1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/dmu.h>
33#include <sys/zap.h>
34#include <sys/arc.h>
35#include <sys/stat.h>
36#include <sys/resource.h>
37#include <sys/zil.h>
38#include <sys/zil_impl.h>
39#include <sys/dsl_dataset.h>
40#include <sys/vdev_impl.h>
41#include <sys/dmu_tx.h>
42#include <sys/dsl_pool.h>
43#include <sys/abd.h>
44
45/*
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
50 *
51 *   1. they are committed to the pool by the DMU transaction group
52 *      (txg), at which point they can be discarded; or
53 *   2. they are committed to the on-disk ZIL for the dataset being
54 *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 *      requirement).
56 *
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
61 *
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
65 *
66 *	- a single, per-dataset, ZIL header; which points to a chain of
67 *	- zero or more ZIL blocks; each of which contains
68 *	- zero or more ZIL records
69 *
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
73 *
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
77 *
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
82 */
83
84/*
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
89 */
90int zfs_commit_timeout_pct = 5;
91
92/*
93 * Disable intent logging replay.  This global ZIL switch affects all pools.
94 */
95int zil_replay_disable = 0;
96SYSCTL_DECL(_vfs_zfs);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
98    &zil_replay_disable, 0, "Disable intent logging replay");
99
100/*
101 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
102 * the disk(s) by the ZIL after an LWB write has completed. Setting this
103 * will cause ZIL corruption on power loss if a volatile out-of-order
104 * write cache is enabled.
105 */
106boolean_t zil_nocacheflush = B_FALSE;
107SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_nocacheflush, CTLFLAG_RWTUN,
108    &zil_nocacheflush, 0, "Disable ZIL cache flush");
109
110boolean_t zfs_trim_enabled = B_TRUE;
111SYSCTL_DECL(_vfs_zfs_trim);
112SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
113    "Enable ZFS TRIM");
114
115/*
116 * Limit SLOG write size per commit executed with synchronous priority.
117 * Any writes above that will be executed with lower (asynchronous) priority
118 * to limit potential SLOG device abuse by single active ZIL writer.
119 */
120uint64_t zil_slog_bulk = 768 * 1024;
121SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
122    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
123
124static kmem_cache_t *zil_lwb_cache;
125static kmem_cache_t *zil_zcw_cache;
126
127#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
128    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
129
130static int
131zil_bp_compare(const void *x1, const void *x2)
132{
133	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
134	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
135
136	int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
137	if (likely(cmp))
138		return (cmp);
139
140	return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
141}
142
143static void
144zil_bp_tree_init(zilog_t *zilog)
145{
146	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
147	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
148}
149
150static void
151zil_bp_tree_fini(zilog_t *zilog)
152{
153	avl_tree_t *t = &zilog->zl_bp_tree;
154	zil_bp_node_t *zn;
155	void *cookie = NULL;
156
157	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
158		kmem_free(zn, sizeof (zil_bp_node_t));
159
160	avl_destroy(t);
161}
162
163int
164zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
165{
166	avl_tree_t *t = &zilog->zl_bp_tree;
167	const dva_t *dva;
168	zil_bp_node_t *zn;
169	avl_index_t where;
170
171	if (BP_IS_EMBEDDED(bp))
172		return (0);
173
174	dva = BP_IDENTITY(bp);
175
176	if (avl_find(t, dva, &where) != NULL)
177		return (SET_ERROR(EEXIST));
178
179	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
180	zn->zn_dva = *dva;
181	avl_insert(t, zn, where);
182
183	return (0);
184}
185
186static zil_header_t *
187zil_header_in_syncing_context(zilog_t *zilog)
188{
189	return ((zil_header_t *)zilog->zl_header);
190}
191
192static void
193zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
194{
195	zio_cksum_t *zc = &bp->blk_cksum;
196
197	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
198	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
199	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
200	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
201}
202
203/*
204 * Read a log block and make sure it's valid.
205 */
206static int
207zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
208    char **end)
209{
210	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
211	arc_flags_t aflags = ARC_FLAG_WAIT;
212	arc_buf_t *abuf = NULL;
213	zbookmark_phys_t zb;
214	int error;
215
216	if (zilog->zl_header->zh_claim_txg == 0)
217		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
218
219	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
220		zio_flags |= ZIO_FLAG_SPECULATIVE;
221
222	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
223	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
224
225	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
226	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
227
228	if (error == 0) {
229		zio_cksum_t cksum = bp->blk_cksum;
230
231		/*
232		 * Validate the checksummed log block.
233		 *
234		 * Sequence numbers should be... sequential.  The checksum
235		 * verifier for the next block should be bp's checksum plus 1.
236		 *
237		 * Also check the log chain linkage and size used.
238		 */
239		cksum.zc_word[ZIL_ZC_SEQ]++;
240
241		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
242			zil_chain_t *zilc = abuf->b_data;
243			char *lr = (char *)(zilc + 1);
244			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
245
246			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
247			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
248				error = SET_ERROR(ECKSUM);
249			} else {
250				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
251				bcopy(lr, dst, len);
252				*end = (char *)dst + len;
253				*nbp = zilc->zc_next_blk;
254			}
255		} else {
256			char *lr = abuf->b_data;
257			uint64_t size = BP_GET_LSIZE(bp);
258			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
259
260			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
261			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
262			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
263				error = SET_ERROR(ECKSUM);
264			} else {
265				ASSERT3U(zilc->zc_nused, <=,
266				    SPA_OLD_MAXBLOCKSIZE);
267				bcopy(lr, dst, zilc->zc_nused);
268				*end = (char *)dst + zilc->zc_nused;
269				*nbp = zilc->zc_next_blk;
270			}
271		}
272
273		arc_buf_destroy(abuf, &abuf);
274	}
275
276	return (error);
277}
278
279/*
280 * Read a TX_WRITE log data block.
281 */
282static int
283zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
284{
285	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
286	const blkptr_t *bp = &lr->lr_blkptr;
287	arc_flags_t aflags = ARC_FLAG_WAIT;
288	arc_buf_t *abuf = NULL;
289	zbookmark_phys_t zb;
290	int error;
291
292	if (BP_IS_HOLE(bp)) {
293		if (wbuf != NULL)
294			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
295		return (0);
296	}
297
298	if (zilog->zl_header->zh_claim_txg == 0)
299		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
300
301	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
302	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
303
304	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
305	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
306
307	if (error == 0) {
308		if (wbuf != NULL)
309			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
310		arc_buf_destroy(abuf, &abuf);
311	}
312
313	return (error);
314}
315
316/*
317 * Parse the intent log, and call parse_func for each valid record within.
318 */
319int
320zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
321    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
322{
323	const zil_header_t *zh = zilog->zl_header;
324	boolean_t claimed = !!zh->zh_claim_txg;
325	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
326	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
327	uint64_t max_blk_seq = 0;
328	uint64_t max_lr_seq = 0;
329	uint64_t blk_count = 0;
330	uint64_t lr_count = 0;
331	blkptr_t blk, next_blk;
332	char *lrbuf, *lrp;
333	int error = 0;
334
335	/*
336	 * Old logs didn't record the maximum zh_claim_lr_seq.
337	 */
338	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
339		claim_lr_seq = UINT64_MAX;
340
341	/*
342	 * Starting at the block pointed to by zh_log we read the log chain.
343	 * For each block in the chain we strongly check that block to
344	 * ensure its validity.  We stop when an invalid block is found.
345	 * For each block pointer in the chain we call parse_blk_func().
346	 * For each record in each valid block we call parse_lr_func().
347	 * If the log has been claimed, stop if we encounter a sequence
348	 * number greater than the highest claimed sequence number.
349	 */
350	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
351	zil_bp_tree_init(zilog);
352
353	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
354		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
355		int reclen;
356		char *end;
357
358		if (blk_seq > claim_blk_seq)
359			break;
360		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
361			break;
362		ASSERT3U(max_blk_seq, <, blk_seq);
363		max_blk_seq = blk_seq;
364		blk_count++;
365
366		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
367			break;
368
369		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
370		if (error != 0)
371			break;
372
373		for (lrp = lrbuf; lrp < end; lrp += reclen) {
374			lr_t *lr = (lr_t *)lrp;
375			reclen = lr->lrc_reclen;
376			ASSERT3U(reclen, >=, sizeof (lr_t));
377			if (lr->lrc_seq > claim_lr_seq)
378				goto done;
379			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
380				goto done;
381			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
382			max_lr_seq = lr->lrc_seq;
383			lr_count++;
384		}
385	}
386done:
387	zilog->zl_parse_error = error;
388	zilog->zl_parse_blk_seq = max_blk_seq;
389	zilog->zl_parse_lr_seq = max_lr_seq;
390	zilog->zl_parse_blk_count = blk_count;
391	zilog->zl_parse_lr_count = lr_count;
392
393	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
394	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
395
396	zil_bp_tree_fini(zilog);
397	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
398
399	return (error);
400}
401
402/* ARGSUSED */
403static int
404zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
405{
406	ASSERT(!BP_IS_HOLE(bp));
407
408	/*
409	 * As we call this function from the context of a rewind to a
410	 * checkpoint, each ZIL block whose txg is later than the txg
411	 * that we rewind to is invalid. Thus, we return -1 so
412	 * zil_parse() doesn't attempt to read it.
413	 */
414	if (bp->blk_birth >= first_txg)
415		return (-1);
416
417	if (zil_bp_tree_add(zilog, bp) != 0)
418		return (0);
419
420	zio_free(zilog->zl_spa, first_txg, bp);
421	return (0);
422}
423
424/* ARGSUSED */
425static int
426zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
427{
428	return (0);
429}
430
431static int
432zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
433{
434	/*
435	 * Claim log block if not already committed and not already claimed.
436	 * If tx == NULL, just verify that the block is claimable.
437	 */
438	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
439	    zil_bp_tree_add(zilog, bp) != 0)
440		return (0);
441
442	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
443	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
444	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
445}
446
447static int
448zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
449{
450	lr_write_t *lr = (lr_write_t *)lrc;
451	int error;
452
453	if (lrc->lrc_txtype != TX_WRITE)
454		return (0);
455
456	/*
457	 * If the block is not readable, don't claim it.  This can happen
458	 * in normal operation when a log block is written to disk before
459	 * some of the dmu_sync() blocks it points to.  In this case, the
460	 * transaction cannot have been committed to anyone (we would have
461	 * waited for all writes to be stable first), so it is semantically
462	 * correct to declare this the end of the log.
463	 */
464	if (lr->lr_blkptr.blk_birth >= first_txg &&
465	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
466		return (error);
467	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
468}
469
470/* ARGSUSED */
471static int
472zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
473{
474	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
475
476	return (0);
477}
478
479static int
480zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
481{
482	lr_write_t *lr = (lr_write_t *)lrc;
483	blkptr_t *bp = &lr->lr_blkptr;
484
485	/*
486	 * If we previously claimed it, we need to free it.
487	 */
488	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
489	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
490	    !BP_IS_HOLE(bp))
491		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
492
493	return (0);
494}
495
496static int
497zil_lwb_vdev_compare(const void *x1, const void *x2)
498{
499	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
500	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
501
502	return (AVL_CMP(v1, v2));
503}
504
505static lwb_t *
506zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
507{
508	lwb_t *lwb;
509
510	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
511	lwb->lwb_zilog = zilog;
512	lwb->lwb_blk = *bp;
513	lwb->lwb_slog = slog;
514	lwb->lwb_state = LWB_STATE_CLOSED;
515	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
516	lwb->lwb_max_txg = txg;
517	lwb->lwb_write_zio = NULL;
518	lwb->lwb_root_zio = NULL;
519	lwb->lwb_tx = NULL;
520	lwb->lwb_issued_timestamp = 0;
521	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
522		lwb->lwb_nused = sizeof (zil_chain_t);
523		lwb->lwb_sz = BP_GET_LSIZE(bp);
524	} else {
525		lwb->lwb_nused = 0;
526		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
527	}
528
529	mutex_enter(&zilog->zl_lock);
530	list_insert_tail(&zilog->zl_lwb_list, lwb);
531	mutex_exit(&zilog->zl_lock);
532
533	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
534	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
535	VERIFY(list_is_empty(&lwb->lwb_waiters));
536
537	return (lwb);
538}
539
540static void
541zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
542{
543	ASSERT(MUTEX_HELD(&zilog->zl_lock));
544	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
545	VERIFY(list_is_empty(&lwb->lwb_waiters));
546	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
550	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
551	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
552
553	/*
554	 * Clear the zilog's field to indicate this lwb is no longer
555	 * valid, and prevent use-after-free errors.
556	 */
557	if (zilog->zl_last_lwb_opened == lwb)
558		zilog->zl_last_lwb_opened = NULL;
559
560	kmem_cache_free(zil_lwb_cache, lwb);
561}
562
563/*
564 * Called when we create in-memory log transactions so that we know
565 * to cleanup the itxs at the end of spa_sync().
566 */
567void
568zilog_dirty(zilog_t *zilog, uint64_t txg)
569{
570	dsl_pool_t *dp = zilog->zl_dmu_pool;
571	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
572
573	ASSERT(spa_writeable(zilog->zl_spa));
574
575	if (ds->ds_is_snapshot)
576		panic("dirtying snapshot!");
577
578	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
579		/* up the hold count until we can be written out */
580		dmu_buf_add_ref(ds->ds_dbuf, zilog);
581
582		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
583	}
584}
585
586/*
587 * Determine if the zil is dirty in the specified txg. Callers wanting to
588 * ensure that the dirty state does not change must hold the itxg_lock for
589 * the specified txg. Holding the lock will ensure that the zil cannot be
590 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
591 * state.
