.
1315 *
1316 * Return Values:
1317 *	0		Request completed
1318 *	non-0		Timeout fired before request completion.
1319 */
1320int
1321mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1322	     mpt_req_state_t state, mpt_req_state_t mask,
1323	     int sleep_ok, int time_ms)
1324{
1325	int   timeout;
1326	u_int saved_cnt;
1327	sbintime_t sbt;
1328
1329	/*
1330	 * time_ms is in ms, 0 indicates infinite wait.
1331	 * Convert to sbintime_t or 500us units depending on
1332	 * our sleep mode.
1333	 */
1334	if (sleep_ok != 0) {
1335		sbt = SBT_1MS * time_ms;
1336		/* Set timeout as well so final timeout check works. */
1337		timeout = time_ms;
1338	} else {
1339		sbt = 0; /* Squelch bogus gcc warning. */
1340		timeout = time_ms * 2;
1341	}
1342	req->state |= REQ_STATE_NEED_WAKEUP;
1343	mask &= ~REQ_STATE_NEED_WAKEUP;
1344	saved_cnt = mpt->reset_cnt;
1345	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1346		if (sleep_ok != 0) {
1347			if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
1348			    EWOULDBLOCK) {
1349				timeout = 0;
1350				break;
1351			}
1352		} else {
1353			if (time_ms != 0 && --timeout == 0) {
1354				break;
1355			}
1356			DELAY(500);
1357			mpt_intr(mpt);
1358		}
1359	}
1360	req->state &= ~REQ_STATE_NEED_WAKEUP;
1361	if (mpt->reset_cnt != saved_cnt) {
1362		return (EIO);
1363	}
1364	if (time_ms && timeout <= 0) {
1365		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1366		req->state |= REQ_STATE_TIMEDOUT;
1367		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1368		return (ETIMEDOUT);
1369	}
1370	return (0);
1371}
1372
1373/*
1374 * Send a command to the IOC via the handshake register.
1375 *
1376 * Only done at initialization time and for certain unusual
1377 * commands such as device/bus reset as specified by LSI.
1378 */
1379int
1380mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1381{
1382	int i;
1383	uint32_t data, *data32;
1384
1385	/* Check condition of the IOC */
1386	data = mpt_rd_db(mpt);
1387	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1388	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1389	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1390	 || MPT_DB_IS_IN_USE(data)) {
1391		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1392		mpt_print_db(data);
1393		return (EBUSY);
1394	}
1395
1396	/* We move things in 32 bit chunks */
1397	len = (len + 3) >> 2;
1398	data32 = cmd;
1399
1400	/* Clear any left over pending doorbell interrupts */
1401	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1402		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1403
1404	/*
1405	 * Tell the handshake reg. we are going to send a command
1406         * and how long it is going to be.
1407	 */
1408	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1409	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1410	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1411
1412	/* Wait for the chip to notice */
1413	if (mpt_wait_db_int(mpt) != MPT_OK) {
1414		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1415		return (ETIMEDOUT);
1416	}
1417
1418	/* Clear the interrupt */
1419	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1420
1421	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1422		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1423		return (ETIMEDOUT);
1424	}
1425
1426	/* Send the command */
1427	for (i = 0; i < len; i++) {
1428		mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
1429		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1430			mpt_prt(mpt,
1431			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1432			return (ETIMEDOUT);
1433		}
1434	}
1435	return MPT_OK;
1436}
1437
1438/* Get the response from the handshake register */
1439int
1440mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1441{
1442	int left, reply_left;
1443	u_int16_t *data16;
1444	uint32_t data;
1445	MSG_DEFAULT_REPLY *hdr;
1446
1447	/* We move things out in 16 bit chunks */
1448	reply_len >>= 1;
1449	data16 = (u_int16_t *)reply;
1450
1451	hdr = (MSG_DEFAULT_REPLY *)reply;
1452
1453	/* Get first word */
1454	if (mpt_wait_db_int(mpt) != MPT_OK) {
1455		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1456		return ETIMEDOUT;
1457	}
1458	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1459	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1460	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1461
1462	/* Get second word */
1463	if (mpt_wait_db_int(mpt) != MPT_OK) {
1464		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1465		return ETIMEDOUT;
1466	}
1467	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1468	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1469	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1470
1471	/*
1472	 * With the second word, we can now look at the length.
1473	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1474	 */
1475	if ((reply_len >> 1) != hdr->MsgLength &&
1476	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1477		mpt_prt(mpt, "reply length does not match message length: "
1478			"got %x; expected %zx for function %x\n",
1479			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1480	}
1481
1482	/* Get rest of the reply; but don't overflow the provided buffer */
1483	left = (hdr->MsgLength << 1) - 2;
1484	reply_left =  reply_len - 2;
1485	while (left--) {
1486		if (mpt_wait_db_int(mpt) != MPT_OK) {
1487			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1488			return ETIMEDOUT;
1489		}
1490		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1491		if (reply_left-- > 0)
1492			*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1493		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1494	}
1495
1496	/* One more wait & clear at the end */
1497	if (mpt_wait_db_int(mpt) != MPT_OK) {
1498		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1499		return ETIMEDOUT;
1500	}
1501	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1502
1503	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1504		if (mpt->verbose >= MPT_PRT_TRACE)
1505			mpt_print_reply(hdr);
1506		return (MPT_FAIL | hdr->IOCStatus);
1507	}
1508
1509	return (0);
1510}
1511
1512static int
1513mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1514{
1515	MSG_IOC_FACTS f_req;
1516	int error;
1517
1518	memset(&f_req, 0, sizeof f_req);
1519	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1520	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1521	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1522	if (error) {
1523		return(error);
1524	}
1525	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1526	return (error);
1527}
1528
1529static int
1530mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1531{
1532	MSG_PORT_FACTS f_req;
1533	int error;
1534
1535	memset(&f_req, 0, sizeof f_req);
1536	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1537	f_req.PortNumber = port;
1538	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1539	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1540	if (error) {
1541		return(error);
1542	}
1543	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1544	return (error);
1545}
1546
1547/*
1548 * Send the initialization request. This is where we specify how many
1549 * SCSI buses and how many devices per bus we wish to emulate.
1550 * This is also the command that specifies the max size of the reply
1551 * frames from the IOC that we will be allocating.
