1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://tools.ietf.org/html/rfc1951
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55   " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56/*
57  If you use the zlib library in a product, an acknowledgment is welcome
58  in the documentation of your product. If for some reason you cannot
59  include such an acknowledgment, I would appreciate that you keep this
60  copyright string in the executable of your product.
61 */
62
63/* ===========================================================================
64 *  Function prototypes.
65 */
66typedef enum {
67    need_more,      /* block not completed, need more input or more output */
68    block_done,     /* block flush performed */
69    finish_started, /* finish started, need only more output at next deflate */
70    finish_done     /* finish done, accept no more input or output */
71} block_state;
72
73typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74/* Compression function. Returns the block state after the call. */
75
76local int deflateStateCheck      OF((z_streamp strm));
77local void slide_hash     OF((deflate_state *s));
78local void fill_window    OF((deflate_state *s));
79local block_state deflate_stored OF((deflate_state *s, int flush));
80local block_state deflate_fast   OF((deflate_state *s, int flush));
81#ifndef FASTEST
82local block_state deflate_slow   OF((deflate_state *s, int flush));
83#endif
84local block_state deflate_rle    OF((deflate_state *s, int flush));
85local block_state deflate_huff   OF((deflate_state *s, int flush));
86local void lm_init        OF((deflate_state *s));
87local void putShortMSB    OF((deflate_state *s, uInt b));
88local void flush_pending  OF((z_streamp strm));
89local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90#ifdef ASMV
91#  pragma message("Assembler code may have bugs -- use at your own risk")
92      void match_init OF((void)); /* asm code initialization */
93      uInt longest_match  OF((deflate_state *s, IPos cur_match));
94#else
95local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96#endif
97
98#ifdef ZLIB_DEBUG
99local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                            int length));
101#endif
102
103/* ===========================================================================
104 * Local data
105 */
106
107#define NIL 0
108/* Tail of hash chains */
109
110#ifndef TOO_FAR
111#  define TOO_FAR 4096
112#endif
113/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115/* Values for max_lazy_match, good_match and max_chain_length, depending on
116 * the desired pack level (0..9). The values given below have been tuned to
117 * exclude worst case performance for pathological files. Better values may be
118 * found for specific files.
119 */
120typedef struct config_s {
121   ush good_length; /* reduce lazy search above this match length */
122   ush max_lazy;    /* do not perform lazy search above this match length */
123   ush nice_length; /* quit search above this match length */
124   ush max_chain;
125   compress_func func;
126} config;
127
128#ifdef FASTEST
129local const config configuration_table[2] = {
130/*      good lazy nice chain */
131/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133#else
134local const config configuration_table[10] = {
135/*      good lazy nice chain */
136/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138/* 2 */ {4,    5, 16,    8, deflate_fast},
139/* 3 */ {4,    6, 32,   32, deflate_fast},
140
141/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142/* 5 */ {8,   16, 32,   32, deflate_slow},
143/* 6 */ {8,   16, 128, 128, deflate_slow},
144/* 7 */ {8,   32, 128, 256, deflate_slow},
145/* 8 */ {32, 128, 258, 1024, deflate_slow},
146/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147#endif
148
149/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151 * meaning.
152 */
153
154/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157/* ===========================================================================
158 * Update a hash value with the given input byte
159 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160 *    characters, so that a running hash key can be computed from the previous
161 *    key instead of complete recalculation each time.
162 */
163#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166/* ===========================================================================
167 * Insert string str in the dictionary and set match_head to the previous head
168 * of the hash chain (the most recent string with same hash key). Return
169 * the previous length of the hash chain.
170 * If this file is compiled with -DFASTEST, the compression level is forced
171 * to 1, and no hash chains are maintained.
172 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173 *    characters and the first MIN_MATCH bytes of str are valid (except for
174 *    the last MIN_MATCH-1 bytes of the input file).
175 */
176#ifdef FASTEST
177#define INSERT_STRING(s, str, match_head) \
178   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179    match_head = s->head[s->ins_h], \
180    s->head[s->ins_h] = (Pos)(str))
181#else
182#define INSERT_STRING(s, str, match_head) \
183   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185    s->head[s->ins_h] = (Pos)(str))
186#endif
187
188/* ===========================================================================
189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190 * prev[] will be initialized on the fly.
191 */
192#define CLEAR_HASH(s) \
193    do { \
194        s->head[s->hash_size-1] = NIL; \
195        zmemzero((Bytef *)s->head, \
196                 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197    } while (0)
198
199/* ===========================================================================
200 * Slide the hash table when sliding the window down (could be avoided with 32
201 * bit values at the expense of memory usage). We slide even when level == 0 to
202 * keep the hash table consistent if we switch back to level > 0 later.
203 */
204local void slide_hash(s)
205    deflate_state *s;
206{
207    unsigned n, m;
208    Posf *p;
209    uInt wsize = s->w_size;
210
211    n = s->hash_size;
212    p = &s->head[n];
213    do {
214        m = *--p;
215        *p = (Pos)(m >= wsize ? m - wsize : NIL);
216    } while (--n);
217    n = wsize;
218#ifndef FASTEST
219    p = &s->prev[n];
220    do {
221        m = *--p;
222        *p = (Pos)(m >= wsize ? m - wsize : NIL);
223        /* If n is not on any hash chain, prev[n] is garbage but
224         * its value will never be used.
225         */
226    } while (--n);
227#endif
228}
229
230/* ========================================================================= */
231int ZEXPORT deflateInit_(strm, level, version, stream_size)
232    z_streamp strm;
233    int level;
234    const char *version;
235    int stream_size;
236{
237    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238                         Z_DEFAULT_STRATEGY, version, stream_size);
239    /* To do: ignore strm->next_in if we use it as window */
240}
241
242/* ========================================================================= */
243int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
244                  version, stream_size)
245    z_streamp strm;
246    int  level;
247    int  method;
248    int  windowBits;
249    int  memLevel;
250    int  strategy;
251    const char *version;
252    int stream_size;
253{
254    deflate_state *s;
255    int wrap = 1;
256    static const char my_version[] = ZLIB_VERSION;
257
258    ushf *overlay;
259    /* We overlay pending_buf and d_buf+l_buf. This works since the average
260     * output size for (length,distance) codes is <= 24 bits.
