1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD$
22 */
23
24/*
25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30/*
31 * DTrace - Dynamic Tracing for Solaris
32 *
33 * This is the implementation of the Solaris Dynamic Tracing framework
34 * (DTrace).  The user-visible interface to DTrace is described at length in
35 * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36 * library, the in-kernel DTrace framework, and the DTrace providers are
37 * described in the block comments in the <sys/dtrace.h> header file.  The
38 * internal architecture of DTrace is described in the block comments in the
39 * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40 * implementation very much assume mastery of all of these sources; if one has
41 * an unanswered question about the implementation, one should consult them
42 * first.
43 *
44 * The functions here are ordered roughly as follows:
45 *
46 *   - Probe context functions
47 *   - Probe hashing functions
48 *   - Non-probe context utility functions
49 *   - Matching functions
50 *   - Provider-to-Framework API functions
51 *   - Probe management functions
52 *   - DIF object functions
53 *   - Format functions
54 *   - Predicate functions
55 *   - ECB functions
56 *   - Buffer functions
57 *   - Enabling functions
58 *   - DOF functions
59 *   - Anonymous enabling functions
60 *   - Consumer state functions
61 *   - Helper functions
62 *   - Hook functions
63 *   - Driver cookbook functions
64 *
65 * Each group of functions begins with a block comment labelled the "DTrace
66 * [Group] Functions", allowing one to find each block by searching forward
67 * on capital-f functions.
68 */
69#include <sys/errno.h>
70#ifndef illumos
71#include <sys/time.h>
72#endif
73#include <sys/stat.h>
74#include <sys/modctl.h>
75#include <sys/conf.h>
76#include <sys/systm.h>
77#ifdef illumos
78#include <sys/ddi.h>
79#include <sys/sunddi.h>
80#endif
81#include <sys/cpuvar.h>
82#include <sys/kmem.h>
83#ifdef illumos
84#include <sys/strsubr.h>
85#endif
86#include <sys/sysmacros.h>
87#include <sys/dtrace_impl.h>
88#include <sys/atomic.h>
89#include <sys/cmn_err.h>
90#ifdef illumos
91#include <sys/mutex_impl.h>
92#include <sys/rwlock_impl.h>
93#endif
94#include <sys/ctf_api.h>
95#ifdef illumos
96#include <sys/panic.h>
97#include <sys/priv_impl.h>
98#endif
99#include <sys/policy.h>
100#ifdef illumos
101#include <sys/cred_impl.h>
102#include <sys/procfs_isa.h>
103#endif
104#include <sys/taskq.h>
105#ifdef illumos
106#include <sys/mkdev.h>
107#include <sys/kdi.h>
108#endif
109#include <sys/zone.h>
110#include <sys/socket.h>
111#include <netinet/in.h>
112#include "strtolctype.h"
113
114/* FreeBSD includes: */
115#ifndef illumos
116#include <sys/callout.h>
117#include <sys/ctype.h>
118#include <sys/eventhandler.h>
119#include <sys/limits.h>
120#include <sys/linker.h>
121#include <sys/kdb.h>
122#include <sys/kernel.h>
123#include <sys/malloc.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/ptrace.h>
127#include <sys/random.h>
128#include <sys/rwlock.h>
129#include <sys/sx.h>
130#include <sys/sysctl.h>
131
132#include <sys/dtrace_bsd.h>
133
134#include <netinet/in.h>
135
136#include "dtrace_cddl.h"
137#include "dtrace_debug.c"
138#endif
139
140#include "dtrace_xoroshiro128_plus.h"
141
142/*
143 * DTrace Tunable Variables
144 *
145 * The following variables may be tuned by adding a line to /etc/system that
146 * includes both the name of the DTrace module ("dtrace") and the name of the
147 * variable.  For example:
148 *
149 *   set dtrace:dtrace_destructive_disallow = 1
150 *
151 * In general, the only variables that one should be tuning this way are those
152 * that affect system-wide DTrace behavior, and for which the default behavior
153 * is undesirable.  Most of these variables are tunable on a per-consumer
154 * basis using DTrace options, and need not be tuned on a system-wide basis.
155 * When tuning these variables, avoid pathological values; while some attempt
156 * is made to verify the integrity of these variables, they are not considered
157 * part of the supported interface to DTrace, and they are therefore not
158 * checked comprehensively.  Further, these variables should not be tuned
159 * dynamically via "mdb -kw" or other means; they should only be tuned via
160 * /etc/system.
161 */
162int		dtrace_destructive_disallow = 0;
163#ifndef illumos
164/* Positive logic version of dtrace_destructive_disallow for loader tunable */
165int		dtrace_allow_destructive = 1;
166#endif
167dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
168size_t		dtrace_difo_maxsize = (256 * 1024);
169dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
170size_t		dtrace_statvar_maxsize = (16 * 1024);
171size_t		dtrace_actions_max = (16 * 1024);
172size_t		dtrace_retain_max = 1024;
173dtrace_optval_t	dtrace_helper_actions_max = 128;
174dtrace_optval_t	dtrace_helper_providers_max = 32;
175dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
176size_t		dtrace_strsize_default = 256;
177dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
178dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
179dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
180dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
181dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
182dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
183dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
184dtrace_optval_t	dtrace_nspec_default = 1;
185dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
186dtrace_optval_t dtrace_stackframes_default = 20;
187dtrace_optval_t dtrace_ustackframes_default = 20;
188dtrace_optval_t dtrace_jstackframes_default = 50;
189dtrace_optval_t dtrace_jstackstrsize_default = 512;
190int		dtrace_msgdsize_max = 128;
191hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
192hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
193int		dtrace_devdepth_max = 32;
194int		dtrace_err_verbose;
195hrtime_t	dtrace_deadman_interval = NANOSEC;
196hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
197hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
198hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
199#ifndef illumos
200int		dtrace_memstr_max = 4096;
201#endif
202
203/*
204 * DTrace External Variables
205 *
206 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
207 * available to DTrace consumers via the backtick (`) syntax.  One of these,
208 * dtrace_zero, is made deliberately so:  it is provided as a source of
209 * well-known, zero-filled memory.  While this variable is not documented,
210 * it is used by some translators as an implementation detail.
211 */
212const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
213
214/*
215 * DTrace Internal Variables
216 */
217#ifdef illumos
218static dev_info_t	*dtrace_devi;		/* device info */
219#endif
220#ifdef illumos
221static vmem_t		*dtrace_arena;		/* probe ID arena */
222static vmem_t		*dtrace_minor;		/* minor number arena */
223#else
224static taskq_t		*dtrace_taskq;		/* task queue */
225static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
226#endif
227static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
228static int		dtrace_nprobes;		/* number of probes */
229static dtrace_provider_t *dtrace_provider;	/* provider list */
230static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
231static int		dtrace_opens;		/* number of opens */
232static int		dtrace_helpers;		/* number of helpers */
233static int		dtrace_getf;		/* number of unpriv getf()s */
234#ifdef illumos
235static void		*dtrace_softstate;	/* softstate pointer */
236#endif
237static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
238static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
239static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
240static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
241static int		dtrace_toxranges;	/* number of toxic ranges */
242static int		dtrace_toxranges_max;	/* size of toxic range array */
243static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
244static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
245static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
246static kthread_t	*dtrace_panicked;	/* panicking thread */
247static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
248static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
249static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
250static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
251static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
252static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
253static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
254#ifndef illumos
255static struct mtx	dtrace_unr_mtx;
256MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
257static eventhandler_tag	dtrace_kld_load_tag;
258static eventhandler_tag	dtrace_kld_unload_try_tag;
259#endif
260
261/*
262 * DTrace Locking
263 * DTrace is protected by three (relatively coarse-grained) locks:
264 *
265 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
266 *     including enabling state, probes, ECBs, consumer state, helper state,
267 *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
268 *     probe context is lock-free -- synchronization is handled via the
269 *     dtrace_sync() cross call mechanism.
270 *
271 * (2) dtrace_provider_lock is required when manipulating provider state, or
272 *     when provider state must be held constant.
273 *
274 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
275 *     when meta provider state must be held constant.
276 *
277 * The lock ordering between these three locks is dtrace_meta_lock before
278 * dtrace_provider_lock before dtrace_lock.  (In particular, there are
279 * several places where dtrace_provider_lock is held by the framework as it
280 * calls into the providers -- which then call back into the framework,
281 * grabbing dtrace_lock.)
282 *
283 * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
284 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
285 * role as a coarse-grained lock; it is acquired before both of these locks.
286 * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
287 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
288 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
289 * acquired _between_ dtrace_provider_lock and dtrace_lock.
290 */
291static kmutex_t		dtrace_lock;		/* probe state lock */
292static kmutex_t		dtrace_provider_lock;	/* provider state lock */
293static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
294
295#ifndef illumos
296/* XXX FreeBSD hacks. */
297#define cr_suid		cr_svuid
298#define cr_sgid		cr_svgid
299#define	ipaddr_t	in_addr_t
300#define mod_modname	pathname
301#define vuprintf	vprintf
302#define ttoproc(_a)	((_a)->td_proc)
303#define crgetzoneid(_a)	0
304#define SNOCD		0
305#define CPU_ON_INTR(_a)	0
306
307#define PRIV_EFFECTIVE		(1 << 0)
308#define PRIV_DTRACE_KERNEL	(1 << 1)
309#define PRIV_DTRACE_PROC	(1 << 2)
310#define PRIV_DTRACE_USER	(1 << 3)
311#define PRIV_PROC_OWNER		(1 << 4)
312#define PRIV_PROC_ZONE		(1 << 5)
313#define PRIV_ALL		~0
314
315SYSCTL_DECL(_debug_dtrace);
316SYSCTL_DECL(_kern_dtrace);
317#endif
318
319#ifdef illumos
320#define curcpu	CPU->cpu_id
321#endif
322
323
324/*
325 * DTrace Provider Variables
326 *
327 * These are the variables relating to DTrace as a provider (that is, the
328 * provider of the BEGIN, END, and ERROR probes).
329 */
330static dtrace_pattr_t	dtrace_provider_attr = {
331{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
332{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
333{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
334{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
335{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
336};
337
338static void
339dtrace_nullop(void)
340{}
341
342static dtrace_pops_t dtrace_provider_ops = {
343	.dtps_provide =	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
344	.dtps_provide_module =	(void (*)(void *, modctl_t *))dtrace_nullop,
345	.dtps_enable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
346	.dtps_disable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
347	.dtps_suspend =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
348	.dtps_resume =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
349	.dtps_getargdesc =	NULL,
350	.dtps_getargval =	NULL,
351	.dtps_usermode =	NULL,
352	.dtps_destroy =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
353};
354
355static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
356static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
357dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
358
359/*
360 * DTrace Helper Tracing Variables
361 *
362 * These variables should be set dynamically to enable helper tracing.  The
363 * only variables that should be set are dtrace_helptrace_enable (which should
364 * be set to a non-zero value to allocate helper tracing buffers on the next
365 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
366 * non-zero value to deallocate helper tracing buffers on the next close of
367 * /dev/dtrace).  When (and only when) helper tracing is disabled, the
368 * buffer size may also be set via dtrace_helptrace_bufsize.
369 */
370int			dtrace_helptrace_enable = 0;
371int			dtrace_helptrace_disable = 0;
372int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
373uint32_t		dtrace_helptrace_nlocals;
374static dtrace_helptrace_t *dtrace_helptrace_buffer;
375static uint32_t		dtrace_helptrace_next = 0;
376static int		dtrace_helptrace_wrapped = 0;
377
378/*
379 * DTrace Error Hashing
380 *
381 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
382 * table.  This is very useful for checking coverage of tests that are
383 * expected to induce DIF or DOF processing errors, and may be useful for
384 * debugging problems in the DIF code generator or in DOF generation .  The
385 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
386 */
387#ifdef DEBUG
388static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
389static const char *dtrace_errlast;
390static kthread_t *dtrace_errthread;
391static kmutex_t dtrace_errlock;
392#endif
393
394/*
395 * DTrace Macros and Constants
396 *
397 * These are various macros that are useful in various spots in the
398 * implementation, along with a few random constants that have no meaning
399 * outside of the implementation.  There is no real structure to this cpp
400 * mishmash -- but is there ever?
401 */
402#define	DTRACE_HASHSTR(hash, probe)	\
403	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
404
405#define	DTRACE_HASHNEXT(hash, probe)	\
406	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
407
408#define	DTRACE_HASHPREV(hash, probe)	\
409	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
410
411#define	DTRACE_HASHEQ(hash, lhs, rhs)	\
412	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
413	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
414
415#define	DTRACE_AGGHASHSIZE_SLEW		17
416
417#define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
418
419/*
420 * The key for a thread-local variable consists of the lower 61 bits of the
421 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
422 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
423 * equal to a variable identifier.  This is necessary (but not sufficient) to
424 * assure that global associative arrays never collide with thread-local
425 * variables.  To guarantee that they cannot collide, we must also define the
426 * order for keying dynamic variables.  That order is:
427 *
428 *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
429 *
430 * Because the variable-key and the tls-key are in orthogonal spaces, there is
431 * no way for a global variable key signature to match a thread-local key
432 * signature.
433 */
434#ifdef illumos
435#define	DTRACE_TLS_THRKEY(where) { \
436	uint_t intr = 0; \
437	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
438	for (; actv; actv >>= 1) \
439		intr++; \
440	ASSERT(intr < (1 << 3)); \
441	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
442	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
443}
444#else
445#define	DTRACE_TLS_THRKEY(where) { \
446	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
447	uint_t intr = 0; \
448	uint_t actv = _c->cpu_intr_actv; \
449	for (; actv; actv >>= 1) \
450		intr++; \
451	ASSERT(intr < (1 << 3)); \
452	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
453	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
454}
455#endif
456
457#define	DT_BSWAP_8(x)	((x) & 0xff)
458#define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
459#define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
460#define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
461
462#define	DT_MASK_LO 0x00000000FFFFFFFFULL
463
464#define	DTRACE_STORE(type, tomax, offset, what) \
465	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
466
467#ifndef __x86
468#define	DTRACE_ALIGNCHECK(addr, size, flags)				\
469	if (addr & (size - 1)) {					\
470		*flags |= CPU_DTRACE_BADALIGN;				\
471		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
472		return (0);						\
473	}
474#else
475#define	DTRACE_ALIGNCHECK(addr, size, flags)
476#endif
477
478/*
479 * Test whether a range of memory starting at testaddr of size testsz falls
480 * within the range of memory described by addr, sz.  We take care to avoid
481 * problems with overflow and underflow of the unsigned quantities, and
482 * disallow all negative sizes.  Ranges of size 0 are allowed.
483 */
484#define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
485	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
486	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
487	(testaddr) + (testsz) >= (testaddr))
488
489#define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
490do {									\
491	if ((remp) != NULL) {						\
492		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
493	}								\
494_NOTE(CONSTCOND) } while (0)
495
496
497/*
498 * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
499 * alloc_sz on the righthand side of the comparison in order to avoid overflow
500 * or underflow in the comparison with it.  This is simpler than the INRANGE
501 * check above, because we know that the dtms_scratch_ptr is valid in the
502 * range.  Allocations of size zero are allowed.
503 */
504#define	DTRACE_INSCRATCH(mstate, alloc_sz) \
505	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
506	(mstate)->dtms_scratch_ptr >= (alloc_sz))
507
508#define	DTRACE_LOADFUNC(bits)						\
509/*CSTYLED*/								\
510uint##bits##_t								\
511dtrace_load##bits(uintptr_t addr)					\
512{									\
513	size_t size = bits / NBBY;					\
514	/*CSTYLED*/							\
515	uint##bits##_t rval;						\
516	int i;								\
517	volatile uint16_t *flags = (volatile uint16_t *)		\
518	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
519									\
520	DTRACE_ALIGNCHECK(addr, size, flags);				\
521									\
522	for (i = 0; i < dtrace_toxranges; i++) {			\
523		if (addr >= dtrace_toxrange[i].dtt_limit)		\
524			continue;					\
525									\
526		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
527			continue;					\
528									\
529		/*							\
530		 * This address falls within a toxic region; return 0.	\
531		 */							\
532		*flags |= CPU_DTRACE_BADADDR;				\
533		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
534		return (0);						\
535	}								\
536									\
537	*flags |= CPU_DTRACE_NOFAULT;					\
538	/*CSTYLED*/							\
539	rval = *((volatile uint##bits##_t *)addr);			\
540	*flags &= ~CPU_DTRACE_NOFAULT;					\
541									\
542	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
543}
544
545#ifdef _LP64
546#define	dtrace_loadptr	dtrace_load64
547#else
548#define	dtrace_loadptr	dtrace_load32
549#endif
550
551#define	DTRACE_DYNHASH_FREE	0
552#define	DTRACE_DYNHASH_SINK	1
553#define	DTRACE_DYNHASH_VALID	2
554
555#define	DTRACE_MATCH_NEXT	0
556#define	DTRACE_MATCH_DONE	1
557#define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
558#define	DTRACE_STATE_ALIGN	64
559
560#define	DTRACE_FLAGS2FLT(flags)						\
561	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
562	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
563	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
564	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
565	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
566	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
567	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
568	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
569	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
570	DTRACEFLT_UNKNOWN)
571
572#define	DTRACEACT_ISSTRING(act)						\
573	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
574	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
575
576/* Function prototype definitions: */
577static size_t dtrace_strlen(const char *, size_t);
578static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
579static void dtrace_enabling_provide(dtrace_provider_t *);
580static int dtrace_enabling_match(dtrace_enabling_t *, int *);
581static void dtrace_enabling_matchall(void);
582static void dtrace_enabling_reap(void);
583static dtrace_state_t *dtrace_anon_grab(void);
584static uint64_t dtrace_helper(int, dtrace_mstate_t *,
585    dtrace_state_t *, uint64_t, uint64_t);
586static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
587static void dtrace_buffer_drop(dtrace_buffer_t *);
588static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
589static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
590    dtrace_state_t *, dtrace_mstate_t *);
591static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
592    dtrace_optval_t);
593static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
594static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
595uint16_t dtrace_load16(uintptr_t);
596uint32_t dtrace_load32(uintptr_t);
597uint64_t dtrace_load64(uintptr_t);
598uint8_t dtrace_load8(uintptr_t);
599void dtrace_dynvar_clean(dtrace_dstate_t *);
600dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
601    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
602uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
603static int dtrace_priv_proc(dtrace_state_t *);
604static void dtrace_getf_barrier(void);
605static int dtrace_canload_remains(uint64_t, size_t, size_t *,
606    dtrace_mstate_t *, dtrace_vstate_t *);
607static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
608    dtrace_mstate_t *, dtrace_vstate_t *);
609
610/*
611 * DTrace Probe Context Functions
612 *
613 * These functions are called from probe context.  Because probe context is
614 * any context in which C may be called, arbitrarily locks may be held,
615 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
616 * As a result, functions called from probe context may only call other DTrace
617 * support functions -- they may not interact at all with the system at large.
618 * (Note that the ASSERT macro is made probe-context safe by redefining it in
619 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
620 * loads are to be performed from probe context, they _must_ be in terms of
621 * the safe dtrace_load*() variants.
622 *
623 * Some functions in this block are not actually called from probe context;
624 * for these functions, there will be a comment above the function reading
625 * "Note:  not called from probe context."
626 */
627void
628dtrace_panic(const char *format, ...)
629{
630	va_list alist;
631
632	va_start(alist, format);
633#ifdef __FreeBSD__
634	vpanic(format, alist);
635#else
636	dtrace_vpanic(format, alist);
637#endif
638	va_end(alist);
639}
640
641int
642dtrace_assfail(const char *a, const char *f, int l)
643{
644	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
645
646	/*
647	 * We just need something here that even the most clever compiler
648	 * cannot optimize away.
649	 */
650	return (a[(uintptr_t)f]);
651}
652
653/*
654 * Atomically increment a specified error counter from probe context.
655 */
656static void
657dtrace_error(uint32_t *counter)
658{
659	/*
660	 * Most counters stored to in probe context are per-CPU counters.
661	 * However, there are some error conditions that are sufficiently
662	 * arcane that they don't merit per-CPU storage.  If these counters
663	 * are incremented concurrently on different CPUs, scalability will be
664	 * adversely affected -- but we don't expect them to be white-hot in a
665	 * correctly constructed enabling...
666	 */
667	uint32_t oval, nval;
668
669	do {
670		oval = *counter;
671
672		if ((nval = oval + 1) == 0) {
673			/*
674			 * If the counter would wrap, set it to 1 -- assuring
675			 * that the counter is never zero when we have seen
676			 * errors.  (The counter must be 32-bits because we
677			 * aren't guaranteed a 64-bit compare&swap operation.)
678			 * To save this code both the infamy of being fingered
679			 * by a priggish news story and the indignity of being
680			 * the target of a neo-puritan witch trial, we're
681			 * carefully avoiding any colorful description of the
682			 * likelihood of this condition -- but suffice it to
683			 * say that it is only slightly more likely than the
684			 * overflow of predicate cache IDs, as discussed in
685			 * dtrace_predicate_create().
686			 */
687			nval = 1;
688		}
689	} while (dtrace_cas32(counter, oval, nval) != oval);
690}
691
692/*
693 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
694 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
695 */
696/* BEGIN CSTYLED */
697DTRACE_LOADFUNC(8)
698DTRACE_LOADFUNC(16)
699DTRACE_LOADFUNC(32)
700DTRACE_LOADFUNC(64)
701/* END CSTYLED */
702
703static int
704dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
705{
706	if (dest < mstate->dtms_scratch_base)
707		return (0);
708
709	if (dest + size < dest)
710		return (0);
711
712	if (dest + size > mstate->dtms_scratch_ptr)
713		return (0);
714
715	return (1);
716}
717
718static int
719dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
720    dtrace_statvar_t **svars, int nsvars)
721{
722	int i;
723	size_t maxglobalsize, maxlocalsize;
724
725	if (nsvars == 0)
726		return (0);
727
728	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
729	maxlocalsize = maxglobalsize * NCPU;
730
731	for (i = 0; i < nsvars; i++) {
732		dtrace_statvar_t *svar = svars[i];
733		uint8_t scope;
734		size_t size;
735
736		if (svar == NULL || (size = svar->dtsv_size) == 0)
737			continue;
738
739		scope = svar->dtsv_var.dtdv_scope;
740
741		/*
742		 * We verify that our size is valid in the spirit of providing
743		 * defense in depth:  we want to prevent attackers from using
744		 * DTrace to escalate an orthogonal kernel heap corruption bug
745		 * into the ability to store to arbitrary locations in memory.
746		 */
747		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
748		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
749
750		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
751		    svar->dtsv_size)) {
752			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
753			    svar->dtsv_size);
754			return (1);
755		}
756	}
757
758	return (0);
759}
760
761/*
762 * Check to see if the address is within a memory region to which a store may
763 * be issued.  This includes the DTrace scratch areas, and any DTrace variable
764 * region.  The caller of dtrace_canstore() is responsible for performing any
765 * alignment checks that are needed before stores are actually executed.
766 */
767static int
768dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
769    dtrace_vstate_t *vstate)
770{
771	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
772}
773
774/*
775 * Implementation of dtrace_canstore which communicates the upper bound of the
776 * allowed memory region.
777 */
778static int
779dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
780    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
781{
782	/*
783	 * First, check to see if the address is in scratch space...
784	 */
785	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
786	    mstate->dtms_scratch_size)) {
787		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
788		    mstate->dtms_scratch_size);
789		return (1);
790	}
791
792	/*
793	 * Now check to see if it's a dynamic variable.  This check will pick
794	 * up both thread-local variables and any global dynamically-allocated
795	 * variables.
796	 */
797	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
798	    vstate->dtvs_dynvars.dtds_size)) {
799		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
800		uintptr_t base = (uintptr_t)dstate->dtds_base +
801		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
802		uintptr_t chunkoffs;
803		dtrace_dynvar_t *dvar;
804
805		/*
806		 * Before we assume that we can store here, we need to make
807		 * sure that it isn't in our metadata -- storing to our
808		 * dynamic variable metadata would corrupt our state.  For
809		 * the range to not include any dynamic variable metadata,
810		 * it must:
811		 *
812		 *	(1) Start above the hash table that is at the base of
813		 *	the dynamic variable space
814		 *
815		 *	(2) Have a starting chunk offset that is beyond the
816		 *	dtrace_dynvar_t that is at the base of every chunk
817		 *
818		 *	(3) Not span a chunk boundary
819		 *
820		 *	(4) Not be in the tuple space of a dynamic variable
821		 *
822		 */
823		if (addr < base)
824			return (0);
825
826		chunkoffs = (addr - base) % dstate->dtds_chunksize;
827
828		if (chunkoffs < sizeof (dtrace_dynvar_t))
829			return (0);
830
831		if (chunkoffs + sz > dstate->dtds_chunksize)
832			return (0);
833
834		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
835
836		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
837			return (0);
838
839		if (chunkoffs < sizeof (dtrace_dynvar_t) +
840		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
841			return (0);
842
843		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
844		return (1);
845	}
846
847	/*
848	 * Finally, check the static local and global variables.  These checks
849	 * take the longest, so we perform them last.
850	 */
851	if (dtrace_canstore_statvar(addr, sz, remain,
852	    vstate->dtvs_locals, vstate->dtvs_nlocals))
853		return (1);
854
855	if (dtrace_canstore_statvar(addr, sz, remain,
856	    vstate->dtvs_globals, vstate->dtvs_nglobals))
857		return (1);
858
859	return (0);
860}
861
862
863/*
864 * Convenience routine to check to see if the address is within a memory
865 * region in which a load may be issued given the user's privilege level;
866 * if not, it sets the appropriate error flags and loads 'addr' into the
867 * illegal value slot.
868 *
869 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
870 * appropriate memory access protection.
871 */
872static int
873dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
874    dtrace_vstate_t *vstate)
875{
876	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
877}
878
879/*
880 * Implementation of dtrace_canload which communicates the uppoer bound of the
881 * allowed memory region.
882 */
883static int
884dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
885    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
886{
887	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
888	file_t *fp;
889
890	/*
891	 * If we hold the privilege to read from kernel memory, then
892	 * everything is readable.
893	 */
894	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
895		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
896		return (1);
897	}
898
899	/*
900	 * You can obviously read that which you can store.
901	 */
902	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
903		return (1);
904
905	/*
906	 * We're allowed to read from our own string table.
907	 */
908	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
909	    mstate->dtms_difo->dtdo_strlen)) {
910		DTRACE_RANGE_REMAIN(remain, addr,
911		    mstate->dtms_difo->dtdo_strtab,
912		    mstate->dtms_difo->dtdo_strlen);
913		return (1);
914	}
915
916	if (vstate->dtvs_state != NULL &&
917	    dtrace_priv_proc(vstate->dtvs_state)) {
918		proc_t *p;
919
920		/*
921		 * When we have privileges to the current process, there are
922		 * several context-related kernel structures that are safe to
923		 * read, even absent the privilege to read from kernel memory.
924		 * These reads are safe because these structures contain only
925		 * state that (1) we're permitted to read, (2) is harmless or
926		 * (3) contains pointers to additional kernel state that we're
927		 * not permitted to read (and as such, do not present an
928		 * opportunity for privilege escalation).  Finally (and
929		 * critically), because of the nature of their relation with
930		 * the current thread context, the memory associated with these
931		 * structures cannot change over the duration of probe context,
932		 * and it is therefore impossible for this memory to be
933		 * deallocated and reallocated as something else while it's
934		 * being operated upon.
935		 */
936		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
937			DTRACE_RANGE_REMAIN(remain, addr, curthread,
938			    sizeof (kthread_t));
939			return (1);
940		}
941
942		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
943		    sz, curthread->t_procp, sizeof (proc_t))) {
944			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
945			    sizeof (proc_t));
946			return (1);
947		}
948
949		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
950		    curthread->t_cred, sizeof (cred_t))) {
951			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
952			    sizeof (cred_t));
953			return (1);
954		}
955
956#ifdef illumos
957		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
958		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
959			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
960			    sizeof (pid_t));
961			return (1);
962		}
963
964		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
965		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
966			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
967			    offsetof(cpu_t, cpu_pause_thread));
968			return (1);
969		}
970#endif
971	}
972
973	if ((fp = mstate->dtms_getf) != NULL) {
974		uintptr_t psz = sizeof (void *);
975		vnode_t *vp;
976		vnodeops_t *op;
977
978		/*
979		 * When getf() returns a file_t, the enabling is implicitly
980		 * granted the (transient) right to read the returned file_t
981		 * as well as the v_path and v_op->vnop_name of the underlying
982		 * vnode.  These accesses are allowed after a successful
983		 * getf() because the members that they refer to cannot change
984		 * once set -- and the barrier logic in the kernel's closef()
985		 * path assures that the file_t and its referenced vode_t
986		 * cannot themselves be stale (that is, it impossible for
987		 * either dtms_getf itself or its f_vnode member to reference
988		 * freed memory).
989		 */
990		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
991			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
992			return (1);
993		}
994
995		if ((vp = fp->f_vnode) != NULL) {
996			size_t slen;
997#ifdef illumos
998			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
999				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1000				    psz);
1001				return (1);
1002			}
1003			slen = strlen(vp->v_path) + 1;
1004			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1005				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1006				    slen);
1007				return (1);
1008			}
1009#endif
1010
1011			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1012				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1013				    psz);
1014				return (1);
1015			}
1016
1017#ifdef illumos
1018			if ((op = vp->v_op) != NULL &&
1019			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1020				DTRACE_RANGE_REMAIN(remain, addr,
1021				    &op->vnop_name, psz);
1022				return (1);
1023			}
1024
1025			if (op != NULL && op->vnop_name != NULL &&
1026			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1027			    (slen = strlen(op->vnop_name) + 1))) {
1028				DTRACE_RANGE_REMAIN(remain, addr,
1029				    op->vnop_name, slen);
1030				return (1);
1031			}
1032#endif
1033		}
1034	}
1035
1036	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1037	*illval = addr;
1038	return (0);
1039}
1040
1041/*
1042 * Convenience routine to check to see if a given string is within a memory
1043 * region in which a load may be issued given the user's privilege level;
1044 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1045 * calls in the event that the user has all privileges.
1046 */
1047static int
1048dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1049    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1050{
1051	size_t rsize;
1052
1053	/*
1054	 * If we hold the privilege to read from kernel memory, then
1055	 * everything is readable.
1056	 */
1057	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1058		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1059		return (1);
1060	}
1061
1062	/*
1063	 * Even if the caller is uninterested in querying the remaining valid
1064	 * range, it is required to ensure that the access is allowed.
1065	 */
1066	if (remain == NULL) {
1067		remain = &rsize;
1068	}
1069	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1070		size_t strsz;
1071		/*
1072		 * Perform the strlen after determining the length of the
1073		 * memory region which is accessible.  This prevents timing
1074		 * information from being used to find NULs in memory which is
1075		 * not accessible to the caller.
1076		 */
1077		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1078		    MIN(sz, *remain));
1079		if (strsz <= *remain) {
1080			return (1);
1081		}
1082	}
1083
1084	return (0);
1085}
1086
1087/*
1088 * Convenience routine to check to see if a given variable is within a memory
1089 * region in which a load may be issued given the user's privilege level.
1090 */
1091static int
1092dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1093    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1094{
1095	size_t sz;
1096	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1097
1098	/*
1099	 * Calculate the max size before performing any checks since even
1100	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1101	 * return the max length via 'remain'.
1102	 */
1103	if (type->dtdt_kind == DIF_TYPE_STRING) {
1104		dtrace_state_t *state = vstate->dtvs_state;
1105
1106		if (state != NULL) {
1107			sz = state->dts_options[DTRACEOPT_STRSIZE];
1108		} else {
1109			/*
1110			 * In helper context, we have a NULL state; fall back
1111			 * to using the system-wide default for the string size
1112			 * in this case.
1113			 */
1114			sz = dtrace_strsize_default;
1115		}
1116	} else {
1117		sz = type->dtdt_size;
1118	}
1119
1120	/*
1121	 * If we hold the privilege to read from kernel memory, then
1122	 * everything is readable.
1123	 */
1124	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1125		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1126		return (1);
1127	}
1128
1129	if (type->dtdt_kind == DIF_TYPE_STRING) {
1130		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1131		    vstate));
1132	}
1133	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1134	    vstate));
1135}
1136
1137/*
1138 * Convert a string to a signed integer using safe loads.
1139 *
1140 * NOTE: This function uses various macros from strtolctype.h to manipulate
1141 * digit values, etc -- these have all been checked to ensure they make
1142 * no additional function calls.
1143 */
1144static int64_t
1145dtrace_strtoll(char *input, int base, size_t limit)
1146{
1147	uintptr_t pos = (uintptr_t)input;
1148	int64_t val = 0;
1149	int x;
1150	boolean_t neg = B_FALSE;
1151	char c, cc, ccc;
1152	uintptr_t end = pos + limit;
1153
1154	/*
1155	 * Consume any whitespace preceding digits.
1156	 */
1157	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1158		pos++;
1159
1160	/*
1161	 * Handle an explicit sign if one is present.
1162	 */
1163	if (c == '-' || c == '+') {
1164		if (c == '-')
1165			neg = B_TRUE;
1166		c = dtrace_load8(++pos);
1167	}
1168
1169	/*
1170	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1171	 * if present.
1172	 */
1173	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1174	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1175		pos += 2;
1176		c = ccc;
1177	}
1178
1179	/*
1180	 * Read in contiguous digits until the first non-digit character.
1181	 */
1182	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1183	    c = dtrace_load8(++pos))
1184		val = val * base + x;
1185
1186	return (neg ? -val : val);
1187}
1188
1189/*
1190 * Compare two strings using safe loads.
1191 */
1192static int
1193dtrace_strncmp(char *s1, char *s2, size_t limit)
1194{
1195	uint8_t c1, c2;
1196	volatile uint16_t *flags;
1197
1198	if (s1 == s2 || limit == 0)
1199		return (0);
1200
1201	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1202
1203	do {
1204		if (s1 == NULL) {
1205			c1 = '\0';
1206		} else {
1207			c1 = dtrace_load8((uintptr_t)s1++);
1208		}
1209
1210		if (s2 == NULL) {
1211			c2 = '\0';
1212		} else {
1213			c2 = dtrace_load8((uintptr_t)s2++);
1214		}
1215
1216		if (c1 != c2)
1217			return (c1 - c2);
1218	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1219
1220	return (0);
1221}
1222
1223/*
1224 * Compute strlen(s) for a string using safe memory accesses.  The additional
1225 * len parameter is used to specify a maximum length to ensure completion.
1226 */
1227static size_t
1228dtrace_strlen(const char *s, size_t lim)
1229{
1230	uint_t len;
1231
1232	for (len = 0; len != lim; len++) {
1233		if (dtrace_load8((uintptr_t)s++) == '\0')
1234			break;
1235	}
1236
1237	return (len);
1238}
1239
1240/*
1241 * Check if an address falls within a toxic region.
1242 */
1243static int
1244dtrace_istoxic(uintptr_t kaddr, size_t size)
1245{
1246	uintptr_t taddr, tsize;
1247	int i;
1248
1249	for (i = 0; i < dtrace_toxranges; i++) {
1250		taddr = dtrace_toxrange[i].dtt_base;
1251		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1252
1253		if (kaddr - taddr < tsize) {
1254			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1255			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1256			return (1);
1257		}
1258
1259		if (taddr - kaddr < size) {
1260			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1261			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1262			return (1);
1263		}
1264	}
1265
1266	return (0);
1267}
1268
1269/*
1270 * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1271 * memory specified by the DIF program.  The dst is assumed to be safe memory
1272 * that we can store to directly because it is managed by DTrace.  As with
1273 * standard bcopy, overlapping copies are handled properly.
1274 */
1275static void
1276dtrace_bcopy(const void *src, void *dst, size_t len)
1277{
1278	if (len != 0) {
1279		uint8_t *s1 = dst;
1280		const uint8_t *s2 = src;
1281
1282		if (s1 <= s2) {
1283			do {
1284				*s1++ = dtrace_load8((uintptr_t)s2++);
1285			} while (--len != 0);
1286		} else {
1287			s2 += len;
1288			s1 += len;
1289
1290			do {
1291				*--s1 = dtrace_load8((uintptr_t)--s2);
1292			} while (--len != 0);
1293		}
1294	}
1295}
1296
1297/*
1298 * Copy src to dst using safe memory accesses, up to either the specified
1299 * length, or the point that a nul byte is encountered.  The src is assumed to
1300 * be unsafe memory specified by the DIF program.  The dst is assumed to be
1301 * safe memory that we can store to directly because it is managed by DTrace.
1302 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1303 */
1304static void
1305dtrace_strcpy(const void *src, void *dst, size_t len)
1306{
1307	if (len != 0) {
1308		uint8_t *s1 = dst, c;
1309		const uint8_t *s2 = src;
1310
1311		do {
1312			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1313		} while (--len != 0 && c != '\0');
1314	}
1315}
1316
1317/*
1318 * Copy src to dst, deriving the size and type from the specified (BYREF)
1319 * variable type.  The src is assumed to be unsafe memory specified by the DIF
1320 * program.  The dst is assumed to be DTrace variable memory that is of the
1321 * specified type; we assume that we can store to directly.
1322 */
1323static void
1324dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1325{
1326	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1327
1328	if (type->dtdt_kind == DIF_TYPE_STRING) {
1329		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1330	} else {
1331		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1332	}
1333}
1334
1335/*
1336 * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1337 * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1338 * safe memory that we can access directly because it is managed by DTrace.
1339 */
1340static int
1341dtrace_bcmp(const void *s1, const void *s2, size_t len)
1342{
1343	volatile uint16_t *flags;
1344
1345	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1346
1347	if (s1 == s2)
1348		return (0);
1349
1350	if (s1 == NULL || s2 == NULL)
1351		return (1);
1352
1353	if (s1 != s2 && len != 0) {
1354		const uint8_t *ps1 = s1;
1355		const uint8_t *ps2 = s2;
1356
1357		do {
1358			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1359				return (1);
1360		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1361	}
1362	return (0);
1363}
1364
1365/*
1366 * Zero the specified region using a simple byte-by-byte loop.  Note that this
1367 * is for safe DTrace-managed memory only.
1368 */
1369static void
1370dtrace_bzero(void *dst, size_t len)
1371{
1372	uchar_t *cp;
1373
1374	for (cp = dst; len != 0; len--)
1375		*cp++ = 0;
1376}
1377
1378static void
1379dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1380{
1381	uint64_t result[2];
1382
1383	result[0] = addend1[0] + addend2[0];
1384	result[1] = addend1[1] + addend2[1] +
1385	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1386
1387	sum[0] = result[0];
1388	sum[1] = result[1];
1389}
1390
1391/*
1392 * Shift the 128-bit value in a by b. If b is positive, shift left.
1393 * If b is negative, shift right.
1394 */
1395static void
1396dtrace_shift_128(uint64_t *a, int b)
1397{
1398	uint64_t mask;
1399
1400	if (b == 0)
1401		return;
1402
1403	if (b < 0) {
1404		b = -b;
1405		if (b >= 64) {
1406			a[0] = a[1] >> (b - 64);
1407			a[1] = 0;
1408		} else {
1409			a[0] >>= b;
1410			mask = 1LL << (64 - b);
1411			mask -= 1;
1412			a[0] |= ((a[1] & mask) << (64 - b));
1413			a[1] >>= b;
1414		}
1415	} else {
1416		if (b >= 64) {
1417			a[1] = a[0] << (b - 64);
1418			a[0] = 0;
1419		} else {
1420			a[1] <<= b;
1421			mask = a[0] >> (64 - b);
1422			a[1] |= mask;
1423			a[0] <<= b;
1424		}
1425	}
1426}
1427
1428/*
1429 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1430 * use native multiplication on those, and then re-combine into the
1431 * resulting 128-bit value.
1432 *
1433 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1434 *     hi1 * hi2 << 64 +
1435 *     hi1 * lo2 << 32 +
1436 *     hi2 * lo1 << 32 +
1437 *     lo1 * lo2
1438 */
1439static void
1440dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1441{
1442	uint64_t hi1, hi2, lo1, lo2;
1443	uint64_t tmp[2];
1444
1445	hi1 = factor1 >> 32;
1446	hi2 = factor2 >> 32;
1447
1448	lo1 = factor1 & DT_MASK_LO;
1449	lo2 = factor2 & DT_MASK_LO;
1450
1451	product[0] = lo1 * lo2;
1452	product[1] = hi1 * hi2;
1453
1454	tmp[0] = hi1 * lo2;
1455	tmp[1] = 0;
1456	dtrace_shift_128(tmp, 32);
1457	dtrace_add_128(product, tmp, product);
1458
1459	tmp[0] = hi2 * lo1;
1460	tmp[1] = 0;
1461	dtrace_shift_128(tmp, 32);
1462	dtrace_add_128(product, tmp, product);
1463}
1464
1465/*
1466 * This privilege check should be used by actions and subroutines to
1467 * verify that the user credentials of the process that enabled the
1468 * invoking ECB match the target credentials
1469 */
1470static int
1471dtrace_priv_proc_common_user(dtrace_state_t *state)
1472{
1473	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1474
1475	/*
1476	 * We should always have a non-NULL state cred here, since if cred
1477	 * is null (anonymous tracing), we fast-path bypass this routine.
1478	 */
1479	ASSERT(s_cr != NULL);
1480
1481	if ((cr = CRED()) != NULL &&
1482	    s_cr->cr_uid == cr->cr_uid &&
1483	    s_cr->cr_uid == cr->cr_ruid &&
1484	    s_cr->cr_uid == cr->cr_suid &&
1485	    s_cr->cr_gid == cr->cr_gid &&
1486	    s_cr->cr_gid == cr->cr_rgid &&
1487	    s_cr->cr_gid == cr->cr_sgid)
1488		return (1);
1489
1490	return (0);
1491}
1492
1493/*
1494 * This privilege check should be used by actions and subroutines to
1495 * verify that the zone of the process that enabled the invoking ECB
1496 * matches the target credentials
1497 */
1498static int
1499dtrace_priv_proc_common_zone(dtrace_state_t *state)
1500{
1501#ifdef illumos
1502	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1503
1504	/*
1505	 * We should always have a non-NULL state cred here, since if cred
1506	 * is null (anonymous tracing), we fast-path bypass this routine.
1507	 */
1508	ASSERT(s_cr != NULL);
1509
1510	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1511		return (1);
1512
1513	return (0);
1514#else
1515	return (1);
1516#endif
1517}
1518
1519/*
1520 * This privilege check should be used by actions and subroutines to
1521 * verify that the process has not setuid or changed credentials.
1522 */
1523static int
1524dtrace_priv_proc_common_nocd(void)
1525{
1526	proc_t *proc;
1527
1528	if ((proc = ttoproc(curthread)) != NULL &&
1529	    !(proc->p_flag & SNOCD))
1530		return (1);
1531
1532	return (0);
1533}
1534
1535static int
1536dtrace_priv_proc_destructive(dtrace_state_t *state)
1537{
1538	int action = state->dts_cred.dcr_action;
1539
1540	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1541	    dtrace_priv_proc_common_zone(state) == 0)
1542		goto bad;
1543
1544	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1545	    dtrace_priv_proc_common_user(state) == 0)
1546		goto bad;
1547
1548	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1549	    dtrace_priv_proc_common_nocd() == 0)
1550		goto bad;
1551
1552	return (1);
1553
1554bad:
1555	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1556
1557	return (0);
1558}
1559
1560static int
1561dtrace_priv_proc_control(dtrace_state_t *state)
1562{
1563	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1564		return (1);
1565
1566	if (dtrace_priv_proc_common_zone(state) &&
1567	    dtrace_priv_proc_common_user(state) &&
1568	    dtrace_priv_proc_common_nocd())
1569		return (1);
1570
1571	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1572
1573	return (0);
1574}
1575
1576static int
1577dtrace_priv_proc(dtrace_state_t *state)
1578{
1579	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1580		return (1);
1581
1582	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1583
1584	return (0);
1585}
1586
1587static int
1588dtrace_priv_kernel(dtrace_state_t *state)
1589{
1590	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1591		return (1);
1592
1593	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1594
1595	return (0);
1596}
1597
1598static int
1599dtrace_priv_kernel_destructive(dtrace_state_t *state)
1600{
1601	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1602		return (1);
1603
1604	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1605
1606	return (0);
1607}
1608
1609/*
1610 * Determine if the dte_cond of the specified ECB allows for processing of
1611 * the current probe to continue.  Note that this routine may allow continued
1612 * processing, but with access(es) stripped from the mstate's dtms_access
1613 * field.
1614 */
1615static int
1616dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1617    dtrace_ecb_t *ecb)
1618{
1619	dtrace_probe_t *probe = ecb->dte_probe;
1620	dtrace_provider_t *prov = probe->dtpr_provider;
1621	dtrace_pops_t *pops = &prov->dtpv_pops;
1622	int mode = DTRACE_MODE_NOPRIV_DROP;
1623
1624	ASSERT(ecb->dte_cond);
1625
1626#ifdef illumos
1627	if (pops->dtps_mode != NULL) {
1628		mode = pops->dtps_mode(prov->dtpv_arg,
1629		    probe->dtpr_id, probe->dtpr_arg);
1630
1631		ASSERT((mode & DTRACE_MODE_USER) ||
1632		    (mode & DTRACE_MODE_KERNEL));
1633		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1634		    (mode & DTRACE_MODE_NOPRIV_DROP));
1635	}
1636
1637	/*
1638	 * If the dte_cond bits indicate that this consumer is only allowed to
1639	 * see user-mode firings of this probe, call the provider's dtps_mode()
1640	 * entry point to check that the probe was fired while in a user
1641	 * context.  If that's not the case, use the policy specified by the
1642	 * provider to determine if we drop the probe or merely restrict
1643	 * operation.
1644	 */
1645	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1646		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1647
1648		if (!(mode & DTRACE_MODE_USER)) {
1649			if (mode & DTRACE_MODE_NOPRIV_DROP)
1650				return (0);
1651
1652			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1653		}
1654	}
1655#endif
1656
1657	/*
1658	 * This is more subtle than it looks. We have to be absolutely certain
1659	 * that CRED() isn't going to change out from under us so it's only
1660	 * legit to examine that structure if we're in constrained situations.
1661	 * Currently, the only times we'll this check is if a non-super-user
1662	 * has enabled the profile or syscall providers -- providers that
1663	 * allow visibility of all processes. For the profile case, the check
1664	 * above will ensure that we're examining a user context.