1552 */
1553static int
1554mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1555{
1556	int error = 0;
1557	MSG_IOC_INIT init;
1558	MSG_IOC_INIT_REPLY reply;
1559
1560	memset(&init, 0, sizeof init);
1561	init.WhoInit = who;
1562	init.Function = MPI_FUNCTION_IOC_INIT;
1563	init.MaxDevices = 0;	/* at least 256 devices per bus */
1564	init.MaxBuses = 16;	/* at least 16 buses */
1565
1566	init.MsgVersion = htole16(MPI_VERSION);
1567	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1568	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1569	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1570
1571	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1572		return(error);
1573	}
1574
1575	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1576	return (error);
1577}
1578
1579
1580/*
1581 * Utiltity routine to read configuration headers and pages
1582 */
1583int
1584mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1585		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1586{
1587	MSG_CONFIG *cfgp;
1588	SGE_SIMPLE32 *se;
1589
1590	cfgp = req->req_vbuf;
1591	memset(cfgp, 0, sizeof *cfgp);
1592	cfgp->Action = params->Action;
1593	cfgp->Function = MPI_FUNCTION_CONFIG;
1594	cfgp->Header.PageVersion = params->PageVersion;
1595	cfgp->Header.PageNumber = params->PageNumber;
1596	cfgp->PageAddress = htole32(params->PageAddress);
1597	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1598	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1599		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1600		cfgp->Header.PageLength = 0;
1601		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1602		cfgp->ExtPageType = params->ExtPageType;
1603	} else {
1604		cfgp->Header.PageType = params->PageType;
1605		cfgp->Header.PageLength = params->PageLength;
1606	}
1607	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1608	se->Address = htole32(addr);
1609	MPI_pSGE_SET_LENGTH(se, len);
1610	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1611	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1612	    MPI_SGE_FLAGS_END_OF_LIST |
1613	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1614	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1615	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1616	se->FlagsLength = htole32(se->FlagsLength);
1617	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1618
1619	mpt_check_doorbell(mpt);
1620	mpt_send_cmd(mpt, req);
1621	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1622			     sleep_ok, timeout_ms));
1623}
1624
1625int
1626mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1627		       uint32_t PageAddress, int ExtPageType,
1628		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1629		       int sleep_ok, int timeout_ms)
1630{
1631	request_t  *req;
1632	cfgparms_t params;
1633	MSG_CONFIG_REPLY *cfgp;
1634	int	    error;
1635
1636	req = mpt_get_request(mpt, sleep_ok);
1637	if (req == NULL) {
1638		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1639		return (ENOMEM);
1640	}
1641
1642	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1643	params.PageVersion = PageVersion;
1644	params.PageLength = 0;
1645	params.PageNumber = PageNumber;
1646	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1647	params.PageAddress = PageAddress;
1648	params.ExtPageType = ExtPageType;
1649	params.ExtPageLength = 0;
1650	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1651				  sleep_ok, timeout_ms);
1652	if (error != 0) {
1653		/*
1654		 * Leave the request. Without resetting the chip, it's
1655		 * still owned by it and we'll just get into trouble
1656		 * freeing it now. Mark it as abandoned so that if it
1657		 * shows up later it can be freed.
1658		 */
1659		mpt_prt(mpt, "read_extcfg_header timed out\n");
1660		return (ETIMEDOUT);
1661	}
1662
1663        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1664	case MPI_IOCSTATUS_SUCCESS:
1665		cfgp = req->req_vbuf;
1666		rslt->PageVersion = cfgp->Header.PageVersion;
1667		rslt->PageNumber = cfgp->Header.PageNumber;
1668		rslt->PageType = cfgp->Header.PageType;
1669		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1670		rslt->ExtPageType = cfgp->ExtPageType;
1671		error = 0;
1672		break;
1673	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1674		mpt_lprt(mpt, MPT_PRT_DEBUG,
1675		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1676		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1677		error = EINVAL;
1678		break;
1679	default:
1680		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1681			req->IOCStatus);
1682		error = EIO;
1683		break;
1684	}
1685	mpt_free_request(mpt, req);
1686	return (error);
1687}
1688
1689int
1690mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1691		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1692		     int sleep_ok, int timeout_ms)
1693{
1694	request_t    *req;
1695	cfgparms_t    params;
1696	int	      error;
1697
1698	req = mpt_get_request(mpt, sleep_ok);
1699	if (req == NULL) {
1700		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1701		return (-1);
1702	}
1703
1704	params.Action = Action;
1705	params.PageVersion = hdr->PageVersion;
1706	params.PageLength = 0;
1707	params.PageNumber = hdr->PageNumber;
1708	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1709	params.PageAddress = PageAddress;
1710	params.ExtPageType = hdr->ExtPageType;
1711	params.ExtPageLength = hdr->ExtPageLength;
1712	error = mpt_issue_cfg_req(mpt, req, &params,
1713				  req->req_pbuf + MPT_RQSL(mpt),
1714				  len, sleep_ok, timeout_ms);
1715	if (error != 0) {
1716		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1717		return (-1);
1718	}
1719
1720	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1721		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1722			req->IOCStatus);
1723		mpt_free_request(mpt, req);
1724		return (-1);
1725	}
1726	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1727	mpt_free_request(mpt, req);
1728	return (0);
1729}
1730
1731int
1732mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1733		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1734		    int sleep_ok, int timeout_ms)
1735{
1736	request_t  *req;
1737	cfgparms_t params;
1738	MSG_CONFIG *cfgp;
1739	int	    error;
1740
1741	req = mpt_get_request(mpt, sleep_ok);
1742	if (req == NULL) {
1743		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1744		return (ENOMEM);
1745	}
1746
1747	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1748	params.PageVersion = 0;
1749	params.PageLength = 0;
1750	params.PageNumber = PageNumber;
1751	params.PageType = PageType;
1752	params.PageAddress = PageAddress;
1753	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1754				  sleep_ok, timeout_ms);
1755	if (error != 0) {
1756		/*
1757		 * Leave the request. Without resetting the chip, it's
1758		 * still owned by it and we'll just get into trouble
1759		 * freeing it now. Mark it as abandoned so that if it
1760		 * shows up later it can be freed.
