1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include "opt_inet.h"
34
35#include <sys/param.h>
36#include <sys/aio.h>
37#include <sys/file.h>
38#include <sys/systm.h>
39#include <sys/kernel.h>
40#include <sys/ktr.h>
41#include <sys/module.h>
42#include <sys/protosw.h>
43#include <sys/proc.h>
44#include <sys/domain.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/taskqueue.h>
48#include <sys/uio.h>
49#include <netinet/in.h>
50#include <netinet/in_pcb.h>
51#include <netinet/ip.h>
52#include <netinet/tcp_var.h>
53#define TCPSTATES
54#include <netinet/tcp_fsm.h>
55#include <netinet/toecore.h>
56
57#include <vm/vm.h>
58#include <vm/vm_extern.h>
59#include <vm/vm_param.h>
60#include <vm/pmap.h>
61#include <vm/vm_map.h>
62#include <vm/vm_page.h>
63#include <vm/vm_object.h>
64
65#ifdef TCP_OFFLOAD
66#include "common/common.h"
67#include "common/t4_msg.h"
68#include "common/t4_regs.h"
69#include "common/t4_tcb.h"
70#include "tom/t4_tom.h"
71
72/*
73 * Use the 'backend3' field in AIO jobs to store the amount of data
74 * received by the AIO job so far.
75 */
76#define	aio_received	backend3
77
78static void aio_ddp_requeue_task(void *context, int pending);
79static void ddp_complete_all(struct toepcb *toep, int error);
80static void t4_aio_cancel_active(struct kaiocb *job);
81static void t4_aio_cancel_queued(struct kaiocb *job);
82
83static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
84static struct mtx ddp_orphan_pagesets_lock;
85static struct task ddp_orphan_task;
86
87#define MAX_DDP_BUFFER_SIZE		(M_TCB_RX_DDP_BUF0_LEN)
88
89/*
90 * A page set holds information about a buffer used for DDP.  The page
91 * set holds resources such as the VM pages backing the buffer (either
92 * held or wired) and the page pods associated with the buffer.
93 * Recently used page sets are cached to allow for efficient reuse of
94 * buffers (avoiding the need to re-fault in pages, hold them, etc.).
95 * Note that cached page sets keep the backing pages wired.  The
96 * number of wired pages is capped by only allowing for two wired
97 * pagesets per connection.  This is not a perfect cap, but is a
98 * trade-off for performance.
99 *
100 * If an application ping-pongs two buffers for a connection via
101 * aio_read(2) then those buffers should remain wired and expensive VM
102 * fault lookups should be avoided after each buffer has been used
103 * once.  If an application uses more than two buffers then this will
104 * fall back to doing expensive VM fault lookups for each operation.
105 */
106static void
107free_pageset(struct tom_data *td, struct pageset *ps)
108{
109	vm_page_t p;
110	int i;
111
112	if (ps->prsv.prsv_nppods > 0)
113		t4_free_page_pods(&ps->prsv);
114
115	if (ps->flags & PS_WIRED) {
116		for (i = 0; i < ps->npages; i++) {
117			p = ps->pages[i];
118			vm_page_lock(p);
119			vm_page_unwire(p, PQ_INACTIVE);
120			vm_page_unlock(p);
121		}
122	} else
123		vm_page_unhold_pages(ps->pages, ps->npages);
124	mtx_lock(&ddp_orphan_pagesets_lock);
125	TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
126	taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
127	mtx_unlock(&ddp_orphan_pagesets_lock);
128}
129
130static void
131ddp_free_orphan_pagesets(void *context, int pending)
132{
133	struct pageset *ps;
134
135	mtx_lock(&ddp_orphan_pagesets_lock);
136	while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
137		ps = TAILQ_FIRST(&ddp_orphan_pagesets);
138		TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
139		mtx_unlock(&ddp_orphan_pagesets_lock);
140		if (ps->vm)
141			vmspace_free(ps->vm);
142		free(ps, M_CXGBE);
143		mtx_lock(&ddp_orphan_pagesets_lock);
144	}
145	mtx_unlock(&ddp_orphan_pagesets_lock);
146}
147
148static void
149recycle_pageset(struct toepcb *toep, struct pageset *ps)
150{
151
152	DDP_ASSERT_LOCKED(toep);
153	if (!(toep->ddp.flags & DDP_DEAD) && ps->flags & PS_WIRED) {
154		KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
155		    nitems(toep->ddp.db), ("too many wired pagesets"));
156		TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
157		toep->ddp.cached_count++;
158	} else
159		free_pageset(toep->td, ps);
160}
161
162static void
163ddp_complete_one(struct kaiocb *job, int error)
164{
165	long copied;
166
167	/*
168	 * If this job had copied data out of the socket buffer before
169	 * it was cancelled, report it as a short read rather than an
170	 * error.
171	 */
172	copied = job->aio_received;
173	if (copied != 0 || error == 0)
174		aio_complete(job, copied, 0);
175	else
176		aio_complete(job, -1, error);
177}
178
179static void
180free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
181{
182
183	if (db->job) {
184		/*
185		 * XXX: If we are un-offloading the socket then we
186		 * should requeue these on the socket somehow.  If we
187		 * got a FIN from the remote end, then this completes
188		 * any remaining requests with an EOF read.
189		 */
190		if (!aio_clear_cancel_function(db->job))
191			ddp_complete_one(db->job, 0);
192	}
193
194	if (db->ps)
195		free_pageset(td, db->ps);
196}
197
198void
199ddp_init_toep(struct toepcb *toep)
200{
201
202	TAILQ_INIT(&toep->ddp.aiojobq);
203	TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep);
204	toep->ddp.flags = DDP_OK;
205	toep->ddp.active_id = -1;
206	mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
207}
208
209void
210ddp_uninit_toep(struct toepcb *toep)
211{
212
213	mtx_destroy(&toep->ddp.lock);
214}
215
216void
217release_ddp_resources(struct toepcb *toep)
218{
219	struct pageset *ps;
220	int i;
221
222	DDP_LOCK(toep);
223	toep->ddp.flags |= DDP_DEAD;
224	for (i = 0; i < nitems(toep->ddp.db); i++) {
225		free_ddp_buffer(toep->td, &toep->ddp.db[i]);
226	}
227	while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
228		TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
229		free_pageset(toep->td, ps);
230	}
231	ddp_complete_all(toep, 0);
232	DDP_UNLOCK(toep);
233}
234
235#ifdef INVARIANTS
236void
237ddp_assert_empty(struct toepcb *toep)
238{
239	int i;
240
241	MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE));
242	for (i = 0; i < nitems(toep->ddp.db); i++) {
243		MPASS(toep->ddp.db[i].job == NULL);
244		MPASS(toep->ddp.db[i].ps == NULL);
245	}
246	MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
247	MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
248}
249#endif
250
251static void
252complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
253    unsigned int db_idx)
254{
255	unsigned int db_flag;
256
257	toep->ddp.active_count--;
258	if (toep->ddp.active_id == db_idx) {
259		if (toep->ddp.active_count == 0) {
260			KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
261			    ("%s: active_count mismatch", __func__));
262			toep->ddp.active_id = -1;
263		} else
264			toep->ddp.active_id ^= 1;
265#ifdef VERBOSE_TRACES
266		CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__,
267		    toep->tid, toep->ddp.active_id);
268#endif
269	} else {
270		KASSERT(toep->ddp.active_count != 0 &&
271		    toep->ddp.active_id != -1,
272		    ("%s: active count mismatch", __func__));
273	}
274
275	db->cancel_pending = 0;
276	db->job = NULL;
277	recycle_pageset(toep, db->ps);
278	db->ps = NULL;
279
280	db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
281	KASSERT(toep->ddp.flags & db_flag,
282	    ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
283	    __func__, toep, toep->ddp.flags));
284	toep->ddp.flags &= ~db_flag;
285}
286
287/* XXX: handle_ddp_data code duplication */
288void
289insert_ddp_data(struct toepcb *toep, uint32_t n)
290{
291	struct inpcb *inp = toep->inp;
292	struct tcpcb *tp = intotcpcb(inp);
293	struct ddp_buffer *db;
294	struct kaiocb *job;
295	size_t placed;
296	long copied;
297	unsigned int db_flag, db_idx;
298
299	INP_WLOCK_ASSERT(inp);
300	DDP_ASSERT_LOCKED(toep);
301
302	tp->rcv_nxt += n;
303#ifndef USE_DDP_RX_FLOW_CONTROL
304	KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
305	tp->rcv_wnd -= n;
306#endif
307	CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
308	    __func__, n);
309	while (toep->ddp.active_count > 0) {
310		MPASS(toep->ddp.active_id != -1);
311		db_idx = toep->ddp.active_id;
312		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
313		MPASS((toep->ddp.flags & db_flag) != 0);
314		db = &toep->ddp.db[db_idx];
315		job = db->job;
316		copied = job->aio_received;
317		placed = n;
318		if (placed > job->uaiocb.aio_nbytes - copied)
319			placed = job->uaiocb.aio_nbytes - copied;
320		if (placed > 0)
321			job->msgrcv = 1;
322		if (!aio_clear_cancel_function(job)) {
323			/*
324			 * Update the copied length for when
325			 * t4_aio_cancel_active() completes this
326			 * request.
