1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2017 RackTop Systems.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/dbuf.h>
31#include <sys/dnode.h>
32#include <sys/dmu.h>
33#include <sys/dmu_impl.h>
34#include <sys/dmu_tx.h>
35#include <sys/dmu_objset.h>
36#include <sys/dsl_dir.h>
37#include <sys/dsl_dataset.h>
38#include <sys/spa.h>
39#include <sys/zio.h>
40#include <sys/dmu_zfetch.h>
41#include <sys/range_tree.h>
42
43dnode_stats_t dnode_stats = {
44	{ "dnode_hold_dbuf_hold",		KSTAT_DATA_UINT64 },
45	{ "dnode_hold_dbuf_read",		KSTAT_DATA_UINT64 },
46	{ "dnode_hold_alloc_hits",		KSTAT_DATA_UINT64 },
47	{ "dnode_hold_alloc_misses",		KSTAT_DATA_UINT64 },
48	{ "dnode_hold_alloc_interior",		KSTAT_DATA_UINT64 },
49	{ "dnode_hold_alloc_lock_retry",	KSTAT_DATA_UINT64 },
50	{ "dnode_hold_alloc_lock_misses",	KSTAT_DATA_UINT64 },
51	{ "dnode_hold_alloc_type_none",		KSTAT_DATA_UINT64 },
52	{ "dnode_hold_free_hits",		KSTAT_DATA_UINT64 },
53	{ "dnode_hold_free_misses",		KSTAT_DATA_UINT64 },
54	{ "dnode_hold_free_lock_misses",	KSTAT_DATA_UINT64 },
55	{ "dnode_hold_free_lock_retry",		KSTAT_DATA_UINT64 },
56	{ "dnode_hold_free_overflow",		KSTAT_DATA_UINT64 },
57	{ "dnode_hold_free_refcount",		KSTAT_DATA_UINT64 },
58	{ "dnode_hold_free_txg",		KSTAT_DATA_UINT64 },
59	{ "dnode_free_interior_lock_retry",	KSTAT_DATA_UINT64 },
60	{ "dnode_allocate",			KSTAT_DATA_UINT64 },
61	{ "dnode_reallocate",			KSTAT_DATA_UINT64 },
62	{ "dnode_buf_evict",			KSTAT_DATA_UINT64 },
63	{ "dnode_alloc_next_chunk",		KSTAT_DATA_UINT64 },
64	{ "dnode_alloc_race",			KSTAT_DATA_UINT64 },
65	{ "dnode_alloc_next_block",		KSTAT_DATA_UINT64 },
66	{ "dnode_move_invalid",			KSTAT_DATA_UINT64 },
67	{ "dnode_move_recheck1",		KSTAT_DATA_UINT64 },
68	{ "dnode_move_recheck2",		KSTAT_DATA_UINT64 },
69	{ "dnode_move_special",			KSTAT_DATA_UINT64 },
70	{ "dnode_move_handle",			KSTAT_DATA_UINT64 },
71	{ "dnode_move_rwlock",			KSTAT_DATA_UINT64 },
72	{ "dnode_move_active",			KSTAT_DATA_UINT64 },
73};
74
75static kstat_t *dnode_ksp;
76static kmem_cache_t *dnode_cache;
77
78static dnode_phys_t dnode_phys_zero;
79
80int zfs_default_bs = SPA_MINBLOCKSHIFT;
81int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
82
83SYSCTL_DECL(_vfs_zfs);
84SYSCTL_INT(_vfs_zfs, OID_AUTO, default_bs, CTLFLAG_RWTUN,
85    &zfs_default_bs, 0, "Default dnode block shift");
86SYSCTL_INT(_vfs_zfs, OID_AUTO, default_ibs, CTLFLAG_RWTUN,
87    &zfs_default_ibs, 0, "Default dnode indirect block shift");
88
89#ifdef illumos
90#ifdef	_KERNEL
91static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
92#endif	/* _KERNEL */
93#endif
94
95static int
96dbuf_compare(const void *x1, const void *x2)
97{
98	const dmu_buf_impl_t *d1 = x1;
99	const dmu_buf_impl_t *d2 = x2;
100
101	int cmp = AVL_CMP(d1->db_level, d2->db_level);
102	if (likely(cmp))
103		return (cmp);
104
105	cmp = AVL_CMP(d1->db_blkid, d2->db_blkid);
106	if (likely(cmp))
107		return (cmp);
108
109	if (d1->db_state == DB_SEARCH) {
110		ASSERT3S(d2->db_state, !=, DB_SEARCH);
111		return (-1);
112	} else if (d2->db_state == DB_SEARCH) {
113		ASSERT3S(d1->db_state, !=, DB_SEARCH);
114		return (1);
115	}
116
117	return (AVL_PCMP(d1, d2));
118}
119
120/* ARGSUSED */
121static int
122dnode_cons(void *arg, void *unused, int kmflag)
123{
124	dnode_t *dn = arg;
125	int i;
126
127	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
128	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
129	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
130	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
131
132	/*
133	 * Every dbuf has a reference, and dropping a tracked reference is
134	 * O(number of references), so don't track dn_holds.
135	 */
136	zfs_refcount_create_untracked(&dn->dn_holds);
137	zfs_refcount_create(&dn->dn_tx_holds);
138	list_link_init(&dn->dn_link);
139
140	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
141	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
142	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
143	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
144	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
145	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
146	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
147
148	for (i = 0; i < TXG_SIZE; i++) {
149		multilist_link_init(&dn->dn_dirty_link[i]);
150		dn->dn_free_ranges[i] = NULL;
151		list_create(&dn->dn_dirty_records[i],
152		    sizeof (dbuf_dirty_record_t),
153		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
154	}
155
156	dn->dn_allocated_txg = 0;
157	dn->dn_free_txg = 0;
158	dn->dn_assigned_txg = 0;
159	dn->dn_dirty_txg = 0;
160	dn->dn_dirtyctx = 0;
161	dn->dn_dirtyctx_firstset = NULL;
162	dn->dn_bonus = NULL;
163	dn->dn_have_spill = B_FALSE;
164	dn->dn_zio = NULL;
165	dn->dn_oldused = 0;
166	dn->dn_oldflags = 0;
167	dn->dn_olduid = 0;
168	dn->dn_oldgid = 0;
169	dn->dn_newuid = 0;
170	dn->dn_newgid = 0;
171	dn->dn_id_flags = 0;
172
173	dn->dn_dbufs_count = 0;
174	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
175	    offsetof(dmu_buf_impl_t, db_link));
176
177	dn->dn_moved = 0;
178	POINTER_INVALIDATE(&dn->dn_objset);
179	return (0);
180}
181
182/* ARGSUSED */
183static void
184dnode_dest(void *arg, void *unused)
185{
186	int i;
187	dnode_t *dn = arg;
188
189	rw_destroy(&dn->dn_struct_rwlock);
190	mutex_destroy(&dn->dn_mtx);
191	mutex_destroy(&dn->dn_dbufs_mtx);
192	cv_destroy(&dn->dn_notxholds);
193	zfs_refcount_destroy(&dn->dn_holds);
194	zfs_refcount_destroy(&dn->dn_tx_holds);
195	ASSERT(!list_link_active(&dn->dn_link));
196
197	for (i = 0; i < TXG_SIZE; i++) {
198		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
199		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
200		list_destroy(&dn->dn_dirty_records[i]);
201		ASSERT0(dn->dn_next_nblkptr[i]);
202		ASSERT0(dn->dn_next_nlevels[i]);
203		ASSERT0(dn->dn_next_indblkshift[i]);
204		ASSERT0(dn->dn_next_bonustype[i]);
205		ASSERT0(dn->dn_rm_spillblk[i]);
206		ASSERT0(dn->dn_next_bonuslen[i]);
207		ASSERT0(dn->dn_next_blksz[i]);
208	}
209
210	ASSERT0(dn->dn_allocated_txg);
211	ASSERT0(dn->dn_free_txg);
212	ASSERT0(dn->dn_assigned_txg);
213	ASSERT0(dn->dn_dirty_txg);
214	ASSERT0(dn->dn_dirtyctx);
215	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
216	ASSERT3P(dn->dn_bonus, ==, NULL);
217	ASSERT(!dn->dn_have_spill);
218	ASSERT3P(dn->dn_zio, ==, NULL);
219	ASSERT0(dn->dn_oldused);
220	ASSERT0(dn->dn_oldflags);
221	ASSERT0(dn->dn_olduid);
222	ASSERT0(dn->dn_oldgid);
223	ASSERT0(dn->dn_newuid);
224	ASSERT0(dn->dn_newgid);
225	ASSERT0(dn->dn_id_flags);
226
227	ASSERT0(dn->dn_dbufs_count);
228	avl_destroy(&dn->dn_dbufs);
229}
230
231void
232dnode_init(void)
233{
234	ASSERT(dnode_cache == NULL);
235	dnode_cache = kmem_cache_create("dnode_t",
236	    sizeof (dnode_t),
237	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
238#ifdef	_KERNEL
239	kmem_cache_set_move(dnode_cache, dnode_move);
240
241	dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
242	    KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
243	    KSTAT_FLAG_VIRTUAL);
244	if (dnode_ksp != NULL) {
245		dnode_ksp->ks_data = &dnode_stats;
246		kstat_install(dnode_ksp);
247	}
248#endif	/* _KERNEL */
249}
250
251void
252dnode_fini(void)
253{
254	if (dnode_ksp != NULL) {
255		kstat_delete(dnode_ksp);
256		dnode_ksp = NULL;
257	}
258
259	kmem_cache_destroy(dnode_cache);
260	dnode_cache = NULL;
261}
262
263
264#ifdef ZFS_DEBUG
265void
266dnode_verify(dnode_t *dn)
267{
268	int drop_struct_lock = FALSE;
269
270	ASSERT(dn->dn_phys);
271	ASSERT(dn->dn_objset);
272	ASSERT(dn->dn_handle->dnh_dnode == dn);
273
274	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
275
276	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
277		return;
278
279	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
280		rw_enter(&dn->dn_struct_rwlock, RW_READER);
281		drop_struct_lock = TRUE;
282	}
283	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
284		int i;
285		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
286		ASSERT3U(dn->dn_indblkshift, >=, 0);
287		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
288		if (dn->dn_datablkshift) {
289			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
290			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
291			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
292		}
293		ASSERT3U(dn->dn_nlevels, <=, 30);
294		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
295		ASSERT3U(dn->dn_nblkptr, >=, 1);
296		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
297		ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
298		ASSERT3U(dn->dn_datablksz, ==,
299		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
300		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
301		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
302		    dn->dn_bonuslen, <=, max_bonuslen);
303		for (i = 0; i < TXG_SIZE; i++) {
304			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
305		}
306	}
307	if (dn->dn_phys->dn_type != DMU_OT_NONE)
308		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
309	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
310	if (dn->dn_dbuf != NULL) {
311		ASSERT3P(dn->dn_phys, ==,
312		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
313		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
314	}
315	if (drop_struct_lock)
316		rw_exit(&dn->dn_struct_rwlock);
317}
318#endif
319
320void
321dnode_byteswap(dnode_phys_t *dnp)
322{
323	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
324	int i;
325
326	if (dnp->dn_type == DMU_OT_NONE) {
327		bzero(dnp, sizeof (dnode_phys_t));
328		return;
329	}
330
331	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
332	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
333	dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
334	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
335	dnp->dn_used = BSWAP_64(dnp->dn_used);
336
337	/*
338	 * dn_nblkptr is only one byte, so it's OK to read it in either
339	 * byte order.  We can't read dn_bouslen.