592 */
593boolean_t
594zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
595{
596	dsl_pool_t *dp = zilog->zl_dmu_pool;
597
598	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
599		return (B_TRUE);
600	return (B_FALSE);
601}
602
603/*
604 * Determine if the zil is dirty. The zil is considered dirty if it has
605 * any pending itx records that have not been cleaned by zil_clean().
606 */
607boolean_t
608zilog_is_dirty(zilog_t *zilog)
609{
610	dsl_pool_t *dp = zilog->zl_dmu_pool;
611
612	for (int t = 0; t < TXG_SIZE; t++) {
613		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
614			return (B_TRUE);
615	}
616	return (B_FALSE);
617}
618
619/*
620 * Create an on-disk intent log.
621 */
622static lwb_t *
623zil_create(zilog_t *zilog)
624{
625	const zil_header_t *zh = zilog->zl_header;
626	lwb_t *lwb = NULL;
627	uint64_t txg = 0;
628	dmu_tx_t *tx = NULL;
629	blkptr_t blk;
630	int error = 0;
631	boolean_t slog = FALSE;
632
633	/*
634	 * Wait for any previous destroy to complete.
635	 */
636	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
637
638	ASSERT(zh->zh_claim_txg == 0);
639	ASSERT(zh->zh_replay_seq == 0);
640
641	blk = zh->zh_log;
642
643	/*
644	 * Allocate an initial log block if:
645	 *    - there isn't one already
646	 *    - the existing block is the wrong endianess
647	 */
648	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
649		tx = dmu_tx_create(zilog->zl_os);
650		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
651		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
652		txg = dmu_tx_get_txg(tx);
653
654		if (!BP_IS_HOLE(&blk)) {
655			zio_free(zilog->zl_spa, txg, &blk);
656			BP_ZERO(&blk);
657		}
658
659		error = zio_alloc_zil(zilog->zl_spa,
660		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
661		    ZIL_MIN_BLKSZ, &slog);
662
663		if (error == 0)
664			zil_init_log_chain(zilog, &blk);
665	}
666
667	/*
668	 * Allocate a log write block (lwb) for the first log block.
669	 */
670	if (error == 0)
671		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
672
673	/*
674	 * If we just allocated the first log block, commit our transaction
675	 * and wait for zil_sync() to stuff the block poiner into zh_log.
676	 * (zh is part of the MOS, so we cannot modify it in open context.)
677	 */
678	if (tx != NULL) {
679		dmu_tx_commit(tx);
680		txg_wait_synced(zilog->zl_dmu_pool, txg);
681	}
682
683	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
684
685	return (lwb);
686}
687
688/*
689 * In one tx, free all log blocks and clear the log header. If keep_first
690 * is set, then we're replaying a log with no content. We want to keep the
691 * first block, however, so that the first synchronous transaction doesn't
692 * require a txg_wait_synced() in zil_create(). We don't need to
693 * txg_wait_synced() here either when keep_first is set, because both
694 * zil_create() and zil_destroy() will wait for any in-progress destroys
695 * to complete.
696 */
697void
698zil_destroy(zilog_t *zilog, boolean_t keep_first)
699{
700	const zil_header_t *zh = zilog->zl_header;
701	lwb_t *lwb;
702	dmu_tx_t *tx;
703	uint64_t txg;
704
705	/*
706	 * Wait for any previous destroy to complete.
707	 */
708	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
709
710	zilog->zl_old_header = *zh;		/* debugging aid */
711
712	if (BP_IS_HOLE(&zh->zh_log))
713		return;
714
715	tx = dmu_tx_create(zilog->zl_os);
716	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
717	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
718	txg = dmu_tx_get_txg(tx);
719
720	mutex_enter(&zilog->zl_lock);
721
722	ASSERT3U(zilog->zl_destroy_txg, <, txg);
723	zilog->zl_destroy_txg = txg;
724	zilog->zl_keep_first = keep_first;
725
726	if (!list_is_empty(&zilog->zl_lwb_list)) {
727		ASSERT(zh->zh_claim_txg == 0);
728		VERIFY(!keep_first);
729		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
730			list_remove(&zilog->zl_lwb_list, lwb);
731			if (lwb->lwb_buf != NULL)
732				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
733			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
734			zil_free_lwb(zilog, lwb);
735		}
736	} else if (!keep_first) {
737		zil_destroy_sync(zilog, tx);
738	}
739	mutex_exit(&zilog->zl_lock);
740
741	dmu_tx_commit(tx);
742}
743
744void
745zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
746{
747	ASSERT(list_is_empty(&zilog->zl_lwb_list));
748	(void) zil_parse(zilog, zil_free_log_block,
749	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
750}
751
752int
753zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
754{
755	dmu_tx_t *tx = txarg;
756	zilog_t *zilog;
757	uint64_t first_txg;
758	zil_header_t *zh;
759	objset_t *os;
760	int error;
761
762	error = dmu_objset_own_obj(dp, ds->ds_object,
763	    DMU_OST_ANY, B_FALSE, FTAG, &os);
764	if (error != 0) {
765		/*
766		 * EBUSY indicates that the objset is inconsistent, in which
767		 * case it can not have a ZIL.
768		 */
769		if (error != EBUSY) {
770			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
771			    (unsigned long long)ds->ds_object, error);
772		}
773		return (0);
774	}
775
776	zilog = dmu_objset_zil(os);
777	zh = zil_header_in_syncing_context(zilog);
778	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
779	first_txg = spa_min_claim_txg(zilog->zl_spa);
780
781	/*
782	 * If the spa_log_state is not set to be cleared, check whether
783	 * the current uberblock is a checkpoint one and if the current
784	 * header has been claimed before moving on.
785	 *
786	 * If the current uberblock is a checkpointed uberblock then
787	 * one of the following scenarios took place:
788	 *
789	 * 1] We are currently rewinding to the checkpoint of the pool.
790	 * 2] We crashed in the middle of a checkpoint rewind but we
791	 *    did manage to write the checkpointed uberblock to the
792	 *    vdev labels, so when we tried to import the pool again
793	 *    the checkpointed uberblock was selected from the import
794	 *    procedure.
795	 *
796	 * In both cases we want to zero out all the ZIL blocks, except
797	 * the ones that have been claimed at the time of the checkpoint
798	 * (their zh_claim_txg != 0). The reason is that these blocks
799	 * may be corrupted since we may have reused their locations on
800	 * disk after we took the checkpoint.
801	 *
802	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
803	 * when we first figure out whether the current uberblock is
804	 * checkpointed or not. Unfortunately, that would discard all
805	 * the logs, including the ones that are claimed, and we would
806	 * leak space.
807	 */
808	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
809	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
810	    zh->zh_claim_txg == 0)) {
811		if (!BP_IS_HOLE(&zh->zh_log)) {
812			(void) zil_parse(zilog, zil_clear_log_block,
813			    zil_noop_log_record, tx, first_txg);
814		}
815		BP_ZERO(&zh->zh_log);
816		dsl_dataset_dirty(dmu_objset_ds(os), tx);
817		dmu_objset_disown(os, FTAG);
818		return (0);
819	}
820
821	/*
822	 * If we are not rewinding and opening the pool normally, then
823	 * the min_claim_txg should be equal to the first txg of the pool.
824	 */
825	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
826
827	/*
828	 * Claim all log blocks if we haven't already done so, and remember
829	 * the highest claimed sequence number.  This ensures that if we can
830	 * read only part of the log now (e.g. due to a missing device),
831	 * but we can read the entire log later, we will not try to replay
832	 * or destroy beyond the last block we successfully claimed.
833	 */
834	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
835	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
836		(void) zil_parse(zilog, zil_claim_log_block,
837		    zil_claim_log_record, tx, first_txg);
838		zh->zh_claim_txg = first_txg;
839		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
840		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
841		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
842			zh->zh_flags |= ZIL_REPLAY_NEEDED;
843		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
844		dsl_dataset_dirty(dmu_objset_ds(os), tx);
845	}
846
847	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
848	dmu_objset_disown(os, FTAG);
849	return (0);
850}
851
852/*
853 * Check the log by walking the log chain.
854 * Checksum errors are ok as they indicate the end of the chain.
855 * Any other error (no device or read failure) returns an error.
856 */
857/* ARGSUSED */
858int
859zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
860{
861	zilog_t *zilog;
862	objset_t *os;
863	blkptr_t *bp;
864	int error;
865
866	ASSERT(tx == NULL);
867
868	error = dmu_objset_from_ds(ds, &os);
869	if (error != 0) {
870		cmn_err(CE_WARN, "can't open objset %llu, error %d",
871		    (unsigned long long)ds->ds_object, error);
872		return (0);
873	}
874
875	zilog = dmu_objset_zil(os);
876	bp = (blkptr_t *)&zilog->zl_header->zh_log;
877
878	if (!BP_IS_HOLE(bp)) {
879		vdev_t *vd;
880		boolean_t valid = B_TRUE;
881
882		/*
883		 * Check the first block and determine if it's on a log device
884		 * which may have been removed or faulted prior to loading this
885		 * pool.  If so, there's no point in checking the rest of the
886		 * log as its content should have already been synced to the
887		 * pool.
888		 */
889		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
890		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
891		if (vd->vdev_islog && vdev_is_dead(vd))
892			valid = vdev_log_state_valid(vd);
893		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
894
895		if (!valid)
896			return (0);
897
898		/*
899		 * Check whether the current uberblock is checkpointed (e.g.
900		 * we are rewinding) and whether the current header has been
901		 * claimed or not. If it hasn't then skip verifying it. We
902		 * do this because its ZIL blocks may be part of the pool's
903		 * state before the rewind, which is no longer valid.
904		 */
905		zil_header_t *zh = zil_header_in_syncing_context(zilog);
906		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
907		    zh->zh_claim_txg == 0)
908			return (0);
909	}
910
911	/*
912	 * Because tx == NULL, zil_claim_log_block() will not actually claim
913	 * any blocks, but just determine whether it is possible to do so.
914	 * In addition to checking the log chain, zil_claim_log_block()
915	 * will invoke zio_claim() with a done func of spa_claim_notify(),
916	 * which will update spa_max_claim_txg.  See spa_load() for details.
917	 */
918	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
919	    zilog->zl_header->zh_claim_txg ? -1ULL :
920	    spa_min_claim_txg(os->os_spa));
921
922	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
923}
924
925/*
926 * When an itx is "skipped", this function is used to properly mark the
927 * waiter as "done, and signal any thread(s) waiting on it. An itx can
928 * be skipped (and not committed to an lwb) for a variety of reasons,
929 * one of them being that the itx was committed via spa_sync(), prior to
930 * it being committed to an lwb; this can happen if a thread calling
931 * zil_commit() is racing with spa_sync().
932 */
933static void
934zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
935{
936	mutex_enter(&zcw->zcw_lock);
937	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
938	zcw->zcw_done = B_TRUE;
939	cv_broadcast(&zcw->zcw_cv);
940	mutex_exit(&zcw->zcw_lock);
941}
942
943/*
944 * This function is used when the given waiter is to be linked into an
945 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
946 * At this point, the waiter will no longer be referenced by the itx,
947 * and instead, will be referenced by the lwb.
948 */
949static void
950zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
951{
952	/*
953	 * The lwb_waiters field of the lwb is protected by the zilog's
954	 * zl_lock, thus it must be held when calling this function.
955	 */
956	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
957
958	mutex_enter(&zcw->zcw_lock);
959	ASSERT(!list_link_active(&zcw->zcw_node));
960	ASSERT3P(zcw->zcw_lwb, ==, NULL);
961	ASSERT3P(lwb, !=, NULL);
962	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
963	    lwb->lwb_state == LWB_STATE_ISSUED ||
964	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
965
966	list_insert_tail(&lwb->lwb_waiters, zcw);
967	zcw->zcw_lwb = lwb;
968	mutex_exit(&zcw->zcw_lock);
969}
970
971/*
972 * This function is used when zio_alloc_zil() fails to allocate a ZIL
973 * block, and the given waiter must be linked to the "nolwb waiters"
974 * list inside of zil_process_commit_list().
975 */
976static void
977zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
978{
979	mutex_enter(&zcw->zcw_lock);
980	ASSERT(!list_link_active(&zcw->zcw_node));
981	ASSERT3P(zcw->zcw_lwb, ==, NULL);
982	list_insert_tail(nolwb, zcw);
983	mutex_exit(&zcw->zcw_lock);
984}
985
986void
987zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
988{
989	avl_tree_t *t = &lwb->lwb_vdev_tree;
990	avl_index_t where;
991	zil_vdev_node_t *zv, zvsearch;
992	int ndvas = BP_GET_NDVAS(bp);
993	int i;
994
995	if (zil_nocacheflush)
996		return;
997
998	mutex_enter(&lwb->lwb_vdev_lock);
999	for (i = 0; i < ndvas; i++) {
1000		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1001		if (avl_find(t, &zvsearch, &where) == NULL) {
1002			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1003			zv->zv_vdev = zvsearch.zv_vdev;
1004			avl_insert(t, zv, where);
1005		}
1006	}
1007	mutex_exit(&lwb->lwb_vdev_lock);
1008}
1009
1010static void
1011zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1012{
1013	avl_tree_t *src = &lwb->lwb_vdev_tree;
1014	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1015	void *cookie = NULL;
1016	zil_vdev_node_t *zv;
1017
1018	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1019	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1020	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1021
1022	/*
1023	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1024	 * not need the protection of lwb_vdev_lock (it will only be modified
1025	 * while holding zilog->zl_lock) as its writes and those of its
1026	 * children have all completed.  The younger 'nlwb' may be waiting on
1027	 * future writes to additional vdevs.