327			 */
328			job->aio_received += placed;
329		} else if (copied + placed != 0) {
330			CTR4(KTR_CXGBE,
331			    "%s: completing %p (copied %ld, placed %lu)",
332			    __func__, job, copied, placed);
333			/* XXX: This always completes if there is some data. */
334			aio_complete(job, copied + placed, 0);
335		} else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
336			TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
337			toep->ddp.waiting_count++;
338		} else
339			aio_cancel(job);
340		n -= placed;
341		complete_ddp_buffer(toep, db, db_idx);
342	}
343
344	MPASS(n == 0);
345}
346
347/* SET_TCB_FIELD sent as a ULP command looks like this */
348#define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
349    sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
350
351/* RX_DATA_ACK sent as a ULP command looks like this */
352#define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
353    sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
354
355static inline void *
356mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
357    uint64_t word, uint64_t mask, uint64_t val)
358{
359	struct ulptx_idata *ulpsc;
360	struct cpl_set_tcb_field_core *req;
361
362	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
363	ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
364
365	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
366	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
367	ulpsc->len = htobe32(sizeof(*req));
368
369	req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
370	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
371	req->reply_ctrl = htobe16(V_NO_REPLY(1) |
372	    V_QUEUENO(toep->ofld_rxq->iq.abs_id));
373	req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
374        req->mask = htobe64(mask);
375        req->val = htobe64(val);
376
377	ulpsc = (struct ulptx_idata *)(req + 1);
378	if (LEN__SET_TCB_FIELD_ULP % 16) {
379		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
380		ulpsc->len = htobe32(0);
381		return (ulpsc + 1);
382	}
383	return (ulpsc);
384}
385
386static inline void *
387mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
388{
389	struct ulptx_idata *ulpsc;
390	struct cpl_rx_data_ack_core *req;
391
392	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
393	ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
394
395	ulpsc = (struct ulptx_idata *)(ulpmc + 1);
396	ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
397	ulpsc->len = htobe32(sizeof(*req));
398
399	req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
400	OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
401	req->credit_dack = htobe32(F_RX_MODULATE_RX);
402
403	ulpsc = (struct ulptx_idata *)(req + 1);
404	if (LEN__RX_DATA_ACK_ULP % 16) {
405		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
406		ulpsc->len = htobe32(0);
407		return (ulpsc + 1);
408	}
409	return (ulpsc);
410}
411
412static struct wrqe *
413mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
414    struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
415{
416	struct wrqe *wr;
417	struct work_request_hdr *wrh;
418	struct ulp_txpkt *ulpmc;
419	int len;
420
421	KASSERT(db_idx == 0 || db_idx == 1,
422	    ("%s: bad DDP buffer index %d", __func__, db_idx));
423
424	/*
425	 * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
426	 * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
427	 *
428	 * The work request header is 16B and always ends at a 16B boundary.
429	 * The ULPTX master commands that follow must all end at 16B boundaries
430	 * too so we round up the size to 16.
431	 */
432	len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
433	    roundup2(LEN__RX_DATA_ACK_ULP, 16);
434
435	wr = alloc_wrqe(len, toep->ctrlq);
436	if (wr == NULL)
437		return (NULL);
438	wrh = wrtod(wr);
439	INIT_ULPTX_WRH(wrh, len, 1, 0);	/* atomic */
440	ulpmc = (struct ulp_txpkt *)(wrh + 1);
441
442	/* Write the buffer's tag */
443	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
444	    W_TCB_RX_DDP_BUF0_TAG + db_idx,
445	    V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
446	    V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
447
448	/* Update the current offset in the DDP buffer and its total length */
449	if (db_idx == 0)
450		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
451		    W_TCB_RX_DDP_BUF0_OFFSET,
452		    V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
453		    V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
454		    V_TCB_RX_DDP_BUF0_OFFSET(offset) |
455		    V_TCB_RX_DDP_BUF0_LEN(ps->len));
456	else
457		ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
458		    W_TCB_RX_DDP_BUF1_OFFSET,
459		    V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
460		    V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
461		    V_TCB_RX_DDP_BUF1_OFFSET(offset) |
462		    V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
463
464	/* Update DDP flags */
465	ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
466	    ddp_flags_mask, ddp_flags);
467
468	/* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
469	ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
470
471	return (wr);
472}
473
474static int
475handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
476{
477	uint32_t report = be32toh(ddp_report);
478	unsigned int db_idx;
479	struct inpcb *inp = toep->inp;
480	struct ddp_buffer *db;
481	struct tcpcb *tp;
482	struct socket *so;
483	struct sockbuf *sb;
484	struct kaiocb *job;
485	long copied;
486
487	db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
488
489	if (__predict_false(!(report & F_DDP_INV)))
490		CXGBE_UNIMPLEMENTED("DDP buffer still valid");
491
492	INP_WLOCK(inp);
493	so = inp_inpcbtosocket(inp);
494	sb = &so->so_rcv;
495	DDP_LOCK(toep);
496
497	KASSERT(toep->ddp.active_id == db_idx,
498	    ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
499	    toep->ddp.active_id, toep->tid));
500	db = &toep->ddp.db[db_idx];
501	job = db->job;
502
503	if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
504		/*
505		 * This can happen due to an administrative tcpdrop(8).
506		 * Just fail the request with ECONNRESET.
507		 */
508		CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
509		    __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
510		if (aio_clear_cancel_function(job))
511			ddp_complete_one(job, ECONNRESET);
512		goto completed;
513	}
514
515	tp = intotcpcb(inp);
516
517	/*
518	 * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
519	 * sequence number of the next byte to receive.  The length of
520	 * the data received for this message must be computed by
521	 * comparing the new and old values of rcv_nxt.