1665	 */
1666	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1667		cred_t *cr;
1668		cred_t *s_cr = state->dts_cred.dcr_cred;
1669		proc_t *proc;
1670
1671		ASSERT(s_cr != NULL);
1672
1673		if ((cr = CRED()) == NULL ||
1674		    s_cr->cr_uid != cr->cr_uid ||
1675		    s_cr->cr_uid != cr->cr_ruid ||
1676		    s_cr->cr_uid != cr->cr_suid ||
1677		    s_cr->cr_gid != cr->cr_gid ||
1678		    s_cr->cr_gid != cr->cr_rgid ||
1679		    s_cr->cr_gid != cr->cr_sgid ||
1680		    (proc = ttoproc(curthread)) == NULL ||
1681		    (proc->p_flag & SNOCD)) {
1682			if (mode & DTRACE_MODE_NOPRIV_DROP)
1683				return (0);
1684
1685#ifdef illumos
1686			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1687#endif
1688		}
1689	}
1690
1691#ifdef illumos
1692	/*
1693	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1694	 * in our zone, check to see if our mode policy is to restrict rather
1695	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1696	 * and DTRACE_ACCESS_ARGS
1697	 */
1698	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1699		cred_t *cr;
1700		cred_t *s_cr = state->dts_cred.dcr_cred;
1701
1702		ASSERT(s_cr != NULL);
1703
1704		if ((cr = CRED()) == NULL ||
1705		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1706			if (mode & DTRACE_MODE_NOPRIV_DROP)
1707				return (0);
1708
1709			mstate->dtms_access &=
1710			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1711		}
1712	}
1713#endif
1714
1715	return (1);
1716}
1717
1718/*
1719 * Note:  not called from probe context.  This function is called
1720 * asynchronously (and at a regular interval) from outside of probe context to
1721 * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1722 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1723 */
1724void
1725dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1726{
1727	dtrace_dynvar_t *dirty;
1728	dtrace_dstate_percpu_t *dcpu;
1729	dtrace_dynvar_t **rinsep;
1730	int i, j, work = 0;
1731
1732	for (i = 0; i < NCPU; i++) {
1733		dcpu = &dstate->dtds_percpu[i];
1734		rinsep = &dcpu->dtdsc_rinsing;
1735
1736		/*
1737		 * If the dirty list is NULL, there is no dirty work to do.
1738		 */
1739		if (dcpu->dtdsc_dirty == NULL)
1740			continue;
1741
1742		if (dcpu->dtdsc_rinsing != NULL) {
1743			/*
1744			 * If the rinsing list is non-NULL, then it is because
1745			 * this CPU was selected to accept another CPU's
1746			 * dirty list -- and since that time, dirty buffers
1747			 * have accumulated.  This is a highly unlikely
1748			 * condition, but we choose to ignore the dirty
1749			 * buffers -- they'll be picked up a future cleanse.
1750			 */
1751			continue;
1752		}
1753
1754		if (dcpu->dtdsc_clean != NULL) {
1755			/*
1756			 * If the clean list is non-NULL, then we're in a
1757			 * situation where a CPU has done deallocations (we
1758			 * have a non-NULL dirty list) but no allocations (we
1759			 * also have a non-NULL clean list).  We can't simply
1760			 * move the dirty list into the clean list on this
1761			 * CPU, yet we also don't want to allow this condition
1762			 * to persist, lest a short clean list prevent a
1763			 * massive dirty list from being cleaned (which in
1764			 * turn could lead to otherwise avoidable dynamic
1765			 * drops).  To deal with this, we look for some CPU
1766			 * with a NULL clean list, NULL dirty list, and NULL
1767			 * rinsing list -- and then we borrow this CPU to
1768			 * rinse our dirty list.
1769			 */
1770			for (j = 0; j < NCPU; j++) {
1771				dtrace_dstate_percpu_t *rinser;
1772
1773				rinser = &dstate->dtds_percpu[j];
1774
1775				if (rinser->dtdsc_rinsing != NULL)
1776					continue;
1777
1778				if (rinser->dtdsc_dirty != NULL)
1779					continue;
1780
1781				if (rinser->dtdsc_clean != NULL)
1782					continue;
1783
1784				rinsep = &rinser->dtdsc_rinsing;
1785				break;
1786			}
1787
1788			if (j == NCPU) {
1789				/*
1790				 * We were unable to find another CPU that
1791				 * could accept this dirty list -- we are
1792				 * therefore unable to clean it now.
1793				 */
1794				dtrace_dynvar_failclean++;
1795				continue;
1796			}
1797		}
1798
1799		work = 1;
1800
1801		/*
1802		 * Atomically move the dirty list aside.
1803		 */
1804		do {
1805			dirty = dcpu->dtdsc_dirty;
1806
1807			/*
1808			 * Before we zap the dirty list, set the rinsing list.
1809			 * (This allows for a potential assertion in
1810			 * dtrace_dynvar():  if a free dynamic variable appears
1811			 * on a hash chain, either the dirty list or the
1812			 * rinsing list for some CPU must be non-NULL.)
1813			 */
1814			*rinsep = dirty;
1815			dtrace_membar_producer();
1816		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1817		    dirty, NULL) != dirty);
1818	}
1819
1820	if (!work) {
1821		/*
1822		 * We have no work to do; we can simply return.
1823		 */
1824		return;
1825	}
1826
1827	dtrace_sync();
1828
1829	for (i = 0; i < NCPU; i++) {
1830		dcpu = &dstate->dtds_percpu[i];
1831
1832		if (dcpu->dtdsc_rinsing == NULL)
1833			continue;
1834
1835		/*
1836		 * We are now guaranteed that no hash chain contains a pointer
1837		 * into this dirty list; we can make it clean.
1838		 */
1839		ASSERT(dcpu->dtdsc_clean == NULL);
1840		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1841		dcpu->dtdsc_rinsing = NULL;
1842	}
1843
1844	/*
1845	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1846	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1847	 * This prevents a race whereby a CPU incorrectly decides that
1848	 * the state should be something other than DTRACE_DSTATE_CLEAN
1849	 * after dtrace_dynvar_clean() has completed.
1850	 */
1851	dtrace_sync();
1852
1853	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1854}
1855
1856/*
1857 * Depending on the value of the op parameter, this function looks-up,
1858 * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1859 * allocation is requested, this function will return a pointer to a
1860 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1861 * variable can be allocated.  If NULL is returned, the appropriate counter
1862 * will be incremented.
1863 */
1864dtrace_dynvar_t *
1865dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1866    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1867    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1868{
1869	uint64_t hashval = DTRACE_DYNHASH_VALID;
1870	dtrace_dynhash_t *hash = dstate->dtds_hash;
1871	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1872	processorid_t me = curcpu, cpu = me;
1873	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1874	size_t bucket, ksize;
1875	size_t chunksize = dstate->dtds_chunksize;
1876	uintptr_t kdata, lock, nstate;
1877	uint_t i;
1878
1879	ASSERT(nkeys != 0);
1880
1881	/*
1882	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1883	 * algorithm.  For the by-value portions, we perform the algorithm in
1884	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1885	 * bit, and seems to have only a minute effect on distribution.  For
1886	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1887	 * over each referenced byte.  It's painful to do this, but it's much
1888	 * better than pathological hash distribution.  The efficacy of the
1889	 * hashing algorithm (and a comparison with other algorithms) may be
1890	 * found by running the ::dtrace_dynstat MDB dcmd.
1891	 */
1892	for (i = 0; i < nkeys; i++) {
1893		if (key[i].dttk_size == 0) {
1894			uint64_t val = key[i].dttk_value;
1895
1896			hashval += (val >> 48) & 0xffff;
1897			hashval += (hashval << 10);
1898			hashval ^= (hashval >> 6);
1899
1900			hashval += (val >> 32) & 0xffff;
1901			hashval += (hashval << 10);
1902			hashval ^= (hashval >> 6);
1903
1904			hashval += (val >> 16) & 0xffff;
1905			hashval += (hashval << 10);
1906			hashval ^= (hashval >> 6);
1907
1908			hashval += val & 0xffff;
1909			hashval += (hashval << 10);
1910			hashval ^= (hashval >> 6);
1911		} else {
1912			/*
1913			 * This is incredibly painful, but it beats the hell
1914			 * out of the alternative.
1915			 */
1916			uint64_t j, size = key[i].dttk_size;
1917			uintptr_t base = (uintptr_t)key[i].dttk_value;
1918
1919			if (!dtrace_canload(base, size, mstate, vstate))
1920				break;
1921
1922			for (j = 0; j < size; j++) {
1923				hashval += dtrace_load8(base + j);
1924				hashval += (hashval << 10);
1925				hashval ^= (hashval >> 6);
1926			}
1927		}
1928	}
1929
1930	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1931		return (NULL);
1932
1933	hashval += (hashval << 3);
1934	hashval ^= (hashval >> 11);
1935	hashval += (hashval << 15);
1936
1937	/*
1938	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1939	 * comes out to be one of our two sentinel hash values.  If this
1940	 * actually happens, we set the hashval to be a value known to be a
1941	 * non-sentinel value.
1942	 */
1943	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1944		hashval = DTRACE_DYNHASH_VALID;
1945
1946	/*
1947	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1948	 * important here, tricks can be pulled to reduce it.  (However, it's
1949	 * critical that hash collisions be kept to an absolute minimum;
1950	 * they're much more painful than a divide.)  It's better to have a
1951	 * solution that generates few collisions and still keeps things
1952	 * relatively simple.
1953	 */
1954	bucket = hashval % dstate->dtds_hashsize;
1955
1956	if (op == DTRACE_DYNVAR_DEALLOC) {
1957		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1958
1959		for (;;) {
1960			while ((lock = *lockp) & 1)
1961				continue;
1962
1963			if (dtrace_casptr((volatile void *)lockp,
1964			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1965				break;
1966		}
1967
1968		dtrace_membar_producer();
1969	}
1970
1971top:
1972	prev = NULL;
1973	lock = hash[bucket].dtdh_lock;
1974
1975	dtrace_membar_consumer();
1976
1977	start = hash[bucket].dtdh_chain;
1978	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1979	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1980	    op != DTRACE_DYNVAR_DEALLOC));
1981
1982	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1983		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1984		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1985
1986		if (dvar->dtdv_hashval != hashval) {
1987			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1988				/*
1989				 * We've reached the sink, and therefore the
1990				 * end of the hash chain; we can kick out of
1991				 * the loop knowing that we have seen a valid
1992				 * snapshot of state.
1993				 */
1994				ASSERT(dvar->dtdv_next == NULL);
1995				ASSERT(dvar == &dtrace_dynhash_sink);
1996				break;
1997			}
1998
1999			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2000				/*
2001				 * We've gone off the rails:  somewhere along
2002				 * the line, one of the members of this hash
2003				 * chain was deleted.  Note that we could also
2004				 * detect this by simply letting this loop run
2005				 * to completion, as we would eventually hit
2006				 * the end of the dirty list.  However, we
2007				 * want to avoid running the length of the
2008				 * dirty list unnecessarily (it might be quite
2009				 * long), so we catch this as early as
2010				 * possible by detecting the hash marker.  In
2011				 * this case, we simply set dvar to NULL and
2012				 * break; the conditional after the loop will
2013				 * send us back to top.
2014				 */
2015				dvar = NULL;
2016				break;
2017			}
2018
2019			goto next;
2020		}
2021
2022		if (dtuple->dtt_nkeys != nkeys)
2023			goto next;
2024
2025		for (i = 0; i < nkeys; i++, dkey++) {
2026			if (dkey->dttk_size != key[i].dttk_size)
2027				goto next; /* size or type mismatch */
2028
2029			if (dkey->dttk_size != 0) {
2030				if (dtrace_bcmp(
2031				    (void *)(uintptr_t)key[i].dttk_value,
2032				    (void *)(uintptr_t)dkey->dttk_value,
2033				    dkey->dttk_size))
2034					goto next;
2035			} else {
2036				if (dkey->dttk_value != key[i].dttk_value)
2037					goto next;
2038			}
2039		}
2040
2041		if (op != DTRACE_DYNVAR_DEALLOC)
2042			return (dvar);
2043
2044		ASSERT(dvar->dtdv_next == NULL ||
2045		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2046
2047		if (prev != NULL) {
2048			ASSERT(hash[bucket].dtdh_chain != dvar);
2049			ASSERT(start != dvar);
2050			ASSERT(prev->dtdv_next == dvar);
2051			prev->dtdv_next = dvar->dtdv_next;
2052		} else {
2053			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2054			    start, dvar->dtdv_next) != start) {
2055				/*
2056				 * We have failed to atomically swing the
2057				 * hash table head pointer, presumably because
2058				 * of a conflicting allocation on another CPU.
2059				 * We need to reread the hash chain and try
2060				 * again.
2061				 */
2062				goto top;
2063			}
2064		}
2065
2066		dtrace_membar_producer();
2067
2068		/*
2069		 * Now set the hash value to indicate that it's free.
2070		 */
2071		ASSERT(hash[bucket].dtdh_chain != dvar);
2072		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2073
2074		dtrace_membar_producer();
2075
2076		/*
2077		 * Set the next pointer to point at the dirty list, and
2078		 * atomically swing the dirty pointer to the newly freed dvar.
2079		 */
2080		do {
2081			next = dcpu->dtdsc_dirty;
2082			dvar->dtdv_next = next;
2083		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2084
2085		/*
2086		 * Finally, unlock this hash bucket.
2087		 */
2088		ASSERT(hash[bucket].dtdh_lock == lock);
2089		ASSERT(lock & 1);
2090		hash[bucket].dtdh_lock++;
2091
2092		return (NULL);
2093next:
2094		prev = dvar;
2095		continue;
2096	}
2097
2098	if (dvar == NULL) {
2099		/*
2100		 * If dvar is NULL, it is because we went off the rails:
2101		 * one of the elements that we traversed in the hash chain
2102		 * was deleted while we were traversing it.  In this case,
2103		 * we assert that we aren't doing a dealloc (deallocs lock
2104		 * the hash bucket to prevent themselves from racing with
2105		 * one another), and retry the hash chain traversal.
2106		 */
2107		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2108		goto top;
2109	}
2110
2111	if (op != DTRACE_DYNVAR_ALLOC) {
2112		/*
2113		 * If we are not to allocate a new variable, we want to
2114		 * return NULL now.  Before we return, check that the value
2115		 * of the lock word hasn't changed.  If it has, we may have
2116		 * seen an inconsistent snapshot.
2117		 */
2118		if (op == DTRACE_DYNVAR_NOALLOC) {
2119			if (hash[bucket].dtdh_lock != lock)
2120				goto top;
2121		} else {
2122			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2123			ASSERT(hash[bucket].dtdh_lock == lock);
2124			ASSERT(lock & 1);
2125			hash[bucket].dtdh_lock++;
2126		}
2127
2128		return (NULL);
2129	}
2130
2131	/*
2132	 * We need to allocate a new dynamic variable.  The size we need is the
2133	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2134	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2135	 * the size of any referred-to data (dsize).  We then round the final
2136	 * size up to the chunksize for allocation.
2137	 */
2138	for (ksize = 0, i = 0; i < nkeys; i++)
2139		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2140
2141	/*
2142	 * This should be pretty much impossible, but could happen if, say,
2143	 * strange DIF specified the tuple.  Ideally, this should be an
2144	 * assertion and not an error condition -- but that requires that the
2145	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2146	 * bullet-proof.  (That is, it must not be able to be fooled by
2147	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2148	 * solving this would presumably not amount to solving the Halting
2149	 * Problem -- but it still seems awfully hard.
2150	 */
2151	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2152	    ksize + dsize > chunksize) {
2153		dcpu->dtdsc_drops++;
2154		return (NULL);
2155	}
2156
2157	nstate = DTRACE_DSTATE_EMPTY;
2158
2159	do {
2160retry:
2161		free = dcpu->dtdsc_free;
2162
2163		if (free == NULL) {
2164			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2165			void *rval;
2166
2167			if (clean == NULL) {
2168				/*
2169				 * We're out of dynamic variable space on
2170				 * this CPU.  Unless we have tried all CPUs,
2171				 * we'll try to allocate from a different
2172				 * CPU.
2173				 */
2174				switch (dstate->dtds_state) {
2175				case DTRACE_DSTATE_CLEAN: {
2176					void *sp = &dstate->dtds_state;
2177
2178					if (++cpu >= NCPU)
2179						cpu = 0;
2180
2181					if (dcpu->dtdsc_dirty != NULL &&
2182					    nstate == DTRACE_DSTATE_EMPTY)
2183						nstate = DTRACE_DSTATE_DIRTY;
2184
2185					if (dcpu->dtdsc_rinsing != NULL)
2186						nstate = DTRACE_DSTATE_RINSING;
2187
2188					dcpu = &dstate->dtds_percpu[cpu];
2189
2190					if (cpu != me)
2191						goto retry;
2192
2193					(void) dtrace_cas32(sp,
2194					    DTRACE_DSTATE_CLEAN, nstate);
2195
2196					/*
2197					 * To increment the correct bean
2198					 * counter, take another lap.
2199					 */
2200					goto retry;
2201				}
2202
2203				case DTRACE_DSTATE_DIRTY:
2204					dcpu->dtdsc_dirty_drops++;
2205					break;
2206
2207				case DTRACE_DSTATE_RINSING:
2208					dcpu->dtdsc_rinsing_drops++;
2209					break;
2210
2211				case DTRACE_DSTATE_EMPTY:
2212					dcpu->dtdsc_drops++;
2213					break;
2214				}
2215
2216				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2217				return (NULL);
2218			}
2219
2220			/*
2221			 * The clean list appears to be non-empty.  We want to
2222			 * move the clean list to the free list; we start by
2223			 * moving the clean pointer aside.
2224			 */
2225			if (dtrace_casptr(&dcpu->dtdsc_clean,
2226			    clean, NULL) != clean) {
2227				/*
2228				 * We are in one of two situations:
2229				 *
2230				 *  (a)	The clean list was switched to the
2231				 *	free list by another CPU.
2232				 *
2233				 *  (b)	The clean list was added to by the
2234				 *	cleansing cyclic.
2235				 *
2236				 * In either of these situations, we can
2237				 * just reattempt the free list allocation.
2238				 */
2239				goto retry;
2240			}
2241
2242			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2243
2244			/*
2245			 * Now we'll move the clean list to our free list.
2246			 * It's impossible for this to fail:  the only way
2247			 * the free list can be updated is through this
2248			 * code path, and only one CPU can own the clean list.
2249			 * Thus, it would only be possible for this to fail if
2250			 * this code were racing with dtrace_dynvar_clean().
2251			 * (That is, if dtrace_dynvar_clean() updated the clean
2252			 * list, and we ended up racing to update the free
2253			 * list.)  This race is prevented by the dtrace_sync()
2254			 * in dtrace_dynvar_clean() -- which flushes the
2255			 * owners of the clean lists out before resetting
2256			 * the clean lists.
2257			 */
2258			dcpu = &dstate->dtds_percpu[me];
2259			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2260			ASSERT(rval == NULL);
2261			goto retry;
2262		}
2263
2264		dvar = free;
2265		new_free = dvar->dtdv_next;
2266	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2267
2268	/*
2269	 * We have now allocated a new chunk.  We copy the tuple keys into the
2270	 * tuple array and copy any referenced key data into the data space
2271	 * following the tuple array.  As we do this, we relocate dttk_value
2272	 * in the final tuple to point to the key data address in the chunk.
2273	 */
2274	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2275	dvar->dtdv_data = (void *)(kdata + ksize);
2276	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2277
2278	for (i = 0; i < nkeys; i++) {
2279		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2280		size_t kesize = key[i].dttk_size;
2281
2282		if (kesize != 0) {
2283			dtrace_bcopy(
2284			    (const void *)(uintptr_t)key[i].dttk_value,
2285			    (void *)kdata, kesize);
2286			dkey->dttk_value = kdata;
2287			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2288		} else {
2289			dkey->dttk_value = key[i].dttk_value;
2290		}
2291
2292		dkey->dttk_size = kesize;
2293	}
2294
2295	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2296	dvar->dtdv_hashval = hashval;
2297	dvar->dtdv_next = start;
2298
2299	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2300		return (dvar);
2301
2302	/*
2303	 * The cas has failed.  Either another CPU is adding an element to
2304	 * this hash chain, or another CPU is deleting an element from this
2305	 * hash chain.  The simplest way to deal with both of these cases
2306	 * (though not necessarily the most efficient) is to free our
2307	 * allocated block and re-attempt it all.  Note that the free is
2308	 * to the dirty list and _not_ to the free list.  This is to prevent
2309	 * races with allocators, above.
2310	 */
2311	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2312
2313	dtrace_membar_producer();
2314
2315	do {
2316		free = dcpu->dtdsc_dirty;
2317		dvar->dtdv_next = free;
2318	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2319
2320	goto top;
2321}
2322
2323/*ARGSUSED*/
2324static void
2325dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2326{
2327	if ((int64_t)nval < (int64_t)*oval)
2328		*oval = nval;
2329}
2330
2331/*ARGSUSED*/
2332static void
2333dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2334{
2335	if ((int64_t)nval > (int64_t)*oval)
2336		*oval = nval;
2337}
2338
2339static void
2340dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2341{
2342	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2343	int64_t val = (int64_t)nval;
2344
2345	if (val < 0) {
2346		for (i = 0; i < zero; i++) {
2347			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2348				quanta[i] += incr;
2349				return;
2350			}
2351		}
2352	} else {
2353		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2354			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2355				quanta[i - 1] += incr;
2356				return;
2357			}
2358		}
2359
2360		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2361		return;
2362	}
2363
2364	ASSERT(0);
2365}
2366
2367static void
2368dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2369{
2370	uint64_t arg = *lquanta++;
2371	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2372	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2373	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2374	int32_t val = (int32_t)nval, level;
2375
2376	ASSERT(step != 0);
2377	ASSERT(levels != 0);
2378
2379	if (val < base) {
2380		/*
2381		 * This is an underflow.
2382		 */
2383		lquanta[0] += incr;
2384		return;
2385	}
2386
2387	level = (val - base) / step;
2388
2389	if (level < levels) {
2390		lquanta[level + 1] += incr;
2391		return;
2392	}
2393
2394	/*
2395	 * This is an overflow.
2396	 */
2397	lquanta[levels + 1] += incr;
2398}
2399
2400static int
2401dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2402    uint16_t high, uint16_t nsteps, int64_t value)
2403{
2404	int64_t this = 1, last, next;
2405	int base = 1, order;
2406
2407	ASSERT(factor <= nsteps);
2408	ASSERT(nsteps % factor == 0);
2409
2410	for (order = 0; order < low; order++)
2411		this *= factor;
2412
2413	/*
2414	 * If our value is less than our factor taken to the power of the
2415	 * low order of magnitude, it goes into the zeroth bucket.
2416	 */
2417	if (value < (last = this))
2418		return (0);
2419
2420	for (this *= factor; order <= high; order++) {
2421		int nbuckets = this > nsteps ? nsteps : this;
2422
2423		if ((next = this * factor) < this) {
2424			/*
2425			 * We should not generally get log/linear quantizations
2426			 * with a high magnitude that allows 64-bits to
2427			 * overflow, but we nonetheless protect against this
2428			 * by explicitly checking for overflow, and clamping
2429			 * our value accordingly.
2430			 */
2431			value = this - 1;
2432		}
2433
2434		if (value < this) {
2435			/*
2436			 * If our value lies within this order of magnitude,
2437			 * determine its position by taking the offset within
2438			 * the order of magnitude, dividing by the bucket
2439			 * width, and adding to our (accumulated) base.
2440			 */
2441			return (base + (value - last) / (this / nbuckets));
2442		}
2443
2444		base += nbuckets - (nbuckets / factor);
2445		last = this;
2446		this = next;
2447	}
2448
2449	/*
2450	 * Our value is greater than or equal to our factor taken to the
2451	 * power of one plus the high magnitude -- return the top bucket.
2452	 */
2453	return (base);
2454}
2455
2456static void
2457dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2458{
2459	uint64_t arg = *llquanta++;
2460	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2461	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2462	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2463	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2464
2465	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2466	    low, high, nsteps, nval)] += incr;
2467}
2468
2469/*ARGSUSED*/
2470static void
2471dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2472{
2473	data[0]++;
2474	data[1] += nval;
2475}
2476
2477/*ARGSUSED*/
2478static void
2479dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2480{
2481	int64_t snval = (int64_t)nval;
2482	uint64_t tmp[2];
2483
2484	data[0]++;
2485	data[1] += nval;
2486
2487	/*
2488	 * What we want to say here is:
2489	 *
2490	 * data[2] += nval * nval;
2491	 *
2492	 * But given that nval is 64-bit, we could easily overflow, so
2493	 * we do this as 128-bit arithmetic.
2494	 */
2495	if (snval < 0)
2496		snval = -snval;
2497
2498	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2499	dtrace_add_128(data + 2, tmp, data + 2);
2500}
2501
2502/*ARGSUSED*/
2503static void
2504dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2505{
2506	*oval = *oval + 1;
2507}
2508
2509/*ARGSUSED*/
2510static void
2511dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2512{
2513	*oval += nval;
2514}
2515
2516/*
2517 * Aggregate given the tuple in the principal data buffer, and the aggregating
2518 * action denoted by the specified dtrace_aggregation_t.  The aggregation
2519 * buffer is specified as the buf parameter.  This routine does not return
2520 * failure; if there is no space in the aggregation buffer, the data will be
2521 * dropped, and a corresponding counter incremented.
2522 */
2523static void
2524dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2525    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2526{
2527	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2528	uint32_t i, ndx, size, fsize;
2529	uint32_t align = sizeof (uint64_t) - 1;
2530	dtrace_aggbuffer_t *agb;
2531	dtrace_aggkey_t *key;
2532	uint32_t hashval = 0, limit, isstr;
2533	caddr_t tomax, data, kdata;
2534	dtrace_actkind_t action;
2535	dtrace_action_t *act;
2536	uintptr_t offs;
2537
2538	if (buf == NULL)
2539		return;
2540
2541	if (!agg->dtag_hasarg) {
2542		/*
2543		 * Currently, only quantize() and lquantize() take additional
2544		 * arguments, and they have the same semantics:  an increment
2545		 * value that defaults to 1 when not present.  If additional
2546		 * aggregating actions take arguments, the setting of the
2547		 * default argument value will presumably have to become more
2548		 * sophisticated...
2549		 */
2550		arg = 1;
2551	}
2552
2553	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2554	size = rec->dtrd_offset - agg->dtag_base;
2555	fsize = size + rec->dtrd_size;
2556
2557	ASSERT(dbuf->dtb_tomax != NULL);
2558	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2559
2560	if ((tomax = buf->dtb_tomax) == NULL) {
2561		dtrace_buffer_drop(buf);
2562		return;
2563	}
2564
2565	/*
2566	 * The metastructure is always at the bottom of the buffer.
2567	 */
2568	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2569	    sizeof (dtrace_aggbuffer_t));
2570
2571	if (buf->dtb_offset == 0) {
2572		/*
2573		 * We just kludge up approximately 1/8th of the size to be
2574		 * buckets.  If this guess ends up being routinely
2575		 * off-the-mark, we may need to dynamically readjust this
2576		 * based on past performance.
2577		 */
2578		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2579
2580		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2581		    (uintptr_t)tomax || hashsize == 0) {
2582			/*
2583			 * We've been given a ludicrously small buffer;
2584			 * increment our drop count and leave.
2585			 */
2586			dtrace_buffer_drop(buf);
2587			return;
2588		}
2589
2590		/*
2591		 * And now, a pathetic attempt to try to get a an odd (or
2592		 * perchance, a prime) hash size for better hash distribution.
2593		 */
2594		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2595			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2596
2597		agb->dtagb_hashsize = hashsize;
2598		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2599		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2600		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2601
2602		for (i = 0; i < agb->dtagb_hashsize; i++)
2603			agb->dtagb_hash[i] = NULL;
2604	}
2605
2606	ASSERT(agg->dtag_first != NULL);
2607	ASSERT(agg->dtag_first->dta_intuple);
2608
2609	/*
2610	 * Calculate the hash value based on the key.  Note that we _don't_
2611	 * include the aggid in the hashing (but we will store it as part of
2612	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2613	 * algorithm: a simple, quick algorithm that has no known funnels, and
2614	 * gets good distribution in practice.  The efficacy of the hashing
2615	 * algorithm (and a comparison with other algorithms) may be found by
2616	 * running the ::dtrace_aggstat MDB dcmd.
2617	 */
2618	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2619		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2620		limit = i + act->dta_rec.dtrd_size;
2621		ASSERT(limit <= size);
2622		isstr = DTRACEACT_ISSTRING(act);
2623
2624		for (; i < limit; i++) {
2625			hashval += data[i];
2626			hashval += (hashval << 10);
2627			hashval ^= (hashval >> 6);
2628
2629			if (isstr && data[i] == '\0')
2630				break;
2631		}
2632	}
2633
2634	hashval += (hashval << 3);
2635	hashval ^= (hashval >> 11);
2636	hashval += (hashval << 15);
2637
2638	/*
2639	 * Yes, the divide here is expensive -- but it's generally the least
2640	 * of the performance issues given the amount of data that we iterate
2641	 * over to compute hash values, compare data, etc.
2642	 */
2643	ndx = hashval % agb->dtagb_hashsize;
2644
2645	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2646		ASSERT((caddr_t)key >= tomax);
2647		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2648
2649		if (hashval != key->dtak_hashval || key->dtak_size != size)
2650			continue;
2651
2652		kdata = key->dtak_data;
2653		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2654
2655		for (act = agg->dtag_first; act->dta_intuple;
2656		    act = act->dta_next) {
2657			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2658			limit = i + act->dta_rec.dtrd_size;
2659			ASSERT(limit <= size);
2660			isstr = DTRACEACT_ISSTRING(act);
2661
2662			for (; i < limit; i++) {
2663				if (kdata[i] != data[i])
2664					goto next;
2665
2666				if (isstr && data[i] == '\0')
2667					break;
2668			}
2669		}
2670
2671		if (action != key->dtak_action) {
2672			/*
2673			 * We are aggregating on the same value in the same
2674			 * aggregation with two different aggregating actions.
2675			 * (This should have been picked up in the compiler,
2676			 * so we may be dealing with errant or devious DIF.)
2677			 * This is an error condition; we indicate as much,
2678			 * and return.
2679			 */
2680			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2681			return;
2682		}
2683
2684		/*
2685		 * This is a hit:  we need to apply the aggregator to
2686		 * the value at this key.
2687		 */
2688		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2689		return;
2690next:
2691		continue;
2692	}
2693
2694	/*
2695	 * We didn't find it.  We need to allocate some zero-filled space,
2696	 * link it into the hash table appropriately, and apply the aggregator
2697	 * to the (zero-filled) value.
2698	 */
2699	offs = buf->dtb_offset;
2700	while (offs & (align - 1))
2701		offs += sizeof (uint32_t);
2702
2703	/*
2704	 * If we don't have enough room to both allocate a new key _and_
2705	 * its associated data, increment the drop count and return.
2706	 */
2707	if ((uintptr_t)tomax + offs + fsize >
2708	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2709		dtrace_buffer_drop(buf);
2710		return;
2711	}
2712
2713	/*CONSTCOND*/
2714	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2715	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2716	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2717
2718	key->dtak_data = kdata = tomax + offs;
2719	buf->dtb_offset = offs + fsize;
2720
2721	/*
2722	 * Now copy the data across.
2723	 */
2724	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2725
2726	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2727		kdata[i] = data[i];
2728
2729	/*
2730	 * Because strings are not zeroed out by default, we need to iterate
2731	 * looking for actions that store strings, and we need to explicitly
2732	 * pad these strings out with zeroes.
2733	 */
2734	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2735		int nul;
2736
2737		if (!DTRACEACT_ISSTRING(act))
2738			continue;
2739
2740		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2741		limit = i + act->dta_rec.dtrd_size;
2742		ASSERT(limit <= size);
2743
2744		for (nul = 0; i < limit; i++) {
2745			if (nul) {
2746				kdata[i] = '\0';
2747				continue;
2748			}
2749
2750			if (data[i] != '\0')
2751				continue;
2752
2753			nul = 1;
2754		}
2755	}
2756
2757	for (i = size; i < fsize; i++)
2758		kdata[i] = 0;
2759
2760	key->dtak_hashval = hashval;
2761	key->dtak_size = size;
2762	key->dtak_action = action;
2763	key->dtak_next = agb->dtagb_hash[ndx];
2764	agb->dtagb_hash[ndx] = key;
2765
2766	/*
2767	 * Finally, apply the aggregator.
2768	 */
2769	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2770	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2771}
2772
2773/*
2774 * Given consumer state, this routine finds a speculation in the INACTIVE
2775 * state and transitions it into the ACTIVE state.  If there is no speculation
2776 * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2777 * incremented -- it is up to the caller to take appropriate action.
2778 */
2779static int
2780dtrace_speculation(dtrace_state_t *state)
2781{
2782	int i = 0;
2783	dtrace_speculation_state_t current;
2784	uint32_t *stat = &state->dts_speculations_unavail, count;
2785
2786	while (i < state->dts_nspeculations) {
2787		dtrace_speculation_t *spec = &state->dts_speculations[i];
2788
2789		current = spec->dtsp_state;
2790
2791		if (current != DTRACESPEC_INACTIVE) {
2792			if (current == DTRACESPEC_COMMITTINGMANY ||
2793			    current == DTRACESPEC_COMMITTING ||
2794			    current == DTRACESPEC_DISCARDING)
2795				stat = &state->dts_speculations_busy;
2796			i++;
2797			continue;
2798		}
2799
2800		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2801		    current, DTRACESPEC_ACTIVE) == current)
2802			return (i + 1);
2803	}
2804
2805	/*
2806	 * We couldn't find a speculation.  If we found as much as a single
2807	 * busy speculation buffer, we'll attribute this failure as "busy"
2808	 * instead of "unavail".
2809	 */
2810	do {
2811		count = *stat;
2812	} while (dtrace_cas32(stat, count, count + 1) != count);
2813
2814	return (0);
2815}
2816
2817/*
2818 * This routine commits an active speculation.  If the specified speculation
2819 * is not in a valid state to perform a commit(), this routine will silently do
2820 * nothing.  The state of the specified speculation is transitioned according
2821 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2822 */
2823static void
2824dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2825    dtrace_specid_t which)
2826{
2827	dtrace_speculation_t *spec;
2828	dtrace_buffer_t *src, *dest;
2829	uintptr_t daddr, saddr, dlimit, slimit;
2830	dtrace_speculation_state_t current, new = 0;
2831	intptr_t offs;
2832	uint64_t timestamp;
2833
2834	if (which == 0)
2835		return;
2836
2837	if (which > state->dts_nspeculations) {
2838		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2839		return;
2840	}
2841
2842	spec = &state->dts_speculations[which - 1];
2843	src = &spec->dtsp_buffer[cpu];
2844	dest = &state->dts_buffer[cpu];
2845
2846	do {
2847		current = spec->dtsp_state;
2848
2849		if (current == DTRACESPEC_COMMITTINGMANY)
2850			break;
2851
2852		switch (current) {
2853		case DTRACESPEC_INACTIVE:
2854		case DTRACESPEC_DISCARDING:
2855			return;
2856
2857		case DTRACESPEC_COMMITTING:
2858			/*
2859			 * This is only possible if we are (a) commit()'ing
2860			 * without having done a prior speculate() on this CPU
2861			 * and (b) racing with another commit() on a different
2862			 * CPU.  There's nothing to do -- we just assert that
2863			 * our offset is 0.
2864			 */
2865			ASSERT(src->dtb_offset == 0);
2866			return;
2867
2868		case DTRACESPEC_ACTIVE:
2869			new = DTRACESPEC_COMMITTING;
2870			break;
2871
2872		case DTRACESPEC_ACTIVEONE:
2873			/*
2874			 * This speculation is active on one CPU.  If our
2875			 * buffer offset is non-zero, we know that the one CPU
2876			 * must be us.  Otherwise, we are committing on a
2877			 * different CPU from the speculate(), and we must
2878			 * rely on being asynchronously cleaned.
2879			 */
2880			if (src->dtb_offset != 0) {
2881				new = DTRACESPEC_COMMITTING;
2882				break;
2883			}
2884			/*FALLTHROUGH*/
2885
2886		case DTRACESPEC_ACTIVEMANY:
2887			new = DTRACESPEC_COMMITTINGMANY;
2888			break;
2889
2890		default:
2891			ASSERT(0);
2892		}
2893	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2894	    current, new) != current);
2895
2896	/*
2897	 * We have set the state to indicate that we are committing this
2898	 * speculation.  Now reserve the necessary space in the destination
2899	 * buffer.
2900	 */
2901	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2902	    sizeof (uint64_t), state, NULL)) < 0) {
2903		dtrace_buffer_drop(dest);
2904		goto out;
2905	}
2906
2907	/*
2908	 * We have sufficient space to copy the speculative buffer into the
2909	 * primary buffer.  First, modify the speculative buffer, filling
2910	 * in the timestamp of all entries with the current time.  The data
2911	 * must have the commit() time rather than the time it was traced,
2912	 * so that all entries in the primary buffer are in timestamp order.
2913	 */
2914	timestamp = dtrace_gethrtime();
2915	saddr = (uintptr_t)src->dtb_tomax;
2916	slimit = saddr + src->dtb_offset;
2917	while (saddr < slimit) {
2918		size_t size;
2919		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2920
2921		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2922			saddr += sizeof (dtrace_epid_t);
2923			continue;
2924		}
2925		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2926		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2927
2928		ASSERT3U(saddr + size, <=, slimit);
2929		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2930		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2931
2932		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2933
2934		saddr += size;
2935	}
2936
2937	/*
2938	 * Copy the buffer across.  (Note that this is a
2939	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2940	 * a serious performance issue, a high-performance DTrace-specific
2941	 * bcopy() should obviously be invented.)
2942	 */
2943	daddr = (uintptr_t)dest->dtb_tomax + offs;
2944	dlimit = daddr + src->dtb_offset;
2945	saddr = (uintptr_t)src->dtb_tomax;
2946
2947	/*
2948	 * First, the aligned portion.
2949	 */
2950	while (dlimit - daddr >= sizeof (uint64_t)) {
2951		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2952
2953		daddr += sizeof (uint64_t);
2954		saddr += sizeof (uint64_t);
2955	}
2956
2957	/*
2958	 * Now any left-over bit...
2959	 */
2960	while (dlimit - daddr)
2961		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2962
2963	/*
2964	 * Finally, commit the reserved space in the destination buffer.
2965	 */
2966	dest->dtb_offset = offs + src->dtb_offset;
2967
2968out:
2969	/*
2970	 * If we're lucky enough to be the only active CPU on this speculation
2971	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2972	 */
2973	if (current == DTRACESPEC_ACTIVE ||
2974	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2975		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2976		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2977
2978		ASSERT(rval == DTRACESPEC_COMMITTING);
2979	}
2980
2981	src->dtb_offset = 0;
2982	src->dtb_xamot_drops += src->dtb_drops;
2983	src->dtb_drops = 0;
2984}
2985
2986/*
2987 * This routine discards an active speculation.  If the specified speculation
2988 * is not in a valid state to perform a discard(), this routine will silently
2989 * do nothing.  The state of the specified speculation is transitioned
2990 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2991 */
2992static void
2993dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2994    dtrace_specid_t which)
2995{
2996	dtrace_speculation_t *spec;
2997	dtrace_speculation_state_t current, new = 0;
2998	dtrace_buffer_t *buf;
2999
3000	if (which == 0)
3001		return;
3002
3003	if (which > state->dts_nspeculations) {
3004		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3005		return;
3006	}
3007
3008	spec = &state->dts_speculations[which - 1];
3009	buf = &spec->dtsp_buffer[cpu];
3010
3011	do {
3012		current = spec->dtsp_state;
3013
3014		switch (current) {
3015		case DTRACESPEC_INACTIVE:
3016		case DTRACESPEC_COMMITTINGMANY:
3017		case DTRACESPEC_COMMITTING:
3018		case DTRACESPEC_DISCARDING:
3019			return;
3020
3021		case DTRACESPEC_ACTIVE:
3022		case DTRACESPEC_ACTIVEMANY:
3023			new = DTRACESPEC_DISCARDING;
3024			break;
3025
3026		case DTRACESPEC_ACTIVEONE:
3027			if (buf->dtb_offset != 0) {
3028				new = DTRACESPEC_INACTIVE;
3029			} else {
3030				new = DTRACESPEC_DISCARDING;
3031			}
3032			break;
3033
3034		default:
3035			ASSERT(0);
3036		}
3037	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3038	    current, new) != current);
3039
3040	buf->dtb_offset = 0;
3041	buf->dtb_drops = 0;
3042}
3043
3044/*
3045 * Note:  not called from probe context.  This function is called
3046 * asynchronously from cross call context to clean any speculations that are
3047 * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3048 * transitioned back to the INACTIVE state until all CPUs have cleaned the
3049 * speculation.
3050 */
3051static void
3052dtrace_speculation_clean_here(dtrace_state_t *state)
3053{
3054	dtrace_icookie_t cookie;
3055	processorid_t cpu = curcpu;
3056	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3057	dtrace_specid_t i;
3058
3059	cookie = dtrace_interrupt_disable();
3060
3061	if (dest->dtb_tomax == NULL) {
3062		dtrace_interrupt_enable(cookie);
3063		return;
3064	}
3065
3066	for (i = 0; i < state->dts_nspeculations; i++) {
3067		dtrace_speculation_t *spec = &state->dts_speculations[i];
3068		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3069
3070		if (src->dtb_tomax == NULL)
3071			continue;
3072
3073		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3074			src->dtb_offset = 0;
3075			continue;
3076		}
3077
3078		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3079			continue;
3080
3081		if (src->dtb_offset == 0)
3082			continue;
3083
3084		dtrace_speculation_commit(state, cpu, i + 1);
3085	}
3086
3087	dtrace_interrupt_enable(cookie);
3088}
3089
3090/*
3091 * Note:  not called from probe context.  This function is called
3092 * asynchronously (and at a regular interval) to clean any speculations that
3093 * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3094 * is work to be done, it cross calls all CPUs to perform that work;
3095 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3096 * INACTIVE state until they have been cleaned by all CPUs.
3097 */
3098static void
3099dtrace_speculation_clean(dtrace_state_t *state)
3100{
3101	int work = 0, rv;
3102	dtrace_specid_t i;
3103
3104	for (i = 0; i < state->dts_nspeculations; i++) {
3105		dtrace_speculation_t *spec = &state->dts_speculations[i];
3106
3107		ASSERT(!spec->dtsp_cleaning);
3108
3109		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3110		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3111			continue;
3112
3113		work++;
3114		spec->dtsp_cleaning = 1;
3115	}
3116
3117	if (!work)
3118		return;
3119
3120	dtrace_xcall(DTRACE_CPUALL,
3121	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3122
3123	/*
3124	 * We now know that all CPUs have committed or discarded their
3125	 * speculation buffers, as appropriate.  We can now set the state
3126	 * to inactive.
3127	 */
3128	for (i = 0; i < state->dts_nspeculations; i++) {
3129		dtrace_speculation_t *spec = &state->dts_speculations[i];
3130		dtrace_speculation_state_t current, new;
3131
3132		if (!spec->dtsp_cleaning)
3133			continue;
3134
3135		current = spec->dtsp_state;
3136		ASSERT(current == DTRACESPEC_DISCARDING ||
3137		    current == DTRACESPEC_COMMITTINGMANY);
3138
3139		new = DTRACESPEC_INACTIVE;
3140
3141		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3142		ASSERT(rv == current);
3143		spec->dtsp_cleaning = 0;
3144	}
3145}
3146
3147/*
3148 * Called as part of a speculate() to get the speculative buffer associated
3149 * with a given speculation.  Returns NULL if the specified speculation is not
3150 * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3151 * the active CPU is not the specified CPU -- the speculation will be
3152 * atomically transitioned into the ACTIVEMANY state.
3153 */
3154static dtrace_buffer_t *
3155dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3156    dtrace_specid_t which)
3157{
3158	dtrace_speculation_t *spec;
3159	dtrace_speculation_state_t current, new = 0;
3160	dtrace_buffer_t *buf;
3161
3162	if (which == 0)
3163		return (NULL);
3164
3165	if (which > state->dts_nspeculations) {
3166		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3167		return (NULL);
3168	}
3169
3170	spec = &state->dts_speculations[which - 1];
3171	buf = &spec->dtsp_buffer[cpuid];
3172
3173	do {
3174		current = spec->dtsp_state;
3175
3176		switch (current) {
3177		case DTRACESPEC_INACTIVE:
3178		case DTRACESPEC_COMMITTINGMANY:
3179		case DTRACESPEC_DISCARDING:
3180			return (NULL);
3181
3182		case DTRACESPEC_COMMITTING:
3183			ASSERT(buf->dtb_offset == 0);
3184			return (NULL);
3185
3186		case DTRACESPEC_ACTIVEONE:
3187			/*
3188			 * This speculation is currently active on one CPU.
3189			 * Check the offset in the buffer; if it's non-zero,
3190			 * that CPU must be us (and we leave the state alone).
3191			 * If it's zero, assume that we're starting on a new
3192			 * CPU -- and change the state to indicate that the
3193			 * speculation is active on more than one CPU.
3194			 */
3195			if (buf->dtb_offset != 0)
3196				return (buf);
3197
3198			new = DTRACESPEC_ACTIVEMANY;
3199			break;
3200
3201		case DTRACESPEC_ACTIVEMANY:
3202			return (buf);
3203
3204		case DTRACESPEC_ACTIVE:
3205			new = DTRACESPEC_ACTIVEONE;
3206			break;
3207
3208		default:
3209			ASSERT(0);
3210		}
3211	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3212	    current, new) != current);
3213
3214	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3215	return (buf);
3216}
3217
3218/*
3219 * Return a string.  In the event that the user lacks the privilege to access
3220 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3221 * don't fail access checking.
3222 *
3223 * dtrace_dif_variable() uses this routine as a helper for various
3224 * builtin values such as 'execname' and 'probefunc.'
3225 */
3226uintptr_t
3227dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3228    dtrace_mstate_t *mstate)
3229{
3230	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3231	uintptr_t ret;
3232	size_t strsz;
3233
3234	/*
3235	 * The easy case: this probe is allowed to read all of memory, so
3236	 * we can just return this as a vanilla pointer.
3237	 */
3238	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3239		return (addr);
3240
3241	/*
3242	 * This is the tougher case: we copy the string in question from
3243	 * kernel memory into scratch memory and return it that way: this
3244	 * ensures that we won't trip up when access checking tests the
3245	 * BYREF return value.
3246	 */
3247	strsz = dtrace_strlen((char *)addr, size) + 1;
3248
3249	if (mstate->dtms_scratch_ptr + strsz >
3250	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3251		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3252		return (0);
3253	}
3254
3255	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3256	    strsz);
3257	ret = mstate->dtms_scratch_ptr;
3258	mstate->dtms_scratch_ptr += strsz;
3259	return (ret);
3260}
3261
3262/*
3263 * Return a string from a memoy address which is known to have one or
3264 * more concatenated, individually zero terminated, sub-strings.
3265 * In the event that the user lacks the privilege to access
3266 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3267 * don't fail access checking.
3268 *
3269 * dtrace_dif_variable() uses this routine as a helper for various
3270 * builtin values such as 'execargs'.