1028	 */
1029	mutex_enter(&nlwb->lwb_vdev_lock);
1030	/*
1031	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1032	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1033	 */
1034	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1035		avl_index_t where;
1036
1037		if (avl_find(dst, zv, &where) == NULL) {
1038			avl_insert(dst, zv, where);
1039		} else {
1040			kmem_free(zv, sizeof (*zv));
1041		}
1042	}
1043	mutex_exit(&nlwb->lwb_vdev_lock);
1044}
1045
1046void
1047zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1048{
1049	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1050}
1051
1052/*
1053 * This function is a called after all vdevs associated with a given lwb
1054 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1055 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1056 * all "previous" lwb's will have completed before this function is
1057 * called; i.e. this function is called for all previous lwbs before
1058 * it's called for "this" lwb (enforced via zio the dependencies
1059 * configured in zil_lwb_set_zio_dependency()).
1060 *
1061 * The intention is for this function to be called as soon as the
1062 * contents of an lwb are considered "stable" on disk, and will survive
1063 * any sudden loss of power. At this point, any threads waiting for the
1064 * lwb to reach this state are signalled, and the "waiter" structures
1065 * are marked "done".
1066 */
1067static void
1068zil_lwb_flush_vdevs_done(zio_t *zio)
1069{
1070	lwb_t *lwb = zio->io_private;
1071	zilog_t *zilog = lwb->lwb_zilog;
1072	dmu_tx_t *tx = lwb->lwb_tx;
1073	zil_commit_waiter_t *zcw;
1074
1075	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1076
1077	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1078
1079	mutex_enter(&zilog->zl_lock);
1080
1081	/*
1082	 * Ensure the lwb buffer pointer is cleared before releasing the
1083	 * txg. If we have had an allocation failure and the txg is
1084	 * waiting to sync then we want zil_sync() to remove the lwb so
1085	 * that it's not picked up as the next new one in
1086	 * zil_process_commit_list(). zil_sync() will only remove the
1087	 * lwb if lwb_buf is null.
1088	 */
1089	lwb->lwb_buf = NULL;
1090	lwb->lwb_tx = NULL;
1091
1092	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1093	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1094
1095	lwb->lwb_root_zio = NULL;
1096
1097	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1098	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1099
1100	if (zilog->zl_last_lwb_opened == lwb) {
1101		/*
1102		 * Remember the highest committed log sequence number
1103		 * for ztest. We only update this value when all the log
1104		 * writes succeeded, because ztest wants to ASSERT that
1105		 * it got the whole log chain.
1106		 */
1107		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1108	}
1109
1110	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1111		mutex_enter(&zcw->zcw_lock);
1112
1113		ASSERT(list_link_active(&zcw->zcw_node));
1114		list_remove(&lwb->lwb_waiters, zcw);
1115
1116		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1117		zcw->zcw_lwb = NULL;
1118
1119		zcw->zcw_zio_error = zio->io_error;
1120
1121		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1122		zcw->zcw_done = B_TRUE;
1123		cv_broadcast(&zcw->zcw_cv);
1124
1125		mutex_exit(&zcw->zcw_lock);
1126	}
1127
1128	mutex_exit(&zilog->zl_lock);
1129
1130	/*
1131	 * Now that we've written this log block, we have a stable pointer
1132	 * to the next block in the chain, so it's OK to let the txg in
1133	 * which we allocated the next block sync.
1134	 */
1135	dmu_tx_commit(tx);
1136}
1137
1138/*
1139 * This is called when an lwb's write zio completes. The callback's
1140 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1141 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1142 * in writing out this specific lwb's data, and in the case that cache
1143 * flushes have been deferred, vdevs involved in writing the data for
1144 * previous lwbs. The writes corresponding to all the vdevs in the
1145 * lwb_vdev_tree will have completed by the time this is called, due to
1146 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1147 * which takes deferred flushes into account. The lwb will be "done"
1148 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1149 * completion callback for the lwb's root zio.
1150 */
1151static void
1152zil_lwb_write_done(zio_t *zio)
1153{
1154	lwb_t *lwb = zio->io_private;
1155	spa_t *spa = zio->io_spa;
1156	zilog_t *zilog = lwb->lwb_zilog;
1157	avl_tree_t *t = &lwb->lwb_vdev_tree;
1158	void *cookie = NULL;
1159	zil_vdev_node_t *zv;
1160	lwb_t *nlwb;
1161
1162	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1163
1164	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1165	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1166	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1167	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1168	ASSERT(!BP_IS_GANG(zio->io_bp));
1169	ASSERT(!BP_IS_HOLE(zio->io_bp));
1170	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1171
1172	abd_put(zio->io_abd);
1173
1174	mutex_enter(&zilog->zl_lock);
1175	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1176	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1177	lwb->lwb_write_zio = NULL;
1178	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1179	mutex_exit(&zilog->zl_lock);
1180
1181	if (avl_numnodes(t) == 0)
1182		return;
1183
1184	/*
1185	 * If there was an IO error, we're not going to call zio_flush()
1186	 * on these vdevs, so we simply empty the tree and free the
1187	 * nodes. We avoid calling zio_flush() since there isn't any
1188	 * good reason for doing so, after the lwb block failed to be
1189	 * written out.
1190	 */
1191	if (zio->io_error != 0) {
1192		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1193			kmem_free(zv, sizeof (*zv));
1194		return;
1195	}
1196
1197	/*
1198	 * If this lwb does not have any threads waiting for it to
1199	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1200	 * command to the vdevs written to by "this" lwb, and instead
1201	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1202	 * command for those vdevs. Thus, we merge the vdev tree of
1203	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1204	 * and assume the "next" lwb will handle flushing the vdevs (or
1205	 * deferring the flush(s) again).
1206	 *
1207	 * This is a useful performance optimization, especially for
1208	 * workloads with lots of async write activity and few sync
1209	 * write and/or fsync activity, as it has the potential to
1210	 * coalesce multiple flush commands to a vdev into one.
1211	 */
1212	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1213		zil_lwb_flush_defer(lwb, nlwb);
1214		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1215		return;
1216	}
1217
1218	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1219		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1220		if (vd != NULL)
1221			zio_flush(lwb->lwb_root_zio, vd);
1222		kmem_free(zv, sizeof (*zv));
1223	}
1224}
1225
1226static void
1227zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1228{
1229	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1230
1231	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1232	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1233
1234	/*
1235	 * The zilog's "zl_last_lwb_opened" field is used to build the
1236	 * lwb/zio dependency chain, which is used to preserve the
1237	 * ordering of lwb completions that is required by the semantics
1238	 * of the ZIL. Each new lwb zio becomes a parent of the
1239	 * "previous" lwb zio, such that the new lwb's zio cannot
1240	 * complete until the "previous" lwb's zio completes.
1241	 *
1242	 * This is required by the semantics of zil_commit(); the commit
1243	 * waiters attached to the lwbs will be woken in the lwb zio's
1244	 * completion callback, so this zio dependency graph ensures the
1245	 * waiters are woken in the correct order (the same order the
1246	 * lwbs were created).
1247	 */
1248	if (last_lwb_opened != NULL &&
1249	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1250		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1251		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1252		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1253
1254		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1255		zio_add_child(lwb->lwb_root_zio,
1256		    last_lwb_opened->lwb_root_zio);
1257
1258		/*
1259		 * If the previous lwb's write hasn't already completed,
1260		 * we also want to order the completion of the lwb write
1261		 * zios (above, we only order the completion of the lwb
1262		 * root zios). This is required because of how we can
1263		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1264		 *
1265		 * When the DKIOCFLUSHWRITECACHE commands are defered,
1266		 * the previous lwb will rely on this lwb to flush the
1267		 * vdevs written to by that previous lwb. Thus, we need
1268		 * to ensure this lwb doesn't issue the flush until
1269		 * after the previous lwb's write completes. We ensure
1270		 * this ordering by setting the zio parent/child
1271		 * relationship here.
1272		 *
1273		 * Without this relationship on the lwb's write zio,
1274		 * it's possible for this lwb's write to complete prior
1275		 * to the previous lwb's write completing; and thus, the
1276		 * vdevs for the previous lwb would be flushed prior to
1277		 * that lwb's data being written to those vdevs (the
1278		 * vdevs are flushed in the lwb write zio's completion
1279		 * handler, zil_lwb_write_done()).
1280		 */
1281		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1282			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1283			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1284
1285			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1286			zio_add_child(lwb->lwb_write_zio,
1287			    last_lwb_opened->lwb_write_zio);
1288		}
1289	}
1290}
1291
1292
1293/*
1294 * This function's purpose is to "open" an lwb such that it is ready to
1295 * accept new itxs being committed to it. To do this, the lwb's zio
1296 * structures are created, and linked to the lwb. This function is
1297 * idempotent; if the passed in lwb has already been opened, this
1298 * function is essentially a no-op.
1299 */
1300static void
1301zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1302{
1303	zbookmark_phys_t zb;
1304	zio_priority_t prio;
1305
1306	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1307	ASSERT3P(lwb, !=, NULL);
1308	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1309	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1310
1311	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1312	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1313	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1314
1315	if (lwb->lwb_root_zio == NULL) {
1316		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1317		    BP_GET_LSIZE(&lwb->lwb_blk));
1318
1319		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1320			prio = ZIO_PRIORITY_SYNC_WRITE;
1321		else
1322			prio = ZIO_PRIORITY_ASYNC_WRITE;
1323
1324		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1325		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1326		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1327
1328		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1329		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1330		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1331		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1332		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1333
1334		lwb->lwb_state = LWB_STATE_OPENED;
1335
1336		mutex_enter(&zilog->zl_lock);
1337		zil_lwb_set_zio_dependency(zilog, lwb);
1338		zilog->zl_last_lwb_opened = lwb;
1339		mutex_exit(&zilog->zl_lock);
1340	}
1341
1342	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1343	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1344	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1345}
1346
1347/*
1348 * Define a limited set of intent log block sizes.
1349 *
1350 * These must be a multiple of 4KB. Note only the amount used (again
1351 * aligned to 4KB) actually gets written. However, we can't always just
1352 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1353 */
1354struct {
1355	uint64_t	limit;
1356	uint64_t	blksz;
1357} zil_block_buckets[] = {
1358    { 4096,		4096 },			/* non TX_WRITE */
1359    { 8192 + 4096,	8192 + 4096 },		/* database */
1360    { 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1361    { 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1362    { 131072,		131072 },		/* < 128KB writes */
1363    { 131072 + 4096,	65536 + 4096 },		/* 128KB writes */
1364    { UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1365};
1366
1367/*
1368 * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1369 * initialized.  Otherwise this should not be used directly; see
1370 * zl_max_block_size instead.
1371 */
1372int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1373SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_maxblocksize, CTLFLAG_RWTUN,
1374    &zil_maxblocksize, 0, "Limit in bytes of ZIL log block size");
1375
1376/*
1377 * Start a log block write and advance to the next log block.
1378 * Calls are serialized.
1379 */
1380static lwb_t *
1381zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1382{
1383	lwb_t *nlwb = NULL;
1384	zil_chain_t *zilc;
1385	spa_t *spa = zilog->zl_spa;
1386	blkptr_t *bp;
1387	dmu_tx_t *tx;
1388	uint64_t txg;
1389	uint64_t zil_blksz, wsz;
1390	int i, error;
1391	boolean_t slog;
1392
1393	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1394	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1395	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1396	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1397
1398	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1399		zilc = (zil_chain_t *)lwb->lwb_buf;
1400		bp = &zilc->zc_next_blk;
1401	} else {
1402		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1403		bp = &zilc->zc_next_blk;
1404	}
1405
1406	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1407
1408	/*
1409	 * Allocate the next block and save its address in this block
1410	 * before writing it in order to establish the log chain.
1411	 * Note that if the allocation of nlwb synced before we wrote
1412	 * the block that points at it (lwb), we'd leak it if we crashed.
1413	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1414	 * We dirty the dataset to ensure that zil_sync() will be called
1415	 * to clean up in the event of allocation failure or I/O failure.
1416	 */
1417
1418	tx = dmu_tx_create(zilog->zl_os);
1419
1420	/*
1421	 * Since we are not going to create any new dirty data, and we
1422	 * can even help with clearing the existing dirty data, we
1423	 * should not be subject to the dirty data based delays. We
1424	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1425	 */
1426	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1427
1428	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1429	txg = dmu_tx_get_txg(tx);
1430
1431	lwb->lwb_tx = tx;
1432
1433	/*
1434	 * Log blocks are pre-allocated. Here we select the size of the next
1435	 * block, based on size used in the last block.
1436	 * - first find the smallest bucket that will fit the block from a
1437	 *   limited set of block sizes. This is because it's faster to write
1438	 *   blocks allocated from the same metaslab as they are adjacent or
1439	 *   close.
1440	 * - next find the maximum from the new suggested size and an array of
1441	 *   previous sizes. This lessens a picket fence effect of wrongly
1442	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1443	 *   requests.
1444	 *
1445	 * Note we only write what is used, but we can't just allocate
1446	 * the maximum block size because we can exhaust the available
1447	 * pool log space.