1761		 */
1762		mpt_prt(mpt, "read_cfg_header timed out\n");
1763		return (ETIMEDOUT);
1764	}
1765
1766        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1767	case MPI_IOCSTATUS_SUCCESS:
1768		cfgp = req->req_vbuf;
1769		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1770		error = 0;
1771		break;
1772	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1773		mpt_lprt(mpt, MPT_PRT_DEBUG,
1774		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1775		    PageType, PageNumber, PageAddress);
1776		error = EINVAL;
1777		break;
1778	default:
1779		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1780			req->IOCStatus);
1781		error = EIO;
1782		break;
1783	}
1784	mpt_free_request(mpt, req);
1785	return (error);
1786}
1787
1788int
1789mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1790		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1791		  int timeout_ms)
1792{
1793	request_t    *req;
1794	cfgparms_t    params;
1795	int	      error;
1796
1797	req = mpt_get_request(mpt, sleep_ok);
1798	if (req == NULL) {
1799		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1800		return (-1);
1801	}
1802
1803	params.Action = Action;
1804	params.PageVersion = hdr->PageVersion;
1805	params.PageLength = hdr->PageLength;
1806	params.PageNumber = hdr->PageNumber;
1807	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1808	params.PageAddress = PageAddress;
1809	error = mpt_issue_cfg_req(mpt, req, &params,
1810				  req->req_pbuf + MPT_RQSL(mpt),
1811				  len, sleep_ok, timeout_ms);
1812	if (error != 0) {
1813		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1814		return (-1);
1815	}
1816
1817	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1818		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1819			req->IOCStatus);
1820		mpt_free_request(mpt, req);
1821		return (-1);
1822	}
1823	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1824	mpt_free_request(mpt, req);
1825	return (0);
1826}
1827
1828int
1829mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1830		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1831		   int timeout_ms)
1832{
1833	request_t    *req;
1834	cfgparms_t    params;
1835	u_int	      hdr_attr;
1836	int	      error;
1837
1838	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1839	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1840	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1841		mpt_prt(mpt, "page type 0x%x not changeable\n",
1842			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1843		return (-1);
1844	}
1845
1846#if	0
1847	/*
1848	 * We shouldn't mask off other bits here.
1849	 */
1850	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1851#endif
1852
1853	req = mpt_get_request(mpt, sleep_ok);
1854	if (req == NULL)
1855		return (-1);
1856
1857	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1858
1859	/*
1860	 * There isn't any point in restoring stripped out attributes
1861	 * if you then mask them going down to issue the request.
1862	 */
1863
1864	params.Action = Action;
1865	params.PageVersion = hdr->PageVersion;
1866	params.PageLength = hdr->PageLength;
1867	params.PageNumber = hdr->PageNumber;
1868	params.PageAddress = PageAddress;
1869#if	0
1870	/* Restore stripped out attributes */
1871	hdr->PageType |= hdr_attr;
1872	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1873#else
1874	params.PageType = hdr->PageType;
1875#endif
1876	error = mpt_issue_cfg_req(mpt, req, &params,
1877				  req->req_pbuf + MPT_RQSL(mpt),
1878				  len, sleep_ok, timeout_ms);
1879	if (error != 0) {
1880		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1881		return (-1);
1882	}
1883
1884        if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1885		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1886			req->IOCStatus);
1887		mpt_free_request(mpt, req);
1888		return (-1);
1889	}
1890	mpt_free_request(mpt, req);
1891	return (0);
1892}
1893
1894/*
1895 * Read IOC configuration information
1896 */
1897static int
1898mpt_read_config_info_ioc(struct mpt_softc *mpt)
1899{
1900	CONFIG_PAGE_HEADER hdr;
1901	struct mpt_raid_volume *mpt_raid;
1902	int rv;
1903	int i;
1904	size_t len;
1905
1906	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1907		2, 0, &hdr, FALSE, 5000);
1908	/*
1909	 * If it's an invalid page, so what? Not a supported function....
1910	 */
1911	if (rv == EINVAL) {
1912		return (0);
1913	}
1914	if (rv) {
1915		return (rv);
1916	}
1917
1918	mpt_lprt(mpt, MPT_PRT_DEBUG,
1919	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1920	    hdr.PageVersion, hdr.PageLength << 2,
1921	    hdr.PageNumber, hdr.PageType);
1922
1923	len = hdr.PageLength * sizeof(uint32_t);
1924	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1925	if (mpt->ioc_page2 == NULL) {
1926		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1927		mpt_raid_free_mem(mpt);
1928		return (ENOMEM);
1929	}
1930	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1931	rv = mpt_read_cur_cfg_page(mpt, 0,
1932	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1933	if (rv) {
1934		mpt_prt(mpt, "failed to read IOC Page 2\n");
1935		mpt_raid_free_mem(mpt);
1936		return (EIO);
1937	}
1938	mpt2host_config_page_ioc2(mpt->ioc_page2);
1939
1940	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1941		uint32_t mask;
1942
1943		mpt_prt(mpt, "Capabilities: (");
1944		for (mask = 1; mask != 0; mask <<= 1) {
1945			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1946				continue;
1947			}
1948			switch (mask) {
1949			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1950				mpt_prtc(mpt, " RAID-0");
1951				break;
1952			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1953				mpt_prtc(mpt, " RAID-1E");
1954				break;
1955			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1956				mpt_prtc(mpt, " RAID-1");
1957				break;
1958			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1959				mpt_prtc(mpt, " SES");
1960				break;
1961			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1962				mpt_prtc(mpt, " SAFTE");
1963				break;
1964			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1965				mpt_prtc(mpt, " Multi-Channel-Arrays");
1966			default:
1967				break;
1968			}
1969		}
1970		mpt_prtc(mpt, " )\n");
1971		if ((mpt->ioc_page2->CapabilitiesFlags
1972		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1973		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1974		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1975			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1976				mpt->ioc_page2->NumActiveVolumes,
1977				mpt->ioc_page2->NumActiveVolumes != 1
1978			      ? "s " : " ",
1979				mpt->ioc_page2->MaxVolumes);
1980			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1981				mpt->ioc_page2->NumActivePhysDisks,
1982				mpt->ioc_page2->NumActivePhysDisks != 1
1983			      ? "s " : " ",
1984				mpt->ioc_page2->MaxPhysDisks);
1985		}
1986	}
1987
1988	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1989	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1990	if (mpt->raid_volumes == NULL) {
1991		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1992		mpt_raid_free_mem(mpt);
1993		return (ENOMEM);
1994	}
1995
1996	/*
1997	 * Copy critical data out of ioc_page2 so that we can
1998	 * safely refresh the page without windows of unreliable
1999	 * data.