522	 *
523	 * For RX_DATA_DDP, len might be non-zero, but it is only the
524	 * length of the most recent DMA.  It does not include the
525	 * total length of the data received since the previous update
526	 * for this DDP buffer.  rcv_nxt is the sequence number of the
527	 * first received byte from the most recent DMA.
528	 */
529	len += be32toh(rcv_nxt) - tp->rcv_nxt;
530	tp->rcv_nxt += len;
531	tp->t_rcvtime = ticks;
532#ifndef USE_DDP_RX_FLOW_CONTROL
533	KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
534	tp->rcv_wnd -= len;
535#endif
536#ifdef VERBOSE_TRACES
537	CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__,
538	    toep->tid, db_idx, len, report);
539#endif
540
541	/* receive buffer autosize */
542	MPASS(toep->vnet == so->so_vnet);
543	CURVNET_SET(toep->vnet);
544	SOCKBUF_LOCK(sb);
545	if (sb->sb_flags & SB_AUTOSIZE &&
546	    V_tcp_do_autorcvbuf &&
547	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
548	    len > (sbspace(sb) / 8 * 7)) {
549		unsigned int hiwat = sb->sb_hiwat;
550		unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc,
551		    V_tcp_autorcvbuf_max);
552
553		if (!sbreserve_locked(sb, newsize, so, NULL))
554			sb->sb_flags &= ~SB_AUTOSIZE;
555	}
556	SOCKBUF_UNLOCK(sb);
557	CURVNET_RESTORE();
558
559	job->msgrcv = 1;
560	if (db->cancel_pending) {
561		/*
562		 * Update the job's length but defer completion to the
563		 * TCB_RPL callback.
564		 */
565		job->aio_received += len;
566		goto out;
567	} else if (!aio_clear_cancel_function(job)) {
568		/*
569		 * Update the copied length for when
570		 * t4_aio_cancel_active() completes this request.
571		 */
572		job->aio_received += len;
573	} else {
574		copied = job->aio_received;
575#ifdef VERBOSE_TRACES
576		CTR5(KTR_CXGBE,
577		    "%s: tid %u, completing %p (copied %ld, placed %d)",
578		    __func__, toep->tid, job, copied, len);
579#endif
580		aio_complete(job, copied + len, 0);
581		t4_rcvd(&toep->td->tod, tp);
582	}
583
584completed:
585	complete_ddp_buffer(toep, db, db_idx);
586	if (toep->ddp.waiting_count > 0)
587		ddp_queue_toep(toep);
588out:
589	DDP_UNLOCK(toep);
590	INP_WUNLOCK(inp);
591
592	return (0);
593}
594
595void
596handle_ddp_indicate(struct toepcb *toep)
597{
598
599	DDP_ASSERT_LOCKED(toep);
600	MPASS(toep->ddp.active_count == 0);
601	MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
602	if (toep->ddp.waiting_count == 0) {
603		/*
604		 * The pending requests that triggered the request for an
605		 * an indicate were cancelled.  Those cancels should have
606		 * already disabled DDP.  Just ignore this as the data is
607		 * going into the socket buffer anyway.
608		 */
609		return;
610	}
611	CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
612	    toep->tid, toep->ddp.waiting_count);
613	ddp_queue_toep(toep);
614}
615
616enum {
617	DDP_BUF0_INVALIDATED = 0x2,
618	DDP_BUF1_INVALIDATED
619};
620
621CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0);
622
623static int
624do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
625{
626	struct adapter *sc = iq->adapter;
627	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
628	unsigned int tid = GET_TID(cpl);
629	unsigned int db_idx;
630	struct toepcb *toep;
631	struct inpcb *inp;
632	struct ddp_buffer *db;
633	struct kaiocb *job;
634	long copied;
635
636	if (cpl->status != CPL_ERR_NONE)
637		panic("XXX: tcp_rpl failed: %d", cpl->status);
638
639	toep = lookup_tid(sc, tid);
640	inp = toep->inp;
641	switch (cpl->cookie) {
642	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
643	case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
644		/*
645		 * XXX: This duplicates a lot of code with handle_ddp_data().
646		 */
647		db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
648		MPASS(db_idx < nitems(toep->ddp.db));
649		INP_WLOCK(inp);
650		DDP_LOCK(toep);
651		db = &toep->ddp.db[db_idx];
652
653		/*
654		 * handle_ddp_data() should leave the job around until
655		 * this callback runs once a cancel is pending.
656		 */
657		MPASS(db != NULL);
658		MPASS(db->job != NULL);
659		MPASS(db->cancel_pending);
660
661		/*
662		 * XXX: It's not clear what happens if there is data
663		 * placed when the buffer is invalidated.  I suspect we
664		 * need to read the TCB to see how much data was placed.
665		 *
666		 * For now this just pretends like nothing was placed.
667		 *
668		 * XXX: Note that if we did check the PCB we would need to
669		 * also take care of updating the tp, etc.
670		 */
671		job = db->job;
672		copied = job->aio_received;
673		if (copied == 0) {
674			CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
675			aio_cancel(job);
676		} else {
677			CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
678			    __func__, job, copied);
679			aio_complete(job, copied, 0);
680			t4_rcvd(&toep->td->tod, intotcpcb(inp));
681		}
682
683		complete_ddp_buffer(toep, db, db_idx);
684		if (toep->ddp.waiting_count > 0)
685			ddp_queue_toep(toep);
686		DDP_UNLOCK(toep);
687		INP_WUNLOCK(inp);
688		break;
689	default:
690		panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
691		    G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
692	}
693
694	return (0);
695}
696
697void
698handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
699{
700	struct ddp_buffer *db;
701	struct kaiocb *job;
702	long copied;
703	unsigned int db_flag, db_idx;
704	int len, placed;
705
706	INP_WLOCK_ASSERT(toep->inp);
707	DDP_ASSERT_LOCKED(toep);
708
709	len = be32toh(rcv_nxt) - tp->rcv_nxt;
710	tp->rcv_nxt += len;
711
712	while (toep->ddp.active_count > 0) {
713		MPASS(toep->ddp.active_id != -1);
714		db_idx = toep->ddp.active_id;
715		db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
716		MPASS((toep->ddp.flags & db_flag) != 0);
717		db = &toep->ddp.db[db_idx];
718		job = db->job;
719		copied = job->aio_received;
720		placed = len;
721		if (placed > job->uaiocb.aio_nbytes - copied)
722			placed = job->uaiocb.aio_nbytes - copied;
723		if (placed > 0)
724			job->msgrcv = 1;
725		if (!aio_clear_cancel_function(job)) {
726			/*
727			 * Update the copied length for when
728			 * t4_aio_cancel_active() completes this
729			 * request.