1448	 */
1449	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1450	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1451		continue;
1452	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1453	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1454	for (i = 0; i < ZIL_PREV_BLKS; i++)
1455		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1456	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1457
1458	BP_ZERO(bp);
1459
1460	/* pass the old blkptr in order to spread log blocks across devs */
1461	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1462	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1463	if (error == 0) {
1464		ASSERT3U(bp->blk_birth, ==, txg);
1465		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1466		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1467
1468		/*
1469		 * Allocate a new log write block (lwb).
1470		 */
1471		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1472	}
1473
1474	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1475		/* For Slim ZIL only write what is used. */
1476		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1477		ASSERT3U(wsz, <=, lwb->lwb_sz);
1478		zio_shrink(lwb->lwb_write_zio, wsz);
1479
1480	} else {
1481		wsz = lwb->lwb_sz;
1482	}
1483
1484	zilc->zc_pad = 0;
1485	zilc->zc_nused = lwb->lwb_nused;
1486	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1487
1488	/*
1489	 * clear unused data for security
1490	 */
1491	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1492
1493	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1494
1495	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1496	lwb->lwb_issued_timestamp = gethrtime();
1497	lwb->lwb_state = LWB_STATE_ISSUED;
1498
1499	zio_nowait(lwb->lwb_root_zio);
1500	zio_nowait(lwb->lwb_write_zio);
1501
1502	/*
1503	 * If there was an allocation failure then nlwb will be null which
1504	 * forces a txg_wait_synced().
1505	 */
1506	return (nlwb);
1507}
1508
1509/*
1510 * Maximum amount of write data that can be put into single log block.
1511 */
1512uint64_t
1513zil_max_log_data(zilog_t *zilog)
1514{
1515	return (zilog->zl_max_block_size -
1516	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1517}
1518
1519/*
1520 * Maximum amount of log space we agree to waste to reduce number of
1521 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1522 */
1523static inline uint64_t
1524zil_max_waste_space(zilog_t *zilog)
1525{
1526	return (zil_max_log_data(zilog) / 8);
1527}
1528
1529/*
1530 * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1531 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1532 * maximum sized log block, because each WR_COPIED record must fit in a
1533 * single log block.  For space efficiency, we want to fit two records into a
1534 * max-sized log block.
1535 */
1536uint64_t
1537zil_max_copied_data(zilog_t *zilog)
1538{
1539	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1540	    sizeof (lr_write_t));
1541}
1542
1543static lwb_t *
1544zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1545{
1546	lr_t *lrcb, *lrc;
1547	lr_write_t *lrwb, *lrw;
1548	char *lr_buf;
1549	uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data;
1550
1551	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1552	ASSERT3P(lwb, !=, NULL);
1553	ASSERT3P(lwb->lwb_buf, !=, NULL);
1554
1555	zil_lwb_write_open(zilog, lwb);
1556
1557	lrc = &itx->itx_lr;
1558	lrw = (lr_write_t *)lrc;
1559
1560	/*
1561	 * A commit itx doesn't represent any on-disk state; instead
1562	 * it's simply used as a place holder on the commit list, and
1563	 * provides a mechanism for attaching a "commit waiter" onto the
1564	 * correct lwb (such that the waiter can be signalled upon
1565	 * completion of that lwb). Thus, we don't process this itx's
1566	 * log record if it's a commit itx (these itx's don't have log
1567	 * records), and instead link the itx's waiter onto the lwb's
1568	 * list of waiters.
1569	 *
1570	 * For more details, see the comment above zil_commit().
1571	 */
1572	if (lrc->lrc_txtype == TX_COMMIT) {
1573		mutex_enter(&zilog->zl_lock);
1574		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1575		itx->itx_private = NULL;
1576		mutex_exit(&zilog->zl_lock);
1577		return (lwb);
1578	}
1579
1580	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1581		dlen = P2ROUNDUP_TYPED(
1582		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1583	} else {
1584		dlen = 0;
1585	}
1586	reclen = lrc->lrc_reclen;
1587	zilog->zl_cur_used += (reclen + dlen);
1588	txg = lrc->lrc_txg;
1589
1590	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1591
1592cont:
1593	/*
1594	 * If this record won't fit in the current log block, start a new one.
1595	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1596	 */
1597	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1598	max_log_data = zil_max_log_data(zilog);
1599	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1600	    lwb_sp < zil_max_waste_space(zilog) &&
1601	    (dlen % max_log_data == 0 ||
1602	    lwb_sp < reclen + dlen % max_log_data))) {
1603		lwb = zil_lwb_write_issue(zilog, lwb);
1604		if (lwb == NULL)
1605			return (NULL);
1606		zil_lwb_write_open(zilog, lwb);
1607		ASSERT(LWB_EMPTY(lwb));
1608		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1609
1610		/*
1611		 * There must be enough space in the new, empty log block to
1612		 * hold reclen.  For WR_COPIED, we need to fit the whole
1613		 * record in one block, and reclen is the header size + the
1614		 * data size. For WR_NEED_COPY, we can create multiple
1615		 * records, splitting the data into multiple blocks, so we
1616		 * only need to fit one word of data per block; in this case
1617		 * reclen is just the header size (no data).
1618		 */
1619		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1620	}
1621
1622	dnow = MIN(dlen, lwb_sp - reclen);
1623	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1624	bcopy(lrc, lr_buf, reclen);
1625	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1626	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1627
1628	/*
1629	 * If it's a write, fetch the data or get its blkptr as appropriate.
1630	 */
1631	if (lrc->lrc_txtype == TX_WRITE) {
1632		if (txg > spa_freeze_txg(zilog->zl_spa))
1633			txg_wait_synced(zilog->zl_dmu_pool, txg);
1634		if (itx->itx_wr_state != WR_COPIED) {
1635			char *dbuf;
1636			int error;
1637
1638			if (itx->itx_wr_state == WR_NEED_COPY) {
1639				dbuf = lr_buf + reclen;
1640				lrcb->lrc_reclen += dnow;
1641				if (lrwb->lr_length > dnow)
1642					lrwb->lr_length = dnow;
1643				lrw->lr_offset += dnow;
1644				lrw->lr_length -= dnow;
1645			} else {
1646				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1647				dbuf = NULL;
1648			}
1649
1650			/*
1651			 * We pass in the "lwb_write_zio" rather than
1652			 * "lwb_root_zio" so that the "lwb_write_zio"
1653			 * becomes the parent of any zio's created by
1654			 * the "zl_get_data" callback. The vdevs are
1655			 * flushed after the "lwb_write_zio" completes,
1656			 * so we want to make sure that completion
1657			 * callback waits for these additional zio's,
1658			 * such that the vdevs used by those zio's will
1659			 * be included in the lwb's vdev tree, and those
1660			 * vdevs will be properly flushed. If we passed
1661			 * in "lwb_root_zio" here, then these additional
1662			 * vdevs may not be flushed; e.g. if these zio's
1663			 * completed after "lwb_write_zio" completed.
1664			 */
1665			error = zilog->zl_get_data(itx->itx_private,
1666			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1667
1668			if (error == EIO) {
1669				txg_wait_synced(zilog->zl_dmu_pool, txg);
1670				return (lwb);
1671			}
1672			if (error != 0) {
1673				ASSERT(error == ENOENT || error == EEXIST ||
1674				    error == EALREADY);
1675				return (lwb);
1676			}
1677		}
1678	}
1679
1680	/*
1681	 * We're actually making an entry, so update lrc_seq to be the
1682	 * log record sequence number.  Note that this is generally not
1683	 * equal to the itx sequence number because not all transactions
1684	 * are synchronous, and sometimes spa_sync() gets there first.
1685	 */
1686	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1687	lwb->lwb_nused += reclen + dnow;
1688
1689	zil_lwb_add_txg(lwb, txg);
1690
1691	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1692	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1693
1694	dlen -= dnow;
1695	if (dlen > 0) {
1696		zilog->zl_cur_used += reclen;
1697		goto cont;
1698	}
1699
1700	return (lwb);
1701}
1702
1703itx_t *
1704zil_itx_create(uint64_t txtype, size_t lrsize)
1705{
1706	itx_t *itx;
1707
1708	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1709
1710	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1711	itx->itx_lr.lrc_txtype = txtype;
1712	itx->itx_lr.lrc_reclen = lrsize;
1713	itx->itx_lr.lrc_seq = 0;	/* defensive */
1714	itx->itx_sync = B_TRUE;		/* default is synchronous */
1715
1716	return (itx);
1717}
1718
1719void
1720zil_itx_destroy(itx_t *itx)
1721{
1722	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1723}
1724
1725/*
1726 * Free up the sync and async itxs. The itxs_t has already been detached
1727 * so no locks are needed.
1728 */
1729static void
1730zil_itxg_clean(itxs_t *itxs)
1731{
1732	itx_t *itx;
1733	list_t *list;
1734	avl_tree_t *t;
1735	void *cookie;
1736	itx_async_node_t *ian;
1737
1738	list = &itxs->i_sync_list;
1739	while ((itx = list_head(list)) != NULL) {
1740		/*
1741		 * In the general case, commit itxs will not be found
1742		 * here, as they'll be committed to an lwb via
1743		 * zil_lwb_commit(), and free'd in that function. Having
1744		 * said that, it is still possible for commit itxs to be
1745		 * found here, due to the following race:
1746		 *
1747		 *	- a thread calls zil_commit() which assigns the
1748		 *	  commit itx to a per-txg i_sync_list
1749		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1750		 *	  while the waiter is still on the i_sync_list
1751		 *
1752		 * There's nothing to prevent syncing the txg while the
1753		 * waiter is on the i_sync_list. This normally doesn't
1754		 * happen because spa_sync() is slower than zil_commit(),
1755		 * but if zil_commit() calls txg_wait_synced() (e.g.
1756		 * because zil_create() or zil_commit_writer_stall() is
1757		 * called) we will hit this case.
1758		 */
1759		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1760			zil_commit_waiter_skip(itx->itx_private);
1761
1762		list_remove(list, itx);
1763		zil_itx_destroy(itx);
1764	}
1765
1766	cookie = NULL;
1767	t = &itxs->i_async_tree;
1768	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1769		list = &ian->ia_list;
1770		while ((itx = list_head(list)) != NULL) {
1771			list_remove(list, itx);
1772			/* commit itxs should never be on the async lists. */
1773			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1774			zil_itx_destroy(itx);
1775		}
1776		list_destroy(list);
1777		kmem_free(ian, sizeof (itx_async_node_t));
1778	}
1779	avl_destroy(t);
1780
1781	kmem_free(itxs, sizeof (itxs_t));
1782}
1783
1784static int
1785zil_aitx_compare(const void *x1, const void *x2)
1786{
1787	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1788	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1789
1790	return (AVL_CMP(o1, o2));
1791}
1792
1793/*
1794 * Remove all async itx with the given oid.
1795 */
1796static void
1797zil_remove_async(zilog_t *zilog, uint64_t oid)
1798{
1799	uint64_t otxg, txg;
1800	itx_async_node_t *ian;
1801	avl_tree_t *t;
1802	avl_index_t where;
1803	list_t clean_list;
1804	itx_t *itx;
1805
1806	ASSERT(oid != 0);
1807	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1808
1809	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1810		otxg = ZILTEST_TXG;
1811	else
1812		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1813
1814	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1815		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1816
1817		mutex_enter(&itxg->itxg_lock);
1818		if (itxg->itxg_txg != txg) {
1819			mutex_exit(&itxg->itxg_lock);
1820			continue;
1821		}
1822
1823		/*
1824		 * Locate the object node and append its list.
1825		 */
1826		t = &itxg->itxg_itxs->i_async_tree;
1827		ian = avl_find(t, &oid, &where);
1828		if (ian != NULL)
1829			list_move_tail(&clean_list, &ian->ia_list);
1830		mutex_exit(&itxg->itxg_lock);
1831	}
1832	while ((itx = list_head(&clean_list)) != NULL) {
1833		list_remove(&clean_list, itx);
1834		/* commit itxs should never be on the async lists. */
1835		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1836		zil_itx_destroy(itx);
1837	}
1838	list_destroy(&clean_list);
1839}
1840
1841void
1842zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1843{
1844	uint64_t txg;
1845	itxg_t *itxg;
1846	itxs_t *itxs, *clean = NULL;
1847
1848	/*
1849	 * Object ids can be re-instantiated in the next txg so
1850	 * remove any async transactions to avoid future leaks.
1851	 * This can happen if a fsync occurs on the re-instantiated
1852	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1853	 * the new file data and flushes a write record for the old object.
1854	 */
1855	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1856		zil_remove_async(zilog, itx->itx_oid);
1857
1858	/*
1859	 * Ensure the data of a renamed file is committed before the rename.
1860	 */
1861	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1862		zil_async_to_sync(zilog, itx->itx_oid);
1863
1864	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1865		txg = ZILTEST_TXG;
1866	else
1867		txg = dmu_tx_get_txg(tx);
1868
1869	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1870	mutex_enter(&itxg->itxg_lock);
1871	itxs = itxg->itxg_itxs;
1872	if (itxg->itxg_txg != txg) {
1873		if (itxs != NULL) {
1874			/*
1875			 * The zil_clean callback hasn't got around to cleaning
1876			 * this itxg. Save the itxs for release below.
1877			 * This should be rare.
