1/*
2 * Copyright (c) 2013 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14 * PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "opt_ah.h"
18
19#include "ah.h"
20#include "ah_internal.h"
21#include "ah_devid.h"
22#ifdef AH_DEBUG
23#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24#endif
25
26#include "ar9300/ar9300.h"
27#include "ar9300/ar9300reg.h"
28#include "ar9300/ar9300phy.h"
29#include "ar9300/ar9300desc.h"
30
31static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
32
33void
34ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35{
36    struct ath_hal_9300 *ahp = AH9300(ah);
37    *hangs = 0;
38
39    if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40        *hangs |= HAL_RIFS_BB_HANG_WAR;
41    }
42    if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43        *hangs |= HAL_DFS_BB_HANG_WAR;
44    }
45    if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46        == HAL_OK)
47    {
48        *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49    }
50    if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51        *hangs |= HAL_MAC_HANG_WAR;
52    }
53    if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54        == HAL_OK)
55    {
56        *hangs |= HAL_PHYRESTART_CLR_WAR;
57    }
58
59    ahp->ah_hang_wars = *hangs;
60}
61
62/*
63 * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
64 * HT20, HT40, fast-clock, turbo mode, etc.
65 */
66static u_int
67ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
68{
69#if 0
70    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
71
72    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
73        return (ath_hal_mac_usec(ah, clks) / 2);
74    } else {
75        return (ath_hal_mac_usec(ah, clks));
76    }
77#endif
78    return (ath_hal_mac_usec(ah, clks));
79}
80
81u_int
82ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
83{
84#if 0
85    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
86
87    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
88        return (ath_hal_mac_clks(ah, usecs) * 2);
89    } else {
90        return (ath_hal_mac_clks(ah, usecs));
91    }
92#endif
93    return (ath_hal_mac_clks(ah, usecs));
94}
95
96void
97ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
98{
99    struct ath_hal_9300 *ahp = AH9300(ah);
100
101    OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
102}
103
104HAL_BOOL
105ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
106{
107    struct ath_hal_9300 *ahp = AH9300(ah);
108
109    OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
110    return AH_TRUE;
111}
112
113void
114ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
115{
116    struct ath_hal_9300 *ahp = AH9300(ah);
117
118    OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
119}
120
121HAL_BOOL
122ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
123{
124    struct ath_hal_9300 *ahp = AH9300(ah);
125
126    /* save it since it must be rewritten on reset */
127    OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
128
129    OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
130    OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
131    return AH_TRUE;
132}
133
134/*
135 * Attempt to change the cards operating regulatory domain to the given value
136 * Returns: A_EINVAL for an unsupported regulatory domain.
137 *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
138 */
139HAL_BOOL
140ar9300_set_regulatory_domain(struct ath_hal *ah,
141        u_int16_t reg_domain, HAL_STATUS *status)
142{
143    HAL_STATUS ecode;
144
145    if (AH_PRIVATE(ah)->ah_currentRD == 0) {
146        AH_PRIVATE(ah)->ah_currentRD = reg_domain;
147        return AH_TRUE;
148    }
149    ecode = HAL_EIO;
150
151#if 0
152bad:
153#endif
154    if (status) {
155        *status = ecode;
156    }
157    return AH_FALSE;
158}
159
160/*
161 * Return the wireless modes (a,b,g,t) supported by hardware.
162 *
163 * This value is what is actually supported by the hardware
164 * and is unaffected by regulatory/country code settings.
165 *
166 */
167u_int
168ar9300_get_wireless_modes(struct ath_hal *ah)
169{
170    return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
171}
172
173/*
174 * Set the interrupt and GPIO values so the ISR can disable RF
175 * on a switch signal.  Assumes GPIO port and interrupt polarity
176 * are set prior to call.
177 */
178void
179ar9300_enable_rf_kill(struct ath_hal *ah)
180{
181    /* TODO - can this really be above the hal on the GPIO interface for
182     * TODO - the client only?
183     */
184    struct ath_hal_9300    *ahp = AH9300(ah);
185
186    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
187    	/* Check RF kill GPIO before set/clear RFSILENT bits. */
188    	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
189            OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
190                           AR_RFSILENT_FORCE);
191            OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
192        }
193        else {
194            OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
195                           AR_RFSILENT_FORCE);
196            OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
197        }
198    }
199    else {
200        /* Connect rfsilent_bb_l to baseband */
201        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
202            AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
203
204        /* Set input mux for rfsilent_bb_l to GPIO #0 */
205        OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206            AR_GPIO_INPUT_MUX2_RFSILENT);
207        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
208            (ahp->ah_gpio_select & 0x0f) << 4);
209
210        /*
211         * Configure the desired GPIO port for input and
212         * enable baseband rf silence
213         */
214        ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
215        OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
216    }
217
218    /*
219     * If radio disable switch connection to GPIO bit x is enabled
220     * program GPIO interrupt.
221     * If rfkill bit on eeprom is 1, setupeeprommap routine has already
222     * verified that it is a later version of eeprom, it has a place for
223     * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
224     * connection is present.
225     */
226     /*
227      * RFKill uses polling not interrupt,
228      * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
229      */
230    if (ath_hal_hasrfkill_int(ah)) {
231        if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
232            /* switch already closed, set to interrupt upon open */
233            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
234        } else {
235            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
236        }
237    }
238}
239
240/*
241 * Change the LED blinking pattern to correspond to the connectivity
242 */
243void
244ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
245{
246    static const u_int32_t ledbits[8] = {
247        AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
248        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
249        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
250        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
251        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
252        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
253        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
254        AR_CFG_LED_ASSOC_NONE,
255    };
256
257    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
258}
259
260/*
261 * Sets the Power LED on the cardbus without affecting the Network LED.
262 */
263void
264ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
265{
266    u_int32_t    val;
267
268    val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
269    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
270}
271
272/*
273 * Sets the Network LED on the cardbus without affecting the Power LED.
274 */
275void
276ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
277{
278    u_int32_t    val;
279
280    val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
281    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
282}
283
284/*
285 * Change association related fields programmed into the hardware.
286 * Writing a valid BSSID to the hardware effectively enables the hardware
287 * to synchronize its TSF to the correct beacons and receive frames coming
288 * from that BSSID. It is called by the SME JOIN operation.
289 */
290void
291ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
292    u_int16_t assoc_id)
293{
294    struct ath_hal_9300 *ahp = AH9300(ah);
295
296    /* save bssid and assoc_id for restore on reset */
297    OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
298    ahp->ah_assoc_id = assoc_id;
299
300    OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
301    OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
302                                 ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
303}
304
305/*
306 * Get the current hardware tsf for stamlme
307 */
308u_int64_t
309ar9300_get_tsf64(struct ath_hal *ah)
310{
311    u_int64_t tsf;
312
313    /* XXX sync multi-word read? */
314    tsf = OS_REG_READ(ah, AR_TSF_U32);
315    tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
316    return tsf;
317}
318
319void
320ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
321{
322    OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
323    OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
324}
325
326/*
327 * Get the current hardware tsf for stamlme
328 */
329u_int32_t
330ar9300_get_tsf32(struct ath_hal *ah)
331{
332    return OS_REG_READ(ah, AR_TSF_L32);
333}
334
335u_int32_t
336ar9300_get_tsf2_32(struct ath_hal *ah)
337{
338    return OS_REG_READ(ah, AR_TSF2_L32);
339}
340
341/*
342 * Reset the current hardware tsf for stamlme.
343 */
344void
345ar9300_reset_tsf(struct ath_hal *ah)
346{
347    int count;
348
349    count = 0;
350    while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
351        count++;
352        if (count > 10) {
353            HALDEBUG(ah, HAL_DEBUG_RESET,
354                "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
355            break;
356        }
357        OS_DELAY(10);
358    }
359    OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
360}
361
362/*
363 * Set or clear hardware basic rate bit
364 * Set hardware basic rate set if basic rate is found
365 * and basic rate is equal or less than 2Mbps
366 */
367void
368ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
369{
370    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
371    u_int32_t reg;
372    u_int8_t xset;
373    int i;
374
375    if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
376        return;
377    }
378    xset = 0;
379    for (i = 0; i < rs->rs_count; i++) {
380        u_int8_t rset = rs->rs_rates[i];
381        /* Basic rate defined? */
382        if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
383            xset = rset;
384        }
385    }
386    /*
387     * Set the h/w bit to reflect whether or not the basic
388     * rate is found to be equal or less than 2Mbps.
389     */
390    reg = OS_REG_READ(ah, AR_STA_ID1);
391    if (xset && xset / 2 <= 2) {
392        OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
393    } else {
394        OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
395    }
396}
397
398/*
399 * Grab a semi-random value from hardware registers - may not
400 * change often
401 */
402u_int32_t
403ar9300_get_random_seed(struct ath_hal *ah)
404{
405    u_int32_t nf;
406
407    nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
408    if (nf & 0x100) {
409        nf = 0 - ((nf ^ 0x1ff) + 1);
410    }
411    return (OS_REG_READ(ah, AR_TSF_U32) ^
412        OS_REG_READ(ah, AR_TSF_L32) ^ nf);
413}
414
415/*
416 * Detect if our card is present
417 */
418HAL_BOOL
419ar9300_detect_card_present(struct ath_hal *ah)
420{
421    u_int16_t mac_version, mac_rev;
422    u_int32_t v;
423
424    /*
425     * Read the Silicon Revision register and compare that
426     * to what we read at attach time.  If the same, we say
427     * a card/device is present.
428     */
429    v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
430    if (v == 0xFF) {
431        /* new SREV format */
432        v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
433        /*
434         * Include 6-bit Chip Type (masked to 0) to differentiate
435         * from pre-Sowl versions
436         */
437        mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
438        mac_rev = MS(v, AR_SREV_REVISION2);
439    } else {
440        mac_version = MS(v, AR_SREV_VERSION);
441        mac_rev = v & AR_SREV_REVISION;
442    }
443    return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
444            AH_PRIVATE(ah)->ah_macRev == mac_rev);
445}
446
447/*
448 * Update MIB Counters
449 */
450void
451ar9300_update_mib_mac_stats(struct ath_hal *ah)
452{
453    struct ath_hal_9300 *ahp = AH9300(ah);
454    HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
455
456    stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
457    stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
458    stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
459    stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
460    stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
461}
462
463void
464ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
465{
466    struct ath_hal_9300 *ahp = AH9300(ah);
467    HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
468
469    stats->ackrcv_bad = istats->ackrcv_bad;
470    stats->rts_bad    = istats->rts_bad;
471    stats->fcs_bad    = istats->fcs_bad;
472    stats->rts_good   = istats->rts_good;
473    stats->beacons    = istats->beacons;
474}
475
476/*
477 * Detect if the HW supports spreading a CCK signal on channel 14
478 */
479HAL_BOOL
480ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
481{
482    return AH_TRUE;
483}
484
485/*
486 * Get the rssi of frame curently being received.
487 */
488u_int32_t
489ar9300_get_cur_rssi(struct ath_hal *ah)
490{
491    /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
492    /* get combined RSSI */
493    return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
494}
495
496#if ATH_GEN_RANDOMNESS
497/*
498 * Get the rssi value from BB on ctl chain0.
499 */
500u_int32_t
501ar9300_get_rssi_chain0(struct ath_hal *ah)
502{
503    /* get ctl chain0 RSSI */
504    return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
505}
506#endif
507
508u_int
509ar9300_get_def_antenna(struct ath_hal *ah)
510{
511    return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
512}
513
514/* Setup coverage class */
515void
516ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
517{
518}
519
520void
521ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
522{
523    OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
524}
525
526HAL_BOOL
527ar9300_set_antenna_switch(struct ath_hal *ah,
528    HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
529    u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
530{
531    struct ath_hal_9300 *ahp = AH9300(ah);
532
533    /*
534     * Owl does not support diversity or changing antennas.
535     *
536     * Instead this API and function are defined differently for AR9300.
537     * To support Tablet PC's, this interface allows the system
538     * to dramatically reduce the TX power on a particular chain.
539     *
540     * Based on the value of (redefined) diversity_control, the
541     * reset code will decrease power on chain 0 or chain 1/2.
542     *
543     * Based on the value of bit 0 of antenna_switch_swap,
544     * the mapping between OID call and chain is defined as:
545     *  0:  map A -> 0, B -> 1;
546     *  1:  map A -> 1, B -> 0;
547     *
548     * NOTE:
549     *   The devices that use this OID should use a tx_chain_mask and
550     *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
551     *   used in order to ensure an active transmit antenna.  This
552     *   API will allow the host to turn off the only transmitting
553     *   antenna to ensure the antenna closest to the user's body is
554     *   powered-down.