340	 */
341	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
342	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
343	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
344		buf64[i] = BSWAP_64(buf64[i]);
345
346	/*
347	 * OK to check dn_bonuslen for zero, because it won't matter if
348	 * we have the wrong byte order.  This is necessary because the
349	 * dnode dnode is smaller than a regular dnode.
350	 */
351	if (dnp->dn_bonuslen != 0) {
352		/*
353		 * Note that the bonus length calculated here may be
354		 * longer than the actual bonus buffer.  This is because
355		 * we always put the bonus buffer after the last block
356		 * pointer (instead of packing it against the end of the
357		 * dnode buffer).
358		 */
359		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
360		int slots = dnp->dn_extra_slots + 1;
361		size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
362		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
363		dmu_object_byteswap_t byteswap =
364		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
365		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
366	}
367
368	/* Swap SPILL block if we have one */
369	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
370		byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
371
372}
373
374void
375dnode_buf_byteswap(void *vbuf, size_t size)
376{
377	int i = 0;
378
379	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
380	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
381
382	while (i < size) {
383		dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
384		dnode_byteswap(dnp);
385
386		i += DNODE_MIN_SIZE;
387		if (dnp->dn_type != DMU_OT_NONE)
388			i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
389	}
390}
391
392void
393dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
394{
395	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
396
397	dnode_setdirty(dn, tx);
398	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
399	ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
400	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
401	dn->dn_bonuslen = newsize;
402	if (newsize == 0)
403		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
404	else
405		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
406	rw_exit(&dn->dn_struct_rwlock);
407}
408
409void
410dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
411{
412	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
413	dnode_setdirty(dn, tx);
414	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
415	dn->dn_bonustype = newtype;
416	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
417	rw_exit(&dn->dn_struct_rwlock);
418}
419
420void
421dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
422{
423	ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
424	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
425	dnode_setdirty(dn, tx);
426	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
427	dn->dn_have_spill = B_FALSE;
428}
429
430static void
431dnode_setdblksz(dnode_t *dn, int size)
432{
433	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
434	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
435	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
436	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
437	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
438	dn->dn_datablksz = size;
439	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
440	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
441}
442
443static dnode_t *
444dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
445    uint64_t object, dnode_handle_t *dnh)
446{
447	dnode_t *dn;
448
449	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
450#ifdef _KERNEL
451	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
452#endif /* _KERNEL */
453	dn->dn_moved = 0;
454
455	/*
456	 * Defer setting dn_objset until the dnode is ready to be a candidate
457	 * for the dnode_move() callback.
458	 */
459	dn->dn_object = object;
460	dn->dn_dbuf = db;
461	dn->dn_handle = dnh;
462	dn->dn_phys = dnp;
463
464	if (dnp->dn_datablkszsec) {
465		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
466	} else {
467		dn->dn_datablksz = 0;
468		dn->dn_datablkszsec = 0;
469		dn->dn_datablkshift = 0;
470	}
471	dn->dn_indblkshift = dnp->dn_indblkshift;
472	dn->dn_nlevels = dnp->dn_nlevels;
473	dn->dn_type = dnp->dn_type;
474	dn->dn_nblkptr = dnp->dn_nblkptr;
475	dn->dn_checksum = dnp->dn_checksum;
476	dn->dn_compress = dnp->dn_compress;
477	dn->dn_bonustype = dnp->dn_bonustype;
478	dn->dn_bonuslen = dnp->dn_bonuslen;
479	dn->dn_num_slots = dnp->dn_extra_slots + 1;
480	dn->dn_maxblkid = dnp->dn_maxblkid;
481	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
482	dn->dn_id_flags = 0;
483
484	dmu_zfetch_init(&dn->dn_zfetch, dn);
485
486	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
487	ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
488	ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
489
490	mutex_enter(&os->os_lock);
491
492	/*
493	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
494	 * signifies that the special dnodes have no references from
495	 * their children (the entries in os_dnodes).  This allows
496	 * dnode_destroy() to easily determine if the last child has
497	 * been removed and then complete eviction of the objset.
498	 */
499	if (!DMU_OBJECT_IS_SPECIAL(object))
500		list_insert_head(&os->os_dnodes, dn);
501	membar_producer();
502
503	/*
504	 * Everything else must be valid before assigning dn_objset
505	 * makes the dnode eligible for dnode_move().
506	 */
507	dn->dn_objset = os;
508
509	dnh->dnh_dnode = dn;
510	mutex_exit(&os->os_lock);
511
512	arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
513
514	return (dn);
515}
516
517/*
518 * Caller must be holding the dnode handle, which is released upon return.
519 */
520static void
521dnode_destroy(dnode_t *dn)
522{
523	objset_t *os = dn->dn_objset;
524	boolean_t complete_os_eviction = B_FALSE;
525
526	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
527
528	mutex_enter(&os->os_lock);
529	POINTER_INVALIDATE(&dn->dn_objset);
530	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
531		list_remove(&os->os_dnodes, dn);
532		complete_os_eviction =
533		    list_is_empty(&os->os_dnodes) &&
534		    list_link_active(&os->os_evicting_node);
535	}
536	mutex_exit(&os->os_lock);
537
538	/* the dnode can no longer move, so we can release the handle */
539	if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
540		zrl_remove(&dn->dn_handle->dnh_zrlock);
541
542	dn->dn_allocated_txg = 0;
543	dn->dn_free_txg = 0;
544	dn->dn_assigned_txg = 0;
545	dn->dn_dirty_txg = 0;
546
547	dn->dn_dirtyctx = 0;
548	if (dn->dn_dirtyctx_firstset != NULL) {
549		kmem_free(dn->dn_dirtyctx_firstset, 1);
550		dn->dn_dirtyctx_firstset = NULL;
551	}
552	if (dn->dn_bonus != NULL) {
553		mutex_enter(&dn->dn_bonus->db_mtx);
554		dbuf_destroy(dn->dn_bonus);
555		dn->dn_bonus = NULL;
556	}
557	dn->dn_zio = NULL;
558
559	dn->dn_have_spill = B_FALSE;
560	dn->dn_oldused = 0;
561	dn->dn_oldflags = 0;
562	dn->dn_olduid = 0;
563	dn->dn_oldgid = 0;
564	dn->dn_newuid = 0;
565	dn->dn_newgid = 0;
566	dn->dn_id_flags = 0;
567
568	dmu_zfetch_fini(&dn->dn_zfetch);
569	kmem_cache_free(dnode_cache, dn);
570	arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
571
572	if (complete_os_eviction)
573		dmu_objset_evict_done(os);
574}
575
576void
577dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
578    dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
579{
580	int i;
581
582	ASSERT3U(dn_slots, >, 0);
583	ASSERT3U(dn_slots << DNODE_SHIFT, <=,
584	    spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
585	ASSERT3U(blocksize, <=,
586	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
587	if (blocksize == 0)
588		blocksize = 1 << zfs_default_bs;
589	else
590		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
591
592	if (ibs == 0)
593		ibs = zfs_default_ibs;
594
595	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
596
597	dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64
598	    " blocksize=%d ibs=%d dn_slots=%d\n",
599	    dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
600	DNODE_STAT_BUMP(dnode_allocate);
601
602	ASSERT(dn->dn_type == DMU_OT_NONE);
603	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
604	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
605	ASSERT(ot != DMU_OT_NONE);
606	ASSERT(DMU_OT_IS_VALID(ot));
607	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
608	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
609	    (bonustype != DMU_OT_NONE && bonuslen != 0));
610	ASSERT(DMU_OT_IS_VALID(bonustype));
611	ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
612	ASSERT(dn->dn_type == DMU_OT_NONE);
613	ASSERT0(dn->dn_maxblkid);
614	ASSERT0(dn->dn_allocated_txg);
615	ASSERT0(dn->dn_dirty_txg);
616	ASSERT0(dn->dn_assigned_txg);
617	ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
618	ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
619	ASSERT(avl_is_empty(&dn->dn_dbufs));
620
621	for (i = 0; i < TXG_SIZE; i++) {
622		ASSERT0(dn->dn_next_nblkptr[i]);
623		ASSERT0(dn->dn_next_nlevels[i]);
624		ASSERT0(dn->dn_next_indblkshift[i]);