2000	 */
2001	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2002
2003	len = sizeof(*mpt->raid_volumes->config_page) +
2004	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2005	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2006		mpt_raid = &mpt->raid_volumes[i];
2007		mpt_raid->config_page =
2008		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2009		if (mpt_raid->config_page == NULL) {
2010			mpt_prt(mpt, "Could not allocate RAID page data\n");
2011			mpt_raid_free_mem(mpt);
2012			return (ENOMEM);
2013		}
2014	}
2015	mpt->raid_page0_len = len;
2016
2017	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2018	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2019	if (mpt->raid_disks == NULL) {
2020		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2021		mpt_raid_free_mem(mpt);
2022		return (ENOMEM);
2023	}
2024	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2025
2026	/*
2027	 * Load page 3.
2028	 */
2029	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2030	    3, 0, &hdr, FALSE, 5000);
2031	if (rv) {
2032		mpt_raid_free_mem(mpt);
2033		return (EIO);
2034	}
2035
2036	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2037	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2038
2039	len = hdr.PageLength * sizeof(uint32_t);
2040	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2041	if (mpt->ioc_page3 == NULL) {
2042		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2043		mpt_raid_free_mem(mpt);
2044		return (ENOMEM);
2045	}
2046	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2047	rv = mpt_read_cur_cfg_page(mpt, 0,
2048	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2049	if (rv) {
2050		mpt_raid_free_mem(mpt);
2051		return (EIO);
2052	}
2053	mpt2host_config_page_ioc3(mpt->ioc_page3);
2054	mpt_raid_wakeup(mpt);
2055	return (0);
2056}
2057
2058/*
2059 * Enable IOC port
2060 */
2061static int
2062mpt_send_port_enable(struct mpt_softc *mpt, int port)
2063{
2064	request_t	*req;
2065	MSG_PORT_ENABLE *enable_req;
2066	int		 error;
2067
2068	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2069	if (req == NULL)
2070		return (-1);
2071
2072	enable_req = req->req_vbuf;
2073	memset(enable_req, 0,  MPT_RQSL(mpt));
2074
2075	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2076	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2077	enable_req->PortNumber = port;
2078
2079	mpt_check_doorbell(mpt);
2080	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2081
2082	mpt_send_cmd(mpt, req);
2083	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2084	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2085	if (error != 0) {
2086		mpt_prt(mpt, "port %d enable timed out\n", port);
2087		return (-1);
2088	}
2089	mpt_free_request(mpt, req);
2090	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2091	return (0);
2092}
2093
2094/*
2095 * Enable/Disable asynchronous event reporting.
2096 */
2097static int
2098mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2099{
2100	request_t *req;
2101	MSG_EVENT_NOTIFY *enable_req;
2102
2103	req = mpt_get_request(mpt, FALSE);
2104	if (req == NULL) {
2105		return (ENOMEM);
2106	}
2107	enable_req = req->req_vbuf;
2108	memset(enable_req, 0, sizeof *enable_req);
2109
2110	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2111	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2112	enable_req->Switch     = onoff;
2113
2114	mpt_check_doorbell(mpt);
2115	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2116	    onoff ? "en" : "dis");
2117	/*
2118	 * Send the command off, but don't wait for it.
2119	 */
2120	mpt_send_cmd(mpt, req);
2121	return (0);
2122}
2123
2124/*
2125 * Un-mask the interrupts on the chip.
2126 */
2127void
2128mpt_enable_ints(struct mpt_softc *mpt)
2129{
2130
2131	/* Unmask every thing except door bell int */
2132	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2133}
2134
2135/*
2136 * Mask the interrupts on the chip.
2137 */
2138void
2139mpt_disable_ints(struct mpt_softc *mpt)
2140{
2141
2142	/* Mask all interrupts */
2143	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2144	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2145}
2146
2147static void
2148mpt_sysctl_attach(struct mpt_softc *mpt)
2149{
2150	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2151	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2152
2153	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2154		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2155		       "Debugging/Verbose level");
2156	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2157		       "role", CTLFLAG_RD, &mpt->role, 0,
2158		       "HBA role");
2159#ifdef	MPT_TEST_MULTIPATH
2160	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2161		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2162		       "Next Target to Fail");
2163#endif
2164}
2165
2166int
2167mpt_attach(struct mpt_softc *mpt)
2168{
2169	struct mpt_personality *pers;
2170	int i;
2171	int error;
2172
2173	mpt_core_attach(mpt);
2174	mpt_core_enable(mpt);
2175
2176	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2177	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2178		pers = mpt_personalities[i];
2179		if (pers == NULL) {
2180			continue;
2181		}
2182		if (pers->probe(mpt) == 0) {
2183			error = pers->attach(mpt);
2184			if (error != 0) {
2185				mpt_detach(mpt);
2186				return (error);
2187			}
2188			mpt->mpt_pers_mask |= (0x1 << pers->id);
2189			pers->use_count++;
2190		}
2191	}
2192
2193	/*
2194	 * Now that we've attached everything, do the enable function
2195	 * for all of the personalities. This allows the personalities
2196	 * to do setups that are appropriate for them prior to enabling
2197	 * any ports.
2198	 */
2199	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2200		pers = mpt_personalities[i];
2201		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2202			error = pers->enable(mpt);
2203			if (error != 0) {
2204				mpt_prt(mpt, "personality %s attached but would"
2205				    " not enable (%d)\n", pers->name, error);
2206				mpt_detach(mpt);
2207				return (error);
2208			}
2209		}
2210	}
2211	return (0);
2212}
2213
2214int
2215mpt_shutdown(struct mpt_softc *mpt)
2216{
2217	struct mpt_personality *pers;
2218
2219	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2220		pers->shutdown(mpt);
2221	}
2222	return (0);
2223}
2224
2225int
2226mpt_detach(struct mpt_softc *mpt)
2227{
2228	struct mpt_personality *pers;
2229
2230	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2231		pers->detach(mpt);
2232		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2233		pers->use_count--;
2234	}
2235	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2236	return (0);
2237}
2238
2239static int
2240mpt_core_load(struct mpt_personality *pers)
2241{
2242	int i;
2243
2244	/*
2245	 * Setup core handlers and insert the default handler
2246	 * into all "empty slots".