555     */
556    /*
557     * Set antenna control for use during reset sequence by
558     * ar9300_decrease_chain_power()
559     */
560    ahp->ah_diversity_control = settings;
561
562    return AH_TRUE;
563}
564
565HAL_BOOL
566ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
567{
568    return AH_TRUE;
569}
570
571HAL_BOOL
572ar9300_set_slot_time(struct ath_hal *ah, u_int us)
573{
574    struct ath_hal_9300 *ahp = AH9300(ah);
575    if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
576        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
577        ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
578        return AH_FALSE;
579    } else {
580        /* convert to system clocks */
581        OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
582        ahp->ah_slot_time = us;
583        return AH_TRUE;
584    }
585}
586
587HAL_BOOL
588ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
589{
590    struct ath_hal_9300 *ahp = AH9300(ah);
591
592    if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
593        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
594        ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
595        return AH_FALSE;
596    } else {
597        /* convert to system clocks */
598        OS_REG_RMW_FIELD(ah,
599            AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
600        ahp->ah_ack_timeout = us;
601        return AH_TRUE;
602    }
603}
604
605u_int
606ar9300_get_ack_timeout(struct ath_hal *ah)
607{
608    u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
609    return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
610}
611
612HAL_STATUS
613ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
614                 u_int32_t next_start, HAL_QUIET_FLAG flag)
615{
616#define	TU_TO_USEC(_tu)		((_tu) << 10)
617    HAL_STATUS status = HAL_EIO;
618    u_int32_t tsf = 0, j, next_start_us = 0;
619    if (flag & HAL_QUIET_ENABLE) {
620        for (j = 0; j < 2; j++) {
621            next_start_us = TU_TO_USEC(next_start);
622            tsf = OS_REG_READ(ah, AR_TSF_L32);
623            if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
624                next_start_us += tsf;
625            }
626            if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
627                next_start_us +=
628                    ah->ah_config.ah_sw_beacon_response_time;
629            }
630            OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
631            OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
632            OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
633            OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
634            OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635            if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
636                status = HAL_OK;
637                break;
638            }
639            HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
640                "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
641            /* TSF shouldn't count twice or reg access is taking forever */
642            HALASSERT(j < 1);
643        }
644    } else {
645        OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
646        status = HAL_OK;
647    }
648
649    return status;
650#undef	TU_TO_USEC
651}
652
653//#ifdef ATH_SUPPORT_DFS
654void
655ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
656{
657    uint32_t reg1, reg2;
658
659    reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
660    reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
661    AH9300(ah)->ah_cac_quiet_enabled = enable;
662
663    if (enable) {
664        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
665                     reg1 | AR_PCU_FORCE_QUIET_COLL);
666        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
667                     reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
668    } else {
669        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
670                     reg1 & ~AR_PCU_FORCE_QUIET_COLL);
671        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
672                     reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
673    }
674}
675//#endif /* ATH_SUPPORT_DFS */
676
677void
678ar9300_set_pcu_config(struct ath_hal *ah)
679{
680    ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
681}
682
683HAL_STATUS
684ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
685    u_int32_t capability, u_int32_t *result)
686{
687    struct ath_hal_9300 *ahp = AH9300(ah);
688    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
689    struct ar9300_ani_state *ani;
690
691    switch (type) {
692    case HAL_CAP_CIPHER:            /* cipher handled in hardware */
693        switch (capability) {
694        case HAL_CIPHER_AES_CCM:
695        case HAL_CIPHER_AES_OCB:
696        case HAL_CIPHER_TKIP:
697        case HAL_CIPHER_WEP:
698        case HAL_CIPHER_MIC:
699        case HAL_CIPHER_CLR:
700            return HAL_OK;
701        default:
702            return HAL_ENOTSUPP;
703        }
704    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
705        switch (capability) {
706        case 0:         /* hardware capability */
707            return HAL_OK;
708        case 1:
709            return (ahp->ah_sta_id1_defaults &
710                    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
711        default:
712            return HAL_ENOTSUPP;
713        }
714    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
715        switch (capability) {
716        case 0: /* hardware capability */
717            return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
718        case 1: /* current setting */
719            return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
720                HAL_ENXIO : HAL_OK;
721        default:
722            return HAL_ENOTSUPP;
723        }
724    case HAL_CAP_WME_TKIPMIC:
725        /* hardware can do TKIP MIC when WMM is turned on */
726        return HAL_OK;
727    case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
728        return HAL_OK;
729    case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
730        switch (capability) {
731        case 0:                 /* hardware capability */
732            return HAL_OK;
733        case 1:                 /* current setting */
734            return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
735                            AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
736                            HAL_OK : HAL_ENXIO;
737        }
738        return HAL_EINVAL;
739    case HAL_CAP_TPC:
740        switch (capability) {
741        case 0:                 /* hardware capability */
742            return HAL_OK;
743        case 1:
744            return ah->ah_config.ath_hal_desc_tpc ?
745                               HAL_OK : HAL_ENXIO;
746        }
747        return HAL_OK;
748    case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
749        return HAL_OK;
750    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
751        switch (capability) {
752        case 0:                 /* hardware capability */
753            return HAL_OK;
754        case 1:
755            if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
756                /*
757                 * Owl and Merlin have problems in mcast key search.
758                 * Disable this cap. in Ad-hoc mode. see Bug 25776 and
759                 * 26802
760                 */
761                return HAL_ENXIO;
762            } else {
763                return (ahp->ah_sta_id1_defaults &
764                        AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
765            }
766        }
767        return HAL_EINVAL;
768    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
769        switch (capability) {
770        case 0:                 /* hardware capability */
771            return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
772        case 1:
773            return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
774                HAL_OK : HAL_ENXIO;
775        }
776        return HAL_EINVAL;
777    case HAL_CAP_RFSILENT:      /* rfsilent support  */
778        if (capability == 3) {  /* rfkill interrupt */
779            /*
780             * XXX: Interrupt-based notification of RF Kill state
781             *      changes not working yet. Report that this feature
782             *      is not supported so that polling is used instead.
783             */
784            return (HAL_ENOTSUPP);
785        }
786        return ath_hal_getcapability(ah, type, capability, result);
787    case HAL_CAP_4ADDR_AGGR:
788        return HAL_OK;
789    case HAL_CAP_BB_RIFS_HANG:
790        return HAL_ENOTSUPP;
791    case HAL_CAP_BB_DFS_HANG:
792        return HAL_ENOTSUPP;
793    case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
794        /* Track chips that are known to have BB hangs related
795         * to rx_clear stuck low.
796         */
797        return HAL_ENOTSUPP;
798    case HAL_CAP_MAC_HANG:
799        /* Track chips that are known to have MAC hangs.
800         */
801        return HAL_OK;
802    case HAL_CAP_RIFS_RX_ENABLED:
803        /* Is RIFS RX currently enabled */
804        return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
805#if 0
806    case HAL_CAP_ANT_CFG_2GHZ:
807        *result = p_cap->halNumAntCfg2Ghz;
808        return HAL_OK;
809    case HAL_CAP_ANT_CFG_5GHZ:
810        *result = p_cap->halNumAntCfg5Ghz;
811        return HAL_OK;
812    case HAL_CAP_RX_STBC:
813        *result = p_cap->hal_rx_stbc_support;
814        return HAL_OK;
815    case HAL_CAP_TX_STBC:
816        *result = p_cap->hal_tx_stbc_support;
817        return HAL_OK;
818#endif
819    case HAL_CAP_LDPC:
820        *result = p_cap->halLDPCSupport;
821        return HAL_OK;
822    case HAL_CAP_DYNAMIC_SMPS:
823        return HAL_OK;
824    case HAL_CAP_DS:
825        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
826                (p_cap->halTxChainMask & 0x3) != 0x3 ||
827                (p_cap->halRxChainMask & 0x3) != 0x3) ?
828            HAL_ENOTSUPP : HAL_OK;
829    case HAL_CAP_TS:
830        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
831                (p_cap->halTxChainMask & 0x7) != 0x7 ||
832                (p_cap->halRxChainMask & 0x7) != 0x7) ?
833            HAL_ENOTSUPP : HAL_OK;
834    case HAL_CAP_OL_PWRCTRL:
835        return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
836            HAL_OK : HAL_ENOTSUPP;
837    case HAL_CAP_CRDC:
838#if ATH_SUPPORT_CRDC
839        return (AR_SREV_WASP(ah) &&
840                ah->ah_config.ath_hal_crdc_enable) ?
841                    HAL_OK : HAL_ENOTSUPP;
842#else
843        return HAL_ENOTSUPP;
844#endif
845#if 0
846    case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
847        *result = (u_int32_t)(-1);
848        return HAL_OK;
849    case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
850        *result = (u_int32_t)(-1);
851        return HAL_OK;
852#endif
853    case HAL_CAP_BB_PANIC_WATCHDOG:
854        return HAL_OK;
855    case HAL_CAP_PHYRESTART_CLR_WAR:
856        if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
857            (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
858        {
859            return HAL_OK;
860        }
861        else
862        {
863            return HAL_ENOTSUPP;
864        }
865    case HAL_CAP_ENTERPRISE_MODE:
866        *result = ahp->ah_enterprise_mode >> 16;
867        /*
868         * WAR for EV 77658 - Add delimiters to first sub-frame when using
869         * RTS/CTS with aggregation and non-enterprise Osprey.
870         *
871         * Bug fixed in AR9580/Peacock, Wasp1.1 and later
872         */
873        if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
874                !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
875                AR_SREV_WASP_10(ah))) {
876            *result |= AH_ENT_RTSCTS_DELIM_WAR;
877        }
878        return HAL_OK;
879    case HAL_CAP_LDPCWAR:
880        /* WAR for RIFS+LDPC issue is required for all chips currently
881         * supported by ar9300 HAL.
882         */
883        return HAL_OK;
884    case HAL_CAP_ENABLE_APM:
885        *result = p_cap->halApmEnable;
886        return HAL_OK;
887    case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
888        return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
889    case HAL_CAP_PCIE_LCR_OFFSET:
890        *result = p_cap->hal_pcie_lcr_offset;
891        return HAL_OK;
892    case HAL_CAP_SMARTANTENNA:
893        /* FIXME A request is pending with h/w team to add feature bit in
894         * caldata to detect if board has smart antenna or not, once added
895         * we need to fix his piece of code to read and return value without
896         * any compile flags
897         */
898#if UMAC_SUPPORT_SMARTANTENNA
899        /* enable smart antenna for  Peacock, Wasp and scorpion
900           for future chips need to modify */
901        if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
902            return HAL_OK;
903        } else {
904            return HAL_ENOTSUPP;
905        }
906#else
907        return HAL_ENOTSUPP;
908#endif
909
910#ifdef ATH_TRAFFIC_FAST_RECOVER
911    case HAL_CAP_TRAFFIC_FAST_RECOVER:
912        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
913            return HAL_OK;
914        } else {
915            return HAL_ENOTSUPP;
916        }
917#endif
918
919    /* FreeBSD ANI */
920    case HAL_CAP_INTMIT:            /* interference mitigation */
921            switch (capability) {
922            case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
923                    return HAL_OK;
924            case HAL_CAP_INTMIT_ENABLE:
925                    return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
926                            HAL_OK : HAL_ENXIO;
927            case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
928            case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
929//            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
930            case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
931            case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
932                    ani = ar9300_ani_get_current_state(ah);
933                    if (ani == AH_NULL)
934                            return HAL_ENXIO;
935                    switch (capability) {
936                    /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
937                    case 2: *result = ani->ofdm_noise_immunity_level; break;
938                    case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
939 //                   case 4: *result = ani->cck_weak_sig_threshold; break;
940                    case 5: *result = ani->firstep_level; break;
941                    case 6: *result = ani->spur_immunity_level; break;
942                    }
943                    return HAL_OK;
944            }
945            return HAL_EINVAL;
946    case HAL_CAP_ENFORCE_TXOP:
947        if (capability == 0)
948            return (HAL_OK);
949        if (capability != 1)
950            return (HAL_ENOTSUPP);
951        (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
952        return (HAL_OK);
953    case HAL_CAP_TOA_LOCATIONING:
954        if (capability == 0)
955            return HAL_OK;
956        if (capability == 2) {
957            *result = ar9300_read_loc_timer(ah);
958            return (HAL_OK);
959        }
960        return HAL_ENOTSUPP;
961    default:
962        return ath_hal_getcapability(ah, type, capability, result);
963    }
964}
965
966HAL_BOOL
967ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
968        u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
969{
970    struct ath_hal_9300 *ahp = AH9300(ah);
971    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
972    u_int32_t v;
973
974    switch (type) {
975    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
976        if (! p_cap->halTkipMicTxRxKeySupport)
977            return AH_FALSE;
978
979        if (setting)
980            ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
981        else
982            ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
983
984        OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
985        return AH_TRUE;
986
987    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
988        if (setting) {
989            ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
990        } else {
991            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
992        }
993        return AH_TRUE;
994    case HAL_CAP_DIVERSITY:
995        v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
996        if (setting) {
997            v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
998        } else {
999            v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1000        }
1001        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1002        return AH_TRUE;
1003    case HAL_CAP_DIAG:              /* hardware diagnostic support */
1004        /*
1005         * NB: could split this up into virtual capabilities,
1006         *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
1007         *     seems worth the additional complexity.