730			 */
731			job->aio_received += placed;
732		} else {
733			CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
734			    __func__, toep->tid, db_idx, placed);
735			aio_complete(job, copied + placed, 0);
736		}
737		len -= placed;
738		complete_ddp_buffer(toep, db, db_idx);
739	}
740
741	MPASS(len == 0);
742	ddp_complete_all(toep, 0);
743}
744
745#define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
746	 F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
747	 F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
748	 F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
749
750extern cpl_handler_t t4_cpl_handler[];
751
752static int
753do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
754{
755	struct adapter *sc = iq->adapter;
756	const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
757	unsigned int tid = GET_TID(cpl);
758	uint32_t vld;
759	struct toepcb *toep = lookup_tid(sc, tid);
760
761	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
762	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
763	KASSERT(!(toep->flags & TPF_SYNQE),
764	    ("%s: toep %p claims to be a synq entry", __func__, toep));
765
766	vld = be32toh(cpl->ddpvld);
767	if (__predict_false(vld & DDP_ERR)) {
768		panic("%s: DDP error 0x%x (tid %d, toep %p)",
769		    __func__, vld, tid, toep);
770	}
771
772	if (ulp_mode(toep) == ULP_MODE_ISCSI) {
773		t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
774		return (0);
775	}
776
777	handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
778
779	return (0);
780}
781
782static int
783do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
784    struct mbuf *m)
785{
786	struct adapter *sc = iq->adapter;
787	const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
788	unsigned int tid = GET_TID(cpl);
789	struct toepcb *toep = lookup_tid(sc, tid);
790
791	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
792	KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
793	KASSERT(!(toep->flags & TPF_SYNQE),
794	    ("%s: toep %p claims to be a synq entry", __func__, toep));
795
796	handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
797
798	return (0);
799}
800
801static void
802enable_ddp(struct adapter *sc, struct toepcb *toep)
803{
804
805	KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
806	    ("%s: toep %p has bad ddp_flags 0x%x",
807	    __func__, toep, toep->ddp.flags));
808
809	CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
810	    __func__, toep->tid, time_uptime);
811
812	DDP_ASSERT_LOCKED(toep);
813	toep->ddp.flags |= DDP_SC_REQ;
814	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
815	    V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
816	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
817	    V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
818	    V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0);
819	t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
820	    V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
821}
822
823static int
824calculate_hcf(int n1, int n2)
825{
826	int a, b, t;
827
828	if (n1 <= n2) {
829		a = n1;
830		b = n2;
831	} else {
832		a = n2;
833		b = n1;
834	}
835
836	while (a != 0) {
837		t = a;
838		a = b % a;
839		b = t;
840	}
841
842	return (b);
843}
844
845static inline int
846pages_to_nppods(int npages, int ddp_page_shift)
847{
848
849	MPASS(ddp_page_shift >= PAGE_SHIFT);
850
851	return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
852}
853
854static int
855alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
856    struct ppod_reservation *prsv)
857{
858	vmem_addr_t addr;       /* relative to start of region */
859
860	if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
861	    &addr) != 0)
862		return (ENOMEM);
863
864	CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
865	    __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
866	    nppods, 1 << pr->pr_page_shift[pgsz_idx]);
867
868	/*
869	 * The hardware tagmask includes an extra invalid bit but the arena was
870	 * seeded with valid values only.  An allocation out of this arena will
871	 * fit inside the tagmask but won't have the invalid bit set.
872	 */
873	MPASS((addr & pr->pr_tag_mask) == addr);
874	MPASS((addr & pr->pr_invalid_bit) == 0);
875
876	prsv->prsv_pr = pr;
877	prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
878	prsv->prsv_nppods = nppods;
879
880	return (0);
881}
882
883int
884t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
885{
886	int i, hcf, seglen, idx, nppods;
887	struct ppod_reservation *prsv = &ps->prsv;
888
889	KASSERT(prsv->prsv_nppods == 0,
890	    ("%s: page pods already allocated", __func__));
891
892	/*
893	 * The DDP page size is unrelated to the VM page size.  We combine
894	 * contiguous physical pages into larger segments to get the best DDP
895	 * page size possible.  This is the largest of the four sizes in
896	 * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
897	 * the page list.
898	 */
899	hcf = 0;
900	for (i = 0; i < ps->npages; i++) {
901		seglen = PAGE_SIZE;
902		while (i < ps->npages - 1 &&
903		    ps->pages[i]->phys_addr + PAGE_SIZE ==
904		    ps->pages[i + 1]->phys_addr) {
905			seglen += PAGE_SIZE;
906			i++;
907		}
908
909		hcf = calculate_hcf(hcf, seglen);
910		if (hcf < (1 << pr->pr_page_shift[1])) {
911			idx = 0;
912			goto have_pgsz;	/* give up, short circuit */
913		}
914	}
915
916#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
917	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
918	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
919		if ((hcf & PR_PAGE_MASK(idx)) == 0)
920			break;
921	}
922#undef PR_PAGE_MASK
923
924have_pgsz:
925	MPASS(idx <= M_PPOD_PGSZ);
926
927	nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
928	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
929		return (0);
930	MPASS(prsv->prsv_nppods > 0);
931
932	return (1);
933}
934
935int
936t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
937    struct ppod_reservation *prsv)
938{
939	int hcf, seglen, idx, npages, nppods;
940	uintptr_t start_pva, end_pva, pva, p1;
941
942	MPASS(buf > 0);
943	MPASS(len > 0);
944
945	/*
946	 * The DDP page size is unrelated to the VM page size.  We combine
947	 * contiguous physical pages into larger segments to get the best DDP
948	 * page size possible.  This is the largest of the four sizes in
949	 * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
950	 * in the page list.
951	 */
952	hcf = 0;
953	start_pva = trunc_page(buf);
954	end_pva = trunc_page(buf + len - 1);
955	pva = start_pva;
956	while (pva <= end_pva) {
957		seglen = PAGE_SIZE;
958		p1 = pmap_kextract(pva);
959		pva += PAGE_SIZE;
960		while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
961			seglen += PAGE_SIZE;
962			pva += PAGE_SIZE;
963		}
964
965		hcf = calculate_hcf(hcf, seglen);
966		if (hcf < (1 << pr->pr_page_shift[1])) {
967			idx = 0;
968			goto have_pgsz;	/* give up, short circuit */
969		}
970	}
971
972#define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
973	MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
974	for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
975		if ((hcf & PR_PAGE_MASK(idx)) == 0)
976			break;
977	}
978#undef PR_PAGE_MASK
979
980have_pgsz:
981	MPASS(idx <= M_PPOD_PGSZ);
982
983	npages = 1;
984	npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
985	nppods = howmany(npages, PPOD_PAGES);
986	if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
987		return (ENOMEM);
988	MPASS(prsv->prsv_nppods > 0);
989
990	return (0);
991}
992
993void
994t4_free_page_pods(struct ppod_reservation *prsv)
995{
996	struct ppod_region *pr = prsv->prsv_pr;
997	vmem_addr_t addr;
998
999	MPASS(prsv != NULL);
1000	MPASS(prsv->prsv_nppods != 0);
1001
1002	addr = prsv->prsv_tag & pr->pr_tag_mask;
1003	MPASS((addr & pr->pr_invalid_bit) == 0);
1004
1005	CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
1006	    pr->pr_arena, addr, prsv->prsv_nppods);
1007
1008	vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1009	prsv->prsv_nppods = 0;
1010}
1011
1012#define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1013
1014int
1015t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1016    struct pageset *ps)
1017{
1018	struct wrqe *wr;
1019	struct ulp_mem_io *ulpmc;