1878			 */
1879			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1880			    "txg %llu", itxg->itxg_txg);
1881			clean = itxg->itxg_itxs;
1882		}
1883		itxg->itxg_txg = txg;
1884		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1885
1886		list_create(&itxs->i_sync_list, sizeof (itx_t),
1887		    offsetof(itx_t, itx_node));
1888		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1889		    sizeof (itx_async_node_t),
1890		    offsetof(itx_async_node_t, ia_node));
1891	}
1892	if (itx->itx_sync) {
1893		list_insert_tail(&itxs->i_sync_list, itx);
1894	} else {
1895		avl_tree_t *t = &itxs->i_async_tree;
1896		uint64_t foid =
1897		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1898		itx_async_node_t *ian;
1899		avl_index_t where;
1900
1901		ian = avl_find(t, &foid, &where);
1902		if (ian == NULL) {
1903			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1904			list_create(&ian->ia_list, sizeof (itx_t),
1905			    offsetof(itx_t, itx_node));
1906			ian->ia_foid = foid;
1907			avl_insert(t, ian, where);
1908		}
1909		list_insert_tail(&ian->ia_list, itx);
1910	}
1911
1912	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1913
1914	/*
1915	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1916	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1917	 * need to be careful to always dirty the ZIL using the "real"
1918	 * TXG (not itxg_txg) even when the SPA is frozen.
1919	 */
1920	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1921	mutex_exit(&itxg->itxg_lock);
1922
1923	/* Release the old itxs now we've dropped the lock */
1924	if (clean != NULL)
1925		zil_itxg_clean(clean);
1926}
1927
1928/*
1929 * If there are any in-memory intent log transactions which have now been
1930 * synced then start up a taskq to free them. We should only do this after we
1931 * have written out the uberblocks (i.e. txg has been comitted) so that
1932 * don't inadvertently clean out in-memory log records that would be required
1933 * by zil_commit().
1934 */
1935void
1936zil_clean(zilog_t *zilog, uint64_t synced_txg)
1937{
1938	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1939	itxs_t *clean_me;
1940
1941	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1942
1943	mutex_enter(&itxg->itxg_lock);
1944	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1945		mutex_exit(&itxg->itxg_lock);
1946		return;
1947	}
1948	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1949	ASSERT3U(itxg->itxg_txg, !=, 0);
1950	clean_me = itxg->itxg_itxs;
1951	itxg->itxg_itxs = NULL;
1952	itxg->itxg_txg = 0;
1953	mutex_exit(&itxg->itxg_lock);
1954	/*
1955	 * Preferably start a task queue to free up the old itxs but
1956	 * if taskq_dispatch can't allocate resources to do that then
1957	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1958	 * created a bad performance problem.
1959	 */
1960	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1961	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1962	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1963	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1964		zil_itxg_clean(clean_me);
1965}
1966
1967/*
1968 * This function will traverse the queue of itxs that need to be
1969 * committed, and move them onto the ZIL's zl_itx_commit_list.
1970 */
1971static void
1972zil_get_commit_list(zilog_t *zilog)
1973{
1974	uint64_t otxg, txg;
1975	list_t *commit_list = &zilog->zl_itx_commit_list;
1976
1977	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1978
1979	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1980		otxg = ZILTEST_TXG;
1981	else
1982		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1983
1984	/*
1985	 * This is inherently racy, since there is nothing to prevent
1986	 * the last synced txg from changing. That's okay since we'll
1987	 * only commit things in the future.
1988	 */
1989	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1990		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1991
1992		mutex_enter(&itxg->itxg_lock);
1993		if (itxg->itxg_txg != txg) {
1994			mutex_exit(&itxg->itxg_lock);
1995			continue;
1996		}
1997
1998		/*
1999		 * If we're adding itx records to the zl_itx_commit_list,
2000		 * then the zil better be dirty in this "txg". We can assert
2001		 * that here since we're holding the itxg_lock which will
2002		 * prevent spa_sync from cleaning it. Once we add the itxs
2003		 * to the zl_itx_commit_list we must commit it to disk even
2004		 * if it's unnecessary (i.e. the txg was synced).
2005		 */
2006		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2007		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2008		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2009
2010		mutex_exit(&itxg->itxg_lock);
2011	}
2012}
2013
2014/*
2015 * Move the async itxs for a specified object to commit into sync lists.
2016 */
2017void
2018zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2019{
2020	uint64_t otxg, txg;
2021	itx_async_node_t *ian;
2022	avl_tree_t *t;
2023	avl_index_t where;
2024
2025	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2026		otxg = ZILTEST_TXG;
2027	else
2028		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2029
2030	/*
2031	 * This is inherently racy, since there is nothing to prevent
2032	 * the last synced txg from changing.
2033	 */
2034	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2035		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2036
2037		mutex_enter(&itxg->itxg_lock);
2038		if (itxg->itxg_txg != txg) {
2039			mutex_exit(&itxg->itxg_lock);
2040			continue;
2041		}
2042
2043		/*
2044		 * If a foid is specified then find that node and append its
2045		 * list. Otherwise walk the tree appending all the lists
2046		 * to the sync list. We add to the end rather than the
2047		 * beginning to ensure the create has happened.
2048		 */
2049		t = &itxg->itxg_itxs->i_async_tree;
2050		if (foid != 0) {
2051			ian = avl_find(t, &foid, &where);
2052			if (ian != NULL) {
2053				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2054				    &ian->ia_list);
2055			}
2056		} else {
2057			void *cookie = NULL;
2058
2059			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2060				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2061				    &ian->ia_list);
2062				list_destroy(&ian->ia_list);
2063				kmem_free(ian, sizeof (itx_async_node_t));
2064			}
2065		}
2066		mutex_exit(&itxg->itxg_lock);
2067	}
2068}
2069
2070/*
2071 * This function will prune commit itxs that are at the head of the
2072 * commit list (it won't prune past the first non-commit itx), and
2073 * either: a) attach them to the last lwb that's still pending
2074 * completion, or b) skip them altogether.
2075 *
2076 * This is used as a performance optimization to prevent commit itxs
2077 * from generating new lwbs when it's unnecessary to do so.
2078 */
2079static void
2080zil_prune_commit_list(zilog_t *zilog)
2081{
2082	itx_t *itx;
2083
2084	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2085
2086	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2087		lr_t *lrc = &itx->itx_lr;
2088		if (lrc->lrc_txtype != TX_COMMIT)
2089			break;
2090
2091		mutex_enter(&zilog->zl_lock);
2092
2093		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2094		if (last_lwb == NULL ||
2095		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2096			/*
2097			 * All of the itxs this waiter was waiting on
2098			 * must have already completed (or there were
2099			 * never any itx's for it to wait on), so it's
2100			 * safe to skip this waiter and mark it done.
2101			 */
2102			zil_commit_waiter_skip(itx->itx_private);
2103		} else {
2104			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2105			itx->itx_private = NULL;
2106		}
2107
2108		mutex_exit(&zilog->zl_lock);
2109
2110		list_remove(&zilog->zl_itx_commit_list, itx);
2111		zil_itx_destroy(itx);
2112	}
2113
2114	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2115}
2116
2117static void
2118zil_commit_writer_stall(zilog_t *zilog)
2119{
2120	/*
2121	 * When zio_alloc_zil() fails to allocate the next lwb block on
2122	 * disk, we must call txg_wait_synced() to ensure all of the
2123	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2124	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2125	 * to zil_process_commit_list()) will have to call zil_create(),
2126	 * and start a new ZIL chain.
2127	 *
2128	 * Since zil_alloc_zil() failed, the lwb that was previously
2129	 * issued does not have a pointer to the "next" lwb on disk.
2130	 * Thus, if another ZIL writer thread was to allocate the "next"
2131	 * on-disk lwb, that block could be leaked in the event of a
2132	 * crash (because the previous lwb on-disk would not point to
2133	 * it).
2134	 *
2135	 * We must hold the zilog's zl_issuer_lock while we do this, to
2136	 * ensure no new threads enter zil_process_commit_list() until
2137	 * all lwb's in the zl_lwb_list have been synced and freed
2138	 * (which is achieved via the txg_wait_synced() call).
2139	 */
2140	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2141	txg_wait_synced(zilog->zl_dmu_pool, 0);
2142	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2143}
2144
2145/*
2146 * This function will traverse the commit list, creating new lwbs as
2147 * needed, and committing the itxs from the commit list to these newly
2148 * created lwbs. Additionally, as a new lwb is created, the previous
2149 * lwb will be issued to the zio layer to be written to disk.
2150 */
2151static void
2152zil_process_commit_list(zilog_t *zilog)
2153{
2154	spa_t *spa = zilog->zl_spa;
2155	list_t nolwb_waiters;
2156	lwb_t *lwb;
2157	itx_t *itx;
2158
2159	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2160
2161	/*
2162	 * Return if there's nothing to commit before we dirty the fs by
2163	 * calling zil_create().
2164	 */
2165	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2166		return;
2167
2168	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2169	    offsetof(zil_commit_waiter_t, zcw_node));
2170
2171	lwb = list_tail(&zilog->zl_lwb_list);
2172	if (lwb == NULL) {
2173		lwb = zil_create(zilog);
2174	} else {
2175		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2176		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2177		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2178	}
2179
2180	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2181		lr_t *lrc = &itx->itx_lr;
2182		uint64_t txg = lrc->lrc_txg;
2183
2184		ASSERT3U(txg, !=, 0);
2185
2186		if (lrc->lrc_txtype == TX_COMMIT) {
2187			DTRACE_PROBE2(zil__process__commit__itx,
2188			    zilog_t *, zilog, itx_t *, itx);
2189		} else {
2190			DTRACE_PROBE2(zil__process__normal__itx,
2191			    zilog_t *, zilog, itx_t *, itx);
2192		}
2193
2194		boolean_t synced = txg <= spa_last_synced_txg(spa);
2195		boolean_t frozen = txg > spa_freeze_txg(spa);
2196
2197		/*
2198		 * If the txg of this itx has already been synced out, then
2199		 * we don't need to commit this itx to an lwb. This is
2200		 * because the data of this itx will have already been
2201		 * written to the main pool. This is inherently racy, and
2202		 * it's still ok to commit an itx whose txg has already
2203		 * been synced; this will result in a write that's
2204		 * unnecessary, but will do no harm.
2205		 *
2206		 * With that said, we always want to commit TX_COMMIT itxs
2207		 * to an lwb, regardless of whether or not that itx's txg
2208		 * has been synced out. We do this to ensure any OPENED lwb
2209		 * will always have at least one zil_commit_waiter_t linked
2210		 * to the lwb.
2211		 *
2212		 * As a counter-example, if we skipped TX_COMMIT itx's
2213		 * whose txg had already been synced, the following
2214		 * situation could occur if we happened to be racing with
2215		 * spa_sync:
2216		 *
2217		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2218		 *    itx's txg is 10 and the last synced txg is 9.
2219		 * 2. spa_sync finishes syncing out txg 10.
2220		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2221		 *    whose txg is 10, so we skip it rather than committing
2222		 *    it to the lwb used in (1).
2223		 *
2224		 * If the itx that is skipped in (3) is the last TX_COMMIT
2225		 * itx in the commit list, than it's possible for the lwb
2226		 * used in (1) to remain in the OPENED state indefinitely.
2227		 *
2228		 * To prevent the above scenario from occuring, ensuring
2229		 * that once an lwb is OPENED it will transition to ISSUED
2230		 * and eventually DONE, we always commit TX_COMMIT itx's to
2231		 * an lwb here, even if that itx's txg has already been
2232		 * synced.
2233		 *
2234		 * Finally, if the pool is frozen, we _always_ commit the
2235		 * itx.  The point of freezing the pool is to prevent data
2236		 * from being written to the main pool via spa_sync, and
2237		 * instead rely solely on the ZIL to persistently store the
2238		 * data; i.e.  when the pool is frozen, the last synced txg
2239		 * value can't be trusted.
2240		 */
2241		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2242			if (lwb != NULL) {
2243				lwb = zil_lwb_commit(zilog, itx, lwb);
2244			} else if (lrc->lrc_txtype == TX_COMMIT) {
2245				ASSERT3P(lwb, ==, NULL);
2246				zil_commit_waiter_link_nolwb(
2247				    itx->itx_private, &nolwb_waiters);
2248			}
2249		}
2250
2251		list_remove(&zilog->zl_itx_commit_list, itx);
2252		zil_itx_destroy(itx);
2253	}
2254
2255	if (lwb == NULL) {
2256		/*
2257		 * This indicates zio_alloc_zil() failed to allocate the
2258		 * "next" lwb on-disk. When this happens, we must stall
2259		 * the ZIL write pipeline; see the comment within
2260		 * zil_commit_writer_stall() for more details.
2261		 */
2262		zil_commit_writer_stall(zilog);
2263
2264		/*
2265		 * Additionally, we have to signal and mark the "nolwb"
2266		 * waiters as "done" here, since without an lwb, we
2267		 * can't do this via zil_lwb_flush_vdevs_done() like
2268		 * normal.
2269		 */
2270		zil_commit_waiter_t *zcw;
2271		while (zcw = list_head(&nolwb_waiters)) {
2272			zil_commit_waiter_skip(zcw);
2273			list_remove(&nolwb_waiters, zcw);
2274		}
2275	} else {
2276		ASSERT(list_is_empty(&nolwb_waiters));
2277		ASSERT3P(lwb, !=, NULL);
2278		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2279		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2280		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2281
2282		/*
2283		 * At this point, the ZIL block pointed at by the "lwb"
2284		 * variable is in one of the following states: "closed"
2285		 * or "open".
2286		 *
2287		 * If its "closed", then no itxs have been committed to
2288		 * it, so there's no point in issuing its zio (i.e.
2289		 * it's "empty").