1008         */
1009#ifdef AH_DEBUG
1010        AH_PRIVATE(ah)->ah_diagreg = setting;
1011#else
1012        AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1013#endif
1014        OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1015        return AH_TRUE;
1016    case HAL_CAP_TPC:
1017        ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1018        return AH_TRUE;
1019    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1020        if (setting) {
1021            ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1022        } else {
1023            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1024        }
1025        return AH_TRUE;
1026    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1027        if (p_cap->halTsfAddSupport) {
1028            if (setting) {
1029                ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1030            } else {
1031                ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1032            }
1033            return AH_TRUE;
1034        }
1035        return AH_FALSE;
1036
1037    /* FreeBSD interrupt mitigation / ANI */
1038    case HAL_CAP_INTMIT: {          /* interference mitigation */
1039            /* This maps the public ANI commands to the internal ANI commands */
1040            /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1041            static const HAL_ANI_CMD cmds[] = {
1042                    HAL_ANI_PRESENT,
1043                    HAL_ANI_MODE,
1044                    HAL_ANI_NOISE_IMMUNITY_LEVEL,
1045                    HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1046                    HAL_ANI_CCK_WEAK_SIGNAL_THR,
1047                    HAL_ANI_FIRSTEP_LEVEL,
1048                    HAL_ANI_SPUR_IMMUNITY_LEVEL,
1049            };
1050#define N(a)    (sizeof(a) / sizeof(a[0]))
1051            return capability < N(cmds) ?
1052                    ar9300_ani_control(ah, cmds[capability], setting) :
1053                    AH_FALSE;
1054#undef N
1055    }
1056
1057    case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1058        ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1059        OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1060        return AH_TRUE;
1061
1062    case HAL_CAP_ENFORCE_TXOP:
1063        if (capability != 1)
1064            return AH_FALSE;
1065        if (setting) {
1066            ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1067            OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1068        } else {
1069            ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1070            OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1071        }
1072        return AH_TRUE;
1073
1074    case HAL_CAP_TOA_LOCATIONING:
1075        if (capability == 0)
1076            return AH_TRUE;
1077        if (capability == 1) {
1078            ar9300_update_loc_ctl_reg(ah, setting);
1079            return AH_TRUE;
1080        }
1081        return AH_FALSE;
1082        /* fall thru... */
1083    default:
1084        return ath_hal_setcapability(ah, type, capability, setting, status);
1085    }
1086}
1087
1088#ifdef AH_DEBUG
1089static void
1090ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1091{
1092    u_int32_t i = 0;
1093
1094    /* Read 0x80d0 to trigger pcie analyzer */
1095    HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1096        "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1097
1098    if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1099        struct ath_hal_9300 *ahp = AH9300(ah);
1100        u_int32_t tf, rf, rc, cc;
1101
1102        tf = OS_REG_READ(ah, AR_TFCNT);
1103        rf = OS_REG_READ(ah, AR_RFCNT);
1104        rc = OS_REG_READ(ah, AR_RCCNT);
1105        cc = OS_REG_READ(ah, AR_CCCNT);
1106
1107        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1108            "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1109        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1110            "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1111        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1112            "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1113        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1114            "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1115
1116        ahp->last_tf = tf;
1117        ahp->last_rf = rf;
1118        ahp->last_rc = rc;
1119        ahp->last_cc = cc;
1120
1121        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1122            "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1123        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1124            "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1125        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1126            "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1127        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1128            "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1129        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1130            "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1131        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1132            "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1133        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1134            "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1135        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1136            "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1137    }
1138
1139    if (args & HAL_DIAG_PRINT_REG_ALL) {
1140        for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1141            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1142                i, OS_REG_READ(ah, i));
1143        }
1144
1145        for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1146            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1147                i, OS_REG_READ(ah, i));
1148        }
1149
1150        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1151            "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1152
1153        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1154            "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1155
1156        for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1157            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1158                i, OS_REG_READ(ah, i));
1159        }
1160
1161        for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1162            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1163                i, OS_REG_READ(ah, i));
1164        }
1165
1166        for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1167            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1168                i, OS_REG_READ(ah, i));
1169        }
1170
1171        for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1172            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1173                i, OS_REG_READ(ah, i));
1174        }
1175
1176        for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1177            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1178                i, OS_REG_READ(ah, i));
1179        }
1180
1181        for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1182            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1183                i, OS_REG_READ(ah, i));
1184        }
1185
1186        for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1187            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1188                i, OS_REG_READ(ah, i));
1189        }
1190
1191        for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1192            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1193                i, OS_REG_READ(ah, i));
1194        }
1195
1196        for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1197            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1198                i, OS_REG_READ(ah, i));
1199        }
1200
1201        for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1202            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1203                i, OS_REG_READ(ah, i));
1204        }
1205
1206        for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1207            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1208                i, OS_REG_READ(ah, i));
1209        }
1210    }
1211}
1212#endif
1213
1214HAL_BOOL
1215ar9300_get_diag_state(struct ath_hal *ah, int request,
1216        const void *args, u_int32_t argsize,
1217        void **result, u_int32_t *resultsize)
1218{
1219    struct ath_hal_9300 *ahp = AH9300(ah);
1220    struct ar9300_ani_state *ani;
1221
1222    (void) ahp;
1223    if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1224        return AH_TRUE;
1225    }
1226    switch (request) {
1227#ifdef AH_PRIVATE_DIAG
1228    case HAL_DIAG_EEPROM:
1229        *result = &ahp->ah_eeprom;
1230        *resultsize = sizeof(ar9300_eeprom_t);
1231        return AH_TRUE;
1232
1233#if 0   /* XXX - TODO */
1234    case HAL_DIAG_EEPROM_EXP_11A:
1235    case HAL_DIAG_EEPROM_EXP_11B:
1236    case HAL_DIAG_EEPROM_EXP_11G:
1237        pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1238        *result = pe->p_channels;
1239        *resultsize = (*result == AH_NULL) ? 0 :
1240            roundup(sizeof(u_int16_t) * pe->num_channels,
1241            sizeof(u_int32_t)) +
1242                sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1243        return AH_TRUE;
1244#endif
1245    case HAL_DIAG_RFGAIN:
1246        *result = &ahp->ah_gain_values;
1247        *resultsize = sizeof(GAIN_VALUES);
1248        return AH_TRUE;
1249    case HAL_DIAG_RFGAIN_CURSTEP:
1250        *result = (void *) ahp->ah_gain_values.curr_step;
1251        *resultsize = (*result == AH_NULL) ?
1252                0 : sizeof(GAIN_OPTIMIZATION_STEP);
1253        return AH_TRUE;
1254#if 0   /* XXX - TODO */
1255    case HAL_DIAG_PCDAC:
1256        *result = ahp->ah_pcdac_table;
1257        *resultsize = ahp->ah_pcdac_table_size;
1258        return AH_TRUE;
1259#endif
1260    case HAL_DIAG_ANI_CURRENT:
1261
1262        ani = ar9300_ani_get_current_state(ah);
1263        if (ani == AH_NULL)
1264            return AH_FALSE;
1265        /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1266        bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1267        ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1268        ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1269        ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1270        ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1271        ahp->ext_ani_state.mrcCck = !! ani->mrc_cck_off;
1272        ahp->ext_ani_state.cckNoiseImmunityLevel = ani->cck_noise_immunity_level;
1273
1274        ahp->ext_ani_state.listenTime = ani->listen_time;
1275
1276        *result = &ahp->ext_ani_state;
1277        *resultsize = sizeof(ahp->ext_ani_state);
1278#if 0
1279        *result = ar9300_ani_get_current_state(ah);
1280        *resultsize = (*result == AH_NULL) ?
1281            0 : sizeof(struct ar9300_ani_state);
1282#endif
1283        return AH_TRUE;
1284    case HAL_DIAG_ANI_STATS:
1285        *result = ar9300_ani_get_current_stats(ah);
1286        *resultsize = (*result == AH_NULL) ?
1287            0 : sizeof(HAL_ANI_STATS);
1288        return AH_TRUE;
1289    case HAL_DIAG_ANI_CMD:
1290    {
1291        HAL_ANI_CMD savefunc = ahp->ah_ani_function;
1292        if (argsize != 2*sizeof(u_int32_t)) {
1293            return AH_FALSE;
1294        }
1295        /* temporarly allow all functions so we can override */
1296        ahp->ah_ani_function = HAL_ANI_ALL;
1297        ar9300_ani_control(
1298            ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1299        ahp->ah_ani_function = savefunc;
1300        return AH_TRUE;
1301    }
1302#if 0
1303    case HAL_DIAG_TXCONT:
1304        /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1305        return AH_TRUE;
1306#endif /* 0 */
1307#endif /* AH_PRIVATE_DIAG */
1308    case HAL_DIAG_CHANNELS:
1309#if 0
1310        *result = &(ahp->ah_priv.ah_channels[0]);
1311        *resultsize =
1312            sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1313#endif
1314        return AH_TRUE;
1315#ifdef AH_DEBUG
1316    case HAL_DIAG_PRINT_REG:
1317        ar9300_print_reg(ah, *((const u_int32_t *)args));
1318        return AH_TRUE;
1319#endif
1320    default:
1321        break;
1322    }
1323
1324    return AH_FALSE;
1325}
1326
1327void
1328ar9300_dma_reg_dump(struct ath_hal *ah)
1329{
1330#ifdef AH_DEBUG
1331#define NUM_DMA_DEBUG_REGS  8
1332#define NUM_QUEUES          10
1333
1334    u_int32_t val[NUM_DMA_DEBUG_REGS];
1335    int       qcu_offset = 0, dcu_offset = 0;
1336    u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1337    int       i, j, k;
1338    int16_t nfarray[HAL_NUM_NF_READINGS];
1339#ifdef	ATH_NF_PER_CHAN
1340    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1341#endif	/* ATH_NF_PER_CHAN */
1342    HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1343
1344     /* selecting DMA OBS 8 */
1345    OS_REG_WRITE(ah, AR_MACMISC,
1346        ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1347         (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1348
1349    ath_hal_printf(ah, "Raw DMA Debug values:\n");
1350    for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1351        if (i % 4 == 0) {
1352            ath_hal_printf(ah, "\n");
1353        }
1354
1355        val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1356        ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1357    }
1358
1359    ath_hal_printf(ah, "\n\n");
1360    ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1361
1362    for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1363        if (i == 8) {
1364            /* only 8 QCU entries in val[0] */
1365            qcu_offset = 0;
1366            qcu_base++;
1367        }
1368
1369        if (i == 6) {
1370            /* only 6 DCU entries in val[4] */
1371            dcu_offset = 0;
1372            dcu_base++;
1373        }
1374
1375        ath_hal_printf(ah,
1376            "%2d          %2x      %1x     %2x           %2x\n",
1377            i,
1378            (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1379            (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1380            val[2] & (0x7 << (i * 3)) >> (i * 3),
1381            (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1382    }
1383
1384    ath_hal_printf(ah, "\n");
1385    ath_hal_printf(ah,
1386        "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1387        (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1388    ath_hal_printf(ah,
1389        "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1390        (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1391    ath_hal_printf(ah,
1392        "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1393        (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1394    ath_hal_printf(ah,
1395        "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1396        (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1397    ath_hal_printf(ah,
1398        "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1399        (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1400    ath_hal_printf(ah,
1401        "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1402        (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1403    ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1404    ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1405
1406    ar9300_upload_noise_floor(ah, 1, nfarray);
1407    ath_hal_printf(ah, "2G:\n");
1408    ath_hal_printf(ah, "Min CCA Out:\n");
1409    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1410    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1411                   nfarray[0], nfarray[1], nfarray[2]);
1412    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1413                   nfarray[3], nfarray[4], nfarray[5]);
1414
1415    ar9300_upload_noise_floor(ah, 0, nfarray);
1416    ath_hal_printf(ah, "5G:\n");
1417    ath_hal_printf(ah, "Min CCA Out:\n");
1418    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1419    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1420                   nfarray[0], nfarray[1], nfarray[2]);
1421    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1422                   nfarray[3], nfarray[4], nfarray[5]);
1423
1424    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1425        ath_hal_printf(ah, "%s Chain %d NF History:\n",
1426                       ((i < 3) ? "Control " : "Extension "), i%3);
1427        for (j = 0, k = h->base.curr_index;
1428             j < HAL_NF_CAL_HIST_LEN_FULL;
1429             j++, k++) {
1430            ath_hal_printf(ah, "Element %d: %d\n",
1431                j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1432        }
1433        ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1434    }
1435
1436    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1437    ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1438                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1439                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1440    reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1441    ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1442                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1443                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1444    ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1445                   MS(reg, AR_PHY_DESIRED_SZ_ADC),
1446                   MS(reg, AR_PHY_DESIRED_SZ_ADC));
1447    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1448    ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1449                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1450                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1451    reg = OS_REG_READ(ah, AR_PHY_AGC);
1452    ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1453                   MS(reg, AR_PHY_AGC_COARSE_HIGH),
1454                   MS(reg, AR_PHY_AGC_COARSE_HIGH));
1455    ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1456                   MS(reg, AR_PHY_AGC_COARSE_LOW),