1020	struct ulptx_idata *ulpsc;
1021	struct pagepod *ppod;
1022	int i, j, k, n, chunk, len, ddp_pgsz, idx;
1023	u_int ppod_addr;
1024	uint32_t cmd;
1025	struct ppod_reservation *prsv = &ps->prsv;
1026	struct ppod_region *pr = prsv->prsv_pr;
1027
1028	KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1029	    ("%s: page pods already written", __func__));
1030	MPASS(prsv->prsv_nppods > 0);
1031
1032	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1033	if (is_t4(sc))
1034		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1035	else
1036		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1037	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1038	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1039	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1040
1041		/* How many page pods are we writing in this cycle */
1042		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1043		chunk = PPOD_SZ(n);
1044		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1045
1046		wr = alloc_wrqe(len, wrq);
1047		if (wr == NULL)
1048			return (ENOMEM);	/* ok to just bail out */
1049		ulpmc = wrtod(wr);
1050
1051		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1052		ulpmc->cmd = cmd;
1053		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1054		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1055		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1056
1057		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1058		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1059		ulpsc->len = htobe32(chunk);
1060
1061		ppod = (struct pagepod *)(ulpsc + 1);
1062		for (j = 0; j < n; i++, j++, ppod++) {
1063			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1064			    V_PPOD_TID(tid) | prsv->prsv_tag);
1065			ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1066			    V_PPOD_OFST(ps->offset));
1067			ppod->rsvd = 0;
1068			idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1069			for (k = 0; k < nitems(ppod->addr); k++) {
1070				if (idx < ps->npages) {
1071					ppod->addr[k] =
1072					    htobe64(ps->pages[idx]->phys_addr);
1073					idx += ddp_pgsz / PAGE_SIZE;
1074				} else
1075					ppod->addr[k] = 0;
1076#if 0
1077				CTR5(KTR_CXGBE,
1078				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1079				    __func__, toep->tid, i, k,
1080				    htobe64(ppod->addr[k]));
1081#endif
1082			}
1083
1084		}
1085
1086		t4_wrq_tx(sc, wr);
1087	}
1088	ps->flags |= PS_PPODS_WRITTEN;
1089
1090	return (0);
1091}
1092
1093int
1094t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1095    struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
1096{
1097	struct wrqe *wr;
1098	struct ulp_mem_io *ulpmc;
1099	struct ulptx_idata *ulpsc;
1100	struct pagepod *ppod;
1101	int i, j, k, n, chunk, len, ddp_pgsz;
1102	u_int ppod_addr, offset;
1103	uint32_t cmd;
1104	struct ppod_region *pr = prsv->prsv_pr;
1105	uintptr_t end_pva, pva, pa;
1106
1107	cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1108	if (is_t4(sc))
1109		cmd |= htobe32(F_ULP_MEMIO_ORDER);
1110	else
1111		cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1112	ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1113	offset = buf & PAGE_MASK;
1114	ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1115	pva = trunc_page(buf);
1116	end_pva = trunc_page(buf + buflen - 1);
1117	for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1118
1119		/* How many page pods are we writing in this cycle */
1120		n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1121		MPASS(n > 0);
1122		chunk = PPOD_SZ(n);
1123		len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1124
1125		wr = alloc_wrqe(len, wrq);
1126		if (wr == NULL)
1127			return (ENOMEM);	/* ok to just bail out */
1128		ulpmc = wrtod(wr);
1129
1130		INIT_ULPTX_WR(ulpmc, len, 0, 0);
1131		ulpmc->cmd = cmd;
1132		ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1133		ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1134		ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1135
1136		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1137		ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1138		ulpsc->len = htobe32(chunk);
1139
1140		ppod = (struct pagepod *)(ulpsc + 1);
1141		for (j = 0; j < n; i++, j++, ppod++) {
1142			ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1143			    V_PPOD_TID(tid) |
1144			    (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1145			ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1146			    V_PPOD_OFST(offset));
1147			ppod->rsvd = 0;
1148
1149			for (k = 0; k < nitems(ppod->addr); k++) {
1150				if (pva > end_pva)
1151					ppod->addr[k] = 0;
1152				else {
1153					pa = pmap_kextract(pva);
1154					ppod->addr[k] = htobe64(pa);
1155					pva += ddp_pgsz;
1156				}
1157#if 0
1158				CTR5(KTR_CXGBE,
1159				    "%s: tid %d ppod[%d]->addr[%d] = %p",
1160				    __func__, tid, i, k,
1161				    htobe64(ppod->addr[k]));
1162#endif
1163			}
1164
1165			/*
1166			 * Walk back 1 segment so that the first address in the
1167			 * next pod is the same as the last one in the current
1168			 * pod.
1169			 */
1170			pva -= ddp_pgsz;
1171		}
1172
1173		t4_wrq_tx(sc, wr);
1174	}
1175
1176	MPASS(pva <= end_pva);
1177
1178	return (0);
1179}
1180
1181static void
1182wire_pageset(struct pageset *ps)
1183{
1184	vm_page_t p;
1185	int i;
1186
1187	KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired"));
1188
1189	for (i = 0; i < ps->npages; i++) {
1190		p = ps->pages[i];
1191		vm_page_lock(p);
1192		vm_page_wire(p);
1193		vm_page_unhold(p);
1194		vm_page_unlock(p);
1195	}
1196	ps->flags |= PS_WIRED;
1197}
1198
1199/*
1200 * Prepare a pageset for DDP.  This wires the pageset and sets up page
1201 * pods.
1202 */
1203static int
1204prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
1205{
1206	struct tom_data *td = sc->tom_softc;
1207
1208	if (!(ps->flags & PS_WIRED))
1209		wire_pageset(ps);
1210	if (ps->prsv.prsv_nppods == 0 &&
1211	    !t4_alloc_page_pods_for_ps(&td->pr, ps)) {
1212		return (0);
1213	}
1214	if (!(ps->flags & PS_PPODS_WRITTEN) &&
1215	    t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
1216		return (0);
1217	}
1218
1219	return (1);
1220}
1221
1222int
1223t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
1224    const char *name)
1225{
1226	int i;
1227
1228	MPASS(pr != NULL);
1229	MPASS(r->size > 0);
1230
1231	pr->pr_start = r->start;
1232	pr->pr_len = r->size;
1233	pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
1234	pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
1235	pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
1236	pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
1237
1238	/* The SGL -> page pod algorithm requires the sizes to be in order. */
1239	for (i = 1; i < nitems(pr->pr_page_shift); i++) {
1240		if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
1241			return (ENXIO);
1242	}
1243
1244	pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
1245	pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
1246	if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
1247		return (ENXIO);
1248	pr->pr_alias_shift = fls(pr->pr_tag_mask);
1249	pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
1250
1251	pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
1252	    M_FIRSTFIT | M_NOWAIT);
1253	if (pr->pr_arena == NULL)
1254		return (ENOMEM);
1255
1256	return (0);
1257}
1258
1259void
1260t4_free_ppod_region(struct ppod_region *pr)
1261{
1262
1263	MPASS(pr != NULL);
1264
1265	if (pr->pr_arena)
1266		vmem_destroy(pr->pr_arena);
1267	bzero(pr, sizeof(*pr));
1268}
1269
1270static int
1271pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
1272    int pgoff, int len)
1273{
1274
1275	if (ps->start != start || ps->npages != npages ||
1276	    ps->offset != pgoff || ps->len != len)
1277		return (1);
1278
1279	return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
1280}
1281
1282static int
1283hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
1284{
1285	struct vmspace *vm;
1286	vm_map_t map;
1287	vm_offset_t start, end, pgoff;
1288	struct pageset *ps;
1289	int n;
1290
1291	DDP_ASSERT_LOCKED(toep);
1292
1293	/*
1294	 * The AIO subsystem will cancel and drain all requests before
1295	 * permitting a process to exit or exec, so p_vmspace should
1296	 * be stable here.