625		ASSERT0(dn->dn_next_bonuslen[i]);
626		ASSERT0(dn->dn_next_bonustype[i]);
627		ASSERT0(dn->dn_rm_spillblk[i]);
628		ASSERT0(dn->dn_next_blksz[i]);
629		ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
630		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
631		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
632	}
633
634	dn->dn_type = ot;
635	dnode_setdblksz(dn, blocksize);
636	dn->dn_indblkshift = ibs;
637	dn->dn_nlevels = 1;
638	dn->dn_num_slots = dn_slots;
639	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
640		dn->dn_nblkptr = 1;
641	else {
642		dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
643		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
644		    SPA_BLKPTRSHIFT));
645	}
646
647	dn->dn_bonustype = bonustype;
648	dn->dn_bonuslen = bonuslen;
649	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
650	dn->dn_compress = ZIO_COMPRESS_INHERIT;
651	dn->dn_dirtyctx = 0;
652
653	dn->dn_free_txg = 0;
654	if (dn->dn_dirtyctx_firstset) {
655		kmem_free(dn->dn_dirtyctx_firstset, 1);
656		dn->dn_dirtyctx_firstset = NULL;
657	}
658
659	dn->dn_allocated_txg = tx->tx_txg;
660	dn->dn_id_flags = 0;
661
662	dnode_setdirty(dn, tx);
663	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
664	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
665	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
666	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
667}
668
669void
670dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
671    dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
672{
673	int nblkptr;
674
675	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
676	ASSERT3U(blocksize, <=,
677	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
678	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
679	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
680	ASSERT(tx->tx_txg != 0);
681	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
682	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
683	    (bonustype == DMU_OT_SA && bonuslen == 0));
684	ASSERT(DMU_OT_IS_VALID(bonustype));
685	ASSERT3U(bonuslen, <=,
686	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
687	ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
688
689	dnode_free_interior_slots(dn);
690	DNODE_STAT_BUMP(dnode_reallocate);
691
692	/* clean up any unreferenced dbufs */
693	dnode_evict_dbufs(dn);
694
695	dn->dn_id_flags = 0;
696
697	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
698	dnode_setdirty(dn, tx);
699	if (dn->dn_datablksz != blocksize) {
700		/* change blocksize */
701		ASSERT(dn->dn_maxblkid == 0 &&
702		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
703		    dnode_block_freed(dn, 0)));
704		dnode_setdblksz(dn, blocksize);
705		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
706	}
707	if (dn->dn_bonuslen != bonuslen)
708		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
709
710	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
711		nblkptr = 1;
712	else
713		nblkptr = MIN(DN_MAX_NBLKPTR,
714		    1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
715		    SPA_BLKPTRSHIFT));
716	if (dn->dn_bonustype != bonustype)
717		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
718	if (dn->dn_nblkptr != nblkptr)
719		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
720	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
721		dbuf_rm_spill(dn, tx);
722		dnode_rm_spill(dn, tx);
723	}
724	rw_exit(&dn->dn_struct_rwlock);
725
726	/* change type */
727	dn->dn_type = ot;
728
729	/* change bonus size and type */
730	mutex_enter(&dn->dn_mtx);
731	dn->dn_bonustype = bonustype;
732	dn->dn_bonuslen = bonuslen;
733	dn->dn_num_slots = dn_slots;
734	dn->dn_nblkptr = nblkptr;
735	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
736	dn->dn_compress = ZIO_COMPRESS_INHERIT;
737	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
738
739	/* fix up the bonus db_size */
740	if (dn->dn_bonus) {
741		dn->dn_bonus->db.db_size =
742		    DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
743		    (dn->dn_nblkptr - 1) * sizeof (blkptr_t);
744		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
745	}
746
747	dn->dn_allocated_txg = tx->tx_txg;
748	mutex_exit(&dn->dn_mtx);
749}
750
751#ifdef	_KERNEL
752static void
753dnode_move_impl(dnode_t *odn, dnode_t *ndn)
754{
755	int i;
756
757	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
758	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
759	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
760	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
761
762	/* Copy fields. */
763	ndn->dn_objset = odn->dn_objset;
764	ndn->dn_object = odn->dn_object;
765	ndn->dn_dbuf = odn->dn_dbuf;
766	ndn->dn_handle = odn->dn_handle;
767	ndn->dn_phys = odn->dn_phys;
768	ndn->dn_type = odn->dn_type;
769	ndn->dn_bonuslen = odn->dn_bonuslen;
770	ndn->dn_bonustype = odn->dn_bonustype;
771	ndn->dn_nblkptr = odn->dn_nblkptr;
772	ndn->dn_checksum = odn->dn_checksum;
773	ndn->dn_compress = odn->dn_compress;
774	ndn->dn_nlevels = odn->dn_nlevels;
775	ndn->dn_indblkshift = odn->dn_indblkshift;
776	ndn->dn_datablkshift = odn->dn_datablkshift;
777	ndn->dn_datablkszsec = odn->dn_datablkszsec;
778	ndn->dn_datablksz = odn->dn_datablksz;
779	ndn->dn_maxblkid = odn->dn_maxblkid;
780	ndn->dn_num_slots = odn->dn_num_slots;
781	bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
782	    sizeof (odn->dn_next_type));
783	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
784	    sizeof (odn->dn_next_nblkptr));
785	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
786	    sizeof (odn->dn_next_nlevels));
787	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
788	    sizeof (odn->dn_next_indblkshift));
789	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
790	    sizeof (odn->dn_next_bonustype));
791	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
792	    sizeof (odn->dn_rm_spillblk));
793	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
794	    sizeof (odn->dn_next_bonuslen));
795	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
796	    sizeof (odn->dn_next_blksz));
797	for (i = 0; i < TXG_SIZE; i++) {
798		list_move_tail(&ndn->dn_dirty_records[i],
799		    &odn->dn_dirty_records[i]);
800	}
801	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
802	    sizeof (odn->dn_free_ranges));
803	ndn->dn_allocated_txg = odn->dn_allocated_txg;
804	ndn->dn_free_txg = odn->dn_free_txg;
805	ndn->dn_assigned_txg = odn->dn_assigned_txg;
806	ndn->dn_dirty_txg = odn->dn_dirty_txg;
807	ndn->dn_dirtyctx = odn->dn_dirtyctx;
808	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
809	ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
810	zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
811	ASSERT(avl_is_empty(&ndn->dn_dbufs));
812	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
813	ndn->dn_dbufs_count = odn->dn_dbufs_count;
814	ndn->dn_bonus = odn->dn_bonus;
815	ndn->dn_have_spill = odn->dn_have_spill;
816	ndn->dn_zio = odn->dn_zio;
817	ndn->dn_oldused = odn->dn_oldused;
818	ndn->dn_oldflags = odn->dn_oldflags;
819	ndn->dn_olduid = odn->dn_olduid;
820	ndn->dn_oldgid = odn->dn_oldgid;
821	ndn->dn_newuid = odn->dn_newuid;
822	ndn->dn_newgid = odn->dn_newgid;
823	ndn->dn_id_flags = odn->dn_id_flags;
824	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
825	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
826	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
827
828	/*
829	 * Update back pointers. Updating the handle fixes the back pointer of
830	 * every descendant dbuf as well as the bonus dbuf.
831	 */
832	ASSERT(ndn->dn_handle->dnh_dnode == odn);
833	ndn->dn_handle->dnh_dnode = ndn;
834	if (ndn->dn_zfetch.zf_dnode == odn) {
835		ndn->dn_zfetch.zf_dnode = ndn;
836	}
837
838	/*
839	 * Invalidate the original dnode by clearing all of its back pointers.
840	 */
841	odn->dn_dbuf = NULL;
842	odn->dn_handle = NULL;
843	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
844	    offsetof(dmu_buf_impl_t, db_link));
845	odn->dn_dbufs_count = 0;
846	odn->dn_bonus = NULL;
847	odn->dn_zfetch.zf_dnode = NULL;
848
849	/*
850	 * Set the low bit of the objset pointer to ensure that dnode_move()
851	 * recognizes the dnode as invalid in any subsequent callback.
852	 */
853	POINTER_INVALIDATE(&odn->dn_objset);
854
855	/*
856	 * Satisfy the destructor.
857	 */
858	for (i = 0; i < TXG_SIZE; i++) {
859		list_create(&odn->dn_dirty_records[i],
860		    sizeof (dbuf_dirty_record_t),
861		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
862		odn->dn_free_ranges[i] = NULL;
863		odn->dn_next_nlevels[i] = 0;
864		odn->dn_next_indblkshift[i] = 0;
865		odn->dn_next_bonustype[i] = 0;
866		odn->dn_rm_spillblk[i] = 0;
867		odn->dn_next_bonuslen[i] = 0;
868		odn->dn_next_blksz[i] = 0;
869	}
870	odn->dn_allocated_txg = 0;
871	odn->dn_free_txg = 0;
872	odn->dn_assigned_txg = 0;
873	odn->dn_dirty_txg = 0;
874	odn->dn_dirtyctx = 0;
875	odn->dn_dirtyctx_firstset = NULL;
876	odn->dn_have_spill = B_FALSE;
877	odn->dn_zio = NULL;
878	odn->dn_oldused = 0;
879	odn->dn_oldflags = 0;
880	odn->dn_olduid = 0;
881	odn->dn_oldgid = 0;
882	odn->dn_newuid = 0;
883	odn->dn_newgid = 0;
884	odn->dn_id_flags = 0;
885
886	/*
887	 * Mark the dnode.