2290		 *
2291		 * If its "open" state, then it contains one or more
2292		 * itxs that eventually need to be committed to stable
2293		 * storage. In this case we intentionally do not issue
2294		 * the lwb's zio to disk yet, and instead rely on one of
2295		 * the following two mechanisms for issuing the zio:
2296		 *
2297		 * 1. Ideally, there will be more ZIL activity occuring
2298		 * on the system, such that this function will be
2299		 * immediately called again (not necessarily by the same
2300		 * thread) and this lwb's zio will be issued via
2301		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2302		 * be "full" when it is issued to disk, and we'll make
2303		 * use of the lwb's size the best we can.
2304		 *
2305		 * 2. If there isn't sufficient ZIL activity occuring on
2306		 * the system, such that this lwb's zio isn't issued via
2307		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2308		 * lwb's zio. If this occurs, the lwb is not guaranteed
2309		 * to be "full" by the time its zio is issued, and means
2310		 * the size of the lwb was "too large" given the amount
2311		 * of ZIL activity occuring on the system at that time.
2312		 *
2313		 * We do this for a couple of reasons:
2314		 *
2315		 * 1. To try and reduce the number of IOPs needed to
2316		 * write the same number of itxs. If an lwb has space
2317		 * available in it's buffer for more itxs, and more itxs
2318		 * will be committed relatively soon (relative to the
2319		 * latency of performing a write), then it's beneficial
2320		 * to wait for these "next" itxs. This way, more itxs
2321		 * can be committed to stable storage with fewer writes.
2322		 *
2323		 * 2. To try and use the largest lwb block size that the
2324		 * incoming rate of itxs can support. Again, this is to
2325		 * try and pack as many itxs into as few lwbs as
2326		 * possible, without significantly impacting the latency
2327		 * of each individual itx.
2328		 */
2329	}
2330}
2331
2332/*
2333 * This function is responsible for ensuring the passed in commit waiter
2334 * (and associated commit itx) is committed to an lwb. If the waiter is
2335 * not already committed to an lwb, all itxs in the zilog's queue of
2336 * itxs will be processed. The assumption is the passed in waiter's
2337 * commit itx will found in the queue just like the other non-commit
2338 * itxs, such that when the entire queue is processed, the waiter will
2339 * have been commited to an lwb.
2340 *
2341 * The lwb associated with the passed in waiter is not guaranteed to
2342 * have been issued by the time this function completes. If the lwb is
2343 * not issued, we rely on future calls to zil_commit_writer() to issue
2344 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2345 */
2346static void
2347zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2348{
2349	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2350	ASSERT(spa_writeable(zilog->zl_spa));
2351
2352	mutex_enter(&zilog->zl_issuer_lock);
2353
2354	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2355		/*
2356		 * It's possible that, while we were waiting to acquire
2357		 * the "zl_issuer_lock", another thread committed this
2358		 * waiter to an lwb. If that occurs, we bail out early,
2359		 * without processing any of the zilog's queue of itxs.
2360		 *
2361		 * On certain workloads and system configurations, the
2362		 * "zl_issuer_lock" can become highly contended. In an
2363		 * attempt to reduce this contention, we immediately drop
2364		 * the lock if the waiter has already been processed.
2365		 *
2366		 * We've measured this optimization to reduce CPU spent
2367		 * contending on this lock by up to 5%, using a system
2368		 * with 32 CPUs, low latency storage (~50 usec writes),
2369		 * and 1024 threads performing sync writes.
2370		 */
2371		goto out;
2372	}
2373
2374	zil_get_commit_list(zilog);
2375	zil_prune_commit_list(zilog);
2376	zil_process_commit_list(zilog);
2377
2378out:
2379	mutex_exit(&zilog->zl_issuer_lock);
2380}
2381
2382static void
2383zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2384{
2385	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2386	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2387	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2388
2389	lwb_t *lwb = zcw->zcw_lwb;
2390	ASSERT3P(lwb, !=, NULL);
2391	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2392
2393	/*
2394	 * If the lwb has already been issued by another thread, we can
2395	 * immediately return since there's no work to be done (the
2396	 * point of this function is to issue the lwb). Additionally, we
2397	 * do this prior to acquiring the zl_issuer_lock, to avoid
2398	 * acquiring it when it's not necessary to do so.
2399	 */
2400	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2401	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2402	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2403		return;
2404
2405	/*
2406	 * In order to call zil_lwb_write_issue() we must hold the
2407	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2408	 * since we're already holding the commit waiter's "zcw_lock",
2409	 * and those two locks are aquired in the opposite order
2410	 * elsewhere.
2411	 */
2412	mutex_exit(&zcw->zcw_lock);
2413	mutex_enter(&zilog->zl_issuer_lock);
2414	mutex_enter(&zcw->zcw_lock);
2415
2416	/*
2417	 * Since we just dropped and re-acquired the commit waiter's
2418	 * lock, we have to re-check to see if the waiter was marked
2419	 * "done" during that process. If the waiter was marked "done",
2420	 * the "lwb" pointer is no longer valid (it can be free'd after
2421	 * the waiter is marked "done"), so without this check we could
2422	 * wind up with a use-after-free error below.
2423	 */
2424	if (zcw->zcw_done)
2425		goto out;
2426
2427	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2428
2429	/*
2430	 * We've already checked this above, but since we hadn't acquired
2431	 * the zilog's zl_issuer_lock, we have to perform this check a
2432	 * second time while holding the lock.
2433	 *
2434	 * We don't need to hold the zl_lock since the lwb cannot transition
2435	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2436	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2437	 * that transition since we treat the lwb the same, whether it's in
2438	 * the ISSUED or DONE states.
2439	 *
2440	 * The important thing, is we treat the lwb differently depending on
2441	 * if it's ISSUED or OPENED, and block any other threads that might
2442	 * attempt to issue this lwb. For that reason we hold the
2443	 * zl_issuer_lock when checking the lwb_state; we must not call
2444	 * zil_lwb_write_issue() if the lwb had already been issued.
2445	 *
2446	 * See the comment above the lwb_state_t structure definition for
2447	 * more details on the lwb states, and locking requirements.
2448	 */
2449	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2450	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2451	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2452		goto out;
2453
2454	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2455
2456	/*
2457	 * As described in the comments above zil_commit_waiter() and
2458	 * zil_process_commit_list(), we need to issue this lwb's zio
2459	 * since we've reached the commit waiter's timeout and it still
2460	 * hasn't been issued.
2461	 */
2462	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2463
2464	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2465
2466	/*
2467	 * Since the lwb's zio hadn't been issued by the time this thread
2468	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2469	 * to influence the zil block size selection algorithm.
2470	 *
2471	 * By having to issue the lwb's zio here, it means the size of the
2472	 * lwb was too large, given the incoming throughput of itxs.  By
2473	 * setting "zl_cur_used" to zero, we communicate this fact to the
2474	 * block size selection algorithm, so it can take this informaiton
2475	 * into account, and potentially select a smaller size for the
2476	 * next lwb block that is allocated.
2477	 */
2478	zilog->zl_cur_used = 0;
2479
2480	if (nlwb == NULL) {
2481		/*
2482		 * When zil_lwb_write_issue() returns NULL, this
2483		 * indicates zio_alloc_zil() failed to allocate the
2484		 * "next" lwb on-disk. When this occurs, the ZIL write
2485		 * pipeline must be stalled; see the comment within the
2486		 * zil_commit_writer_stall() function for more details.
2487		 *
2488		 * We must drop the commit waiter's lock prior to
2489		 * calling zil_commit_writer_stall() or else we can wind
2490		 * up with the following deadlock:
2491		 *
2492		 * - This thread is waiting for the txg to sync while
2493		 *   holding the waiter's lock; txg_wait_synced() is
2494		 *   used within txg_commit_writer_stall().
2495		 *
2496		 * - The txg can't sync because it is waiting for this
2497		 *   lwb's zio callback to call dmu_tx_commit().
2498		 *
2499		 * - The lwb's zio callback can't call dmu_tx_commit()
2500		 *   because it's blocked trying to acquire the waiter's
2501		 *   lock, which occurs prior to calling dmu_tx_commit()
2502		 */
2503		mutex_exit(&zcw->zcw_lock);
2504		zil_commit_writer_stall(zilog);
2505		mutex_enter(&zcw->zcw_lock);
2506	}
2507
2508out:
2509	mutex_exit(&zilog->zl_issuer_lock);
2510	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2511}
2512
2513/*
2514 * This function is responsible for performing the following two tasks:
2515 *
2516 * 1. its primary responsibility is to block until the given "commit
2517 *    waiter" is considered "done".
2518 *
2519 * 2. its secondary responsibility is to issue the zio for the lwb that
2520 *    the given "commit waiter" is waiting on, if this function has
2521 *    waited "long enough" and the lwb is still in the "open" state.
2522 *
2523 * Given a sufficient amount of itxs being generated and written using
2524 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2525 * function. If this does not occur, this secondary responsibility will
2526 * ensure the lwb is issued even if there is not other synchronous
2527 * activity on the system.
2528 *
2529 * For more details, see zil_process_commit_list(); more specifically,
2530 * the comment at the bottom of that function.
2531 */
2532static void
2533zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2534{
2535	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2536	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2537	ASSERT(spa_writeable(zilog->zl_spa));
2538
2539	mutex_enter(&zcw->zcw_lock);
2540
2541	/*
2542	 * The timeout is scaled based on the lwb latency to avoid
2543	 * significantly impacting the latency of each individual itx.
2544	 * For more details, see the comment at the bottom of the
2545	 * zil_process_commit_list() function.
2546	 */
2547	int pct = MAX(zfs_commit_timeout_pct, 1);
2548#if defined(illumos) || !defined(_KERNEL)
2549	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2550	hrtime_t wakeup = gethrtime() + sleep;
2551#else
2552	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2553	sbintime_t wakeup = getsbinuptime() + sleep;
2554#endif
2555	boolean_t timedout = B_FALSE;
2556
2557	while (!zcw->zcw_done) {
2558		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2559
2560		lwb_t *lwb = zcw->zcw_lwb;
2561
2562		/*
2563		 * Usually, the waiter will have a non-NULL lwb field here,
2564		 * but it's possible for it to be NULL as a result of
2565		 * zil_commit() racing with spa_sync().
2566		 *
2567		 * When zil_clean() is called, it's possible for the itxg
2568		 * list (which may be cleaned via a taskq) to contain
2569		 * commit itxs. When this occurs, the commit waiters linked
2570		 * off of these commit itxs will not be committed to an
2571		 * lwb.  Additionally, these commit waiters will not be
2572		 * marked done until zil_commit_waiter_skip() is called via
2573		 * zil_itxg_clean().
2574		 *
2575		 * Thus, it's possible for this commit waiter (i.e. the
2576		 * "zcw" variable) to be found in this "in between" state;
2577		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2578		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2579		 */
2580		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2581
2582		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2583			ASSERT3B(timedout, ==, B_FALSE);
2584
2585			/*
2586			 * If the lwb hasn't been issued yet, then we
2587			 * need to wait with a timeout, in case this
2588			 * function needs to issue the lwb after the
2589			 * timeout is reached; responsibility (2) from
2590			 * the comment above this function.
2591			 */
2592#if defined(illumos) || !defined(_KERNEL)
2593			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2594			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2595			    CALLOUT_FLAG_ABSOLUTE);
2596
2597			if (timeleft >= 0 || zcw->zcw_done)
2598				continue;
2599#else
2600			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2601			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2602			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2603				continue;
2604#endif
2605
2606			timedout = B_TRUE;
2607			zil_commit_waiter_timeout(zilog, zcw);
2608
2609			if (!zcw->zcw_done) {
2610				/*
2611				 * If the commit waiter has already been
2612				 * marked "done", it's possible for the
2613				 * waiter's lwb structure to have already
2614				 * been freed.  Thus, we can only reliably
2615				 * make these assertions if the waiter
2616				 * isn't done.
2617				 */
2618				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2619				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2620			}
2621		} else {
2622			/*
2623			 * If the lwb isn't open, then it must have already
2624			 * been issued. In that case, there's no need to
2625			 * use a timeout when waiting for the lwb to
2626			 * complete.
2627			 *
2628			 * Additionally, if the lwb is NULL, the waiter
2629			 * will soon be signalled and marked done via
2630			 * zil_clean() and zil_itxg_clean(), so no timeout
2631			 * is required.
2632			 */
2633
2634			IMPLY(lwb != NULL,
2635			    lwb->lwb_state == LWB_STATE_ISSUED ||
2636			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2637			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2638			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2639		}
2640	}
2641
2642	mutex_exit(&zcw->zcw_lock);
2643}
2644
2645static zil_commit_waiter_t *
2646zil_alloc_commit_waiter()
2647{
2648	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2649
2650	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2651	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2652	list_link_init(&zcw->zcw_node);
2653	zcw->zcw_lwb = NULL;
2654	zcw->zcw_done = B_FALSE;
2655	zcw->zcw_zio_error = 0;
2656
2657	return (zcw);
2658}
2659
2660static void
2661zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2662{
2663	ASSERT(!list_link_active(&zcw->zcw_node));
2664	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2665	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2666	mutex_destroy(&zcw->zcw_lock);
2667	cv_destroy(&zcw->zcw_cv);
2668	kmem_cache_free(zil_zcw_cache, zcw);
2669}
2670
2671/*
2672 * This function is used to create a TX_COMMIT itx and assign it. This
2673 * way, it will be linked into the ZIL's list of synchronous itxs, and
2674 * then later committed to an lwb (or skipped) when
2675 * zil_process_commit_list() is called.