3271 */
3272static uintptr_t
3273dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3274    dtrace_mstate_t *mstate)
3275{
3276	char *p;
3277	size_t i;
3278	uintptr_t ret;
3279
3280	if (mstate->dtms_scratch_ptr + strsz >
3281	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3282		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3283		return (0);
3284	}
3285
3286	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3287	    strsz);
3288
3289	/* Replace sub-string termination characters with a space. */
3290	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3291	    p++, i++)
3292		if (*p == '\0')
3293			*p = ' ';
3294
3295	ret = mstate->dtms_scratch_ptr;
3296	mstate->dtms_scratch_ptr += strsz;
3297	return (ret);
3298}
3299
3300/*
3301 * This function implements the DIF emulator's variable lookups.  The emulator
3302 * passes a reserved variable identifier and optional built-in array index.
3303 */
3304static uint64_t
3305dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3306    uint64_t ndx)
3307{
3308	/*
3309	 * If we're accessing one of the uncached arguments, we'll turn this
3310	 * into a reference in the args array.
3311	 */
3312	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3313		ndx = v - DIF_VAR_ARG0;
3314		v = DIF_VAR_ARGS;
3315	}
3316
3317	switch (v) {
3318	case DIF_VAR_ARGS:
3319		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3320		if (ndx >= sizeof (mstate->dtms_arg) /
3321		    sizeof (mstate->dtms_arg[0])) {
3322			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3323			dtrace_provider_t *pv;
3324			uint64_t val;
3325
3326			pv = mstate->dtms_probe->dtpr_provider;
3327			if (pv->dtpv_pops.dtps_getargval != NULL)
3328				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3329				    mstate->dtms_probe->dtpr_id,
3330				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3331			else
3332				val = dtrace_getarg(ndx, aframes);
3333
3334			/*
3335			 * This is regrettably required to keep the compiler
3336			 * from tail-optimizing the call to dtrace_getarg().
3337			 * The condition always evaluates to true, but the
3338			 * compiler has no way of figuring that out a priori.
3339			 * (None of this would be necessary if the compiler
3340			 * could be relied upon to _always_ tail-optimize
3341			 * the call to dtrace_getarg() -- but it can't.)
3342			 */
3343			if (mstate->dtms_probe != NULL)
3344				return (val);
3345
3346			ASSERT(0);
3347		}
3348
3349		return (mstate->dtms_arg[ndx]);
3350
3351#ifdef illumos
3352	case DIF_VAR_UREGS: {
3353		klwp_t *lwp;
3354
3355		if (!dtrace_priv_proc(state))
3356			return (0);
3357
3358		if ((lwp = curthread->t_lwp) == NULL) {
3359			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3360			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3361			return (0);
3362		}
3363
3364		return (dtrace_getreg(lwp->lwp_regs, ndx));
3365		return (0);
3366	}
3367#else
3368	case DIF_VAR_UREGS: {
3369		struct trapframe *tframe;
3370
3371		if (!dtrace_priv_proc(state))
3372			return (0);
3373
3374		if ((tframe = curthread->td_frame) == NULL) {
3375			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3376			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3377			return (0);
3378		}
3379
3380		return (dtrace_getreg(tframe, ndx));
3381	}
3382#endif
3383
3384	case DIF_VAR_CURTHREAD:
3385		if (!dtrace_priv_proc(state))
3386			return (0);
3387		return ((uint64_t)(uintptr_t)curthread);
3388
3389	case DIF_VAR_TIMESTAMP:
3390		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3391			mstate->dtms_timestamp = dtrace_gethrtime();
3392			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3393		}
3394		return (mstate->dtms_timestamp);
3395
3396	case DIF_VAR_VTIMESTAMP:
3397		ASSERT(dtrace_vtime_references != 0);
3398		return (curthread->t_dtrace_vtime);
3399
3400	case DIF_VAR_WALLTIMESTAMP:
3401		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3402			mstate->dtms_walltimestamp = dtrace_gethrestime();
3403			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3404		}
3405		return (mstate->dtms_walltimestamp);
3406
3407#ifdef illumos
3408	case DIF_VAR_IPL:
3409		if (!dtrace_priv_kernel(state))
3410			return (0);
3411		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3412			mstate->dtms_ipl = dtrace_getipl();
3413			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3414		}
3415		return (mstate->dtms_ipl);
3416#endif
3417
3418	case DIF_VAR_EPID:
3419		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3420		return (mstate->dtms_epid);
3421
3422	case DIF_VAR_ID:
3423		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3424		return (mstate->dtms_probe->dtpr_id);
3425
3426	case DIF_VAR_STACKDEPTH:
3427		if (!dtrace_priv_kernel(state))
3428			return (0);
3429		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3430			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3431
3432			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3433			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3434		}
3435		return (mstate->dtms_stackdepth);
3436
3437	case DIF_VAR_USTACKDEPTH:
3438		if (!dtrace_priv_proc(state))
3439			return (0);
3440		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3441			/*
3442			 * See comment in DIF_VAR_PID.
3443			 */
3444			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3445			    CPU_ON_INTR(CPU)) {
3446				mstate->dtms_ustackdepth = 0;
3447			} else {
3448				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3449				mstate->dtms_ustackdepth =
3450				    dtrace_getustackdepth();
3451				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3452			}
3453			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3454		}
3455		return (mstate->dtms_ustackdepth);
3456
3457	case DIF_VAR_CALLER:
3458		if (!dtrace_priv_kernel(state))
3459			return (0);
3460		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3461			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3462
3463			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3464				/*
3465				 * If this is an unanchored probe, we are
3466				 * required to go through the slow path:
3467				 * dtrace_caller() only guarantees correct
3468				 * results for anchored probes.
3469				 */
3470				pc_t caller[2] = {0, 0};
3471
3472				dtrace_getpcstack(caller, 2, aframes,
3473				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3474				mstate->dtms_caller = caller[1];
3475			} else if ((mstate->dtms_caller =
3476			    dtrace_caller(aframes)) == -1) {
3477				/*
3478				 * We have failed to do this the quick way;
3479				 * we must resort to the slower approach of
3480				 * calling dtrace_getpcstack().
3481				 */
3482				pc_t caller = 0;
3483
3484				dtrace_getpcstack(&caller, 1, aframes, NULL);
3485				mstate->dtms_caller = caller;
3486			}
3487
3488			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3489		}
3490		return (mstate->dtms_caller);
3491
3492	case DIF_VAR_UCALLER:
3493		if (!dtrace_priv_proc(state))
3494			return (0);
3495
3496		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3497			uint64_t ustack[3];
3498
3499			/*
3500			 * dtrace_getupcstack() fills in the first uint64_t
3501			 * with the current PID.  The second uint64_t will
3502			 * be the program counter at user-level.  The third
3503			 * uint64_t will contain the caller, which is what
3504			 * we're after.
3505			 */
3506			ustack[2] = 0;
3507			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3508			dtrace_getupcstack(ustack, 3);
3509			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3510			mstate->dtms_ucaller = ustack[2];
3511			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3512		}
3513
3514		return (mstate->dtms_ucaller);
3515
3516	case DIF_VAR_PROBEPROV:
3517		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3518		return (dtrace_dif_varstr(
3519		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3520		    state, mstate));
3521
3522	case DIF_VAR_PROBEMOD:
3523		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3524		return (dtrace_dif_varstr(
3525		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3526		    state, mstate));
3527
3528	case DIF_VAR_PROBEFUNC:
3529		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3530		return (dtrace_dif_varstr(
3531		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3532		    state, mstate));
3533
3534	case DIF_VAR_PROBENAME:
3535		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3536		return (dtrace_dif_varstr(
3537		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3538		    state, mstate));
3539
3540	case DIF_VAR_PID:
3541		if (!dtrace_priv_proc(state))
3542			return (0);
3543
3544#ifdef illumos
3545		/*
3546		 * Note that we are assuming that an unanchored probe is
3547		 * always due to a high-level interrupt.  (And we're assuming
3548		 * that there is only a single high level interrupt.)
3549		 */
3550		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3551			return (pid0.pid_id);
3552
3553		/*
3554		 * It is always safe to dereference one's own t_procp pointer:
3555		 * it always points to a valid, allocated proc structure.
3556		 * Further, it is always safe to dereference the p_pidp member
3557		 * of one's own proc structure.  (These are truisms becuase
3558		 * threads and processes don't clean up their own state --
3559		 * they leave that task to whomever reaps them.)
3560		 */
3561		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3562#else
3563		return ((uint64_t)curproc->p_pid);
3564#endif
3565
3566	case DIF_VAR_PPID:
3567		if (!dtrace_priv_proc(state))
3568			return (0);
3569
3570#ifdef illumos
3571		/*
3572		 * See comment in DIF_VAR_PID.
3573		 */
3574		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3575			return (pid0.pid_id);
3576
3577		/*
3578		 * It is always safe to dereference one's own t_procp pointer:
3579		 * it always points to a valid, allocated proc structure.
3580		 * (This is true because threads don't clean up their own
3581		 * state -- they leave that task to whomever reaps them.)
3582		 */
3583		return ((uint64_t)curthread->t_procp->p_ppid);
3584#else
3585		if (curproc->p_pid == proc0.p_pid)
3586			return (curproc->p_pid);
3587		else
3588			return (curproc->p_pptr->p_pid);
3589#endif
3590
3591	case DIF_VAR_TID:
3592#ifdef illumos
3593		/*
3594		 * See comment in DIF_VAR_PID.
3595		 */
3596		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3597			return (0);
3598#endif
3599
3600		return ((uint64_t)curthread->t_tid);
3601
3602	case DIF_VAR_EXECARGS: {
3603		struct pargs *p_args = curthread->td_proc->p_args;
3604
3605		if (p_args == NULL)
3606			return(0);
3607
3608		return (dtrace_dif_varstrz(
3609		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3610	}
3611
3612	case DIF_VAR_EXECNAME:
3613#ifdef illumos
3614		if (!dtrace_priv_proc(state))
3615			return (0);
3616
3617		/*
3618		 * See comment in DIF_VAR_PID.
3619		 */
3620		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3621			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3622
3623		/*
3624		 * It is always safe to dereference one's own t_procp pointer:
3625		 * it always points to a valid, allocated proc structure.
3626		 * (This is true because threads don't clean up their own
3627		 * state -- they leave that task to whomever reaps them.)
3628		 */
3629		return (dtrace_dif_varstr(
3630		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3631		    state, mstate));
3632#else
3633		return (dtrace_dif_varstr(
3634		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3635#endif
3636
3637	case DIF_VAR_ZONENAME:
3638#ifdef illumos
3639		if (!dtrace_priv_proc(state))
3640			return (0);
3641
3642		/*
3643		 * See comment in DIF_VAR_PID.
3644		 */
3645		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3646			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3647
3648		/*
3649		 * It is always safe to dereference one's own t_procp pointer:
3650		 * it always points to a valid, allocated proc structure.
3651		 * (This is true because threads don't clean up their own
3652		 * state -- they leave that task to whomever reaps them.)
3653		 */
3654		return (dtrace_dif_varstr(
3655		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3656		    state, mstate));
3657#elif defined(__FreeBSD__)
3658	/*
3659	 * On FreeBSD, we introduce compatibility to zonename by falling through
3660	 * into jailname.
3661	 */
3662	case DIF_VAR_JAILNAME:
3663		if (!dtrace_priv_kernel(state))
3664			return (0);
3665
3666		return (dtrace_dif_varstr(
3667		    (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3668		    state, mstate));
3669
3670	case DIF_VAR_JID:
3671		if (!dtrace_priv_kernel(state))
3672			return (0);
3673
3674		return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3675#else
3676		return (0);
3677#endif
3678
3679	case DIF_VAR_UID:
3680		if (!dtrace_priv_proc(state))
3681			return (0);
3682
3683#ifdef illumos
3684		/*
3685		 * See comment in DIF_VAR_PID.
3686		 */
3687		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3688			return ((uint64_t)p0.p_cred->cr_uid);
3689
3690		/*
3691		 * It is always safe to dereference one's own t_procp pointer:
3692		 * it always points to a valid, allocated proc structure.
3693		 * (This is true because threads don't clean up their own
3694		 * state -- they leave that task to whomever reaps them.)
3695		 *
3696		 * Additionally, it is safe to dereference one's own process
3697		 * credential, since this is never NULL after process birth.
3698		 */
3699		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3700#else
3701		return ((uint64_t)curthread->td_ucred->cr_uid);
3702#endif
3703
3704	case DIF_VAR_GID:
3705		if (!dtrace_priv_proc(state))
3706			return (0);
3707
3708#ifdef illumos
3709		/*
3710		 * See comment in DIF_VAR_PID.
3711		 */
3712		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3713			return ((uint64_t)p0.p_cred->cr_gid);
3714
3715		/*
3716		 * It is always safe to dereference one's own t_procp pointer:
3717		 * it always points to a valid, allocated proc structure.
3718		 * (This is true because threads don't clean up their own
3719		 * state -- they leave that task to whomever reaps them.)
3720		 *
3721		 * Additionally, it is safe to dereference one's own process
3722		 * credential, since this is never NULL after process birth.
3723		 */
3724		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3725#else
3726		return ((uint64_t)curthread->td_ucred->cr_gid);
3727#endif
3728
3729	case DIF_VAR_ERRNO: {
3730#ifdef illumos
3731		klwp_t *lwp;
3732		if (!dtrace_priv_proc(state))
3733			return (0);
3734
3735		/*
3736		 * See comment in DIF_VAR_PID.
3737		 */
3738		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3739			return (0);
3740
3741		/*
3742		 * It is always safe to dereference one's own t_lwp pointer in
3743		 * the event that this pointer is non-NULL.  (This is true
3744		 * because threads and lwps don't clean up their own state --
3745		 * they leave that task to whomever reaps them.)
3746		 */
3747		if ((lwp = curthread->t_lwp) == NULL)
3748			return (0);
3749
3750		return ((uint64_t)lwp->lwp_errno);
3751#else
3752		return (curthread->td_errno);
3753#endif
3754	}
3755#ifndef illumos
3756	case DIF_VAR_CPU: {
3757		return curcpu;
3758	}
3759#endif
3760	default:
3761		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3762		return (0);
3763	}
3764}
3765
3766
3767typedef enum dtrace_json_state {
3768	DTRACE_JSON_REST = 1,
3769	DTRACE_JSON_OBJECT,
3770	DTRACE_JSON_STRING,
3771	DTRACE_JSON_STRING_ESCAPE,
3772	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3773	DTRACE_JSON_COLON,
3774	DTRACE_JSON_COMMA,
3775	DTRACE_JSON_VALUE,
3776	DTRACE_JSON_IDENTIFIER,
3777	DTRACE_JSON_NUMBER,
3778	DTRACE_JSON_NUMBER_FRAC,
3779	DTRACE_JSON_NUMBER_EXP,
3780	DTRACE_JSON_COLLECT_OBJECT
3781} dtrace_json_state_t;
3782
3783/*
3784 * This function possesses just enough knowledge about JSON to extract a single
3785 * value from a JSON string and store it in the scratch buffer.  It is able
3786 * to extract nested object values, and members of arrays by index.
3787 *
3788 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3789 * be looked up as we descend into the object tree.  e.g.
3790 *
3791 *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3792 *       with nelems = 5.
3793 *
3794 * The run time of this function must be bounded above by strsize to limit the
3795 * amount of work done in probe context.  As such, it is implemented as a
3796 * simple state machine, reading one character at a time using safe loads
3797 * until we find the requested element, hit a parsing error or run off the
3798 * end of the object or string.
3799 *
3800 * As there is no way for a subroutine to return an error without interrupting
3801 * clause execution, we simply return NULL in the event of a missing key or any
3802 * other error condition.  Each NULL return in this function is commented with
3803 * the error condition it represents -- parsing or otherwise.
3804 *
3805 * The set of states for the state machine closely matches the JSON
3806 * specification (http://json.org/).  Briefly:
3807 *
3808 *   DTRACE_JSON_REST:
3809 *     Skip whitespace until we find either a top-level Object, moving
3810 *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3811 *
3812 *   DTRACE_JSON_OBJECT:
3813 *     Locate the next key String in an Object.  Sets a flag to denote
3814 *     the next String as a key string and moves to DTRACE_JSON_STRING.
3815 *
3816 *   DTRACE_JSON_COLON:
3817 *     Skip whitespace until we find the colon that separates key Strings
3818 *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3819 *
3820 *   DTRACE_JSON_VALUE:
3821 *     Detects the type of the next value (String, Number, Identifier, Object
3822 *     or Array) and routes to the states that process that type.  Here we also
3823 *     deal with the element selector list if we are requested to traverse down
3824 *     into the object tree.
3825 *
3826 *   DTRACE_JSON_COMMA:
3827 *     Skip whitespace until we find the comma that separates key-value pairs
3828 *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3829 *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3830 *     states return to this state at the end of their value, unless otherwise
3831 *     noted.
3832 *
3833 *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3834 *     Processes a Number literal from the JSON, including any exponent
3835 *     component that may be present.  Numbers are returned as strings, which
3836 *     may be passed to strtoll() if an integer is required.
3837 *
3838 *   DTRACE_JSON_IDENTIFIER:
3839 *     Processes a "true", "false" or "null" literal in the JSON.
3840 *
3841 *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3842 *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3843 *     Processes a String literal from the JSON, whether the String denotes
3844 *     a key, a value or part of a larger Object.  Handles all escape sequences
3845 *     present in the specification, including four-digit unicode characters,
3846 *     but merely includes the escape sequence without converting it to the
3847 *     actual escaped character.  If the String is flagged as a key, we
3848 *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3849 *
3850 *   DTRACE_JSON_COLLECT_OBJECT:
3851 *     This state collects an entire Object (or Array), correctly handling
3852 *     embedded strings.  If the full element selector list matches this nested
3853 *     object, we return the Object in full as a string.  If not, we use this
3854 *     state to skip to the next value at this level and continue processing.
3855 *
3856 * NOTE: This function uses various macros from strtolctype.h to manipulate
3857 * digit values, etc -- these have all been checked to ensure they make
3858 * no additional function calls.
3859 */
3860static char *
3861dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3862    char *dest)
3863{
3864	dtrace_json_state_t state = DTRACE_JSON_REST;
3865	int64_t array_elem = INT64_MIN;
3866	int64_t array_pos = 0;
3867	uint8_t escape_unicount = 0;
3868	boolean_t string_is_key = B_FALSE;
3869	boolean_t collect_object = B_FALSE;
3870	boolean_t found_key = B_FALSE;
3871	boolean_t in_array = B_FALSE;
3872	uint32_t braces = 0, brackets = 0;
3873	char *elem = elemlist;
3874	char *dd = dest;
3875	uintptr_t cur;
3876
3877	for (cur = json; cur < json + size; cur++) {
3878		char cc = dtrace_load8(cur);
3879		if (cc == '\0')
3880			return (NULL);
3881
3882		switch (state) {
3883		case DTRACE_JSON_REST:
3884			if (isspace(cc))
3885				break;
3886
3887			if (cc == '{') {
3888				state = DTRACE_JSON_OBJECT;
3889				break;
3890			}
3891
3892			if (cc == '[') {
3893				in_array = B_TRUE;
3894				array_pos = 0;
3895				array_elem = dtrace_strtoll(elem, 10, size);
3896				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3897				state = DTRACE_JSON_VALUE;
3898				break;
3899			}
3900
3901			/*
3902			 * ERROR: expected to find a top-level object or array.
3903			 */
3904			return (NULL);
3905		case DTRACE_JSON_OBJECT:
3906			if (isspace(cc))
3907				break;
3908
3909			if (cc == '"') {
3910				state = DTRACE_JSON_STRING;
3911				string_is_key = B_TRUE;
3912				break;
3913			}
3914
3915			/*
3916			 * ERROR: either the object did not start with a key
3917			 * string, or we've run off the end of the object
3918			 * without finding the requested key.
3919			 */
3920			return (NULL);
3921		case DTRACE_JSON_STRING:
3922			if (cc == '\\') {
3923				*dd++ = '\\';
3924				state = DTRACE_JSON_STRING_ESCAPE;
3925				break;
3926			}
3927
3928			if (cc == '"') {
3929				if (collect_object) {
3930					/*
3931					 * We don't reset the dest here, as
3932					 * the string is part of a larger
3933					 * object being collected.
3934					 */
3935					*dd++ = cc;
3936					collect_object = B_FALSE;
3937					state = DTRACE_JSON_COLLECT_OBJECT;
3938					break;
3939				}
3940				*dd = '\0';
3941				dd = dest; /* reset string buffer */
3942				if (string_is_key) {
3943					if (dtrace_strncmp(dest, elem,
3944					    size) == 0)
3945						found_key = B_TRUE;
3946				} else if (found_key) {
3947					if (nelems > 1) {
3948						/*
3949						 * We expected an object, not
3950						 * this string.
3951						 */
3952						return (NULL);
3953					}
3954					return (dest);
3955				}
3956				state = string_is_key ? DTRACE_JSON_COLON :
3957				    DTRACE_JSON_COMMA;
3958				string_is_key = B_FALSE;
3959				break;
3960			}
3961
3962			*dd++ = cc;
3963			break;
3964		case DTRACE_JSON_STRING_ESCAPE:
3965			*dd++ = cc;
3966			if (cc == 'u') {
3967				escape_unicount = 0;
3968				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3969			} else {
3970				state = DTRACE_JSON_STRING;
3971			}
3972			break;
3973		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3974			if (!isxdigit(cc)) {
3975				/*
3976				 * ERROR: invalid unicode escape, expected
3977				 * four valid hexidecimal digits.
3978				 */
3979				return (NULL);
3980			}
3981
3982			*dd++ = cc;
3983			if (++escape_unicount == 4)
3984				state = DTRACE_JSON_STRING;
3985			break;
3986		case DTRACE_JSON_COLON:
3987			if (isspace(cc))
3988				break;
3989
3990			if (cc == ':') {
3991				state = DTRACE_JSON_VALUE;
3992				break;
3993			}
3994
3995			/*
3996			 * ERROR: expected a colon.
3997			 */
3998			return (NULL);
3999		case DTRACE_JSON_COMMA:
4000			if (isspace(cc))
4001				break;
4002
4003			if (cc == ',') {
4004				if (in_array) {
4005					state = DTRACE_JSON_VALUE;
4006					if (++array_pos == array_elem)
4007						found_key = B_TRUE;
4008				} else {
4009					state = DTRACE_JSON_OBJECT;
4010				}
4011				break;
4012			}
4013
4014			/*
4015			 * ERROR: either we hit an unexpected character, or
4016			 * we reached the end of the object or array without
4017			 * finding the requested key.
4018			 */
4019			return (NULL);
4020		case DTRACE_JSON_IDENTIFIER:
4021			if (islower(cc)) {
4022				*dd++ = cc;
4023				break;
4024			}
4025
4026			*dd = '\0';
4027			dd = dest; /* reset string buffer */
4028
4029			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4030			    dtrace_strncmp(dest, "false", 6) == 0 ||
4031			    dtrace_strncmp(dest, "null", 5) == 0) {
4032				if (found_key) {
4033					if (nelems > 1) {
4034						/*
4035						 * ERROR: We expected an object,
4036						 * not this identifier.
4037						 */
4038						return (NULL);
4039					}
4040					return (dest);
4041				} else {
4042					cur--;
4043					state = DTRACE_JSON_COMMA;
4044					break;
4045				}
4046			}
4047
4048			/*
4049			 * ERROR: we did not recognise the identifier as one
4050			 * of those in the JSON specification.
4051			 */
4052			return (NULL);
4053		case DTRACE_JSON_NUMBER:
4054			if (cc == '.') {
4055				*dd++ = cc;
4056				state = DTRACE_JSON_NUMBER_FRAC;
4057				break;
4058			}
4059
4060			if (cc == 'x' || cc == 'X') {
4061				/*
4062				 * ERROR: specification explicitly excludes
4063				 * hexidecimal or octal numbers.
4064				 */
4065				return (NULL);
4066			}
4067
4068			/* FALLTHRU */
4069		case DTRACE_JSON_NUMBER_FRAC:
4070			if (cc == 'e' || cc == 'E') {
4071				*dd++ = cc;
4072				state = DTRACE_JSON_NUMBER_EXP;
4073				break;
4074			}
4075
4076			if (cc == '+' || cc == '-') {
4077				/*
4078				 * ERROR: expect sign as part of exponent only.
4079				 */
4080				return (NULL);
4081			}
4082			/* FALLTHRU */
4083		case DTRACE_JSON_NUMBER_EXP:
4084			if (isdigit(cc) || cc == '+' || cc == '-') {
4085				*dd++ = cc;
4086				break;
4087			}
4088
4089			*dd = '\0';
4090			dd = dest; /* reset string buffer */
4091			if (found_key) {
4092				if (nelems > 1) {
4093					/*
4094					 * ERROR: We expected an object, not
4095					 * this number.
4096					 */
4097					return (NULL);
4098				}
4099				return (dest);
4100			}
4101
4102			cur--;
4103			state = DTRACE_JSON_COMMA;
4104			break;
4105		case DTRACE_JSON_VALUE:
4106			if (isspace(cc))
4107				break;
4108
4109			if (cc == '{' || cc == '[') {
4110				if (nelems > 1 && found_key) {
4111					in_array = cc == '[' ? B_TRUE : B_FALSE;
4112					/*
4113					 * If our element selector directs us
4114					 * to descend into this nested object,
4115					 * then move to the next selector
4116					 * element in the list and restart the
4117					 * state machine.
4118					 */
4119					while (*elem != '\0')
4120						elem++;
4121					elem++; /* skip the inter-element NUL */
4122					nelems--;
4123					dd = dest;
4124					if (in_array) {
4125						state = DTRACE_JSON_VALUE;
4126						array_pos = 0;
4127						array_elem = dtrace_strtoll(
4128						    elem, 10, size);
4129						found_key = array_elem == 0 ?
4130						    B_TRUE : B_FALSE;
4131					} else {
4132						found_key = B_FALSE;
4133						state = DTRACE_JSON_OBJECT;
4134					}
4135					break;
4136				}
4137
4138				/*
4139				 * Otherwise, we wish to either skip this
4140				 * nested object or return it in full.
4141				 */
4142				if (cc == '[')
4143					brackets = 1;
4144				else
4145					braces = 1;
4146				*dd++ = cc;
4147				state = DTRACE_JSON_COLLECT_OBJECT;
4148				break;
4149			}
4150
4151			if (cc == '"') {
4152				state = DTRACE_JSON_STRING;
4153				break;
4154			}
4155
4156			if (islower(cc)) {
4157				/*
4158				 * Here we deal with true, false and null.
4159				 */
4160				*dd++ = cc;
4161				state = DTRACE_JSON_IDENTIFIER;
4162				break;
4163			}
4164
4165			if (cc == '-' || isdigit(cc)) {
4166				*dd++ = cc;
4167				state = DTRACE_JSON_NUMBER;
4168				break;
4169			}
4170
4171			/*
4172			 * ERROR: unexpected character at start of value.
4173			 */
4174			return (NULL);
4175		case DTRACE_JSON_COLLECT_OBJECT:
4176			if (cc == '\0')
4177				/*
4178				 * ERROR: unexpected end of input.
4179				 */
4180				return (NULL);
4181
4182			*dd++ = cc;
4183			if (cc == '"') {
4184				collect_object = B_TRUE;
4185				state = DTRACE_JSON_STRING;
4186				break;
4187			}
4188
4189			if (cc == ']') {
4190				if (brackets-- == 0) {
4191					/*
4192					 * ERROR: unbalanced brackets.
4193					 */
4194					return (NULL);
4195				}
4196			} else if (cc == '}') {
4197				if (braces-- == 0) {
4198					/*
4199					 * ERROR: unbalanced braces.
4200					 */
4201					return (NULL);
4202				}
4203			} else if (cc == '{') {
4204				braces++;
4205			} else if (cc == '[') {
4206				brackets++;
4207			}
4208
4209			if (brackets == 0 && braces == 0) {
4210				if (found_key) {
4211					*dd = '\0';
4212					return (dest);
4213				}
4214				dd = dest; /* reset string buffer */
4215				state = DTRACE_JSON_COMMA;
4216			}
4217			break;
4218		}
4219	}
4220	return (NULL);
4221}
4222
4223/*
4224 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4225 * Notice that we don't bother validating the proper number of arguments or
4226 * their types in the tuple stack.  This isn't needed because all argument
4227 * interpretation is safe because of our load safety -- the worst that can
4228 * happen is that a bogus program can obtain bogus results.
4229 */
4230static void
4231dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4232    dtrace_key_t *tupregs, int nargs,
4233    dtrace_mstate_t *mstate, dtrace_state_t *state)
4234{
4235	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4236	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4237	dtrace_vstate_t *vstate = &state->dts_vstate;
4238
4239#ifdef illumos
4240	union {
4241		mutex_impl_t mi;
4242		uint64_t mx;
4243	} m;
4244
4245	union {
4246		krwlock_t ri;
4247		uintptr_t rw;
4248	} r;
4249#else
4250	struct thread *lowner;
4251	union {
4252		struct lock_object *li;
4253		uintptr_t lx;
4254	} l;
4255#endif
4256
4257	switch (subr) {
4258	case DIF_SUBR_RAND:
4259		regs[rd] = dtrace_xoroshiro128_plus_next(
4260		    state->dts_rstate[curcpu]);
4261		break;
4262
4263#ifdef illumos
4264	case DIF_SUBR_MUTEX_OWNED:
4265		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4266		    mstate, vstate)) {
4267			regs[rd] = 0;
4268			break;
4269		}
4270
4271		m.mx = dtrace_load64(tupregs[0].dttk_value);
4272		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4273			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4274		else
4275			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4276		break;
4277
4278	case DIF_SUBR_MUTEX_OWNER:
4279		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4280		    mstate, vstate)) {
4281			regs[rd] = 0;
4282			break;
4283		}
4284
4285		m.mx = dtrace_load64(tupregs[0].dttk_value);
4286		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4287		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4288			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4289		else
4290			regs[rd] = 0;
4291		break;
4292
4293	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4294		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4295		    mstate, vstate)) {
4296			regs[rd] = 0;
4297			break;
4298		}
4299
4300		m.mx = dtrace_load64(tupregs[0].dttk_value);
4301		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4302		break;
4303
4304	case DIF_SUBR_MUTEX_TYPE_SPIN:
4305		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4306		    mstate, vstate)) {
4307			regs[rd] = 0;
4308			break;
4309		}
4310
4311		m.mx = dtrace_load64(tupregs[0].dttk_value);
4312		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4313		break;
4314
4315	case DIF_SUBR_RW_READ_HELD: {
4316		uintptr_t tmp;
4317
4318		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4319		    mstate, vstate)) {
4320			regs[rd] = 0;
4321			break;
4322		}
4323
4324		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4325		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4326		break;
4327	}
4328
4329	case DIF_SUBR_RW_WRITE_HELD:
4330		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4331		    mstate, vstate)) {
4332			regs[rd] = 0;
4333			break;
4334		}
4335
4336		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4337		regs[rd] = _RW_WRITE_HELD(&r.ri);
4338		break;
4339
4340	case DIF_SUBR_RW_ISWRITER:
4341		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4342		    mstate, vstate)) {
4343			regs[rd] = 0;
4344			break;
4345		}
4346
4347		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4348		regs[rd] = _RW_ISWRITER(&r.ri);
4349		break;
4350
4351#else /* !illumos */
4352	case DIF_SUBR_MUTEX_OWNED:
4353		if (!dtrace_canload(tupregs[0].dttk_value,
4354			sizeof (struct lock_object), mstate, vstate)) {
4355			regs[rd] = 0;
4356			break;
4357		}
4358		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4359		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4360		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4361		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4362		break;
4363
4364	case DIF_SUBR_MUTEX_OWNER:
4365		if (!dtrace_canload(tupregs[0].dttk_value,
4366			sizeof (struct lock_object), mstate, vstate)) {
4367			regs[rd] = 0;
4368			break;
4369		}
4370		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4371		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4372		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4373		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4374		regs[rd] = (uintptr_t)lowner;
4375		break;
4376
4377	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4378		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4379		    mstate, vstate)) {
4380			regs[rd] = 0;
4381			break;
4382		}
4383		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4384		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4385		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4386		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4387		break;
4388
4389	case DIF_SUBR_MUTEX_TYPE_SPIN:
4390		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4391		    mstate, vstate)) {
4392			regs[rd] = 0;
4393			break;
4394		}
4395		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4396		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4397		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4398		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4399		break;
4400
4401	case DIF_SUBR_RW_READ_HELD:
4402	case DIF_SUBR_SX_SHARED_HELD:
4403		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4404		    mstate, vstate)) {
4405			regs[rd] = 0;
4406			break;
4407		}
4408		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4409		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4410		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4411		    lowner == NULL;
4412		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4413		break;
4414
4415	case DIF_SUBR_RW_WRITE_HELD:
4416	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4417		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4418		    mstate, vstate)) {
4419			regs[rd] = 0;
4420			break;
4421		}
4422		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4423		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4424		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4425		    lowner != NULL;
4426		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4427		break;
4428
4429	case DIF_SUBR_RW_ISWRITER:
4430	case DIF_SUBR_SX_ISEXCLUSIVE:
4431		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4432		    mstate, vstate)) {
4433			regs[rd] = 0;
4434			break;
4435		}
4436		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4437		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4438		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4439		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4440		regs[rd] = (lowner == curthread);
4441		break;
4442#endif /* illumos */
4443
4444	case DIF_SUBR_BCOPY: {
4445		/*
4446		 * We need to be sure that the destination is in the scratch
4447		 * region -- no other region is allowed.
4448		 */
4449		uintptr_t src = tupregs[0].dttk_value;
4450		uintptr_t dest = tupregs[1].dttk_value;
4451		size_t size = tupregs[2].dttk_value;
4452
4453		if (!dtrace_inscratch(dest, size, mstate)) {
4454			*flags |= CPU_DTRACE_BADADDR;
4455			*illval = regs[rd];
4456			break;
4457		}
4458
4459		if (!dtrace_canload(src, size, mstate, vstate)) {
4460			regs[rd] = 0;
4461			break;
4462		}
4463
4464		dtrace_bcopy((void *)src, (void *)dest, size);
4465		break;
4466	}
4467
4468	case DIF_SUBR_ALLOCA:
4469	case DIF_SUBR_COPYIN: {
4470		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4471		uint64_t size =
4472		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4473		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4474
4475		/*
4476		 * This action doesn't require any credential checks since
4477		 * probes will not activate in user contexts to which the
4478		 * enabling user does not have permissions.
4479		 */
4480
4481		/*
4482		 * Rounding up the user allocation size could have overflowed
4483		 * a large, bogus allocation (like -1ULL) to 0.
4484		 */
4485		if (scratch_size < size ||
4486		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4487			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4488			regs[rd] = 0;
4489			break;
4490		}
4491
4492		if (subr == DIF_SUBR_COPYIN) {
4493			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4494			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4495			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4496		}
4497
4498		mstate->dtms_scratch_ptr += scratch_size;
4499		regs[rd] = dest;
4500		break;
4501	}
4502
4503	case DIF_SUBR_COPYINTO: {
4504		uint64_t size = tupregs[1].dttk_value;
4505		uintptr_t dest = tupregs[2].dttk_value;
4506
4507		/*
4508		 * This action doesn't require any credential checks since
4509		 * probes will not activate in user contexts to which the
4510		 * enabling user does not have permissions.
4511		 */
4512		if (!dtrace_inscratch(dest, size, mstate)) {
4513			*flags |= CPU_DTRACE_BADADDR;
4514			*illval = regs[rd];
4515			break;
4516		}
4517
4518		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4519		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4520		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4521		break;
4522	}
4523
4524	case DIF_SUBR_COPYINSTR: {
4525		uintptr_t dest = mstate->dtms_scratch_ptr;
4526		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4527
4528		if (nargs > 1 && tupregs[1].dttk_value < size)
4529			size = tupregs[1].dttk_value + 1;
4530
4531		/*
4532		 * This action doesn't require any credential checks since
4533		 * probes will not activate in user contexts to which the
4534		 * enabling user does not have permissions.
4535		 */
4536		if (!DTRACE_INSCRATCH(mstate, size)) {
4537			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4538			regs[rd] = 0;
4539			break;
4540		}
4541
4542		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4543		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4544		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4545
4546		((char *)dest)[size - 1] = '\0';
4547		mstate->dtms_scratch_ptr += size;
4548		regs[rd] = dest;
4549		break;
4550	}
4551
4552#ifdef illumos
4553	case DIF_SUBR_MSGSIZE:
4554	case DIF_SUBR_MSGDSIZE: {
4555		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4556		uintptr_t wptr, rptr;
4557		size_t count = 0;
4558		int cont = 0;
4559
4560		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4561
4562			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4563			    vstate)) {
4564				regs[rd] = 0;
4565				break;
4566			}
4567
4568			wptr = dtrace_loadptr(baddr +
4569			    offsetof(mblk_t, b_wptr));
4570
4571			rptr = dtrace_loadptr(baddr +
4572			    offsetof(mblk_t, b_rptr));
4573
4574			if (wptr < rptr) {
4575				*flags |= CPU_DTRACE_BADADDR;
4576				*illval = tupregs[0].dttk_value;
4577				break;
4578			}
4579
4580			daddr = dtrace_loadptr(baddr +
4581			    offsetof(mblk_t, b_datap));
4582
4583			baddr = dtrace_loadptr(baddr +
4584			    offsetof(mblk_t, b_cont));
4585
4586			/*
4587			 * We want to prevent against denial-of-service here,
4588			 * so we're only going to search the list for
4589			 * dtrace_msgdsize_max mblks.
4590			 */
4591			if (cont++ > dtrace_msgdsize_max) {
4592				*flags |= CPU_DTRACE_ILLOP;
4593				break;
4594			}
4595
4596			if (subr == DIF_SUBR_MSGDSIZE) {
4597				if (dtrace_load8(daddr +
4598				    offsetof(dblk_t, db_type)) != M_DATA)
4599					continue;
4600			}
4601
4602			count += wptr - rptr;
4603		}
4604
4605		if (!(*flags & CPU_DTRACE_FAULT))
4606			regs[rd] = count;
4607
4608		break;
4609	}
4610#endif
4611
4612	case DIF_SUBR_PROGENYOF: {
4613		pid_t pid = tupregs[0].dttk_value;
4614		proc_t *p;
4615		int rval = 0;
4616
4617		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4618
4619		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4620#ifdef illumos
4621			if (p->p_pidp->pid_id == pid) {
4622#else
4623			if (p->p_pid == pid) {
4624#endif
4625				rval = 1;
4626				break;
4627			}
4628		}
4629
4630		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4631
4632		regs[rd] = rval;
4633		break;
4634	}
4635
4636	case DIF_SUBR_SPECULATION:
4637		regs[rd] = dtrace_speculation(state);
4638		break;
4639
4640	case DIF_SUBR_COPYOUT: {
4641		uintptr_t kaddr = tupregs[0].dttk_value;
4642		uintptr_t uaddr = tupregs[1].dttk_value;
4643		uint64_t size = tupregs[2].dttk_value;
4644
4645		if (!dtrace_destructive_disallow &&
4646		    dtrace_priv_proc_control(state) &&
4647		    !dtrace_istoxic(kaddr, size) &&
4648		    dtrace_canload(kaddr, size, mstate, vstate)) {
4649			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4650			dtrace_copyout(kaddr, uaddr, size, flags);
4651			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4652		}
4653		break;
4654	}
4655
4656	case DIF_SUBR_COPYOUTSTR: {
4657		uintptr_t kaddr = tupregs[0].dttk_value;
4658		uintptr_t uaddr = tupregs[1].dttk_value;
4659		uint64_t size = tupregs[2].dttk_value;
4660		size_t lim;
4661
4662		if (!dtrace_destructive_disallow &&
4663		    dtrace_priv_proc_control(state) &&
4664		    !dtrace_istoxic(kaddr, size) &&
4665		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4666			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4667			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4668			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4669		}
4670		break;
4671	}
4672
4673	case DIF_SUBR_STRLEN: {
4674		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4675		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4676		size_t lim;
4677
4678		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4679			regs[rd] = 0;
4680			break;
4681		}
4682
4683		regs[rd] = dtrace_strlen((char *)addr, lim);
4684		break;
4685	}
4686
4687	case DIF_SUBR_STRCHR:
4688	case DIF_SUBR_STRRCHR: {
4689		/*
4690		 * We're going to iterate over the string looking for the
4691		 * specified character.  We will iterate until we have reached
4692		 * the string length or we have found the character.  If this
4693		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4694		 * of the specified character instead of the first.
4695		 */
4696		uintptr_t addr = tupregs[0].dttk_value;
4697		uintptr_t addr_limit;
4698		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4699		size_t lim;
4700		char c, target = (char)tupregs[1].dttk_value;
4701
4702		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4703			regs[rd] = 0;
4704			break;
4705		}
4706		addr_limit = addr + lim;
4707
4708		for (regs[rd] = 0; addr < addr_limit; addr++) {
4709			if ((c = dtrace_load8(addr)) == target) {
4710				regs[rd] = addr;
4711
4712				if (subr == DIF_SUBR_STRCHR)
4713					break;
4714			}
4715
4716			if (c == '\0')
4717				break;
4718		}
4719		break;
4720	}
4721
4722	case DIF_SUBR_STRSTR:
4723	case DIF_SUBR_INDEX:
4724	case DIF_SUBR_RINDEX: {
4725		/*
4726		 * We're going to iterate over the string looking for the
4727		 * specified string.  We will iterate until we have reached
4728		 * the string length or we have found the string.  (Yes, this
4729		 * is done in the most naive way possible -- but considering
4730		 * that the string we're searching for is likely to be
4731		 * relatively short, the complexity of Rabin-Karp or similar
4732		 * hardly seems merited.)
4733		 */
4734		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4735		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4736		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4737		size_t len = dtrace_strlen(addr, size);
4738		size_t sublen = dtrace_strlen(substr, size);
4739		char *limit = addr + len, *orig = addr;
4740		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4741		int inc = 1;
4742
4743		regs[rd] = notfound;
4744
4745		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4746			regs[rd] = 0;
4747			break;
4748		}
4749
4750		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4751		    vstate)) {
4752			regs[rd] = 0;
4753			break;
4754		}
4755
4756		/*
4757		 * strstr() and index()/rindex() have similar semantics if
4758		 * both strings are the empty string: strstr() returns a
4759		 * pointer to the (empty) string, and index() and rindex()
4760		 * both return index 0 (regardless of any position argument).
4761		 */
4762		if (sublen == 0 && len == 0) {
4763			if (subr == DIF_SUBR_STRSTR)
4764				regs[rd] = (uintptr_t)addr;
4765			else
4766				regs[rd] = 0;
4767			break;
4768		}
4769
4770		if (subr != DIF_SUBR_STRSTR) {
4771			if (subr == DIF_SUBR_RINDEX) {
4772				limit = orig - 1;
4773				addr += len;
4774				inc = -1;
4775			}
4776
4777			/*
4778			 * Both index() and rindex() take an optional position
4779			 * argument that denotes the starting position.
4780			 */
4781			if (nargs == 3) {
4782				int64_t pos = (int64_t)tupregs[2].dttk_value;
4783
4784				/*
4785				 * If the position argument to index() is
4786				 * negative, Perl implicitly clamps it at
4787				 * zero.  This semantic is a little surprising
4788				 * given the special meaning of negative
4789				 * positions to similar Perl functions like
4790				 * substr(), but it appears to reflect a
4791				 * notion that index() can start from a
4792				 * negative index and increment its way up to
4793				 * the string.  Given this notion, Perl's
4794				 * rindex() is at least self-consistent in
4795				 * that it implicitly clamps positions greater
4796				 * than the string length to be the string
4797				 * length.  Where Perl completely loses
4798				 * coherence, however, is when the specified
4799				 * substring is the empty string ("").  In
4800				 * this case, even if the position is
4801				 * negative, rindex() returns 0 -- and even if
4802				 * the position is greater than the length,
4803				 * index() returns the string length.  These
4804				 * semantics violate the notion that index()
4805				 * should never return a value less than the
4806				 * specified position and that rindex() should
4807				 * never return a value greater than the
4808				 * specified position.  (One assumes that
4809				 * these semantics are artifacts of Perl's
4810				 * implementation and not the results of
4811				 * deliberate design -- it beggars belief that
4812				 * even Larry Wall could desire such oddness.)
4813				 * While in the abstract one would wish for
4814				 * consistent position semantics across
4815				 * substr(), index() and rindex() -- or at the
4816				 * very least self-consistent position
4817				 * semantics for index() and rindex() -- we
4818				 * instead opt to keep with the extant Perl
4819				 * semantics, in all their broken glory.  (Do
4820				 * we have more desire to maintain Perl's
4821				 * semantics than Perl does?  Probably.)
4822				 */
4823				if (subr == DIF_SUBR_RINDEX) {
4824					if (pos < 0) {
4825						if (sublen == 0)
4826							regs[rd] = 0;
4827						break;
4828					}
4829
4830					if (pos > len)
4831						pos = len;
4832				} else {
4833					if (pos < 0)
4834						pos = 0;
4835
4836					if (pos >= len) {
4837						if (sublen == 0)
4838							regs[rd] = len;
4839						break;
4840					}
4841				}
4842
4843				addr = orig + pos;
4844			}
4845		}
4846
4847		for (regs[rd] = notfound; addr != limit; addr += inc) {
4848			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4849				if (subr != DIF_SUBR_STRSTR) {
4850					/*
4851					 * As D index() and rindex() are
4852					 * modeled on Perl (and not on awk),
4853					 * we return a zero-based (and not a
4854					 * one-based) index.  (For you Perl
4855					 * weenies: no, we're not going to add
4856					 * $[ -- and shouldn't you be at a con
4857					 * or something?)
4858					 */
4859					regs[rd] = (uintptr_t)(addr - orig);
4860					break;
4861				}
4862
4863				ASSERT(subr == DIF_SUBR_STRSTR);
4864				regs[rd] = (uintptr_t)addr;
4865				break;
4866			}
4867		}
4868
4869		break;
4870	}
4871
4872	case DIF_SUBR_STRTOK: {
4873		uintptr_t addr = tupregs[0].dttk_value;
4874		uintptr_t tokaddr = tupregs[1].dttk_value;
4875		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4876		uintptr_t limit, toklimit;
4877		size_t clim;
4878		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4879		char *dest = (char *)mstate->dtms_scratch_ptr;
4880		int i;
4881
4882		/*
4883		 * Check both the token buffer and (later) the input buffer,
4884		 * since both could be non-scratch addresses.
4885		 */
4886		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4887			regs[rd] = 0;
4888			break;
4889		}
4890		toklimit = tokaddr + clim;
4891
4892		if (!DTRACE_INSCRATCH(mstate, size)) {
4893			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4894			regs[rd] = 0;
4895			break;
4896		}
4897
4898		if (addr == 0) {
4899			/*
4900			 * If the address specified is NULL, we use our saved
4901			 * strtok pointer from the mstate.  Note that this
4902			 * means that the saved strtok pointer is _only_
4903			 * valid within multiple enablings of the same probe --
4904			 * it behaves like an implicit clause-local variable.