2247	 */
2248	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2249		mpt_reply_handlers[i] = mpt_default_reply_handler;
2250	}
2251
2252	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2253	    mpt_event_reply_handler;
2254	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2255	    mpt_config_reply_handler;
2256	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2257	    mpt_handshake_reply_handler;
2258	return (0);
2259}
2260
2261/*
2262 * Initialize per-instance driver data and perform
2263 * initial controller configuration.
2264 */
2265static int
2266mpt_core_attach(struct mpt_softc *mpt)
2267{
2268        int val, error;
2269
2270	LIST_INIT(&mpt->ack_frames);
2271	/* Put all request buffers on the free list */
2272	TAILQ_INIT(&mpt->request_pending_list);
2273	TAILQ_INIT(&mpt->request_free_list);
2274	TAILQ_INIT(&mpt->request_timeout_list);
2275	for (val = 0; val < MPT_MAX_LUNS; val++) {
2276		STAILQ_INIT(&mpt->trt[val].atios);
2277		STAILQ_INIT(&mpt->trt[val].inots);
2278	}
2279	STAILQ_INIT(&mpt->trt_wildcard.atios);
2280	STAILQ_INIT(&mpt->trt_wildcard.inots);
2281#ifdef	MPT_TEST_MULTIPATH
2282	mpt->failure_id = -1;
2283#endif
2284	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2285	mpt_sysctl_attach(mpt);
2286	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2287	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2288
2289	MPT_LOCK(mpt);
2290	error = mpt_configure_ioc(mpt, 0, 0);
2291	MPT_UNLOCK(mpt);
2292
2293	return (error);
2294}
2295
2296static int
2297mpt_core_enable(struct mpt_softc *mpt)
2298{
2299
2300	/*
2301	 * We enter with the IOC enabled, but async events
2302	 * not enabled, ports not enabled and interrupts
2303	 * not enabled.
2304	 */
2305	MPT_LOCK(mpt);
2306
2307	/*
2308	 * Enable asynchronous event reporting- all personalities
2309	 * have attached so that they should be able to now field
2310	 * async events.
2311	 */
2312	mpt_send_event_request(mpt, 1);
2313
2314	/*
2315	 * Catch any pending interrupts
2316	 *
2317	 * This seems to be crucial- otherwise
2318	 * the portenable below times out.
2319	 */
2320	mpt_intr(mpt);
2321
2322	/*
2323	 * Enable Interrupts
2324	 */
2325	mpt_enable_ints(mpt);
2326
2327	/*
2328	 * Catch any pending interrupts
2329	 *
2330	 * This seems to be crucial- otherwise
2331	 * the portenable below times out.
2332	 */
2333	mpt_intr(mpt);
2334
2335	/*
2336	 * Enable the port.
2337	 */
2338	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2339		mpt_prt(mpt, "failed to enable port 0\n");
2340		MPT_UNLOCK(mpt);
2341		return (ENXIO);
2342	}
2343	MPT_UNLOCK(mpt);
2344	return (0);
2345}
2346
2347static void
2348mpt_core_shutdown(struct mpt_softc *mpt)
2349{
2350
2351	mpt_disable_ints(mpt);
2352}
2353
2354static void
2355mpt_core_detach(struct mpt_softc *mpt)
2356{
2357	int val;
2358
2359	/*
2360	 * XXX: FREE MEMORY
2361	 */
2362	mpt_disable_ints(mpt);
2363
2364	/* Make sure no request has pending timeouts. */
2365	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2366		request_t *req = &mpt->request_pool[val];
2367		mpt_callout_drain(mpt, &req->callout);
2368	}
2369
2370	mpt_dma_buf_free(mpt);
2371}
2372
2373static int
2374mpt_core_unload(struct mpt_personality *pers)
2375{
2376
2377	/* Unload is always successful. */
2378	return (0);
2379}
2380
2381#define FW_UPLOAD_REQ_SIZE				\
2382	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2383       + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2384
2385static int
2386mpt_upload_fw(struct mpt_softc *mpt)
2387{
2388	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2389	MSG_FW_UPLOAD_REPLY fw_reply;
2390	MSG_FW_UPLOAD *fw_req;
2391	FW_UPLOAD_TCSGE *tsge;
2392	SGE_SIMPLE32 *sge;
2393	uint32_t flags;
2394	int error;
2395
2396	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2397	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2398	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2399	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2400	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2401	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2402	tsge->DetailsLength = 12;
2403	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2404	tsge->ImageSize = htole32(mpt->fw_image_size);
2405	sge = (SGE_SIMPLE32 *)(tsge + 1);
2406	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2407	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2408	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2409	flags <<= MPI_SGE_FLAGS_SHIFT;
2410	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2411	sge->Address = htole32(mpt->fw_phys);
2412	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2413	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2414	if (error)
2415		return(error);
2416	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2417	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2418	return (error);
2419}
2420
2421static void
2422mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2423	       uint32_t *data, bus_size_t len)
2424{
2425	uint32_t *data_end;
2426
2427	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2428	if (mpt->is_sas) {
2429		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2430	}
2431	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2432	while (data != data_end) {
2433		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2434		data++;
2435	}
2436	if (mpt->is_sas) {
2437		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2438	}
2439}
2440
2441static int
2442mpt_download_fw(struct mpt_softc *mpt)
2443{
2444	MpiFwHeader_t *fw_hdr;
2445	int error;
2446	uint32_t ext_offset;
2447	uint32_t data;
2448
2449	if (mpt->pci_pio_reg == NULL) {
2450		mpt_prt(mpt, "No PIO resource!\n");
2451		return (ENXIO);
2452	}
2453
2454	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2455		mpt->fw_image_size);
2456
2457	error = mpt_enable_diag_mode(mpt);
2458	if (error != 0) {
2459		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2460		return (EIO);
2461	}
2462
2463	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2464		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2465
2466	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2467	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2468	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2469		       fw_hdr->ImageSize);
2470	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2471
2472	ext_offset = fw_hdr->NextImageHeaderOffset;
2473	while (ext_offset != 0) {
2474		MpiExtImageHeader_t *ext;
2475
2476		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2477		ext_offset = ext->NextImageHeaderOffset;
2478		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479		    BUS_DMASYNC_PREWRITE);
2480		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2481			       ext->ImageSize);
2482		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2483		    BUS_DMASYNC_POSTWRITE);
2484	}
2485
2486	if (mpt->is_sas) {
2487		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2488	}
2489	/* Setup the address to jump to on reset. */
2490	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2491	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2492
2493	/*
2494	 * The controller sets the "flash bad" status after attempting
2495	 * to auto-boot from flash.  Clear the status so that the controller
2496	 * will continue the boot process with our newly installed firmware.