888	 */
889	ndn->dn_moved = 1;
890	odn->dn_moved = (uint8_t)-1;
891}
892
893#ifdef illumos
894/*ARGSUSED*/
895static kmem_cbrc_t
896dnode_move(void *buf, void *newbuf, size_t size, void *arg)
897{
898	dnode_t *odn = buf, *ndn = newbuf;
899	objset_t *os;
900	int64_t refcount;
901	uint32_t dbufs;
902
903	/*
904	 * The dnode is on the objset's list of known dnodes if the objset
905	 * pointer is valid. We set the low bit of the objset pointer when
906	 * freeing the dnode to invalidate it, and the memory patterns written
907	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
908	 * A newly created dnode sets the objset pointer last of all to indicate
909	 * that the dnode is known and in a valid state to be moved by this
910	 * function.
911	 */
912	os = odn->dn_objset;
913	if (!POINTER_IS_VALID(os)) {
914		DNODE_STAT_BUMP(dnode_move_invalid);
915		return (KMEM_CBRC_DONT_KNOW);
916	}
917
918	/*
919	 * Ensure that the objset does not go away during the move.
920	 */
921	rw_enter(&os_lock, RW_WRITER);
922	if (os != odn->dn_objset) {
923		rw_exit(&os_lock);
924		DNODE_STAT_BUMP(dnode_move_recheck1);
925		return (KMEM_CBRC_DONT_KNOW);
926	}
927
928	/*
929	 * If the dnode is still valid, then so is the objset. We know that no
930	 * valid objset can be freed while we hold os_lock, so we can safely
931	 * ensure that the objset remains in use.
932	 */
933	mutex_enter(&os->os_lock);
934
935	/*
936	 * Recheck the objset pointer in case the dnode was removed just before
937	 * acquiring the lock.
938	 */
939	if (os != odn->dn_objset) {
940		mutex_exit(&os->os_lock);
941		rw_exit(&os_lock);
942		DNODE_STAT_BUMP(dnode_move_recheck2);
943		return (KMEM_CBRC_DONT_KNOW);
944	}
945
946	/*
947	 * At this point we know that as long as we hold os->os_lock, the dnode
948	 * cannot be freed and fields within the dnode can be safely accessed.
949	 * The objset listing this dnode cannot go away as long as this dnode is
950	 * on its list.
951	 */
952	rw_exit(&os_lock);
953	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
954		mutex_exit(&os->os_lock);
955		DNODE_STAT_BUMP(dnode_move_special);
956		return (KMEM_CBRC_NO);
957	}
958	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
959
960	/*
961	 * Lock the dnode handle to prevent the dnode from obtaining any new
962	 * holds. This also prevents the descendant dbufs and the bonus dbuf
963	 * from accessing the dnode, so that we can discount their holds. The
964	 * handle is safe to access because we know that while the dnode cannot
965	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
966	 * safely move any dnode referenced only by dbufs.
967	 */
968	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
969		mutex_exit(&os->os_lock);
970		DNODE_STAT_BUMP(dnode_move_handle);
971		return (KMEM_CBRC_LATER);
972	}
973
974	/*
975	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
976	 * We need to guarantee that there is a hold for every dbuf in order to
977	 * determine whether the dnode is actively referenced. Falsely matching
978	 * a dbuf to an active hold would lead to an unsafe move. It's possible
979	 * that a thread already having an active dnode hold is about to add a
980	 * dbuf, and we can't compare hold and dbuf counts while the add is in
981	 * progress.
982	 */
983	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
984		zrl_exit(&odn->dn_handle->dnh_zrlock);
985		mutex_exit(&os->os_lock);
986		DNODE_STAT_BUMP(dnode_move_rwlock);
987		return (KMEM_CBRC_LATER);
988	}
989
990	/*
991	 * A dbuf may be removed (evicted) without an active dnode hold. In that
992	 * case, the dbuf count is decremented under the handle lock before the
993	 * dbuf's hold is released. This order ensures that if we count the hold
994	 * after the dbuf is removed but before its hold is released, we will
995	 * treat the unmatched hold as active and exit safely. If we count the
996	 * hold before the dbuf is removed, the hold is discounted, and the
997	 * removal is blocked until the move completes.
998	 */
999	refcount = zfs_refcount_count(&odn->dn_holds);
1000	ASSERT(refcount >= 0);
1001	dbufs = DN_DBUFS_COUNT(odn);
1002
1003	/* We can't have more dbufs than dnode holds. */
1004	ASSERT3U(dbufs, <=, refcount);
1005	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1006	    uint32_t, dbufs);
1007
1008	if (refcount > dbufs) {
1009		rw_exit(&odn->dn_struct_rwlock);
1010		zrl_exit(&odn->dn_handle->dnh_zrlock);
1011		mutex_exit(&os->os_lock);
1012		DNODE_STAT_BUMP(dnode_move_active);
1013		return (KMEM_CBRC_LATER);
1014	}
1015
1016	rw_exit(&odn->dn_struct_rwlock);
1017
1018	/*
1019	 * At this point we know that anyone with a hold on the dnode is not
1020	 * actively referencing it. The dnode is known and in a valid state to
1021	 * move. We're holding the locks needed to execute the critical section.
1022	 */
1023	dnode_move_impl(odn, ndn);
1024
1025	list_link_replace(&odn->dn_link, &ndn->dn_link);
1026	/* If the dnode was safe to move, the refcount cannot have changed. */
1027	ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1028	ASSERT(dbufs == DN_DBUFS_COUNT(ndn));
1029	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1030	mutex_exit(&os->os_lock);
1031
1032	return (KMEM_CBRC_YES);
1033}
1034#endif	/* illumos */
1035#endif	/* _KERNEL */
1036
1037static void
1038dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1039{
1040	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1041
1042	for (int i = idx; i < idx + slots; i++) {
1043		dnode_handle_t *dnh = &children->dnc_children[i];
1044		zrl_add(&dnh->dnh_zrlock);
1045	}
1046}
1047
1048static void
1049dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1050{
1051	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1052
1053	for (int i = idx; i < idx + slots; i++) {
1054		dnode_handle_t *dnh = &children->dnc_children[i];
1055
1056		if (zrl_is_locked(&dnh->dnh_zrlock))
1057			zrl_exit(&dnh->dnh_zrlock);
1058		else
1059			zrl_remove(&dnh->dnh_zrlock);
1060	}
1061}
1062
1063static int
1064dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1065{
1066	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1067
1068	for (int i = idx; i < idx + slots; i++) {
1069		dnode_handle_t *dnh = &children->dnc_children[i];
1070
1071		if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1072			for (int j = idx; j < i; j++) {
1073				dnh = &children->dnc_children[j];
1074				zrl_exit(&dnh->dnh_zrlock);
1075			}
1076
1077			return (0);
1078		}
1079	}
1080
1081	return (1);
1082}
1083
1084static void
1085dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1086{
1087	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1088
1089	for (int i = idx; i < idx + slots; i++) {
1090		dnode_handle_t *dnh = &children->dnc_children[i];
1091		dnh->dnh_dnode = ptr;
1092	}
1093}
1094
1095static boolean_t
1096dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1097{
1098	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1099
1100	/*
1101	 * If all dnode slots are either already free or
1102	 * evictable return B_TRUE.
1103	 */
1104	for (int i = idx; i < idx + slots; i++) {
1105		dnode_handle_t *dnh = &children->dnc_children[i];
1106		dnode_t *dn = dnh->dnh_dnode;
1107
1108		if (dn == DN_SLOT_FREE) {
1109			continue;
1110		} else if (DN_SLOT_IS_PTR(dn)) {
1111			mutex_enter(&dn->dn_mtx);
1112			boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1113			    zfs_refcount_is_zero(&dn->dn_holds) &&
1114			    !DNODE_IS_DIRTY(dn));
1115			mutex_exit(&dn->dn_mtx);
1116
1117			if (!can_free)
1118				return (B_FALSE);
1119			else
1120				continue;
1121		} else {
1122			return (B_FALSE);
1123		}
1124	}
1125
1126	return (B_TRUE);
1127}
1128
1129static void
1130dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1131{
1132	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1133
1134	for (int i = idx; i < idx + slots; i++) {
1135		dnode_handle_t *dnh = &children->dnc_children[i];
1136
1137		ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1138
1139		if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1140			ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1141			dnode_destroy(dnh->dnh_dnode);
1142			dnh->dnh_dnode = DN_SLOT_FREE;
1143		}
1144	}
1145}
1146
1147void
1148dnode_free_interior_slots(dnode_t *dn)
1149{
1150	dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1151	int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1152	int idx = (dn->dn_object & (epb - 1)) + 1;
1153	int slots = dn->dn_num_slots - 1;
1154
1155	if (slots == 0)
1156		return;
1157
1158	ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1159
1160	while (!dnode_slots_tryenter(children, idx, slots))
1161		DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1162
1163	dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1164	dnode_slots_rele(children, idx, slots);
1165}
1166
1167void
1168dnode_special_close(dnode_handle_t *dnh)
1169{
1170	dnode_t *dn = dnh->dnh_dnode;
1171
1172	/*
1173	 * Wait for final references to the dnode to clear.  This can
1174	 * only happen if the arc is asynchronously evicting state that
1175	 * has a hold on this dnode while we are trying to evict this
1176	 * dnode.