1457                   MS(reg, AR_PHY_AGC_COARSE_LOW));
1458    ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1459                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1460                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1461    reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1462    ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1463                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1464    ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1465                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1466                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1467    ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1468                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1469                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1470    reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1471    ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1472                   MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1473    ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1474                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1475                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1476
1477
1478    /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1479    reg = OS_REG_READ(ah, 0xa360);
1480    reg &= ~0x00800000;
1481    OS_REG_WRITE(ah, 0xa360, reg);
1482
1483    /* Step 2a: Set register 0xa364 to 0x1000 */
1484    reg = 0x1000;
1485    OS_REG_WRITE(ah, 0xa364, reg);
1486
1487    /* Step 3a: Read bits 17:0 of register 0x9c20 */
1488    reg = OS_REG_READ(ah, 0x9c20);
1489    reg &= 0x0003ffff;
1490    ath_hal_printf(ah,
1491        "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1492        __func__, reg);
1493
1494    /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1495    reg = OS_REG_READ(ah, 0xa360);
1496    reg &= ~0x00800000;
1497    OS_REG_WRITE(ah, 0xa360, reg);
1498
1499    /* Step 2b: Set register 0xa364 to 0x1400 */
1500    reg = 0x1400;
1501    OS_REG_WRITE(ah, 0xa364, reg);
1502
1503    /* Step 3b: Read bits 17:0 of register 0x9c20 */
1504    reg = OS_REG_READ(ah, 0x9c20);
1505    reg &= 0x0003ffff;
1506    ath_hal_printf(ah,
1507        "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1508        __func__, reg);
1509
1510    /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1511    reg = OS_REG_READ(ah, 0xa360);
1512    reg &= ~0x00800000;
1513    OS_REG_WRITE(ah, 0xa360, reg);
1514
1515    /* Step 2c: Set register 0xa364 to 0x3C00 */
1516    reg = 0x3c00;
1517    OS_REG_WRITE(ah, 0xa364, reg);
1518
1519    /* Step 3c: Read bits 17:0 of register 0x9c20 */
1520    reg = OS_REG_READ(ah, 0x9c20);
1521    reg &= 0x0003ffff;
1522    ath_hal_printf(ah,
1523        "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1524        __func__, reg);
1525
1526    /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1527    reg = OS_REG_READ(ah, 0xa360);
1528    reg &= ~0x001040000;
1529    OS_REG_WRITE(ah, 0xa360, reg);
1530
1531    /* Step 2d: Set register 0xa364 to 0x5005D */
1532    reg = 0x5005D;
1533    OS_REG_WRITE(ah, 0xa364, reg);
1534
1535    /* Step 3d: Read bits 17:0 of register 0xa368 */
1536    reg = OS_REG_READ(ah, 0xa368);
1537    reg &= 0x0003ffff;
1538    ath_hal_printf(ah,
1539        "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1540        __func__, reg);
1541
1542    /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1543    reg = OS_REG_READ(ah, 0xa360);
1544    reg &= ~0x001040000;
1545    OS_REG_WRITE(ah, 0xa360, reg);
1546
1547    /* Step 2e: Set register 0xa364 to 0x7005D */
1548    reg = 0x7005D;
1549    OS_REG_WRITE(ah, 0xa364, reg);
1550
1551    /* Step 3e: Read bits 17:0 of register 0xa368 */
1552    reg = OS_REG_READ(ah, 0xa368);
1553    reg &= 0x0003ffff;
1554    ath_hal_printf(ah,
1555        "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1556       __func__, reg);
1557
1558    /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1559    reg = OS_REG_READ(ah, 0xa360);
1560    reg &= ~0x001000000;
1561    reg |= 0x40000;
1562    OS_REG_WRITE(ah, 0xa360, reg);
1563
1564    /* Step 2f: Set register 0xa364 to 0x3005D */
1565    reg = 0x3005D;
1566    OS_REG_WRITE(ah, 0xa364, reg);
1567
1568    /* Step 3f: Read bits 17:0 of register 0xa368 */
1569    reg = OS_REG_READ(ah, 0xa368);
1570    reg &= 0x0003ffff;
1571    ath_hal_printf(ah,
1572        "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1573        __func__, reg);
1574
1575    /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1576    reg = OS_REG_READ(ah, 0xa360);
1577    reg &= ~0x001000000;
1578    reg |= 0x40000;
1579    OS_REG_WRITE(ah, 0xa360, reg);
1580
1581    /* Step 2g: Set register 0xa364 to 0x6005D */
1582    reg = 0x6005D;
1583    OS_REG_WRITE(ah, 0xa364, reg);
1584
1585    /* Step 3g: Read bits 17:0 of register 0xa368 */
1586    reg = OS_REG_READ(ah, 0xa368);
1587    reg &= 0x0003ffff;
1588    ath_hal_printf(ah,
1589        "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1590        __func__, reg);
1591#endif /* AH_DEBUG */
1592}
1593
1594/*
1595 * Return the busy for rx_frame, rx_clear, and tx_frame
1596 */
1597u_int32_t
1598ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1599    u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1600{
1601    struct ath_hal_9300 *ahp = AH9300(ah);
1602    u_int32_t good = 1;
1603
1604    u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1605    u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1606    u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1607    u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1608
1609    if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1610        /*
1611         * Cycle counter wrap (or initial call); it's not possible
1612         * to accurately calculate a value because the registers
1613         * right shift rather than wrap--so punt and return 0.
1614         */
1615        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1616            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1617        good = 0;
1618    } else {
1619        u_int32_t cc_d = cc - ahp->ah_cycles;
1620        u_int32_t rc_d = rc - ahp->ah_rx_clear;
1621        u_int32_t rf_d = rf - ahp->ah_rx_frame;
1622        u_int32_t tf_d = tf - ahp->ah_tx_frame;
1623
1624        if (cc_d != 0) {
1625            *rxc_pcnt = rc_d * 100 / cc_d;
1626            *rxf_pcnt = rf_d * 100 / cc_d;
1627            *txf_pcnt = tf_d * 100 / cc_d;
1628        } else {
1629            good = 0;
1630        }
1631    }
1632
1633    ahp->ah_cycles = cc;
1634    ahp->ah_rx_frame = rf;
1635    ahp->ah_rx_clear = rc;
1636    ahp->ah_tx_frame = tf;
1637
1638    return good;
1639}
1640
1641/*
1642 * Return approximation of extension channel busy over an time interval
1643 * 0% (clear) -> 100% (busy)
1644 * -1 for invalid estimate
1645 */
1646uint32_t
1647ar9300_get_11n_ext_busy(struct ath_hal *ah)
1648{
1649    /*
1650     * Overflow condition to check before multiplying to get %
1651     * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1652     */
1653#define OVERFLOW_LIMIT  0x28F5C28
1654#define ERROR_CODE      -1
1655
1656    struct ath_hal_9300 *ahp = AH9300(ah);
1657    u_int32_t busy = 0; /* percentage */
1658    int8_t busyper = 0;
1659    u_int32_t cycle_count, ctl_busy, ext_busy;
1660
1661    /* cycle_count will always be the first to wrap; therefore, read it last
1662     * This sequence of reads is not atomic, and MIB counter wrap
1663     * could happen during it ?
1664     */
1665    ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1666    ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1667    cycle_count = OS_REG_READ(ah, AR_CCCNT);
1668
1669    if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1670        (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1671    {
1672        /*
1673         * Cycle counter wrap (or initial call); it's not possible
1674         * to accurately calculate a value because the registers
1675         * right shift rather than wrap--so punt and return 0.
1676         */
1677        busyper = ERROR_CODE;
1678        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1679            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1680    } else {
1681        u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1682        u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1683
1684        /*
1685         * Compute extension channel busy percentage
1686         * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1687         * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1688         * Will never happen, since (ext_busy_delta < cycle_delta) always,
1689         * and shift necessitated by large ext_busy_delta.
1690         * Due to timing difference to read the registers and counter overflow,
1691         * it may still happen that cycle_delta >> 7 = 0.
1692         *
1693         */
1694        if (cycle_delta) {
1695            if (ext_busy_delta > OVERFLOW_LIMIT) {
1696                if (cycle_delta >> 7) {
1697                    busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1698                } else {
1699                    busyper = ERROR_CODE;
1700                }
1701            } else {
1702                busy = (ext_busy_delta * 100) / cycle_delta;
1703            }
1704        } else {
1705            busyper = ERROR_CODE;
1706        }
1707
1708        if (busy > 100) {
1709            busy = 100;
1710        }
1711        if ( busyper != ERROR_CODE ) {
1712            busyper = busy;
1713        }
1714    }
1715
1716    ahp->ah_cycle_count = cycle_count;
1717    ahp->ah_ctl_busy = ctl_busy;
1718    ahp->ah_ext_busy = ext_busy;
1719
1720    return busyper;
1721#undef OVERFLOW_LIMIT
1722#undef ERROR_CODE
1723}
1724
1725/* BB Panic Watchdog declarations */
1726#define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1727#define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1728
1729void
1730ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1731{
1732#define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1733    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1734    u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1735    u_int32_t val, idle_count;
1736
1737    if (idle_tmo_ms != 0) {
1738        /* enable IRQ, disable chip-reset for BB panic */
1739        val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1740            AR_PHY_BB_PANIC_CNTL2_MASK;
1741        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1742            (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1743        /* bound limit to 10 secs */
1744        if (idle_tmo_ms > 10000) {
1745            idle_tmo_ms = 10000;
1746        }
1747        if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1748            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1749        } else {
1750            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1751        }
1752        /*
1753         * enable panic in non-IDLE mode,
1754         * disable in IDLE mode,
1755         * set idle time-out
1756         */
1757
1758        // EV92527 : Enable IDLE mode panic
1759
1760        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1761                     AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1762                     AR_PHY_BB_PANIC_IDLE_ENABLE |
1763                     (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1764                     (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1765    } else {
1766        /* disable IRQ, disable chip-reset for BB panic */
1767        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1768            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1769            ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1770        /* disable panic in non-IDLE mode, disable in IDLE mode */
1771        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1772            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1773            ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1774    }
1775
1776    HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1777             __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1778#undef HAL_BB_PANIC_IDLE_TIME_OUT
1779}
1780
1781
1782void
1783ar9300_handle_bb_panic(struct ath_hal *ah)
1784{
1785    u_int32_t status;
1786    /*
1787     * we want to avoid printing in ISR context so we save
1788     * panic watchdog status to be printed later in DPC context
1789     */
1790    AH9300(ah)->ah_bb_panic_last_status = status =
1791        OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1792    /*
1793     * panic watchdog timer should reset on status read
1794     * but to make sure we write 0 to the watchdog status bit
1795     */
1796    OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1797}
1798
1799int
1800ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1801{
1802    bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1803
1804    /*
1805     * For signature 04000539 do not print anything.
1806     * This is a very common occurence as a compromise between
1807     * BB Panic and AH_FALSE detects (EV71009). It indicates
1808     * radar hang, which can be cleared by reprogramming
1809     * radar related register and does not requre a chip reset
1810     */
1811
1812    /* Suppress BB Status mesg following signature */
1813    switch (bb_panic->status) {
1814        case 0x04000539:
1815        case 0x04008009:
1816        case 0x04000b09:
1817        case 0x1300000a:
1818        return -1;
1819    }
1820
1821    bb_panic->tsf = ar9300_get_tsf32(ah);
1822    bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1823    bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1824    bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1825    bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1826    bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1827    bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1828    bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1829    bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1830    bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1831    bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1832    bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1833    bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1834    bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1835    bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1836                                        &bb_panic->rxc_pcnt,
1837                                        &bb_panic->rxf_pcnt,
1838                                        &bb_panic->txf_pcnt);
1839
1840    if (ah->ah_config.ath_hal_show_bb_panic) {
1841        ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1842            "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1843        ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1844            "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1845            bb_panic->wd, bb_panic->det, bb_panic->rdar,
1846            bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1847            bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1848        ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1849            bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1850        ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1851            bb_panic->phy_gen_ctrl);
1852        if (bb_panic->cycles) {
1853            ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1854                "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1855                bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1856        }
1857        ath_hal_printf(ah, "==== BB update: done ====\n\n");
1858    }
1859
1860    return 0; //The returned data will be stored for athstats to retrieve it
1861}
1862
1863/* set the reason for HAL reset */
1864void
1865ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1866{
1867    AH9300(ah)->ah_reset_reason = resetreason;
1868}
1869
1870/*
1871 * Configure 20/40 operation
1872 *
1873 * 20/40 = joint rx clear (control and extension)
1874 * 20    = rx clear (control)
1875 *
1876 * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1877 *         when changing from 20/40 => 20 only
1878 */
1879void
1880ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1881{
1882    u_int32_t macmode;
1883
1884    /* Configure MAC for 20/40 operation */
1885    if (mode == HAL_HT_MACMODE_2040 &&
1886        !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1887        macmode = AR_2040_JOINED_RX_CLEAR;
1888    } else {
1889        macmode = 0;
1890    }
1891    OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1892}
1893
1894/*
1895 * Get Rx clear (control/extension channel)
1896 *
1897 * Returns active low (busy) for ctrl/ext channel
1898 * Owl 2.0
1899 */
1900HAL_HT_RXCLEAR
1901ar9300_get_11n_rx_clear(struct ath_hal *ah)
1902{
1903    HAL_HT_RXCLEAR rxclear = 0;
1904    u_int32_t val;
1905
1906    val = OS_REG_READ(ah, AR_DIAG_SW);
1907
1908    /* control channel */
1909    if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1910        rxclear |= HAL_RX_CLEAR_CTL_LOW;
1911    }
1912    /* extension channel */
1913    if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1914        rxclear |= HAL_RX_CLEAR_EXT_LOW;
1915    }
1916    return rxclear;
1917}
1918
1919/*
1920 * Set Rx clear (control/extension channel)
1921 *
1922 * Useful for forcing the channel to appear busy for
1923 * debugging/diagnostics
1924 * Owl 2.0
1925 */
1926void
1927ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1928{
1929    /* control channel */
1930    if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1931        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1932    } else {
1933        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1934    }
1935    /* extension channel */
1936    if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1937        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1938    } else {
1939        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1940    }
1941}
1942
1943
1944/*
1945 * HAL support code for force ppm tracking workaround.