261     */
262
263    if (version == Z_NULL || version[0] != my_version[0] ||
264        stream_size != sizeof(z_stream)) {
265        return Z_VERSION_ERROR;
266    }
267    if (strm == Z_NULL) return Z_STREAM_ERROR;
268
269    strm->msg = Z_NULL;
270    if (strm->zalloc == (alloc_func)0) {
271#ifdef Z_SOLO
272        return Z_STREAM_ERROR;
273#else
274        strm->zalloc = zcalloc;
275        strm->opaque = (voidpf)0;
276#endif
277    }
278    if (strm->zfree == (free_func)0)
279#ifdef Z_SOLO
280        return Z_STREAM_ERROR;
281#else
282        strm->zfree = zcfree;
283#endif
284
285#ifdef FASTEST
286    if (level != 0) level = 1;
287#else
288    if (level == Z_DEFAULT_COMPRESSION) level = 6;
289#endif
290
291    if (windowBits < 0) { /* suppress zlib wrapper */
292        wrap = 0;
293        windowBits = -windowBits;
294    }
295#ifdef GZIP
296    else if (windowBits > 15) {
297        wrap = 2;       /* write gzip wrapper instead */
298        windowBits -= 16;
299    }
300#endif
301    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
302        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
303        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
304        return Z_STREAM_ERROR;
305    }
306    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
307    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
308    if (s == Z_NULL) return Z_MEM_ERROR;
309    strm->state = (struct internal_state FAR *)s;
310    s->strm = strm;
311    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
312
313    s->wrap = wrap;
314    s->gzhead = Z_NULL;
315    s->w_bits = (uInt)windowBits;
316    s->w_size = 1 << s->w_bits;
317    s->w_mask = s->w_size - 1;
318
319    s->hash_bits = (uInt)memLevel + 7;
320    s->hash_size = 1 << s->hash_bits;
321    s->hash_mask = s->hash_size - 1;
322    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
323
324    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
325    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
326    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
327
328    s->high_water = 0;      /* nothing written to s->window yet */
329
330    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
331
332    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
333    s->pending_buf = (uchf *) overlay;
334    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
335
336    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
337        s->pending_buf == Z_NULL) {
338        s->status = FINISH_STATE;
339        strm->msg = ERR_MSG(Z_MEM_ERROR);
340        deflateEnd (strm);
341        return Z_MEM_ERROR;
342    }
343    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
344    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
345
346    s->level = level;
347    s->strategy = strategy;
348    s->method = (Byte)method;
349
350    return deflateReset(strm);
351}
352
353/* =========================================================================
354 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
355 */
356local int deflateStateCheck (strm)
357    z_streamp strm;
358{
359    deflate_state *s;
360    if (strm == Z_NULL ||
361        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
362        return 1;
363    s = strm->state;
364    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
365#ifdef GZIP
366                                           s->status != GZIP_STATE &&
367#endif
368                                           s->status != EXTRA_STATE &&
369                                           s->status != NAME_STATE &&
370                                           s->status != COMMENT_STATE &&
371                                           s->status != HCRC_STATE &&
372                                           s->status != BUSY_STATE &&
373                                           s->status != FINISH_STATE))
374        return 1;
375    return 0;
376}
377
378/* ========================================================================= */
379int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
380    z_streamp strm;
381    const Bytef *dictionary;
382    uInt  dictLength;
383{
384    deflate_state *s;
385    uInt str, n;
386    int wrap;
387    unsigned avail;
388    z_const unsigned char *next;
389
390    if (deflateStateCheck(strm) || dictionary == Z_NULL)
391        return Z_STREAM_ERROR;
392    s = strm->state;
393    wrap = s->wrap;
394    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
395        return Z_STREAM_ERROR;
396
397    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
398    if (wrap == 1)
399        strm->adler = adler32(strm->adler, dictionary, dictLength);
400    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
401
402    /* if dictionary would fill window, just replace the history */
403    if (dictLength >= s->w_size) {
404        if (wrap == 0) {            /* already empty otherwise */
405            CLEAR_HASH(s);
406            s->strstart = 0;
407            s->block_start = 0L;
408            s->insert = 0;
409        }
410        dictionary += dictLength - s->w_size;  /* use the tail */
411        dictLength = s->w_size;
412    }
413
414    /* insert dictionary into window and hash */
415    avail = strm->avail_in;
416    next = strm->next_in;
417    strm->avail_in = dictLength;
418    strm->next_in = (z_const Bytef *)dictionary;
419    fill_window(s);
420    while (s->lookahead >= MIN_MATCH) {
421        str = s->strstart;
422        n = s->lookahead - (MIN_MATCH-1);
423        do {
424            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
425#ifndef FASTEST
426            s->prev[str & s->w_mask] = s->head[s->ins_h];
427#endif
428            s->head[s->ins_h] = (Pos)str;
429            str++;
430        } while (--n);
431        s->strstart = str;
432        s->lookahead = MIN_MATCH-1;
433        fill_window(s);
434    }
435    s->strstart += s->lookahead;
436    s->block_start = (long)s->strstart;
437    s->insert = s->lookahead;
438    s->lookahead = 0;
439    s->match_length = s->prev_length = MIN_MATCH-1;
440    s->match_available = 0;
441    strm->next_in = next;
442    strm->avail_in = avail;
443    s->wrap = wrap;
444    return Z_OK;
445}
446
447/* ========================================================================= */
448int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
449    z_streamp strm;
450    Bytef *dictionary;
451    uInt  *dictLength;
452{
453    deflate_state *s;
454    uInt len;
455
456    if (deflateStateCheck(strm))
457        return Z_STREAM_ERROR;
458    s = strm->state;
459    len = s->strstart + s->lookahead;
460    if (len > s->w_size)
461        len = s->w_size;
462    if (dictionary != Z_NULL && len)
463        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
464    if (dictLength != Z_NULL)
465        *dictLength = len;
466    return Z_OK;
467}
468
469/* ========================================================================= */
470int ZEXPORT deflateResetKeep (strm)
471    z_streamp strm;
472{
473    deflate_state *s;
474
475    if (deflateStateCheck(strm)) {
476        return Z_STREAM_ERROR;
477    }
478
479    strm->total_in = strm->total_out = 0;
480    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
481    strm->data_type = Z_UNKNOWN;
482
483    s = (deflate_state *)strm->state;
484    s->pending = 0;
485    s->pending_out = s->pending_buf;
486
487    if (s->wrap < 0) {
488        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
489    }
490    s->status =
491#ifdef GZIP
492        s->wrap == 2 ? GZIP_STATE :
493#endif
494        s->wrap ? INIT_STATE : BUSY_STATE;
495    strm->adler =
496#ifdef GZIP
497        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
498#endif
499        adler32(0L, Z_NULL, 0);
500    s->last_flush = -2;
501
502    _tr_init(s);
503
504    return Z_OK;
505}
506
507/* ========================================================================= */
508int ZEXPORT deflateReset (strm)
509    z_streamp strm;
510{
511    int ret;
512
513    ret = deflateResetKeep(strm);
514    if (ret == Z_OK)
515        lm_init(strm->state);
516    return ret;
517}
518
519/* ========================================================================= */
520int ZEXPORT deflateSetHeader (strm, head)
521    z_streamp strm;
522    gz_headerp head;
523{
524    if (deflateStateCheck(strm) || strm->state->wrap != 2)
525        return Z_STREAM_ERROR;
526    strm->state->gzhead = head;
527    return Z_OK;
528}
529
530/* ========================================================================= */
531int ZEXPORT deflatePending (strm, pending, bits)
532    unsigned *pending;
533    int *bits;
534    z_streamp strm;
535{
536    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
537    if (pending != Z_NULL)
538        *pending = strm->state->pending;
539    if (bits != Z_NULL)
540        *bits = strm->state->bi_valid;
541    return Z_OK;
542}
543
544/* ========================================================================= */
545int ZEXPORT deflatePrime (strm, bits, value)
546    z_streamp strm;
547    int bits;
548    int value;
549{
550    deflate_state *s;
551    int put;
552
553    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
554    s = strm->state;
555    if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
556        return Z_BUF_ERROR;
557    do {
558        put = Buf_size - s->bi_valid;
559        if (put > bits)
560            put = bits;
561        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
562        s->bi_valid += put;
563        _tr_flush_bits(s);
564        value >>= put;
565        bits -= put;
566    } while (bits);
567    return Z_OK;
568}
569
570/* ========================================================================= */
571int ZEXPORT deflateParams(strm, level, strategy)
572    z_streamp strm;
573    int level;
574    int strategy;
575{
576    deflate_state *s;
577    compress_func func;
578
579    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
580    s = strm->state;
581
582#ifdef FASTEST
583    if (level != 0) level = 1;
584#else
585    if (level == Z_DEFAULT_COMPRESSION) level = 6;
586#endif
587    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
588        return Z_STREAM_ERROR;
589    }
590    func = configuration_table[s->level].func;
591
592    if ((strategy != s->strategy || func != configuration_table[level].func) &&
593        s->last_flush != -2) {
594        /* Flush the last buffer: */
595        int err = deflate(strm, Z_BLOCK);
596        if (err == Z_STREAM_ERROR)
597            return err;
598        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
599            return Z_BUF_ERROR;
600    }
601    if (s->level != level) {
602        if (s->level == 0 && s->matches != 0) {
603            if (s->matches == 1)
604                slide_hash(s);
605            else
606                CLEAR_HASH(s);
607            s->matches = 0;
608        }
609        s->level = level;
610        s->max_lazy_match   = configuration_table[level].max_lazy;
611        s->good_match       = configuration_table[level].good_length;
612        s->nice_match       = configuration_table[level].nice_length;
613        s->max_chain_length = configuration_table[level].max_chain;
614    }
615    s->strategy = strategy;
616    return Z_OK;
617}
618
619/* ========================================================================= */
620int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
621    z_streamp strm;
622    int good_length;
623    int max_lazy;
624    int nice_length;
625    int max_chain;
626{
627    deflate_state *s;
628
629    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
630    s = strm->state;
631    s->good_match = (uInt)good_length;
632    s->max_lazy_match = (uInt)max_lazy;
633    s->nice_match = nice_length;
634    s->max_chain_length = (uInt)max_chain;
635    return Z_OK;
636}
637
638/* =========================================================================
639 * For the default windowBits of 15 and memLevel of 8, this function returns
640 * a close to exact, as well as small, upper bound on the compressed size.
641 * They are coded as constants here for a reason--if the #define's are
642 * changed, then this function needs to be changed as well.  The return
643 * value for 15 and 8 only works for those exact settings.