2497	 */
2498	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2500	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2501	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2502
2503	if (mpt->is_sas) {
2504		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2505	}
2506
2507	/*
2508	 * Re-enable the processor and clear the boot halt flag.
2509	 */
2510	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2511	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2512	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2513
2514	mpt_disable_diag_mode(mpt);
2515	return (0);
2516}
2517
2518static int
2519mpt_dma_buf_alloc(struct mpt_softc *mpt)
2520{
2521	struct mpt_map_info mi;
2522	uint8_t *vptr;
2523	uint32_t pptr, end;
2524	int i, error;
2525
2526	/* Create a child tag for data buffers */
2527	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2528	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2529	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2530	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2531	    &mpt->buffer_dmat) != 0) {
2532		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2533		return (1);
2534	}
2535
2536	/* Create a child tag for request buffers */
2537	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2538	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2539	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2540	    &mpt->request_dmat) != 0) {
2541		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2542		return (1);
2543	}
2544
2545	/* Allocate some DMA accessible memory for requests */
2546	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2547	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2548		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2549		    MPT_REQ_MEM_SIZE(mpt));
2550		return (1);
2551	}
2552
2553	mi.mpt = mpt;
2554	mi.error = 0;
2555
2556	/* Load and lock it into "bus space" */
2557	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2558	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2559
2560	if (mi.error) {
2561		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2562		    mi.error);
2563		return (1);
2564	}
2565	mpt->request_phys = mi.phys;
2566
2567	/*
2568	 * Now create per-request dma maps
2569	 */
2570	i = 0;
2571	pptr =  mpt->request_phys;
2572	vptr =  mpt->request;
2573	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2574	while(pptr < end) {
2575		request_t *req = &mpt->request_pool[i];
2576		req->index = i++;
2577
2578		/* Store location of Request Data */
2579		req->req_pbuf = pptr;
2580		req->req_vbuf = vptr;
2581
2582		pptr += MPT_REQUEST_AREA;
2583		vptr += MPT_REQUEST_AREA;
2584
2585		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2586		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2587
2588		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2589		if (error) {
2590			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2591			    error);
2592			return (1);
2593		}
2594	}
2595
2596	return (0);
2597}
2598
2599static void
2600mpt_dma_buf_free(struct mpt_softc *mpt)
2601{
2602	int i;
2603
2604	if (mpt->request_dmat == 0) {
2605		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2606		return;
2607	}
2608	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2609		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2610	}
2611	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2612	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2613	bus_dma_tag_destroy(mpt->request_dmat);
2614	mpt->request_dmat = 0;
2615	bus_dma_tag_destroy(mpt->buffer_dmat);
2616}
2617
2618/*
2619 * Allocate/Initialize data structures for the controller.  Called
2620 * once at instance startup.
2621 */
2622static int
2623mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2624{
2625	PTR_MSG_PORT_FACTS_REPLY pfp;
2626	int error, port, val;
2627	size_t len;
2628
2629	if (tn == MPT_MAX_TRYS) {
2630		return (-1);
2631	}
2632
2633	/*
2634	 * No need to reset if the IOC is already in the READY state.
2635	 *
2636	 * Force reset if initialization failed previously.
2637	 * Note that a hard_reset of the second channel of a '929
2638	 * will stop operation of the first channel.  Hopefully, if the
2639	 * first channel is ok, the second will not require a hard
2640	 * reset.
2641	 */
2642	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2643		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2644			return (mpt_configure_ioc(mpt, tn++, 1));
2645		}
2646		needreset = 0;
2647	}
2648
2649	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2650		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2651		return (mpt_configure_ioc(mpt, tn++, 1));
2652	}
2653	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2654
2655	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2656	    mpt->ioc_facts.MsgVersion >> 8,
2657	    mpt->ioc_facts.MsgVersion & 0xFF,
2658	    mpt->ioc_facts.HeaderVersion >> 8,
2659	    mpt->ioc_facts.HeaderVersion & 0xFF);
2660
2661	/*
2662	 * Now that we know request frame size, we can calculate
2663	 * the actual (reasonable) segment limit for read/write I/O.
2664	 *
2665	 * This limit is constrained by:
2666	 *
2667	 *  + The size of each area we allocate per command (and how
2668	 *    many chain segments we can fit into it).
2669	 *  + The total number of areas we've set up.
2670	 *  + The actual chain depth the card will allow.
2671	 *
2672	 * The first area's segment count is limited by the I/O request
2673	 * at the head of it. We cannot allocate realistically more
2674	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2675	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2676	 *
2677	 */
2678	/* total number of request areas we (can) allocate */
2679	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2680
2681	/* converted to the number of chain areas possible */
2682	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2683
2684	/* limited by the number of chain areas the card will support */
2685	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2686		mpt_lprt(mpt, MPT_PRT_INFO,
2687		    "chain depth limited to %u (from %u)\n",
2688		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2689		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2690	}
2691
2692	/* converted to the number of simple sges in chain segments. */
2693	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2694
2695	/*
2696	 * Use this as the basis for reporting the maximum I/O size to CAM.