1946 */
1947
1948u_int32_t
1949ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1950{
1951    u_int32_t retval;
1952    u_int32_t off1;
1953    u_int32_t off2;
1954
1955    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1956        off1 = 0x2000;
1957        off2 = 0x1000;
1958    } else {
1959        off1 = 0x1000;
1960        off2 = 0x2000;
1961    }
1962
1963    retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1964             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1965             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1966
1967    return retval;
1968}
1969
1970u_int32_t
1971ar9300_ppm_force(struct ath_hal *ah)
1972{
1973    u_int32_t data_fine;
1974    u_int32_t data4;
1975    //u_int32_t off1;
1976    //u_int32_t off2;
1977    HAL_BOOL signed_val = AH_FALSE;
1978
1979//    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1980//        off1 = 0x2000;
1981//        off2 = 0x1000;
1982//    } else {
1983//        off1 = 0x1000;
1984//        off2 = 0x2000;
1985//    }
1986    data_fine =
1987        AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1988        OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1989
1990    /*
1991     * bit [11-0] is new ppm value. bit 11 is the signed bit.
1992     * So check value from bit[10:0].
1993     * Now get the abs val of the ppm value read in bit[0:11].
1994     * After that do bound check on abs value.
1995     * if value is off limit, CAP the value and and restore signed bit.
1996     */
1997    if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1998    {
1999        /* get the positive value */
2000        data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2001        signed_val = AH_TRUE;
2002    }
2003    if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
2004    {
2005        HALDEBUG(ah, HAL_DEBUG_REGIO,
2006            "%s Correcting ppm out of range %x\n",
2007            __func__, (data_fine & 0x7ff));
2008        data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
2009    }
2010    /*
2011     * Restore signed value if changed above.
2012     * Use typecast to avoid compilation errors
2013     */
2014    if (signed_val) {
2015        data_fine = (-(int32_t)data_fine) &
2016            AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2017    }
2018
2019    /* write value */
2020    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
2021        ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2022    OS_REG_WRITE(ah, AR_PHY_TIMING2,
2023        data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2024
2025    return data_fine;
2026}
2027
2028void
2029ar9300_ppm_un_force(struct ath_hal *ah)
2030{
2031    u_int32_t data4;
2032
2033    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2034    OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2035}
2036
2037u_int32_t
2038ar9300_ppm_arm_trigger(struct ath_hal *ah)
2039{
2040    u_int32_t val;
2041    u_int32_t ret;
2042
2043    val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2044    ret = OS_REG_READ(ah, AR_TSF_L32);
2045    OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2046        val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2047
2048    /* return low word of TSF at arm time */
2049    return ret;
2050}
2051
2052int
2053ar9300_ppm_get_trigger(struct ath_hal *ah)
2054{
2055    if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2056        AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2057    {
2058        /* has not triggered yet, return AH_FALSE */
2059        return 0;
2060    }
2061
2062    /* else triggered, return AH_TRUE */
2063    return 1;
2064}
2065
2066void
2067ar9300_mark_phy_inactive(struct ath_hal *ah)
2068{
2069    OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2070}
2071
2072/* DEBUG */
2073u_int32_t
2074ar9300_ppm_get_force_state(struct ath_hal *ah)
2075{
2076    return
2077        OS_REG_READ(ah, AR_PHY_TIMING2) &
2078        (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2079}
2080
2081/*
2082 * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2083 */
2084HAL_BOOL
2085ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2086{
2087    /*
2088     * XXX FreeBSD todo: reimplement this
2089     */
2090#if 0
2091    p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2092    p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2093    p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2094    p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2095    p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2096                           p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2097    p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2098                           p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2099#endif
2100    return AH_FALSE;
2101}
2102
2103void
2104ar9300_clear_mib_counters(struct ath_hal *ah)
2105{
2106    u_int32_t reg_val;
2107
2108    reg_val = OS_REG_READ(ah, AR_MIBC);
2109    OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2110    OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2111}
2112
2113
2114/* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2115HAL_BOOL
2116ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2117{
2118    struct ath_hal_9300 *ahp = AH9300(ah);
2119    HAL_CHANNEL_INTERNAL *ichan =
2120      ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2121    HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2122    u_int32_t tmp = 0;
2123
2124    if (enable) {
2125        if (ahp->ah_rifs_enabled == AH_TRUE) {
2126            return AH_TRUE;
2127        }
2128
2129        OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2130        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2131                     ahp->ah_rifs_reg[1]);
2132
2133        ahp->ah_rifs_enabled = AH_TRUE;
2134        OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2135    } else {
2136        if (ahp->ah_rifs_enabled == AH_TRUE) {
2137            ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2138                                              AR_PHY_SEARCH_START_DELAY);
2139            ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2140        }
2141        /* Change rifs init delay to 0 */
2142        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2143                     (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2144        tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2145        if (is_chan_2g) {
2146            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2147                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2148            } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2149                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2150            }
2151        } else {
2152            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2153                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2154            } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2155                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2156            }
2157        }
2158
2159        ahp->ah_rifs_enabled = AH_FALSE;
2160    }
2161    return AH_TRUE;
2162
2163} /* ar9300_set_rifs_delay () */
2164
2165/* Set the current RIFS Rx setting */
2166HAL_BOOL
2167ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2168{
2169    /* Non-Owl 11n chips */
2170    if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2171        if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2172            return ar9300_set_rifs_delay(ah, enable);
2173        }
2174        return AH_FALSE;
2175    }
2176
2177    return AH_TRUE;
2178} /* ar9300_set_11n_rx_rifs () */
2179
2180static hal_mac_hangs_t
2181ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2182  hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2183{
2184    int i = 0;
2185    hal_mac_hangs_t found_hangs = 0;
2186
2187    if (hangs & dcu_chain_state) {
2188        for (i = 0; i < 6; i++) {
2189            if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2190                 hang_check.dcu_chain_state)
2191            {
2192                found_hangs |= dcu_chain_state;
2193                *dcu_chain = i;
2194            }
2195        }
2196        for (i = 0; i < 4; i++) {
2197            if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2198                  hang_check.dcu_chain_state)
2199            {
2200                found_hangs |= dcu_chain_state;
2201                *dcu_chain = i + 6;
2202            }
2203        }
2204    }
2205
2206    if (hangs & dcu_complete_state) {
2207        if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2208            found_hangs |= dcu_complete_state;
2209        }
2210    }
2211
2212    return found_hangs;
2213
2214} /* end - ar9300_compare_dbg_hang */
2215
2216#define NUM_STATUS_READS 50
2217HAL_BOOL
2218ar9300_detect_mac_hang(struct ath_hal *ah)
2219{
2220    struct ath_hal_9300 *ahp = AH9300(ah);
2221    mac_dbg_regs_t mac_dbg;
2222    hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2223    hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2224    int i = 0;
2225    u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2226
2227    if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2228        return AH_FALSE;
2229    }
2230
2231    OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2232
2233    mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2234    mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2235    mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2236
2237    HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2238            mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2239            mac_dbg.dma_dbg_6);
2240
2241    if (hang_sig1 !=
2242            ar9300_compare_dbg_hang(ah, mac_dbg,
2243                 hang_sig1_val, hang_sig1, &dcu_chain))
2244    {
2245        HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2246        return AH_FALSE;
2247    }
2248
2249    shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2250    shift_val *= 5;
2251
2252    for (i = 1; i <= NUM_STATUS_READS; i++) {
2253        if (dcu_chain < 6) {
2254            mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2255            current_dcu_chain_state =
2256                     ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2257        } else {
2258            mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2259            current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2260        }
2261        mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2262
2263        if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2264            || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2265            return AH_FALSE;
2266        }
2267    }
2268    HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2269             ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2270    ahp->ah_hang[MAC_HANG_SIG1]++;
2271    return AH_TRUE;
2272
2273} /* end - ar9300_detect_mac_hang */
2274
2275/* Determine if the baseband is hung by reading the Observation Bus Register */
2276HAL_BOOL
2277ar9300_detect_bb_hang(struct ath_hal *ah)
2278{
2279#define N(a) (sizeof(a) / sizeof(a[0]))
2280    struct ath_hal_9300 *ahp = AH9300(ah);
2281    u_int32_t hang_sig = 0;
2282    int i = 0;
2283    /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2284     *
2285     * 4 known BB hang signatures -
2286     * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2287     * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2288     * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2289     * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2290     *     Rx State (bits 20-24) is 0x7.
2291     */
2292    hal_hw_hang_check_t hang_list [] =
2293    {
2294     /* Offset        Reg Value   Reg Mask    Hang Offset */
2295       {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2296       {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2297       {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2298       {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2299    };
2300
2301    if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2302                               HAL_DFS_BB_HANG_WAR |
2303                               HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2304        return AH_FALSE;
2305    }
2306
2307    hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2308    for (i = 1; i <= NUM_STATUS_READS; i++) {
2309        if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2310            return AH_FALSE;
2311        }
2312    }
2313
2314    for (i = 0; i < N(hang_list); i++) {
2315        if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2316            ahp->ah_hang[hang_list[i].hang_offset]++;
2317            HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2318                     "sig3count=%d sig4count=%d\n", __func__,
2319                     ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2320                     ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2321            return AH_TRUE;
2322        }
2323    }
2324
2325    HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2326                              "<0x806c>=0x%x\n", __func__, hang_sig);
2327
2328    return AH_FALSE;
2329
2330#undef N
2331} /* end - ar9300_detect_bb_hang () */
2332
2333#undef NUM_STATUS_READS
2334
2335HAL_STATUS
2336ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2337{
2338    struct ath_hal_9300     *ahp = AH9300(ah);
2339    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2340    HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2341    const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2342    u_int16_t               ant_config;
2343    u_int32_t               hal_num_ant_config;
2344
2345    hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2346        p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2347
2348    if (cfg < hal_num_ant_config) {
2349        if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2350            OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2351            return HAL_OK;
2352        }
2353    }
2354
2355    return HAL_EINVAL;
2356}
2357
2358/*
2359 * Functions to get/set DCS mode
2360 */
2361void
2362ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2363{
2364    AH9300(ah)->ah_dcs_enable = mode;
2365}
2366
2367u_int32_t
2368ar9300_get_dcs_mode(struct ath_hal *ah)
2369{
2370    return AH9300(ah)->ah_dcs_enable;
2371}
2372
2373#if ATH_BT_COEX
2374void
2375ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2376{
2377    struct ath_hal_9300 *ahp = AH9300(ah);
2378
2379    ahp->ah_bt_module = btinfo->bt_module;
2380    ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2381    ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2382    ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2383    ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2384    ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2385    ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2386    ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2387}
2388
2389void
2390ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2391{
2392    struct ath_hal_9300 *ahp = AH9300(ah);
2393    HAL_BOOL rx_clear_polarity;
2394
2395    /*
2396     * For Kiwi and Osprey, the polarity of rx_clear is active high.