644 *
645 * For any setting other than those defaults for windowBits and memLevel,
646 * the value returned is a conservative worst case for the maximum expansion
647 * resulting from using fixed blocks instead of stored blocks, which deflate
648 * can emit on compressed data for some combinations of the parameters.
649 *
650 * This function could be more sophisticated to provide closer upper bounds for
651 * every combination of windowBits and memLevel.  But even the conservative
652 * upper bound of about 14% expansion does not seem onerous for output buffer
653 * allocation.
654 */
655uLong ZEXPORT deflateBound(strm, sourceLen)
656    z_streamp strm;
657    uLong sourceLen;
658{
659    deflate_state *s;
660    uLong complen, wraplen;
661
662    /* conservative upper bound for compressed data */
663    complen = sourceLen +
664              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
665
666    /* if can't get parameters, return conservative bound plus zlib wrapper */
667    if (deflateStateCheck(strm))
668        return complen + 6;
669
670    /* compute wrapper length */
671    s = strm->state;
672    switch (s->wrap) {
673    case 0:                                 /* raw deflate */
674        wraplen = 0;
675        break;
676    case 1:                                 /* zlib wrapper */
677        wraplen = 6 + (s->strstart ? 4 : 0);
678        break;
679#ifdef GZIP
680    case 2:                                 /* gzip wrapper */
681        wraplen = 18;
682        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
683            Bytef *str;
684            if (s->gzhead->extra != Z_NULL)
685                wraplen += 2 + s->gzhead->extra_len;
686            str = s->gzhead->name;
687            if (str != Z_NULL)
688                do {
689                    wraplen++;
690                } while (*str++);
691            str = s->gzhead->comment;
692            if (str != Z_NULL)
693                do {
694                    wraplen++;
695                } while (*str++);
696            if (s->gzhead->hcrc)
697                wraplen += 2;
698        }
699        break;
700#endif
701    default:                                /* for compiler happiness */
702        wraplen = 6;
703    }
704
705    /* if not default parameters, return conservative bound */
706    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
707        return complen + wraplen;
708
709    /* default settings: return tight bound for that case */
710    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
711           (sourceLen >> 25) + 13 - 6 + wraplen;
712}
713
714/* =========================================================================
715 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
716 * IN assertion: the stream state is correct and there is enough room in
717 * pending_buf.
718 */
719local void putShortMSB (s, b)
720    deflate_state *s;
721    uInt b;
722{
723    put_byte(s, (Byte)(b >> 8));
724    put_byte(s, (Byte)(b & 0xff));
725}
726
727/* =========================================================================
728 * Flush as much pending output as possible. All deflate() output, except for
729 * some deflate_stored() output, goes through this function so some
730 * applications may wish to modify it to avoid allocating a large
731 * strm->next_out buffer and copying into it. (See also read_buf()).
732 */
733local void flush_pending(strm)
734    z_streamp strm;
735{
736    unsigned len;
737    deflate_state *s = strm->state;
738
739    _tr_flush_bits(s);
740    len = s->pending;
741    if (len > strm->avail_out) len = strm->avail_out;
742    if (len == 0) return;
743
744    zmemcpy(strm->next_out, s->pending_out, len);
745    strm->next_out  += len;
746    s->pending_out  += len;
747    strm->total_out += len;
748    strm->avail_out -= len;
749    s->pending      -= len;
750    if (s->pending == 0) {
751        s->pending_out = s->pending_buf;
752    }
753}
754
755/* ===========================================================================
756 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
757 */
758#define HCRC_UPDATE(beg) \
759    do { \
760        if (s->gzhead->hcrc && s->pending > (beg)) \
761            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
762                                s->pending - (beg)); \
763    } while (0)
764
765/* ========================================================================= */
766int ZEXPORT deflate (strm, flush)
767    z_streamp strm;
768    int flush;
769{
770    int old_flush; /* value of flush param for previous deflate call */
771    deflate_state *s;
772
773    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
774        return Z_STREAM_ERROR;
775    }
776    s = strm->state;
777
778    if (strm->next_out == Z_NULL ||
779        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
780        (s->status == FINISH_STATE && flush != Z_FINISH)) {
781        ERR_RETURN(strm, Z_STREAM_ERROR);
782    }
783    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
784
785    old_flush = s->last_flush;
786    s->last_flush = flush;
787
788    /* Flush as much pending output as possible */
789    if (s->pending != 0) {
790        flush_pending(strm);
791        if (strm->avail_out == 0) {
792            /* Since avail_out is 0, deflate will be called again with
793             * more output space, but possibly with both pending and
794             * avail_in equal to zero. There won't be anything to do,
795             * but this is not an error situation so make sure we
796             * return OK instead of BUF_ERROR at next call of deflate:
797             */
798            s->last_flush = -1;
799            return Z_OK;
800        }
801
802    /* Make sure there is something to do and avoid duplicate consecutive
803     * flushes. For repeated and useless calls with Z_FINISH, we keep
804     * returning Z_STREAM_END instead of Z_BUF_ERROR.
805     */
806    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
807               flush != Z_FINISH) {
808        ERR_RETURN(strm, Z_BUF_ERROR);
809    }
810
811    /* User must not provide more input after the first FINISH: */
812    if (s->status == FINISH_STATE && strm->avail_in != 0) {
813        ERR_RETURN(strm, Z_BUF_ERROR);
814    }
815
816    /* Write the header */
817    if (s->status == INIT_STATE) {
818        /* zlib header */
819        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
820        uInt level_flags;
821
822        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
823            level_flags = 0;
824        else if (s->level < 6)
825            level_flags = 1;
826        else if (s->level == 6)
827            level_flags = 2;
828        else
829            level_flags = 3;
830        header |= (level_flags << 6);
831        if (s->strstart != 0) header |= PRESET_DICT;
832        header += 31 - (header % 31);
833
834        putShortMSB(s, header);
835
836        /* Save the adler32 of the preset dictionary: */
837        if (s->strstart != 0) {
838            putShortMSB(s, (uInt)(strm->adler >> 16));
839            putShortMSB(s, (uInt)(strm->adler & 0xffff));
840        }
841        strm->adler = adler32(0L, Z_NULL, 0);
842        s->status = BUSY_STATE;
843
844        /* Compression must start with an empty pending buffer */
845        flush_pending(strm);
846        if (s->pending != 0) {
847            s->last_flush = -1;
848            return Z_OK;
849        }
850    }
851#ifdef GZIP
852    if (s->status == GZIP_STATE) {
853        /* gzip header */
854        strm->adler = crc32(0L, Z_NULL, 0);
855        put_byte(s, 31);
856        put_byte(s, 139);
857        put_byte(s, 8);
858        if (s->gzhead == Z_NULL) {
859            put_byte(s, 0);
860            put_byte(s, 0);
861            put_byte(s, 0);
862            put_byte(s, 0);
863            put_byte(s, 0);
864            put_byte(s, s->level == 9 ? 2 :
865                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
866                      4 : 0));
867            put_byte(s, OS_CODE);
868            s->status = BUSY_STATE;
869
870            /* Compression must start with an empty pending buffer */
871            flush_pending(strm);
872            if (s->pending != 0) {
873                s->last_flush = -1;
874                return Z_OK;
875            }
876        }
877        else {
878            put_byte(s, (s->gzhead->text ? 1 : 0) +
879                     (s->gzhead->hcrc ? 2 : 0) +
880                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
881                     (s->gzhead->name == Z_NULL ? 0 : 8) +
882                     (s->gzhead->comment == Z_NULL ? 0 : 16)
883                     );
884            put_byte(s, (Byte)(s->gzhead->time & 0xff));
885            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
886            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
887            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
888            put_byte(s, s->level == 9 ? 2 :
889                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
890                      4 : 0));
891            put_byte(s, s->gzhead->os & 0xff);
892            if (s->gzhead->extra != Z_NULL) {
893                put_byte(s, s->gzhead->extra_len & 0xff);
894                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
895            }
896            if (s->gzhead->hcrc)
897                strm->adler = crc32(strm->adler, s->pending_buf,
898                                    s->pending);
899            s->gzindex = 0;
900            s->status = EXTRA_STATE;
901        }
902    }
903    if (s->status == EXTRA_STATE) {
904        if (s->gzhead->extra != Z_NULL) {
905            ulg beg = s->pending;   /* start of bytes to update crc */
906            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
907            while (s->pending + left > s->pending_buf_size) {