1177	 */
1178	while (zfs_refcount_count(&dn->dn_holds) > 0)
1179		delay(1);
1180	ASSERT(dn->dn_dbuf == NULL ||
1181	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1182	zrl_add(&dnh->dnh_zrlock);
1183	dnode_destroy(dn); /* implicit zrl_remove() */
1184	zrl_destroy(&dnh->dnh_zrlock);
1185	dnh->dnh_dnode = NULL;
1186}
1187
1188void
1189dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1190    dnode_handle_t *dnh)
1191{
1192	dnode_t *dn;
1193
1194	zrl_init(&dnh->dnh_zrlock);
1195	zrl_tryenter(&dnh->dnh_zrlock);
1196
1197	dn = dnode_create(os, dnp, NULL, object, dnh);
1198	DNODE_VERIFY(dn);
1199
1200	zrl_exit(&dnh->dnh_zrlock);
1201}
1202
1203static void
1204dnode_buf_evict_async(void *dbu)
1205{
1206	dnode_children_t *dnc = dbu;
1207
1208	DNODE_STAT_BUMP(dnode_buf_evict);
1209
1210	for (int i = 0; i < dnc->dnc_count; i++) {
1211		dnode_handle_t *dnh = &dnc->dnc_children[i];
1212		dnode_t *dn;
1213
1214		/*
1215		 * The dnode handle lock guards against the dnode moving to
1216		 * another valid address, so there is no need here to guard
1217		 * against changes to or from NULL.
1218		 */
1219		if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1220			zrl_destroy(&dnh->dnh_zrlock);
1221			dnh->dnh_dnode = DN_SLOT_UNINIT;
1222			continue;
1223		}
1224
1225		zrl_add(&dnh->dnh_zrlock);
1226		dn = dnh->dnh_dnode;
1227		/*
1228		 * If there are holds on this dnode, then there should
1229		 * be holds on the dnode's containing dbuf as well; thus
1230		 * it wouldn't be eligible for eviction and this function
1231		 * would not have been called.
1232		 */
1233		ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1234		ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1235
1236		dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1237		zrl_destroy(&dnh->dnh_zrlock);
1238		dnh->dnh_dnode = DN_SLOT_UNINIT;
1239	}
1240	kmem_free(dnc, sizeof (dnode_children_t) +
1241	    dnc->dnc_count * sizeof (dnode_handle_t));
1242}
1243
1244/*
1245 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1246 * to ensure the hole at the specified object offset is large enough to
1247 * hold the dnode being created. The slots parameter is also used to ensure
1248 * a dnode does not span multiple dnode blocks. In both of these cases, if
1249 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1250 * are only possible when using DNODE_MUST_BE_FREE.
1251 *
1252 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1253 * dnode_hold_impl() will check if the requested dnode is already consumed
1254 * as an extra dnode slot by an large dnode, in which case it returns
1255 * ENOENT.
1256 *
1257 * errors:
1258 * EINVAL - invalid object number or flags.
1259 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1260 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1261 *        - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1262 *        - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1263 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1264 *        - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1265 * EIO    - i/o error error when reading the meta dnode dbuf.
1266 * succeeds even for free dnodes.
1267 */
1268int
1269dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1270    void *tag, dnode_t **dnp)
1271{
1272	int epb, idx, err, i;
1273	int drop_struct_lock = FALSE;
1274	int type;
1275	uint64_t blk;
1276	dnode_t *mdn, *dn;
1277	dmu_buf_impl_t *db;
1278	dnode_children_t *dnc;
1279	dnode_phys_t *dn_block;
1280	dnode_phys_t *dn_block_begin;
1281	dnode_handle_t *dnh;
1282
1283	ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1284	ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1285
1286	/*
1287	 * If you are holding the spa config lock as writer, you shouldn't
1288	 * be asking the DMU to do *anything* unless it's the root pool
1289	 * which may require us to read from the root filesystem while
1290	 * holding some (not all) of the locks as writer.
1291	 */
1292	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1293	    (spa_is_root(os->os_spa) &&
1294	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1295
1296	ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1297
1298	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1299		dn = (object == DMU_USERUSED_OBJECT) ?
1300		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1301		if (dn == NULL)
1302			return (SET_ERROR(ENOENT));
1303		type = dn->dn_type;
1304		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1305			return (SET_ERROR(ENOENT));
1306		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1307			return (SET_ERROR(EEXIST));
1308		DNODE_VERIFY(dn);
1309		(void) zfs_refcount_add(&dn->dn_holds, tag);
1310		*dnp = dn;
1311		return (0);
1312	}
1313
1314	if (object == 0 || object >= DN_MAX_OBJECT)
1315		return (SET_ERROR(EINVAL));
1316
1317	mdn = DMU_META_DNODE(os);
1318	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1319
1320	DNODE_VERIFY(mdn);
1321
1322	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1323		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1324		drop_struct_lock = TRUE;
1325	}
1326
1327	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1328
1329	db = dbuf_hold(mdn, blk, FTAG);
1330	if (drop_struct_lock)
1331		rw_exit(&mdn->dn_struct_rwlock);
1332	if (db == NULL) {
1333		DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1334		return (SET_ERROR(EIO));
1335	}
1336	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1337	if (err) {
1338		DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1339		dbuf_rele(db, FTAG);
1340		return (err);
1341	}
1342
1343	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1344	epb = db->db.db_size >> DNODE_SHIFT;
1345
1346	idx = object & (epb - 1);
1347	dn_block = (dnode_phys_t *)db->db.db_data;
1348
1349	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1350	dnc = dmu_buf_get_user(&db->db);
1351	dnh = NULL;
1352	if (dnc == NULL) {
1353		dnode_children_t *winner;
1354		int skip = 0;
1355
1356		dnc = kmem_zalloc(sizeof (dnode_children_t) +
1357		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1358		dnc->dnc_count = epb;
1359		dnh = &dnc->dnc_children[0];
1360
1361		/* Initialize dnode slot status from dnode_phys_t */
1362		for (int i = 0; i < epb; i++) {
1363			zrl_init(&dnh[i].dnh_zrlock);
1364
1365			if (skip) {
1366				skip--;
1367				continue;
1368			}
1369
1370			if (dn_block[i].dn_type != DMU_OT_NONE) {
1371				int interior = dn_block[i].dn_extra_slots;
1372
1373				dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1374				dnode_set_slots(dnc, i + 1, interior,
1375				    DN_SLOT_INTERIOR);
1376				skip = interior;
1377			} else {
1378				dnh[i].dnh_dnode = DN_SLOT_FREE;
1379				skip = 0;
1380			}
1381		}
1382
1383		dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1384		    dnode_buf_evict_async, NULL);
1385		winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1386		if (winner != NULL) {
1387
1388			for (int i = 0; i < epb; i++)
1389				zrl_destroy(&dnh[i].dnh_zrlock);
1390
1391			kmem_free(dnc, sizeof (dnode_children_t) +
1392			    epb * sizeof (dnode_handle_t));
1393			dnc = winner;
1394		}
1395	}
1396
1397	ASSERT(dnc->dnc_count == epb);
1398	dn = DN_SLOT_UNINIT;
1399
1400	if (flag & DNODE_MUST_BE_ALLOCATED) {
1401		slots = 1;
1402
1403		while (dn == DN_SLOT_UNINIT) {
1404			dnode_slots_hold(dnc, idx, slots);
1405			dnh = &dnc->dnc_children[idx];
1406
1407			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1408				dn = dnh->dnh_dnode;
1409				break;
1410			} else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1411				DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1412				dnode_slots_rele(dnc, idx, slots);
1413				dbuf_rele(db, FTAG);
1414				return (SET_ERROR(EEXIST));
1415			} else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1416				DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1417				dnode_slots_rele(dnc, idx, slots);
1418				dbuf_rele(db, FTAG);
1419				return (SET_ERROR(ENOENT));
1420			}
1421
1422			dnode_slots_rele(dnc, idx, slots);
1423			if (!dnode_slots_tryenter(dnc, idx, slots)) {
1424				DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1425				continue;
1426			}
1427
1428			/*
1429			 * Someone else won the race and called dnode_create()
1430			 * after we checked DN_SLOT_IS_PTR() above but before
1431			 * we acquired the lock.
1432			 */
1433			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1434				DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1435				dn = dnh->dnh_dnode;
1436			} else {
1437				dn = dnode_create(os, dn_block + idx, db,
1438				    object, dnh);
1439			}
1440		}
1441
1442		mutex_enter(&dn->dn_mtx);
1443		if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1444			DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1445			mutex_exit(&dn->dn_mtx);
1446			dnode_slots_rele(dnc, idx, slots);
1447			dbuf_rele(db, FTAG);
1448			return (SET_ERROR(ENOENT));
1449		}
1450
1451		DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1452	} else if (flag & DNODE_MUST_BE_FREE) {
1453
1454		if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1455			DNODE_STAT_BUMP(dnode_hold_free_overflow);
1456			dbuf_rele(db, FTAG);
1457			return (SET_ERROR(ENOSPC));
1458		}
1459
1460		while (dn == DN_SLOT_UNINIT) {
1461			dnode_slots_hold(dnc, idx, slots);
1462
1463			if (!dnode_check_slots_free(dnc, idx, slots)) {
1464				DNODE_STAT_BUMP(dnode_hold_free_misses);
1465				dnode_slots_rele(dnc, idx, slots);
1466				dbuf_rele(db, FTAG);
1467				return (SET_ERROR(ENOSPC));
1468			}
1469
1470			dnode_slots_rele(dnc, idx, slots);
1471			if (!dnode_slots_tryenter(dnc, idx, slots)) {
1472				DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1473				continue;
1474			}
1475
1476			if (!dnode_check_slots_free(dnc, idx, slots)) {
1477				DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1478				dnode_slots_rele(dnc, idx, slots);
1479				dbuf_rele(db, FTAG);
1480				return (SET_ERROR(ENOSPC));
1481			}
1482
1483			/*
1484			 * Allocated but otherwise free dnodes which would
1485			 * be in the interior of a multi-slot dnodes need
1486			 * to be freed.  Single slot dnodes can be safely
1487			 * re-purposed as a performance optimization.