2397     * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2398     */
2399    rx_clear_polarity = !btconf->bt_rxclear_polarity;
2400
2401    ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2402        SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2403        SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2404        SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2405        SM(btconf->bt_mode, AR_BT_MODE) |
2406        SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2407        SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2408        SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2409        SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2410
2411    ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2412
2413    if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2414        /* Enable ACK to go out even though BT has higher priority. */
2415        ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2416    }
2417}
2418
2419void
2420ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2421{
2422    struct ath_hal_9300 *ahp = AH9300(ah);
2423
2424    /* clear the old value, then set the new value */
2425    ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2426    ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2427}
2428
2429void
2430ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2431{
2432    struct ath_hal_9300 *ahp = AH9300(ah);
2433
2434    ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2435    ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2436    ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2437    ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2438
2439    switch (stomp_type) {
2440    case HAL_BT_COEX_STOMP_ALL:
2441        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2442        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2443        break;
2444    case HAL_BT_COEX_STOMP_LOW:
2445        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2446        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2447        break;
2448    case HAL_BT_COEX_STOMP_ALL_FORCE:
2449        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2450        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2451        break;
2452    case HAL_BT_COEX_STOMP_LOW_FORCE:
2453        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2454        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2455        break;
2456    case HAL_BT_COEX_STOMP_NONE:
2457    case HAL_BT_COEX_NO_STOMP:
2458        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2459        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2460        break;
2461    default:
2462        /* There is a force_weight from registry */
2463        ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2464        ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2465        break;
2466    }
2467}
2468
2469void
2470ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2471{
2472    struct ath_hal_9300 *ahp = AH9300(ah);
2473
2474    /* clear the old value, then set the new value */
2475    ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2476    ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2477}
2478
2479static void
2480ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2481{
2482    struct ath_hal_9300 *ahp = AH9300(ah);
2483#if ATH_ANT_DIV_COMB
2484    //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2485    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2486#endif
2487
2488    HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
2489
2490    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2491    {
2492        if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2493        {
2494            /* Config antenna diversity */
2495#if ATH_ANT_DIV_COMB
2496            ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2497#endif
2498        }
2499    }
2500}
2501
2502
2503void
2504ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2505    u_int32_t value)
2506{
2507    struct ath_hal_9300 *ahp = AH9300(ah);
2508    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2509
2510    switch (type) {
2511        case HAL_BT_COEX_SET_ACK_PWR:
2512            if (value) {
2513                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2514            } else {
2515                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2516            }
2517            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2518                ahpriv->ah_extraTxPow, 0);
2519            break;
2520
2521        case HAL_BT_COEX_ANTENNA_DIVERSITY:
2522            if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2523                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2524                if (value) {
2525                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2526                }
2527                else {
2528                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2529                }
2530                ar9300_bt_coex_antenna_diversity(ah, value);
2531            }
2532            break;
2533        case HAL_BT_COEX_LOWER_TX_PWR:
2534            if (value) {
2535                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2536            }
2537            else {
2538                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2539            }
2540            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2541                                      ahpriv->ah_extraTxPow, 0);
2542            break;
2543#if ATH_SUPPORT_MCI
2544        case HAL_BT_COEX_MCI_MAX_TX_PWR:
2545            if ((ah->ah_config.ath_hal_mci_config &
2546                 ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2547            {
2548                if (value) {
2549                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2550                    ahp->ah_mci_concur_tx_en = AH_TRUE;
2551                }
2552                else {
2553                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2554                    ahp->ah_mci_concur_tx_en = AH_FALSE;
2555                }
2556                ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2557                                          ahpriv->ah_extraTxPow, 0);
2558            }
2559            HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2560                     ahp->ah_mci_concur_tx_en);
2561            break;
2562        case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2563            if (value) {
2564                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2565            }
2566            else {
2567                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2568            }
2569            break;
2570#endif
2571        default:
2572            break;
2573    }
2574}
2575
2576void
2577ar9300_bt_coex_disable(struct ath_hal *ah)
2578{
2579    struct ath_hal_9300 *ahp = AH9300(ah);
2580
2581    /* Always drive rx_clear_external output as 0 */
2582    ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2583        HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2584
2585    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2586        OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2587        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2588    }
2589
2590    OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2591    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2592    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2593    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2594    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2595    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2596    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2597    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2598
2599    ahp->ah_bt_coex_enabled = AH_FALSE;
2600}
2601
2602int
2603ar9300_bt_coex_enable(struct ath_hal *ah)
2604{
2605    struct ath_hal_9300 *ahp = AH9300(ah);
2606
2607    /* Program coex mode and weight registers to actually enable coex */
2608    OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2609    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2610    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2611    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2612    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2613    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2614    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2615    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2616
2617    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2618        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2619    } else {
2620        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2621    }
2622
2623    OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2624    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2625        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2626    } else {
2627        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2628    }
2629
2630    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2631        /* For 3-wire, configure the desired GPIO port for rx_clear */
2632        ath_hal_gpioCfgOutput(ah,
2633            ahp->ah_wlan_active_gpio_select,
2634            HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2635    }
2636    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2637        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2638    {
2639        /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2640        ath_hal_gpioCfgOutput(ah,
2641            ahp->ah_wlan_active_gpio_select,
2642            HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2643    }
2644
2645    /*
2646     * Enable a weak pull down on BT_ACTIVE.
2647     * When BT device is disabled, BT_ACTIVE might be floating.
2648     */
2649    OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2650        (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2651        (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2652
2653    ahp->ah_bt_coex_enabled = AH_TRUE;
2654
2655    return 0;
2656}
2657
2658u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2659{
2660    return 0;
2661}
2662
2663u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2664{
2665    return bOn;
2666}
2667
2668void
2669ar9300_init_bt_coex(struct ath_hal *ah)
2670{
2671    struct ath_hal_9300 *ahp = AH9300(ah);
2672
2673    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2674        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2675                   (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2676                    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2677
2678        /*
2679         * Set input mux for bt_prority_async and
2680         * bt_active_async to GPIO pins
2681         */
2682        OS_REG_RMW_FIELD(ah,
2683            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2684            AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2685            ahp->ah_bt_active_gpio_select);
2686        OS_REG_RMW_FIELD(ah,
2687            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2688            AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2689            ahp->ah_bt_priority_gpio_select);
2690
2691        /* Configure the desired GPIO ports for input */
2692        ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2693        ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2694
2695        if (ahp->ah_bt_coex_enabled) {
2696            ar9300_bt_coex_enable(ah);
2697        } else {
2698            ar9300_bt_coex_disable(ah);
2699        }
2700    }
2701    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2702        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2703    {
2704        /* 2-wire */
2705        if (ahp->ah_bt_coex_enabled) {
2706            /* Connect bt_active_async to baseband */
2707            OS_REG_CLR_BIT(ah,
2708                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2709                (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2710                 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2711            OS_REG_SET_BIT(ah,
2712                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2713                AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2714
2715            /*
2716             * Set input mux for bt_prority_async and
2717             * bt_active_async to GPIO pins
2718             */
2719            OS_REG_RMW_FIELD(ah,
2720                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2721                AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2722                ahp->ah_bt_active_gpio_select);
2723
2724            /* Configure the desired GPIO ports for input */
2725            ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2726
2727            /* Enable coexistence on initialization */
2728            ar9300_bt_coex_enable(ah);
2729        }
2730    }
2731#if ATH_SUPPORT_MCI
2732    else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2733        if (ahp->ah_bt_coex_enabled) {
2734            ar9300_mci_bt_coex_enable(ah);
2735        }
2736        else {
2737            ar9300_mci_bt_coex_disable(ah);
2738        }
2739    }
2740#endif /* ATH_SUPPORT_MCI */
2741}
2742
2743#endif /* ATH_BT_COEX */
2744
2745HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2746{
2747    u_int32_t val;
2748    int wasp_mm_rev;
2749
2750#define AR_SOC_RST_REVISION_ID      0xB8060090
2751#define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2752    wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2753            AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2754            AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2755#undef AR_SOC_RST_REVISION_ID
2756#undef REG_READ
2757
2758    /*
2759     * Azimuth (ProxySTA) Mode is only supported correctly by
2760     * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2761     *
2762     * Enable this feature for Scorpion at this time. The silicon
2763     * still needs to be validated.
2764     */
2765    if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2766        !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2767        !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2768          ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2769           (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2770            wasp_mm_rev >= 0 /* 1 */))))
2771    {
2772        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2773                "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2774                __func__, AH_PRIVATE((ah))->ah_macVersion,
2775                AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2776        return HAL_ENOTSUPP;
2777    }
2778
2779    OS_REG_WRITE(ah,
2780        AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2781
2782    /* turn on mode bit[24] for proxy sta */
2783    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2784        OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2785
2786    val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2787    if (enable) {
2788        val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2789               AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2790               AR_AZIMUTH_BA_USES_AD1;
2791        /* turn off filter pass hold (bit 9) */
2792        val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2793    } else {
2794        val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2795                 AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2796                 AR_AZIMUTH_BA_USES_AD1);
2797    }
2798    OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2799
2800    /* enable promiscous mode */
2801    OS_REG_WRITE(ah, AR_RX_FILTER,
2802        OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2803    /* enable promiscous in azimuth mode */
2804    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2805    OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2806
2807    /* turn on filter pass hold (bit 9) */
2808    OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2809        OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2810
2811    return HAL_OK;
2812}
2813
2814#if 0
2815void ar9300_mat_enable(struct ath_hal *ah, int enable)
2816{
2817    /*
2818     * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2819     * mitigation and turn on key search always for better performance.
2820     */
2821    struct ath_hal_9300 *ahp = AH9300(ah);
2822    struct ath_hal_private *ap = AH_PRIVATE(ah);
2823
2824    ahp->ah_intr_mitigation_rx = !enable;
2825    if (ahp->ah_intr_mitigation_rx) {
2826        /*
2827         * Enable Interrupt Mitigation for Rx.
2828         * If no build-specific limits for the rx interrupt mitigation
2829         * timer have been specified, use conservative defaults.
2830         */
2831        #ifndef AH_RIMT_VAL_LAST
2832            #define AH_RIMT_LAST_MICROSEC 500
2833        #endif
2834        #ifndef AH_RIMT_VAL_FIRST
2835            #define AH_RIMT_FIRST_MICROSEC 2000
2836        #endif
2837        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2838        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2839    } else {
2840        OS_REG_WRITE(ah, AR_RIMT, 0);
2841    }
2842
2843    ahp->ah_enable_keysearch_always = !!enable;
2844    ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2845}
2846#endif
2847
2848void ar9300_enable_tpc(struct ath_hal *ah)
2849{
2850    u_int32_t val = 0;
2851
2852    ah->ah_config.ath_hal_desc_tpc = 1;
2853
2854    /* Enable TPC */
2855    OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2856
2857    /*
2858     * Disable per chain power reduction since we are already
2859     * accounting for this in our calculations
2860     */
2861    val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2862    if (AR_SREV_WASP(ah)) {
2863        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2864                         val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2865    } else {
2866        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2867                         val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2868    }
2869}
2870
2871
2872/*
2873 * ar9300_force_tsf_sync
2874 * This function forces the TSF sync to the given bssid, this is implemented
2875 * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2876 * mode of operation, where we sync the TSF to RootAP TSF values
2877 */
2878void
2879ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2880    u_int16_t assoc_id)
2881{
2882    ar9300_set_operating_mode(ah, HAL_M_STA);
2883    ar9300_write_associd(ah, bssid, assoc_id);
2884}
2885
2886void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2887{
2888    struct ath_hal_9300 *ahp = AH9300(ah);
2889    u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2890    u_int32_t           temp_powertx_rate9_reg_val;
2891    int8_t              olpc_power_offset = 0;
2892    int8_t              tmp_olpc_val = 0;
2893    HAL_RSSI_TX_POWER   old_greentx_status;
2894    u_int8_t            target_power_val_t[ar9300_rate_size];
2895    int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2896
2897    if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2898        !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2899        return;
2900    }
2901
2902    old_greentx_status = AH9300(ah)->green_tx_status;
2903    if (ahp->ah_hw_green_tx_enable) {
2904        tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2905        tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2906    } else {
2907        tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2908        tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2909    }
2910
2911    if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2912        && (rssi > tmp_rss1_thr1))
2913    {
2914        if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2915            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2916        }
2917    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2918        && (rssi > tmp_rss1_thr2))
2919    {
2920        if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2921            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2922        }
2923    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2924        if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2925            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2926        }
2927    }
2928
2929    /* If status is not change, don't do anything */
2930    if (old_greentx_status == AH9300(ah)->green_tx_status) {
2931        return;
2932    }
2933
2934    /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2935    if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2936        && AR_SREV_POSEIDON(ah))
2937    {
2938        if (ahp->ah_hw_green_tx_enable) {
2939            switch (AH9300(ah)->green_tx_status) {
2940            case HAL_RSSI_TX_POWER_SHORT:
2941                /* 1. TxPower Config */
2942                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2943                    sizeof(target_power_val_t));
2944                /* 1.1 Store OLPC Delta Calibration Offset*/
2945                olpc_power_offset = 0;
2946                /* 2. Store OB/DB */
2947                /* 3. Store TPC settting */
2948                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2949                                    SM(14, AR_TPC_CTS) |
2950                                    SM(14, AR_TPC_CHIRP) |
2951                                    SM(14, AR_TPC_RPT));
2952                /* 4. Store BB_powertx_rate9 value */
2953                temp_powertx_rate9_reg_val =
2954                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2955                break;
2956            case HAL_RSSI_TX_POWER_MIDDLE:
2957                /* 1. TxPower Config */
2958                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2959                    sizeof(target_power_val_t));
2960                /* 1.1 Store OLPC Delta Calibration Offset*/
2961                olpc_power_offset = 0;
2962                /* 2. Store OB/DB */
2963                /* 3. Store TPC settting */
2964                temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2965                                    SM(18, AR_TPC_CTS) |
2966                                    SM(18, AR_TPC_CHIRP) |
2967                                    SM(18, AR_TPC_RPT));
2968                /* 4. Store BB_powertx_rate9 value */
2969                temp_powertx_rate9_reg_val =
2970                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2971                break;
2972            case HAL_RSSI_TX_POWER_LONG:
2973            default:
2974                /* 1. TxPower Config */
2975                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2976                    sizeof(target_power_val_t));
2977                /* 1.1 Store OLPC Delta Calibration Offset*/
2978                olpc_power_offset = 0;
2979                /* 2. Store OB/DB1/DB2 */
2980                /* 3. Store TPC settting */
2981                temp_tcp_reg_val =
2982                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2983                /* 4. Store BB_powertx_rate9 value */
2984                temp_powertx_rate9_reg_val =
2985                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2986                break;
2987            }
2988        } else {
2989            switch (AH9300(ah)->green_tx_status) {
2990            case HAL_RSSI_TX_POWER_SHORT:
2991                /* 1. TxPower Config */
2992                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2993                    sizeof(target_power_val_t));
2994                /* 1.1 Store OLPC Delta Calibration Offset*/
2995                olpc_power_offset =
2996                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2997                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2998                /* 2. Store OB/DB */
2999                temp_obdb_reg_val =
3000                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3001                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3002                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3003                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3004                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3005                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3006                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3007                    AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3008                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3009                    AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3010                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3011                    AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3012                /* 3. Store TPC settting */
3013                temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
3014                                    SM(6, AR_TPC_CTS) |
3015                                    SM(6, AR_TPC_CHIRP) |
3016                                    SM(6, AR_TPC_RPT));
3017                /* 4. Store BB_powertx_rate9 value */
3018                temp_powertx_rate9_reg_val =
3019                    WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
3020                break;
3021            case HAL_RSSI_TX_POWER_MIDDLE:
3022                /* 1. TxPower Config */
3023                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
3024                    sizeof(target_power_val_t));
3025                /* 1.1 Store OLPC Delta Calibration Offset*/
3026                olpc_power_offset =
3027                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3028                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3029                /* 2. Store OB/DB */
3030                temp_obdb_reg_val =
3031                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3032                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3033                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3034                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3035                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3036                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3037                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3038                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3039                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3040                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3041                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3042                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3043                /* 3. Store TPC settting */
3044                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3045                                    SM(14, AR_TPC_CTS) |
3046                                    SM(14, AR_TPC_CHIRP) |
3047                                    SM(14, AR_TPC_RPT));
3048                /* 4. Store BB_powertx_rate9 value */
3049                temp_powertx_rate9_reg_val =
3050                    WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3051                break;
3052            case HAL_RSSI_TX_POWER_LONG:
3053            default:
3054                /* 1. TxPower Config */
3055                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3056                    sizeof(target_power_val_t));
3057                /* 1.1 Store OLPC Delta Calibration Offset*/
3058                olpc_power_offset =
3059                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3060                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3061                /* 2. Store OB/DB1/DB2 */
3062                temp_obdb_reg_val =
3063                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3064                /* 3. Store TPC settting */
3065                temp_tcp_reg_val =
3066                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3067                /* 4. Store BB_powertx_rate9 value */
3068                temp_powertx_rate9_reg_val =
3069                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3070                break;
3071            }
3072        }
3073        /* 1.1 Do OLPC Delta Calibration Offset */
3074        tmp_olpc_val =
3075            (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3076        tmp_olpc_val += olpc_power_offset;
3077        OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3078            (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3079            AR_PHY_TPC_OLPC_GAIN_DELTA);
3080
3081        /* 1.2 TxPower Config */
3082        ar9300_transmit_power_reg_write(ah, target_power_val_t);
3083        /* 2. Config OB/DB */
3084        if (!ahp->ah_hw_green_tx_enable) {
3085            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3086        }
3087        /* 3. config TPC settting */
3088        OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3089        /* 4. config BB_powertx_rate9 value */
3090        OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3091    }
3092}
3093
3094#if 0
3095void
3096ar9300_get_vow_stats(
3097    struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3098{
3099    if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3100        p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3101    }
3102    if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3103        p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3104    }
3105    if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3106        p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3107    }
3108    if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3109        p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3110    }
3111    if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3112        p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3113    }
3114}
3115#endif
3116
3117/*
3118 * ar9300_is_skip_paprd_by_greentx
3119 *
3120 * This function check if we need to skip PAPRD tuning
3121 * when GreenTx in specific state.