4905			 */
4906			addr = mstate->dtms_strtok;
4907			limit = mstate->dtms_strtok_limit;
4908		} else {
4909			/*
4910			 * If the user-specified address is non-NULL we must
4911			 * access check it.  This is the only time we have
4912			 * a chance to do so, since this address may reside
4913			 * in the string table of this clause-- future calls
4914			 * (when we fetch addr from mstate->dtms_strtok)
4915			 * would fail this access check.
4916			 */
4917			if (!dtrace_strcanload(addr, size, &clim, mstate,
4918			    vstate)) {
4919				regs[rd] = 0;
4920				break;
4921			}
4922			limit = addr + clim;
4923		}
4924
4925		/*
4926		 * First, zero the token map, and then process the token
4927		 * string -- setting a bit in the map for every character
4928		 * found in the token string.
4929		 */
4930		for (i = 0; i < sizeof (tokmap); i++)
4931			tokmap[i] = 0;
4932
4933		for (; tokaddr < toklimit; tokaddr++) {
4934			if ((c = dtrace_load8(tokaddr)) == '\0')
4935				break;
4936
4937			ASSERT((c >> 3) < sizeof (tokmap));
4938			tokmap[c >> 3] |= (1 << (c & 0x7));
4939		}
4940
4941		for (; addr < limit; addr++) {
4942			/*
4943			 * We're looking for a character that is _not_
4944			 * contained in the token string.
4945			 */
4946			if ((c = dtrace_load8(addr)) == '\0')
4947				break;
4948
4949			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4950				break;
4951		}
4952
4953		if (c == '\0') {
4954			/*
4955			 * We reached the end of the string without finding
4956			 * any character that was not in the token string.
4957			 * We return NULL in this case, and we set the saved
4958			 * address to NULL as well.
4959			 */
4960			regs[rd] = 0;
4961			mstate->dtms_strtok = 0;
4962			mstate->dtms_strtok_limit = 0;
4963			break;
4964		}
4965
4966		/*
4967		 * From here on, we're copying into the destination string.
4968		 */
4969		for (i = 0; addr < limit && i < size - 1; addr++) {
4970			if ((c = dtrace_load8(addr)) == '\0')
4971				break;
4972
4973			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4974				break;
4975
4976			ASSERT(i < size);
4977			dest[i++] = c;
4978		}
4979
4980		ASSERT(i < size);
4981		dest[i] = '\0';
4982		regs[rd] = (uintptr_t)dest;
4983		mstate->dtms_scratch_ptr += size;
4984		mstate->dtms_strtok = addr;
4985		mstate->dtms_strtok_limit = limit;
4986		break;
4987	}
4988
4989	case DIF_SUBR_SUBSTR: {
4990		uintptr_t s = tupregs[0].dttk_value;
4991		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4992		char *d = (char *)mstate->dtms_scratch_ptr;
4993		int64_t index = (int64_t)tupregs[1].dttk_value;
4994		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4995		size_t len = dtrace_strlen((char *)s, size);
4996		int64_t i;
4997
4998		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4999			regs[rd] = 0;
5000			break;
5001		}
5002
5003		if (!DTRACE_INSCRATCH(mstate, size)) {
5004			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5005			regs[rd] = 0;
5006			break;
5007		}
5008
5009		if (nargs <= 2)
5010			remaining = (int64_t)size;
5011
5012		if (index < 0) {
5013			index += len;
5014
5015			if (index < 0 && index + remaining > 0) {
5016				remaining += index;
5017				index = 0;
5018			}
5019		}
5020
5021		if (index >= len || index < 0) {
5022			remaining = 0;
5023		} else if (remaining < 0) {
5024			remaining += len - index;
5025		} else if (index + remaining > size) {
5026			remaining = size - index;
5027		}
5028
5029		for (i = 0; i < remaining; i++) {
5030			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5031				break;
5032		}
5033
5034		d[i] = '\0';
5035
5036		mstate->dtms_scratch_ptr += size;
5037		regs[rd] = (uintptr_t)d;
5038		break;
5039	}
5040
5041	case DIF_SUBR_JSON: {
5042		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5043		uintptr_t json = tupregs[0].dttk_value;
5044		size_t jsonlen = dtrace_strlen((char *)json, size);
5045		uintptr_t elem = tupregs[1].dttk_value;
5046		size_t elemlen = dtrace_strlen((char *)elem, size);
5047
5048		char *dest = (char *)mstate->dtms_scratch_ptr;
5049		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5050		char *ee = elemlist;
5051		int nelems = 1;
5052		uintptr_t cur;
5053
5054		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5055		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5056			regs[rd] = 0;
5057			break;
5058		}
5059
5060		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5061			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5062			regs[rd] = 0;
5063			break;
5064		}
5065
5066		/*
5067		 * Read the element selector and split it up into a packed list
5068		 * of strings.
5069		 */
5070		for (cur = elem; cur < elem + elemlen; cur++) {
5071			char cc = dtrace_load8(cur);
5072
5073			if (cur == elem && cc == '[') {
5074				/*
5075				 * If the first element selector key is
5076				 * actually an array index then ignore the
5077				 * bracket.
5078				 */
5079				continue;
5080			}
5081
5082			if (cc == ']')
5083				continue;
5084
5085			if (cc == '.' || cc == '[') {
5086				nelems++;
5087				cc = '\0';
5088			}
5089
5090			*ee++ = cc;
5091		}
5092		*ee++ = '\0';
5093
5094		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5095		    nelems, dest)) != 0)
5096			mstate->dtms_scratch_ptr += jsonlen + 1;
5097		break;
5098	}
5099
5100	case DIF_SUBR_TOUPPER:
5101	case DIF_SUBR_TOLOWER: {
5102		uintptr_t s = tupregs[0].dttk_value;
5103		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5104		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5105		size_t len = dtrace_strlen((char *)s, size);
5106		char lower, upper, convert;
5107		int64_t i;
5108
5109		if (subr == DIF_SUBR_TOUPPER) {
5110			lower = 'a';
5111			upper = 'z';
5112			convert = 'A';
5113		} else {
5114			lower = 'A';
5115			upper = 'Z';
5116			convert = 'a';
5117		}
5118
5119		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5120			regs[rd] = 0;
5121			break;
5122		}
5123
5124		if (!DTRACE_INSCRATCH(mstate, size)) {
5125			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5126			regs[rd] = 0;
5127			break;
5128		}
5129
5130		for (i = 0; i < size - 1; i++) {
5131			if ((c = dtrace_load8(s + i)) == '\0')
5132				break;
5133
5134			if (c >= lower && c <= upper)
5135				c = convert + (c - lower);
5136
5137			dest[i] = c;
5138		}
5139
5140		ASSERT(i < size);
5141		dest[i] = '\0';
5142		regs[rd] = (uintptr_t)dest;
5143		mstate->dtms_scratch_ptr += size;
5144		break;
5145	}
5146
5147#ifdef illumos
5148	case DIF_SUBR_GETMAJOR:
5149#ifdef _LP64
5150		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5151#else
5152		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5153#endif
5154		break;
5155
5156	case DIF_SUBR_GETMINOR:
5157#ifdef _LP64
5158		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5159#else
5160		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5161#endif
5162		break;
5163
5164	case DIF_SUBR_DDI_PATHNAME: {
5165		/*
5166		 * This one is a galactic mess.  We are going to roughly
5167		 * emulate ddi_pathname(), but it's made more complicated
5168		 * by the fact that we (a) want to include the minor name and
5169		 * (b) must proceed iteratively instead of recursively.
5170		 */
5171		uintptr_t dest = mstate->dtms_scratch_ptr;
5172		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5173		char *start = (char *)dest, *end = start + size - 1;
5174		uintptr_t daddr = tupregs[0].dttk_value;
5175		int64_t minor = (int64_t)tupregs[1].dttk_value;
5176		char *s;
5177		int i, len, depth = 0;
5178
5179		/*
5180		 * Due to all the pointer jumping we do and context we must
5181		 * rely upon, we just mandate that the user must have kernel
5182		 * read privileges to use this routine.
5183		 */
5184		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5185			*flags |= CPU_DTRACE_KPRIV;
5186			*illval = daddr;
5187			regs[rd] = 0;
5188		}
5189
5190		if (!DTRACE_INSCRATCH(mstate, size)) {
5191			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5192			regs[rd] = 0;
5193			break;
5194		}
5195
5196		*end = '\0';
5197
5198		/*
5199		 * We want to have a name for the minor.  In order to do this,
5200		 * we need to walk the minor list from the devinfo.  We want
5201		 * to be sure that we don't infinitely walk a circular list,
5202		 * so we check for circularity by sending a scout pointer
5203		 * ahead two elements for every element that we iterate over;
5204		 * if the list is circular, these will ultimately point to the
5205		 * same element.  You may recognize this little trick as the
5206		 * answer to a stupid interview question -- one that always
5207		 * seems to be asked by those who had to have it laboriously
5208		 * explained to them, and who can't even concisely describe
5209		 * the conditions under which one would be forced to resort to
5210		 * this technique.  Needless to say, those conditions are
5211		 * found here -- and probably only here.  Is this the only use
5212		 * of this infamous trick in shipping, production code?  If it
5213		 * isn't, it probably should be...
5214		 */
5215		if (minor != -1) {
5216			uintptr_t maddr = dtrace_loadptr(daddr +
5217			    offsetof(struct dev_info, devi_minor));
5218
5219			uintptr_t next = offsetof(struct ddi_minor_data, next);
5220			uintptr_t name = offsetof(struct ddi_minor_data,
5221			    d_minor) + offsetof(struct ddi_minor, name);
5222			uintptr_t dev = offsetof(struct ddi_minor_data,
5223			    d_minor) + offsetof(struct ddi_minor, dev);
5224			uintptr_t scout;
5225
5226			if (maddr != NULL)
5227				scout = dtrace_loadptr(maddr + next);
5228
5229			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5230				uint64_t m;
5231#ifdef _LP64
5232				m = dtrace_load64(maddr + dev) & MAXMIN64;
5233#else
5234				m = dtrace_load32(maddr + dev) & MAXMIN;
5235#endif
5236				if (m != minor) {
5237					maddr = dtrace_loadptr(maddr + next);
5238
5239					if (scout == NULL)
5240						continue;
5241
5242					scout = dtrace_loadptr(scout + next);
5243
5244					if (scout == NULL)
5245						continue;
5246
5247					scout = dtrace_loadptr(scout + next);
5248
5249					if (scout == NULL)
5250						continue;
5251
5252					if (scout == maddr) {
5253						*flags |= CPU_DTRACE_ILLOP;
5254						break;
5255					}
5256
5257					continue;
5258				}
5259
5260				/*
5261				 * We have the minor data.  Now we need to
5262				 * copy the minor's name into the end of the
5263				 * pathname.
5264				 */
5265				s = (char *)dtrace_loadptr(maddr + name);
5266				len = dtrace_strlen(s, size);
5267
5268				if (*flags & CPU_DTRACE_FAULT)
5269					break;
5270
5271				if (len != 0) {
5272					if ((end -= (len + 1)) < start)
5273						break;
5274
5275					*end = ':';
5276				}
5277
5278				for (i = 1; i <= len; i++)
5279					end[i] = dtrace_load8((uintptr_t)s++);
5280				break;
5281			}
5282		}
5283
5284		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5285			ddi_node_state_t devi_state;
5286
5287			devi_state = dtrace_load32(daddr +
5288			    offsetof(struct dev_info, devi_node_state));
5289
5290			if (*flags & CPU_DTRACE_FAULT)
5291				break;
5292
5293			if (devi_state >= DS_INITIALIZED) {
5294				s = (char *)dtrace_loadptr(daddr +
5295				    offsetof(struct dev_info, devi_addr));
5296				len = dtrace_strlen(s, size);
5297
5298				if (*flags & CPU_DTRACE_FAULT)
5299					break;
5300
5301				if (len != 0) {
5302					if ((end -= (len + 1)) < start)
5303						break;
5304
5305					*end = '@';
5306				}
5307
5308				for (i = 1; i <= len; i++)
5309					end[i] = dtrace_load8((uintptr_t)s++);
5310			}
5311
5312			/*
5313			 * Now for the node name...
5314			 */
5315			s = (char *)dtrace_loadptr(daddr +
5316			    offsetof(struct dev_info, devi_node_name));
5317
5318			daddr = dtrace_loadptr(daddr +
5319			    offsetof(struct dev_info, devi_parent));
5320
5321			/*
5322			 * If our parent is NULL (that is, if we're the root
5323			 * node), we're going to use the special path
5324			 * "devices".
5325			 */
5326			if (daddr == 0)
5327				s = "devices";
5328
5329			len = dtrace_strlen(s, size);
5330			if (*flags & CPU_DTRACE_FAULT)
5331				break;
5332
5333			if ((end -= (len + 1)) < start)
5334				break;
5335
5336			for (i = 1; i <= len; i++)
5337				end[i] = dtrace_load8((uintptr_t)s++);
5338			*end = '/';
5339
5340			if (depth++ > dtrace_devdepth_max) {
5341				*flags |= CPU_DTRACE_ILLOP;
5342				break;
5343			}
5344		}
5345
5346		if (end < start)
5347			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5348
5349		if (daddr == 0) {
5350			regs[rd] = (uintptr_t)end;
5351			mstate->dtms_scratch_ptr += size;
5352		}
5353
5354		break;
5355	}
5356#endif
5357
5358	case DIF_SUBR_STRJOIN: {
5359		char *d = (char *)mstate->dtms_scratch_ptr;
5360		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5361		uintptr_t s1 = tupregs[0].dttk_value;
5362		uintptr_t s2 = tupregs[1].dttk_value;
5363		int i = 0, j = 0;
5364		size_t lim1, lim2;
5365		char c;
5366
5367		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5368		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5369			regs[rd] = 0;
5370			break;
5371		}
5372
5373		if (!DTRACE_INSCRATCH(mstate, size)) {
5374			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5375			regs[rd] = 0;
5376			break;
5377		}
5378
5379		for (;;) {
5380			if (i >= size) {
5381				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5382				regs[rd] = 0;
5383				break;
5384			}
5385			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5386			if ((d[i++] = c) == '\0') {
5387				i--;
5388				break;
5389			}
5390		}
5391
5392		for (;;) {
5393			if (i >= size) {
5394				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5395				regs[rd] = 0;
5396				break;
5397			}
5398
5399			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5400			if ((d[i++] = c) == '\0')
5401				break;
5402		}
5403
5404		if (i < size) {
5405			mstate->dtms_scratch_ptr += i;
5406			regs[rd] = (uintptr_t)d;
5407		}
5408
5409		break;
5410	}
5411
5412	case DIF_SUBR_STRTOLL: {
5413		uintptr_t s = tupregs[0].dttk_value;
5414		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5415		size_t lim;
5416		int base = 10;
5417
5418		if (nargs > 1) {
5419			if ((base = tupregs[1].dttk_value) <= 1 ||
5420			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5421				*flags |= CPU_DTRACE_ILLOP;
5422				break;
5423			}
5424		}
5425
5426		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5427			regs[rd] = INT64_MIN;
5428			break;
5429		}
5430
5431		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5432		break;
5433	}
5434
5435	case DIF_SUBR_LLTOSTR: {
5436		int64_t i = (int64_t)tupregs[0].dttk_value;
5437		uint64_t val, digit;
5438		uint64_t size = 65;	/* enough room for 2^64 in binary */
5439		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5440		int base = 10;
5441
5442		if (nargs > 1) {
5443			if ((base = tupregs[1].dttk_value) <= 1 ||
5444			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5445				*flags |= CPU_DTRACE_ILLOP;
5446				break;
5447			}
5448		}
5449
5450		val = (base == 10 && i < 0) ? i * -1 : i;
5451
5452		if (!DTRACE_INSCRATCH(mstate, size)) {
5453			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5454			regs[rd] = 0;
5455			break;
5456		}
5457
5458		for (*end-- = '\0'; val; val /= base) {
5459			if ((digit = val % base) <= '9' - '0') {
5460				*end-- = '0' + digit;
5461			} else {
5462				*end-- = 'a' + (digit - ('9' - '0') - 1);
5463			}
5464		}
5465
5466		if (i == 0 && base == 16)
5467			*end-- = '0';
5468
5469		if (base == 16)
5470			*end-- = 'x';
5471
5472		if (i == 0 || base == 8 || base == 16)
5473			*end-- = '0';
5474
5475		if (i < 0 && base == 10)
5476			*end-- = '-';
5477
5478		regs[rd] = (uintptr_t)end + 1;
5479		mstate->dtms_scratch_ptr += size;
5480		break;
5481	}
5482
5483	case DIF_SUBR_HTONS:
5484	case DIF_SUBR_NTOHS:
5485#if BYTE_ORDER == BIG_ENDIAN
5486		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5487#else
5488		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5489#endif
5490		break;
5491
5492
5493	case DIF_SUBR_HTONL:
5494	case DIF_SUBR_NTOHL:
5495#if BYTE_ORDER == BIG_ENDIAN
5496		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5497#else
5498		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5499#endif
5500		break;
5501
5502
5503	case DIF_SUBR_HTONLL:
5504	case DIF_SUBR_NTOHLL:
5505#if BYTE_ORDER == BIG_ENDIAN
5506		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5507#else
5508		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5509#endif
5510		break;
5511
5512
5513	case DIF_SUBR_DIRNAME:
5514	case DIF_SUBR_BASENAME: {
5515		char *dest = (char *)mstate->dtms_scratch_ptr;
5516		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5517		uintptr_t src = tupregs[0].dttk_value;
5518		int i, j, len = dtrace_strlen((char *)src, size);
5519		int lastbase = -1, firstbase = -1, lastdir = -1;
5520		int start, end;
5521
5522		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5523			regs[rd] = 0;
5524			break;
5525		}
5526
5527		if (!DTRACE_INSCRATCH(mstate, size)) {
5528			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5529			regs[rd] = 0;
5530			break;
5531		}
5532
5533		/*
5534		 * The basename and dirname for a zero-length string is
5535		 * defined to be "."
5536		 */
5537		if (len == 0) {
5538			len = 1;
5539			src = (uintptr_t)".";
5540		}
5541
5542		/*
5543		 * Start from the back of the string, moving back toward the
5544		 * front until we see a character that isn't a slash.  That
5545		 * character is the last character in the basename.
5546		 */
5547		for (i = len - 1; i >= 0; i--) {
5548			if (dtrace_load8(src + i) != '/')
5549				break;
5550		}
5551
5552		if (i >= 0)
5553			lastbase = i;
5554
5555		/*
5556		 * Starting from the last character in the basename, move
5557		 * towards the front until we find a slash.  The character
5558		 * that we processed immediately before that is the first
5559		 * character in the basename.
5560		 */
5561		for (; i >= 0; i--) {
5562			if (dtrace_load8(src + i) == '/')
5563				break;
5564		}
5565
5566		if (i >= 0)
5567			firstbase = i + 1;
5568
5569		/*
5570		 * Now keep going until we find a non-slash character.  That
5571		 * character is the last character in the dirname.
5572		 */
5573		for (; i >= 0; i--) {
5574			if (dtrace_load8(src + i) != '/')
5575				break;
5576		}
5577
5578		if (i >= 0)
5579			lastdir = i;
5580
5581		ASSERT(!(lastbase == -1 && firstbase != -1));
5582		ASSERT(!(firstbase == -1 && lastdir != -1));
5583
5584		if (lastbase == -1) {
5585			/*
5586			 * We didn't find a non-slash character.  We know that
5587			 * the length is non-zero, so the whole string must be
5588			 * slashes.  In either the dirname or the basename
5589			 * case, we return '/'.
5590			 */
5591			ASSERT(firstbase == -1);
5592			firstbase = lastbase = lastdir = 0;
5593		}
5594
5595		if (firstbase == -1) {
5596			/*
5597			 * The entire string consists only of a basename
5598			 * component.  If we're looking for dirname, we need
5599			 * to change our string to be just "."; if we're
5600			 * looking for a basename, we'll just set the first
5601			 * character of the basename to be 0.
5602			 */
5603			if (subr == DIF_SUBR_DIRNAME) {
5604				ASSERT(lastdir == -1);
5605				src = (uintptr_t)".";
5606				lastdir = 0;
5607			} else {
5608				firstbase = 0;
5609			}
5610		}
5611
5612		if (subr == DIF_SUBR_DIRNAME) {
5613			if (lastdir == -1) {
5614				/*
5615				 * We know that we have a slash in the name --
5616				 * or lastdir would be set to 0, above.  And
5617				 * because lastdir is -1, we know that this
5618				 * slash must be the first character.  (That
5619				 * is, the full string must be of the form
5620				 * "/basename".)  In this case, the last
5621				 * character of the directory name is 0.
5622				 */
5623				lastdir = 0;
5624			}
5625
5626			start = 0;
5627			end = lastdir;
5628		} else {
5629			ASSERT(subr == DIF_SUBR_BASENAME);
5630			ASSERT(firstbase != -1 && lastbase != -1);
5631			start = firstbase;
5632			end = lastbase;
5633		}
5634
5635		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5636			dest[j] = dtrace_load8(src + i);
5637
5638		dest[j] = '\0';
5639		regs[rd] = (uintptr_t)dest;
5640		mstate->dtms_scratch_ptr += size;
5641		break;
5642	}
5643
5644	case DIF_SUBR_GETF: {
5645		uintptr_t fd = tupregs[0].dttk_value;
5646		struct filedesc *fdp;
5647		file_t *fp;
5648
5649		if (!dtrace_priv_proc(state)) {
5650			regs[rd] = 0;
5651			break;
5652		}
5653		fdp = curproc->p_fd;
5654		FILEDESC_SLOCK(fdp);
5655		fp = fget_locked(fdp, fd);
5656		mstate->dtms_getf = fp;
5657		regs[rd] = (uintptr_t)fp;
5658		FILEDESC_SUNLOCK(fdp);
5659		break;
5660	}
5661
5662	case DIF_SUBR_CLEANPATH: {
5663		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5664		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5665		uintptr_t src = tupregs[0].dttk_value;
5666		size_t lim;
5667		int i = 0, j = 0;
5668#ifdef illumos
5669		zone_t *z;
5670#endif
5671
5672		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5673			regs[rd] = 0;
5674			break;
5675		}
5676
5677		if (!DTRACE_INSCRATCH(mstate, size)) {
5678			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5679			regs[rd] = 0;
5680			break;
5681		}
5682
5683		/*
5684		 * Move forward, loading each character.
5685		 */
5686		do {
5687			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5688next:
5689			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5690				break;
5691
5692			if (c != '/') {
5693				dest[j++] = c;
5694				continue;
5695			}
5696
5697			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5698
5699			if (c == '/') {
5700				/*
5701				 * We have two slashes -- we can just advance
5702				 * to the next character.
5703				 */
5704				goto next;
5705			}
5706
5707			if (c != '.') {
5708				/*
5709				 * This is not "." and it's not ".." -- we can
5710				 * just store the "/" and this character and
5711				 * drive on.
5712				 */
5713				dest[j++] = '/';
5714				dest[j++] = c;
5715				continue;
5716			}
5717
5718			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5719
5720			if (c == '/') {
5721				/*
5722				 * This is a "/./" component.  We're not going
5723				 * to store anything in the destination buffer;
5724				 * we're just going to go to the next component.
5725				 */
5726				goto next;
5727			}
5728
5729			if (c != '.') {
5730				/*
5731				 * This is not ".." -- we can just store the
5732				 * "/." and this character and continue
5733				 * processing.
5734				 */
5735				dest[j++] = '/';
5736				dest[j++] = '.';
5737				dest[j++] = c;
5738				continue;
5739			}
5740
5741			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5742
5743			if (c != '/' && c != '\0') {
5744				/*
5745				 * This is not ".." -- it's "..[mumble]".
5746				 * We'll store the "/.." and this character
5747				 * and continue processing.
5748				 */
5749				dest[j++] = '/';
5750				dest[j++] = '.';
5751				dest[j++] = '.';
5752				dest[j++] = c;
5753				continue;
5754			}
5755
5756			/*
5757			 * This is "/../" or "/..\0".  We need to back up
5758			 * our destination pointer until we find a "/".
5759			 */
5760			i--;
5761			while (j != 0 && dest[--j] != '/')
5762				continue;
5763
5764			if (c == '\0')
5765				dest[++j] = '/';
5766		} while (c != '\0');
5767
5768		dest[j] = '\0';
5769
5770#ifdef illumos
5771		if (mstate->dtms_getf != NULL &&
5772		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5773		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5774			/*
5775			 * If we've done a getf() as a part of this ECB and we
5776			 * don't have kernel access (and we're not in the global
5777			 * zone), check if the path we cleaned up begins with
5778			 * the zone's root path, and trim it off if so.  Note
5779			 * that this is an output cleanliness issue, not a
5780			 * security issue: knowing one's zone root path does
5781			 * not enable privilege escalation.
5782			 */
5783			if (strstr(dest, z->zone_rootpath) == dest)
5784				dest += strlen(z->zone_rootpath) - 1;
5785		}
5786#endif
5787
5788		regs[rd] = (uintptr_t)dest;
5789		mstate->dtms_scratch_ptr += size;
5790		break;
5791	}
5792
5793	case DIF_SUBR_INET_NTOA:
5794	case DIF_SUBR_INET_NTOA6:
5795	case DIF_SUBR_INET_NTOP: {
5796		size_t size;
5797		int af, argi, i;
5798		char *base, *end;
5799
5800		if (subr == DIF_SUBR_INET_NTOP) {
5801			af = (int)tupregs[0].dttk_value;
5802			argi = 1;
5803		} else {
5804			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5805			argi = 0;
5806		}
5807
5808		if (af == AF_INET) {
5809			ipaddr_t ip4;
5810			uint8_t *ptr8, val;
5811
5812			if (!dtrace_canload(tupregs[argi].dttk_value,
5813			    sizeof (ipaddr_t), mstate, vstate)) {
5814				regs[rd] = 0;
5815				break;
5816			}
5817
5818			/*
5819			 * Safely load the IPv4 address.
5820			 */
5821			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5822
5823			/*
5824			 * Check an IPv4 string will fit in scratch.
5825			 */
5826			size = INET_ADDRSTRLEN;
5827			if (!DTRACE_INSCRATCH(mstate, size)) {
5828				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5829				regs[rd] = 0;
5830				break;
5831			}
5832			base = (char *)mstate->dtms_scratch_ptr;
5833			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5834
5835			/*
5836			 * Stringify as a dotted decimal quad.
5837			 */
5838			*end-- = '\0';
5839			ptr8 = (uint8_t *)&ip4;
5840			for (i = 3; i >= 0; i--) {
5841				val = ptr8[i];
5842
5843				if (val == 0) {
5844					*end-- = '0';
5845				} else {
5846					for (; val; val /= 10) {
5847						*end-- = '0' + (val % 10);
5848					}
5849				}
5850
5851				if (i > 0)
5852					*end-- = '.';
5853			}
5854			ASSERT(end + 1 >= base);
5855
5856		} else if (af == AF_INET6) {
5857			struct in6_addr ip6;
5858			int firstzero, tryzero, numzero, v6end;
5859			uint16_t val;
5860			const char digits[] = "0123456789abcdef";
5861
5862			/*
5863			 * Stringify using RFC 1884 convention 2 - 16 bit
5864			 * hexadecimal values with a zero-run compression.
5865			 * Lower case hexadecimal digits are used.
5866			 * 	eg, fe80::214:4fff:fe0b:76c8.
5867			 * The IPv4 embedded form is returned for inet_ntop,
5868			 * just the IPv4 string is returned for inet_ntoa6.
5869			 */
5870
5871			if (!dtrace_canload(tupregs[argi].dttk_value,
5872			    sizeof (struct in6_addr), mstate, vstate)) {
5873				regs[rd] = 0;
5874				break;
5875			}
5876
5877			/*
5878			 * Safely load the IPv6 address.
5879			 */
5880			dtrace_bcopy(
5881			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5882			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5883
5884			/*
5885			 * Check an IPv6 string will fit in scratch.
5886			 */
5887			size = INET6_ADDRSTRLEN;
5888			if (!DTRACE_INSCRATCH(mstate, size)) {
5889				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5890				regs[rd] = 0;
5891				break;
5892			}
5893			base = (char *)mstate->dtms_scratch_ptr;
5894			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5895			*end-- = '\0';
5896
5897			/*
5898			 * Find the longest run of 16 bit zero values
5899			 * for the single allowed zero compression - "::".
5900			 */
5901			firstzero = -1;
5902			tryzero = -1;
5903			numzero = 1;
5904			for (i = 0; i < sizeof (struct in6_addr); i++) {
5905#ifdef illumos
5906				if (ip6._S6_un._S6_u8[i] == 0 &&
5907#else
5908				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5909#endif
5910				    tryzero == -1 && i % 2 == 0) {
5911					tryzero = i;
5912					continue;
5913				}
5914
5915				if (tryzero != -1 &&
5916#ifdef illumos
5917				    (ip6._S6_un._S6_u8[i] != 0 ||
5918#else
5919				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5920#endif
5921				    i == sizeof (struct in6_addr) - 1)) {
5922
5923					if (i - tryzero <= numzero) {
5924						tryzero = -1;
5925						continue;
5926					}
5927
5928					firstzero = tryzero;
5929					numzero = i - i % 2 - tryzero;
5930					tryzero = -1;
5931
5932#ifdef illumos
5933					if (ip6._S6_un._S6_u8[i] == 0 &&
5934#else
5935					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5936#endif
5937					    i == sizeof (struct in6_addr) - 1)
5938						numzero += 2;
5939				}
5940			}
5941			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5942
5943			/*
5944			 * Check for an IPv4 embedded address.
5945			 */
5946			v6end = sizeof (struct in6_addr) - 2;
5947			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5948			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5949				for (i = sizeof (struct in6_addr) - 1;
5950				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5951					ASSERT(end >= base);
5952
5953#ifdef illumos
5954					val = ip6._S6_un._S6_u8[i];
5955#else
5956					val = ip6.__u6_addr.__u6_addr8[i];
5957#endif
5958
5959					if (val == 0) {
5960						*end-- = '0';
5961					} else {
5962						for (; val; val /= 10) {
5963							*end-- = '0' + val % 10;
5964						}
5965					}
5966
5967					if (i > DTRACE_V4MAPPED_OFFSET)
5968						*end-- = '.';
5969				}
5970
5971				if (subr == DIF_SUBR_INET_NTOA6)
5972					goto inetout;
5973
5974				/*
5975				 * Set v6end to skip the IPv4 address that
5976				 * we have already stringified.
5977				 */
5978				v6end = 10;
5979			}
5980
5981			/*
5982			 * Build the IPv6 string by working through the
5983			 * address in reverse.
5984			 */
5985			for (i = v6end; i >= 0; i -= 2) {
5986				ASSERT(end >= base);
5987
5988				if (i == firstzero + numzero - 2) {
5989					*end-- = ':';
5990					*end-- = ':';
5991					i -= numzero - 2;
5992					continue;
5993				}
5994
5995				if (i < 14 && i != firstzero - 2)
5996					*end-- = ':';
5997
5998#ifdef illumos
5999				val = (ip6._S6_un._S6_u8[i] << 8) +
6000				    ip6._S6_un._S6_u8[i + 1];
6001#else
6002				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6003				    ip6.__u6_addr.__u6_addr8[i + 1];
6004#endif
6005
6006				if (val == 0) {
6007					*end-- = '0';
6008				} else {
6009					for (; val; val /= 16) {
6010						*end-- = digits[val % 16];
6011					}
6012				}
6013			}
6014			ASSERT(end + 1 >= base);
6015
6016		} else {
6017			/*
6018			 * The user didn't use AH_INET or AH_INET6.
6019			 */
6020			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6021			regs[rd] = 0;
6022			break;
6023		}
6024
6025inetout:	regs[rd] = (uintptr_t)end + 1;
6026		mstate->dtms_scratch_ptr += size;
6027		break;
6028	}
6029
6030	case DIF_SUBR_MEMREF: {
6031		uintptr_t size = 2 * sizeof(uintptr_t);
6032		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6033		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6034
6035		/* address and length */
6036		memref[0] = tupregs[0].dttk_value;
6037		memref[1] = tupregs[1].dttk_value;
6038
6039		regs[rd] = (uintptr_t) memref;
6040		mstate->dtms_scratch_ptr += scratch_size;
6041		break;
6042	}
6043
6044#ifndef illumos
6045	case DIF_SUBR_MEMSTR: {
6046		char *str = (char *)mstate->dtms_scratch_ptr;
6047		uintptr_t mem = tupregs[0].dttk_value;
6048		char c = tupregs[1].dttk_value;
6049		size_t size = tupregs[2].dttk_value;
6050		uint8_t n;
6051		int i;
6052
6053		regs[rd] = 0;
6054
6055		if (size == 0)
6056			break;
6057
6058		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6059			break;
6060
6061		if (!DTRACE_INSCRATCH(mstate, size)) {
6062			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6063			break;
6064		}
6065
6066		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6067			*flags |= CPU_DTRACE_ILLOP;
6068			break;
6069		}
6070
6071		for (i = 0; i < size - 1; i++) {
6072			n = dtrace_load8(mem++);
6073			str[i] = (n == 0) ? c : n;
6074		}
6075		str[size - 1] = 0;
6076
6077		regs[rd] = (uintptr_t)str;
6078		mstate->dtms_scratch_ptr += size;
6079		break;
6080	}
6081#endif
6082	}
6083}
6084
6085/*
6086 * Emulate the execution of DTrace IR instructions specified by the given
6087 * DIF object.  This function is deliberately void of assertions as all of
6088 * the necessary checks are handled by a call to dtrace_difo_validate().
6089 */
6090static uint64_t
6091dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6092    dtrace_vstate_t *vstate, dtrace_state_t *state)
6093{
6094	const dif_instr_t *text = difo->dtdo_buf;
6095	const uint_t textlen = difo->dtdo_len;
6096	const char *strtab = difo->dtdo_strtab;
6097	const uint64_t *inttab = difo->dtdo_inttab;
6098
6099	uint64_t rval = 0;
6100	dtrace_statvar_t *svar;
6101	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6102	dtrace_difv_t *v;
6103	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6104	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6105
6106	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6107	uint64_t regs[DIF_DIR_NREGS];
6108	uint64_t *tmp;
6109
6110	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6111	int64_t cc_r;
6112	uint_t pc = 0, id, opc = 0;
6113	uint8_t ttop = 0;
6114	dif_instr_t instr;
6115	uint_t r1, r2, rd;
6116
6117	/*
6118	 * We stash the current DIF object into the machine state: we need it
6119	 * for subsequent access checking.
6120	 */
6121	mstate->dtms_difo = difo;
6122
6123	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6124
6125	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6126		opc = pc;
6127
6128		instr = text[pc++];
6129		r1 = DIF_INSTR_R1(instr);
6130		r2 = DIF_INSTR_R2(instr);
6131		rd = DIF_INSTR_RD(instr);
6132
6133		switch (DIF_INSTR_OP(instr)) {
6134		case DIF_OP_OR:
6135			regs[rd] = regs[r1] | regs[r2];
6136			break;
6137		case DIF_OP_XOR:
6138			regs[rd] = regs[r1] ^ regs[r2];
6139			break;
6140		case DIF_OP_AND:
6141			regs[rd] = regs[r1] & regs[r2];
6142			break;
6143		case DIF_OP_SLL:
6144			regs[rd] = regs[r1] << regs[r2];
6145			break;
6146		case DIF_OP_SRL:
6147			regs[rd] = regs[r1] >> regs[r2];
6148			break;
6149		case DIF_OP_SUB:
6150			regs[rd] = regs[r1] - regs[r2];
6151			break;
6152		case DIF_OP_ADD:
6153			regs[rd] = regs[r1] + regs[r2];
6154			break;
6155		case DIF_OP_MUL:
6156			regs[rd] = regs[r1] * regs[r2];
6157			break;
6158		case DIF_OP_SDIV:
6159			if (regs[r2] == 0) {
6160				regs[rd] = 0;
6161				*flags |= CPU_DTRACE_DIVZERO;
6162			} else {
6163				regs[rd] = (int64_t)regs[r1] /
6164				    (int64_t)regs[r2];
6165			}
6166			break;
6167
6168		case DIF_OP_UDIV:
6169			if (regs[r2] == 0) {
6170				regs[rd] = 0;
6171				*flags |= CPU_DTRACE_DIVZERO;
6172			} else {
6173				regs[rd] = regs[r1] / regs[r2];
6174			}
6175			break;
6176
6177		case DIF_OP_SREM:
6178			if (regs[r2] == 0) {
6179				regs[rd] = 0;
6180				*flags |= CPU_DTRACE_DIVZERO;
6181			} else {
6182				regs[rd] = (int64_t)regs[r1] %
6183				    (int64_t)regs[r2];
6184			}
6185			break;
6186
6187		case DIF_OP_UREM:
6188			if (regs[r2] == 0) {
6189				regs[rd] = 0;
6190				*flags |= CPU_DTRACE_DIVZERO;
6191			} else {
6192				regs[rd] = regs[r1] % regs[r2];
6193			}
6194			break;
6195
6196		case DIF_OP_NOT:
6197			regs[rd] = ~regs[r1];
6198			break;
6199		case DIF_OP_MOV:
6200			regs[rd] = regs[r1];
6201			break;
6202		case DIF_OP_CMP:
6203			cc_r = regs[r1] - regs[r2];
6204			cc_n = cc_r < 0;
6205			cc_z = cc_r == 0;
6206			cc_v = 0;
6207			cc_c = regs[r1] < regs[r2];
6208			break;
6209		case DIF_OP_TST:
6210			cc_n = cc_v = cc_c = 0;
6211			cc_z = regs[r1] == 0;
6212			break;
6213		case DIF_OP_BA:
6214			pc = DIF_INSTR_LABEL(instr);
6215			break;
6216		case DIF_OP_BE:
6217			if (cc_z)
6218				pc = DIF_INSTR_LABEL(instr);
6219			break;
6220		case DIF_OP_BNE:
6221			if (cc_z == 0)
6222				pc = DIF_INSTR_LABEL(instr);
6223			break;
6224		case DIF_OP_BG:
6225			if ((cc_z | (cc_n ^ cc_v)) == 0)
6226				pc = DIF_INSTR_LABEL(instr);
6227			break;
6228		case DIF_OP_BGU:
6229			if ((cc_c | cc_z) == 0)
6230				pc = DIF_INSTR_LABEL(instr);
6231			break;
6232		case DIF_OP_BGE:
6233			if ((cc_n ^ cc_v) == 0)
6234				pc = DIF_INSTR_LABEL(instr);
6235			break;
6236		case DIF_OP_BGEU:
6237			if (cc_c == 0)
6238				pc = DIF_INSTR_LABEL(instr);
6239			break;
6240		case DIF_OP_BL:
6241			if (cc_n ^ cc_v)
6242				pc = DIF_INSTR_LABEL(instr);
6243			break;
6244		case DIF_OP_BLU:
6245			if (cc_c)
6246				pc = DIF_INSTR_LABEL(instr);
6247			break;
6248		case DIF_OP_BLE:
6249			if (cc_z | (cc_n ^ cc_v))
6250				pc = DIF_INSTR_LABEL(instr);
6251			break;
6252		case DIF_OP_BLEU:
6253			if (cc_c | cc_z)
6254				pc = DIF_INSTR_LABEL(instr);
6255			break;
6256		case DIF_OP_RLDSB:
6257			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6258				break;
6259			/*FALLTHROUGH*/
6260		case DIF_OP_LDSB:
6261			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6262			break;
6263		case DIF_OP_RLDSH:
6264			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6265				break;
6266			/*FALLTHROUGH*/
6267		case DIF_OP_LDSH:
6268			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6269			break;
6270		case DIF_OP_RLDSW:
6271			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6272				break;
6273			/*FALLTHROUGH*/
6274		case DIF_OP_LDSW:
6275			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6276			break;
6277		case DIF_OP_RLDUB:
6278			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6279				break;
6280			/*FALLTHROUGH*/
6281		case DIF_OP_LDUB:
6282			regs[rd] = dtrace_load8(regs[r1]);
6283			break;
6284		case DIF_OP_RLDUH:
6285			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6286				break;
6287			/*FALLTHROUGH*/
6288		case DIF_OP_LDUH:
6289			regs[rd] = dtrace_load16(regs[r1]);
6290			break;
6291		case DIF_OP_RLDUW:
6292			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6293				break;
6294			/*FALLTHROUGH*/
6295		case DIF_OP_LDUW:
6296			regs[rd] = dtrace_load32(regs[r1]);
6297			break;
6298		case DIF_OP_RLDX:
6299			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6300				break;
6301			/*FALLTHROUGH*/
6302		case DIF_OP_LDX:
6303			regs[rd] = dtrace_load64(regs[r1]);
6304			break;
6305		case DIF_OP_ULDSB:
6306			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6307			regs[rd] = (int8_t)
6308			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6309			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6310			break;
6311		case DIF_OP_ULDSH:
6312			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6313			regs[rd] = (int16_t)
6314			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6315			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6316			break;
6317		case DIF_OP_ULDSW:
6318			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6319			regs[rd] = (int32_t)
6320			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6321			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6322			break;
6323		case DIF_OP_ULDUB:
6324			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6325			regs[rd] =
6326			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6327			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6328			break;
6329		case DIF_OP_ULDUH:
6330			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6331			regs[rd] =
6332			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6333			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6334			break;
6335		case DIF_OP_ULDUW:
6336			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6337			regs[rd] =
6338			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6339			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6340			break;
6341		case DIF_OP_ULDX:
6342			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6343			regs[rd] =
6344			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6345			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6346			break;
6347		case DIF_OP_RET:
6348			rval = regs[rd];
6349			pc = textlen;
6350			break;
6351		case DIF_OP_NOP:
6352			break;
6353		case DIF_OP_SETX:
6354			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6355			break;
6356		case DIF_OP_SETS:
6357			regs[rd] = (uint64_t)(uintptr_t)
6358			    (strtab + DIF_INSTR_STRING(instr));
6359			break;
6360		case DIF_OP_SCMP: {
6361			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6362			uintptr_t s1 = regs[r1];
6363			uintptr_t s2 = regs[r2];
6364			size_t lim1, lim2;
6365
6366			if (s1 != 0 &&
6367			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6368				break;
6369			if (s2 != 0 &&
6370			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6371				break;
6372
6373			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6374			    MIN(lim1, lim2));
6375
6376			cc_n = cc_r < 0;
6377			cc_z = cc_r == 0;
6378			cc_v = cc_c = 0;
6379			break;
6380		}
6381		case DIF_OP_LDGA:
6382			regs[rd] = dtrace_dif_variable(mstate, state,
6383			    r1, regs[r2]);
6384			break;
6385		case DIF_OP_LDGS:
6386			id = DIF_INSTR_VAR(instr);
6387
6388			if (id >= DIF_VAR_OTHER_UBASE) {
6389				uintptr_t a;
6390
6391				id -= DIF_VAR_OTHER_UBASE;
6392				svar = vstate->dtvs_globals[id];
6393				ASSERT(svar != NULL);
6394				v = &svar->dtsv_var;
6395
6396				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6397					regs[rd] = svar->dtsv_data;
6398					break;
6399				}
6400
6401				a = (uintptr_t)svar->dtsv_data;
6402
6403				if (*(uint8_t *)a == UINT8_MAX) {
6404					/*
6405					 * If the 0th byte is set to UINT8_MAX
6406					 * then this is to be treated as a
6407					 * reference to a NULL variable.
6408					 */
6409					regs[rd] = 0;
6410				} else {
6411					regs[rd] = a + sizeof (uint64_t);
6412				}
6413
6414				break;
6415			}
6416
6417			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6418			break;
6419
6420		case DIF_OP_STGS:
6421			id = DIF_INSTR_VAR(instr);
6422
6423			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6424			id -= DIF_VAR_OTHER_UBASE;
6425
6426			VERIFY(id < vstate->dtvs_nglobals);
6427			svar = vstate->dtvs_globals[id];
6428			ASSERT(svar != NULL);
6429			v = &svar->dtsv_var;
6430
6431			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6432				uintptr_t a = (uintptr_t)svar->dtsv_data;
6433				size_t lim;
6434
6435				ASSERT(a != 0);
6436				ASSERT(svar->dtsv_size != 0);
6437
6438				if (regs[rd] == 0) {
6439					*(uint8_t *)a = UINT8_MAX;
6440					break;
6441				} else {
6442					*(uint8_t *)a = 0;
6443					a += sizeof (uint64_t);
6444				}
6445				if (!dtrace_vcanload(
6446				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6447				    &lim, mstate, vstate))
6448					break;
6449
6450				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6451				    (void *)a, &v->dtdv_type, lim);
6452				break;
6453			}
6454
6455			svar->dtsv_data = regs[rd];
6456			break;
6457
6458		case DIF_OP_LDTA:
6459			/*
6460			 * There are no DTrace built-in thread-local arrays at
6461			 * present.  This opcode is saved for future work.
6462			 */
6463			*flags |= CPU_DTRACE_ILLOP;
6464			regs[rd] = 0;
6465			break;
6466
6467		case DIF_OP_LDLS:
6468			id = DIF_INSTR_VAR(instr);
6469
6470			if (id < DIF_VAR_OTHER_UBASE) {
6471				/*
6472				 * For now, this has no meaning.
6473				 */
6474				regs[rd] = 0;
6475				break;
6476			}
6477
6478			id -= DIF_VAR_OTHER_UBASE;
6479
6480			ASSERT(id < vstate->dtvs_nlocals);
6481			ASSERT(vstate->dtvs_locals != NULL);
6482
6483			svar = vstate->dtvs_locals[id];
6484			ASSERT(svar != NULL);
6485			v = &svar->dtsv_var;
6486
6487			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6488				uintptr_t a = (uintptr_t)svar->dtsv_data;
6489				size_t sz = v->dtdv_type.dtdt_size;
6490				size_t lim;
6491
6492				sz += sizeof (uint64_t);
6493				ASSERT(svar->dtsv_size == NCPU * sz);
6494				a += curcpu * sz;
6495
6496				if (*(uint8_t *)a == UINT8_MAX) {
6497					/*
6498					 * If the 0th byte is set to UINT8_MAX
6499					 * then this is to be treated as a
6500					 * reference to a NULL variable.