908                uInt copy = s->pending_buf_size - s->pending;
909                zmemcpy(s->pending_buf + s->pending,
910                        s->gzhead->extra + s->gzindex, copy);
911                s->pending = s->pending_buf_size;
912                HCRC_UPDATE(beg);
913                s->gzindex += copy;
914                flush_pending(strm);
915                if (s->pending != 0) {
916                    s->last_flush = -1;
917                    return Z_OK;
918                }
919                beg = 0;
920                left -= copy;
921            }
922            zmemcpy(s->pending_buf + s->pending,
923                    s->gzhead->extra + s->gzindex, left);
924            s->pending += left;
925            HCRC_UPDATE(beg);
926            s->gzindex = 0;
927        }
928        s->status = NAME_STATE;
929    }
930    if (s->status == NAME_STATE) {
931        if (s->gzhead->name != Z_NULL) {
932            ulg beg = s->pending;   /* start of bytes to update crc */
933            int val;
934            do {
935                if (s->pending == s->pending_buf_size) {
936                    HCRC_UPDATE(beg);
937                    flush_pending(strm);
938                    if (s->pending != 0) {
939                        s->last_flush = -1;
940                        return Z_OK;
941                    }
942                    beg = 0;
943                }
944                val = s->gzhead->name[s->gzindex++];
945                put_byte(s, val);
946            } while (val != 0);
947            HCRC_UPDATE(beg);
948            s->gzindex = 0;
949        }
950        s->status = COMMENT_STATE;
951    }
952    if (s->status == COMMENT_STATE) {
953        if (s->gzhead->comment != Z_NULL) {
954            ulg beg = s->pending;   /* start of bytes to update crc */
955            int val;
956            do {
957                if (s->pending == s->pending_buf_size) {
958                    HCRC_UPDATE(beg);
959                    flush_pending(strm);
960                    if (s->pending != 0) {
961                        s->last_flush = -1;
962                        return Z_OK;
963                    }
964                    beg = 0;
965                }
966                val = s->gzhead->comment[s->gzindex++];
967                put_byte(s, val);
968            } while (val != 0);
969            HCRC_UPDATE(beg);
970        }
971        s->status = HCRC_STATE;
972    }
973    if (s->status == HCRC_STATE) {
974        if (s->gzhead->hcrc) {
975            if (s->pending + 2 > s->pending_buf_size) {
976                flush_pending(strm);
977                if (s->pending != 0) {
978                    s->last_flush = -1;
979                    return Z_OK;
980                }
981            }
982            put_byte(s, (Byte)(strm->adler & 0xff));
983            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
984            strm->adler = crc32(0L, Z_NULL, 0);
985        }
986        s->status = BUSY_STATE;
987
988        /* Compression must start with an empty pending buffer */
989        flush_pending(strm);
990        if (s->pending != 0) {
991            s->last_flush = -1;
992            return Z_OK;
993        }
994    }
995#endif
996
997    /* Start a new block or continue the current one.
998     */
999    if (strm->avail_in != 0 || s->lookahead != 0 ||
1000        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1001        block_state bstate;
1002
1003        bstate = s->level == 0 ? deflate_stored(s, flush) :
1004                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1005                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1006                 (*(configuration_table[s->level].func))(s, flush);
1007
1008        if (bstate == finish_started || bstate == finish_done) {
1009            s->status = FINISH_STATE;
1010        }
1011        if (bstate == need_more || bstate == finish_started) {
1012            if (strm->avail_out == 0) {
1013                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1014            }
1015            return Z_OK;
1016            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1017             * of deflate should use the same flush parameter to make sure
1018             * that the flush is complete. So we don't have to output an
1019             * empty block here, this will be done at next call. This also
1020             * ensures that for a very small output buffer, we emit at most
1021             * one empty block.
1022             */
1023        }
1024        if (bstate == block_done) {
1025            if (flush == Z_PARTIAL_FLUSH) {
1026                _tr_align(s);
1027            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1028                _tr_stored_block(s, (char*)0, 0L, 0);
1029                /* For a full flush, this empty block will be recognized
1030                 * as a special marker by inflate_sync().
1031                 */
1032                if (flush == Z_FULL_FLUSH) {
1033                    CLEAR_HASH(s);             /* forget history */
1034                    if (s->lookahead == 0) {
1035                        s->strstart = 0;
1036                        s->block_start = 0L;
1037                        s->insert = 0;
1038                    }
1039                }
1040            }
1041            flush_pending(strm);
1042            if (strm->avail_out == 0) {
1043              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1044              return Z_OK;
1045            }
1046        }
1047    }
1048
1049    if (flush != Z_FINISH) return Z_OK;
1050    if (s->wrap <= 0) return Z_STREAM_END;
1051
1052    /* Write the trailer */
1053#ifdef GZIP
1054    if (s->wrap == 2) {
1055        put_byte(s, (Byte)(strm->adler & 0xff));
1056        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1057        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1058        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1059        put_byte(s, (Byte)(strm->total_in & 0xff));
1060        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1061        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1062        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1063    }
1064    else
1065#endif
1066    {
1067        putShortMSB(s, (uInt)(strm->adler >> 16));
1068        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1069    }
1070    flush_pending(strm);
1071    /* If avail_out is zero, the application will call deflate again
1072     * to flush the rest.
1073     */
1074    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1075    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1076}
1077
1078/* ========================================================================= */
1079int ZEXPORT deflateEnd (strm)
1080    z_streamp strm;
1081{
1082    int status;
1083
1084    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1085
1086    status = strm->state->status;
1087
1088    /* Deallocate in reverse order of allocations: */
1089    TRY_FREE(strm, strm->state->pending_buf);
1090    TRY_FREE(strm, strm->state->head);
1091    TRY_FREE(strm, strm->state->prev);
1092    TRY_FREE(strm, strm->state->window);
1093
1094    ZFREE(strm, strm->state);
1095    strm->state = Z_NULL;
1096
1097    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1098}
1099
1100/* =========================================================================
1101 * Copy the source state to the destination state.
1102 * To simplify the source, this is not supported for 16-bit MSDOS (which
1103 * doesn't have enough memory anyway to duplicate compression states).
1104 */
1105int ZEXPORT deflateCopy (dest, source)
1106    z_streamp dest;
1107    z_streamp source;
1108{
1109#ifdef MAXSEG_64K
1110    return Z_STREAM_ERROR;
1111#else
1112    deflate_state *ds;
1113    deflate_state *ss;
1114    ushf *overlay;
1115
1116
1117    if (deflateStateCheck(source) || dest == Z_NULL) {
1118        return Z_STREAM_ERROR;
1119    }
1120
1121    ss = source->state;
1122
1123    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1124
1125    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1126    if (ds == Z_NULL) return Z_MEM_ERROR;
1127    dest->state = (struct internal_state FAR *) ds;
1128    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1129    ds->strm = dest;
1130
1131    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1132    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1133    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1134    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1135    ds->pending_buf = (uchf *) overlay;
1136
1137    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1138        ds->pending_buf == Z_NULL) {
1139        deflateEnd (dest);
1140        return Z_MEM_ERROR;
1141    }
1142    /* following zmemcpy do not work for 16-bit MSDOS */
1143    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1144    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1145    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1146    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1147
1148    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1149    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1150    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1151
1152    ds->l_desc.dyn_tree = ds->dyn_ltree;
1153    ds->d_desc.dyn_tree = ds->dyn_dtree;
1154    ds->bl_desc.dyn_tree = ds->bl_tree;
1155
1156    return Z_OK;
1157#endif /* MAXSEG_64K */
1158}
1159
1160/* ===========================================================================
1161 * Read a new buffer from the current input stream, update the adler32
1162 * and total number of bytes read.  All deflate() input goes through
1163 * this function so some applications may wish to modify it to avoid
1164 * allocating a large strm->next_in buffer and copying from it.
1165 * (See also flush_pending()).