1488			 */
1489			if (slots > 1)
1490				dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1491
1492			dnh = &dnc->dnc_children[idx];
1493			if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1494				dn = dnh->dnh_dnode;
1495			} else {
1496				dn = dnode_create(os, dn_block + idx, db,
1497				    object, dnh);
1498			}
1499		}
1500
1501		mutex_enter(&dn->dn_mtx);
1502		if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1503			DNODE_STAT_BUMP(dnode_hold_free_refcount);
1504			mutex_exit(&dn->dn_mtx);
1505			dnode_slots_rele(dnc, idx, slots);
1506			dbuf_rele(db, FTAG);
1507			return (SET_ERROR(EEXIST));
1508		}
1509
1510		dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1511		DNODE_STAT_BUMP(dnode_hold_free_hits);
1512	} else {
1513		dbuf_rele(db, FTAG);
1514		return (SET_ERROR(EINVAL));
1515	}
1516
1517	if (dn->dn_free_txg) {
1518		DNODE_STAT_BUMP(dnode_hold_free_txg);
1519		type = dn->dn_type;
1520		mutex_exit(&dn->dn_mtx);
1521		dnode_slots_rele(dnc, idx, slots);
1522		dbuf_rele(db, FTAG);
1523		return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ?
1524		    ENOENT : EEXIST));
1525	}
1526
1527	if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1528		dbuf_add_ref(db, dnh);
1529
1530	mutex_exit(&dn->dn_mtx);
1531
1532	/* Now we can rely on the hold to prevent the dnode from moving. */
1533	dnode_slots_rele(dnc, idx, slots);
1534
1535	DNODE_VERIFY(dn);
1536	ASSERT3P(dn->dn_dbuf, ==, db);
1537	ASSERT3U(dn->dn_object, ==, object);
1538	dbuf_rele(db, FTAG);
1539
1540	*dnp = dn;
1541	return (0);
1542}
1543
1544/*
1545 * Return held dnode if the object is allocated, NULL if not.
1546 */
1547int
1548dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1549{
1550	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1551	    dnp));
1552}
1553
1554/*
1555 * Can only add a reference if there is already at least one
1556 * reference on the dnode.  Returns FALSE if unable to add a
1557 * new reference.
1558 */
1559boolean_t
1560dnode_add_ref(dnode_t *dn, void *tag)
1561{
1562	mutex_enter(&dn->dn_mtx);
1563	if (zfs_refcount_is_zero(&dn->dn_holds)) {
1564		mutex_exit(&dn->dn_mtx);
1565		return (FALSE);
1566	}
1567	VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1568	mutex_exit(&dn->dn_mtx);
1569	return (TRUE);
1570}
1571
1572void
1573dnode_rele(dnode_t *dn, void *tag)
1574{
1575	mutex_enter(&dn->dn_mtx);
1576	dnode_rele_and_unlock(dn, tag, B_FALSE);
1577}
1578
1579void
1580dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1581{
1582	uint64_t refs;
1583	/* Get while the hold prevents the dnode from moving. */
1584	dmu_buf_impl_t *db = dn->dn_dbuf;
1585	dnode_handle_t *dnh = dn->dn_handle;
1586
1587	refs = zfs_refcount_remove(&dn->dn_holds, tag);
1588	mutex_exit(&dn->dn_mtx);
1589
1590	/*
1591	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1592	 * indirectly by dbuf_rele() while relying on the dnode handle to
1593	 * prevent the dnode from moving, since releasing the last hold could
1594	 * result in the dnode's parent dbuf evicting its dnode handles. For
1595	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1596	 * other direct or indirect hold on the dnode must first drop the dnode
1597	 * handle.
1598	 */
1599	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1600
1601	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1602	if (refs == 0 && db != NULL) {
1603		/*
1604		 * Another thread could add a hold to the dnode handle in
1605		 * dnode_hold_impl() while holding the parent dbuf. Since the
1606		 * hold on the parent dbuf prevents the handle from being
1607		 * destroyed, the hold on the handle is OK. We can't yet assert
1608		 * that the handle has zero references, but that will be
1609		 * asserted anyway when the handle gets destroyed.
1610		 */
1611		mutex_enter(&db->db_mtx);
1612		dbuf_rele_and_unlock(db, dnh, evicting);
1613	}
1614}
1615
1616void
1617dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1618{
1619	objset_t *os = dn->dn_objset;
1620	uint64_t txg = tx->tx_txg;
1621
1622	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1623		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1624		return;
1625	}
1626
1627	DNODE_VERIFY(dn);
1628
1629#ifdef ZFS_DEBUG
1630	mutex_enter(&dn->dn_mtx);
1631	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1632	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1633	mutex_exit(&dn->dn_mtx);
1634#endif
1635
1636	/*
1637	 * Determine old uid/gid when necessary
1638	 */
1639	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1640
1641	multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1642	multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1643
1644	/*
1645	 * If we are already marked dirty, we're done.
1646	 */
1647	if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1648		multilist_sublist_unlock(mls);
1649		return;
1650	}
1651
1652	ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1653	    !avl_is_empty(&dn->dn_dbufs));
1654	ASSERT(dn->dn_datablksz != 0);
1655	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1656	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1657	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1658
1659	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1660	    dn->dn_object, txg);
1661
1662	multilist_sublist_insert_head(mls, dn);
1663
1664	multilist_sublist_unlock(mls);
1665
1666	/*
1667	 * The dnode maintains a hold on its containing dbuf as
1668	 * long as there are holds on it.  Each instantiated child
1669	 * dbuf maintains a hold on the dnode.  When the last child
1670	 * drops its hold, the dnode will drop its hold on the
1671	 * containing dbuf. We add a "dirty hold" here so that the
1672	 * dnode will hang around after we finish processing its
1673	 * children.
1674	 */
1675	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1676
1677	(void) dbuf_dirty(dn->dn_dbuf, tx);
1678
1679	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1680}
1681
1682void
1683dnode_free(dnode_t *dn, dmu_tx_t *tx)
1684{
1685	mutex_enter(&dn->dn_mtx);
1686	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1687		mutex_exit(&dn->dn_mtx);
1688		return;
1689	}
1690	dn->dn_free_txg = tx->tx_txg;
1691	mutex_exit(&dn->dn_mtx);
1692
1693	dnode_setdirty(dn, tx);
1694}
1695
1696/*
1697 * Try to change the block size for the indicated dnode.  This can only
1698 * succeed if there are no blocks allocated or dirty beyond first block
1699 */
1700int
1701dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1702{
1703	dmu_buf_impl_t *db;
1704	int err;
1705
1706	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1707	if (size == 0)
1708		size = SPA_MINBLOCKSIZE;
1709	else
1710		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1711
1712	if (ibs == dn->dn_indblkshift)
1713		ibs = 0;
1714
1715	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1716		return (0);
1717
1718	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1719
1720	/* Check for any allocated blocks beyond the first */
1721	if (dn->dn_maxblkid != 0)
1722		goto fail;
1723
1724	mutex_enter(&dn->dn_dbufs_mtx);
1725	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1726	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1727		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1728		    db->db_blkid != DMU_SPILL_BLKID) {
1729			mutex_exit(&dn->dn_dbufs_mtx);
1730			goto fail;
1731		}
1732	}
1733	mutex_exit(&dn->dn_dbufs_mtx);
1734
1735	if (ibs && dn->dn_nlevels != 1)
1736		goto fail;
1737
1738	/* resize the old block */
1739	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1740	if (err == 0)
1741		dbuf_new_size(db, size, tx);
1742	else if (err != ENOENT)
1743		goto fail;
1744
1745	dnode_setdblksz(dn, size);
1746	dnode_setdirty(dn, tx);
1747	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1748	if (ibs) {
1749		dn->dn_indblkshift = ibs;
1750		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1751	}
1752	/* rele after we have fixed the blocksize in the dnode */
1753	if (db)
1754		dbuf_rele(db, FTAG);
1755
1756	rw_exit(&dn->dn_struct_rwlock);
1757	return (0);
1758
1759fail:
1760	rw_exit(&dn->dn_struct_rwlock);
1761	return (SET_ERROR(ENOTSUP));
1762}
1763
1764/* read-holding callers must not rely on the lock being continuously held */
1765void
1766dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1767{
1768	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1769	int epbs, new_nlevels;
1770	uint64_t sz;
1771
1772	ASSERT(blkid != DMU_BONUS_BLKID);
1773
1774	ASSERT(have_read ?
1775	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1776	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1777
1778	/*
1779	 * if we have a read-lock, check to see if we need to do any work
1780	 * before upgrading to a write-lock.
1781	 */
1782	if (have_read) {
1783		if (blkid <= dn->dn_maxblkid)
1784			return;
1785
1786		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1787			rw_exit(&dn->dn_struct_rwlock);
1788			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1789		}
1790	}
1791
1792	if (blkid <= dn->dn_maxblkid)
1793		goto out;
1794
1795	dn->dn_maxblkid = blkid;
1796
1797	/*
1798	 * Compute the number of levels necessary to support the new maxblkid.