3122 */
3123HAL_BOOL
3124ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3125{
3126    if (AR_SREV_POSEIDON(ah) &&
3127        ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3128        ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3129         (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3130    {
3131        return AH_TRUE;
3132    }
3133    return AH_FALSE;
3134}
3135
3136void
3137ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3138{
3139    unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3140    unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3141    unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3142    unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3143    unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3144    struct ath_hal_9300 *ahp = AH9300(ah);
3145
3146    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3147        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3148                             AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3149        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3150                             AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3151        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3152                             AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3153        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3154                             AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3155        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3156                             AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3157    }
3158}
3159
3160void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3161{
3162    struct ath_hal_9300 *ahp = AH9300(ah);
3163
3164    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3165        if ((value == 0) || (value == 1)) {
3166            OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3167                             AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3168        }
3169    }
3170}
3171
3172void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3173{
3174    OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3175}
3176
3177int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3178{
3179    int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3180
3181    /* RSSI format is 8.4.  Ignore lowest four bits */
3182    val = val >> 4;
3183    return val;
3184}
3185
3186void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3187                                        u_int32_t rssi_threshold)
3188{
3189    struct ath_hal_9300 *ahp = AH9300(ah);
3190
3191    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3192
3193    /* save value for restoring after chip reset */
3194    ahp->ah_beacon_rssi_threshold = rssi_threshold;
3195}
3196
3197void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3198{
3199    OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3200}
3201
3202void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3203{
3204    if (on) {
3205        OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3206                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3207    }
3208    else {
3209        OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3210                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3211    }
3212}
3213/*
3214 * Gets the contents of the specified key cache entry.
3215 */
3216HAL_BOOL
3217ar9300_print_keycache(struct ath_hal *ah)
3218{
3219
3220    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3221    u_int32_t key0, key1, key2, key3, key4;
3222    u_int32_t mac_hi, mac_lo;
3223    u_int16_t entry = 0;
3224    u_int32_t valid = 0;
3225    u_int32_t key_type;
3226
3227    ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3228
3229    for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3230        key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3231        key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3232        key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3233        key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3234        key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3235
3236        key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3237
3238        mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3239        mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3240
3241        if (mac_hi & AR_KEYTABLE_VALID) {
3242            valid = 1;
3243        } else {
3244            valid = 0;
3245        }
3246
3247        if ((mac_hi != 0) && (mac_lo != 0)) {
3248            mac_hi &= ~0x8000;
3249            mac_hi <<= 1;
3250            mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3251            mac_lo <<= 1;
3252        }
3253
3254        ath_hal_printf(ah,
3255            "%03d    "
3256            "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3257            "   %02d     %02d    "
3258            "%02x:%02x:%02x:%02x:%02x:%02x \n",
3259            entry,
3260            (key0 << 24) >> 24, (key0 << 16) >> 24,
3261            (key0 << 8) >> 24, key0 >> 24,
3262            (key1 << 24) >> 24, (key1 << 16) >> 24,
3263            //(key1 << 8) >> 24, key1 >> 24,
3264            (key2 << 24) >> 24, (key2 << 16) >> 24,
3265            (key2 << 8) >> 24, key2 >> 24,
3266            (key3 << 24) >> 24, (key3 << 16) >> 24,
3267            //(key3 << 8) >> 24, key3 >> 24,
3268            (key4 << 24) >> 24, (key4 << 16) >> 24,
3269            (key4 << 8) >> 24, key4 >> 24,
3270            valid, key_type,
3271            (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3272            (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3273    }
3274
3275    return AH_TRUE;
3276}
3277
3278/* enable/disable smart antenna mode */
3279HAL_BOOL
3280ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3281{
3282    struct ath_hal_9300 *ahp = AH9300(ah);
3283
3284    if (enable) {
3285        OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3286    } else {
3287        OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3288    }
3289
3290    /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3291     * and swcom2 with 0
3292     * FIXME Ideally these registers need to be made read from caldata.
3293     * Until the calibration team gets them, keep them along with board
3294     * configuration.
3295     */
3296    if (enable && AR_SREV_SCORPION(ah) &&
3297           (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3298
3299       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3300       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3301    }
3302
3303    ahp->ah_smartantenna_enable = enable;
3304    return 1;
3305}
3306
3307#ifdef ATH_TX99_DIAG
3308#ifndef ATH_SUPPORT_HTC
3309void
3310ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3311    u_int32_t txpower)
3312{
3313#define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3314    static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3315    int32_t i;
3316
3317    /* The max power is limited to 63 */
3318    if (txpower <= AR9300_MAX_RATE_POWER) {
3319        for (i = 0; i < ar9300_rate_size; i++) {
3320            p_pwr_array[i] = txpower;
3321        }
3322    } else {
3323        for (i = 0; i < ar9300_rate_size; i++) {
3324            p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3325        }
3326    }
3327
3328    OS_REG_WRITE(ah, 0xa458, 0);
3329
3330    /* Write the OFDM power per rate set */
3331    /* 6 (LSB), 9, 12, 18 (MSB) */
3332    OS_REG_WRITE(ah, 0xa3c0,
3333        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3334          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3335          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3336          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3337    );
3338    /* 24 (LSB), 36, 48, 54 (MSB) */
3339    OS_REG_WRITE(ah, 0xa3c4,
3340        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3341          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3342          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3343          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3344    );
3345
3346    /* Write the CCK power per rate set */
3347    /* 1L (LSB), reserved, 2L, 2S (MSB) */
3348    OS_REG_WRITE(ah, 0xa3c8,
3349        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3350          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3351          /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3352          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3353    );
3354    /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3355    OS_REG_WRITE(ah, 0xa3cc,
3356        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3357          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3358          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3359          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3360    );
3361
3362    /* Write the HT20 power per rate set */
3363    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3364    OS_REG_WRITE(ah, 0xa3d0,
3365        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3366          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3367          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3368          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3369    );
3370
3371    /* 6 (LSB), 7, 12, 13 (MSB) */
3372    OS_REG_WRITE(ah, 0xa3d4,
3373        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3374          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3375          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3376          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3377    );
3378
3379    /* 14 (LSB), 15, 20, 21 */
3380    OS_REG_WRITE(ah, 0xa3e4,
3381        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3382          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3383          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3384          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3385    );
3386
3387    /* Mixed HT20 and HT40 rates */
3388    /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3389    OS_REG_WRITE(ah, 0xa3e8,
3390        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3391          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3392          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3393          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3394    );
3395
3396    /* Write the HT40 power per rate set */
3397    /* correct PAR difference between HT40 and HT20/LEGACY */
3398    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3399    OS_REG_WRITE(ah, 0xa3d8,
3400        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3401          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3402          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3403          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3404    );
3405
3406    /* 6 (LSB), 7, 12, 13 (MSB) */
3407    OS_REG_WRITE(ah, 0xa3dc,
3408        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3409          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3410          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3411          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3412    );
3413
3414    /* 14 (LSB), 15, 20, 21 */
3415    OS_REG_WRITE(ah, 0xa3ec,
3416        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3417          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3418          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3419          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3420    );
3421#undef PWR_MAS
3422}
3423
3424void
3425ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3426{
3427    if (tx_chainmask == 0x5) {
3428        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3429            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3430    }
3431    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3432    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3433
3434    OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3435    if (tx_chainmask == 0x5) {
3436        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3437            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3438    }
3439}
3440
3441void
3442ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3443    int chtype)
3444{
3445    OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3446    OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3447    OS_REG_WRITE(ah, 0xa350,
3448        (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3449
3450    /* 11G mode */
3451    if (!chtype) {
3452        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3453            OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3454        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3455            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3456                OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3457            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3458                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3459                        | (0x1 << 26)  | (0x7 << 24))
3460                        & ~(0x1 << 22));
3461        } else {
3462            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3463                OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3464            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3465                (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3466                        | (0x1 << 26)  | (0x7 << 24))
3467                        & ~(0x1 << 22));
3468        }
3469
3470        /* chain zero */
3471        if ((tx_chain_mask & 0x01) == 0x01) {
3472            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3473                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3474                      | (0x1 << 31) | (0x5 << 15)
3475                      | (0x3 << 9)) & ~(0x1 << 27)
3476                      & ~(0x1 << 12));
3477            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3478                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3479                      | (0x1 << 12) | (0x1 << 10)
3480                      | (0x1 << 9)  | (0x1 << 8)
3481                      | (0x1 << 7)) & ~(0x1 << 11));
3482            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3483                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3484                      | (0x1 << 29) | (0x1 << 25)
3485                      | (0x1 << 23) | (0x1 << 19)
3486                      | (0x1 << 10) | (0x1 << 9)
3487                      | (0x1 << 8)  | (0x1 << 3))
3488                      & ~(0x1 << 28)& ~(0x1 << 24)
3489                      & ~(0x1 << 22)& ~(0x1 << 7));
3490            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3491                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3492                      | (0x1 << 23))& ~(0x1 << 21));
3493            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3494                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3495                      | (0x1 << 12) | (0x1 << 10)
3496                      | (0x1 << 9)  | (0x1 << 8)
3497                      | (0x1 << 6)  | (0x1 << 5)
3498                      | (0x1 << 4)  | (0x1 << 3)
3499                      | (0x1 << 2));
3500            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3501                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3502        }
3503        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3504            /* chain one */
3505            if ((tx_chain_mask & 0x02) == 0x02 ) {
3506                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3507                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3508                          | (0x1 << 31) | (0x5 << 15)
3509                          | (0x3 << 9)) & ~(0x1 << 27)
3510                          & ~(0x1 << 12));
3511                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3512                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3513                          | (0x1 << 12) | (0x1 << 10)
3514                          | (0x1 << 9)  | (0x1 << 8)
3515                          | (0x1 << 7)) & ~(0x1 << 11));
3516                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3517                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3518                          | (0x1 << 29) | (0x1 << 25)
3519                          | (0x1 << 23) | (0x1 << 19)
3520                          | (0x1 << 10) | (0x1 << 9)
3521                          | (0x1 << 8)  | (0x1 << 3))
3522                          & ~(0x1 << 28)& ~(0x1 << 24)
3523                          & ~(0x1 << 22)& ~(0x1 << 7));
3524                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3525                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3526                          | (0x1 << 23))& ~(0x1 << 21));
3527                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3528                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3529                          | (0x1 << 12) | (0x1 << 10)
3530                          | (0x1 << 9)  | (0x1 << 8)
3531                          | (0x1 << 6)  | (0x1 << 5)
3532                          | (0x1 << 4)  | (0x1 << 3)
3533                          | (0x1 << 2));
3534                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3535                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3536            }
3537        }
3538        if (AR_SREV_OSPREY(ah)) {
3539            /* chain two */
3540            if ((tx_chain_mask & 0x04) == 0x04 ) {
3541                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3542                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3543                          | (0x1 << 31) | (0x5 << 15)
3544                          | (0x3 << 9)) & ~(0x1 << 27)
3545                          & ~(0x1 << 12));
3546                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3547                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3548                          | (0x1 << 12) | (0x1 << 10)
3549                          | (0x1 << 9)  | (0x1 << 8)
3550                          | (0x1 << 7)) & ~(0x1 << 11));
3551                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3552                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3553                          | (0x1 << 29) | (0x1 << 25)
3554                          | (0x1 << 23) | (0x1 << 19)
3555                          | (0x1 << 10) | (0x1 << 9)
3556                          | (0x1 << 8)  | (0x1 << 3))
3557                          & ~(0x1 << 28)& ~(0x1 << 24)
3558                          & ~(0x1 << 22)& ~(0x1 << 7));