1166 */
1167local unsigned read_buf(strm, buf, size)
1168    z_streamp strm;
1169    Bytef *buf;
1170    unsigned size;
1171{
1172    unsigned len = strm->avail_in;
1173
1174    if (len > size) len = size;
1175    if (len == 0) return 0;
1176
1177    strm->avail_in  -= len;
1178
1179    zmemcpy(buf, strm->next_in, len);
1180    if (strm->state->wrap == 1) {
1181        strm->adler = adler32(strm->adler, buf, len);
1182    }
1183#ifdef GZIP
1184    else if (strm->state->wrap == 2) {
1185        strm->adler = crc32(strm->adler, buf, len);
1186    }
1187#endif
1188    strm->next_in  += len;
1189    strm->total_in += len;
1190
1191    return len;
1192}
1193
1194/* ===========================================================================
1195 * Initialize the "longest match" routines for a new zlib stream
1196 */
1197local void lm_init (s)
1198    deflate_state *s;
1199{
1200    s->window_size = (ulg)2L*s->w_size;
1201
1202    CLEAR_HASH(s);
1203
1204    /* Set the default configuration parameters:
1205     */
1206    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1207    s->good_match       = configuration_table[s->level].good_length;
1208    s->nice_match       = configuration_table[s->level].nice_length;
1209    s->max_chain_length = configuration_table[s->level].max_chain;
1210
1211    s->strstart = 0;
1212    s->block_start = 0L;
1213    s->lookahead = 0;
1214    s->insert = 0;
1215    s->match_length = s->prev_length = MIN_MATCH-1;
1216    s->match_available = 0;
1217    s->ins_h = 0;
1218#ifndef FASTEST
1219#ifdef ASMV
1220    match_init(); /* initialize the asm code */
1221#endif
1222#endif
1223}
1224
1225#ifndef FASTEST
1226/* ===========================================================================
1227 * Set match_start to the longest match starting at the given string and
1228 * return its length. Matches shorter or equal to prev_length are discarded,
1229 * in which case the result is equal to prev_length and match_start is
1230 * garbage.
1231 * IN assertions: cur_match is the head of the hash chain for the current
1232 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1233 * OUT assertion: the match length is not greater than s->lookahead.
1234 */
1235#ifndef ASMV
1236/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1237 * match.S. The code will be functionally equivalent.
1238 */
1239local uInt longest_match(s, cur_match)
1240    deflate_state *s;
1241    IPos cur_match;                             /* current match */
1242{
1243    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1244    register Bytef *scan = s->window + s->strstart; /* current string */
1245    register Bytef *match;                      /* matched string */
1246    register int len;                           /* length of current match */
1247    int best_len = (int)s->prev_length;         /* best match length so far */
1248    int nice_match = s->nice_match;             /* stop if match long enough */
1249    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1250        s->strstart - (IPos)MAX_DIST(s) : NIL;
1251    /* Stop when cur_match becomes <= limit. To simplify the code,
1252     * we prevent matches with the string of window index 0.
1253     */
1254    Posf *prev = s->prev;
1255    uInt wmask = s->w_mask;
1256
1257#ifdef UNALIGNED_OK
1258    /* Compare two bytes at a time. Note: this is not always beneficial.
1259     * Try with and without -DUNALIGNED_OK to check.
1260     */
1261    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1262    register ush scan_start = *(ushf*)scan;
1263    register ush scan_end   = *(ushf*)(scan+best_len-1);
1264#else
1265    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1266    register Byte scan_end1  = scan[best_len-1];
1267    register Byte scan_end   = scan[best_len];
1268#endif
1269
1270    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1271     * It is easy to get rid of this optimization if necessary.
1272     */
1273    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1274
1275    /* Do not waste too much time if we already have a good match: */
1276    if (s->prev_length >= s->good_match) {
1277        chain_length >>= 2;
1278    }
1279    /* Do not look for matches beyond the end of the input. This is necessary
1280     * to make deflate deterministic.
1281     */
1282    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1283
1284    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1285
1286    do {
1287        Assert(cur_match < s->strstart, "no future");
1288        match = s->window + cur_match;
1289
1290        /* Skip to next match if the match length cannot increase
1291         * or if the match length is less than 2.  Note that the checks below
1292         * for insufficient lookahead only occur occasionally for performance
1293         * reasons.  Therefore uninitialized memory will be accessed, and
1294         * conditional jumps will be made that depend on those values.
1295         * However the length of the match is limited to the lookahead, so
1296         * the output of deflate is not affected by the uninitialized values.
1297         */
1298#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1299        /* This code assumes sizeof(unsigned short) == 2. Do not use
1300         * UNALIGNED_OK if your compiler uses a different size.
1301         */
1302        if (*(ushf*)(match+best_len-1) != scan_end ||
1303            *(ushf*)match != scan_start) continue;
1304
1305        /* It is not necessary to compare scan[2] and match[2] since they are
1306         * always equal when the other bytes match, given that the hash keys
1307         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1308         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1309         * lookahead only every 4th comparison; the 128th check will be made
1310         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1311         * necessary to put more guard bytes at the end of the window, or
1312         * to check more often for insufficient lookahead.
1313         */
1314        Assert(scan[2] == match[2], "scan[2]?");
1315        scan++, match++;
1316        do {
1317        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1319                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1320                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1321                 scan < strend);
1322        /* The funny "do {}" generates better code on most compilers */
1323
1324        /* Here, scan <= window+strstart+257 */
1325        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1326        if (*scan == *match) scan++;
1327
1328        len = (MAX_MATCH - 1) - (int)(strend-scan);
1329        scan = strend - (MAX_MATCH-1);
1330
1331#else /* UNALIGNED_OK */
1332
1333        if (match[best_len]   != scan_end  ||
1334            match[best_len-1] != scan_end1 ||
1335            *match            != *scan     ||
1336            *++match          != scan[1])      continue;
1337
1338        /* The check at best_len-1 can be removed because it will be made
1339         * again later. (This heuristic is not always a win.)
1340         * It is not necessary to compare scan[2] and match[2] since they
1341         * are always equal when the other bytes match, given that
1342         * the hash keys are equal and that HASH_BITS >= 8.
1343         */
1344        scan += 2, match++;
1345        Assert(*scan == *match, "match[2]?");
1346
1347        /* We check for insufficient lookahead only every 8th comparison;
1348         * the 256th check will be made at strstart+258.
1349         */
1350        do {
1351        } while (*++scan == *++match && *++scan == *++match &&
1352                 *++scan == *++match && *++scan == *++match &&
1353                 *++scan == *++match && *++scan == *++match &&
1354                 *++scan == *++match && *++scan == *++match &&
1355                 scan < strend);
1356
1357        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1358
1359        len = MAX_MATCH - (int)(strend - scan);
1360        scan = strend - MAX_MATCH;
1361
1362#endif /* UNALIGNED_OK */
1363
1364        if (len > best_len) {
1365            s->match_start = cur_match;
1366            best_len = len;
1367            if (len >= nice_match) break;
1368#ifdef UNALIGNED_OK
1369            scan_end = *(ushf*)(scan+best_len-1);
1370#else
1371            scan_end1  = scan[best_len-1];
1372            scan_end   = scan[best_len];
1373#endif
1374        }
1375    } while ((cur_match = prev[cur_match & wmask]) > limit
1376             && --chain_length != 0);
1377
1378    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1379    return s->lookahead;
1380}
1381#endif /* ASMV */
1382
1383#else /* FASTEST */
1384
1385/* ---------------------------------------------------------------------------
1386 * Optimized version for FASTEST only
1387 */
1388local uInt longest_match(s, cur_match)
1389    deflate_state *s;
1390    IPos cur_match;                             /* current match */
1391{
1392    register Bytef *scan = s->window + s->strstart; /* current string */
1393    register Bytef *match;                       /* matched string */
1394    register int len;                           /* length of current match */
1395    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1396
1397    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1398     * It is easy to get rid of this optimization if necessary.
1399     */
1400    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1401
1402    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1403
1404    Assert(cur_match < s->strstart, "no future");
1405
1406    match = s->window + cur_match;
1407
1408    /* Return failure if the match length is less than 2:
1409     */
1410    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1411
1412    /* The check at best_len-1 can be removed because it will be made
1413     * again later. (This heuristic is not always a win.)
1414     * It is not necessary to compare scan[2] and match[2] since they
1415     * are always equal when the other bytes match, given that
1416     * the hash keys are equal and that HASH_BITS >= 8.
1417     */
1418    scan += 2, match += 2;
1419    Assert(*scan == *match, "match[2]?");
1420
1421    /* We check for insufficient lookahead only every 8th comparison;
1422     * the 256th check will be made at strstart+258.