1799	 */
1800	new_nlevels = 1;
1801	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1802	for (sz = dn->dn_nblkptr;
1803	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1804		new_nlevels++;
1805
1806	if (new_nlevels > dn->dn_nlevels) {
1807		int old_nlevels = dn->dn_nlevels;
1808		dmu_buf_impl_t *db;
1809		list_t *list;
1810		dbuf_dirty_record_t *new, *dr, *dr_next;
1811
1812		dn->dn_nlevels = new_nlevels;
1813
1814		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1815		dn->dn_next_nlevels[txgoff] = new_nlevels;
1816
1817		/* dirty the left indirects */
1818		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1819		ASSERT(db != NULL);
1820		new = dbuf_dirty(db, tx);
1821		dbuf_rele(db, FTAG);
1822
1823		/* transfer the dirty records to the new indirect */
1824		mutex_enter(&dn->dn_mtx);
1825		mutex_enter(&new->dt.di.dr_mtx);
1826		list = &dn->dn_dirty_records[txgoff];
1827		for (dr = list_head(list); dr; dr = dr_next) {
1828			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1829			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1830			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1831			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1832				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1833				list_remove(&dn->dn_dirty_records[txgoff], dr);
1834				list_insert_tail(&new->dt.di.dr_children, dr);
1835				dr->dr_parent = new;
1836			}
1837		}
1838		mutex_exit(&new->dt.di.dr_mtx);
1839		mutex_exit(&dn->dn_mtx);
1840	}
1841
1842out:
1843	if (have_read)
1844		rw_downgrade(&dn->dn_struct_rwlock);
1845}
1846
1847static void
1848dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1849{
1850	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1851	if (db != NULL) {
1852		dmu_buf_will_dirty(&db->db, tx);
1853		dbuf_rele(db, FTAG);
1854	}
1855}
1856
1857/*
1858 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1859 * and end_blkid.
1860 */
1861static void
1862dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1863    dmu_tx_t *tx)
1864{
1865	dmu_buf_impl_t db_search;
1866	dmu_buf_impl_t *db;
1867	avl_index_t where;
1868
1869	mutex_enter(&dn->dn_dbufs_mtx);
1870
1871	db_search.db_level = 1;
1872	db_search.db_blkid = start_blkid + 1;
1873	db_search.db_state = DB_SEARCH;
1874	for (;;) {
1875
1876		db = avl_find(&dn->dn_dbufs, &db_search, &where);
1877		if (db == NULL)
1878			db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1879
1880		if (db == NULL || db->db_level != 1 ||
1881		    db->db_blkid >= end_blkid) {
1882			break;
1883		}
1884
1885		/*
1886		 * Setup the next blkid we want to search for.
1887		 */
1888		db_search.db_blkid = db->db_blkid + 1;
1889		ASSERT3U(db->db_blkid, >=, start_blkid);
1890
1891		/*
1892		 * If the dbuf transitions to DB_EVICTING while we're trying
1893		 * to dirty it, then we will be unable to discover it in
1894		 * the dbuf hash table. This will result in a call to
1895		 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1896		 * lock. To avoid a deadlock, we drop the lock before
1897		 * dirtying the level-1 dbuf.
1898		 */
1899		mutex_exit(&dn->dn_dbufs_mtx);
1900		dnode_dirty_l1(dn, db->db_blkid, tx);
1901		mutex_enter(&dn->dn_dbufs_mtx);
1902	}
1903
1904#ifdef ZFS_DEBUG
1905	/*
1906	 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1907	 */
1908	db_search.db_level = 1;
1909	db_search.db_blkid = start_blkid + 1;
1910	db_search.db_state = DB_SEARCH;
1911	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1912	if (db == NULL)
1913		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1914	for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
1915		if (db->db_level != 1 || db->db_blkid >= end_blkid)
1916			break;
1917		ASSERT(db->db_dirtycnt > 0);
1918	}
1919#endif
1920	mutex_exit(&dn->dn_dbufs_mtx);
1921}
1922
1923void
1924dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1925{
1926	dmu_buf_impl_t *db;
1927	uint64_t blkoff, blkid, nblks;
1928	int blksz, blkshift, head, tail;
1929	int trunc = FALSE;
1930	int epbs;
1931
1932	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1933	blksz = dn->dn_datablksz;
1934	blkshift = dn->dn_datablkshift;
1935	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1936
1937	if (len == DMU_OBJECT_END) {
1938		len = UINT64_MAX - off;
1939		trunc = TRUE;
1940	}
1941
1942	/*
1943	 * First, block align the region to free:
1944	 */
1945	if (ISP2(blksz)) {
1946		head = P2NPHASE(off, blksz);
1947		blkoff = P2PHASE(off, blksz);
1948		if ((off >> blkshift) > dn->dn_maxblkid)
1949			goto out;
1950	} else {
1951		ASSERT(dn->dn_maxblkid == 0);
1952		if (off == 0 && len >= blksz) {
1953			/*
1954			 * Freeing the whole block; fast-track this request.
1955			 */
1956			blkid = 0;
1957			nblks = 1;
1958			if (dn->dn_nlevels > 1)
1959				dnode_dirty_l1(dn, 0, tx);
1960			goto done;
1961		} else if (off >= blksz) {
1962			/* Freeing past end-of-data */
1963			goto out;
1964		} else {
1965			/* Freeing part of the block. */
1966			head = blksz - off;
1967			ASSERT3U(head, >, 0);
1968		}
1969		blkoff = off;
1970	}
1971	/* zero out any partial block data at the start of the range */
1972	if (head) {
1973		ASSERT3U(blkoff + head, ==, blksz);
1974		if (len < head)
1975			head = len;
1976		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1977		    TRUE, FALSE, FTAG, &db) == 0) {
1978			caddr_t data;
1979
1980			/* don't dirty if it isn't on disk and isn't dirty */
1981			if (db->db_last_dirty ||
1982			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1983				rw_exit(&dn->dn_struct_rwlock);
1984				dmu_buf_will_dirty(&db->db, tx);
1985				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1986				data = db->db.db_data;
1987				bzero(data + blkoff, head);
1988			}
1989			dbuf_rele(db, FTAG);
1990		}
1991		off += head;
1992		len -= head;
1993	}
1994
1995	/* If the range was less than one block, we're done */
1996	if (len == 0)
1997		goto out;
1998
1999	/* If the remaining range is past end of file, we're done */
2000	if ((off >> blkshift) > dn->dn_maxblkid)
2001		goto out;
2002
2003	ASSERT(ISP2(blksz));
2004	if (trunc)
2005		tail = 0;
2006	else
2007		tail = P2PHASE(len, blksz);
2008
2009	ASSERT0(P2PHASE(off, blksz));
2010	/* zero out any partial block data at the end of the range */
2011	if (tail) {
2012		if (len < tail)
2013			tail = len;
2014		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2015		    TRUE, FALSE, FTAG, &db) == 0) {
2016			/* don't dirty if not on disk and not dirty */
2017			if (db->db_last_dirty ||
2018			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
2019				rw_exit(&dn->dn_struct_rwlock);
2020				dmu_buf_will_dirty(&db->db, tx);
2021				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2022				bzero(db->db.db_data, tail);
2023			}
2024			dbuf_rele(db, FTAG);
2025		}
2026		len -= tail;
2027	}
2028
2029	/* If the range did not include a full block, we are done */
2030	if (len == 0)
2031		goto out;
2032
2033	ASSERT(IS_P2ALIGNED(off, blksz));
2034	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2035	blkid = off >> blkshift;
2036	nblks = len >> blkshift;
2037	if (trunc)
2038		nblks += 1;
2039
2040	/*
2041	 * Dirty all the indirect blocks in this range.  Note that only
2042	 * the first and last indirect blocks can actually be written
2043	 * (if they were partially freed) -- they must be dirtied, even if
2044	 * they do not exist on disk yet.  The interior blocks will
2045	 * be freed by free_children(), so they will not actually be written.
2046	 * Even though these interior blocks will not be written, we
2047	 * dirty them for two reasons:
2048	 *
2049	 *  - It ensures that the indirect blocks remain in memory until
2050	 *    syncing context.  (They have already been prefetched by
2051	 *    dmu_tx_hold_free(), so we don't have to worry about reading
2052	 *    them serially here.)
2053	 *
2054	 *  - The dirty space accounting will put pressure on the txg sync
2055	 *    mechanism to begin syncing, and to delay transactions if there
2056	 *    is a large amount of freeing.  Even though these indirect
2057	 *    blocks will not be written, we could need to write the same
2058	 *    amount of space if we copy the freed BPs into deadlists.
2059	 */
2060	if (dn->dn_nlevels > 1) {
2061		uint64_t first, last;
2062
2063		first = blkid >> epbs;
2064		dnode_dirty_l1(dn, first, tx);
2065		if (trunc)
2066			last = dn->dn_maxblkid >> epbs;
2067		else
2068			last = (blkid + nblks - 1) >> epbs;
2069		if (last != first)
2070			dnode_dirty_l1(dn, last, tx);
2071
2072		dnode_dirty_l1range(dn, first, last, tx);
2073
2074		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2075		    SPA_BLKPTRSHIFT;
2076		for (uint64_t i = first + 1; i < last; i++) {
2077			/*
2078			 * Set i to the blockid of the next non-hole
2079			 * level-1 indirect block at or after i.  Note
2080			 * that dnode_next_offset() operates in terms of
2081			 * level-0-equivalent bytes.
2082			 */
2083			uint64_t ibyte = i << shift;
2084			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2085			    &ibyte, 2, 1, 0);
2086			i = ibyte >> shift;
2087			if (i >= last)
2088				break;
2089
2090			/*
2091			 * Normally we should not see an error, either
2092			 * from dnode_next_offset() or dbuf_hold_level()
2093			 * (except for ESRCH from dnode_next_offset).
2094			 * If there is an i/o error, then when we read
2095			 * this block in syncing context, it will use
2096			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2097			 * to the "failmode" property.  dnode_next_offset()
2098			 * doesn't have a flag to indicate MUSTSUCCEED.
2099			 */
2100			if (err != 0)
2101				break;
2102
2103			dnode_dirty_l1(dn, i, tx);
2104		}
2105	}
2106
2107done:
2108	/*
2109	 * Add this range to the dnode range list.