2697	 */
2698	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2699
2700	/* XXX Lame Locking! */
2701	MPT_UNLOCK(mpt);
2702	error = mpt_dma_buf_alloc(mpt);
2703	MPT_LOCK(mpt);
2704
2705	if (error != 0) {
2706		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2707		return (EIO);
2708	}
2709
2710	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2711		request_t *req = &mpt->request_pool[val];
2712		req->state = REQ_STATE_ALLOCATED;
2713		mpt_callout_init(mpt, &req->callout);
2714		mpt_free_request(mpt, req);
2715	}
2716
2717	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2718		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2719		 mpt->max_cam_seg_cnt);
2720
2721	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2722	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2723	mpt_lprt(mpt, MPT_PRT_INFO,
2724	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2725	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2726	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2727	    mpt->ioc_facts.RequestFrameSize << 2,
2728	    mpt->ioc_facts.MaxChainDepth);
2729	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2730	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2731	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2732
2733	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2734	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2735	if (mpt->port_facts == NULL) {
2736		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2737		return (ENOMEM);
2738	}
2739
2740
2741	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2742	    (mpt->fw_uploaded == 0)) {
2743		struct mpt_map_info mi;
2744
2745		/*
2746		 * In some configurations, the IOC's firmware is
2747		 * stored in a shared piece of system NVRAM that
2748		 * is only accessible via the BIOS.  In this
2749		 * case, the firmware keeps a copy of firmware in
2750		 * RAM until the OS driver retrieves it.  Once
2751		 * retrieved, we are responsible for re-downloading
2752		 * the firmware after any hard-reset.
2753		 */
2754		MPT_UNLOCK(mpt);
2755		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2756		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2757		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2758		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2759		    &mpt->fw_dmat);
2760		if (error != 0) {
2761			mpt_prt(mpt, "cannot create firmware dma tag\n");
2762			MPT_LOCK(mpt);
2763			return (ENOMEM);
2764		}
2765		error = bus_dmamem_alloc(mpt->fw_dmat,
2766		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2767		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2768		if (error != 0) {
2769			mpt_prt(mpt, "cannot allocate firmware memory\n");
2770			bus_dma_tag_destroy(mpt->fw_dmat);
2771			MPT_LOCK(mpt);
2772			return (ENOMEM);
2773		}
2774		mi.mpt = mpt;
2775		mi.error = 0;
2776		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2777		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2778		mpt->fw_phys = mi.phys;
2779
2780		MPT_LOCK(mpt);
2781		error = mpt_upload_fw(mpt);
2782		if (error != 0) {
2783			mpt_prt(mpt, "firmware upload failed.\n");
2784			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2785			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2786			    mpt->fw_dmap);
2787			bus_dma_tag_destroy(mpt->fw_dmat);
2788			mpt->fw_image = NULL;
2789			return (EIO);
2790		}
2791		mpt->fw_uploaded = 1;
2792	}
2793
2794	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2795		pfp = &mpt->port_facts[port];
2796		error = mpt_get_portfacts(mpt, 0, pfp);
2797		if (error != MPT_OK) {
2798			mpt_prt(mpt,
2799			    "mpt_get_portfacts on port %d failed\n", port);
2800			free(mpt->port_facts, M_DEVBUF);
2801			mpt->port_facts = NULL;
2802			return (mpt_configure_ioc(mpt, tn++, 1));
2803		}
2804		mpt2host_portfacts_reply(pfp);
2805
2806		if (port > 0) {
2807			error = MPT_PRT_INFO;
2808		} else {
2809			error = MPT_PRT_DEBUG;
2810		}
2811		mpt_lprt(mpt, error,
2812		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2813		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2814		    pfp->MaxDevices);
2815
2816	}
2817
2818	/*
2819	 * XXX: Not yet supporting more than port 0
2820	 */
2821	pfp = &mpt->port_facts[0];
2822	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2823		mpt->is_fc = 1;
2824		mpt->is_sas = 0;
2825		mpt->is_spi = 0;
2826	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2827		mpt->is_fc = 0;
2828		mpt->is_sas = 1;
2829		mpt->is_spi = 0;
2830	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2831		mpt->is_fc = 0;
2832		mpt->is_sas = 0;
2833		mpt->is_spi = 1;
2834		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2835			mpt->mpt_ini_id = pfp->PortSCSIID;
2836	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2837		mpt_prt(mpt, "iSCSI not supported yet\n");
2838		return (ENXIO);
2839	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2840		mpt_prt(mpt, "Inactive Port\n");
2841		return (ENXIO);
2842	} else {
2843		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2844		return (ENXIO);
2845	}
2846
2847	/*
2848	 * Set our role with what this port supports.
2849	 *
2850	 * Note this might be changed later in different modules
2851	 * if this is different from what is wanted.
2852	 */
2853	mpt->role = MPT_ROLE_NONE;
2854	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2855		mpt->role |= MPT_ROLE_INITIATOR;
2856	}
2857	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2858		mpt->role |= MPT_ROLE_TARGET;
2859	}
2860
2861	/*
2862	 * Enable the IOC
2863	 */
2864	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2865		mpt_prt(mpt, "unable to initialize IOC\n");
2866		return (ENXIO);
2867	}
2868
2869	/*
2870	 * Read IOC configuration information.
2871	 *
2872	 * We need this to determine whether or not we have certain
2873	 * settings for Integrated Mirroring (e.g.).
2874	 */
2875	mpt_read_config_info_ioc(mpt);
2876
2877	return (0);
2878}
2879
2880static int
2881mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2882{
2883	uint32_t pptr;
2884	int val;
2885
2886	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2887		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2888		return (EIO);
2889	}
2890
2891	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2892
2893	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2894		mpt_prt(mpt, "IOC failed to go to run state\n");
2895		return (ENXIO);
2896	}
2897	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2898
2899	/*
2900	 * Give it reply buffers
2901	 *
2902	 * Do *not* exceed global credits.
2903	 */
2904	for (val = 0, pptr = mpt->reply_phys;
2905	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2906	     pptr += MPT_REPLY_SIZE) {
2907		mpt_free_reply(mpt, pptr);
2908		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2909			break;
2910	}
2911
2912
2913	/*
2914	 * Enable the port if asked. This is only done if we're resetting
2915	 * the IOC after initial startup.