2676 */
2677static void
2678zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2679{
2680	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2681	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2682
2683	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2684	itx->itx_sync = B_TRUE;
2685	itx->itx_private = zcw;
2686
2687	zil_itx_assign(zilog, itx, tx);
2688
2689	dmu_tx_commit(tx);
2690}
2691
2692/*
2693 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2694 *
2695 * When writing ZIL transactions to the on-disk representation of the
2696 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2697 * itxs can be committed to a single lwb. Once a lwb is written and
2698 * committed to stable storage (i.e. the lwb is written, and vdevs have
2699 * been flushed), each itx that was committed to that lwb is also
2700 * considered to be committed to stable storage.
2701 *
2702 * When an itx is committed to an lwb, the log record (lr_t) contained
2703 * by the itx is copied into the lwb's zio buffer, and once this buffer
2704 * is written to disk, it becomes an on-disk ZIL block.
2705 *
2706 * As itxs are generated, they're inserted into the ZIL's queue of
2707 * uncommitted itxs. The semantics of zil_commit() are such that it will
2708 * block until all itxs that were in the queue when it was called, are
2709 * committed to stable storage.
2710 *
2711 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2712 * itxs, for all objects in the dataset, will be committed to stable
2713 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2714 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2715 * that correspond to the foid passed in, will be committed to stable
2716 * storage prior to zil_commit() returning.
2717 *
2718 * Generally speaking, when zil_commit() is called, the consumer doesn't
2719 * actually care about _all_ of the uncommitted itxs. Instead, they're
2720 * simply trying to waiting for a specific itx to be committed to disk,
2721 * but the interface(s) for interacting with the ZIL don't allow such
2722 * fine-grained communication. A better interface would allow a consumer
2723 * to create and assign an itx, and then pass a reference to this itx to
2724 * zil_commit(); such that zil_commit() would return as soon as that
2725 * specific itx was committed to disk (instead of waiting for _all_
2726 * itxs to be committed).
2727 *
2728 * When a thread calls zil_commit() a special "commit itx" will be
2729 * generated, along with a corresponding "waiter" for this commit itx.
2730 * zil_commit() will wait on this waiter's CV, such that when the waiter
2731 * is marked done, and signalled, zil_commit() will return.
2732 *
2733 * This commit itx is inserted into the queue of uncommitted itxs. This
2734 * provides an easy mechanism for determining which itxs were in the
2735 * queue prior to zil_commit() having been called, and which itxs were
2736 * added after zil_commit() was called.
2737 *
2738 * The commit it is special; it doesn't have any on-disk representation.
2739 * When a commit itx is "committed" to an lwb, the waiter associated
2740 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2741 * completes, each waiter on the lwb's list is marked done and signalled
2742 * -- allowing the thread waiting on the waiter to return from zil_commit().
2743 *
2744 * It's important to point out a few critical factors that allow us
2745 * to make use of the commit itxs, commit waiters, per-lwb lists of
2746 * commit waiters, and zio completion callbacks like we're doing:
2747 *
2748 *   1. The list of waiters for each lwb is traversed, and each commit
2749 *      waiter is marked "done" and signalled, in the zio completion
2750 *      callback of the lwb's zio[*].
2751 *
2752 *      * Actually, the waiters are signalled in the zio completion
2753 *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2754 *        that are sent to the vdevs upon completion of the lwb zio.
2755 *
2756 *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2757 *      itxs, the order in which they are inserted is preserved[*]; as
2758 *      itxs are added to the queue, they are added to the tail of
2759 *      in-memory linked lists.
2760 *
2761 *      When committing the itxs to lwbs (to be written to disk), they
2762 *      are committed in the same order in which the itxs were added to
2763 *      the uncommitted queue's linked list(s); i.e. the linked list of
2764 *      itxs to commit is traversed from head to tail, and each itx is
2765 *      committed to an lwb in that order.
2766 *
2767 *      * To clarify:
2768 *
2769 *        - the order of "sync" itxs is preserved w.r.t. other
2770 *          "sync" itxs, regardless of the corresponding objects.
2771 *        - the order of "async" itxs is preserved w.r.t. other
2772 *          "async" itxs corresponding to the same object.
2773 *        - the order of "async" itxs is *not* preserved w.r.t. other
2774 *          "async" itxs corresponding to different objects.
2775 *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2776 *          versa) is *not* preserved, even for itxs that correspond
2777 *          to the same object.
2778 *
2779 *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2780 *      zil_get_commit_list(), and zil_process_commit_list().
2781 *
2782 *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2783 *      lwb cannot be considered committed to stable storage, until its
2784 *      "previous" lwb is also committed to stable storage. This fact,
2785 *      coupled with the fact described above, means that itxs are
2786 *      committed in (roughly) the order in which they were generated.
2787 *      This is essential because itxs are dependent on prior itxs.
2788 *      Thus, we *must not* deem an itx as being committed to stable
2789 *      storage, until *all* prior itxs have also been committed to
2790 *      stable storage.
2791 *
2792 *      To enforce this ordering of lwb zio's, while still leveraging as
2793 *      much of the underlying storage performance as possible, we rely
2794 *      on two fundamental concepts:
2795 *
2796 *          1. The creation and issuance of lwb zio's is protected by
2797 *             the zilog's "zl_issuer_lock", which ensures only a single
2798 *             thread is creating and/or issuing lwb's at a time
2799 *          2. The "previous" lwb is a child of the "current" lwb
2800 *             (leveraging the zio parent-child depenency graph)
2801 *
2802 *      By relying on this parent-child zio relationship, we can have
2803 *      many lwb zio's concurrently issued to the underlying storage,
2804 *      but the order in which they complete will be the same order in
2805 *      which they were created.
2806 */
2807void
2808zil_commit(zilog_t *zilog, uint64_t foid)
2809{
2810	/*
2811	 * We should never attempt to call zil_commit on a snapshot for
2812	 * a couple of reasons:
2813	 *
2814	 * 1. A snapshot may never be modified, thus it cannot have any
2815	 *    in-flight itxs that would have modified the dataset.
2816	 *
2817	 * 2. By design, when zil_commit() is called, a commit itx will
2818	 *    be assigned to this zilog; as a result, the zilog will be
2819	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2820	 *    checks in the code that enforce this invariant, and will
2821	 *    cause a panic if it's not upheld.
2822	 */
2823	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2824
2825	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2826		return;
2827
2828	if (!spa_writeable(zilog->zl_spa)) {
2829		/*
2830		 * If the SPA is not writable, there should never be any
2831		 * pending itxs waiting to be committed to disk. If that
2832		 * weren't true, we'd skip writing those itxs out, and
2833		 * would break the sematics of zil_commit(); thus, we're
2834		 * verifying that truth before we return to the caller.
2835		 */
2836		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2837		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2838		for (int i = 0; i < TXG_SIZE; i++)
2839			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2840		return;
2841	}
2842
2843	/*
2844	 * If the ZIL is suspended, we don't want to dirty it by calling
2845	 * zil_commit_itx_assign() below, nor can we write out
2846	 * lwbs like would be done in zil_commit_write(). Thus, we
2847	 * simply rely on txg_wait_synced() to maintain the necessary
2848	 * semantics, and avoid calling those functions altogether.
2849	 */
2850	if (zilog->zl_suspend > 0) {
2851		txg_wait_synced(zilog->zl_dmu_pool, 0);
2852		return;
2853	}
2854
2855	zil_commit_impl(zilog, foid);
2856}
2857
2858void
2859zil_commit_impl(zilog_t *zilog, uint64_t foid)
2860{
2861	/*
2862	 * Move the "async" itxs for the specified foid to the "sync"
2863	 * queues, such that they will be later committed (or skipped)
2864	 * to an lwb when zil_process_commit_list() is called.
2865	 *
2866	 * Since these "async" itxs must be committed prior to this
2867	 * call to zil_commit returning, we must perform this operation
2868	 * before we call zil_commit_itx_assign().
2869	 */
2870	zil_async_to_sync(zilog, foid);
2871
2872	/*
2873	 * We allocate a new "waiter" structure which will initially be
2874	 * linked to the commit itx using the itx's "itx_private" field.
2875	 * Since the commit itx doesn't represent any on-disk state,
2876	 * when it's committed to an lwb, rather than copying the its
2877	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2878	 * added to the lwb's list of waiters. Then, when the lwb is
2879	 * committed to stable storage, each waiter in the lwb's list of
2880	 * waiters will be marked "done", and signalled.
2881	 *
2882	 * We must create the waiter and assign the commit itx prior to
2883	 * calling zil_commit_writer(), or else our specific commit itx
2884	 * is not guaranteed to be committed to an lwb prior to calling
2885	 * zil_commit_waiter().
2886	 */
2887	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2888	zil_commit_itx_assign(zilog, zcw);
2889
2890	zil_commit_writer(zilog, zcw);
2891	zil_commit_waiter(zilog, zcw);
2892
2893	if (zcw->zcw_zio_error != 0) {
2894		/*
2895		 * If there was an error writing out the ZIL blocks that
2896		 * this thread is waiting on, then we fallback to
2897		 * relying on spa_sync() to write out the data this
2898		 * thread is waiting on. Obviously this has performance
2899		 * implications, but the expectation is for this to be
2900		 * an exceptional case, and shouldn't occur often.
2901		 */
2902		DTRACE_PROBE2(zil__commit__io__error,
2903		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2904		txg_wait_synced(zilog->zl_dmu_pool, 0);
2905	}
2906
2907	zil_free_commit_waiter(zcw);
2908}
2909
2910/*
2911 * Called in syncing context to free committed log blocks and update log header.
2912 */
2913void
2914zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2915{
2916	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2917	uint64_t txg = dmu_tx_get_txg(tx);
2918	spa_t *spa = zilog->zl_spa;
2919	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2920	lwb_t *lwb;
2921
2922	/*
2923	 * We don't zero out zl_destroy_txg, so make sure we don't try
2924	 * to destroy it twice.
2925	 */
2926	if (spa_sync_pass(spa) != 1)
2927		return;
2928
2929	mutex_enter(&zilog->zl_lock);
2930
2931	ASSERT(zilog->zl_stop_sync == 0);
2932
2933	if (*replayed_seq != 0) {
2934		ASSERT(zh->zh_replay_seq < *replayed_seq);
2935		zh->zh_replay_seq = *replayed_seq;
2936		*replayed_seq = 0;
2937	}
2938
2939	if (zilog->zl_destroy_txg == txg) {
2940		blkptr_t blk = zh->zh_log;
2941
2942		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2943
2944		bzero(zh, sizeof (zil_header_t));
2945		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2946
2947		if (zilog->zl_keep_first) {
2948			/*
2949			 * If this block was part of log chain that couldn't
2950			 * be claimed because a device was missing during
2951			 * zil_claim(), but that device later returns,
2952			 * then this block could erroneously appear valid.
2953			 * To guard against this, assign a new GUID to the new
2954			 * log chain so it doesn't matter what blk points to.
2955			 */
2956			zil_init_log_chain(zilog, &blk);
2957			zh->zh_log = blk;
2958		}
2959	}
2960
2961	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2962		zh->zh_log = lwb->lwb_blk;
2963		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2964			break;
2965		list_remove(&zilog->zl_lwb_list, lwb);
2966		zio_free(spa, txg, &lwb->lwb_blk);
2967		zil_free_lwb(zilog, lwb);
2968
2969		/*
2970		 * If we don't have anything left in the lwb list then
2971		 * we've had an allocation failure and we need to zero
2972		 * out the zil_header blkptr so that we don't end
2973		 * up freeing the same block twice.
2974		 */
2975		if (list_head(&zilog->zl_lwb_list) == NULL)
2976			BP_ZERO(&zh->zh_log);
2977	}
2978	mutex_exit(&zilog->zl_lock);
2979}
2980
2981/* ARGSUSED */
2982static int
2983zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2984{
2985	lwb_t *lwb = vbuf;
2986	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2987	    offsetof(zil_commit_waiter_t, zcw_node));
2988	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2989	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2990	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2991	return (0);
2992}
2993
2994/* ARGSUSED */
2995static void
2996zil_lwb_dest(void *vbuf, void *unused)
2997{
2998	lwb_t *lwb = vbuf;
2999	mutex_destroy(&lwb->lwb_vdev_lock);
3000	avl_destroy(&lwb->lwb_vdev_tree);
3001	list_destroy(&lwb->lwb_waiters);
3002}
3003
3004void
3005zil_init(void)
3006{
3007	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3008	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3009
3010	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3011	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3012}
3013
3014void
3015zil_fini(void)
3016{
3017	kmem_cache_destroy(zil_zcw_cache);
3018	kmem_cache_destroy(zil_lwb_cache);
3019}
3020
3021void
3022zil_set_sync(zilog_t *zilog, uint64_t sync)
3023{
3024	zilog->zl_sync = sync;
3025}
3026
3027void
3028zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3029{
3030	zilog->zl_logbias = logbias;
3031}
3032
3033zilog_t *
3034zil_alloc(objset_t *os, zil_header_t *zh_phys)
3035{
3036	zilog_t *zilog;
3037
3038	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3039
3040	zilog->zl_header = zh_phys;
3041	zilog->zl_os = os;
3042	zilog->zl_spa = dmu_objset_spa(os);
3043	zilog->zl_dmu_pool = dmu_objset_pool(os);
3044	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3045	zilog->zl_logbias = dmu_objset_logbias(os);
3046	zilog->zl_sync = dmu_objset_syncprop(os);
3047	zilog->zl_dirty_max_txg = 0;
3048	zilog->zl_last_lwb_opened = NULL;
3049	zilog->zl_last_lwb_latency = 0;
3050	zilog->zl_max_block_size = zil_maxblocksize;
3051
3052	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3053	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3054
3055	for (int i = 0; i < TXG_SIZE; i++) {
3056		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3057		    MUTEX_DEFAULT, NULL);
3058	}
3059
3060	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3061	    offsetof(lwb_t, lwb_node));
3062
3063	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3064	    offsetof(itx_t, itx_node));
3065
3066	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3067
3068	return (zilog);
3069}
3070
3071void
3072zil_free(zilog_t *zilog)
3073{
3074	zilog->zl_stop_sync = 1;
3075
3076	ASSERT0(zilog->zl_suspend);
3077	ASSERT0(zilog->zl_suspending);
3078
3079	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3080	list_destroy(&zilog->zl_lwb_list);
3081
3082	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3083	list_destroy(&zilog->zl_itx_commit_list);
3084
3085	for (int i = 0; i < TXG_SIZE; i++) {
3086		/*
3087		 * It's possible for an itx to be generated that doesn't dirty
3088		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3089		 * callback to remove the entry. We remove those here.