1297	 */
1298	vm = job->userproc->p_vmspace;
1299	map = &vm->vm_map;
1300	start = (uintptr_t)job->uaiocb.aio_buf;
1301	pgoff = start & PAGE_MASK;
1302	end = round_page(start + job->uaiocb.aio_nbytes);
1303	start = trunc_page(start);
1304
1305	if (end - start > MAX_DDP_BUFFER_SIZE) {
1306		/*
1307		 * Truncate the request to a short read.
1308		 * Alternatively, we could DDP in chunks to the larger
1309		 * buffer, but that would be quite a bit more work.
1310		 *
1311		 * When truncating, round the request down to avoid
1312		 * crossing a cache line on the final transaction.
1313		 */
1314		end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
1315#ifdef VERBOSE_TRACES
1316		CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
1317		    __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
1318		    (unsigned long)(end - (start + pgoff)));
1319		job->uaiocb.aio_nbytes = end - (start + pgoff);
1320#endif
1321		end = round_page(end);
1322	}
1323
1324	n = atop(end - start);
1325
1326	/*
1327	 * Try to reuse a cached pageset.
1328	 */
1329	TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
1330		if (pscmp(ps, vm, start, n, pgoff,
1331		    job->uaiocb.aio_nbytes) == 0) {
1332			TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1333			toep->ddp.cached_count--;
1334			*pps = ps;
1335			return (0);
1336		}
1337	}
1338
1339	/*
1340	 * If there are too many cached pagesets to create a new one,
1341	 * free a pageset before creating a new one.
1342	 */
1343	KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
1344	    nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
1345	if (toep->ddp.active_count + toep->ddp.cached_count ==
1346	    nitems(toep->ddp.db)) {
1347		KASSERT(toep->ddp.cached_count > 0,
1348		    ("no cached pageset to free"));
1349		ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
1350		TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1351		toep->ddp.cached_count--;
1352		free_pageset(toep->td, ps);
1353	}
1354	DDP_UNLOCK(toep);
1355
1356	/* Create a new pageset. */
1357	ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
1358	    M_ZERO);
1359	ps->pages = (vm_page_t *)(ps + 1);
1360	ps->vm_timestamp = map->timestamp;
1361	ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
1362	    VM_PROT_WRITE, ps->pages, n);
1363
1364	DDP_LOCK(toep);
1365	if (ps->npages < 0) {
1366		free(ps, M_CXGBE);
1367		return (EFAULT);
1368	}
1369
1370	KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
1371	    ps->npages, n));
1372
1373	ps->offset = pgoff;
1374	ps->len = job->uaiocb.aio_nbytes;
1375	atomic_add_int(&vm->vm_refcnt, 1);
1376	ps->vm = vm;
1377	ps->start = start;
1378
1379	CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
1380	    __func__, toep->tid, ps, job, ps->npages);
1381	*pps = ps;
1382	return (0);
1383}
1384
1385static void
1386ddp_complete_all(struct toepcb *toep, int error)
1387{
1388	struct kaiocb *job;
1389
1390	DDP_ASSERT_LOCKED(toep);
1391	while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
1392		job = TAILQ_FIRST(&toep->ddp.aiojobq);
1393		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1394		toep->ddp.waiting_count--;
1395		if (aio_clear_cancel_function(job))
1396			ddp_complete_one(job, error);
1397	}
1398}
1399
1400static void
1401aio_ddp_cancel_one(struct kaiocb *job)
1402{
1403	long copied;
1404
1405	/*
1406	 * If this job had copied data out of the socket buffer before
1407	 * it was cancelled, report it as a short read rather than an
1408	 * error.
1409	 */
1410	copied = job->aio_received;
1411	if (copied != 0)
1412		aio_complete(job, copied, 0);
1413	else
1414		aio_cancel(job);
1415}
1416
1417/*
1418 * Called when the main loop wants to requeue a job to retry it later.
1419 * Deals with the race of the job being cancelled while it was being
1420 * examined.
1421 */
1422static void
1423aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
1424{
1425
1426	DDP_ASSERT_LOCKED(toep);
1427	if (!(toep->ddp.flags & DDP_DEAD) &&
1428	    aio_set_cancel_function(job, t4_aio_cancel_queued)) {
1429		TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
1430		toep->ddp.waiting_count++;
1431	} else
1432		aio_ddp_cancel_one(job);
1433}
1434
1435static void
1436aio_ddp_requeue(struct toepcb *toep)
1437{
1438	struct adapter *sc = td_adapter(toep->td);
1439	struct socket *so;
1440	struct sockbuf *sb;
1441	struct inpcb *inp;
1442	struct kaiocb *job;
1443	struct ddp_buffer *db;
1444	size_t copied, offset, resid;
1445	struct pageset *ps;
1446	struct mbuf *m;
1447	uint64_t ddp_flags, ddp_flags_mask;
1448	struct wrqe *wr;
1449	int buf_flag, db_idx, error;
1450
1451	DDP_ASSERT_LOCKED(toep);
1452
1453restart:
1454	if (toep->ddp.flags & DDP_DEAD) {
1455		MPASS(toep->ddp.waiting_count == 0);
1456		MPASS(toep->ddp.active_count == 0);
1457		return;
1458	}
1459
1460	if (toep->ddp.waiting_count == 0 ||
1461	    toep->ddp.active_count == nitems(toep->ddp.db)) {
1462		return;
1463	}
1464
1465	job = TAILQ_FIRST(&toep->ddp.aiojobq);
1466	so = job->fd_file->f_data;
1467	sb = &so->so_rcv;
1468	SOCKBUF_LOCK(sb);
1469
1470	/* We will never get anything unless we are or were connected. */
1471	if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1472		SOCKBUF_UNLOCK(sb);
1473		ddp_complete_all(toep, ENOTCONN);
1474		return;
1475	}
1476
1477	KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
1478	    ("%s: pending sockbuf data and DDP is active", __func__));
1479
1480	/* Abort if socket has reported problems. */
1481	/* XXX: Wait for any queued DDP's to finish and/or flush them? */
1482	if (so->so_error && sbavail(sb) == 0) {
1483		toep->ddp.waiting_count--;
1484		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1485		if (!aio_clear_cancel_function(job)) {
1486			SOCKBUF_UNLOCK(sb);
1487			goto restart;
1488		}
1489
1490		/*
1491		 * If this job has previously copied some data, report
1492		 * a short read and leave the error to be reported by
1493		 * a future request.
1494		 */
1495		copied = job->aio_received;
1496		if (copied != 0) {
1497			SOCKBUF_UNLOCK(sb);
1498			aio_complete(job, copied, 0);
1499			goto restart;
1500		}
1501		error = so->so_error;
1502		so->so_error = 0;
1503		SOCKBUF_UNLOCK(sb);
1504		aio_complete(job, -1, error);
1505		goto restart;
1506	}
1507
1508	/*
1509	 * Door is closed.  If there is pending data in the socket buffer,
1510	 * deliver it.  If there are pending DDP requests, wait for those
1511	 * to complete.  Once they have completed, return EOF reads.
1512	 */
1513	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1514		SOCKBUF_UNLOCK(sb);
1515		if (toep->ddp.active_count != 0)
1516			return;
1517		ddp_complete_all(toep, 0);
1518		return;
1519	}
1520
1521	/*
1522	 * If DDP is not enabled and there is no pending socket buffer
1523	 * data, try to enable DDP.
1524	 */
1525	if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
1526		SOCKBUF_UNLOCK(sb);
1527
1528		/*
1529		 * Wait for the card to ACK that DDP is enabled before
1530		 * queueing any buffers.  Currently this waits for an
1531		 * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
1532		 * message to know that DDP was enabled instead of waiting
1533		 * for the indicate which would avoid copying the indicate
1534		 * if no data is pending.