6501					 */
6502					regs[rd] = 0;
6503				} else {
6504					regs[rd] = a + sizeof (uint64_t);
6505				}
6506
6507				break;
6508			}
6509
6510			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6511			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6512			regs[rd] = tmp[curcpu];
6513			break;
6514
6515		case DIF_OP_STLS:
6516			id = DIF_INSTR_VAR(instr);
6517
6518			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6519			id -= DIF_VAR_OTHER_UBASE;
6520			VERIFY(id < vstate->dtvs_nlocals);
6521
6522			ASSERT(vstate->dtvs_locals != NULL);
6523			svar = vstate->dtvs_locals[id];
6524			ASSERT(svar != NULL);
6525			v = &svar->dtsv_var;
6526
6527			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6528				uintptr_t a = (uintptr_t)svar->dtsv_data;
6529				size_t sz = v->dtdv_type.dtdt_size;
6530				size_t lim;
6531
6532				sz += sizeof (uint64_t);
6533				ASSERT(svar->dtsv_size == NCPU * sz);
6534				a += curcpu * sz;
6535
6536				if (regs[rd] == 0) {
6537					*(uint8_t *)a = UINT8_MAX;
6538					break;
6539				} else {
6540					*(uint8_t *)a = 0;
6541					a += sizeof (uint64_t);
6542				}
6543
6544				if (!dtrace_vcanload(
6545				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6546				    &lim, mstate, vstate))
6547					break;
6548
6549				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6550				    (void *)a, &v->dtdv_type, lim);
6551				break;
6552			}
6553
6554			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6555			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6556			tmp[curcpu] = regs[rd];
6557			break;
6558
6559		case DIF_OP_LDTS: {
6560			dtrace_dynvar_t *dvar;
6561			dtrace_key_t *key;
6562
6563			id = DIF_INSTR_VAR(instr);
6564			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6565			id -= DIF_VAR_OTHER_UBASE;
6566			v = &vstate->dtvs_tlocals[id];
6567
6568			key = &tupregs[DIF_DTR_NREGS];
6569			key[0].dttk_value = (uint64_t)id;
6570			key[0].dttk_size = 0;
6571			DTRACE_TLS_THRKEY(key[1].dttk_value);
6572			key[1].dttk_size = 0;
6573
6574			dvar = dtrace_dynvar(dstate, 2, key,
6575			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6576			    mstate, vstate);
6577
6578			if (dvar == NULL) {
6579				regs[rd] = 0;
6580				break;
6581			}
6582
6583			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6584				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6585			} else {
6586				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6587			}
6588
6589			break;
6590		}
6591
6592		case DIF_OP_STTS: {
6593			dtrace_dynvar_t *dvar;
6594			dtrace_key_t *key;
6595
6596			id = DIF_INSTR_VAR(instr);
6597			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6598			id -= DIF_VAR_OTHER_UBASE;
6599			VERIFY(id < vstate->dtvs_ntlocals);
6600
6601			key = &tupregs[DIF_DTR_NREGS];
6602			key[0].dttk_value = (uint64_t)id;
6603			key[0].dttk_size = 0;
6604			DTRACE_TLS_THRKEY(key[1].dttk_value);
6605			key[1].dttk_size = 0;
6606			v = &vstate->dtvs_tlocals[id];
6607
6608			dvar = dtrace_dynvar(dstate, 2, key,
6609			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6610			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6611			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6612			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6613
6614			/*
6615			 * Given that we're storing to thread-local data,
6616			 * we need to flush our predicate cache.
6617			 */
6618			curthread->t_predcache = 0;
6619
6620			if (dvar == NULL)
6621				break;
6622
6623			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6624				size_t lim;
6625
6626				if (!dtrace_vcanload(
6627				    (void *)(uintptr_t)regs[rd],
6628				    &v->dtdv_type, &lim, mstate, vstate))
6629					break;
6630
6631				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6632				    dvar->dtdv_data, &v->dtdv_type, lim);
6633			} else {
6634				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6635			}
6636
6637			break;
6638		}
6639
6640		case DIF_OP_SRA:
6641			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6642			break;
6643
6644		case DIF_OP_CALL:
6645			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6646			    regs, tupregs, ttop, mstate, state);
6647			break;
6648
6649		case DIF_OP_PUSHTR:
6650			if (ttop == DIF_DTR_NREGS) {
6651				*flags |= CPU_DTRACE_TUPOFLOW;
6652				break;
6653			}
6654
6655			if (r1 == DIF_TYPE_STRING) {
6656				/*
6657				 * If this is a string type and the size is 0,
6658				 * we'll use the system-wide default string
6659				 * size.  Note that we are _not_ looking at
6660				 * the value of the DTRACEOPT_STRSIZE option;
6661				 * had this been set, we would expect to have
6662				 * a non-zero size value in the "pushtr".
6663				 */
6664				tupregs[ttop].dttk_size =
6665				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6666				    regs[r2] ? regs[r2] :
6667				    dtrace_strsize_default) + 1;
6668			} else {
6669				if (regs[r2] > LONG_MAX) {
6670					*flags |= CPU_DTRACE_ILLOP;
6671					break;
6672				}
6673
6674				tupregs[ttop].dttk_size = regs[r2];
6675			}
6676
6677			tupregs[ttop++].dttk_value = regs[rd];
6678			break;
6679
6680		case DIF_OP_PUSHTV:
6681			if (ttop == DIF_DTR_NREGS) {
6682				*flags |= CPU_DTRACE_TUPOFLOW;
6683				break;
6684			}
6685
6686			tupregs[ttop].dttk_value = regs[rd];
6687			tupregs[ttop++].dttk_size = 0;
6688			break;
6689
6690		case DIF_OP_POPTS:
6691			if (ttop != 0)
6692				ttop--;
6693			break;
6694
6695		case DIF_OP_FLUSHTS:
6696			ttop = 0;
6697			break;
6698
6699		case DIF_OP_LDGAA:
6700		case DIF_OP_LDTAA: {
6701			dtrace_dynvar_t *dvar;
6702			dtrace_key_t *key = tupregs;
6703			uint_t nkeys = ttop;
6704
6705			id = DIF_INSTR_VAR(instr);
6706			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6707			id -= DIF_VAR_OTHER_UBASE;
6708
6709			key[nkeys].dttk_value = (uint64_t)id;
6710			key[nkeys++].dttk_size = 0;
6711
6712			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6713				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6714				key[nkeys++].dttk_size = 0;
6715				VERIFY(id < vstate->dtvs_ntlocals);
6716				v = &vstate->dtvs_tlocals[id];
6717			} else {
6718				VERIFY(id < vstate->dtvs_nglobals);
6719				v = &vstate->dtvs_globals[id]->dtsv_var;
6720			}
6721
6722			dvar = dtrace_dynvar(dstate, nkeys, key,
6723			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6724			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6725			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6726
6727			if (dvar == NULL) {
6728				regs[rd] = 0;
6729				break;
6730			}
6731
6732			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6733				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6734			} else {
6735				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6736			}
6737
6738			break;
6739		}
6740
6741		case DIF_OP_STGAA:
6742		case DIF_OP_STTAA: {
6743			dtrace_dynvar_t *dvar;
6744			dtrace_key_t *key = tupregs;
6745			uint_t nkeys = ttop;
6746
6747			id = DIF_INSTR_VAR(instr);
6748			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6749			id -= DIF_VAR_OTHER_UBASE;
6750
6751			key[nkeys].dttk_value = (uint64_t)id;
6752			key[nkeys++].dttk_size = 0;
6753
6754			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6755				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6756				key[nkeys++].dttk_size = 0;
6757				VERIFY(id < vstate->dtvs_ntlocals);
6758				v = &vstate->dtvs_tlocals[id];
6759			} else {
6760				VERIFY(id < vstate->dtvs_nglobals);
6761				v = &vstate->dtvs_globals[id]->dtsv_var;
6762			}
6763
6764			dvar = dtrace_dynvar(dstate, nkeys, key,
6765			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6766			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6767			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6768			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6769
6770			if (dvar == NULL)
6771				break;
6772
6773			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6774				size_t lim;
6775
6776				if (!dtrace_vcanload(
6777				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6778				    &lim, mstate, vstate))
6779					break;
6780
6781				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6782				    dvar->dtdv_data, &v->dtdv_type, lim);
6783			} else {
6784				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6785			}
6786
6787			break;
6788		}
6789
6790		case DIF_OP_ALLOCS: {
6791			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6792			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6793
6794			/*
6795			 * Rounding up the user allocation size could have
6796			 * overflowed large, bogus allocations (like -1ULL) to
6797			 * 0.
6798			 */
6799			if (size < regs[r1] ||
6800			    !DTRACE_INSCRATCH(mstate, size)) {
6801				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6802				regs[rd] = 0;
6803				break;
6804			}
6805
6806			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6807			mstate->dtms_scratch_ptr += size;
6808			regs[rd] = ptr;
6809			break;
6810		}
6811
6812		case DIF_OP_COPYS:
6813			if (!dtrace_canstore(regs[rd], regs[r2],
6814			    mstate, vstate)) {
6815				*flags |= CPU_DTRACE_BADADDR;
6816				*illval = regs[rd];
6817				break;
6818			}
6819
6820			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6821				break;
6822
6823			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6824			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6825			break;
6826
6827		case DIF_OP_STB:
6828			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6829				*flags |= CPU_DTRACE_BADADDR;
6830				*illval = regs[rd];
6831				break;
6832			}
6833			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6834			break;
6835
6836		case DIF_OP_STH:
6837			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6838				*flags |= CPU_DTRACE_BADADDR;
6839				*illval = regs[rd];
6840				break;
6841			}
6842			if (regs[rd] & 1) {
6843				*flags |= CPU_DTRACE_BADALIGN;
6844				*illval = regs[rd];
6845				break;
6846			}
6847			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6848			break;
6849
6850		case DIF_OP_STW:
6851			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6852				*flags |= CPU_DTRACE_BADADDR;
6853				*illval = regs[rd];
6854				break;
6855			}
6856			if (regs[rd] & 3) {
6857				*flags |= CPU_DTRACE_BADALIGN;
6858				*illval = regs[rd];
6859				break;
6860			}
6861			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6862			break;
6863
6864		case DIF_OP_STX:
6865			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6866				*flags |= CPU_DTRACE_BADADDR;
6867				*illval = regs[rd];
6868				break;
6869			}
6870			if (regs[rd] & 7) {
6871				*flags |= CPU_DTRACE_BADALIGN;
6872				*illval = regs[rd];
6873				break;
6874			}
6875			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6876			break;
6877		}
6878	}
6879
6880	if (!(*flags & CPU_DTRACE_FAULT))
6881		return (rval);
6882
6883	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6884	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6885
6886	return (0);
6887}
6888
6889static void
6890dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6891{
6892	dtrace_probe_t *probe = ecb->dte_probe;
6893	dtrace_provider_t *prov = probe->dtpr_provider;
6894	char c[DTRACE_FULLNAMELEN + 80], *str;
6895	char *msg = "dtrace: breakpoint action at probe ";
6896	char *ecbmsg = " (ecb ";
6897	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6898	uintptr_t val = (uintptr_t)ecb;
6899	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6900
6901	if (dtrace_destructive_disallow)
6902		return;
6903
6904	/*
6905	 * It's impossible to be taking action on the NULL probe.
6906	 */
6907	ASSERT(probe != NULL);
6908
6909	/*
6910	 * This is a poor man's (destitute man's?) sprintf():  we want to
6911	 * print the provider name, module name, function name and name of
6912	 * the probe, along with the hex address of the ECB with the breakpoint
6913	 * action -- all of which we must place in the character buffer by
6914	 * hand.
6915	 */
6916	while (*msg != '\0')
6917		c[i++] = *msg++;
6918
6919	for (str = prov->dtpv_name; *str != '\0'; str++)
6920		c[i++] = *str;
6921	c[i++] = ':';
6922
6923	for (str = probe->dtpr_mod; *str != '\0'; str++)
6924		c[i++] = *str;
6925	c[i++] = ':';
6926
6927	for (str = probe->dtpr_func; *str != '\0'; str++)
6928		c[i++] = *str;
6929	c[i++] = ':';
6930
6931	for (str = probe->dtpr_name; *str != '\0'; str++)
6932		c[i++] = *str;
6933
6934	while (*ecbmsg != '\0')
6935		c[i++] = *ecbmsg++;
6936
6937	while (shift >= 0) {
6938		mask = (uintptr_t)0xf << shift;
6939
6940		if (val >= ((uintptr_t)1 << shift))
6941			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6942		shift -= 4;
6943	}
6944
6945	c[i++] = ')';
6946	c[i] = '\0';
6947
6948#ifdef illumos
6949	debug_enter(c);
6950#else
6951	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6952#endif
6953}
6954
6955static void
6956dtrace_action_panic(dtrace_ecb_t *ecb)
6957{
6958	dtrace_probe_t *probe = ecb->dte_probe;
6959
6960	/*
6961	 * It's impossible to be taking action on the NULL probe.
6962	 */
6963	ASSERT(probe != NULL);
6964
6965	if (dtrace_destructive_disallow)
6966		return;
6967
6968	if (dtrace_panicked != NULL)
6969		return;
6970
6971	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6972		return;
6973
6974	/*
6975	 * We won the right to panic.  (We want to be sure that only one
6976	 * thread calls panic() from dtrace_probe(), and that panic() is
6977	 * called exactly once.)
6978	 */
6979	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6980	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6981	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6982}
6983
6984static void
6985dtrace_action_raise(uint64_t sig)
6986{
6987	if (dtrace_destructive_disallow)
6988		return;
6989
6990	if (sig >= NSIG) {
6991		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6992		return;
6993	}
6994
6995#ifdef illumos
6996	/*
6997	 * raise() has a queue depth of 1 -- we ignore all subsequent
6998	 * invocations of the raise() action.
6999	 */
7000	if (curthread->t_dtrace_sig == 0)
7001		curthread->t_dtrace_sig = (uint8_t)sig;
7002
7003	curthread->t_sig_check = 1;
7004	aston(curthread);
7005#else
7006	struct proc *p = curproc;
7007	PROC_LOCK(p);
7008	kern_psignal(p, sig);
7009	PROC_UNLOCK(p);
7010#endif
7011}
7012
7013static void
7014dtrace_action_stop(void)
7015{
7016	if (dtrace_destructive_disallow)
7017		return;
7018
7019#ifdef illumos
7020	if (!curthread->t_dtrace_stop) {
7021		curthread->t_dtrace_stop = 1;
7022		curthread->t_sig_check = 1;
7023		aston(curthread);
7024	}
7025#else
7026	struct proc *p = curproc;
7027	PROC_LOCK(p);
7028	kern_psignal(p, SIGSTOP);
7029	PROC_UNLOCK(p);
7030#endif
7031}
7032
7033static void
7034dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7035{
7036	hrtime_t now;
7037	volatile uint16_t *flags;
7038#ifdef illumos
7039	cpu_t *cpu = CPU;
7040#else
7041	cpu_t *cpu = &solaris_cpu[curcpu];
7042#endif
7043
7044	if (dtrace_destructive_disallow)
7045		return;
7046
7047	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7048
7049	now = dtrace_gethrtime();
7050
7051	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7052		/*
7053		 * We need to advance the mark to the current time.
7054		 */
7055		cpu->cpu_dtrace_chillmark = now;
7056		cpu->cpu_dtrace_chilled = 0;
7057	}
7058
7059	/*
7060	 * Now check to see if the requested chill time would take us over
7061	 * the maximum amount of time allowed in the chill interval.  (Or
7062	 * worse, if the calculation itself induces overflow.)
7063	 */
7064	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7065	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7066		*flags |= CPU_DTRACE_ILLOP;
7067		return;
7068	}
7069
7070	while (dtrace_gethrtime() - now < val)
7071		continue;
7072
7073	/*
7074	 * Normally, we assure that the value of the variable "timestamp" does
7075	 * not change within an ECB.  The presence of chill() represents an
7076	 * exception to this rule, however.
7077	 */
7078	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7079	cpu->cpu_dtrace_chilled += val;
7080}
7081
7082static void
7083dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7084    uint64_t *buf, uint64_t arg)
7085{
7086	int nframes = DTRACE_USTACK_NFRAMES(arg);
7087	int strsize = DTRACE_USTACK_STRSIZE(arg);
7088	uint64_t *pcs = &buf[1], *fps;
7089	char *str = (char *)&pcs[nframes];
7090	int size, offs = 0, i, j;
7091	size_t rem;
7092	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7093	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7094	char *sym;
7095
7096	/*
7097	 * Should be taking a faster path if string space has not been
7098	 * allocated.
7099	 */
7100	ASSERT(strsize != 0);
7101
7102	/*
7103	 * We will first allocate some temporary space for the frame pointers.
7104	 */
7105	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7106	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7107	    (nframes * sizeof (uint64_t));
7108
7109	if (!DTRACE_INSCRATCH(mstate, size)) {
7110		/*
7111		 * Not enough room for our frame pointers -- need to indicate
7112		 * that we ran out of scratch space.
7113		 */
7114		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7115		return;
7116	}
7117
7118	mstate->dtms_scratch_ptr += size;
7119	saved = mstate->dtms_scratch_ptr;
7120
7121	/*
7122	 * Now get a stack with both program counters and frame pointers.
7123	 */
7124	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7125	dtrace_getufpstack(buf, fps, nframes + 1);
7126	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7127
7128	/*
7129	 * If that faulted, we're cooked.
7130	 */
7131	if (*flags & CPU_DTRACE_FAULT)
7132		goto out;
7133
7134	/*
7135	 * Now we want to walk up the stack, calling the USTACK helper.  For
7136	 * each iteration, we restore the scratch pointer.
7137	 */
7138	for (i = 0; i < nframes; i++) {
7139		mstate->dtms_scratch_ptr = saved;
7140
7141		if (offs >= strsize)
7142			break;
7143
7144		sym = (char *)(uintptr_t)dtrace_helper(
7145		    DTRACE_HELPER_ACTION_USTACK,
7146		    mstate, state, pcs[i], fps[i]);
7147
7148		/*
7149		 * If we faulted while running the helper, we're going to
7150		 * clear the fault and null out the corresponding string.
7151		 */
7152		if (*flags & CPU_DTRACE_FAULT) {
7153			*flags &= ~CPU_DTRACE_FAULT;
7154			str[offs++] = '\0';
7155			continue;
7156		}
7157
7158		if (sym == NULL) {
7159			str[offs++] = '\0';
7160			continue;
7161		}
7162
7163		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7164		    &(state->dts_vstate))) {
7165			str[offs++] = '\0';
7166			continue;
7167		}
7168
7169		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7170
7171		/*
7172		 * Now copy in the string that the helper returned to us.
7173		 */
7174		for (j = 0; offs + j < strsize && j < rem; j++) {
7175			if ((str[offs + j] = sym[j]) == '\0')
7176				break;
7177		}
7178
7179		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7180
7181		offs += j + 1;
7182	}
7183
7184	if (offs >= strsize) {
7185		/*
7186		 * If we didn't have room for all of the strings, we don't
7187		 * abort processing -- this needn't be a fatal error -- but we
7188		 * still want to increment a counter (dts_stkstroverflows) to
7189		 * allow this condition to be warned about.  (If this is from
7190		 * a jstack() action, it is easily tuned via jstackstrsize.)
7191		 */
7192		dtrace_error(&state->dts_stkstroverflows);
7193	}
7194
7195	while (offs < strsize)
7196		str[offs++] = '\0';
7197
7198out:
7199	mstate->dtms_scratch_ptr = old;
7200}
7201
7202static void
7203dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7204    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7205{
7206	volatile uint16_t *flags;
7207	uint64_t val = *valp;
7208	size_t valoffs = *valoffsp;
7209
7210	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7211	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7212
7213	/*
7214	 * If this is a string, we're going to only load until we find the zero
7215	 * byte -- after which we'll store zero bytes.
7216	 */
7217	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7218		char c = '\0' + 1;
7219		size_t s;
7220
7221		for (s = 0; s < size; s++) {
7222			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7223				c = dtrace_load8(val++);
7224			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7225				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7226				c = dtrace_fuword8((void *)(uintptr_t)val++);
7227				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7228				if (*flags & CPU_DTRACE_FAULT)
7229					break;
7230			}
7231
7232			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7233
7234			if (c == '\0' && intuple)
7235				break;
7236		}
7237	} else {
7238		uint8_t c;
7239		while (valoffs < end) {
7240			if (dtkind == DIF_TF_BYREF) {
7241				c = dtrace_load8(val++);
7242			} else if (dtkind == DIF_TF_BYUREF) {
7243				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7244				c = dtrace_fuword8((void *)(uintptr_t)val++);
7245				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7246				if (*flags & CPU_DTRACE_FAULT)
7247					break;
7248			}
7249
7250			DTRACE_STORE(uint8_t, tomax,
7251			    valoffs++, c);
7252		}
7253	}
7254
7255	*valp = val;
7256	*valoffsp = valoffs;
7257}
7258
7259/*
7260 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7261 * defined, we also assert that we are not recursing unless the probe ID is an
7262 * error probe.
7263 */
7264static dtrace_icookie_t
7265dtrace_probe_enter(dtrace_id_t id)
7266{
7267	dtrace_icookie_t cookie;
7268
7269	cookie = dtrace_interrupt_disable();
7270
7271	/*
7272	 * Unless this is an ERROR probe, we are not allowed to recurse in
7273	 * dtrace_probe(). Recursing into DTrace probe usually means that a
7274	 * function is instrumented that should not have been instrumented or
7275	 * that the ordering guarantee of the records will be violated,
7276	 * resulting in unexpected output. If there is an exception to this
7277	 * assertion, a new case should be added.
7278	 */
7279	ASSERT(curthread->t_dtrace_inprobe == 0 ||
7280	    id == dtrace_probeid_error);
7281	curthread->t_dtrace_inprobe = 1;
7282
7283	return (cookie);
7284}
7285
7286/*
7287 * Clears the per-thread inprobe flag and enables interrupts.
7288 */
7289static void
7290dtrace_probe_exit(dtrace_icookie_t cookie)
7291{
7292
7293	curthread->t_dtrace_inprobe = 0;
7294	dtrace_interrupt_enable(cookie);
7295}
7296
7297/*
7298 * If you're looking for the epicenter of DTrace, you just found it.  This
7299 * is the function called by the provider to fire a probe -- from which all
7300 * subsequent probe-context DTrace activity emanates.
7301 */
7302void
7303dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7304    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7305{
7306	processorid_t cpuid;
7307	dtrace_icookie_t cookie;
7308	dtrace_probe_t *probe;
7309	dtrace_mstate_t mstate;
7310	dtrace_ecb_t *ecb;
7311	dtrace_action_t *act;
7312	intptr_t offs;
7313	size_t size;
7314	int vtime, onintr;
7315	volatile uint16_t *flags;
7316	hrtime_t now;
7317
7318	if (panicstr != NULL)
7319		return;
7320
7321#ifdef illumos
7322	/*
7323	 * Kick out immediately if this CPU is still being born (in which case
7324	 * curthread will be set to -1) or the current thread can't allow
7325	 * probes in its current context.
7326	 */
7327	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7328		return;
7329#endif
7330
7331	cookie = dtrace_probe_enter(id);
7332	probe = dtrace_probes[id - 1];
7333	cpuid = curcpu;
7334	onintr = CPU_ON_INTR(CPU);
7335
7336	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7337	    probe->dtpr_predcache == curthread->t_predcache) {
7338		/*
7339		 * We have hit in the predicate cache; we know that
7340		 * this predicate would evaluate to be false.
7341		 */
7342		dtrace_probe_exit(cookie);
7343		return;
7344	}
7345
7346#ifdef illumos
7347	if (panic_quiesce) {
7348#else
7349	if (panicstr != NULL) {
7350#endif
7351		/*
7352		 * We don't trace anything if we're panicking.
7353		 */
7354		dtrace_probe_exit(cookie);
7355		return;
7356	}
7357
7358	now = mstate.dtms_timestamp = dtrace_gethrtime();
7359	mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7360	vtime = dtrace_vtime_references != 0;
7361
7362	if (vtime && curthread->t_dtrace_start)
7363		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7364
7365	mstate.dtms_difo = NULL;
7366	mstate.dtms_probe = probe;
7367	mstate.dtms_strtok = 0;
7368	mstate.dtms_arg[0] = arg0;
7369	mstate.dtms_arg[1] = arg1;
7370	mstate.dtms_arg[2] = arg2;
7371	mstate.dtms_arg[3] = arg3;
7372	mstate.dtms_arg[4] = arg4;
7373
7374	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7375
7376	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7377		dtrace_predicate_t *pred = ecb->dte_predicate;
7378		dtrace_state_t *state = ecb->dte_state;
7379		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7380		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7381		dtrace_vstate_t *vstate = &state->dts_vstate;
7382		dtrace_provider_t *prov = probe->dtpr_provider;
7383		uint64_t tracememsize = 0;
7384		int committed = 0;
7385		caddr_t tomax;
7386
7387		/*
7388		 * A little subtlety with the following (seemingly innocuous)
7389		 * declaration of the automatic 'val':  by looking at the
7390		 * code, you might think that it could be declared in the
7391		 * action processing loop, below.  (That is, it's only used in
7392		 * the action processing loop.)  However, it must be declared
7393		 * out of that scope because in the case of DIF expression
7394		 * arguments to aggregating actions, one iteration of the
7395		 * action loop will use the last iteration's value.
7396		 */
7397		uint64_t val = 0;
7398
7399		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7400		mstate.dtms_getf = NULL;
7401
7402		*flags &= ~CPU_DTRACE_ERROR;
7403
7404		if (prov == dtrace_provider) {
7405			/*
7406			 * If dtrace itself is the provider of this probe,
7407			 * we're only going to continue processing the ECB if
7408			 * arg0 (the dtrace_state_t) is equal to the ECB's
7409			 * creating state.  (This prevents disjoint consumers
7410			 * from seeing one another's metaprobes.)
7411			 */
7412			if (arg0 != (uint64_t)(uintptr_t)state)
7413				continue;
7414		}
7415
7416		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7417			/*
7418			 * We're not currently active.  If our provider isn't
7419			 * the dtrace pseudo provider, we're not interested.
7420			 */
7421			if (prov != dtrace_provider)
7422				continue;
7423
7424			/*
7425			 * Now we must further check if we are in the BEGIN
7426			 * probe.  If we are, we will only continue processing
7427			 * if we're still in WARMUP -- if one BEGIN enabling
7428			 * has invoked the exit() action, we don't want to
7429			 * evaluate subsequent BEGIN enablings.
7430			 */
7431			if (probe->dtpr_id == dtrace_probeid_begin &&
7432			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7433				ASSERT(state->dts_activity ==
7434				    DTRACE_ACTIVITY_DRAINING);
7435				continue;
7436			}
7437		}
7438
7439		if (ecb->dte_cond) {
7440			/*
7441			 * If the dte_cond bits indicate that this
7442			 * consumer is only allowed to see user-mode firings
7443			 * of this probe, call the provider's dtps_usermode()
7444			 * entry point to check that the probe was fired
7445			 * while in a user context. Skip this ECB if that's
7446			 * not the case.
7447			 */
7448			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7449			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7450			    probe->dtpr_id, probe->dtpr_arg) == 0)
7451				continue;
7452
7453#ifdef illumos
7454			/*
7455			 * This is more subtle than it looks. We have to be
7456			 * absolutely certain that CRED() isn't going to
7457			 * change out from under us so it's only legit to
7458			 * examine that structure if we're in constrained
7459			 * situations. Currently, the only times we'll this
7460			 * check is if a non-super-user has enabled the
7461			 * profile or syscall providers -- providers that
7462			 * allow visibility of all processes. For the
7463			 * profile case, the check above will ensure that
7464			 * we're examining a user context.
7465			 */
7466			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7467				cred_t *cr;
7468				cred_t *s_cr =
7469				    ecb->dte_state->dts_cred.dcr_cred;
7470				proc_t *proc;
7471
7472				ASSERT(s_cr != NULL);
7473
7474				if ((cr = CRED()) == NULL ||
7475				    s_cr->cr_uid != cr->cr_uid ||
7476				    s_cr->cr_uid != cr->cr_ruid ||
7477				    s_cr->cr_uid != cr->cr_suid ||
7478				    s_cr->cr_gid != cr->cr_gid ||
7479				    s_cr->cr_gid != cr->cr_rgid ||
7480				    s_cr->cr_gid != cr->cr_sgid ||
7481				    (proc = ttoproc(curthread)) == NULL ||
7482				    (proc->p_flag & SNOCD))
7483					continue;
7484			}
7485
7486			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7487				cred_t *cr;
7488				cred_t *s_cr =
7489				    ecb->dte_state->dts_cred.dcr_cred;
7490
7491				ASSERT(s_cr != NULL);
7492
7493				if ((cr = CRED()) == NULL ||
7494				    s_cr->cr_zone->zone_id !=
7495				    cr->cr_zone->zone_id)
7496					continue;
7497			}
7498#endif
7499		}
7500
7501		if (now - state->dts_alive > dtrace_deadman_timeout) {
7502			/*
7503			 * We seem to be dead.  Unless we (a) have kernel
7504			 * destructive permissions (b) have explicitly enabled
7505			 * destructive actions and (c) destructive actions have
7506			 * not been disabled, we're going to transition into
7507			 * the KILLED state, from which no further processing
7508			 * on this state will be performed.
7509			 */
7510			if (!dtrace_priv_kernel_destructive(state) ||
7511			    !state->dts_cred.dcr_destructive ||
7512			    dtrace_destructive_disallow) {
7513				void *activity = &state->dts_activity;
7514				dtrace_activity_t current;
7515
7516				do {
7517					current = state->dts_activity;
7518				} while (dtrace_cas32(activity, current,
7519				    DTRACE_ACTIVITY_KILLED) != current);
7520
7521				continue;
7522			}
7523		}
7524
7525		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7526		    ecb->dte_alignment, state, &mstate)) < 0)
7527			continue;
7528
7529		tomax = buf->dtb_tomax;
7530		ASSERT(tomax != NULL);
7531
7532		if (ecb->dte_size != 0) {
7533			dtrace_rechdr_t dtrh;
7534			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7535				mstate.dtms_timestamp = dtrace_gethrtime();
7536				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7537			}
7538			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7539			dtrh.dtrh_epid = ecb->dte_epid;
7540			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7541			    mstate.dtms_timestamp);
7542			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7543		}
7544
7545		mstate.dtms_epid = ecb->dte_epid;
7546		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7547
7548		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7549			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7550		else
7551			mstate.dtms_access = 0;
7552
7553		if (pred != NULL) {
7554			dtrace_difo_t *dp = pred->dtp_difo;
7555			uint64_t rval;
7556
7557			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7558
7559			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7560				dtrace_cacheid_t cid = probe->dtpr_predcache;
7561
7562				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7563					/*
7564					 * Update the predicate cache...
7565					 */
7566					ASSERT(cid == pred->dtp_cacheid);
7567					curthread->t_predcache = cid;
7568				}
7569
7570				continue;
7571			}
7572		}
7573
7574		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7575		    act != NULL; act = act->dta_next) {
7576			size_t valoffs;
7577			dtrace_difo_t *dp;
7578			dtrace_recdesc_t *rec = &act->dta_rec;
7579
7580			size = rec->dtrd_size;
7581			valoffs = offs + rec->dtrd_offset;
7582
7583			if (DTRACEACT_ISAGG(act->dta_kind)) {
7584				uint64_t v = 0xbad;
7585				dtrace_aggregation_t *agg;
7586
7587				agg = (dtrace_aggregation_t *)act;
7588
7589				if ((dp = act->dta_difo) != NULL)
7590					v = dtrace_dif_emulate(dp,
7591					    &mstate, vstate, state);
7592
7593				if (*flags & CPU_DTRACE_ERROR)
7594					continue;
7595
7596				/*
7597				 * Note that we always pass the expression
7598				 * value from the previous iteration of the
7599				 * action loop.  This value will only be used
7600				 * if there is an expression argument to the
7601				 * aggregating action, denoted by the
7602				 * dtag_hasarg field.
7603				 */
7604				dtrace_aggregate(agg, buf,
7605				    offs, aggbuf, v, val);
7606				continue;
7607			}
7608
7609			switch (act->dta_kind) {
7610			case DTRACEACT_STOP:
7611				if (dtrace_priv_proc_destructive(state))
7612					dtrace_action_stop();
7613				continue;
7614
7615			case DTRACEACT_BREAKPOINT:
7616				if (dtrace_priv_kernel_destructive(state))
7617					dtrace_action_breakpoint(ecb);
7618				continue;
7619
7620			case DTRACEACT_PANIC:
7621				if (dtrace_priv_kernel_destructive(state))
7622					dtrace_action_panic(ecb);
7623				continue;
7624
7625			case DTRACEACT_STACK:
7626				if (!dtrace_priv_kernel(state))
7627					continue;
7628
7629				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7630				    size / sizeof (pc_t), probe->dtpr_aframes,
7631				    DTRACE_ANCHORED(probe) ? NULL :
7632				    (uint32_t *)arg0);
7633				continue;
7634
7635			case DTRACEACT_JSTACK:
7636			case DTRACEACT_USTACK:
7637				if (!dtrace_priv_proc(state))
7638					continue;
7639
7640				/*
7641				 * See comment in DIF_VAR_PID.
7642				 */
7643				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7644				    CPU_ON_INTR(CPU)) {
7645					int depth = DTRACE_USTACK_NFRAMES(
7646					    rec->dtrd_arg) + 1;
7647
7648					dtrace_bzero((void *)(tomax + valoffs),
7649					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7650					    + depth * sizeof (uint64_t));
7651
7652					continue;
7653				}
7654
7655				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7656				    curproc->p_dtrace_helpers != NULL) {
7657					/*
7658					 * This is the slow path -- we have
7659					 * allocated string space, and we're
7660					 * getting the stack of a process that
7661					 * has helpers.  Call into a separate
7662					 * routine to perform this processing.
7663					 */
7664					dtrace_action_ustack(&mstate, state,
7665					    (uint64_t *)(tomax + valoffs),
7666					    rec->dtrd_arg);
7667					continue;
7668				}
7669
7670				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7671				dtrace_getupcstack((uint64_t *)
7672				    (tomax + valoffs),
7673				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7674				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7675				continue;
7676
7677			default:
7678				break;
7679			}
7680
7681			dp = act->dta_difo;
7682			ASSERT(dp != NULL);
7683
7684			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7685
7686			if (*flags & CPU_DTRACE_ERROR)
7687				continue;
7688
7689			switch (act->dta_kind) {
7690			case DTRACEACT_SPECULATE: {
7691				dtrace_rechdr_t *dtrh;
7692
7693				ASSERT(buf == &state->dts_buffer[cpuid]);
7694				buf = dtrace_speculation_buffer(state,
7695				    cpuid, val);
7696
7697				if (buf == NULL) {
7698					*flags |= CPU_DTRACE_DROP;
7699					continue;
7700				}
7701
7702				offs = dtrace_buffer_reserve(buf,
7703				    ecb->dte_needed, ecb->dte_alignment,
7704				    state, NULL);
7705
7706				if (offs < 0) {
7707					*flags |= CPU_DTRACE_DROP;
7708					continue;
7709				}
7710
7711				tomax = buf->dtb_tomax;
7712				ASSERT(tomax != NULL);
7713
7714				if (ecb->dte_size == 0)
7715					continue;
7716
7717				ASSERT3U(ecb->dte_size, >=,
7718				    sizeof (dtrace_rechdr_t));
7719				dtrh = ((void *)(tomax + offs));
7720				dtrh->dtrh_epid = ecb->dte_epid;
7721				/*
7722				 * When the speculation is committed, all of
7723				 * the records in the speculative buffer will
7724				 * have their timestamps set to the commit
7725				 * time.  Until then, it is set to a sentinel
7726				 * value, for debugability.
7727				 */
7728				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7729				continue;
7730			}
7731
7732			case DTRACEACT_PRINTM: {
7733				/* The DIF returns a 'memref'. */
7734				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7735
7736				/* Get the size from the memref. */
7737				size = memref[1];
7738
7739				/*
7740				 * Check if the size exceeds the allocated
7741				 * buffer size.
7742				 */
7743				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7744					/* Flag a drop! */
7745					*flags |= CPU_DTRACE_DROP;
7746					continue;
7747				}
7748
7749				/* Store the size in the buffer first. */
7750				DTRACE_STORE(uintptr_t, tomax,
7751				    valoffs, size);
7752
7753				/*
7754				 * Offset the buffer address to the start
7755				 * of the data.
7756				 */
7757				valoffs += sizeof(uintptr_t);
7758
7759				/*
7760				 * Reset to the memory address rather than
7761				 * the memref array, then let the BYREF
7762				 * code below do the work to store the
7763				 * memory data in the buffer.
7764				 */
7765				val = memref[0];
7766				break;
7767			}
7768
7769			case DTRACEACT_CHILL:
7770				if (dtrace_priv_kernel_destructive(state))
7771					dtrace_action_chill(&mstate, val);
7772				continue;
7773
7774			case DTRACEACT_RAISE:
7775				if (dtrace_priv_proc_destructive(state))
7776					dtrace_action_raise(val);
7777				continue;
7778
7779			case DTRACEACT_COMMIT:
7780				ASSERT(!committed);
7781
7782				/*
7783				 * We need to commit our buffer state.
7784				 */
7785				if (ecb->dte_size)
7786					buf->dtb_offset = offs + ecb->dte_size;
7787				buf = &state->dts_buffer[cpuid];
7788				dtrace_speculation_commit(state, cpuid, val);
7789				committed = 1;
7790				continue;
7791
7792			case DTRACEACT_DISCARD:
7793				dtrace_speculation_discard(state, cpuid, val);
7794				continue;
7795
7796			case DTRACEACT_DIFEXPR:
7797			case DTRACEACT_LIBACT:
7798			case DTRACEACT_PRINTF:
7799			case DTRACEACT_PRINTA:
7800			case DTRACEACT_SYSTEM:
7801			case DTRACEACT_FREOPEN:
7802			case DTRACEACT_TRACEMEM:
7803				break;
7804
7805			case DTRACEACT_TRACEMEM_DYNSIZE:
7806				tracememsize = val;
7807				break;
7808
7809			case DTRACEACT_SYM:
7810			case DTRACEACT_MOD:
7811				if (!dtrace_priv_kernel(state))
7812					continue;
7813				break;
7814
7815			case DTRACEACT_USYM:
7816			case DTRACEACT_UMOD:
7817			case DTRACEACT_UADDR: {
7818#ifdef illumos
7819				struct pid *pid = curthread->t_procp->p_pidp;
7820#endif
7821
7822				if (!dtrace_priv_proc(state))
7823					continue;
7824
7825				DTRACE_STORE(uint64_t, tomax,
7826#ifdef illumos
7827				    valoffs, (uint64_t)pid->pid_id);
7828#else
7829				    valoffs, (uint64_t) curproc->p_pid);
7830#endif
7831				DTRACE_STORE(uint64_t, tomax,
7832				    valoffs + sizeof (uint64_t), val);
7833
7834				continue;
7835			}
7836
7837			case DTRACEACT_EXIT: {
7838				/*
7839				 * For the exit action, we are going to attempt
7840				 * to atomically set our activity to be
7841				 * draining.  If this fails (either because
7842				 * another CPU has beat us to the exit action,
7843				 * or because our current activity is something
7844				 * other than ACTIVE or WARMUP), we will
7845				 * continue.  This assures that the exit action
7846				 * can be successfully recorded at most once
7847				 * when we're in the ACTIVE state.  If we're
7848				 * encountering the exit() action while in
7849				 * COOLDOWN, however, we want to honor the new
7850				 * status code.  (We know that we're the only
7851				 * thread in COOLDOWN, so there is no race.)
7852				 */
7853				void *activity = &state->dts_activity;
7854				dtrace_activity_t current = state->dts_activity;
7855
7856				if (current == DTRACE_ACTIVITY_COOLDOWN)
7857					break;
7858
7859				if (current != DTRACE_ACTIVITY_WARMUP)
7860					current = DTRACE_ACTIVITY_ACTIVE;
7861
7862				if (dtrace_cas32(activity, current,
7863				    DTRACE_ACTIVITY_DRAINING) != current) {
7864					*flags |= CPU_DTRACE_DROP;
7865					continue;
7866				}
7867
7868				break;
7869			}
7870
7871			default:
7872				ASSERT(0);
7873			}
7874
7875			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7876			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7877				uintptr_t end = valoffs + size;
7878
7879				if (tracememsize != 0 &&
7880				    valoffs + tracememsize < end) {
7881					end = valoffs + tracememsize;
7882					tracememsize = 0;
7883				}
7884
7885				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7886				    !dtrace_vcanload((void *)(uintptr_t)val,
7887				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7888					continue;
7889
7890				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7891				    &val, end, act->dta_intuple,
7892				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7893				    DIF_TF_BYREF: DIF_TF_BYUREF);
7894				continue;
7895			}
7896
7897			switch (size) {
7898			case 0:
7899				break;
7900
7901			case sizeof (uint8_t):
7902				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7903				break;
7904			case sizeof (uint16_t):
7905				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7906				break;
7907			case sizeof (uint32_t):
7908				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7909				break;
7910			case sizeof (uint64_t):
7911				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7912				break;
7913			default:
7914				/*
7915				 * Any other size should have been returned by
7916				 * reference, not by value.
7917				 */
7918				ASSERT(0);
7919				break;
7920			}
7921		}
7922
7923		if (*flags & CPU_DTRACE_DROP)
7924			continue;
7925
7926		if (*flags & CPU_DTRACE_FAULT) {
7927			int ndx;
7928			dtrace_action_t *err;
7929
7930			buf->dtb_errors++;
7931
7932			if (probe->dtpr_id == dtrace_probeid_error) {
7933				/*
7934				 * There's nothing we can do -- we had an
7935				 * error on the error probe.  We bump an
7936				 * error counter to at least indicate that
7937				 * this condition happened.
7938				 */
7939				dtrace_error(&state->dts_dblerrors);
7940				continue;
7941			}
7942
7943			if (vtime) {
7944				/*
7945				 * Before recursing on dtrace_probe(), we
7946				 * need to explicitly clear out our start
7947				 * time to prevent it from being accumulated
7948				 * into t_dtrace_vtime.
7949				 */
7950				curthread->t_dtrace_start = 0;
7951			}
7952
7953			/*
7954			 * Iterate over the actions to figure out which action
7955			 * we were processing when we experienced the error.
7956			 * Note that act points _past_ the faulting action; if
7957			 * act is ecb->dte_action, the fault was in the
7958			 * predicate, if it's ecb->dte_action->dta_next it's
7959			 * in action #1, and so on.
7960			 */
7961			for (err = ecb->dte_action, ndx = 0;
7962			    err != act; err = err->dta_next, ndx++)
7963				continue;
7964
7965			dtrace_probe_error(state, ecb->dte_epid, ndx,
7966			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7967			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7968			    cpu_core[cpuid].cpuc_dtrace_illval);
7969
7970			continue;
7971		}
7972
7973		if (!committed)
7974			buf->dtb_offset = offs + ecb->dte_size;
7975	}
7976
7977	if (vtime)
7978		curthread->t_dtrace_start = dtrace_gethrtime();
7979
7980	dtrace_probe_exit(cookie);
7981}
7982
7983/*
7984 * DTrace Probe Hashing Functions
7985 *
7986 * The functions in this section (and indeed, the functions in remaining
7987 * sections) are not _called_ from probe context.  (Any exceptions to this are
7988 * marked with a "Note:".)  Rather, they are called from elsewhere in the
7989 * DTrace framework to look-up probes in, add probes to and remove probes from
7990 * the DTrace probe hashes.  (Each probe is hashed by each element of the
7991 * probe tuple -- allowing for fast lookups, regardless of what was
7992 * specified.)
7993 */
7994static uint_t
7995dtrace_hash_str(const char *p)
7996{
7997	unsigned int g;
7998	uint_t hval = 0;
7999
8000	while (*p) {
8001		hval = (hval << 4) + *p++;
8002		if ((g = (hval & 0xf0000000)) != 0)
8003			hval ^= g >> 24;
8004		hval &= ~g;
8005	}
8006	return (hval);
8007}
8008
8009static dtrace_hash_t *
8010dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
8011{
8012	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8013
8014	hash->dth_stroffs = stroffs;
8015	hash->dth_nextoffs = nextoffs;
8016	hash->dth_prevoffs = prevoffs;
8017
8018	hash->dth_size = 1;
8019	hash->dth_mask = hash->dth_size - 1;
8020
8021	hash->dth_tab = kmem_zalloc(hash->dth_size *
8022	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8023
8024	return (hash);
8025}
8026
8027static void
8028dtrace_hash_destroy(dtrace_hash_t *hash)
8029{
8030#ifdef DEBUG
8031	int i;
8032
8033	for (i = 0; i < hash->dth_size; i++)
8034		ASSERT(hash->dth_tab[i] == NULL);
8035#endif
8036
8037	kmem_free(hash->dth_tab,
8038	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
8039	kmem_free(hash, sizeof (dtrace_hash_t));
8040}
8041
8042static void
8043dtrace_hash_resize(dtrace_hash_t *hash)
8044{
8045	int size = hash->dth_size, i, ndx;
8046	int new_size = hash->dth_size << 1;
8047	int new_mask = new_size - 1;
8048	dtrace_hashbucket_t **new_tab, *bucket, *next;
8049
8050	ASSERT((new_size & new_mask) == 0);
8051
8052	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8053
8054	for (i = 0; i < size; i++) {
8055		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8056			dtrace_probe_t *probe = bucket->dthb_chain;
8057
8058			ASSERT(probe != NULL);
8059			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8060
8061			next = bucket->dthb_next;
8062			bucket->dthb_next = new_tab[ndx];
8063			new_tab[ndx] = bucket;
8064		}
8065	}
8066
8067	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8068	hash->dth_tab = new_tab;
8069	hash->dth_size = new_size;
8070	hash->dth_mask = new_mask;
8071}
8072
8073static void
8074dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8075{
8076	int hashval = DTRACE_HASHSTR(hash, new);
8077	int ndx = hashval & hash->dth_mask;
8078	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8079	dtrace_probe_t **nextp, **prevp;
8080
8081	for (; bucket != NULL; bucket = bucket->dthb_next) {
8082		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8083			goto add;
8084	}
8085
8086	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8087		dtrace_hash_resize(hash);
8088		dtrace_hash_add(hash, new);
8089		return;
8090	}
8091
8092	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8093	bucket->dthb_next = hash->dth_tab[ndx];
8094	hash->dth_tab[ndx] = bucket;
8095	hash->dth_nbuckets++;
8096
8097add:
8098	nextp = DTRACE_HASHNEXT(hash, new);
8099	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8100	*nextp = bucket->dthb_chain;
8101
8102	if (bucket->dthb_chain != NULL) {
8103		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8104		ASSERT(*prevp == NULL);
8105		*prevp = new;
8106	}
8107
8108	bucket->dthb_chain = new;
8109	bucket->dthb_len++;
8110}
8111
8112static dtrace_probe_t *
8113dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8114{
8115	int hashval = DTRACE_HASHSTR(hash, template);
8116	int ndx = hashval & hash->dth_mask;
8117	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8118
8119	for (; bucket != NULL; bucket = bucket->dthb_next) {
8120		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8121			return (bucket->dthb_chain);
8122	}
8123
8124	return (NULL);
8125}
8126
8127static int
8128dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8129{
8130	int hashval = DTRACE_HASHSTR(hash, template);
8131	int ndx = hashval & hash->dth_mask;
8132	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8133
8134	for (; bucket != NULL; bucket = bucket->dthb_next) {
8135		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8136			return (bucket->dthb_len);
8137	}
8138
8139	return (0);
8140}
8141
8142static void
8143dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8144{
8145	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8146	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8147
8148	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8149	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8150
8151	/*
8152	 * Find the bucket that we're removing this probe from.