3559                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3560                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3561                          | (0x1 << 23))& ~(0x1 << 21));
3562                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3563                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3564                          | (0x1 << 12) | (0x1 << 10)
3565                          | (0x1 << 9)  | (0x1 << 8)
3566                          | (0x1 << 6)  | (0x1 << 5)
3567                          | (0x1 << 4)  | (0x1 << 3)
3568                          | (0x1 << 2));
3569                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3570                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3571            }
3572        }
3573
3574        OS_REG_WRITE(ah, 0xa28c, 0x11111);
3575        OS_REG_WRITE(ah, 0xa288, 0x111);
3576    } else {
3577        /* chain zero */
3578        if ((tx_chain_mask & 0x01) == 0x01) {
3579            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3580                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3581                      | (0x1 << 31) | (0x1 << 27)
3582                      | (0x3 << 23) | (0x1 << 19)
3583                      | (0x1 << 15) | (0x3 << 9))
3584                      & ~(0x1 << 12));
3585            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3586                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3587                      | (0x1 << 12) | (0x1 << 10)
3588                      | (0x1 << 9)  | (0x1 << 8)
3589                      | (0x1 << 7)  | (0x1 << 3)
3590                      | (0x1 << 2)  | (0x1 << 1))
3591                      & ~(0x1 << 11)& ~(0x1 << 0));
3592            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3593                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3594                      | (0x1 << 29) | (0x1 << 25)
3595                      | (0x1 << 23) | (0x1 << 19)
3596                      | (0x1 << 10) | (0x1 << 9)
3597                      | (0x1 << 8)  | (0x1 << 3))
3598                      & ~(0x1 << 28)& ~(0x1 << 24)
3599                      & ~(0x1 << 22)& ~(0x1 << 7));
3600            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3601                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3602                      | (0x1 << 23))& ~(0x1 << 21));
3603            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3604                OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3605                      | (0x3 << 3)  | (0x3 << 0));
3606            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3607                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3608                      | (0x3 << 29) | (0x3 << 26)
3609                      | (0x2 << 23) | (0x2 << 20)
3610                      | (0x2 << 17))& ~(0x1 << 14));
3611            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3612                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3613                      | (0x1 << 12) | (0x1 << 10)
3614                      | (0x1 << 9)  | (0x1 << 8)
3615                      | (0x1 << 6)  | (0x1 << 5)
3616                      | (0x1 << 4)  | (0x1 << 3)
3617                      | (0x1 << 2));
3618            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3619                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3620            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3621                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3622                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3623                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3624                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3625                          | (0x1 << 26) | (0x7 << 24)
3626                          | (0x3 << 22));
3627            } else {
3628                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3629                    OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3630                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3631                    OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3632                          | (0x1 << 26) | (0x7 << 24)
3633                          | (0x3 << 22));
3634            }
3635
3636            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3637                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3638                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3639                          | (0x1 << 3)  | (0x1 << 2)
3640                          | (0x1 << 1)) & ~(0x1 << 0));
3641                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3642                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3643                          | (0x1 << 19) | (0x1 << 3));
3644                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3645                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3646            }
3647            if (AR_SREV_OSPREY(ah)) {
3648                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3649                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3650                          | (0x1 << 3)  | (0x1 << 2)
3651                          | (0x1 << 1)) & ~(0x1 << 0));
3652                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3653                    OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3654                          | (0x1 << 19) | (0x1 << 3));
3655                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3656                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3657            }
3658        }
3659        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3660            /* chain one */
3661            if ((tx_chain_mask & 0x02) == 0x02 ) {
3662                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3663                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3664                          | (0x1 << 3)  | (0x1 << 2)
3665                          | (0x1 << 1)) & ~(0x1 << 0));
3666                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3667                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3668                          | (0x1 << 19) | (0x1 << 3));
3669                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3670                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3671                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3672                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3673                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3674                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3675                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3676                              | (0x1 << 26) | (0x7 << 24)
3677                              | (0x3 << 22));
3678                } else {
3679                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3680                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3681                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3682                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3683                              | (0x1 << 26) | (0x7 << 24)
3684                              | (0x3 << 22));
3685                }
3686
3687                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3688                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3689                          | (0x1 << 31) | (0x1 << 27)
3690                          | (0x3 << 23) | (0x1 << 19)
3691                          | (0x1 << 15) | (0x3 << 9))
3692                          & ~(0x1 << 12));
3693                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3694                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3695                          | (0x1 << 12) | (0x1 << 10)
3696                          | (0x1 << 9)  | (0x1 << 8)
3697                          | (0x1 << 7)  | (0x1 << 3)
3698                          | (0x1 << 2)  | (0x1 << 1))
3699                          & ~(0x1 << 11)& ~(0x1 << 0));
3700                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3701                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3702                          | (0x1 << 29) | (0x1 << 25)
3703                          | (0x1 << 23) | (0x1 << 19)
3704                          | (0x1 << 10) | (0x1 << 9)
3705                          | (0x1 << 8)  | (0x1 << 3))
3706                          & ~(0x1 << 28)& ~(0x1 << 24)
3707                          & ~(0x1 << 22)& ~(0x1 << 7));
3708                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3709                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3710                          | (0x1 << 23))& ~(0x1 << 21));
3711                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3712                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3713                          | (0x3 << 3)  | (0x3 << 0));
3714                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3715                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3716                          | (0x3 << 29) | (0x3 << 26)
3717                          | (0x2 << 23) | (0x2 << 20)
3718                          | (0x2 << 17))& ~(0x1 << 14));
3719                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3720                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3721                          | (0x1 << 12) | (0x1 << 10)
3722                          | (0x1 << 9)  | (0x1 << 8)
3723                          | (0x1 << 6)  | (0x1 << 5)
3724                          | (0x1 << 4)  | (0x1 << 3)
3725                          | (0x1 << 2));
3726                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3727                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3728
3729                if (AR_SREV_OSPREY(ah)) {
3730                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3731                        (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3732                              | (0x1 << 3)  | (0x1 << 2)
3733                              | (0x1 << 1)) & ~(0x1 << 0));
3734                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3735                        OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3736                              | (0x1 << 19) | (0x1 << 3));
3737                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3738                        OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3739                }
3740            }
3741        }
3742        if (AR_SREV_OSPREY(ah)) {
3743            /* chain two */
3744            if ((tx_chain_mask & 0x04) == 0x04 ) {
3745                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3746                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3747                          | (0x1 << 3)  | (0x1 << 2)
3748                          | (0x1 << 1)) & ~(0x1 << 0));
3749                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3750                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3751                          | (0x1 << 19) | (0x1 << 3));
3752                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3753                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3754                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3755                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3756                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3757                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3758                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3759                              | (0x1 << 26) | (0x7 << 24)
3760                              | (0x3 << 22));
3761                } else {
3762                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3763                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3764                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3765                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3766                              | (0x1 << 26) | (0x7 << 24)
3767                              | (0x3 << 22));
3768                }
3769
3770                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3771                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3772                          | (0x1 << 3)  | (0x1 << 2)
3773                          | (0x1 << 1)) & ~(0x1 << 0));
3774                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3775                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3776                          | (0x1 << 19) | (0x1 << 3));
3777                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3778                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3779
3780                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3781                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3782                          | (0x1 << 31) | (0x1 << 27)
3783                          | (0x3 << 23) | (0x1 << 19)
3784                          | (0x1 << 15) | (0x3 << 9))
3785                          & ~(0x1 << 12));
3786                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3787                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3788                          | (0x1 << 12) | (0x1 << 10)
3789                          | (0x1 << 9)  | (0x1 << 8)
3790                          | (0x1 << 7)  | (0x1 << 3)
3791                          | (0x1 << 2)  | (0x1 << 1))
3792                          & ~(0x1 << 11)& ~(0x1 << 0));
3793                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3794                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3795                          | (0x1 << 29) | (0x1 << 25)
3796                          | (0x1 << 23) | (0x1 << 19)
3797                          | (0x1 << 10) | (0x1 << 9)
3798                          | (0x1 << 8)  | (0x1 << 3))
3799                          & ~(0x1 << 28)& ~(0x1 << 24)
3800                          & ~(0x1 << 22)& ~(0x1 << 7));
3801                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3802                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3803                          | (0x1 << 23))& ~(0x1 << 21));
3804                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3805                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3806                          | (0x3 << 3)  | (0x3 << 0));
3807                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3808                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3809                          | (0x3 << 29) | (0x3 << 26)
3810                          | (0x2 << 23) | (0x2 << 20)
3811                          | (0x2 << 17))& ~(0x1 << 14));
3812                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3813                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3814                          | (0x1 << 12) | (0x1 << 10)
3815                          | (0x1 << 9)  | (0x1 << 8)
3816                          | (0x1 << 6)  | (0x1 << 5)
3817                          | (0x1 << 4)  | (0x1 << 3)
3818                          | (0x1 << 2));
3819                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3820                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3821            }
3822        }
3823
3824        OS_REG_WRITE(ah, 0xa28c, 0x22222);
3825        OS_REG_WRITE(ah, 0xa288, 0x222);
3826    }
3827}
3828
3829void
3830ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3831{
3832    u_int32_t val;
3833    u_int32_t qnum = (u_int32_t)data;
3834
3835    /* Disable AGC to A2 */
3836    OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3837    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3838
3839    OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3840    /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3841    OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3842    OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3843    OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3844    /* 200 ok for HT20, 400 ok for HT40 */
3845    OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3846    OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3847
3848    /* set QCU modes to early termination */
3849    val = OS_REG_READ(ah, AR_QMISC(qnum));
3850    OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3851}
3852
3853void
3854ar9300_tx99_stop(struct ath_hal *ah)
3855{
3856    /* this should follow the setting of start */
3857    OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3858    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3859}
3860#endif /* ATH_TX99_DIAG */
3861#endif /* ATH_SUPPORT_HTC */
3862
3863HAL_BOOL
3864ar9300Get3StreamSignature(struct ath_hal *ah)
3865{
3866    return AH_FALSE;
3867}
3868
3869HAL_BOOL
3870ar9300ForceVCS(struct ath_hal *ah)
3871{
3872   return AH_FALSE;
3873}
3874
3875HAL_BOOL
3876ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3877{
3878   return AH_FALSE;
3879}
3880
3881static u_int32_t
3882ar9300_read_loc_timer(struct ath_hal *ah)
3883{
3884
3885    return OS_REG_READ(ah, AR_LOC_TIMER_REG);
3886}
3887
3888HAL_BOOL
3889ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3890{
3891    struct ath_hal_9300 *ahp = AH9300(ah);
3892    ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3893    u_int8_t *ctl_index;
3894    u_int32_t offset = 0;
3895
3896    if (!ctl_array)
3897        return AH_FALSE;
3898
3899    /* copy 2G ctl freqbin and power data */
3900    ctl_index = p_eep_data->ctl_index_2g;
3901    OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3902                OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3903                OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3904    offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3905            ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3906
3907
3908    /* copy 2G ctl freqbin and power data */
3909    ctl_index = p_eep_data->ctl_index_5g;
3910    OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3911                OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3912                OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3913
3914    return AH_FALSE;
3915}
3916
3917void
3918ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3919{
3920    struct ath_hal_9300 *ahp = AH9300(ah);
3921
3922    /* optional txchainmask should be subset of primary txchainmask */
3923    if ((mask & ahp->ah_tx_chainmask) != mask) {
3924        ahp->ah_tx_chainmaskopt = 0;
3925        ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3926        return;
3927    }
3928
3929    ahp->ah_tx_chainmaskopt = mask;
3930}
3931