2916	 */
2917	if (portenable) {
2918		/*
2919		 * Enable asynchronous event reporting
2920		 */
2921		mpt_send_event_request(mpt, 1);
2922
2923		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2924			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2925			return (ENXIO);
2926		}
2927	}
2928	return (MPT_OK);
2929}
2930
2931/*
2932 * Endian Conversion Functions- only used on Big Endian machines
2933 */
2934#if	_BYTE_ORDER == _BIG_ENDIAN
2935void
2936mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2937{
2938
2939	MPT_2_HOST32(sge, FlagsLength);
2940	MPT_2_HOST32(sge, u.Address64.Low);
2941	MPT_2_HOST32(sge, u.Address64.High);
2942}
2943
2944void
2945mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2946{
2947
2948	MPT_2_HOST16(rp, MsgVersion);
2949	MPT_2_HOST16(rp, HeaderVersion);
2950	MPT_2_HOST32(rp, MsgContext);
2951	MPT_2_HOST16(rp, IOCExceptions);
2952	MPT_2_HOST16(rp, IOCStatus);
2953	MPT_2_HOST32(rp, IOCLogInfo);
2954	MPT_2_HOST16(rp, ReplyQueueDepth);
2955	MPT_2_HOST16(rp, RequestFrameSize);
2956	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2957	MPT_2_HOST16(rp, ProductID);
2958	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2959	MPT_2_HOST16(rp, GlobalCredits);
2960	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2961	MPT_2_HOST16(rp, CurReplyFrameSize);
2962	MPT_2_HOST32(rp, FWImageSize);
2963	MPT_2_HOST32(rp, IOCCapabilities);
2964	MPT_2_HOST32(rp, FWVersion.Word);
2965	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2966	MPT_2_HOST16(rp, Reserved2);
2967	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2968	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2969}
2970
2971void
2972mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2973{
2974
2975	MPT_2_HOST16(pfp, Reserved);
2976	MPT_2_HOST16(pfp, Reserved1);
2977	MPT_2_HOST32(pfp, MsgContext);
2978	MPT_2_HOST16(pfp, Reserved2);
2979	MPT_2_HOST16(pfp, IOCStatus);
2980	MPT_2_HOST32(pfp, IOCLogInfo);
2981	MPT_2_HOST16(pfp, MaxDevices);
2982	MPT_2_HOST16(pfp, PortSCSIID);
2983	MPT_2_HOST16(pfp, ProtocolFlags);
2984	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2985	MPT_2_HOST16(pfp, MaxPersistentIDs);
2986	MPT_2_HOST16(pfp, MaxLanBuckets);
2987	MPT_2_HOST16(pfp, Reserved4);
2988	MPT_2_HOST32(pfp, Reserved5);
2989}
2990
2991void
2992mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2993{
2994	int i;
2995
2996	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2997	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2998		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2999	}
3000}
3001
3002void
3003mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
3004{
3005
3006	MPT_2_HOST16(ioc3, Reserved2);
3007}
3008
3009void
3010mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3011{
3012
3013	MPT_2_HOST32(sp0, Capabilities);
3014	MPT_2_HOST32(sp0, PhysicalInterface);
3015}
3016
3017void
3018mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3019{
3020
3021	MPT_2_HOST32(sp1, Configuration);
3022	MPT_2_HOST32(sp1, OnBusTimerValue);
3023	MPT_2_HOST16(sp1, IDConfig);
3024}
3025
3026void
3027host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3028{
3029
3030	HOST_2_MPT32(sp1, Configuration);
3031	HOST_2_MPT32(sp1, OnBusTimerValue);
3032	HOST_2_MPT16(sp1, IDConfig);
3033}
3034
3035void
3036mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3037{
3038	int i;
3039
3040	MPT_2_HOST32(sp2, PortFlags);
3041	MPT_2_HOST32(sp2, PortSettings);
3042	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3043	    sizeof(*sp2->DeviceSettings); i++) {
3044		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3045	}
3046}
3047
3048void
3049mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3050{
3051
3052	MPT_2_HOST32(sd0, NegotiatedParameters);
3053	MPT_2_HOST32(sd0, Information);
3054}
3055
3056void
3057mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3058{
3059
3060	MPT_2_HOST32(sd1, RequestedParameters);
3061	MPT_2_HOST32(sd1, Reserved);
3062	MPT_2_HOST32(sd1, Configuration);
3063}
3064
3065void
3066host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3067{
3068
3069	HOST_2_MPT32(sd1, RequestedParameters);
3070	HOST_2_MPT32(sd1, Reserved);
3071	HOST_2_MPT32(sd1, Configuration);
3072}
3073
3074void
3075mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3076{
3077
3078	MPT_2_HOST32(fp0, Flags);
3079	MPT_2_HOST32(fp0, PortIdentifier);
3080	MPT_2_HOST32(fp0, WWNN.Low);
3081	MPT_2_HOST32(fp0, WWNN.High);
3082	MPT_2_HOST32(fp0, WWPN.Low);
3083	MPT_2_HOST32(fp0, WWPN.High);
3084	MPT_2_HOST32(fp0, SupportedServiceClass);
3085	MPT_2_HOST32(fp0, SupportedSpeeds);
3086	MPT_2_HOST32(fp0, CurrentSpeed);
3087	MPT_2_HOST32(fp0, MaxFrameSize);
3088	MPT_2_HOST32(fp0, FabricWWNN.Low);
3089	MPT_2_HOST32(fp0, FabricWWNN.High);
3090	MPT_2_HOST32(fp0, FabricWWPN.Low);
3091	MPT_2_HOST32(fp0, FabricWWPN.High);
3092	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3093	MPT_2_HOST32(fp0, MaxInitiators);
3094}
3095
3096void
3097mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3098{
3099
3100	MPT_2_HOST32(fp1, Flags);
3101	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3102	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3103	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3104	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3105}
3106
3107void
3108host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3109{
3110
3111	HOST_2_MPT32(fp1, Flags);
3112	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3113	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3114	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3115	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3116}
3117
3118void
3119mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3120{
3121	int i;
3122
3123	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3124	MPT_2_HOST16(volp, VolumeSettings.Settings);
3125	MPT_2_HOST32(volp, MaxLBA);
3126	MPT_2_HOST32(volp, MaxLBAHigh);
3127	MPT_2_HOST32(volp, StripeSize);
3128	MPT_2_HOST32(volp, Reserved2);
3129	MPT_2_HOST32(volp, Reserved3);
3130	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3131		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3132	}
3133}
3134
3135void
3136mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3137{
3138
3139	MPT_2_HOST32(rpd0, Reserved1);
3140	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3141	MPT_2_HOST32(rpd0, MaxLBA);
3142	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3143	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3144	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3145}
3146
3147void
3148mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3149{
3150
3151	MPT_2_HOST16(vi, TotalBlocks.High);
3152	MPT_2_HOST16(vi, TotalBlocks.Low);
3153	MPT_2_HOST16(vi, BlocksRemaining.High);
3154	MPT_2_HOST16(vi, BlocksRemaining.Low);
3155}
3156#endif
3157