8153	 */
8154	for (; bucket != NULL; bucket = bucket->dthb_next) {
8155		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8156			break;
8157	}
8158
8159	ASSERT(bucket != NULL);
8160
8161	if (*prevp == NULL) {
8162		if (*nextp == NULL) {
8163			/*
8164			 * The removed probe was the only probe on this
8165			 * bucket; we need to remove the bucket.
8166			 */
8167			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8168
8169			ASSERT(bucket->dthb_chain == probe);
8170			ASSERT(b != NULL);
8171
8172			if (b == bucket) {
8173				hash->dth_tab[ndx] = bucket->dthb_next;
8174			} else {
8175				while (b->dthb_next != bucket)
8176					b = b->dthb_next;
8177				b->dthb_next = bucket->dthb_next;
8178			}
8179
8180			ASSERT(hash->dth_nbuckets > 0);
8181			hash->dth_nbuckets--;
8182			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8183			return;
8184		}
8185
8186		bucket->dthb_chain = *nextp;
8187	} else {
8188		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8189	}
8190
8191	if (*nextp != NULL)
8192		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8193}
8194
8195/*
8196 * DTrace Utility Functions
8197 *
8198 * These are random utility functions that are _not_ called from probe context.
8199 */
8200static int
8201dtrace_badattr(const dtrace_attribute_t *a)
8202{
8203	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8204	    a->dtat_data > DTRACE_STABILITY_MAX ||
8205	    a->dtat_class > DTRACE_CLASS_MAX);
8206}
8207
8208/*
8209 * Return a duplicate copy of a string.  If the specified string is NULL,
8210 * this function returns a zero-length string.
8211 */
8212static char *
8213dtrace_strdup(const char *str)
8214{
8215	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8216
8217	if (str != NULL)
8218		(void) strcpy(new, str);
8219
8220	return (new);
8221}
8222
8223#define	DTRACE_ISALPHA(c)	\
8224	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8225
8226static int
8227dtrace_badname(const char *s)
8228{
8229	char c;
8230
8231	if (s == NULL || (c = *s++) == '\0')
8232		return (0);
8233
8234	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8235		return (1);
8236
8237	while ((c = *s++) != '\0') {
8238		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8239		    c != '-' && c != '_' && c != '.' && c != '`')
8240			return (1);
8241	}
8242
8243	return (0);
8244}
8245
8246static void
8247dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8248{
8249	uint32_t priv;
8250
8251#ifdef illumos
8252	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8253		/*
8254		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8255		 */
8256		priv = DTRACE_PRIV_ALL;
8257	} else {
8258		*uidp = crgetuid(cr);
8259		*zoneidp = crgetzoneid(cr);
8260
8261		priv = 0;
8262		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8263			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8264		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8265			priv |= DTRACE_PRIV_USER;
8266		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8267			priv |= DTRACE_PRIV_PROC;
8268		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8269			priv |= DTRACE_PRIV_OWNER;
8270		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8271			priv |= DTRACE_PRIV_ZONEOWNER;
8272	}
8273#else
8274	priv = DTRACE_PRIV_ALL;
8275#endif
8276
8277	*privp = priv;
8278}
8279
8280#ifdef DTRACE_ERRDEBUG
8281static void
8282dtrace_errdebug(const char *str)
8283{
8284	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8285	int occupied = 0;
8286
8287	mutex_enter(&dtrace_errlock);
8288	dtrace_errlast = str;
8289	dtrace_errthread = curthread;
8290
8291	while (occupied++ < DTRACE_ERRHASHSZ) {
8292		if (dtrace_errhash[hval].dter_msg == str) {
8293			dtrace_errhash[hval].dter_count++;
8294			goto out;
8295		}
8296
8297		if (dtrace_errhash[hval].dter_msg != NULL) {
8298			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8299			continue;
8300		}
8301
8302		dtrace_errhash[hval].dter_msg = str;
8303		dtrace_errhash[hval].dter_count = 1;
8304		goto out;
8305	}
8306
8307	panic("dtrace: undersized error hash");
8308out:
8309	mutex_exit(&dtrace_errlock);
8310}
8311#endif
8312
8313/*
8314 * DTrace Matching Functions
8315 *
8316 * These functions are used to match groups of probes, given some elements of
8317 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8318 */
8319static int
8320dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8321    zoneid_t zoneid)
8322{
8323	if (priv != DTRACE_PRIV_ALL) {
8324		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8325		uint32_t match = priv & ppriv;
8326
8327		/*
8328		 * No PRIV_DTRACE_* privileges...
8329		 */
8330		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8331		    DTRACE_PRIV_KERNEL)) == 0)
8332			return (0);
8333
8334		/*
8335		 * No matching bits, but there were bits to match...
8336		 */
8337		if (match == 0 && ppriv != 0)
8338			return (0);
8339
8340		/*
8341		 * Need to have permissions to the process, but don't...
8342		 */
8343		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8344		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8345			return (0);
8346		}
8347
8348		/*
8349		 * Need to be in the same zone unless we possess the
8350		 * privilege to examine all zones.
8351		 */
8352		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8353		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8354			return (0);
8355		}
8356	}
8357
8358	return (1);
8359}
8360
8361/*
8362 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8363 * consists of input pattern strings and an ops-vector to evaluate them.
8364 * This function returns >0 for match, 0 for no match, and <0 for error.
8365 */
8366static int
8367dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8368    uint32_t priv, uid_t uid, zoneid_t zoneid)
8369{
8370	dtrace_provider_t *pvp = prp->dtpr_provider;
8371	int rv;
8372
8373	if (pvp->dtpv_defunct)
8374		return (0);
8375
8376	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8377		return (rv);
8378
8379	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8380		return (rv);
8381
8382	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8383		return (rv);
8384
8385	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8386		return (rv);
8387
8388	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8389		return (0);
8390
8391	return (rv);
8392}
8393
8394/*
8395 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8396 * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8397 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8398 * In addition, all of the recursion cases except for '*' matching have been
8399 * unwound.  For '*', we still implement recursive evaluation, but a depth
8400 * counter is maintained and matching is aborted if we recurse too deep.
8401 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8402 */
8403static int
8404dtrace_match_glob(const char *s, const char *p, int depth)
8405{
8406	const char *olds;
8407	char s1, c;
8408	int gs;
8409
8410	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8411		return (-1);
8412
8413	if (s == NULL)
8414		s = ""; /* treat NULL as empty string */
8415
8416top:
8417	olds = s;
8418	s1 = *s++;
8419
8420	if (p == NULL)
8421		return (0);
8422
8423	if ((c = *p++) == '\0')
8424		return (s1 == '\0');
8425
8426	switch (c) {
8427	case '[': {
8428		int ok = 0, notflag = 0;
8429		char lc = '\0';
8430
8431		if (s1 == '\0')
8432			return (0);
8433
8434		if (*p == '!') {
8435			notflag = 1;
8436			p++;
8437		}
8438
8439		if ((c = *p++) == '\0')
8440			return (0);
8441
8442		do {
8443			if (c == '-' && lc != '\0' && *p != ']') {
8444				if ((c = *p++) == '\0')
8445					return (0);
8446				if (c == '\\' && (c = *p++) == '\0')
8447					return (0);
8448
8449				if (notflag) {
8450					if (s1 < lc || s1 > c)
8451						ok++;
8452					else
8453						return (0);
8454				} else if (lc <= s1 && s1 <= c)
8455					ok++;
8456
8457			} else if (c == '\\' && (c = *p++) == '\0')
8458				return (0);
8459
8460			lc = c; /* save left-hand 'c' for next iteration */
8461
8462			if (notflag) {
8463				if (s1 != c)
8464					ok++;
8465				else
8466					return (0);
8467			} else if (s1 == c)
8468				ok++;
8469
8470			if ((c = *p++) == '\0')
8471				return (0);
8472
8473		} while (c != ']');
8474
8475		if (ok)
8476			goto top;
8477
8478		return (0);
8479	}
8480
8481	case '\\':
8482		if ((c = *p++) == '\0')
8483			return (0);
8484		/*FALLTHRU*/
8485
8486	default:
8487		if (c != s1)
8488			return (0);
8489		/*FALLTHRU*/
8490
8491	case '?':
8492		if (s1 != '\0')
8493			goto top;
8494		return (0);
8495
8496	case '*':
8497		while (*p == '*')
8498			p++; /* consecutive *'s are identical to a single one */
8499
8500		if (*p == '\0')
8501			return (1);
8502
8503		for (s = olds; *s != '\0'; s++) {
8504			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8505				return (gs);
8506		}
8507
8508		return (0);
8509	}
8510}
8511
8512/*ARGSUSED*/
8513static int
8514dtrace_match_string(const char *s, const char *p, int depth)
8515{
8516	return (s != NULL && strcmp(s, p) == 0);
8517}
8518
8519/*ARGSUSED*/
8520static int
8521dtrace_match_nul(const char *s, const char *p, int depth)
8522{
8523	return (1); /* always match the empty pattern */
8524}
8525
8526/*ARGSUSED*/
8527static int
8528dtrace_match_nonzero(const char *s, const char *p, int depth)
8529{
8530	return (s != NULL && s[0] != '\0');
8531}
8532
8533static int
8534dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8535    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8536{
8537	dtrace_probe_t template, *probe;
8538	dtrace_hash_t *hash = NULL;
8539	int len, best = INT_MAX, nmatched = 0;
8540	dtrace_id_t i;
8541
8542	ASSERT(MUTEX_HELD(&dtrace_lock));
8543
8544	/*
8545	 * If the probe ID is specified in the key, just lookup by ID and
8546	 * invoke the match callback once if a matching probe is found.
8547	 */
8548	if (pkp->dtpk_id != DTRACE_IDNONE) {
8549		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8550		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8551			(void) (*matched)(probe, arg);
8552			nmatched++;
8553		}
8554		return (nmatched);
8555	}
8556
8557	template.dtpr_mod = (char *)pkp->dtpk_mod;
8558	template.dtpr_func = (char *)pkp->dtpk_func;
8559	template.dtpr_name = (char *)pkp->dtpk_name;
8560
8561	/*
8562	 * We want to find the most distinct of the module name, function
8563	 * name, and name.  So for each one that is not a glob pattern or
8564	 * empty string, we perform a lookup in the corresponding hash and
8565	 * use the hash table with the fewest collisions to do our search.
8566	 */
8567	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8568	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8569		best = len;
8570		hash = dtrace_bymod;
8571	}
8572
8573	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8574	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8575		best = len;
8576		hash = dtrace_byfunc;
8577	}
8578
8579	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8580	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8581		best = len;
8582		hash = dtrace_byname;
8583	}
8584
8585	/*
8586	 * If we did not select a hash table, iterate over every probe and
8587	 * invoke our callback for each one that matches our input probe key.
8588	 */
8589	if (hash == NULL) {
8590		for (i = 0; i < dtrace_nprobes; i++) {
8591			if ((probe = dtrace_probes[i]) == NULL ||
8592			    dtrace_match_probe(probe, pkp, priv, uid,
8593			    zoneid) <= 0)
8594				continue;
8595
8596			nmatched++;
8597
8598			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8599				break;
8600		}
8601
8602		return (nmatched);
8603	}
8604
8605	/*
8606	 * If we selected a hash table, iterate over each probe of the same key
8607	 * name and invoke the callback for every probe that matches the other
8608	 * attributes of our input probe key.
8609	 */
8610	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8611	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8612
8613		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8614			continue;
8615
8616		nmatched++;
8617
8618		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8619			break;
8620	}
8621
8622	return (nmatched);
8623}
8624
8625/*
8626 * Return the function pointer dtrace_probecmp() should use to compare the
8627 * specified pattern with a string.  For NULL or empty patterns, we select
8628 * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8629 * For non-empty non-glob strings, we use dtrace_match_string().
8630 */
8631static dtrace_probekey_f *
8632dtrace_probekey_func(const char *p)
8633{
8634	char c;
8635
8636	if (p == NULL || *p == '\0')
8637		return (&dtrace_match_nul);
8638
8639	while ((c = *p++) != '\0') {
8640		if (c == '[' || c == '?' || c == '*' || c == '\\')
8641			return (&dtrace_match_glob);
8642	}
8643
8644	return (&dtrace_match_string);
8645}
8646
8647/*
8648 * Build a probe comparison key for use with dtrace_match_probe() from the
8649 * given probe description.  By convention, a null key only matches anchored
8650 * probes: if each field is the empty string, reset dtpk_fmatch to
8651 * dtrace_match_nonzero().
8652 */
8653static void
8654dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8655{
8656	pkp->dtpk_prov = pdp->dtpd_provider;
8657	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8658
8659	pkp->dtpk_mod = pdp->dtpd_mod;
8660	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8661
8662	pkp->dtpk_func = pdp->dtpd_func;
8663	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8664
8665	pkp->dtpk_name = pdp->dtpd_name;
8666	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8667
8668	pkp->dtpk_id = pdp->dtpd_id;
8669
8670	if (pkp->dtpk_id == DTRACE_IDNONE &&
8671	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8672	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8673	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8674	    pkp->dtpk_nmatch == &dtrace_match_nul)
8675		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8676}
8677
8678/*
8679 * DTrace Provider-to-Framework API Functions
8680 *
8681 * These functions implement much of the Provider-to-Framework API, as
8682 * described in <sys/dtrace.h>.  The parts of the API not in this section are
8683 * the functions in the API for probe management (found below), and
8684 * dtrace_probe() itself (found above).
8685 */
8686
8687/*
8688 * Register the calling provider with the DTrace framework.  This should
8689 * generally be called by DTrace providers in their attach(9E) entry point.
8690 */
8691int
8692dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8693    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8694{
8695	dtrace_provider_t *provider;
8696
8697	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8698		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8699		    "arguments", name ? name : "<NULL>");
8700		return (EINVAL);
8701	}
8702
8703	if (name[0] == '\0' || dtrace_badname(name)) {
8704		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8705		    "provider name", name);
8706		return (EINVAL);
8707	}
8708
8709	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8710	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8711	    pops->dtps_destroy == NULL ||
8712	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8713		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8714		    "provider ops", name);
8715		return (EINVAL);
8716	}
8717
8718	if (dtrace_badattr(&pap->dtpa_provider) ||
8719	    dtrace_badattr(&pap->dtpa_mod) ||
8720	    dtrace_badattr(&pap->dtpa_func) ||
8721	    dtrace_badattr(&pap->dtpa_name) ||
8722	    dtrace_badattr(&pap->dtpa_args)) {
8723		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8724		    "provider attributes", name);
8725		return (EINVAL);
8726	}
8727
8728	if (priv & ~DTRACE_PRIV_ALL) {
8729		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8730		    "privilege attributes", name);
8731		return (EINVAL);
8732	}
8733
8734	if ((priv & DTRACE_PRIV_KERNEL) &&
8735	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8736	    pops->dtps_usermode == NULL) {
8737		cmn_err(CE_WARN, "failed to register provider '%s': need "
8738		    "dtps_usermode() op for given privilege attributes", name);
8739		return (EINVAL);
8740	}
8741
8742	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8743	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8744	(void) strcpy(provider->dtpv_name, name);
8745
8746	provider->dtpv_attr = *pap;
8747	provider->dtpv_priv.dtpp_flags = priv;
8748	if (cr != NULL) {
8749		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8750		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8751	}
8752	provider->dtpv_pops = *pops;
8753
8754	if (pops->dtps_provide == NULL) {
8755		ASSERT(pops->dtps_provide_module != NULL);
8756		provider->dtpv_pops.dtps_provide =
8757		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8758	}
8759
8760	if (pops->dtps_provide_module == NULL) {
8761		ASSERT(pops->dtps_provide != NULL);
8762		provider->dtpv_pops.dtps_provide_module =
8763		    (void (*)(void *, modctl_t *))dtrace_nullop;
8764	}
8765
8766	if (pops->dtps_suspend == NULL) {
8767		ASSERT(pops->dtps_resume == NULL);
8768		provider->dtpv_pops.dtps_suspend =
8769		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8770		provider->dtpv_pops.dtps_resume =
8771		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8772	}
8773
8774	provider->dtpv_arg = arg;
8775	*idp = (dtrace_provider_id_t)provider;
8776
8777	if (pops == &dtrace_provider_ops) {
8778		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8779		ASSERT(MUTEX_HELD(&dtrace_lock));
8780		ASSERT(dtrace_anon.dta_enabling == NULL);
8781
8782		/*
8783		 * We make sure that the DTrace provider is at the head of
8784		 * the provider chain.
8785		 */
8786		provider->dtpv_next = dtrace_provider;
8787		dtrace_provider = provider;
8788		return (0);
8789	}
8790
8791	mutex_enter(&dtrace_provider_lock);
8792	mutex_enter(&dtrace_lock);
8793
8794	/*
8795	 * If there is at least one provider registered, we'll add this
8796	 * provider after the first provider.
8797	 */
8798	if (dtrace_provider != NULL) {
8799		provider->dtpv_next = dtrace_provider->dtpv_next;
8800		dtrace_provider->dtpv_next = provider;
8801	} else {
8802		dtrace_provider = provider;
8803	}
8804
8805	if (dtrace_retained != NULL) {
8806		dtrace_enabling_provide(provider);
8807
8808		/*
8809		 * Now we need to call dtrace_enabling_matchall() -- which
8810		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8811		 * to drop all of our locks before calling into it...
8812		 */
8813		mutex_exit(&dtrace_lock);
8814		mutex_exit(&dtrace_provider_lock);
8815		dtrace_enabling_matchall();
8816
8817		return (0);
8818	}
8819
8820	mutex_exit(&dtrace_lock);
8821	mutex_exit(&dtrace_provider_lock);
8822
8823	return (0);
8824}
8825
8826/*
8827 * Unregister the specified provider from the DTrace framework.  This should
8828 * generally be called by DTrace providers in their detach(9E) entry point.
8829 */
8830int
8831dtrace_unregister(dtrace_provider_id_t id)
8832{
8833	dtrace_provider_t *old = (dtrace_provider_t *)id;
8834	dtrace_provider_t *prev = NULL;
8835	int i, self = 0, noreap = 0;
8836	dtrace_probe_t *probe, *first = NULL;
8837
8838	if (old->dtpv_pops.dtps_enable ==
8839	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8840		/*
8841		 * If DTrace itself is the provider, we're called with locks
8842		 * already held.
8843		 */
8844		ASSERT(old == dtrace_provider);
8845#ifdef illumos
8846		ASSERT(dtrace_devi != NULL);
8847#endif
8848		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8849		ASSERT(MUTEX_HELD(&dtrace_lock));
8850		self = 1;
8851
8852		if (dtrace_provider->dtpv_next != NULL) {
8853			/*
8854			 * There's another provider here; return failure.
8855			 */
8856			return (EBUSY);
8857		}
8858	} else {
8859		mutex_enter(&dtrace_provider_lock);
8860#ifdef illumos
8861		mutex_enter(&mod_lock);
8862#endif
8863		mutex_enter(&dtrace_lock);
8864	}
8865
8866	/*
8867	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8868	 * probes, we refuse to let providers slither away, unless this
8869	 * provider has already been explicitly invalidated.
8870	 */
8871	if (!old->dtpv_defunct &&
8872	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8873	    dtrace_anon.dta_state->dts_necbs > 0))) {
8874		if (!self) {
8875			mutex_exit(&dtrace_lock);
8876#ifdef illumos
8877			mutex_exit(&mod_lock);
8878#endif
8879			mutex_exit(&dtrace_provider_lock);
8880		}
8881		return (EBUSY);
8882	}
8883
8884	/*
8885	 * Attempt to destroy the probes associated with this provider.
8886	 */
8887	for (i = 0; i < dtrace_nprobes; i++) {
8888		if ((probe = dtrace_probes[i]) == NULL)
8889			continue;
8890
8891		if (probe->dtpr_provider != old)
8892			continue;
8893
8894		if (probe->dtpr_ecb == NULL)
8895			continue;
8896
8897		/*
8898		 * If we are trying to unregister a defunct provider, and the
8899		 * provider was made defunct within the interval dictated by
8900		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8901		 * attempt to reap our enablings.  To denote that the provider
8902		 * should reattempt to unregister itself at some point in the
8903		 * future, we will return a differentiable error code (EAGAIN
8904		 * instead of EBUSY) in this case.
8905		 */
8906		if (dtrace_gethrtime() - old->dtpv_defunct >
8907		    dtrace_unregister_defunct_reap)
8908			noreap = 1;
8909
8910		if (!self) {
8911			mutex_exit(&dtrace_lock);
8912#ifdef illumos
8913			mutex_exit(&mod_lock);
8914#endif
8915			mutex_exit(&dtrace_provider_lock);
8916		}
8917
8918		if (noreap)
8919			return (EBUSY);
8920
8921		(void) taskq_dispatch(dtrace_taskq,
8922		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8923
8924		return (EAGAIN);
8925	}
8926
8927	/*
8928	 * All of the probes for this provider are disabled; we can safely
8929	 * remove all of them from their hash chains and from the probe array.
8930	 */
8931	for (i = 0; i < dtrace_nprobes; i++) {
8932		if ((probe = dtrace_probes[i]) == NULL)
8933			continue;
8934
8935		if (probe->dtpr_provider != old)
8936			continue;
8937
8938		dtrace_probes[i] = NULL;
8939
8940		dtrace_hash_remove(dtrace_bymod, probe);
8941		dtrace_hash_remove(dtrace_byfunc, probe);
8942		dtrace_hash_remove(dtrace_byname, probe);
8943
8944		if (first == NULL) {
8945			first = probe;
8946			probe->dtpr_nextmod = NULL;
8947		} else {
8948			probe->dtpr_nextmod = first;
8949			first = probe;
8950		}
8951	}
8952
8953	/*
8954	 * The provider's probes have been removed from the hash chains and
8955	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8956	 * everyone has cleared out from any probe array processing.
8957	 */
8958	dtrace_sync();
8959
8960	for (probe = first; probe != NULL; probe = first) {
8961		first = probe->dtpr_nextmod;
8962
8963		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8964		    probe->dtpr_arg);
8965		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8966		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8967		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8968#ifdef illumos
8969		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8970#else
8971		free_unr(dtrace_arena, probe->dtpr_id);
8972#endif
8973		kmem_free(probe, sizeof (dtrace_probe_t));
8974	}
8975
8976	if ((prev = dtrace_provider) == old) {
8977#ifdef illumos
8978		ASSERT(self || dtrace_devi == NULL);
8979		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8980#endif
8981		dtrace_provider = old->dtpv_next;
8982	} else {
8983		while (prev != NULL && prev->dtpv_next != old)
8984			prev = prev->dtpv_next;
8985
8986		if (prev == NULL) {
8987			panic("attempt to unregister non-existent "
8988			    "dtrace provider %p\n", (void *)id);
8989		}
8990
8991		prev->dtpv_next = old->dtpv_next;
8992	}
8993
8994	if (!self) {
8995		mutex_exit(&dtrace_lock);
8996#ifdef illumos
8997		mutex_exit(&mod_lock);
8998#endif
8999		mutex_exit(&dtrace_provider_lock);
9000	}
9001
9002	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9003	kmem_free(old, sizeof (dtrace_provider_t));
9004
9005	return (0);
9006}
9007
9008/*
9009 * Invalidate the specified provider.  All subsequent probe lookups for the
9010 * specified provider will fail, but its probes will not be removed.
9011 */
9012void
9013dtrace_invalidate(dtrace_provider_id_t id)
9014{
9015	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9016
9017	ASSERT(pvp->dtpv_pops.dtps_enable !=
9018	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9019
9020	mutex_enter(&dtrace_provider_lock);
9021	mutex_enter(&dtrace_lock);
9022
9023	pvp->dtpv_defunct = dtrace_gethrtime();
9024
9025	mutex_exit(&dtrace_lock);
9026	mutex_exit(&dtrace_provider_lock);
9027}
9028
9029/*
9030 * Indicate whether or not DTrace has attached.
9031 */
9032int
9033dtrace_attached(void)
9034{
9035	/*
9036	 * dtrace_provider will be non-NULL iff the DTrace driver has
9037	 * attached.  (It's non-NULL because DTrace is always itself a
9038	 * provider.)
9039	 */
9040	return (dtrace_provider != NULL);
9041}
9042
9043/*
9044 * Remove all the unenabled probes for the given provider.  This function is
9045 * not unlike dtrace_unregister(), except that it doesn't remove the provider
9046 * -- just as many of its associated probes as it can.
9047 */
9048int
9049dtrace_condense(dtrace_provider_id_t id)
9050{
9051	dtrace_provider_t *prov = (dtrace_provider_t *)id;
9052	int i;
9053	dtrace_probe_t *probe;
9054
9055	/*
9056	 * Make sure this isn't the dtrace provider itself.
9057	 */
9058	ASSERT(prov->dtpv_pops.dtps_enable !=
9059	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9060
9061	mutex_enter(&dtrace_provider_lock);
9062	mutex_enter(&dtrace_lock);
9063
9064	/*
9065	 * Attempt to destroy the probes associated with this provider.
9066	 */
9067	for (i = 0; i < dtrace_nprobes; i++) {
9068		if ((probe = dtrace_probes[i]) == NULL)
9069			continue;
9070
9071		if (probe->dtpr_provider != prov)
9072			continue;
9073
9074		if (probe->dtpr_ecb != NULL)
9075			continue;
9076
9077		dtrace_probes[i] = NULL;
9078
9079		dtrace_hash_remove(dtrace_bymod, probe);
9080		dtrace_hash_remove(dtrace_byfunc, probe);
9081		dtrace_hash_remove(dtrace_byname, probe);
9082
9083		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9084		    probe->dtpr_arg);
9085		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9086		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9087		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9088		kmem_free(probe, sizeof (dtrace_probe_t));
9089#ifdef illumos
9090		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9091#else
9092		free_unr(dtrace_arena, i + 1);
9093#endif
9094	}
9095
9096	mutex_exit(&dtrace_lock);
9097	mutex_exit(&dtrace_provider_lock);
9098
9099	return (0);
9100}
9101
9102/*
9103 * DTrace Probe Management Functions
9104 *
9105 * The functions in this section perform the DTrace probe management,
9106 * including functions to create probes, look-up probes, and call into the
9107 * providers to request that probes be provided.  Some of these functions are
9108 * in the Provider-to-Framework API; these functions can be identified by the
9109 * fact that they are not declared "static".
9110 */
9111
9112/*
9113 * Create a probe with the specified module name, function name, and name.
9114 */
9115dtrace_id_t
9116dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9117    const char *func, const char *name, int aframes, void *arg)
9118{
9119	dtrace_probe_t *probe, **probes;
9120	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9121	dtrace_id_t id;
9122
9123	if (provider == dtrace_provider) {
9124		ASSERT(MUTEX_HELD(&dtrace_lock));
9125	} else {
9126		mutex_enter(&dtrace_lock);
9127	}
9128
9129#ifdef illumos
9130	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9131	    VM_BESTFIT | VM_SLEEP);
9132#else
9133	id = alloc_unr(dtrace_arena);
9134#endif
9135	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9136
9137	probe->dtpr_id = id;
9138	probe->dtpr_gen = dtrace_probegen++;
9139	probe->dtpr_mod = dtrace_strdup(mod);
9140	probe->dtpr_func = dtrace_strdup(func);
9141	probe->dtpr_name = dtrace_strdup(name);
9142	probe->dtpr_arg = arg;
9143	probe->dtpr_aframes = aframes;
9144	probe->dtpr_provider = provider;
9145
9146	dtrace_hash_add(dtrace_bymod, probe);
9147	dtrace_hash_add(dtrace_byfunc, probe);
9148	dtrace_hash_add(dtrace_byname, probe);
9149
9150	if (id - 1 >= dtrace_nprobes) {
9151		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9152		size_t nsize = osize << 1;
9153
9154		if (nsize == 0) {
9155			ASSERT(osize == 0);
9156			ASSERT(dtrace_probes == NULL);
9157			nsize = sizeof (dtrace_probe_t *);
9158		}
9159
9160		probes = kmem_zalloc(nsize, KM_SLEEP);
9161
9162		if (dtrace_probes == NULL) {
9163			ASSERT(osize == 0);
9164			dtrace_probes = probes;
9165			dtrace_nprobes = 1;
9166		} else {
9167			dtrace_probe_t **oprobes = dtrace_probes;
9168
9169			bcopy(oprobes, probes, osize);
9170			dtrace_membar_producer();
9171			dtrace_probes = probes;
9172
9173			dtrace_sync();
9174
9175			/*
9176			 * All CPUs are now seeing the new probes array; we can
9177			 * safely free the old array.
9178			 */
9179			kmem_free(oprobes, osize);
9180			dtrace_nprobes <<= 1;
9181		}
9182
9183		ASSERT(id - 1 < dtrace_nprobes);
9184	}
9185
9186	ASSERT(dtrace_probes[id - 1] == NULL);
9187	dtrace_probes[id - 1] = probe;
9188
9189	if (provider != dtrace_provider)
9190		mutex_exit(&dtrace_lock);
9191
9192	return (id);
9193}
9194
9195static dtrace_probe_t *
9196dtrace_probe_lookup_id(dtrace_id_t id)
9197{
9198	ASSERT(MUTEX_HELD(&dtrace_lock));
9199
9200	if (id == 0 || id > dtrace_nprobes)
9201		return (NULL);
9202
9203	return (dtrace_probes[id - 1]);
9204}
9205
9206static int
9207dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9208{
9209	*((dtrace_id_t *)arg) = probe->dtpr_id;
9210
9211	return (DTRACE_MATCH_DONE);
9212}
9213
9214/*
9215 * Look up a probe based on provider and one or more of module name, function
9216 * name and probe name.
9217 */
9218dtrace_id_t
9219dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9220    char *func, char *name)
9221{
9222	dtrace_probekey_t pkey;
9223	dtrace_id_t id;
9224	int match;
9225
9226	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9227	pkey.dtpk_pmatch = &dtrace_match_string;
9228	pkey.dtpk_mod = mod;
9229	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9230	pkey.dtpk_func = func;
9231	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9232	pkey.dtpk_name = name;
9233	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9234	pkey.dtpk_id = DTRACE_IDNONE;
9235
9236	mutex_enter(&dtrace_lock);
9237	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9238	    dtrace_probe_lookup_match, &id);
9239	mutex_exit(&dtrace_lock);
9240
9241	ASSERT(match == 1 || match == 0);
9242	return (match ? id : 0);
9243}
9244
9245/*
9246 * Returns the probe argument associated with the specified probe.
9247 */
9248void *
9249dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9250{
9251	dtrace_probe_t *probe;
9252	void *rval = NULL;
9253
9254	mutex_enter(&dtrace_lock);
9255
9256	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9257	    probe->dtpr_provider == (dtrace_provider_t *)id)
9258		rval = probe->dtpr_arg;
9259
9260	mutex_exit(&dtrace_lock);
9261
9262	return (rval);
9263}
9264
9265/*
9266 * Copy a probe into a probe description.
9267 */
9268static void
9269dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9270{
9271	bzero(pdp, sizeof (dtrace_probedesc_t));
9272	pdp->dtpd_id = prp->dtpr_id;
9273
9274	(void) strncpy(pdp->dtpd_provider,
9275	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9276
9277	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9278	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9279	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9280}
9281
9282/*
9283 * Called to indicate that a probe -- or probes -- should be provided by a
9284 * specfied provider.  If the specified description is NULL, the provider will
9285 * be told to provide all of its probes.  (This is done whenever a new
9286 * consumer comes along, or whenever a retained enabling is to be matched.) If
9287 * the specified description is non-NULL, the provider is given the
9288 * opportunity to dynamically provide the specified probe, allowing providers
9289 * to support the creation of probes on-the-fly.  (So-called _autocreated_
9290 * probes.)  If the provider is NULL, the operations will be applied to all
9291 * providers; if the provider is non-NULL the operations will only be applied
9292 * to the specified provider.  The dtrace_provider_lock must be held, and the
9293 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9294 * will need to grab the dtrace_lock when it reenters the framework through
9295 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9296 */
9297static void
9298dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9299{
9300#ifdef illumos
9301	modctl_t *ctl;
9302#endif
9303	int all = 0;
9304
9305	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9306
9307	if (prv == NULL) {
9308		all = 1;
9309		prv = dtrace_provider;
9310	}
9311
9312	do {
9313		/*
9314		 * First, call the blanket provide operation.
9315		 */
9316		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9317
9318#ifdef illumos
9319		/*
9320		 * Now call the per-module provide operation.  We will grab
9321		 * mod_lock to prevent the list from being modified.  Note
9322		 * that this also prevents the mod_busy bits from changing.
9323		 * (mod_busy can only be changed with mod_lock held.)
9324		 */
9325		mutex_enter(&mod_lock);
9326
9327		ctl = &modules;
9328		do {
9329			if (ctl->mod_busy || ctl->mod_mp == NULL)
9330				continue;
9331
9332			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9333
9334		} while ((ctl = ctl->mod_next) != &modules);
9335
9336		mutex_exit(&mod_lock);
9337#endif
9338	} while (all && (prv = prv->dtpv_next) != NULL);
9339}
9340
9341#ifdef illumos
9342/*
9343 * Iterate over each probe, and call the Framework-to-Provider API function
9344 * denoted by offs.
9345 */
9346static void
9347dtrace_probe_foreach(uintptr_t offs)
9348{
9349	dtrace_provider_t *prov;
9350	void (*func)(void *, dtrace_id_t, void *);
9351	dtrace_probe_t *probe;
9352	dtrace_icookie_t cookie;
9353	int i;
9354
9355	/*
9356	 * We disable interrupts to walk through the probe array.  This is
9357	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9358	 * won't see stale data.
9359	 */
9360	cookie = dtrace_interrupt_disable();
9361
9362	for (i = 0; i < dtrace_nprobes; i++) {
9363		if ((probe = dtrace_probes[i]) == NULL)
9364			continue;
9365
9366		if (probe->dtpr_ecb == NULL) {
9367			/*
9368			 * This probe isn't enabled -- don't call the function.
9369			 */
9370			continue;
9371		}
9372
9373		prov = probe->dtpr_provider;
9374		func = *((void(**)(void *, dtrace_id_t, void *))
9375		    ((uintptr_t)&prov->dtpv_pops + offs));
9376
9377		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9378	}
9379
9380	dtrace_interrupt_enable(cookie);
9381}
9382#endif
9383
9384static int
9385dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9386{
9387	dtrace_probekey_t pkey;
9388	uint32_t priv;
9389	uid_t uid;
9390	zoneid_t zoneid;
9391
9392	ASSERT(MUTEX_HELD(&dtrace_lock));
9393	dtrace_ecb_create_cache = NULL;
9394
9395	if (desc == NULL) {
9396		/*
9397		 * If we're passed a NULL description, we're being asked to
9398		 * create an ECB with a NULL probe.
9399		 */
9400		(void) dtrace_ecb_create_enable(NULL, enab);
9401		return (0);
9402	}
9403
9404	dtrace_probekey(desc, &pkey);
9405	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9406	    &priv, &uid, &zoneid);
9407
9408	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9409	    enab));
9410}
9411
9412/*
9413 * DTrace Helper Provider Functions
9414 */
9415static void
9416dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9417{
9418	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9419	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9420	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9421}
9422
9423static void
9424dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9425    const dof_provider_t *dofprov, char *strtab)
9426{
9427	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9428	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9429	    dofprov->dofpv_provattr);
9430	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9431	    dofprov->dofpv_modattr);
9432	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9433	    dofprov->dofpv_funcattr);
9434	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9435	    dofprov->dofpv_nameattr);
9436	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9437	    dofprov->dofpv_argsattr);
9438}
9439
9440static void
9441dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9442{
9443	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9444	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9445	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9446	dof_provider_t *provider;
9447	dof_probe_t *probe;
9448	uint32_t *off, *enoff;
9449	uint8_t *arg;
9450	char *strtab;
9451	uint_t i, nprobes;
9452	dtrace_helper_provdesc_t dhpv;
9453	dtrace_helper_probedesc_t dhpb;
9454	dtrace_meta_t *meta = dtrace_meta_pid;
9455	dtrace_mops_t *mops = &meta->dtm_mops;
9456	void *parg;
9457
9458	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9459	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9460	    provider->dofpv_strtab * dof->dofh_secsize);
9461	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9462	    provider->dofpv_probes * dof->dofh_secsize);
9463	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9464	    provider->dofpv_prargs * dof->dofh_secsize);
9465	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9466	    provider->dofpv_proffs * dof->dofh_secsize);
9467
9468	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9469	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9470	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9471	enoff = NULL;
9472
9473	/*
9474	 * See dtrace_helper_provider_validate().
9475	 */
9476	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9477	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9478		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9479		    provider->dofpv_prenoffs * dof->dofh_secsize);
9480		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9481	}
9482
9483	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9484
9485	/*
9486	 * Create the provider.
9487	 */
9488	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9489
9490	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9491		return;
9492
9493	meta->dtm_count++;
9494
9495	/*
9496	 * Create the probes.
9497	 */
9498	for (i = 0; i < nprobes; i++) {
9499		probe = (dof_probe_t *)(uintptr_t)(daddr +
9500		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9501
9502		/* See the check in dtrace_helper_provider_validate(). */
9503		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9504			continue;
9505
9506		dhpb.dthpb_mod = dhp->dofhp_mod;
9507		dhpb.dthpb_func = strtab + probe->dofpr_func;
9508		dhpb.dthpb_name = strtab + probe->dofpr_name;
9509		dhpb.dthpb_base = probe->dofpr_addr;
9510		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9511		dhpb.dthpb_noffs = probe->dofpr_noffs;
9512		if (enoff != NULL) {
9513			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9514			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9515		} else {
9516			dhpb.dthpb_enoffs = NULL;
9517			dhpb.dthpb_nenoffs = 0;
9518		}
9519		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9520		dhpb.dthpb_nargc = probe->dofpr_nargc;
9521		dhpb.dthpb_xargc = probe->dofpr_xargc;
9522		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9523		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9524
9525		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9526	}
9527}
9528
9529static void
9530dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9531{
9532	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9533	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9534	int i;
9535
9536	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9537
9538	for (i = 0; i < dof->dofh_secnum; i++) {
9539		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9540		    dof->dofh_secoff + i * dof->dofh_secsize);
9541
9542		if (sec->dofs_type != DOF_SECT_PROVIDER)
9543			continue;
9544
9545		dtrace_helper_provide_one(dhp, sec, pid);
9546	}
9547
9548	/*
9549	 * We may have just created probes, so we must now rematch against
9550	 * any retained enablings.  Note that this call will acquire both
9551	 * cpu_lock and dtrace_lock; the fact that we are holding
9552	 * dtrace_meta_lock now is what defines the ordering with respect to
9553	 * these three locks.
9554	 */
9555	dtrace_enabling_matchall();
9556}
9557
9558static void
9559dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9560{
9561	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9562	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9563	dof_sec_t *str_sec;
9564	dof_provider_t *provider;
9565	char *strtab;
9566	dtrace_helper_provdesc_t dhpv;
9567	dtrace_meta_t *meta = dtrace_meta_pid;
9568	dtrace_mops_t *mops = &meta->dtm_mops;
9569
9570	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9571	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9572	    provider->dofpv_strtab * dof->dofh_secsize);
9573
9574	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9575
9576	/*
9577	 * Create the provider.
9578	 */
9579	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9580
9581	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9582
9583	meta->dtm_count--;
9584}
9585
9586static void
9587dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9588{
9589	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9590	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9591	int i;
9592
9593	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9594
9595	for (i = 0; i < dof->dofh_secnum; i++) {
9596		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9597		    dof->dofh_secoff + i * dof->dofh_secsize);
9598
9599		if (sec->dofs_type != DOF_SECT_PROVIDER)
9600			continue;
9601
9602		dtrace_helper_provider_remove_one(dhp, sec, pid);
9603	}
9604}
9605
9606/*
9607 * DTrace Meta Provider-to-Framework API Functions
9608 *
9609 * These functions implement the Meta Provider-to-Framework API, as described
9610 * in <sys/dtrace.h>.
9611 */
9612int
9613dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9614    dtrace_meta_provider_id_t *idp)
9615{
9616	dtrace_meta_t *meta;
9617	dtrace_helpers_t *help, *next;
9618	int i;
9619
9620	*idp = DTRACE_METAPROVNONE;
9621
9622	/*
9623	 * We strictly don't need the name, but we hold onto it for
9624	 * debuggability. All hail error queues!
9625	 */
9626	if (name == NULL) {
9627		cmn_err(CE_WARN, "failed to register meta-provider: "
9628		    "invalid name");
9629		return (EINVAL);
9630	}
9631
9632	if (mops == NULL ||
9633	    mops->dtms_create_probe == NULL ||
9634	    mops->dtms_provide_pid == NULL ||
9635	    mops->dtms_remove_pid == NULL) {
9636		cmn_err(CE_WARN, "failed to register meta-register %s: "
9637		    "invalid ops", name);
9638		return (EINVAL);
9639	}
9640
9641	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9642	meta->dtm_mops = *mops;
9643	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9644	(void) strcpy(meta->dtm_name, name);
9645	meta->dtm_arg = arg;
9646
9647	mutex_enter(&dtrace_meta_lock);
9648	mutex_enter(&dtrace_lock);
9649
9650	if (dtrace_meta_pid != NULL) {
9651		mutex_exit(&dtrace_lock);
9652		mutex_exit(&dtrace_meta_lock);
9653		cmn_err(CE_WARN, "failed to register meta-register %s: "
9654		    "user-land meta-provider exists", name);
9655		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9656		kmem_free(meta, sizeof (dtrace_meta_t));
9657		return (EINVAL);
9658	}
9659
9660	dtrace_meta_pid = meta;
9661	*idp = (dtrace_meta_provider_id_t)meta;
9662
9663	/*
9664	 * If there are providers and probes ready to go, pass them
9665	 * off to the new meta provider now.
9666	 */
9667
9668	help = dtrace_deferred_pid;
9669	dtrace_deferred_pid = NULL;
9670
9671	mutex_exit(&dtrace_lock);
9672
9673	while (help != NULL) {
9674		for (i = 0; i < help->dthps_nprovs; i++) {
9675			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9676			    help->dthps_pid);
9677		}
9678
9679		next = help->dthps_next;
9680		help->dthps_next = NULL;
9681		help->dthps_prev = NULL;
9682		help->dthps_deferred = 0;
9683		help = next;
9684	}
9685
9686	mutex_exit(&dtrace_meta_lock);
9687
9688	return (0);
9689}
9690
9691int
9692dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9693{
9694	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9695
9696	mutex_enter(&dtrace_meta_lock);
9697	mutex_enter(&dtrace_lock);
9698
9699	if (old == dtrace_meta_pid) {
9700		pp = &dtrace_meta_pid;
9701	} else {
9702		panic("attempt to unregister non-existent "
9703		    "dtrace meta-provider %p\n", (void *)old);
9704	}
9705
9706	if (old->dtm_count != 0) {
9707		mutex_exit(&dtrace_lock);
9708		mutex_exit(&dtrace_meta_lock);
9709		return (EBUSY);
9710	}
9711
9712	*pp = NULL;
9713
9714	mutex_exit(&dtrace_lock);
9715	mutex_exit(&dtrace_meta_lock);
9716
9717	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9718	kmem_free(old, sizeof (dtrace_meta_t));
9719
9720	return (0);
9721}
9722
9723
9724/*
9725 * DTrace DIF Object Functions
9726 */
9727static int
9728dtrace_difo_err(uint_t pc, const char *format, ...)