1423     */
1424    do {
1425    } while (*++scan == *++match && *++scan == *++match &&
1426             *++scan == *++match && *++scan == *++match &&
1427             *++scan == *++match && *++scan == *++match &&
1428             *++scan == *++match && *++scan == *++match &&
1429             scan < strend);
1430
1431    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1432
1433    len = MAX_MATCH - (int)(strend - scan);
1434
1435    if (len < MIN_MATCH) return MIN_MATCH - 1;
1436
1437    s->match_start = cur_match;
1438    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1439}
1440
1441#endif /* FASTEST */
1442
1443#ifdef ZLIB_DEBUG
1444
1445#define EQUAL 0
1446/* result of memcmp for equal strings */
1447
1448/* ===========================================================================
1449 * Check that the match at match_start is indeed a match.
1450 */
1451local void check_match(s, start, match, length)
1452    deflate_state *s;
1453    IPos start, match;
1454    int length;
1455{
1456    /* check that the match is indeed a match */
1457    if (zmemcmp(s->window + match,
1458                s->window + start, length) != EQUAL) {
1459        fprintf(stderr, " start %u, match %u, length %d\n",
1460                start, match, length);
1461        do {
1462            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1463        } while (--length != 0);
1464        z_error("invalid match");
1465    }
1466    if (z_verbose > 1) {
1467        fprintf(stderr,"\\[%d,%d]", start-match, length);
1468        do { putc(s->window[start++], stderr); } while (--length != 0);
1469    }
1470}
1471#else
1472#  define check_match(s, start, match, length)
1473#endif /* ZLIB_DEBUG */
1474
1475/* ===========================================================================
1476 * Fill the window when the lookahead becomes insufficient.
1477 * Updates strstart and lookahead.
1478 *
1479 * IN assertion: lookahead < MIN_LOOKAHEAD
1480 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1481 *    At least one byte has been read, or avail_in == 0; reads are
1482 *    performed for at least two bytes (required for the zip translate_eol
1483 *    option -- not supported here).
1484 */
1485local void fill_window(s)
1486    deflate_state *s;
1487{
1488    unsigned n;
1489    unsigned more;    /* Amount of free space at the end of the window. */
1490    uInt wsize = s->w_size;
1491
1492    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1493
1494    do {
1495        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1496
1497        /* Deal with !@#$% 64K limit: */
1498        if (sizeof(int) <= 2) {
1499            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1500                more = wsize;
1501
1502            } else if (more == (unsigned)(-1)) {
1503                /* Very unlikely, but possible on 16 bit machine if
1504                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1505                 */
1506                more--;
1507            }
1508        }
1509
1510        /* If the window is almost full and there is insufficient lookahead,
1511         * move the upper half to the lower one to make room in the upper half.
1512         */
1513        if (s->strstart >= wsize+MAX_DIST(s)) {
1514
1515            zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1516            s->match_start -= wsize;
1517            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1518            s->block_start -= (long) wsize;
1519            slide_hash(s);
1520            more += wsize;
1521        }
1522        if (s->strm->avail_in == 0) break;
1523
1524        /* If there was no sliding:
1525         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1526         *    more == window_size - lookahead - strstart
1527         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1528         * => more >= window_size - 2*WSIZE + 2
1529         * In the BIG_MEM or MMAP case (not yet supported),
1530         *   window_size == input_size + MIN_LOOKAHEAD  &&
1531         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1532         * Otherwise, window_size == 2*WSIZE so more >= 2.
1533         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1534         */
1535        Assert(more >= 2, "more < 2");
1536
1537        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1538        s->lookahead += n;
1539
1540        /* Initialize the hash value now that we have some input: */
1541        if (s->lookahead + s->insert >= MIN_MATCH) {
1542            uInt str = s->strstart - s->insert;
1543            s->ins_h = s->window[str];
1544            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1545#if MIN_MATCH != 3
1546            Call UPDATE_HASH() MIN_MATCH-3 more times
1547#endif
1548            while (s->insert) {
1549                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1550#ifndef FASTEST
1551                s->prev[str & s->w_mask] = s->head[s->ins_h];
1552#endif
1553                s->head[s->ins_h] = (Pos)str;
1554                str++;
1555                s->insert--;
1556                if (s->lookahead + s->insert < MIN_MATCH)
1557                    break;
1558            }
1559        }
1560        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1561         * but this is not important since only literal bytes will be emitted.
1562         */
1563
1564    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1565
1566    /* If the WIN_INIT bytes after the end of the current data have never been
1567     * written, then zero those bytes in order to avoid memory check reports of
1568     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1569     * the longest match routines.  Update the high water mark for the next
1570     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1571     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1572     */
1573    if (s->high_water < s->window_size) {
1574        ulg curr = s->strstart + (ulg)(s->lookahead);
1575        ulg init;
1576
1577        if (s->high_water < curr) {
1578            /* Previous high water mark below current data -- zero WIN_INIT
1579             * bytes or up to end of window, whichever is less.
1580             */
1581            init = s->window_size - curr;
1582            if (init > WIN_INIT)
1583                init = WIN_INIT;
1584            zmemzero(s->window + curr, (unsigned)init);
1585            s->high_water = curr + init;
1586        }
1587        else if (s->high_water < (ulg)curr + WIN_INIT) {
1588            /* High water mark at or above current data, but below current data
1589             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1590             * to end of window, whichever is less.
1591             */
1592            init = (ulg)curr + WIN_INIT - s->high_water;
1593            if (init > s->window_size - s->high_water)
1594                init = s->window_size - s->high_water;
1595            zmemzero(s->window + s->high_water, (unsigned)init);
1596            s->high_water += init;
1597        }
1598    }
1599
1600    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1601           "not enough room for search");
1602}
1603
1604/* ===========================================================================
1605 * Flush the current block, with given end-of-file flag.
1606 * IN assertion: strstart is set to the end of the current match.
1607 */
1608#define FLUSH_BLOCK_ONLY(s, last) { \
1609   _tr_flush_block(s, (s->block_start >= 0L ? \
1610                   (charf *)&s->window[(unsigned)s->block_start] : \
1611                   (charf *)Z_NULL), \
1612                (ulg)((long)s->strstart - s->block_start), \
1613                (last)); \
1614   s->block_start = s->strstart; \
1615   flush_pending(s->strm); \
1616   Tracev((stderr,"[FLUSH]")); \
1617}
1618
1619/* Same but force premature exit if necessary. */
1620#define FLUSH_BLOCK(s, last) { \
1621   FLUSH_BLOCK_ONLY(s, last); \
1622   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1623}
1624
1625/* Maximum stored block length in deflate format (not including header). */
1626#define MAX_STORED 65535
1627
1628/* Minimum of a and b. */
1629#define MIN(a, b) ((a) > (b) ? (b) : (a))
1630
1631/* ===========================================================================
1632 * Copy without compression as much as possible from the input stream, return
1633 * the current block state.
1634 *
1635 * In case deflateParams() is used to later switch to a non-zero compression
1636 * level, s->matches (otherwise unused when storing) keeps track of the number
1637 * of hash table slides to perform. If s->matches is 1, then one hash table
1638 * slide will be done when switching. If s->matches is 2, the maximum value
1639 * allowed here, then the hash table will be cleared, since two or more slides
1640 * is the same as a clear.
1641 *
1642 * deflate_stored() is written to minimize the number of times an input byte is
1643 * copied. It is most efficient with large input and output buffers, which
1644 * maximizes the opportunites to have a single copy from next_in to next_out.
1645 */
1646local block_state deflate_stored(s, flush)
1647    deflate_state *s;
1648    int flush;
1649{
1650    /* Smallest worthy block size when not flushing or finishing. By default
1651     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1652     * large input and output buffers, the stored block size will be larger.
1653     */
1654    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1655
1656    /* Copy as many min_block or larger stored blocks directly to next_out as
1657     * possible. If flushing, copy the remaining available input to next_out as
1658     * stored blocks, if there is enough space.
1659     */
1660    unsigned len, left, have, last = 0;
1661    unsigned used = s->strm->avail_in;
1662    do {
1663        /* Set len to the maximum size block that we can copy directly with the
1664         * available input data and output space. Set left to how much of that
1665         * would be copied from what's left in the window.