1535		 *
1536		 * XXX: Might want to limit the indicate size to the size
1537		 * of the first queued request.
1538		 */
1539		if ((toep->ddp.flags & DDP_SC_REQ) == 0)
1540			enable_ddp(sc, toep);
1541		return;
1542	}
1543	SOCKBUF_UNLOCK(sb);
1544
1545	/*
1546	 * If another thread is queueing a buffer for DDP, let it
1547	 * drain any work and return.
1548	 */
1549	if (toep->ddp.queueing != NULL)
1550		return;
1551
1552	/* Take the next job to prep it for DDP. */
1553	toep->ddp.waiting_count--;
1554	TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1555	if (!aio_clear_cancel_function(job))
1556		goto restart;
1557	toep->ddp.queueing = job;
1558
1559	/* NB: This drops DDP_LOCK while it holds the backing VM pages. */
1560	error = hold_aio(toep, job, &ps);
1561	if (error != 0) {
1562		ddp_complete_one(job, error);
1563		toep->ddp.queueing = NULL;
1564		goto restart;
1565	}
1566
1567	SOCKBUF_LOCK(sb);
1568	if (so->so_error && sbavail(sb) == 0) {
1569		copied = job->aio_received;
1570		if (copied != 0) {
1571			SOCKBUF_UNLOCK(sb);
1572			recycle_pageset(toep, ps);
1573			aio_complete(job, copied, 0);
1574			toep->ddp.queueing = NULL;
1575			goto restart;
1576		}
1577
1578		error = so->so_error;
1579		so->so_error = 0;
1580		SOCKBUF_UNLOCK(sb);
1581		recycle_pageset(toep, ps);
1582		aio_complete(job, -1, error);
1583		toep->ddp.queueing = NULL;
1584		goto restart;
1585	}
1586
1587	if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1588		SOCKBUF_UNLOCK(sb);
1589		recycle_pageset(toep, ps);
1590		if (toep->ddp.active_count != 0) {
1591			/*
1592			 * The door is closed, but there are still pending
1593			 * DDP buffers.  Requeue.  These jobs will all be
1594			 * completed once those buffers drain.
1595			 */
1596			aio_ddp_requeue_one(toep, job);
1597			toep->ddp.queueing = NULL;
1598			return;
1599		}
1600		ddp_complete_one(job, 0);
1601		ddp_complete_all(toep, 0);
1602		toep->ddp.queueing = NULL;
1603		return;
1604	}
1605
1606sbcopy:
1607	/*
1608	 * If the toep is dead, there shouldn't be any data in the socket
1609	 * buffer, so the above case should have handled this.
1610	 */
1611	MPASS(!(toep->ddp.flags & DDP_DEAD));
1612
1613	/*
1614	 * If there is pending data in the socket buffer (either
1615	 * from before the requests were queued or a DDP indicate),
1616	 * copy those mbufs out directly.
1617	 */
1618	copied = 0;
1619	offset = ps->offset + job->aio_received;
1620	MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
1621	resid = job->uaiocb.aio_nbytes - job->aio_received;
1622	m = sb->sb_mb;
1623	KASSERT(m == NULL || toep->ddp.active_count == 0,
1624	    ("%s: sockbuf data with active DDP", __func__));
1625	while (m != NULL && resid > 0) {
1626		struct iovec iov[1];
1627		struct uio uio;
1628		int error;
1629
1630		iov[0].iov_base = mtod(m, void *);
1631		iov[0].iov_len = m->m_len;
1632		if (iov[0].iov_len > resid)
1633			iov[0].iov_len = resid;
1634		uio.uio_iov = iov;
1635		uio.uio_iovcnt = 1;
1636		uio.uio_offset = 0;
1637		uio.uio_resid = iov[0].iov_len;
1638		uio.uio_segflg = UIO_SYSSPACE;
1639		uio.uio_rw = UIO_WRITE;
1640		error = uiomove_fromphys(ps->pages, offset + copied,
1641		    uio.uio_resid, &uio);
1642		MPASS(error == 0 && uio.uio_resid == 0);
1643		copied += uio.uio_offset;
1644		resid -= uio.uio_offset;
1645		m = m->m_next;
1646	}
1647	if (copied != 0) {
1648		sbdrop_locked(sb, copied);
1649		job->aio_received += copied;
1650		job->msgrcv = 1;
1651		copied = job->aio_received;
1652		inp = sotoinpcb(so);
1653		if (!INP_TRY_WLOCK(inp)) {
1654			/*
1655			 * The reference on the socket file descriptor in
1656			 * the AIO job should keep 'sb' and 'inp' stable.
1657			 * Our caller has a reference on the 'toep' that
1658			 * keeps it stable.
1659			 */
1660			SOCKBUF_UNLOCK(sb);
1661			DDP_UNLOCK(toep);
1662			INP_WLOCK(inp);
1663			DDP_LOCK(toep);
1664			SOCKBUF_LOCK(sb);
1665
1666			/*
1667			 * If the socket has been closed, we should detect
1668			 * that and complete this request if needed on
1669			 * the next trip around the loop.
1670			 */
1671		}
1672		t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
1673		INP_WUNLOCK(inp);
1674		if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
1675			/*
1676			 * We filled the entire buffer with socket
1677			 * data, DDP is not being used, or the socket
1678			 * is being shut down, so complete the
1679			 * request.
1680			 */
1681			SOCKBUF_UNLOCK(sb);
1682			recycle_pageset(toep, ps);
1683			aio_complete(job, copied, 0);
1684			toep->ddp.queueing = NULL;
1685			goto restart;
1686		}
1687
1688		/*
1689		 * If DDP is not enabled, requeue this request and restart.
1690		 * This will either enable DDP or wait for more data to
1691		 * arrive on the socket buffer.
1692		 */
1693		if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
1694			SOCKBUF_UNLOCK(sb);
1695			recycle_pageset(toep, ps);
1696			aio_ddp_requeue_one(toep, job);
1697			toep->ddp.queueing = NULL;
1698			goto restart;
1699		}
1700
1701		/*
1702		 * An indicate might have arrived and been added to
1703		 * the socket buffer while it was unlocked after the
1704		 * copy to lock the INP.  If so, restart the copy.
1705		 */
1706		if (sbavail(sb) != 0)
1707			goto sbcopy;
1708	}
1709	SOCKBUF_UNLOCK(sb);
1710
1711	if (prep_pageset(sc, toep, ps) == 0) {
1712		recycle_pageset(toep, ps);
1713		aio_ddp_requeue_one(toep, job);
1714		toep->ddp.queueing = NULL;
1715
1716		/*
1717		 * XXX: Need to retry this later.  Mostly need a trigger
1718		 * when page pods are freed up.