9729{
9730	if (dtrace_err_verbose) {
9731		va_list alist;
9732
9733		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9734		va_start(alist, format);
9735		(void) vuprintf(format, alist);
9736		va_end(alist);
9737	}
9738
9739#ifdef DTRACE_ERRDEBUG
9740	dtrace_errdebug(format);
9741#endif
9742	return (1);
9743}
9744
9745/*
9746 * Validate a DTrace DIF object by checking the IR instructions.  The following
9747 * rules are currently enforced by dtrace_difo_validate():
9748 *
9749 * 1. Each instruction must have a valid opcode
9750 * 2. Each register, string, variable, or subroutine reference must be valid
9751 * 3. No instruction can modify register %r0 (must be zero)
9752 * 4. All instruction reserved bits must be set to zero
9753 * 5. The last instruction must be a "ret" instruction
9754 * 6. All branch targets must reference a valid instruction _after_ the branch
9755 */
9756static int
9757dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9758    cred_t *cr)
9759{
9760	int err = 0, i;
9761	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9762	int kcheckload;
9763	uint_t pc;
9764	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9765
9766	kcheckload = cr == NULL ||
9767	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9768
9769	dp->dtdo_destructive = 0;
9770
9771	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9772		dif_instr_t instr = dp->dtdo_buf[pc];
9773
9774		uint_t r1 = DIF_INSTR_R1(instr);
9775		uint_t r2 = DIF_INSTR_R2(instr);
9776		uint_t rd = DIF_INSTR_RD(instr);
9777		uint_t rs = DIF_INSTR_RS(instr);
9778		uint_t label = DIF_INSTR_LABEL(instr);
9779		uint_t v = DIF_INSTR_VAR(instr);
9780		uint_t subr = DIF_INSTR_SUBR(instr);
9781		uint_t type = DIF_INSTR_TYPE(instr);
9782		uint_t op = DIF_INSTR_OP(instr);
9783
9784		switch (op) {
9785		case DIF_OP_OR:
9786		case DIF_OP_XOR:
9787		case DIF_OP_AND:
9788		case DIF_OP_SLL:
9789		case DIF_OP_SRL:
9790		case DIF_OP_SRA:
9791		case DIF_OP_SUB:
9792		case DIF_OP_ADD:
9793		case DIF_OP_MUL:
9794		case DIF_OP_SDIV:
9795		case DIF_OP_UDIV:
9796		case DIF_OP_SREM:
9797		case DIF_OP_UREM:
9798		case DIF_OP_COPYS:
9799			if (r1 >= nregs)
9800				err += efunc(pc, "invalid register %u\n", r1);
9801			if (r2 >= nregs)
9802				err += efunc(pc, "invalid register %u\n", r2);
9803			if (rd >= nregs)
9804				err += efunc(pc, "invalid register %u\n", rd);
9805			if (rd == 0)
9806				err += efunc(pc, "cannot write to %r0\n");
9807			break;
9808		case DIF_OP_NOT:
9809		case DIF_OP_MOV:
9810		case DIF_OP_ALLOCS:
9811			if (r1 >= nregs)
9812				err += efunc(pc, "invalid register %u\n", r1);
9813			if (r2 != 0)
9814				err += efunc(pc, "non-zero reserved bits\n");
9815			if (rd >= nregs)
9816				err += efunc(pc, "invalid register %u\n", rd);
9817			if (rd == 0)
9818				err += efunc(pc, "cannot write to %r0\n");
9819			break;
9820		case DIF_OP_LDSB:
9821		case DIF_OP_LDSH:
9822		case DIF_OP_LDSW:
9823		case DIF_OP_LDUB:
9824		case DIF_OP_LDUH:
9825		case DIF_OP_LDUW:
9826		case DIF_OP_LDX:
9827			if (r1 >= nregs)
9828				err += efunc(pc, "invalid register %u\n", r1);
9829			if (r2 != 0)
9830				err += efunc(pc, "non-zero reserved bits\n");
9831			if (rd >= nregs)
9832				err += efunc(pc, "invalid register %u\n", rd);
9833			if (rd == 0)
9834				err += efunc(pc, "cannot write to %r0\n");
9835			if (kcheckload)
9836				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9837				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9838			break;
9839		case DIF_OP_RLDSB:
9840		case DIF_OP_RLDSH:
9841		case DIF_OP_RLDSW:
9842		case DIF_OP_RLDUB:
9843		case DIF_OP_RLDUH:
9844		case DIF_OP_RLDUW:
9845		case DIF_OP_RLDX:
9846			if (r1 >= nregs)
9847				err += efunc(pc, "invalid register %u\n", r1);
9848			if (r2 != 0)
9849				err += efunc(pc, "non-zero reserved bits\n");
9850			if (rd >= nregs)
9851				err += efunc(pc, "invalid register %u\n", rd);
9852			if (rd == 0)
9853				err += efunc(pc, "cannot write to %r0\n");
9854			break;
9855		case DIF_OP_ULDSB:
9856		case DIF_OP_ULDSH:
9857		case DIF_OP_ULDSW:
9858		case DIF_OP_ULDUB:
9859		case DIF_OP_ULDUH:
9860		case DIF_OP_ULDUW:
9861		case DIF_OP_ULDX:
9862			if (r1 >= nregs)
9863				err += efunc(pc, "invalid register %u\n", r1);
9864			if (r2 != 0)
9865				err += efunc(pc, "non-zero reserved bits\n");
9866			if (rd >= nregs)
9867				err += efunc(pc, "invalid register %u\n", rd);
9868			if (rd == 0)
9869				err += efunc(pc, "cannot write to %r0\n");
9870			break;
9871		case DIF_OP_STB:
9872		case DIF_OP_STH:
9873		case DIF_OP_STW:
9874		case DIF_OP_STX:
9875			if (r1 >= nregs)
9876				err += efunc(pc, "invalid register %u\n", r1);
9877			if (r2 != 0)
9878				err += efunc(pc, "non-zero reserved bits\n");
9879			if (rd >= nregs)
9880				err += efunc(pc, "invalid register %u\n", rd);
9881			if (rd == 0)
9882				err += efunc(pc, "cannot write to 0 address\n");
9883			break;
9884		case DIF_OP_CMP:
9885		case DIF_OP_SCMP:
9886			if (r1 >= nregs)
9887				err += efunc(pc, "invalid register %u\n", r1);
9888			if (r2 >= nregs)
9889				err += efunc(pc, "invalid register %u\n", r2);
9890			if (rd != 0)
9891				err += efunc(pc, "non-zero reserved bits\n");
9892			break;
9893		case DIF_OP_TST:
9894			if (r1 >= nregs)
9895				err += efunc(pc, "invalid register %u\n", r1);
9896			if (r2 != 0 || rd != 0)
9897				err += efunc(pc, "non-zero reserved bits\n");
9898			break;
9899		case DIF_OP_BA:
9900		case DIF_OP_BE:
9901		case DIF_OP_BNE:
9902		case DIF_OP_BG:
9903		case DIF_OP_BGU:
9904		case DIF_OP_BGE:
9905		case DIF_OP_BGEU:
9906		case DIF_OP_BL:
9907		case DIF_OP_BLU:
9908		case DIF_OP_BLE:
9909		case DIF_OP_BLEU:
9910			if (label >= dp->dtdo_len) {
9911				err += efunc(pc, "invalid branch target %u\n",
9912				    label);
9913			}
9914			if (label <= pc) {
9915				err += efunc(pc, "backward branch to %u\n",
9916				    label);
9917			}
9918			break;
9919		case DIF_OP_RET:
9920			if (r1 != 0 || r2 != 0)
9921				err += efunc(pc, "non-zero reserved bits\n");
9922			if (rd >= nregs)
9923				err += efunc(pc, "invalid register %u\n", rd);
9924			break;
9925		case DIF_OP_NOP:
9926		case DIF_OP_POPTS:
9927		case DIF_OP_FLUSHTS:
9928			if (r1 != 0 || r2 != 0 || rd != 0)
9929				err += efunc(pc, "non-zero reserved bits\n");
9930			break;
9931		case DIF_OP_SETX:
9932			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9933				err += efunc(pc, "invalid integer ref %u\n",
9934				    DIF_INSTR_INTEGER(instr));
9935			}
9936			if (rd >= nregs)
9937				err += efunc(pc, "invalid register %u\n", rd);
9938			if (rd == 0)
9939				err += efunc(pc, "cannot write to %r0\n");
9940			break;
9941		case DIF_OP_SETS:
9942			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9943				err += efunc(pc, "invalid string ref %u\n",
9944				    DIF_INSTR_STRING(instr));
9945			}
9946			if (rd >= nregs)
9947				err += efunc(pc, "invalid register %u\n", rd);
9948			if (rd == 0)
9949				err += efunc(pc, "cannot write to %r0\n");
9950			break;
9951		case DIF_OP_LDGA:
9952		case DIF_OP_LDTA:
9953			if (r1 > DIF_VAR_ARRAY_MAX)
9954				err += efunc(pc, "invalid array %u\n", r1);
9955			if (r2 >= nregs)
9956				err += efunc(pc, "invalid register %u\n", r2);
9957			if (rd >= nregs)
9958				err += efunc(pc, "invalid register %u\n", rd);
9959			if (rd == 0)
9960				err += efunc(pc, "cannot write to %r0\n");
9961			break;
9962		case DIF_OP_LDGS:
9963		case DIF_OP_LDTS:
9964		case DIF_OP_LDLS:
9965		case DIF_OP_LDGAA:
9966		case DIF_OP_LDTAA:
9967			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9968				err += efunc(pc, "invalid variable %u\n", v);
9969			if (rd >= nregs)
9970				err += efunc(pc, "invalid register %u\n", rd);
9971			if (rd == 0)
9972				err += efunc(pc, "cannot write to %r0\n");
9973			break;
9974		case DIF_OP_STGS:
9975		case DIF_OP_STTS:
9976		case DIF_OP_STLS:
9977		case DIF_OP_STGAA:
9978		case DIF_OP_STTAA:
9979			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9980				err += efunc(pc, "invalid variable %u\n", v);
9981			if (rs >= nregs)
9982				err += efunc(pc, "invalid register %u\n", rd);
9983			break;
9984		case DIF_OP_CALL:
9985			if (subr > DIF_SUBR_MAX)
9986				err += efunc(pc, "invalid subr %u\n", subr);
9987			if (rd >= nregs)
9988				err += efunc(pc, "invalid register %u\n", rd);
9989			if (rd == 0)
9990				err += efunc(pc, "cannot write to %r0\n");
9991
9992			if (subr == DIF_SUBR_COPYOUT ||
9993			    subr == DIF_SUBR_COPYOUTSTR) {
9994				dp->dtdo_destructive = 1;
9995			}
9996
9997			if (subr == DIF_SUBR_GETF) {
9998				/*
9999				 * If we have a getf() we need to record that
10000				 * in our state.  Note that our state can be
10001				 * NULL if this is a helper -- but in that
10002				 * case, the call to getf() is itself illegal,
10003				 * and will be caught (slightly later) when
10004				 * the helper is validated.
10005				 */
10006				if (vstate->dtvs_state != NULL)
10007					vstate->dtvs_state->dts_getf++;
10008			}
10009
10010			break;
10011		case DIF_OP_PUSHTR:
10012			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10013				err += efunc(pc, "invalid ref type %u\n", type);
10014			if (r2 >= nregs)
10015				err += efunc(pc, "invalid register %u\n", r2);
10016			if (rs >= nregs)
10017				err += efunc(pc, "invalid register %u\n", rs);
10018			break;
10019		case DIF_OP_PUSHTV:
10020			if (type != DIF_TYPE_CTF)
10021				err += efunc(pc, "invalid val type %u\n", type);
10022			if (r2 >= nregs)
10023				err += efunc(pc, "invalid register %u\n", r2);
10024			if (rs >= nregs)
10025				err += efunc(pc, "invalid register %u\n", rs);
10026			break;
10027		default:
10028			err += efunc(pc, "invalid opcode %u\n",
10029			    DIF_INSTR_OP(instr));
10030		}
10031	}
10032
10033	if (dp->dtdo_len != 0 &&
10034	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10035		err += efunc(dp->dtdo_len - 1,
10036		    "expected 'ret' as last DIF instruction\n");
10037	}
10038
10039	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10040		/*
10041		 * If we're not returning by reference, the size must be either
10042		 * 0 or the size of one of the base types.
10043		 */
10044		switch (dp->dtdo_rtype.dtdt_size) {
10045		case 0:
10046		case sizeof (uint8_t):
10047		case sizeof (uint16_t):
10048		case sizeof (uint32_t):
10049		case sizeof (uint64_t):
10050			break;
10051
10052		default:
10053			err += efunc(dp->dtdo_len - 1, "bad return size\n");
10054		}
10055	}
10056
10057	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10058		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10059		dtrace_diftype_t *vt, *et;
10060		uint_t id, ndx;
10061
10062		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10063		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10064		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10065			err += efunc(i, "unrecognized variable scope %d\n",
10066			    v->dtdv_scope);
10067			break;
10068		}
10069
10070		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10071		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10072			err += efunc(i, "unrecognized variable type %d\n",
10073			    v->dtdv_kind);
10074			break;
10075		}
10076
10077		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10078			err += efunc(i, "%d exceeds variable id limit\n", id);
10079			break;
10080		}
10081
10082		if (id < DIF_VAR_OTHER_UBASE)
10083			continue;
10084
10085		/*
10086		 * For user-defined variables, we need to check that this
10087		 * definition is identical to any previous definition that we
10088		 * encountered.
10089		 */
10090		ndx = id - DIF_VAR_OTHER_UBASE;
10091
10092		switch (v->dtdv_scope) {
10093		case DIFV_SCOPE_GLOBAL:
10094			if (maxglobal == -1 || ndx > maxglobal)
10095				maxglobal = ndx;
10096
10097			if (ndx < vstate->dtvs_nglobals) {
10098				dtrace_statvar_t *svar;
10099
10100				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10101					existing = &svar->dtsv_var;
10102			}
10103
10104			break;
10105
10106		case DIFV_SCOPE_THREAD:
10107			if (maxtlocal == -1 || ndx > maxtlocal)
10108				maxtlocal = ndx;
10109
10110			if (ndx < vstate->dtvs_ntlocals)
10111				existing = &vstate->dtvs_tlocals[ndx];
10112			break;
10113
10114		case DIFV_SCOPE_LOCAL:
10115			if (maxlocal == -1 || ndx > maxlocal)
10116				maxlocal = ndx;
10117
10118			if (ndx < vstate->dtvs_nlocals) {
10119				dtrace_statvar_t *svar;
10120
10121				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10122					existing = &svar->dtsv_var;
10123			}
10124
10125			break;
10126		}
10127
10128		vt = &v->dtdv_type;
10129
10130		if (vt->dtdt_flags & DIF_TF_BYREF) {
10131			if (vt->dtdt_size == 0) {
10132				err += efunc(i, "zero-sized variable\n");
10133				break;
10134			}
10135
10136			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10137			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10138			    vt->dtdt_size > dtrace_statvar_maxsize) {
10139				err += efunc(i, "oversized by-ref static\n");
10140				break;
10141			}
10142		}
10143
10144		if (existing == NULL || existing->dtdv_id == 0)
10145			continue;
10146
10147		ASSERT(existing->dtdv_id == v->dtdv_id);
10148		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10149
10150		if (existing->dtdv_kind != v->dtdv_kind)
10151			err += efunc(i, "%d changed variable kind\n", id);
10152
10153		et = &existing->dtdv_type;
10154
10155		if (vt->dtdt_flags != et->dtdt_flags) {
10156			err += efunc(i, "%d changed variable type flags\n", id);
10157			break;
10158		}
10159
10160		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10161			err += efunc(i, "%d changed variable type size\n", id);
10162			break;
10163		}
10164	}
10165
10166	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10167		dif_instr_t instr = dp->dtdo_buf[pc];
10168
10169		uint_t v = DIF_INSTR_VAR(instr);
10170		uint_t op = DIF_INSTR_OP(instr);
10171
10172		switch (op) {
10173		case DIF_OP_LDGS:
10174		case DIF_OP_LDGAA:
10175		case DIF_OP_STGS:
10176		case DIF_OP_STGAA:
10177			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10178				err += efunc(pc, "invalid variable %u\n", v);
10179			break;
10180		case DIF_OP_LDTS:
10181		case DIF_OP_LDTAA:
10182		case DIF_OP_STTS:
10183		case DIF_OP_STTAA:
10184			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10185				err += efunc(pc, "invalid variable %u\n", v);
10186			break;
10187		case DIF_OP_LDLS:
10188		case DIF_OP_STLS:
10189			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10190				err += efunc(pc, "invalid variable %u\n", v);
10191			break;
10192		default:
10193			break;
10194		}
10195	}
10196
10197	return (err);
10198}
10199
10200/*
10201 * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10202 * are much more constrained than normal DIFOs.  Specifically, they may
10203 * not:
10204 *
10205 * 1. Make calls to subroutines other than copyin(), copyinstr() or
10206 *    miscellaneous string routines
10207 * 2. Access DTrace variables other than the args[] array, and the
10208 *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10209 * 3. Have thread-local variables.
10210 * 4. Have dynamic variables.
10211 */
10212static int
10213dtrace_difo_validate_helper(dtrace_difo_t *dp)
10214{
10215	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10216	int err = 0;
10217	uint_t pc;
10218
10219	for (pc = 0; pc < dp->dtdo_len; pc++) {
10220		dif_instr_t instr = dp->dtdo_buf[pc];
10221
10222		uint_t v = DIF_INSTR_VAR(instr);
10223		uint_t subr = DIF_INSTR_SUBR(instr);
10224		uint_t op = DIF_INSTR_OP(instr);
10225
10226		switch (op) {
10227		case DIF_OP_OR:
10228		case DIF_OP_XOR:
10229		case DIF_OP_AND:
10230		case DIF_OP_SLL:
10231		case DIF_OP_SRL:
10232		case DIF_OP_SRA:
10233		case DIF_OP_SUB:
10234		case DIF_OP_ADD:
10235		case DIF_OP_MUL:
10236		case DIF_OP_SDIV:
10237		case DIF_OP_UDIV:
10238		case DIF_OP_SREM:
10239		case DIF_OP_UREM:
10240		case DIF_OP_COPYS:
10241		case DIF_OP_NOT:
10242		case DIF_OP_MOV:
10243		case DIF_OP_RLDSB:
10244		case DIF_OP_RLDSH:
10245		case DIF_OP_RLDSW:
10246		case DIF_OP_RLDUB:
10247		case DIF_OP_RLDUH:
10248		case DIF_OP_RLDUW:
10249		case DIF_OP_RLDX:
10250		case DIF_OP_ULDSB:
10251		case DIF_OP_ULDSH:
10252		case DIF_OP_ULDSW:
10253		case DIF_OP_ULDUB:
10254		case DIF_OP_ULDUH:
10255		case DIF_OP_ULDUW:
10256		case DIF_OP_ULDX:
10257		case DIF_OP_STB:
10258		case DIF_OP_STH:
10259		case DIF_OP_STW:
10260		case DIF_OP_STX:
10261		case DIF_OP_ALLOCS:
10262		case DIF_OP_CMP:
10263		case DIF_OP_SCMP:
10264		case DIF_OP_TST:
10265		case DIF_OP_BA:
10266		case DIF_OP_BE:
10267		case DIF_OP_BNE:
10268		case DIF_OP_BG:
10269		case DIF_OP_BGU:
10270		case DIF_OP_BGE:
10271		case DIF_OP_BGEU:
10272		case DIF_OP_BL:
10273		case DIF_OP_BLU:
10274		case DIF_OP_BLE:
10275		case DIF_OP_BLEU:
10276		case DIF_OP_RET:
10277		case DIF_OP_NOP:
10278		case DIF_OP_POPTS:
10279		case DIF_OP_FLUSHTS:
10280		case DIF_OP_SETX:
10281		case DIF_OP_SETS:
10282		case DIF_OP_LDGA:
10283		case DIF_OP_LDLS:
10284		case DIF_OP_STGS:
10285		case DIF_OP_STLS:
10286		case DIF_OP_PUSHTR:
10287		case DIF_OP_PUSHTV:
10288			break;
10289
10290		case DIF_OP_LDGS:
10291			if (v >= DIF_VAR_OTHER_UBASE)
10292				break;
10293
10294			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10295				break;
10296
10297			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10298			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10299			    v == DIF_VAR_EXECARGS ||
10300			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10301			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10302				break;
10303
10304			err += efunc(pc, "illegal variable %u\n", v);
10305			break;
10306
10307		case DIF_OP_LDTA:
10308		case DIF_OP_LDTS:
10309		case DIF_OP_LDGAA:
10310		case DIF_OP_LDTAA:
10311			err += efunc(pc, "illegal dynamic variable load\n");
10312			break;
10313
10314		case DIF_OP_STTS:
10315		case DIF_OP_STGAA:
10316		case DIF_OP_STTAA:
10317			err += efunc(pc, "illegal dynamic variable store\n");
10318			break;
10319
10320		case DIF_OP_CALL:
10321			if (subr == DIF_SUBR_ALLOCA ||
10322			    subr == DIF_SUBR_BCOPY ||
10323			    subr == DIF_SUBR_COPYIN ||
10324			    subr == DIF_SUBR_COPYINTO ||
10325			    subr == DIF_SUBR_COPYINSTR ||
10326			    subr == DIF_SUBR_INDEX ||
10327			    subr == DIF_SUBR_INET_NTOA ||
10328			    subr == DIF_SUBR_INET_NTOA6 ||
10329			    subr == DIF_SUBR_INET_NTOP ||
10330			    subr == DIF_SUBR_JSON ||
10331			    subr == DIF_SUBR_LLTOSTR ||
10332			    subr == DIF_SUBR_STRTOLL ||
10333			    subr == DIF_SUBR_RINDEX ||
10334			    subr == DIF_SUBR_STRCHR ||
10335			    subr == DIF_SUBR_STRJOIN ||
10336			    subr == DIF_SUBR_STRRCHR ||
10337			    subr == DIF_SUBR_STRSTR ||
10338			    subr == DIF_SUBR_HTONS ||
10339			    subr == DIF_SUBR_HTONL ||
10340			    subr == DIF_SUBR_HTONLL ||
10341			    subr == DIF_SUBR_NTOHS ||
10342			    subr == DIF_SUBR_NTOHL ||
10343			    subr == DIF_SUBR_NTOHLL ||
10344			    subr == DIF_SUBR_MEMREF)
10345				break;
10346#ifdef __FreeBSD__
10347			if (subr == DIF_SUBR_MEMSTR)
10348				break;
10349#endif
10350
10351			err += efunc(pc, "invalid subr %u\n", subr);
10352			break;
10353
10354		default:
10355			err += efunc(pc, "invalid opcode %u\n",
10356			    DIF_INSTR_OP(instr));
10357		}
10358	}
10359
10360	return (err);
10361}
10362
10363/*
10364 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10365 * basis; 0 if not.
10366 */
10367static int
10368dtrace_difo_cacheable(dtrace_difo_t *dp)
10369{
10370	int i;
10371
10372	if (dp == NULL)
10373		return (0);
10374
10375	for (i = 0; i < dp->dtdo_varlen; i++) {
10376		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10377
10378		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10379			continue;
10380
10381		switch (v->dtdv_id) {
10382		case DIF_VAR_CURTHREAD:
10383		case DIF_VAR_PID:
10384		case DIF_VAR_TID:
10385		case DIF_VAR_EXECARGS:
10386		case DIF_VAR_EXECNAME:
10387		case DIF_VAR_ZONENAME:
10388			break;
10389
10390		default:
10391			return (0);
10392		}
10393	}
10394
10395	/*
10396	 * This DIF object may be cacheable.  Now we need to look for any
10397	 * array loading instructions, any memory loading instructions, or
10398	 * any stores to thread-local variables.
10399	 */
10400	for (i = 0; i < dp->dtdo_len; i++) {
10401		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10402
10403		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10404		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10405		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10406		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10407			return (0);
10408	}
10409
10410	return (1);
10411}
10412
10413static void
10414dtrace_difo_hold(dtrace_difo_t *dp)
10415{
10416	int i;
10417
10418	ASSERT(MUTEX_HELD(&dtrace_lock));
10419
10420	dp->dtdo_refcnt++;
10421	ASSERT(dp->dtdo_refcnt != 0);
10422
10423	/*
10424	 * We need to check this DIF object for references to the variable
10425	 * DIF_VAR_VTIMESTAMP.
10426	 */
10427	for (i = 0; i < dp->dtdo_varlen; i++) {
10428		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10429
10430		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10431			continue;
10432
10433		if (dtrace_vtime_references++ == 0)
10434			dtrace_vtime_enable();
10435	}
10436}
10437
10438/*
10439 * This routine calculates the dynamic variable chunksize for a given DIF
10440 * object.  The calculation is not fool-proof, and can probably be tricked by
10441 * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10442 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10443 * if a dynamic variable size exceeds the chunksize.
10444 */
10445static void
10446dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10447{
10448	uint64_t sval = 0;
10449	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10450	const dif_instr_t *text = dp->dtdo_buf;
10451	uint_t pc, srd = 0;
10452	uint_t ttop = 0;
10453	size_t size, ksize;
10454	uint_t id, i;
10455
10456	for (pc = 0; pc < dp->dtdo_len; pc++) {
10457		dif_instr_t instr = text[pc];
10458		uint_t op = DIF_INSTR_OP(instr);
10459		uint_t rd = DIF_INSTR_RD(instr);
10460		uint_t r1 = DIF_INSTR_R1(instr);
10461		uint_t nkeys = 0;
10462		uchar_t scope = 0;
10463
10464		dtrace_key_t *key = tupregs;
10465
10466		switch (op) {
10467		case DIF_OP_SETX:
10468			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10469			srd = rd;
10470			continue;
10471
10472		case DIF_OP_STTS:
10473			key = &tupregs[DIF_DTR_NREGS];
10474			key[0].dttk_size = 0;
10475			key[1].dttk_size = 0;
10476			nkeys = 2;
10477			scope = DIFV_SCOPE_THREAD;
10478			break;
10479
10480		case DIF_OP_STGAA:
10481		case DIF_OP_STTAA:
10482			nkeys = ttop;
10483
10484			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10485				key[nkeys++].dttk_size = 0;
10486
10487			key[nkeys++].dttk_size = 0;
10488
10489			if (op == DIF_OP_STTAA) {
10490				scope = DIFV_SCOPE_THREAD;
10491			} else {
10492				scope = DIFV_SCOPE_GLOBAL;
10493			}
10494
10495			break;
10496
10497		case DIF_OP_PUSHTR:
10498			if (ttop == DIF_DTR_NREGS)
10499				return;
10500
10501			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10502				/*
10503				 * If the register for the size of the "pushtr"
10504				 * is %r0 (or the value is 0) and the type is
10505				 * a string, we'll use the system-wide default
10506				 * string size.
10507				 */
10508				tupregs[ttop++].dttk_size =
10509				    dtrace_strsize_default;
10510			} else {
10511				if (srd == 0)
10512					return;
10513
10514				if (sval > LONG_MAX)
10515					return;
10516
10517				tupregs[ttop++].dttk_size = sval;
10518			}
10519
10520			break;
10521
10522		case DIF_OP_PUSHTV:
10523			if (ttop == DIF_DTR_NREGS)
10524				return;
10525
10526			tupregs[ttop++].dttk_size = 0;
10527			break;
10528
10529		case DIF_OP_FLUSHTS:
10530			ttop = 0;
10531			break;
10532
10533		case DIF_OP_POPTS:
10534			if (ttop != 0)
10535				ttop--;
10536			break;
10537		}
10538
10539		sval = 0;
10540		srd = 0;
10541
10542		if (nkeys == 0)
10543			continue;
10544
10545		/*
10546		 * We have a dynamic variable allocation; calculate its size.
10547		 */
10548		for (ksize = 0, i = 0; i < nkeys; i++)
10549			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10550
10551		size = sizeof (dtrace_dynvar_t);
10552		size += sizeof (dtrace_key_t) * (nkeys - 1);
10553		size += ksize;
10554
10555		/*
10556		 * Now we need to determine the size of the stored data.
10557		 */
10558		id = DIF_INSTR_VAR(instr);
10559
10560		for (i = 0; i < dp->dtdo_varlen; i++) {
10561			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10562
10563			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10564				size += v->dtdv_type.dtdt_size;
10565				break;
10566			}
10567		}
10568
10569		if (i == dp->dtdo_varlen)
10570			return;
10571
10572		/*
10573		 * We have the size.  If this is larger than the chunk size
10574		 * for our dynamic variable state, reset the chunk size.
10575		 */
10576		size = P2ROUNDUP(size, sizeof (uint64_t));
10577
10578		/*
10579		 * Before setting the chunk size, check that we're not going
10580		 * to set it to a negative value...
10581		 */
10582		if (size > LONG_MAX)
10583			return;
10584
10585		/*
10586		 * ...and make certain that we didn't badly overflow.
10587		 */
10588		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10589			return;
10590
10591		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10592			vstate->dtvs_dynvars.dtds_chunksize = size;
10593	}
10594}
10595
10596static void
10597dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10598{
10599	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10600	uint_t id;
10601
10602	ASSERT(MUTEX_HELD(&dtrace_lock));
10603	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10604
10605	for (i = 0; i < dp->dtdo_varlen; i++) {
10606		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10607		dtrace_statvar_t *svar, ***svarp = NULL;
10608		size_t dsize = 0;
10609		uint8_t scope = v->dtdv_scope;
10610		int *np = NULL;
10611
10612		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10613			continue;
10614
10615		id -= DIF_VAR_OTHER_UBASE;
10616
10617		switch (scope) {
10618		case DIFV_SCOPE_THREAD:
10619			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10620				dtrace_difv_t *tlocals;
10621
10622				if ((ntlocals = (otlocals << 1)) == 0)
10623					ntlocals = 1;
10624
10625				osz = otlocals * sizeof (dtrace_difv_t);
10626				nsz = ntlocals * sizeof (dtrace_difv_t);
10627
10628				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10629
10630				if (osz != 0) {
10631					bcopy(vstate->dtvs_tlocals,
10632					    tlocals, osz);
10633					kmem_free(vstate->dtvs_tlocals, osz);
10634				}
10635
10636				vstate->dtvs_tlocals = tlocals;
10637				vstate->dtvs_ntlocals = ntlocals;
10638			}
10639
10640			vstate->dtvs_tlocals[id] = *v;
10641			continue;
10642
10643		case DIFV_SCOPE_LOCAL:
10644			np = &vstate->dtvs_nlocals;
10645			svarp = &vstate->dtvs_locals;
10646
10647			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10648				dsize = NCPU * (v->dtdv_type.dtdt_size +
10649				    sizeof (uint64_t));
10650			else
10651				dsize = NCPU * sizeof (uint64_t);
10652
10653			break;
10654
10655		case DIFV_SCOPE_GLOBAL:
10656			np = &vstate->dtvs_nglobals;
10657			svarp = &vstate->dtvs_globals;
10658
10659			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10660				dsize = v->dtdv_type.dtdt_size +
10661				    sizeof (uint64_t);
10662
10663			break;
10664
10665		default:
10666			ASSERT(0);
10667		}
10668
10669		while (id >= (oldsvars = *np)) {
10670			dtrace_statvar_t **statics;
10671			int newsvars, oldsize, newsize;
10672
10673			if ((newsvars = (oldsvars << 1)) == 0)
10674				newsvars = 1;
10675
10676			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10677			newsize = newsvars * sizeof (dtrace_statvar_t *);
10678
10679			statics = kmem_zalloc(newsize, KM_SLEEP);
10680
10681			if (oldsize != 0) {
10682				bcopy(*svarp, statics, oldsize);
10683				kmem_free(*svarp, oldsize);
10684			}
10685
10686			*svarp = statics;
10687			*np = newsvars;
10688		}
10689
10690		if ((svar = (*svarp)[id]) == NULL) {
10691			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10692			svar->dtsv_var = *v;
10693
10694			if ((svar->dtsv_size = dsize) != 0) {
10695				svar->dtsv_data = (uint64_t)(uintptr_t)
10696				    kmem_zalloc(dsize, KM_SLEEP);
10697			}
10698
10699			(*svarp)[id] = svar;
10700		}
10701
10702		svar->dtsv_refcnt++;
10703	}
10704
10705	dtrace_difo_chunksize(dp, vstate);
10706	dtrace_difo_hold(dp);
10707}
10708
10709static dtrace_difo_t *
10710dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10711{
10712	dtrace_difo_t *new;
10713	size_t sz;
10714
10715	ASSERT(dp->dtdo_buf != NULL);
10716	ASSERT(dp->dtdo_refcnt != 0);
10717
10718	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10719
10720	ASSERT(dp->dtdo_buf != NULL);
10721	sz = dp->dtdo_len * sizeof (dif_instr_t);
10722	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10723	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10724	new->dtdo_len = dp->dtdo_len;
10725
10726	if (dp->dtdo_strtab != NULL) {
10727		ASSERT(dp->dtdo_strlen != 0);
10728		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10729		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10730		new->dtdo_strlen = dp->dtdo_strlen;
10731	}
10732
10733	if (dp->dtdo_inttab != NULL) {
10734		ASSERT(dp->dtdo_intlen != 0);
10735		sz = dp->dtdo_intlen * sizeof (uint64_t);
10736		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10737		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10738		new->dtdo_intlen = dp->dtdo_intlen;
10739	}
10740
10741	if (dp->dtdo_vartab != NULL) {
10742		ASSERT(dp->dtdo_varlen != 0);
10743		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10744		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10745		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10746		new->dtdo_varlen = dp->dtdo_varlen;
10747	}
10748
10749	dtrace_difo_init(new, vstate);
10750	return (new);
10751}
10752
10753static void
10754dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10755{
10756	int i;
10757
10758	ASSERT(dp->dtdo_refcnt == 0);
10759
10760	for (i = 0; i < dp->dtdo_varlen; i++) {
10761		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10762		dtrace_statvar_t *svar, **svarp = NULL;
10763		uint_t id;
10764		uint8_t scope = v->dtdv_scope;
10765		int *np = NULL;
10766
10767		switch (scope) {
10768		case DIFV_SCOPE_THREAD:
10769			continue;
10770
10771		case DIFV_SCOPE_LOCAL:
10772			np = &vstate->dtvs_nlocals;
10773			svarp = vstate->dtvs_locals;
10774			break;
10775
10776		case DIFV_SCOPE_GLOBAL:
10777			np = &vstate->dtvs_nglobals;
10778			svarp = vstate->dtvs_globals;
10779			break;
10780
10781		default:
10782			ASSERT(0);
10783		}
10784
10785		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10786			continue;
10787
10788		id -= DIF_VAR_OTHER_UBASE;
10789		ASSERT(id < *np);
10790
10791		svar = svarp[id];
10792		ASSERT(svar != NULL);
10793		ASSERT(svar->dtsv_refcnt > 0);
10794
10795		if (--svar->dtsv_refcnt > 0)
10796			continue;
10797
10798		if (svar->dtsv_size != 0) {
10799			ASSERT(svar->dtsv_data != 0);
10800			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10801			    svar->dtsv_size);
10802		}
10803
10804		kmem_free(svar, sizeof (dtrace_statvar_t));
10805		svarp[id] = NULL;
10806	}
10807
10808	if (dp->dtdo_buf != NULL)
10809		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10810	if (dp->dtdo_inttab != NULL)
10811		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10812	if (dp->dtdo_strtab != NULL)
10813		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10814	if (dp->dtdo_vartab != NULL)
10815		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10816
10817	kmem_free(dp, sizeof (dtrace_difo_t));
10818}
10819
10820static void
10821dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10822{
10823	int i;
10824
10825	ASSERT(MUTEX_HELD(&dtrace_lock));
10826	ASSERT(dp->dtdo_refcnt != 0);
10827
10828	for (i = 0; i < dp->dtdo_varlen; i++) {
10829		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10830
10831		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10832			continue;
10833
10834		ASSERT(dtrace_vtime_references > 0);
10835		if (--dtrace_vtime_references == 0)
10836			dtrace_vtime_disable();
10837	}
10838
10839	if (--dp->dtdo_refcnt == 0)
10840		dtrace_difo_destroy(dp, vstate);
10841}
10842
10843/*
10844 * DTrace Format Functions
10845 */
10846static uint16_t
10847dtrace_format_add(dtrace_state_t *state, char *str)
10848{
10849	char *fmt, **new;
10850	uint16_t ndx, len = strlen(str) + 1;
10851
10852	fmt = kmem_zalloc(len, KM_SLEEP);
10853	bcopy(str, fmt, len);
10854
10855	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10856		if (state->dts_formats[ndx] == NULL) {
10857			state->dts_formats[ndx] = fmt;
10858			return (ndx + 1);
10859		}
10860	}
10861
10862	if (state->dts_nformats == USHRT_MAX) {
10863		/*
10864		 * This is only likely if a denial-of-service attack is being
10865		 * attempted.  As such, it's okay to fail silently here.
10866		 */
10867		kmem_free(fmt, len);
10868		return (0);
10869	}
10870
10871	/*
10872	 * For simplicity, we always resize the formats array to be exactly the
10873	 * number of formats.
10874	 */
10875	ndx = state->dts_nformats++;
10876	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10877
10878	if (state->dts_formats != NULL) {
10879		ASSERT(ndx != 0);
10880		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10881		kmem_free(state->dts_formats, ndx * sizeof (char *));
10882	}
10883
10884	state->dts_formats = new;
10885	state->dts_formats[ndx] = fmt;
10886
10887	return (ndx + 1);
10888}
10889
10890static void
10891dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10892{
10893	char *fmt;
10894
10895	ASSERT(state->dts_formats != NULL);
10896	ASSERT(format <= state->dts_nformats);
10897	ASSERT(state->dts_formats[format - 1] != NULL);
10898
10899	fmt = state->dts_formats[format - 1];
10900	kmem_free(fmt, strlen(fmt) + 1);
10901	state->dts_formats[format - 1] = NULL;
10902}
10903
10904static void
10905dtrace_format_destroy(dtrace_state_t *state)
10906{
10907	int i;
10908
10909	if (state->dts_nformats == 0) {
10910		ASSERT(state->dts_formats == NULL);
10911		return;
10912	}
10913
10914	ASSERT(state->dts_formats != NULL);
10915
10916	for (i = 0; i < state->dts_nformats; i++) {
10917		char *fmt = state->dts_formats[i];
10918
10919		if (fmt == NULL)
10920			continue;
10921
10922		kmem_free(fmt, strlen(fmt) + 1);
10923	}
10924
10925	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10926	state->dts_nformats = 0;
10927	state->dts_formats = NULL;
10928}
10929
10930/*
10931 * DTrace Predicate Functions
10932 */
10933static dtrace_predicate_t *
10934dtrace_predicate_create(dtrace_difo_t *dp)
10935{
10936	dtrace_predicate_t *pred;
10937
10938	ASSERT(MUTEX_HELD(&dtrace_lock));
10939	ASSERT(dp->dtdo_refcnt != 0);
10940
10941	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10942	pred->dtp_difo = dp;
10943	pred->dtp_refcnt = 1;
10944
10945	if (!dtrace_difo_cacheable(dp))
10946		return (pred);
10947
10948	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10949		/*
10950		 * This is only theoretically possible -- we have had 2^32
10951		 * cacheable predicates on this machine.  We cannot allow any
10952		 * more predicates to become cacheable:  as unlikely as it is,
10953		 * there may be a thread caching a (now stale) predicate cache
10954		 * ID. (N.B.: the temptation is being successfully resisted to
10955		 * have this cmn_err() "Holy shit -- we executed this code!")
10956		 */
10957		return (pred);
10958	}
10959
10960	pred->dtp_cacheid = dtrace_predcache_id++;
10961
10962	return (pred);
10963}
10964
10965static void
10966dtrace_predicate_hold(dtrace_predicate_t *pred)
10967{
10968	ASSERT(MUTEX_HELD(&dtrace_lock));
10969	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10970	ASSERT(pred->dtp_refcnt > 0);
10971
10972	pred->dtp_refcnt++;
10973}
10974
10975static void
10976dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10977{
10978	dtrace_difo_t *dp = pred->dtp_difo;
10979
10980	ASSERT(MUTEX_HELD(&dtrace_lock));
10981	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10982	ASSERT(pred->dtp_refcnt > 0);
10983
10984	if (--pred->dtp_refcnt == 0) {
10985		dtrace_difo_release(pred->dtp_difo, vstate);
10986		kmem_free(pred, sizeof (dtrace_predicate_t));
10987	}
10988}
10989
10990/*
10991 * DTrace Action Description Functions
10992 */
10993static dtrace_actdesc_t *
10994dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10995    uint64_t uarg, uint64_t arg)
10996{
10997	dtrace_actdesc_t *act;
10998
10999#ifdef illumos
11000	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11001	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11002#endif
11003
11004	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11005	act->dtad_kind = kind;
11006	act->dtad_ntuple = ntuple;
11007	act->dtad_uarg = uarg;
11008	act->dtad_arg = arg;
11009	act->dtad_refcnt = 1;
11010
11011	return (act);
11012}
11013
11014static void
11015dtrace_actdesc_hold(dtrace_actdesc_t *act)
11016{
11017	ASSERT(act->dtad_refcnt >= 1);
11018	act->dtad_refcnt++;
11019}
11020
11021static void
11022dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11023{
11024	dtrace_actkind_t kind = act->dtad_kind;
11025	dtrace_difo_t *dp;
11026
11027	ASSERT(act->dtad_refcnt >= 1);
11028
11029	if (--act->dtad_refcnt != 0)
11030		return;
11031
11032	if ((dp = act->dtad_difo) != NULL)
11033		dtrace_difo_release(dp, vstate);
11034
11035	if (DTRACEACT_ISPRINTFLIKE(kind)) {
11036		char *str = (char *)(uintptr_t)act->dtad_arg;
11037
11038#ifdef illumos
11039		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11040		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11041#endif
11042
11043		if (str != NULL)
11044			kmem_free(str, strlen(str) + 1);
11045	}
11046
11047	kmem_free(act, sizeof (dtrace_actdesc_t));
11048}
11049
11050/*
11051 * DTrace ECB Functions
11052 */
11053static dtrace_ecb_t *
11054dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11055{
11056	dtrace_ecb_t *ecb;
11057	dtrace_epid_t epid;
11058
11059	ASSERT(MUTEX_HELD(&dtrace_lock));
11060
11061	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11062	ecb->dte_predicate = NULL;
11063	ecb->dte_probe = probe;
11064
11065	/*
11066	 * The default size is the size of the default action: recording
11067	 * the header.
11068	 */
11069	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11070	ecb->dte_alignment = sizeof (dtrace_epid_t);
11071
11072	epid = state->dts_epid++;
11073
11074	if (epid - 1 >= state->dts_necbs) {
11075		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11076		int necbs = state->dts_necbs << 1;
11077
11078		ASSERT(epid == state->dts_necbs + 1);
11079
11080		if (necbs == 0) {
11081			ASSERT(oecbs == NULL);
11082			necbs = 1;
11083		}
11084
11085		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11086
11087		if (oecbs != NULL)
11088			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11089
11090		dtrace_membar_producer();
11091		state->dts_ecbs = ecbs;
11092
11093		if (oecbs != NULL) {
11094			/*
11095			 * If this state is active, we must dtrace_sync()
11096			 * before we can free the old dts_ecbs array:  we're
11097			 * coming in hot, and there may be active ring
11098			 * buffer processing (which indexes into the dts_ecbs
11099			 * array) on another CPU.
11100			 */
11101			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11102				dtrace_sync();
11103
11104			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11105		}
11106
11107		dtrace_membar_producer();
11108		state->dts_necbs = necbs;
11109	}
11110
11111	ecb->dte_state = state;
11112
11113	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11114	dtrace_membar_producer();
11115	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11116
11117	return (ecb);
11118}
11119
11120static void
11121dtrace_ecb_enable(dtrace_ecb_t *ecb)
11122{
11123	dtrace_probe_t *probe = ecb->dte_probe;
11124
11125	ASSERT(MUTEX_HELD(&cpu_lock));
11126	ASSERT(MUTEX_HELD(&dtrace_lock));
11127	ASSERT(ecb->dte_next == NULL);
11128
11129	if (probe == NULL) {
11130		/*
11131		 * This is the NULL probe -- there's nothing to do.
11132		 */
11133		return;
11134	}
11135
11136	if (probe->dtpr_ecb == NULL) {
11137		dtrace_provider_t *prov = probe->dtpr_provider;
11138
11139		/*
11140		 * We're the first ECB on this probe.
11141		 */
11142		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11143
11144		if (ecb->dte_predicate != NULL)
11145			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11146
11147		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11148		    probe->dtpr_id, probe->dtpr_arg);
11149	} else {
11150		/*
11151		 * This probe is already active.  Swing the last pointer to
11152		 * point to the new ECB, and issue a dtrace_sync() to assure
11153		 * that all CPUs have seen the change.
11154		 */
11155		ASSERT(probe->dtpr_ecb_last != NULL);
11156		probe->dtpr_ecb_last->dte_next = ecb;
11157		probe->dtpr_ecb_last = ecb;
11158		probe->dtpr_predcache = 0;
11159
11160		dtrace_sync();
11161	}
11162}
11163
11164static int
11165dtrace_ecb_resize(dtrace_ecb_t *ecb)
11166{
11167	dtrace_action_t *act;
11168	uint32_t curneeded = UINT32_MAX;
11169	uint32_t aggbase = UINT32_MAX;
11170
11171	/*
11172	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11173	 * we always record it first.)
11174	 */
11175	ecb->dte_size = sizeof (dtrace_rechdr_t);
11176	ecb->dte_alignment = sizeof (dtrace_epid_t);
11177
11178	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11179		dtrace_recdesc_t *rec = &act->dta_rec;
11180		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11181
11182		ecb->dte_alignment = MAX(ecb->dte_alignment,
11183		    rec->dtrd_alignment);
11184
11185		if (DTRACEACT_ISAGG(act->dta_kind)) {
11186			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11187
11188			ASSERT(rec->dtrd_size != 0);
11189			ASSERT(agg->dtag_first != NULL);
11190			ASSERT(act->dta_prev->dta_intuple);
11191			ASSERT(aggbase != UINT32_MAX);
11192			ASSERT(curneeded != UINT32_MAX);
11193
11194			agg->dtag_base = aggbase;
11195
11196			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11197			rec->dtrd_offset = curneeded;
11198			if (curneeded + rec->dtrd_size < curneeded)
11199				return (EINVAL);
11200			curneeded += rec->dtrd_size;
11201			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11202
11203			aggbase = UINT32_MAX;
11204			curneeded = UINT32_MAX;
11205		} else if (act->dta_intuple) {
11206			if (curneeded == UINT32_MAX) {
11207				/*
11208				 * This is the first record in a tuple.  Align
11209				 * curneeded to be at offset 4 in an 8-byte
11210				 * aligned block.
11211				 */
11212				ASSERT(act->dta_prev == NULL ||
11213				    !act->dta_prev->dta_intuple);
11214				ASSERT3U(aggbase, ==, UINT32_MAX);
11215				curneeded = P2PHASEUP(ecb->dte_size,
11216				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11217
11218				aggbase = curneeded - sizeof (dtrace_aggid_t);
11219				ASSERT(IS_P2ALIGNED(aggbase,
11220				    sizeof (uint64_t)));
11221			}
11222			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11223			rec->dtrd_offset = curneeded;
11224			if (curneeded + rec->dtrd_size < curneeded)
11225				return (EINVAL);
11226			curneeded += rec->dtrd_size;
11227		} else {
11228			/* tuples must be followed by an aggregation */
11229			ASSERT(act->dta_prev == NULL ||
11230			    !act->dta_prev->dta_intuple);
11231
11232			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11233			    rec->dtrd_alignment);
11234			rec->dtrd_offset = ecb->dte_size;
11235			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11236				return (EINVAL);
11237			ecb->dte_size += rec->dtrd_size;
11238			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11239		}
11240	}
11241
11242	if ((act = ecb->dte_action) != NULL &&
11243	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11244	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11245		/*
11246		 * If the size is still sizeof (dtrace_rechdr_t), then all
11247		 * actions store no data; set the size to 0.
11248		 */
11249		ecb->dte_size = 0;
11250	}
11251
11252	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11253	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11254	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11255	    ecb->dte_needed);
11256	return (0);
11257}
11258
11259static dtrace_action_t *
11260dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11261{
11262	dtrace_aggregation_t *agg;
11263	size_t size = sizeof (uint64_t);
11264	int ntuple = desc->dtad_ntuple;
11265	dtrace_action_t *act;
11266	dtrace_recdesc_t *frec;
11267	dtrace_aggid_t aggid;
11268	dtrace_state_t *state = ecb->dte_state;
11269
11270	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11271	agg->dtag_ecb = ecb;
11272
11273	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11274
11275	switch (desc->dtad_kind) {
11276	case DTRACEAGG_MIN:
11277		agg->dtag_initial = INT64_MAX;
11278		agg->dtag_aggregate = dtrace_aggregate_min;
11279		break;
11280
11281	case DTRACEAGG_MAX:
11282		agg->dtag_initial = INT64_MIN;
11283		agg->dtag_aggregate = dtrace_aggregate_max;
11284		break;
11285
11286	case DTRACEAGG_COUNT:
11287		agg->dtag_aggregate = dtrace_aggregate_count;
11288		break;
11289
11290	case DTRACEAGG_QUANTIZE:
11291		agg->dtag_aggregate = dtrace_aggregate_quantize;
11292		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11293		    sizeof (uint64_t);
11294		break;
11295
11296	case DTRACEAGG_LQUANTIZE: {
11297		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11298		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11299
11300		agg->dtag_initial = desc->dtad_arg;
11301		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11302
11303		if (step == 0 || levels == 0)
11304			goto err;
11305
11306		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11307		break;
11308	}
11309
11310	case DTRACEAGG_LLQUANTIZE: {
11311		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11312		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11313		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11314		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11315		int64_t v;
11316
11317		agg->dtag_initial = desc->dtad_arg;
11318		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11319
11320		if (factor < 2 || low >= high || nsteps < factor)
11321			goto err;
11322
11323		/*
11324		 * Now check that the number of steps evenly divides a power
11325		 * of the factor.  (This assures both integer bucket size and
11326		 * linearity within each magnitude.)