3090		 *
3091		 * Also free up the ziltest itxs.
3092		 */
3093		if (zilog->zl_itxg[i].itxg_itxs)
3094			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3095		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3096	}
3097
3098	mutex_destroy(&zilog->zl_issuer_lock);
3099	mutex_destroy(&zilog->zl_lock);
3100
3101	cv_destroy(&zilog->zl_cv_suspend);
3102
3103	kmem_free(zilog, sizeof (zilog_t));
3104}
3105
3106/*
3107 * Open an intent log.
3108 */
3109zilog_t *
3110zil_open(objset_t *os, zil_get_data_t *get_data)
3111{
3112	zilog_t *zilog = dmu_objset_zil(os);
3113
3114	ASSERT3P(zilog->zl_get_data, ==, NULL);
3115	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3116	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3117
3118	zilog->zl_get_data = get_data;
3119
3120	return (zilog);
3121}
3122
3123/*
3124 * Close an intent log.
3125 */
3126void
3127zil_close(zilog_t *zilog)
3128{
3129	lwb_t *lwb;
3130	uint64_t txg;
3131
3132	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3133		zil_commit(zilog, 0);
3134	} else {
3135		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3136		ASSERT0(zilog->zl_dirty_max_txg);
3137		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3138	}
3139
3140	mutex_enter(&zilog->zl_lock);
3141	lwb = list_tail(&zilog->zl_lwb_list);
3142	if (lwb == NULL)
3143		txg = zilog->zl_dirty_max_txg;
3144	else
3145		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3146	mutex_exit(&zilog->zl_lock);
3147
3148	/*
3149	 * We need to use txg_wait_synced() to wait long enough for the
3150	 * ZIL to be clean, and to wait for all pending lwbs to be
3151	 * written out.
3152	 */
3153	if (txg)
3154		txg_wait_synced(zilog->zl_dmu_pool, txg);
3155
3156	if (zilog_is_dirty(zilog))
3157		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3158	if (txg < spa_freeze_txg(zilog->zl_spa))
3159		VERIFY(!zilog_is_dirty(zilog));
3160
3161	zilog->zl_get_data = NULL;
3162
3163	/*
3164	 * We should have only one lwb left on the list; remove it now.
3165	 */
3166	mutex_enter(&zilog->zl_lock);
3167	lwb = list_head(&zilog->zl_lwb_list);
3168	if (lwb != NULL) {
3169		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3170		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3171		list_remove(&zilog->zl_lwb_list, lwb);
3172		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3173		zil_free_lwb(zilog, lwb);
3174	}
3175	mutex_exit(&zilog->zl_lock);
3176}
3177
3178static char *suspend_tag = "zil suspending";
3179
3180/*
3181 * Suspend an intent log.  While in suspended mode, we still honor
3182 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3183 * On old version pools, we suspend the log briefly when taking a
3184 * snapshot so that it will have an empty intent log.
3185 *
3186 * Long holds are not really intended to be used the way we do here --
3187 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3188 * could fail.  Therefore we take pains to only put a long hold if it is
3189 * actually necessary.  Fortunately, it will only be necessary if the
3190 * objset is currently mounted (or the ZVOL equivalent).  In that case it
3191 * will already have a long hold, so we are not really making things any worse.
3192 *
3193 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3194 * zvol_state_t), and use their mechanism to prevent their hold from being
3195 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3196 * very little gain.
3197 *
3198 * if cookiep == NULL, this does both the suspend & resume.
3199 * Otherwise, it returns with the dataset "long held", and the cookie
3200 * should be passed into zil_resume().
3201 */
3202int
3203zil_suspend(const char *osname, void **cookiep)
3204{
3205	objset_t *os;
3206	zilog_t *zilog;
3207	const zil_header_t *zh;
3208	int error;
3209
3210	error = dmu_objset_hold(osname, suspend_tag, &os);
3211	if (error != 0)
3212		return (error);
3213	zilog = dmu_objset_zil(os);
3214
3215	mutex_enter(&zilog->zl_lock);
3216	zh = zilog->zl_header;
3217
3218	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3219		mutex_exit(&zilog->zl_lock);
3220		dmu_objset_rele(os, suspend_tag);
3221		return (SET_ERROR(EBUSY));
3222	}
3223
3224	/*
3225	 * Don't put a long hold in the cases where we can avoid it.  This
3226	 * is when there is no cookie so we are doing a suspend & resume
3227	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3228	 * for the suspend because it's already suspended, or there's no ZIL.
3229	 */
3230	if (cookiep == NULL && !zilog->zl_suspending &&
3231	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3232		mutex_exit(&zilog->zl_lock);
3233		dmu_objset_rele(os, suspend_tag);
3234		return (0);
3235	}
3236
3237	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3238	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3239
3240	zilog->zl_suspend++;
3241
3242	if (zilog->zl_suspend > 1) {
3243		/*
3244		 * Someone else is already suspending it.
3245		 * Just wait for them to finish.
3246		 */
3247
3248		while (zilog->zl_suspending)
3249			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3250		mutex_exit(&zilog->zl_lock);
3251
3252		if (cookiep == NULL)
3253			zil_resume(os);
3254		else
3255			*cookiep = os;
3256		return (0);
3257	}
3258
3259	/*
3260	 * If there is no pointer to an on-disk block, this ZIL must not
3261	 * be active (e.g. filesystem not mounted), so there's nothing
3262	 * to clean up.
3263	 */
3264	if (BP_IS_HOLE(&zh->zh_log)) {
3265		ASSERT(cookiep != NULL); /* fast path already handled */
3266
3267		*cookiep = os;
3268		mutex_exit(&zilog->zl_lock);
3269		return (0);
3270	}
3271
3272	zilog->zl_suspending = B_TRUE;
3273	mutex_exit(&zilog->zl_lock);
3274
3275	/*
3276	 * We need to use zil_commit_impl to ensure we wait for all
3277	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3278	 * to disk before proceeding. If we used zil_commit instead, it
3279	 * would just call txg_wait_synced(), because zl_suspend is set.
3280	 * txg_wait_synced() doesn't wait for these lwb's to be
3281	 * LWB_STATE_FLUSH_DONE before returning.
3282	 */
3283	zil_commit_impl(zilog, 0);
3284
3285	/*
3286	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3287	 * use txg_wait_synced() to ensure the data from the zilog has
3288	 * migrated to the main pool before calling zil_destroy().
3289	 */
3290	txg_wait_synced(zilog->zl_dmu_pool, 0);
3291
3292	zil_destroy(zilog, B_FALSE);
3293
3294	mutex_enter(&zilog->zl_lock);
3295	zilog->zl_suspending = B_FALSE;
3296	cv_broadcast(&zilog->zl_cv_suspend);
3297	mutex_exit(&zilog->zl_lock);
3298
3299	if (cookiep == NULL)
3300		zil_resume(os);
3301	else
3302		*cookiep = os;
3303	return (0);
3304}
3305
3306void
3307zil_resume(void *cookie)
3308{
3309	objset_t *os = cookie;
3310	zilog_t *zilog = dmu_objset_zil(os);
3311
3312	mutex_enter(&zilog->zl_lock);
3313	ASSERT(zilog->zl_suspend != 0);
3314	zilog->zl_suspend--;
3315	mutex_exit(&zilog->zl_lock);
3316	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3317	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3318}
3319
3320typedef struct zil_replay_arg {
3321	zil_replay_func_t **zr_replay;
3322	void		*zr_arg;
3323	boolean_t	zr_byteswap;
3324	char		*zr_lr;
3325} zil_replay_arg_t;
3326
3327static int
3328zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3329{
3330	char name[ZFS_MAX_DATASET_NAME_LEN];
3331
3332	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3333
3334	dmu_objset_name(zilog->zl_os, name);
3335
3336	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3337	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3338	    (u_longlong_t)lr->lrc_seq,
3339	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3340	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3341
3342	return (error);
3343}
3344
3345static int
3346zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3347{
3348	zil_replay_arg_t *zr = zra;
3349	const zil_header_t *zh = zilog->zl_header;
3350	uint64_t reclen = lr->lrc_reclen;
3351	uint64_t txtype = lr->lrc_txtype;
3352	int error = 0;
3353
3354	zilog->zl_replaying_seq = lr->lrc_seq;
3355
3356	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3357		return (0);
3358
3359	if (lr->lrc_txg < claim_txg)		/* already committed */
3360		return (0);
3361
3362	/* Strip case-insensitive bit, still present in log record */
3363	txtype &= ~TX_CI;
3364
3365	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3366		return (zil_replay_error(zilog, lr, EINVAL));
3367
3368	/*
3369	 * If this record type can be logged out of order, the object
3370	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3371	 */
3372	if (TX_OOO(txtype)) {
3373		error = dmu_object_info(zilog->zl_os,
3374		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3375		if (error == ENOENT || error == EEXIST)
3376			return (0);
3377	}
3378
3379	/*
3380	 * Make a copy of the data so we can revise and extend it.
3381	 */
3382	bcopy(lr, zr->zr_lr, reclen);
3383
3384	/*
3385	 * If this is a TX_WRITE with a blkptr, suck in the data.
3386	 */
3387	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3388		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3389		    zr->zr_lr + reclen);
3390		if (error != 0)
3391			return (zil_replay_error(zilog, lr, error));
3392	}
3393
3394	/*
3395	 * The log block containing this lr may have been byteswapped
3396	 * so that we can easily examine common fields like lrc_txtype.
3397	 * However, the log is a mix of different record types, and only the
3398	 * replay vectors know how to byteswap their records.  Therefore, if
3399	 * the lr was byteswapped, undo it before invoking the replay vector.
3400	 */
3401	if (zr->zr_byteswap)
3402		byteswap_uint64_array(zr->zr_lr, reclen);
3403
3404	/*
3405	 * We must now do two things atomically: replay this log record,
3406	 * and update the log header sequence number to reflect the fact that
3407	 * we did so. At the end of each replay function the sequence number
3408	 * is updated if we are in replay mode.
3409	 */
3410	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3411	if (error != 0) {
3412		/*
3413		 * The DMU's dnode layer doesn't see removes until the txg
3414		 * commits, so a subsequent claim can spuriously fail with
3415		 * EEXIST. So if we receive any error we try syncing out
3416		 * any removes then retry the transaction.  Note that we
3417		 * specify B_FALSE for byteswap now, so we don't do it twice.
3418		 */
3419		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3420		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3421		if (error != 0)
3422			return (zil_replay_error(zilog, lr, error));
3423	}
3424	return (0);
3425}
3426
3427/* ARGSUSED */
3428static int
3429zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3430{
3431	zilog->zl_replay_blks++;
3432
3433	return (0);
3434}
3435
3436/*
3437 * If this dataset has a non-empty intent log, replay it and destroy it.
3438 */
3439void
3440zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3441{
3442	zilog_t *zilog = dmu_objset_zil(os);
3443	const zil_header_t *zh = zilog->zl_header;
3444	zil_replay_arg_t zr;
3445
3446	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3447		zil_destroy(zilog, B_TRUE);
3448		return;
3449	}
3450
3451	zr.zr_replay = replay_func;
3452	zr.zr_arg = arg;
3453	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3454	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3455
3456	/*
3457	 * Wait for in-progress removes to sync before starting replay.
3458	 */
3459	txg_wait_synced(zilog->zl_dmu_pool, 0);
3460
3461	zilog->zl_replay = B_TRUE;
3462	zilog->zl_replay_time = ddi_get_lbolt();
3463	ASSERT(zilog->zl_replay_blks == 0);
3464	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3465	    zh->zh_claim_txg);
3466	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3467
3468	zil_destroy(zilog, B_FALSE);
3469	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3470	zilog->zl_replay = B_FALSE;
3471}
3472
3473boolean_t
3474zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3475{
3476	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3477		return (B_TRUE);
3478
3479	if (zilog->zl_replay) {
3480		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3481		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3482		    zilog->zl_replaying_seq;
3483		return (B_TRUE);
3484	}
3485
3486	return (B_FALSE);
3487}
3488
3489/* ARGSUSED */
3490int
3491zil_reset(const char *osname, void *arg)
3492{
3493	int error;
3494
3495	error = zil_suspend(osname, NULL);
3496	if (error != 0)
3497		return (SET_ERROR(EEXIST));
3498	return (0);
3499}
3500