1719		 */
1720		printf("%s: prep_pageset failed\n", __func__);
1721		return;
1722	}
1723
1724	/* Determine which DDP buffer to use. */
1725	if (toep->ddp.db[0].job == NULL) {
1726		db_idx = 0;
1727	} else {
1728		MPASS(toep->ddp.db[1].job == NULL);
1729		db_idx = 1;
1730	}
1731
1732	ddp_flags = 0;
1733	ddp_flags_mask = 0;
1734	if (db_idx == 0) {
1735		ddp_flags |= V_TF_DDP_BUF0_VALID(1);
1736		if (so->so_state & SS_NBIO)
1737			ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
1738		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
1739		    V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
1740		    V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
1741		buf_flag = DDP_BUF0_ACTIVE;
1742	} else {
1743		ddp_flags |= V_TF_DDP_BUF1_VALID(1);
1744		if (so->so_state & SS_NBIO)
1745			ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
1746		ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
1747		    V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
1748		    V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
1749		buf_flag = DDP_BUF1_ACTIVE;
1750	}
1751	MPASS((toep->ddp.flags & buf_flag) == 0);
1752	if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
1753		MPASS(db_idx == 0);
1754		MPASS(toep->ddp.active_id == -1);
1755		MPASS(toep->ddp.active_count == 0);
1756		ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
1757	}
1758
1759	/*
1760	 * The TID for this connection should still be valid.  If DDP_DEAD
1761	 * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
1762	 * this far anyway.  Even if the socket is closing on the other
1763	 * end, the AIO job holds a reference on this end of the socket
1764	 * which will keep it open and keep the TCP PCB attached until
1765	 * after the job is completed.
1766	 */
1767	wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
1768	    ddp_flags, ddp_flags_mask);
1769	if (wr == NULL) {
1770		recycle_pageset(toep, ps);
1771		aio_ddp_requeue_one(toep, job);
1772		toep->ddp.queueing = NULL;
1773
1774		/*
1775		 * XXX: Need a way to kick a retry here.
1776		 *
1777		 * XXX: We know the fixed size needed and could
1778		 * preallocate this using a blocking request at the
1779		 * start of the task to avoid having to handle this
1780		 * edge case.
1781		 */
1782		printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
1783		return;
1784	}
1785
1786	if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
1787		free_wrqe(wr);
1788		recycle_pageset(toep, ps);
1789		aio_ddp_cancel_one(job);
1790		toep->ddp.queueing = NULL;
1791		goto restart;
1792	}
1793
1794#ifdef VERBOSE_TRACES
1795	CTR6(KTR_CXGBE,
1796	    "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__,
1797	    toep->tid, job, db_idx, ddp_flags, ddp_flags_mask);
1798#endif
1799	/* Give the chip the go-ahead. */
1800	t4_wrq_tx(sc, wr);
1801	db = &toep->ddp.db[db_idx];
1802	db->cancel_pending = 0;
1803	db->job = job;
1804	db->ps = ps;
1805	toep->ddp.queueing = NULL;
1806	toep->ddp.flags |= buf_flag;
1807	toep->ddp.active_count++;
1808	if (toep->ddp.active_count == 1) {
1809		MPASS(toep->ddp.active_id == -1);
1810		toep->ddp.active_id = db_idx;
1811		CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
1812		    toep->ddp.active_id);
1813	}
1814	goto restart;
1815}
1816
1817void
1818ddp_queue_toep(struct toepcb *toep)
1819{
1820
1821	DDP_ASSERT_LOCKED(toep);
1822	if (toep->ddp.flags & DDP_TASK_ACTIVE)
1823		return;
1824	toep->ddp.flags |= DDP_TASK_ACTIVE;
1825	hold_toepcb(toep);
1826	soaio_enqueue(&toep->ddp.requeue_task);
1827}
1828
1829static void
1830aio_ddp_requeue_task(void *context, int pending)
1831{
1832	struct toepcb *toep = context;
1833
1834	DDP_LOCK(toep);
1835	aio_ddp_requeue(toep);
1836	toep->ddp.flags &= ~DDP_TASK_ACTIVE;
1837	DDP_UNLOCK(toep);
1838
1839	free_toepcb(toep);
1840}
1841
1842static void
1843t4_aio_cancel_active(struct kaiocb *job)
1844{
1845	struct socket *so = job->fd_file->f_data;
1846	struct tcpcb *tp = so_sototcpcb(so);
1847	struct toepcb *toep = tp->t_toe;
1848	struct adapter *sc = td_adapter(toep->td);
1849	uint64_t valid_flag;
1850	int i;
1851
1852	DDP_LOCK(toep);
1853	if (aio_cancel_cleared(job)) {
1854		DDP_UNLOCK(toep);
1855		aio_ddp_cancel_one(job);
1856		return;
1857	}
1858
1859	for (i = 0; i < nitems(toep->ddp.db); i++) {
1860		if (toep->ddp.db[i].job == job) {
1861			/* Should only ever get one cancel request for a job. */
1862			MPASS(toep->ddp.db[i].cancel_pending == 0);
1863
1864			/*
1865			 * Invalidate this buffer.  It will be
1866			 * cancelled or partially completed once the
1867			 * card ACKs the invalidate.
1868			 */
1869			valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
1870			    V_TF_DDP_BUF1_VALID(1);
1871			t4_set_tcb_field(sc, toep->ctrlq, toep,
1872			    W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
1873			    i + DDP_BUF0_INVALIDATED);
1874			toep->ddp.db[i].cancel_pending = 1;
1875			CTR2(KTR_CXGBE, "%s: request %p marked pending",
1876			    __func__, job);
1877			break;
1878		}
1879	}
1880	DDP_UNLOCK(toep);
1881}
1882
1883static void
1884t4_aio_cancel_queued(struct kaiocb *job)
1885{
1886	struct socket *so = job->fd_file->f_data;
1887	struct tcpcb *tp = so_sototcpcb(so);
1888	struct toepcb *toep = tp->t_toe;
1889
1890	DDP_LOCK(toep);
1891	if (!aio_cancel_cleared(job)) {
1892		TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1893		toep->ddp.waiting_count--;
1894		if (toep->ddp.waiting_count == 0)
1895			ddp_queue_toep(toep);
1896	}
1897	CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
1898	DDP_UNLOCK(toep);
1899
1900	aio_ddp_cancel_one(job);
1901}
1902
1903int
1904t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
1905{
1906	struct tcpcb *tp = so_sototcpcb(so);
1907	struct toepcb *toep = tp->t_toe;
1908
1909
1910	/* Ignore writes. */
1911	if (job->uaiocb.aio_lio_opcode != LIO_READ)
1912		return (EOPNOTSUPP);
1913
1914	DDP_LOCK(toep);
1915
1916	/*
1917	 * XXX: Think about possibly returning errors for ENOTCONN,
1918	 * etc.  Perhaps the caller would only queue the request
1919	 * if it failed with EOPNOTSUPP?
1920	 */
1921
1922#ifdef VERBOSE_TRACES
1923	CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
1924#endif
1925	if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
1926		panic("new job was cancelled");
1927	TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
1928	toep->ddp.waiting_count++;
1929	toep->ddp.flags |= DDP_OK;
1930
1931	/*
1932	 * Try to handle this request synchronously.  If this has
1933	 * to block because the task is running, it will just bail
1934	 * and let the task handle it instead.
1935	 */
1936	aio_ddp_requeue(toep);
1937	DDP_UNLOCK(toep);
1938	return (0);
1939}
1940
1941void
1942t4_ddp_mod_load(void)
1943{
1944
1945	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1946	    CPL_COOKIE_DDP0);
1947	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1948	    CPL_COOKIE_DDP1);
1949	t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
1950	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
1951	TAILQ_INIT(&ddp_orphan_pagesets);
1952	mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
1953	TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
1954}
1955
1956void
1957t4_ddp_mod_unload(void)
1958{
1959
1960	taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
1961	MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
1962	mtx_destroy(&ddp_orphan_pagesets_lock);
1963	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
1964	t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
1965	t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
1966	t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
1967}
1968#endif
1969