1666         */
1667        len = MAX_STORED;       /* maximum deflate stored block length */
1668        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1669        if (s->strm->avail_out < have)          /* need room for header */
1670            break;
1671            /* maximum stored block length that will fit in avail_out: */
1672        have = s->strm->avail_out - have;
1673        left = s->strstart - s->block_start;    /* bytes left in window */
1674        if (len > (ulg)left + s->strm->avail_in)
1675            len = left + s->strm->avail_in;     /* limit len to the input */
1676        if (len > have)
1677            len = have;                         /* limit len to the output */
1678
1679        /* If the stored block would be less than min_block in length, or if
1680         * unable to copy all of the available input when flushing, then try
1681         * copying to the window and the pending buffer instead. Also don't
1682         * write an empty block when flushing -- deflate() does that.
1683         */
1684        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1685                                flush == Z_NO_FLUSH ||
1686                                len != left + s->strm->avail_in))
1687            break;
1688
1689        /* Make a dummy stored block in pending to get the header bytes,
1690         * including any pending bits. This also updates the debugging counts.
1691         */
1692        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1693        _tr_stored_block(s, (char *)0, 0L, last);
1694
1695        /* Replace the lengths in the dummy stored block with len. */
1696        s->pending_buf[s->pending - 4] = len;
1697        s->pending_buf[s->pending - 3] = len >> 8;
1698        s->pending_buf[s->pending - 2] = ~len;
1699        s->pending_buf[s->pending - 1] = ~len >> 8;
1700
1701        /* Write the stored block header bytes. */
1702        flush_pending(s->strm);
1703
1704#ifdef ZLIB_DEBUG
1705        /* Update debugging counts for the data about to be copied. */
1706        s->compressed_len += len << 3;
1707        s->bits_sent += len << 3;
1708#endif
1709
1710        /* Copy uncompressed bytes from the window to next_out. */
1711        if (left) {
1712            if (left > len)
1713                left = len;
1714            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1715            s->strm->next_out += left;
1716            s->strm->avail_out -= left;
1717            s->strm->total_out += left;
1718            s->block_start += left;
1719            len -= left;
1720        }
1721
1722        /* Copy uncompressed bytes directly from next_in to next_out, updating
1723         * the check value.
1724         */
1725        if (len) {
1726            read_buf(s->strm, s->strm->next_out, len);
1727            s->strm->next_out += len;
1728            s->strm->avail_out -= len;
1729            s->strm->total_out += len;
1730        }
1731    } while (last == 0);
1732
1733    /* Update the sliding window with the last s->w_size bytes of the copied
1734     * data, or append all of the copied data to the existing window if less
1735     * than s->w_size bytes were copied. Also update the number of bytes to
1736     * insert in the hash tables, in the event that deflateParams() switches to
1737     * a non-zero compression level.
1738     */
1739    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1740    if (used) {
1741        /* If any input was used, then no unused input remains in the window,
1742         * therefore s->block_start == s->strstart.
1743         */
1744        if (used >= s->w_size) {    /* supplant the previous history */
1745            s->matches = 2;         /* clear hash */
1746            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1747            s->strstart = s->w_size;
1748        }
1749        else {
1750            if (s->window_size - s->strstart <= used) {
1751                /* Slide the window down. */
1752                s->strstart -= s->w_size;
1753                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1754                if (s->matches < 2)
1755                    s->matches++;   /* add a pending slide_hash() */
1756            }
1757            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1758            s->strstart += used;
1759        }
1760        s->block_start = s->strstart;
1761        s->insert += MIN(used, s->w_size - s->insert);
1762    }
1763    if (s->high_water < s->strstart)
1764        s->high_water = s->strstart;
1765
1766    /* If the last block was written to next_out, then done. */
1767    if (last)
1768        return finish_done;
1769
1770    /* If flushing and all input has been consumed, then done. */
1771    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1772        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1773        return block_done;
1774
1775    /* Fill the window with any remaining input. */
1776    have = s->window_size - s->strstart - 1;
1777    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1778        /* Slide the window down. */
1779        s->block_start -= s->w_size;
1780        s->strstart -= s->w_size;
1781        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1782        if (s->matches < 2)
1783            s->matches++;           /* add a pending slide_hash() */
1784        have += s->w_size;          /* more space now */
1785    }
1786    if (have > s->strm->avail_in)
1787        have = s->strm->avail_in;
1788    if (have) {
1789        read_buf(s->strm, s->window + s->strstart, have);
1790        s->strstart += have;
1791    }
1792    if (s->high_water < s->strstart)
1793        s->high_water = s->strstart;
1794
1795    /* There was not enough avail_out to write a complete worthy or flushed
1796     * stored block to next_out. Write a stored block to pending instead, if we
1797     * have enough input for a worthy block, or if flushing and there is enough
1798     * room for the remaining input as a stored block in the pending buffer.
1799     */
1800    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1801        /* maximum stored block length that will fit in pending: */
1802    have = MIN(s->pending_buf_size - have, MAX_STORED);
1803    min_block = MIN(have, s->w_size);
1804    left = s->strstart - s->block_start;
1805    if (left >= min_block ||
1806        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1807         s->strm->avail_in == 0 && left <= have)) {
1808        len = MIN(left, have);
1809        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1810               len == left ? 1 : 0;
1811        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1812        s->block_start += len;
1813        flush_pending(s->strm);
1814    }
1815
1816    /* We've done all we can with the available input and output. */
1817    return last ? finish_started : need_more;
1818}
1819
1820/* ===========================================================================
1821 * Compress as much as possible from the input stream, return the current
1822 * block state.
1823 * This function does not perform lazy evaluation of matches and inserts
1824 * new strings in the dictionary only for unmatched strings or for short
1825 * matches. It is used only for the fast compression options.
1826 */
1827local block_state deflate_fast(s, flush)
1828    deflate_state *s;
1829    int flush;
1830{
1831    IPos hash_head;       /* head of the hash chain */
1832    int bflush;           /* set if current block must be flushed */
1833
1834    for (;;) {
1835        /* Make sure that we always have enough lookahead, except
1836         * at the end of the input file. We need MAX_MATCH bytes
1837         * for the next match, plus MIN_MATCH bytes to insert the
1838         * string following the next match.
1839         */
1840        if (s->lookahead < MIN_LOOKAHEAD) {
1841            fill_window(s);
1842            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1843                return need_more;
1844            }
1845            if (s->lookahead == 0) break; /* flush the current block */
1846        }
1847
1848        /* Insert the string window[strstart .. strstart+2] in the
1849         * dictionary, and set hash_head to the head of the hash chain:
1850         */
1851        hash_head = NIL;
1852        if (s->lookahead >= MIN_MATCH) {
1853            INSERT_STRING(s, s->strstart, hash_head);
1854        }
1855
1856        /* Find the longest match, discarding those <= prev_length.
1857         * At this point we have always match_length < MIN_MATCH
1858         */
1859        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1860            /* To simplify the code, we prevent matches with the string
1861             * of window index 0 (in particular we have to avoid a match
1862             * of the string with itself at the start of the input file).
1863             */
1864            s->match_length = longest_match (s, hash_head);
1865            /* longest_match() sets match_start */
1866        }
1867        if (s->match_length >= MIN_MATCH) {
1868            check_match(s, s->strstart, s->match_start, s->match_length);
1869
1870            _tr_tally_dist(s, s->strstart - s->match_start,
1871                           s->match_length - MIN_MATCH, bflush);
1872
1873            s->lookahead -= s->match_length;
1874
1875            /* Insert new strings in the hash table only if the match length
1876             * is not too large. This saves time but degrades compression.
1877             */
1878#ifndef FASTEST
1879            if (s->match_length <= s->max_insert_length &&
1880                s->lookahead >= MIN_MATCH) {
1881                s->match_length--; /* string at strstart already in table */
1882                do {
1883                    s->strstart++;
1884                    INSERT_STRING(s, s->strstart, hash_head);
1885                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1886                     * always MIN_MATCH bytes ahead.
1887                     */
1888                } while (--s->match_length != 0);
1889                s->strstart++;
1890            } else
1891#endif
1892            {
1893                s->strstart += s->match_length;
1894                s->match_length = 0;
1895                s->ins_h = s->window[s->strstart];
1896                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1897#if MIN_MATCH != 3
1898                Call UPDATE_HASH() MIN_MATCH-3 more times
1899#endif
1900                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1901                 * matter since it will be recomputed at next deflate call.