2110	 * We will finish up this free operation in the syncing phase.
2111	 */
2112	mutex_enter(&dn->dn_mtx);
2113	int txgoff = tx->tx_txg & TXG_MASK;
2114	if (dn->dn_free_ranges[txgoff] == NULL) {
2115		dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL);
2116	}
2117	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2118	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2119	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2120	    blkid, nblks, tx->tx_txg);
2121	mutex_exit(&dn->dn_mtx);
2122
2123	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2124	dnode_setdirty(dn, tx);
2125out:
2126
2127	rw_exit(&dn->dn_struct_rwlock);
2128}
2129
2130static boolean_t
2131dnode_spill_freed(dnode_t *dn)
2132{
2133	int i;
2134
2135	mutex_enter(&dn->dn_mtx);
2136	for (i = 0; i < TXG_SIZE; i++) {
2137		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2138			break;
2139	}
2140	mutex_exit(&dn->dn_mtx);
2141	return (i < TXG_SIZE);
2142}
2143
2144/* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2145uint64_t
2146dnode_block_freed(dnode_t *dn, uint64_t blkid)
2147{
2148	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2149	int i;
2150
2151	if (blkid == DMU_BONUS_BLKID)
2152		return (FALSE);
2153
2154	/*
2155	 * If we're in the process of opening the pool, dp will not be
2156	 * set yet, but there shouldn't be anything dirty.
2157	 */
2158	if (dp == NULL)
2159		return (FALSE);
2160
2161	if (dn->dn_free_txg)
2162		return (TRUE);
2163
2164	if (blkid == DMU_SPILL_BLKID)
2165		return (dnode_spill_freed(dn));
2166
2167	mutex_enter(&dn->dn_mtx);
2168	for (i = 0; i < TXG_SIZE; i++) {
2169		if (dn->dn_free_ranges[i] != NULL &&
2170		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2171			break;
2172	}
2173	mutex_exit(&dn->dn_mtx);
2174	return (i < TXG_SIZE);
2175}
2176
2177/* call from syncing context when we actually write/free space for this dnode */
2178void
2179dnode_diduse_space(dnode_t *dn, int64_t delta)
2180{
2181	uint64_t space;
2182	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2183	    dn, dn->dn_phys,
2184	    (u_longlong_t)dn->dn_phys->dn_used,
2185	    (longlong_t)delta);
2186
2187	mutex_enter(&dn->dn_mtx);
2188	space = DN_USED_BYTES(dn->dn_phys);
2189	if (delta > 0) {
2190		ASSERT3U(space + delta, >=, space); /* no overflow */
2191	} else {
2192		ASSERT3U(space, >=, -delta); /* no underflow */
2193	}
2194	space += delta;
2195	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2196		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2197		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2198		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2199	} else {
2200		dn->dn_phys->dn_used = space;
2201		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2202	}
2203	mutex_exit(&dn->dn_mtx);
2204}
2205
2206/*
2207 * Scans a block at the indicated "level" looking for a hole or data,
2208 * depending on 'flags'.
2209 *
2210 * If level > 0, then we are scanning an indirect block looking at its
2211 * pointers.  If level == 0, then we are looking at a block of dnodes.
2212 *
2213 * If we don't find what we are looking for in the block, we return ESRCH.
2214 * Otherwise, return with *offset pointing to the beginning (if searching
2215 * forwards) or end (if searching backwards) of the range covered by the
2216 * block pointer we matched on (or dnode).
2217 *
2218 * The basic search algorithm used below by dnode_next_offset() is to
2219 * use this function to search up the block tree (widen the search) until
2220 * we find something (i.e., we don't return ESRCH) and then search back
2221 * down the tree (narrow the search) until we reach our original search
2222 * level.
2223 */
2224static int
2225dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2226    int lvl, uint64_t blkfill, uint64_t txg)
2227{
2228	dmu_buf_impl_t *db = NULL;
2229	void *data = NULL;
2230	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2231	uint64_t epb = 1ULL << epbs;
2232	uint64_t minfill, maxfill;
2233	boolean_t hole;
2234	int i, inc, error, span;
2235
2236	dprintf("probing object %llu offset %llx level %d of %u\n",
2237	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
2238
2239	hole = ((flags & DNODE_FIND_HOLE) != 0);
2240	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2241	ASSERT(txg == 0 || !hole);
2242
2243	if (lvl == dn->dn_phys->dn_nlevels) {
2244		error = 0;
2245		epb = dn->dn_phys->dn_nblkptr;
2246		data = dn->dn_phys->dn_blkptr;
2247	} else {
2248		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2249		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2250		if (error) {
2251			if (error != ENOENT)
2252				return (error);
2253			if (hole)
2254				return (0);
2255			/*
2256			 * This can only happen when we are searching up
2257			 * the block tree for data.  We don't really need to
2258			 * adjust the offset, as we will just end up looking
2259			 * at the pointer to this block in its parent, and its
2260			 * going to be unallocated, so we will skip over it.
2261			 */
2262			return (SET_ERROR(ESRCH));
2263		}
2264		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
2265		if (error) {
2266			dbuf_rele(db, FTAG);
2267			return (error);
2268		}
2269		data = db->db.db_data;
2270	}
2271
2272
2273	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2274	    db->db_blkptr->blk_birth <= txg ||
2275	    BP_IS_HOLE(db->db_blkptr))) {
2276		/*
2277		 * This can only happen when we are searching up the tree
2278		 * and these conditions mean that we need to keep climbing.
2279		 */
2280		error = SET_ERROR(ESRCH);
2281	} else if (lvl == 0) {
2282		dnode_phys_t *dnp = data;
2283
2284		ASSERT(dn->dn_type == DMU_OT_DNODE);
2285		ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2286
2287		for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2288		    i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2289			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2290				break;
2291		}
2292
2293		if (i == blkfill)
2294			error = SET_ERROR(ESRCH);
2295
2296		*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2297		    (i << DNODE_SHIFT);
2298	} else {
2299		blkptr_t *bp = data;
2300		uint64_t start = *offset;
2301		span = (lvl - 1) * epbs + dn->dn_datablkshift;
2302		minfill = 0;
2303		maxfill = blkfill << ((lvl - 1) * epbs);
2304
2305		if (hole)
2306			maxfill--;
2307		else
2308			minfill++;
2309
2310		*offset = *offset >> span;
2311		for (i = BF64_GET(*offset, 0, epbs);
2312		    i >= 0 && i < epb; i += inc) {
2313			if (BP_GET_FILL(&bp[i]) >= minfill &&
2314			    BP_GET_FILL(&bp[i]) <= maxfill &&
2315			    (hole || bp[i].blk_birth > txg))
2316				break;
2317			if (inc > 0 || *offset > 0)
2318				*offset += inc;
2319		}
2320		*offset = *offset << span;
2321		if (inc < 0) {
2322			/* traversing backwards; position offset at the end */
2323			ASSERT3U(*offset, <=, start);
2324			*offset = MIN(*offset + (1ULL << span) - 1, start);
2325		} else if (*offset < start) {
2326			*offset = start;
2327		}
2328		if (i < 0 || i >= epb)
2329			error = SET_ERROR(ESRCH);
2330	}
2331
2332	if (db)
2333		dbuf_rele(db, FTAG);
2334
2335	return (error);
2336}
2337
2338/*
2339 * Find the next hole, data, or sparse region at or after *offset.
2340 * The value 'blkfill' tells us how many items we expect to find
2341 * in an L0 data block; this value is 1 for normal objects,
2342 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2343 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2344 *
2345 * Examples:
2346 *
2347 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2348 *	Finds the next/previous hole/data in a file.
2349 *	Used in dmu_offset_next().
2350 *
2351 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2352 *	Finds the next free/allocated dnode an objset's meta-dnode.
2353 *	Only finds objects that have new contents since txg (ie.
2354 *	bonus buffer changes and content removal are ignored).
2355 *	Used in dmu_object_next().
2356 *
2357 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2358 *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
2359 *	Used in dmu_object_alloc().
2360 */
2361int
2362dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2363    int minlvl, uint64_t blkfill, uint64_t txg)
2364{
2365	uint64_t initial_offset = *offset;
2366	int lvl, maxlvl;
2367	int error = 0;
2368
2369	if (!(flags & DNODE_FIND_HAVELOCK))
2370		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2371
2372	if (dn->dn_phys->dn_nlevels == 0) {
2373		error = SET_ERROR(ESRCH);
2374		goto out;
2375	}
2376
2377	if (dn->dn_datablkshift == 0) {
2378		if (*offset < dn->dn_datablksz) {
2379			if (flags & DNODE_FIND_HOLE)
2380				*offset = dn->dn_datablksz;
2381		} else {
2382			error = SET_ERROR(ESRCH);
2383		}
2384		goto out;
2385	}
2386
2387	maxlvl = dn->dn_phys->dn_nlevels;
2388
2389	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2390		error = dnode_next_offset_level(dn,
2391		    flags, offset, lvl, blkfill, txg);
2392		if (error != ESRCH)
2393			break;
2394	}
2395
2396	while (error == 0 && --lvl >= minlvl) {
2397		error = dnode_next_offset_level(dn,
2398		    flags, offset, lvl, blkfill, txg);
2399	}
2400
2401	/*
2402	 * There's always a "virtual hole" at the end of the object, even
2403	 * if all BP's which physically exist are non-holes.
2404	 */
2405	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2406	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2407		error = 0;
2408	}
2409
2410	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2411	    initial_offset < *offset : initial_offset > *offset))
2412		error = SET_ERROR(ESRCH);
2413out:
2414	if (!(flags & DNODE_FIND_HAVELOCK))
2415		rw_exit(&dn->dn_struct_rwlock);
2416
2417	return (error);
2418}
2419