1902                 */
1903            }
1904        } else {
1905            /* No match, output a literal byte */
1906            Tracevv((stderr,"%c", s->window[s->strstart]));
1907            _tr_tally_lit (s, s->window[s->strstart], bflush);
1908            s->lookahead--;
1909            s->strstart++;
1910        }
1911        if (bflush) FLUSH_BLOCK(s, 0);
1912    }
1913    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1914    if (flush == Z_FINISH) {
1915        FLUSH_BLOCK(s, 1);
1916        return finish_done;
1917    }
1918    if (s->last_lit)
1919        FLUSH_BLOCK(s, 0);
1920    return block_done;
1921}
1922
1923#ifndef FASTEST
1924/* ===========================================================================
1925 * Same as above, but achieves better compression. We use a lazy
1926 * evaluation for matches: a match is finally adopted only if there is
1927 * no better match at the next window position.
1928 */
1929local block_state deflate_slow(s, flush)
1930    deflate_state *s;
1931    int flush;
1932{
1933    IPos hash_head;          /* head of hash chain */
1934    int bflush;              /* set if current block must be flushed */
1935
1936    /* Process the input block. */
1937    for (;;) {
1938        /* Make sure that we always have enough lookahead, except
1939         * at the end of the input file. We need MAX_MATCH bytes
1940         * for the next match, plus MIN_MATCH bytes to insert the
1941         * string following the next match.
1942         */
1943        if (s->lookahead < MIN_LOOKAHEAD) {
1944            fill_window(s);
1945            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1946                return need_more;
1947            }
1948            if (s->lookahead == 0) break; /* flush the current block */
1949        }
1950
1951        /* Insert the string window[strstart .. strstart+2] in the
1952         * dictionary, and set hash_head to the head of the hash chain:
1953         */
1954        hash_head = NIL;
1955        if (s->lookahead >= MIN_MATCH) {
1956            INSERT_STRING(s, s->strstart, hash_head);
1957        }
1958
1959        /* Find the longest match, discarding those <= prev_length.
1960         */
1961        s->prev_length = s->match_length, s->prev_match = s->match_start;
1962        s->match_length = MIN_MATCH-1;
1963
1964        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1965            s->strstart - hash_head <= MAX_DIST(s)) {
1966            /* To simplify the code, we prevent matches with the string
1967             * of window index 0 (in particular we have to avoid a match
1968             * of the string with itself at the start of the input file).
1969             */
1970            s->match_length = longest_match (s, hash_head);
1971            /* longest_match() sets match_start */
1972
1973            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1974#if TOO_FAR <= 32767
1975                || (s->match_length == MIN_MATCH &&
1976                    s->strstart - s->match_start > TOO_FAR)
1977#endif
1978                )) {
1979
1980                /* If prev_match is also MIN_MATCH, match_start is garbage
1981                 * but we will ignore the current match anyway.
1982                 */
1983                s->match_length = MIN_MATCH-1;
1984            }
1985        }
1986        /* If there was a match at the previous step and the current
1987         * match is not better, output the previous match:
1988         */
1989        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1990            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1991            /* Do not insert strings in hash table beyond this. */
1992
1993            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1994
1995            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1996                           s->prev_length - MIN_MATCH, bflush);
1997
1998            /* Insert in hash table all strings up to the end of the match.
1999             * strstart-1 and strstart are already inserted. If there is not
2000             * enough lookahead, the last two strings are not inserted in
2001             * the hash table.
2002             */
2003            s->lookahead -= s->prev_length-1;
2004            s->prev_length -= 2;
2005            do {
2006                if (++s->strstart <= max_insert) {
2007                    INSERT_STRING(s, s->strstart, hash_head);
2008                }
2009            } while (--s->prev_length != 0);
2010            s->match_available = 0;
2011            s->match_length = MIN_MATCH-1;
2012            s->strstart++;
2013
2014            if (bflush) FLUSH_BLOCK(s, 0);
2015
2016        } else if (s->match_available) {
2017            /* If there was no match at the previous position, output a
2018             * single literal. If there was a match but the current match
2019             * is longer, truncate the previous match to a single literal.
2020             */
2021            Tracevv((stderr,"%c", s->window[s->strstart-1]));
2022            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2023            if (bflush) {
2024                FLUSH_BLOCK_ONLY(s, 0);
2025            }
2026            s->strstart++;
2027            s->lookahead--;
2028            if (s->strm->avail_out == 0) return need_more;
2029        } else {
2030            /* There is no previous match to compare with, wait for
2031             * the next step to decide.
2032             */
2033            s->match_available = 1;
2034            s->strstart++;
2035            s->lookahead--;
2036        }
2037    }
2038    Assert (flush != Z_NO_FLUSH, "no flush?");
2039    if (s->match_available) {
2040        Tracevv((stderr,"%c", s->window[s->strstart-1]));
2041        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2042        s->match_available = 0;
2043    }
2044    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2045    if (flush == Z_FINISH) {
2046        FLUSH_BLOCK(s, 1);
2047        return finish_done;
2048    }
2049    if (s->last_lit)
2050        FLUSH_BLOCK(s, 0);
2051    return block_done;
2052}
2053#endif /* FASTEST */
2054
2055/* ===========================================================================
2056 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2057 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2058 * deflate switches away from Z_RLE.)
2059 */
2060local block_state deflate_rle(s, flush)
2061    deflate_state *s;
2062    int flush;
2063{
2064    int bflush;             /* set if current block must be flushed */
2065    uInt prev;              /* byte at distance one to match */
2066    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2067
2068    for (;;) {
2069        /* Make sure that we always have enough lookahead, except
2070         * at the end of the input file. We need MAX_MATCH bytes
2071         * for the longest run, plus one for the unrolled loop.
2072         */
2073        if (s->lookahead <= MAX_MATCH) {
2074            fill_window(s);
2075            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2076                return need_more;
2077            }
2078            if (s->lookahead == 0) break; /* flush the current block */
2079        }
2080
2081        /* See how many times the previous byte repeats */
2082        s->match_length = 0;
2083        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2084            scan = s->window + s->strstart - 1;
2085            prev = *scan;
2086            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2087                strend = s->window + s->strstart + MAX_MATCH;
2088                do {
2089                } while (prev == *++scan && prev == *++scan &&
2090                         prev == *++scan && prev == *++scan &&
2091                         prev == *++scan && prev == *++scan &&
2092                         prev == *++scan && prev == *++scan &&
2093                         scan < strend);
2094                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2095                if (s->match_length > s->lookahead)
2096                    s->match_length = s->lookahead;
2097            }
2098            Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2099        }
2100
2101        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2102        if (s->match_length >= MIN_MATCH) {
2103            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2104
2105            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2106
2107            s->lookahead -= s->match_length;
2108            s->strstart += s->match_length;
2109            s->match_length = 0;
2110        } else {
2111            /* No match, output a literal byte */
2112            Tracevv((stderr,"%c", s->window[s->strstart]));
2113            _tr_tally_lit (s, s->window[s->strstart], bflush);
2114            s->lookahead--;
2115            s->strstart++;
2116        }
2117        if (bflush) FLUSH_BLOCK(s, 0);
2118    }
2119    s->insert = 0;
2120    if (flush == Z_FINISH) {
2121        FLUSH_BLOCK(s, 1);
2122        return finish_done;
2123    }
2124    if (s->last_lit)
2125        FLUSH_BLOCK(s, 0);
2126    return block_done;
2127}
2128
2129/* ===========================================================================
2130 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2131 * (It will be regenerated if this run of deflate switches away from Huffman.)
2132 */
2133local block_state deflate_huff(s, flush)
2134    deflate_state *s;
2135    int flush;
2136{
2137    int bflush;             /* set if current block must be flushed */
2138
2139    for (;;) {
2140        /* Make sure that we have a literal to write. */
2141        if (s->lookahead == 0) {
2142            fill_window(s);
2143            if (s->lookahead == 0) {
2144                if (flush == Z_NO_FLUSH)
2145                    return need_more;
2146                break;      /* flush the current block */
2147            }
2148        }
2149
2150        /* Output a literal byte */
2151        s->match_length = 0;
2152        Tracevv((stderr,"%c", s->window[s->strstart]));
2153        _tr_tally_lit (s, s->window[s->strstart], bflush);
2154        s->lookahead--;
2155        s->strstart++;
2156        if (bflush) FLUSH_BLOCK(s, 0);
2157    }
2158    s->insert = 0;
2159    if (flush == Z_FINISH) {
2160        FLUSH_BLOCK(s, 1);
2161        return finish_done;
2162    }
2163    if (s->last_lit)
2164        FLUSH_BLOCK(s, 0);
2165    return block_done;
2166}
2167