11327		 */
11328		for (v = factor; v < nsteps; v *= factor)
11329			continue;
11330
11331		if ((v % nsteps) || (nsteps % factor))
11332			goto err;
11333
11334		size = (dtrace_aggregate_llquantize_bucket(factor,
11335		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11336		break;
11337	}
11338
11339	case DTRACEAGG_AVG:
11340		agg->dtag_aggregate = dtrace_aggregate_avg;
11341		size = sizeof (uint64_t) * 2;
11342		break;
11343
11344	case DTRACEAGG_STDDEV:
11345		agg->dtag_aggregate = dtrace_aggregate_stddev;
11346		size = sizeof (uint64_t) * 4;
11347		break;
11348
11349	case DTRACEAGG_SUM:
11350		agg->dtag_aggregate = dtrace_aggregate_sum;
11351		break;
11352
11353	default:
11354		goto err;
11355	}
11356
11357	agg->dtag_action.dta_rec.dtrd_size = size;
11358
11359	if (ntuple == 0)
11360		goto err;
11361
11362	/*
11363	 * We must make sure that we have enough actions for the n-tuple.
11364	 */
11365	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11366		if (DTRACEACT_ISAGG(act->dta_kind))
11367			break;
11368
11369		if (--ntuple == 0) {
11370			/*
11371			 * This is the action with which our n-tuple begins.
11372			 */
11373			agg->dtag_first = act;
11374			goto success;
11375		}
11376	}
11377
11378	/*
11379	 * This n-tuple is short by ntuple elements.  Return failure.
11380	 */
11381	ASSERT(ntuple != 0);
11382err:
11383	kmem_free(agg, sizeof (dtrace_aggregation_t));
11384	return (NULL);
11385
11386success:
11387	/*
11388	 * If the last action in the tuple has a size of zero, it's actually
11389	 * an expression argument for the aggregating action.
11390	 */
11391	ASSERT(ecb->dte_action_last != NULL);
11392	act = ecb->dte_action_last;
11393
11394	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11395		ASSERT(act->dta_difo != NULL);
11396
11397		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11398			agg->dtag_hasarg = 1;
11399	}
11400
11401	/*
11402	 * We need to allocate an id for this aggregation.
11403	 */
11404#ifdef illumos
11405	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11406	    VM_BESTFIT | VM_SLEEP);
11407#else
11408	aggid = alloc_unr(state->dts_aggid_arena);
11409#endif
11410
11411	if (aggid - 1 >= state->dts_naggregations) {
11412		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11413		dtrace_aggregation_t **aggs;
11414		int naggs = state->dts_naggregations << 1;
11415		int onaggs = state->dts_naggregations;
11416
11417		ASSERT(aggid == state->dts_naggregations + 1);
11418
11419		if (naggs == 0) {
11420			ASSERT(oaggs == NULL);
11421			naggs = 1;
11422		}
11423
11424		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11425
11426		if (oaggs != NULL) {
11427			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11428			kmem_free(oaggs, onaggs * sizeof (*aggs));
11429		}
11430
11431		state->dts_aggregations = aggs;
11432		state->dts_naggregations = naggs;
11433	}
11434
11435	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11436	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11437
11438	frec = &agg->dtag_first->dta_rec;
11439	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11440		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11441
11442	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11443		ASSERT(!act->dta_intuple);
11444		act->dta_intuple = 1;
11445	}
11446
11447	return (&agg->dtag_action);
11448}
11449
11450static void
11451dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11452{
11453	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11454	dtrace_state_t *state = ecb->dte_state;
11455	dtrace_aggid_t aggid = agg->dtag_id;
11456
11457	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11458#ifdef illumos
11459	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11460#else
11461	free_unr(state->dts_aggid_arena, aggid);
11462#endif
11463
11464	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11465	state->dts_aggregations[aggid - 1] = NULL;
11466
11467	kmem_free(agg, sizeof (dtrace_aggregation_t));
11468}
11469
11470static int
11471dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11472{
11473	dtrace_action_t *action, *last;
11474	dtrace_difo_t *dp = desc->dtad_difo;
11475	uint32_t size = 0, align = sizeof (uint8_t), mask;
11476	uint16_t format = 0;
11477	dtrace_recdesc_t *rec;
11478	dtrace_state_t *state = ecb->dte_state;
11479	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11480	uint64_t arg = desc->dtad_arg;
11481
11482	ASSERT(MUTEX_HELD(&dtrace_lock));
11483	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11484
11485	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11486		/*
11487		 * If this is an aggregating action, there must be neither
11488		 * a speculate nor a commit on the action chain.
11489		 */
11490		dtrace_action_t *act;
11491
11492		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11493			if (act->dta_kind == DTRACEACT_COMMIT)
11494				return (EINVAL);
11495
11496			if (act->dta_kind == DTRACEACT_SPECULATE)
11497				return (EINVAL);
11498		}
11499
11500		action = dtrace_ecb_aggregation_create(ecb, desc);
11501
11502		if (action == NULL)
11503			return (EINVAL);
11504	} else {
11505		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11506		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11507		    dp != NULL && dp->dtdo_destructive)) {
11508			state->dts_destructive = 1;
11509		}
11510
11511		switch (desc->dtad_kind) {
11512		case DTRACEACT_PRINTF:
11513		case DTRACEACT_PRINTA:
11514		case DTRACEACT_SYSTEM:
11515		case DTRACEACT_FREOPEN:
11516		case DTRACEACT_DIFEXPR:
11517			/*
11518			 * We know that our arg is a string -- turn it into a
11519			 * format.
11520			 */
11521			if (arg == 0) {
11522				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11523				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11524				format = 0;
11525			} else {
11526				ASSERT(arg != 0);
11527#ifdef illumos
11528				ASSERT(arg > KERNELBASE);
11529#endif
11530				format = dtrace_format_add(state,
11531				    (char *)(uintptr_t)arg);
11532			}
11533
11534			/*FALLTHROUGH*/
11535		case DTRACEACT_LIBACT:
11536		case DTRACEACT_TRACEMEM:
11537		case DTRACEACT_TRACEMEM_DYNSIZE:
11538			if (dp == NULL)
11539				return (EINVAL);
11540
11541			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11542				break;
11543
11544			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11545				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11546					return (EINVAL);
11547
11548				size = opt[DTRACEOPT_STRSIZE];
11549			}
11550
11551			break;
11552
11553		case DTRACEACT_STACK:
11554			if ((nframes = arg) == 0) {
11555				nframes = opt[DTRACEOPT_STACKFRAMES];
11556				ASSERT(nframes > 0);
11557				arg = nframes;
11558			}
11559
11560			size = nframes * sizeof (pc_t);
11561			break;
11562
11563		case DTRACEACT_JSTACK:
11564			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11565				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11566
11567			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11568				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11569
11570			arg = DTRACE_USTACK_ARG(nframes, strsize);
11571
11572			/*FALLTHROUGH*/
11573		case DTRACEACT_USTACK:
11574			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11575			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11576				strsize = DTRACE_USTACK_STRSIZE(arg);
11577				nframes = opt[DTRACEOPT_USTACKFRAMES];
11578				ASSERT(nframes > 0);
11579				arg = DTRACE_USTACK_ARG(nframes, strsize);
11580			}
11581
11582			/*
11583			 * Save a slot for the pid.
11584			 */
11585			size = (nframes + 1) * sizeof (uint64_t);
11586			size += DTRACE_USTACK_STRSIZE(arg);
11587			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11588
11589			break;
11590
11591		case DTRACEACT_SYM:
11592		case DTRACEACT_MOD:
11593			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11594			    sizeof (uint64_t)) ||
11595			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11596				return (EINVAL);
11597			break;
11598
11599		case DTRACEACT_USYM:
11600		case DTRACEACT_UMOD:
11601		case DTRACEACT_UADDR:
11602			if (dp == NULL ||
11603			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11604			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11605				return (EINVAL);
11606
11607			/*
11608			 * We have a slot for the pid, plus a slot for the
11609			 * argument.  To keep things simple (aligned with
11610			 * bitness-neutral sizing), we store each as a 64-bit
11611			 * quantity.
11612			 */
11613			size = 2 * sizeof (uint64_t);
11614			break;
11615
11616		case DTRACEACT_STOP:
11617		case DTRACEACT_BREAKPOINT:
11618		case DTRACEACT_PANIC:
11619			break;
11620
11621		case DTRACEACT_CHILL:
11622		case DTRACEACT_DISCARD:
11623		case DTRACEACT_RAISE:
11624			if (dp == NULL)
11625				return (EINVAL);
11626			break;
11627
11628		case DTRACEACT_EXIT:
11629			if (dp == NULL ||
11630			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11631			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11632				return (EINVAL);
11633			break;
11634
11635		case DTRACEACT_SPECULATE:
11636			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11637				return (EINVAL);
11638
11639			if (dp == NULL)
11640				return (EINVAL);
11641
11642			state->dts_speculates = 1;
11643			break;
11644
11645		case DTRACEACT_PRINTM:
11646		    	size = dp->dtdo_rtype.dtdt_size;
11647			break;
11648
11649		case DTRACEACT_COMMIT: {
11650			dtrace_action_t *act = ecb->dte_action;
11651
11652			for (; act != NULL; act = act->dta_next) {
11653				if (act->dta_kind == DTRACEACT_COMMIT)
11654					return (EINVAL);
11655			}
11656
11657			if (dp == NULL)
11658				return (EINVAL);
11659			break;
11660		}
11661
11662		default:
11663			return (EINVAL);
11664		}
11665
11666		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11667			/*
11668			 * If this is a data-storing action or a speculate,
11669			 * we must be sure that there isn't a commit on the
11670			 * action chain.
11671			 */
11672			dtrace_action_t *act = ecb->dte_action;
11673
11674			for (; act != NULL; act = act->dta_next) {
11675				if (act->dta_kind == DTRACEACT_COMMIT)
11676					return (EINVAL);
11677			}
11678		}
11679
11680		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11681		action->dta_rec.dtrd_size = size;
11682	}
11683
11684	action->dta_refcnt = 1;
11685	rec = &action->dta_rec;
11686	size = rec->dtrd_size;
11687
11688	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11689		if (!(size & mask)) {
11690			align = mask + 1;
11691			break;
11692		}
11693	}
11694
11695	action->dta_kind = desc->dtad_kind;
11696
11697	if ((action->dta_difo = dp) != NULL)
11698		dtrace_difo_hold(dp);
11699
11700	rec->dtrd_action = action->dta_kind;
11701	rec->dtrd_arg = arg;
11702	rec->dtrd_uarg = desc->dtad_uarg;
11703	rec->dtrd_alignment = (uint16_t)align;
11704	rec->dtrd_format = format;
11705
11706	if ((last = ecb->dte_action_last) != NULL) {
11707		ASSERT(ecb->dte_action != NULL);
11708		action->dta_prev = last;
11709		last->dta_next = action;
11710	} else {
11711		ASSERT(ecb->dte_action == NULL);
11712		ecb->dte_action = action;
11713	}
11714
11715	ecb->dte_action_last = action;
11716
11717	return (0);
11718}
11719
11720static void
11721dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11722{
11723	dtrace_action_t *act = ecb->dte_action, *next;
11724	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11725	dtrace_difo_t *dp;
11726	uint16_t format;
11727
11728	if (act != NULL && act->dta_refcnt > 1) {
11729		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11730		act->dta_refcnt--;
11731	} else {
11732		for (; act != NULL; act = next) {
11733			next = act->dta_next;
11734			ASSERT(next != NULL || act == ecb->dte_action_last);
11735			ASSERT(act->dta_refcnt == 1);
11736
11737			if ((format = act->dta_rec.dtrd_format) != 0)
11738				dtrace_format_remove(ecb->dte_state, format);
11739
11740			if ((dp = act->dta_difo) != NULL)
11741				dtrace_difo_release(dp, vstate);
11742
11743			if (DTRACEACT_ISAGG(act->dta_kind)) {
11744				dtrace_ecb_aggregation_destroy(ecb, act);
11745			} else {
11746				kmem_free(act, sizeof (dtrace_action_t));
11747			}
11748		}
11749	}
11750
11751	ecb->dte_action = NULL;
11752	ecb->dte_action_last = NULL;
11753	ecb->dte_size = 0;
11754}
11755
11756static void
11757dtrace_ecb_disable(dtrace_ecb_t *ecb)
11758{
11759	/*
11760	 * We disable the ECB by removing it from its probe.
11761	 */
11762	dtrace_ecb_t *pecb, *prev = NULL;
11763	dtrace_probe_t *probe = ecb->dte_probe;
11764
11765	ASSERT(MUTEX_HELD(&dtrace_lock));
11766
11767	if (probe == NULL) {
11768		/*
11769		 * This is the NULL probe; there is nothing to disable.
11770		 */
11771		return;
11772	}
11773
11774	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11775		if (pecb == ecb)
11776			break;
11777		prev = pecb;
11778	}
11779
11780	ASSERT(pecb != NULL);
11781
11782	if (prev == NULL) {
11783		probe->dtpr_ecb = ecb->dte_next;
11784	} else {
11785		prev->dte_next = ecb->dte_next;
11786	}
11787
11788	if (ecb == probe->dtpr_ecb_last) {
11789		ASSERT(ecb->dte_next == NULL);
11790		probe->dtpr_ecb_last = prev;
11791	}
11792
11793	/*
11794	 * The ECB has been disconnected from the probe; now sync to assure
11795	 * that all CPUs have seen the change before returning.
11796	 */
11797	dtrace_sync();
11798
11799	if (probe->dtpr_ecb == NULL) {
11800		/*
11801		 * That was the last ECB on the probe; clear the predicate
11802		 * cache ID for the probe, disable it and sync one more time
11803		 * to assure that we'll never hit it again.
11804		 */
11805		dtrace_provider_t *prov = probe->dtpr_provider;
11806
11807		ASSERT(ecb->dte_next == NULL);
11808		ASSERT(probe->dtpr_ecb_last == NULL);
11809		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11810		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11811		    probe->dtpr_id, probe->dtpr_arg);
11812		dtrace_sync();
11813	} else {
11814		/*
11815		 * There is at least one ECB remaining on the probe.  If there
11816		 * is _exactly_ one, set the probe's predicate cache ID to be
11817		 * the predicate cache ID of the remaining ECB.
11818		 */
11819		ASSERT(probe->dtpr_ecb_last != NULL);
11820		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11821
11822		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11823			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11824
11825			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11826
11827			if (p != NULL)
11828				probe->dtpr_predcache = p->dtp_cacheid;
11829		}
11830
11831		ecb->dte_next = NULL;
11832	}
11833}
11834
11835static void
11836dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11837{
11838	dtrace_state_t *state = ecb->dte_state;
11839	dtrace_vstate_t *vstate = &state->dts_vstate;
11840	dtrace_predicate_t *pred;
11841	dtrace_epid_t epid = ecb->dte_epid;
11842
11843	ASSERT(MUTEX_HELD(&dtrace_lock));
11844	ASSERT(ecb->dte_next == NULL);
11845	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11846
11847	if ((pred = ecb->dte_predicate) != NULL)
11848		dtrace_predicate_release(pred, vstate);
11849
11850	dtrace_ecb_action_remove(ecb);
11851
11852	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11853	state->dts_ecbs[epid - 1] = NULL;
11854
11855	kmem_free(ecb, sizeof (dtrace_ecb_t));
11856}
11857
11858static dtrace_ecb_t *
11859dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11860    dtrace_enabling_t *enab)
11861{
11862	dtrace_ecb_t *ecb;
11863	dtrace_predicate_t *pred;
11864	dtrace_actdesc_t *act;
11865	dtrace_provider_t *prov;
11866	dtrace_ecbdesc_t *desc = enab->dten_current;
11867
11868	ASSERT(MUTEX_HELD(&dtrace_lock));
11869	ASSERT(state != NULL);
11870
11871	ecb = dtrace_ecb_add(state, probe);
11872	ecb->dte_uarg = desc->dted_uarg;
11873
11874	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11875		dtrace_predicate_hold(pred);
11876		ecb->dte_predicate = pred;
11877	}
11878
11879	if (probe != NULL) {
11880		/*
11881		 * If the provider shows more leg than the consumer is old
11882		 * enough to see, we need to enable the appropriate implicit
11883		 * predicate bits to prevent the ecb from activating at
11884		 * revealing times.
11885		 *
11886		 * Providers specifying DTRACE_PRIV_USER at register time
11887		 * are stating that they need the /proc-style privilege
11888		 * model to be enforced, and this is what DTRACE_COND_OWNER
11889		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11890		 */
11891		prov = probe->dtpr_provider;
11892		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11893		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11894			ecb->dte_cond |= DTRACE_COND_OWNER;
11895
11896		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11897		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11898			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11899
11900		/*
11901		 * If the provider shows us kernel innards and the user
11902		 * is lacking sufficient privilege, enable the
11903		 * DTRACE_COND_USERMODE implicit predicate.
11904		 */
11905		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11906		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11907			ecb->dte_cond |= DTRACE_COND_USERMODE;
11908	}
11909
11910	if (dtrace_ecb_create_cache != NULL) {
11911		/*
11912		 * If we have a cached ecb, we'll use its action list instead
11913		 * of creating our own (saving both time and space).
11914		 */
11915		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11916		dtrace_action_t *act = cached->dte_action;
11917
11918		if (act != NULL) {
11919			ASSERT(act->dta_refcnt > 0);
11920			act->dta_refcnt++;
11921			ecb->dte_action = act;
11922			ecb->dte_action_last = cached->dte_action_last;
11923			ecb->dte_needed = cached->dte_needed;
11924			ecb->dte_size = cached->dte_size;
11925			ecb->dte_alignment = cached->dte_alignment;
11926		}
11927
11928		return (ecb);
11929	}
11930
11931	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11932		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11933			dtrace_ecb_destroy(ecb);
11934			return (NULL);
11935		}
11936	}
11937
11938	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11939		dtrace_ecb_destroy(ecb);
11940		return (NULL);
11941	}
11942
11943	return (dtrace_ecb_create_cache = ecb);
11944}
11945
11946static int
11947dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11948{
11949	dtrace_ecb_t *ecb;
11950	dtrace_enabling_t *enab = arg;
11951	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11952
11953	ASSERT(state != NULL);
11954
11955	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11956		/*
11957		 * This probe was created in a generation for which this
11958		 * enabling has previously created ECBs; we don't want to
11959		 * enable it again, so just kick out.
11960		 */
11961		return (DTRACE_MATCH_NEXT);
11962	}
11963
11964	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11965		return (DTRACE_MATCH_DONE);
11966
11967	dtrace_ecb_enable(ecb);
11968	return (DTRACE_MATCH_NEXT);
11969}
11970
11971static dtrace_ecb_t *
11972dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11973{
11974	dtrace_ecb_t *ecb;
11975
11976	ASSERT(MUTEX_HELD(&dtrace_lock));
11977
11978	if (id == 0 || id > state->dts_necbs)
11979		return (NULL);
11980
11981	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11982	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11983
11984	return (state->dts_ecbs[id - 1]);
11985}
11986
11987static dtrace_aggregation_t *
11988dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11989{
11990	dtrace_aggregation_t *agg;
11991
11992	ASSERT(MUTEX_HELD(&dtrace_lock));
11993
11994	if (id == 0 || id > state->dts_naggregations)
11995		return (NULL);
11996
11997	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11998	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11999	    agg->dtag_id == id);
12000
12001	return (state->dts_aggregations[id - 1]);
12002}
12003
12004/*
12005 * DTrace Buffer Functions
12006 *
12007 * The following functions manipulate DTrace buffers.  Most of these functions
12008 * are called in the context of establishing or processing consumer state;
12009 * exceptions are explicitly noted.
12010 */
12011
12012/*
12013 * Note:  called from cross call context.  This function switches the two
12014 * buffers on a given CPU.  The atomicity of this operation is assured by
12015 * disabling interrupts while the actual switch takes place; the disabling of
12016 * interrupts serializes the execution with any execution of dtrace_probe() on
12017 * the same CPU.
12018 */
12019static void
12020dtrace_buffer_switch(dtrace_buffer_t *buf)
12021{
12022	caddr_t tomax = buf->dtb_tomax;
12023	caddr_t xamot = buf->dtb_xamot;
12024	dtrace_icookie_t cookie;
12025	hrtime_t now;
12026
12027	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12028	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12029
12030	cookie = dtrace_interrupt_disable();
12031	now = dtrace_gethrtime();
12032	buf->dtb_tomax = xamot;
12033	buf->dtb_xamot = tomax;
12034	buf->dtb_xamot_drops = buf->dtb_drops;
12035	buf->dtb_xamot_offset = buf->dtb_offset;
12036	buf->dtb_xamot_errors = buf->dtb_errors;
12037	buf->dtb_xamot_flags = buf->dtb_flags;
12038	buf->dtb_offset = 0;
12039	buf->dtb_drops = 0;
12040	buf->dtb_errors = 0;
12041	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12042	buf->dtb_interval = now - buf->dtb_switched;
12043	buf->dtb_switched = now;
12044	dtrace_interrupt_enable(cookie);
12045}
12046
12047/*
12048 * Note:  called from cross call context.  This function activates a buffer
12049 * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
12050 * is guaranteed by the disabling of interrupts.
12051 */
12052static void
12053dtrace_buffer_activate(dtrace_state_t *state)
12054{
12055	dtrace_buffer_t *buf;
12056	dtrace_icookie_t cookie = dtrace_interrupt_disable();
12057
12058	buf = &state->dts_buffer[curcpu];
12059
12060	if (buf->dtb_tomax != NULL) {
12061		/*
12062		 * We might like to assert that the buffer is marked inactive,
12063		 * but this isn't necessarily true:  the buffer for the CPU
12064		 * that processes the BEGIN probe has its buffer activated
12065		 * manually.  In this case, we take the (harmless) action
12066		 * re-clearing the bit INACTIVE bit.
12067		 */
12068		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12069	}
12070
12071	dtrace_interrupt_enable(cookie);
12072}
12073
12074#ifdef __FreeBSD__
12075/*
12076 * Activate the specified per-CPU buffer.  This is used instead of
12077 * dtrace_buffer_activate() when APs have not yet started, i.e. when
12078 * activating anonymous state.
12079 */
12080static void
12081dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12082{
12083
12084	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12085		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12086}
12087#endif
12088
12089static int
12090dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12091    processorid_t cpu, int *factor)
12092{
12093#ifdef illumos
12094	cpu_t *cp;
12095#endif
12096	dtrace_buffer_t *buf;
12097	int allocated = 0, desired = 0;
12098
12099#ifdef illumos
12100	ASSERT(MUTEX_HELD(&cpu_lock));
12101	ASSERT(MUTEX_HELD(&dtrace_lock));
12102
12103	*factor = 1;
12104
12105	if (size > dtrace_nonroot_maxsize &&
12106	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12107		return (EFBIG);
12108
12109	cp = cpu_list;
12110
12111	do {
12112		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12113			continue;
12114
12115		buf = &bufs[cp->cpu_id];
12116
12117		/*
12118		 * If there is already a buffer allocated for this CPU, it
12119		 * is only possible that this is a DR event.  In this case,
12120		 */
12121		if (buf->dtb_tomax != NULL) {
12122			ASSERT(buf->dtb_size == size);
12123			continue;
12124		}
12125
12126		ASSERT(buf->dtb_xamot == NULL);
12127
12128		if ((buf->dtb_tomax = kmem_zalloc(size,
12129		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12130			goto err;
12131
12132		buf->dtb_size = size;
12133		buf->dtb_flags = flags;
12134		buf->dtb_offset = 0;
12135		buf->dtb_drops = 0;
12136
12137		if (flags & DTRACEBUF_NOSWITCH)
12138			continue;
12139
12140		if ((buf->dtb_xamot = kmem_zalloc(size,
12141		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12142			goto err;
12143	} while ((cp = cp->cpu_next) != cpu_list);
12144
12145	return (0);
12146
12147err:
12148	cp = cpu_list;
12149
12150	do {
12151		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12152			continue;
12153
12154		buf = &bufs[cp->cpu_id];
12155		desired += 2;
12156
12157		if (buf->dtb_xamot != NULL) {
12158			ASSERT(buf->dtb_tomax != NULL);
12159			ASSERT(buf->dtb_size == size);
12160			kmem_free(buf->dtb_xamot, size);
12161			allocated++;
12162		}
12163
12164		if (buf->dtb_tomax != NULL) {
12165			ASSERT(buf->dtb_size == size);
12166			kmem_free(buf->dtb_tomax, size);
12167			allocated++;
12168		}
12169
12170		buf->dtb_tomax = NULL;
12171		buf->dtb_xamot = NULL;
12172		buf->dtb_size = 0;
12173	} while ((cp = cp->cpu_next) != cpu_list);
12174#else
12175	int i;
12176
12177	*factor = 1;
12178#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12179    defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12180	/*
12181	 * FreeBSD isn't good at limiting the amount of memory we
12182	 * ask to malloc, so let's place a limit here before trying
12183	 * to do something that might well end in tears at bedtime.
12184	 */
12185	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
12186		return (ENOMEM);
12187#endif
12188
12189	ASSERT(MUTEX_HELD(&dtrace_lock));
12190	CPU_FOREACH(i) {
12191		if (cpu != DTRACE_CPUALL && cpu != i)
12192			continue;
12193
12194		buf = &bufs[i];
12195
12196		/*
12197		 * If there is already a buffer allocated for this CPU, it
12198		 * is only possible that this is a DR event.  In this case,
12199		 * the buffer size must match our specified size.
12200		 */
12201		if (buf->dtb_tomax != NULL) {
12202			ASSERT(buf->dtb_size == size);
12203			continue;
12204		}
12205
12206		ASSERT(buf->dtb_xamot == NULL);
12207
12208		if ((buf->dtb_tomax = kmem_zalloc(size,
12209		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12210			goto err;
12211
12212		buf->dtb_size = size;
12213		buf->dtb_flags = flags;
12214		buf->dtb_offset = 0;
12215		buf->dtb_drops = 0;
12216
12217		if (flags & DTRACEBUF_NOSWITCH)
12218			continue;
12219
12220		if ((buf->dtb_xamot = kmem_zalloc(size,
12221		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12222			goto err;
12223	}
12224
12225	return (0);
12226
12227err:
12228	/*
12229	 * Error allocating memory, so free the buffers that were
12230	 * allocated before the failed allocation.
12231	 */
12232	CPU_FOREACH(i) {
12233		if (cpu != DTRACE_CPUALL && cpu != i)
12234			continue;
12235
12236		buf = &bufs[i];
12237		desired += 2;
12238
12239		if (buf->dtb_xamot != NULL) {
12240			ASSERT(buf->dtb_tomax != NULL);
12241			ASSERT(buf->dtb_size == size);
12242			kmem_free(buf->dtb_xamot, size);
12243			allocated++;
12244		}
12245
12246		if (buf->dtb_tomax != NULL) {
12247			ASSERT(buf->dtb_size == size);
12248			kmem_free(buf->dtb_tomax, size);
12249			allocated++;
12250		}
12251
12252		buf->dtb_tomax = NULL;
12253		buf->dtb_xamot = NULL;
12254		buf->dtb_size = 0;
12255
12256	}
12257#endif
12258	*factor = desired / (allocated > 0 ? allocated : 1);
12259
12260	return (ENOMEM);
12261}
12262
12263/*
12264 * Note:  called from probe context.  This function just increments the drop
12265 * count on a buffer.  It has been made a function to allow for the
12266 * possibility of understanding the source of mysterious drop counts.  (A
12267 * problem for which one may be particularly disappointed that DTrace cannot
12268 * be used to understand DTrace.)
12269 */
12270static void
12271dtrace_buffer_drop(dtrace_buffer_t *buf)
12272{
12273	buf->dtb_drops++;
12274}
12275
12276/*
12277 * Note:  called from probe context.  This function is called to reserve space
12278 * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12279 * mstate.  Returns the new offset in the buffer, or a negative value if an
12280 * error has occurred.
12281 */
12282static intptr_t
12283dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12284    dtrace_state_t *state, dtrace_mstate_t *mstate)
12285{
12286	intptr_t offs = buf->dtb_offset, soffs;
12287	intptr_t woffs;
12288	caddr_t tomax;
12289	size_t total;
12290
12291	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12292		return (-1);
12293
12294	if ((tomax = buf->dtb_tomax) == NULL) {
12295		dtrace_buffer_drop(buf);
12296		return (-1);
12297	}
12298
12299	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12300		while (offs & (align - 1)) {
12301			/*
12302			 * Assert that our alignment is off by a number which
12303			 * is itself sizeof (uint32_t) aligned.
12304			 */
12305			ASSERT(!((align - (offs & (align - 1))) &
12306			    (sizeof (uint32_t) - 1)));
12307			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12308			offs += sizeof (uint32_t);
12309		}
12310
12311		if ((soffs = offs + needed) > buf->dtb_size) {
12312			dtrace_buffer_drop(buf);
12313			return (-1);
12314		}
12315
12316		if (mstate == NULL)
12317			return (offs);
12318
12319		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12320		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12321		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12322
12323		return (offs);
12324	}
12325
12326	if (buf->dtb_flags & DTRACEBUF_FILL) {
12327		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12328		    (buf->dtb_flags & DTRACEBUF_FULL))
12329			return (-1);
12330		goto out;
12331	}
12332
12333	total = needed + (offs & (align - 1));
12334
12335	/*
12336	 * For a ring buffer, life is quite a bit more complicated.  Before
12337	 * we can store any padding, we need to adjust our wrapping offset.
12338	 * (If we've never before wrapped or we're not about to, no adjustment
12339	 * is required.)
12340	 */
12341	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12342	    offs + total > buf->dtb_size) {
12343		woffs = buf->dtb_xamot_offset;
12344
12345		if (offs + total > buf->dtb_size) {
12346			/*
12347			 * We can't fit in the end of the buffer.  First, a
12348			 * sanity check that we can fit in the buffer at all.
12349			 */
12350			if (total > buf->dtb_size) {
12351				dtrace_buffer_drop(buf);
12352				return (-1);
12353			}
12354
12355			/*
12356			 * We're going to be storing at the top of the buffer,
12357			 * so now we need to deal with the wrapped offset.  We
12358			 * only reset our wrapped offset to 0 if it is
12359			 * currently greater than the current offset.  If it
12360			 * is less than the current offset, it is because a
12361			 * previous allocation induced a wrap -- but the
12362			 * allocation didn't subsequently take the space due
12363			 * to an error or false predicate evaluation.  In this
12364			 * case, we'll just leave the wrapped offset alone: if
12365			 * the wrapped offset hasn't been advanced far enough
12366			 * for this allocation, it will be adjusted in the
12367			 * lower loop.
12368			 */
12369			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12370				if (woffs >= offs)
12371					woffs = 0;
12372			} else {
12373				woffs = 0;
12374			}
12375
12376			/*
12377			 * Now we know that we're going to be storing to the
12378			 * top of the buffer and that there is room for us
12379			 * there.  We need to clear the buffer from the current
12380			 * offset to the end (there may be old gunk there).
12381			 */
12382			while (offs < buf->dtb_size)
12383				tomax[offs++] = 0;
12384
12385			/*
12386			 * We need to set our offset to zero.  And because we
12387			 * are wrapping, we need to set the bit indicating as
12388			 * much.  We can also adjust our needed space back
12389			 * down to the space required by the ECB -- we know
12390			 * that the top of the buffer is aligned.
12391			 */
12392			offs = 0;
12393			total = needed;
12394			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12395		} else {
12396			/*
12397			 * There is room for us in the buffer, so we simply
12398			 * need to check the wrapped offset.
12399			 */
12400			if (woffs < offs) {
12401				/*
12402				 * The wrapped offset is less than the offset.
12403				 * This can happen if we allocated buffer space
12404				 * that induced a wrap, but then we didn't
12405				 * subsequently take the space due to an error
12406				 * or false predicate evaluation.  This is
12407				 * okay; we know that _this_ allocation isn't
12408				 * going to induce a wrap.  We still can't
12409				 * reset the wrapped offset to be zero,
12410				 * however: the space may have been trashed in
12411				 * the previous failed probe attempt.  But at
12412				 * least the wrapped offset doesn't need to
12413				 * be adjusted at all...
12414				 */
12415				goto out;
12416			}
12417		}
12418
12419		while (offs + total > woffs) {
12420			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12421			size_t size;
12422
12423			if (epid == DTRACE_EPIDNONE) {
12424				size = sizeof (uint32_t);
12425			} else {
12426				ASSERT3U(epid, <=, state->dts_necbs);
12427				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12428
12429				size = state->dts_ecbs[epid - 1]->dte_size;
12430			}
12431
12432			ASSERT(woffs + size <= buf->dtb_size);
12433			ASSERT(size != 0);
12434
12435			if (woffs + size == buf->dtb_size) {
12436				/*
12437				 * We've reached the end of the buffer; we want
12438				 * to set the wrapped offset to 0 and break
12439				 * out.  However, if the offs is 0, then we're
12440				 * in a strange edge-condition:  the amount of
12441				 * space that we want to reserve plus the size
12442				 * of the record that we're overwriting is
12443				 * greater than the size of the buffer.  This
12444				 * is problematic because if we reserve the
12445				 * space but subsequently don't consume it (due
12446				 * to a failed predicate or error) the wrapped
12447				 * offset will be 0 -- yet the EPID at offset 0
12448				 * will not be committed.  This situation is
12449				 * relatively easy to deal with:  if we're in
12450				 * this case, the buffer is indistinguishable
12451				 * from one that hasn't wrapped; we need only
12452				 * finish the job by clearing the wrapped bit,
12453				 * explicitly setting the offset to be 0, and
12454				 * zero'ing out the old data in the buffer.
12455				 */
12456				if (offs == 0) {
12457					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12458					buf->dtb_offset = 0;
12459					woffs = total;
12460
12461					while (woffs < buf->dtb_size)
12462						tomax[woffs++] = 0;
12463				}
12464
12465				woffs = 0;
12466				break;
12467			}
12468
12469			woffs += size;
12470		}
12471
12472		/*
12473		 * We have a wrapped offset.  It may be that the wrapped offset
12474		 * has become zero -- that's okay.
12475		 */
12476		buf->dtb_xamot_offset = woffs;
12477	}
12478
12479out:
12480	/*
12481	 * Now we can plow the buffer with any necessary padding.
12482	 */
12483	while (offs & (align - 1)) {
12484		/*
12485		 * Assert that our alignment is off by a number which
12486		 * is itself sizeof (uint32_t) aligned.
12487		 */
12488		ASSERT(!((align - (offs & (align - 1))) &
12489		    (sizeof (uint32_t) - 1)));
12490		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12491		offs += sizeof (uint32_t);
12492	}
12493
12494	if (buf->dtb_flags & DTRACEBUF_FILL) {
12495		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12496			buf->dtb_flags |= DTRACEBUF_FULL;
12497			return (-1);
12498		}
12499	}
12500
12501	if (mstate == NULL)
12502		return (offs);
12503
12504	/*
12505	 * For ring buffers and fill buffers, the scratch space is always
12506	 * the inactive buffer.
12507	 */
12508	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12509	mstate->dtms_scratch_size = buf->dtb_size;
12510	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12511
12512	return (offs);
12513}
12514
12515static void
12516dtrace_buffer_polish(dtrace_buffer_t *buf)
12517{
12518	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12519	ASSERT(MUTEX_HELD(&dtrace_lock));
12520
12521	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12522		return;
12523
12524	/*
12525	 * We need to polish the ring buffer.  There are three cases:
12526	 *
12527	 * - The first (and presumably most common) is that there is no gap
12528	 *   between the buffer offset and the wrapped offset.  In this case,
12529	 *   there is nothing in the buffer that isn't valid data; we can
12530	 *   mark the buffer as polished and return.
12531	 *
12532	 * - The second (less common than the first but still more common
12533	 *   than the third) is that there is a gap between the buffer offset
12534	 *   and the wrapped offset, and the wrapped offset is larger than the
12535	 *   buffer offset.  This can happen because of an alignment issue, or
12536	 *   can happen because of a call to dtrace_buffer_reserve() that
12537	 *   didn't subsequently consume the buffer space.  In this case,
12538	 *   we need to zero the data from the buffer offset to the wrapped
12539	 *   offset.
12540	 *
12541	 * - The third (and least common) is that there is a gap between the
12542	 *   buffer offset and the wrapped offset, but the wrapped offset is
12543	 *   _less_ than the buffer offset.  This can only happen because a
12544	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12545	 *   was not subsequently consumed.  In this case, we need to zero the
12546	 *   space from the offset to the end of the buffer _and_ from the
12547	 *   top of the buffer to the wrapped offset.
12548	 */
12549	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12550		bzero(buf->dtb_tomax + buf->dtb_offset,
12551		    buf->dtb_xamot_offset - buf->dtb_offset);
12552	}
12553
12554	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12555		bzero(buf->dtb_tomax + buf->dtb_offset,
12556		    buf->dtb_size - buf->dtb_offset);
12557		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12558	}
12559}
12560
12561/*
12562 * This routine determines if data generated at the specified time has likely
12563 * been entirely consumed at user-level.  This routine is called to determine
12564 * if an ECB on a defunct probe (but for an active enabling) can be safely
12565 * disabled and destroyed.
12566 */
12567static int
12568dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12569{
12570	int i;
12571
12572	for (i = 0; i < NCPU; i++) {
12573		dtrace_buffer_t *buf = &bufs[i];
12574
12575		if (buf->dtb_size == 0)
12576			continue;
12577
12578		if (buf->dtb_flags & DTRACEBUF_RING)
12579			return (0);
12580
12581		if (!buf->dtb_switched && buf->dtb_offset != 0)
12582			return (0);
12583
12584		if (buf->dtb_switched - buf->dtb_interval < when)
12585			return (0);
12586	}
12587
12588	return (1);
12589}
12590
12591static void
12592dtrace_buffer_free(dtrace_buffer_t *bufs)
12593{
12594	int i;
12595
12596	for (i = 0; i < NCPU; i++) {
12597		dtrace_buffer_t *buf = &bufs[i];
12598
12599		if (buf->dtb_tomax == NULL) {
12600			ASSERT(buf->dtb_xamot == NULL);
12601			ASSERT(buf->dtb_size == 0);
12602			continue;
12603		}
12604
12605		if (buf->dtb_xamot != NULL) {
12606			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12607			kmem_free(buf->dtb_xamot, buf->dtb_size);
12608		}
12609
12610		kmem_free(buf->dtb_tomax, buf->dtb_size);
12611		buf->dtb_size = 0;
12612		buf->dtb_tomax = NULL;
12613		buf->dtb_xamot = NULL;
12614	}
12615}
12616
12617/*
12618 * DTrace Enabling Functions
12619 */
12620static dtrace_enabling_t *
12621dtrace_enabling_create(dtrace_vstate_t *vstate)
12622{
12623	dtrace_enabling_t *enab;
12624
12625	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12626	enab->dten_vstate = vstate;
12627
12628	return (enab);
12629}
12630
12631static void
12632dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12633{
12634	dtrace_ecbdesc_t **ndesc;
12635	size_t osize, nsize;
12636
12637	/*
12638	 * We can't add to enablings after we've enabled them, or after we've
12639	 * retained them.
12640	 */
12641	ASSERT(enab->dten_probegen == 0);
12642	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12643
12644	if (enab->dten_ndesc < enab->dten_maxdesc) {
12645		enab->dten_desc[enab->dten_ndesc++] = ecb;
12646		return;
12647	}
12648
12649	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12650
12651	if (enab->dten_maxdesc == 0) {
12652		enab->dten_maxdesc = 1;
12653	} else {
12654		enab->dten_maxdesc <<= 1;
12655	}
12656
12657	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12658
12659	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12660	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12661	bcopy(enab->dten_desc, ndesc, osize);
12662	if (enab->dten_desc != NULL)
12663		kmem_free(enab->dten_desc, osize);
12664
12665	enab->dten_desc = ndesc;
12666	enab->dten_desc[enab->dten_ndesc++] = ecb;
12667}
12668
12669static void
12670dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12671    dtrace_probedesc_t *pd)
12672{
12673	dtrace_ecbdesc_t *new;
12674	dtrace_predicate_t *pred;
12675	dtrace_actdesc_t *act;
12676
12677	/*
12678	 * We're going to create a new ECB description that matches the
12679	 * specified ECB in every way, but has the specified probe description.
12680	 */
12681	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12682
12683	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12684		dtrace_predicate_hold(pred);
12685
12686	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12687		dtrace_actdesc_hold(act);
12688
12689	new->dted_action = ecb->dted_action;
12690	new->dted_pred = ecb->dted_pred;
12691	new->dted_probe = *pd;
12692	new->dted_uarg = ecb->dted_uarg;
12693
12694	dtrace_enabling_add(enab, new);
12695}
12696
12697static void
12698dtrace_enabling_dump(dtrace_enabling_t *enab)
12699{
12700	int i;
12701
12702	for (i = 0; i < enab->dten_ndesc; i++) {
12703		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12704
12705#ifdef __FreeBSD__
12706		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12707		    desc->dtpd_provider, desc->dtpd_mod,
12708		    desc->dtpd_func, desc->dtpd_name);
12709#else
12710		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12711		    desc->dtpd_provider, desc->dtpd_mod,
12712		    desc->dtpd_func, desc->dtpd_name);
12713#endif
12714	}
12715}
12716
12717static void
12718dtrace_enabling_destroy(dtrace_enabling_t *enab)
12719{
12720	int i;
12721	dtrace_ecbdesc_t *ep;
12722	dtrace_vstate_t *vstate = enab->dten_vstate;
12723
12724	ASSERT(MUTEX_HELD(&dtrace_lock));
12725
12726	for (i = 0; i < enab->dten_ndesc; i++) {
12727		dtrace_actdesc_t *act, *next;
12728		dtrace_predicate_t *pred;
12729
12730		ep = enab->dten_desc[i];
12731
12732		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12733			dtrace_predicate_release(pred, vstate);
12734
12735		for (act = ep->dted_action; act != NULL; act = next) {
12736			next = act->dtad_next;
12737			dtrace_actdesc_release(act, vstate);
12738		}
12739
12740		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12741	}
12742
12743	if (enab->dten_desc != NULL)
12744		kmem_free(enab->dten_desc,
12745		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12746
12747	/*
12748	 * If this was a retained enabling, decrement the dts_nretained count
12749	 * and take it off of the dtrace_retained list.
12750	 */
12751	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12752	    dtrace_retained == enab) {
12753		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12754		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12755		enab->dten_vstate->dtvs_state->dts_nretained--;
12756		dtrace_retained_gen++;
12757	}
12758
12759	if (enab->dten_prev == NULL) {
12760		if (dtrace_retained == enab) {
12761			dtrace_retained = enab->dten_next;
12762
12763			if (dtrace_retained != NULL)
12764				dtrace_retained->dten_prev = NULL;
12765		}
12766	} else {
12767		ASSERT(enab != dtrace_retained);
12768		ASSERT(dtrace_retained != NULL);
12769		enab->dten_prev->dten_next = enab->dten_next;
12770	}
12771
12772	if (enab->dten_next != NULL) {
12773		ASSERT(dtrace_retained != NULL);
12774		enab->dten_next->dten_prev = enab->dten_prev;
12775	}
12776
12777	kmem_free(enab, sizeof (dtrace_enabling_t));
12778}
12779
12780static int
12781dtrace_enabling_retain(dtrace_enabling_t *enab)
12782{
12783	dtrace_state_t *state;
12784
12785	ASSERT(MUTEX_HELD(&dtrace_lock));
12786	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12787	ASSERT(enab->dten_vstate != NULL);
12788
12789	state = enab->dten_vstate->dtvs_state;
12790	ASSERT(state != NULL);
12791
12792	/*
12793	 * We only allow each state to retain dtrace_retain_max enablings.
12794	 */
12795	if (state->dts_nretained >= dtrace_retain_max)
12796		return (ENOSPC);
12797
12798	state->dts_nretained++;
12799	dtrace_retained_gen++;
12800
12801	if (dtrace_retained == NULL) {
12802		dtrace_retained = enab;
12803		return (0);
12804	}
12805
12806	enab->dten_next = dtrace_retained;
12807	dtrace_retained->dten_prev = enab;
12808	dtrace_retained = enab;
12809
12810	return (0);
12811}
12812
12813static int
12814dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12815    dtrace_probedesc_t *create)
12816{
12817	dtrace_enabling_t *new, *enab;
12818	int found = 0, err = ENOENT;
12819
12820	ASSERT(MUTEX_HELD(&dtrace_lock));
12821	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12822	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12823	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12824	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12825
12826	new = dtrace_enabling_create(&state->dts_vstate);
12827
12828	/*
12829	 * Iterate over all retained enablings, looking for enablings that
12830	 * match the specified state.
12831	 */
12832	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12833		int i;
12834
12835		/*
12836		 * dtvs_state can only be NULL for helper enablings -- and
12837		 * helper enablings can't be retained.
12838		 */
12839		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12840
12841		if (enab->dten_vstate->dtvs_state != state)
12842			continue;
12843
12844		/*
12845		 * Now iterate over each probe description; we're looking for
12846		 * an exact match to the specified probe description.
12847		 */
12848		for (i = 0; i < enab->dten_ndesc; i++) {
12849			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12850			dtrace_probedesc_t *pd = &ep->dted_probe;
12851
12852			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12853				continue;
12854
12855			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12856				continue;
12857
12858			if (strcmp(pd->dtpd_func, match->dtpd_func))
12859				continue;
12860
12861			if (strcmp(pd->dtpd_name, match->dtpd_name))
12862				continue;
12863
12864			/*
12865			 * We have a winning probe!  Add it to our growing
12866			 * enabling.
12867			 */
12868			found = 1;
12869			dtrace_enabling_addlike(new, ep, create);
12870		}
12871	}
12872
12873	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12874		dtrace_enabling_destroy(new);
12875		return (err);
12876	}
12877
12878	return (0);
12879}
12880
12881static void
12882dtrace_enabling_retract(dtrace_state_t *state)
12883{
12884	dtrace_enabling_t *enab, *next;
12885
12886	ASSERT(MUTEX_HELD(&dtrace_lock));
12887
12888	/*
12889	 * Iterate over all retained enablings, destroy the enablings retained
12890	 * for the specified state.
12891	 */
12892	for (enab = dtrace_retained; enab != NULL; enab = next) {
12893		next = enab->dten_next;
12894
12895		/*
12896		 * dtvs_state can only be NULL for helper enablings -- and
12897		 * helper enablings can't be retained.
12898		 */
12899		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12900
12901		if (enab->dten_vstate->dtvs_state == state) {
12902			ASSERT(state->dts_nretained > 0);
12903			dtrace_enabling_destroy(enab);
12904		}
12905	}
12906
12907	ASSERT(state->dts_nretained == 0);
12908}
12909
12910static int
12911dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12912{
12913	int i = 0;
12914	int matched = 0;
12915
12916	ASSERT(MUTEX_HELD(&cpu_lock));
12917	ASSERT(MUTEX_HELD(&dtrace_lock));
12918
12919	for (i = 0; i < enab->dten_ndesc; i++) {
12920		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12921
12922		enab->dten_current = ep;
12923		enab->dten_error = 0;
12924
12925		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12926
12927		if (enab->dten_error != 0) {
12928			/*
12929			 * If we get an error half-way through enabling the
12930			 * probes, we kick out -- perhaps with some number of
12931			 * them enabled.  Leaving enabled probes enabled may
12932			 * be slightly confusing for user-level, but we expect
12933			 * that no one will attempt to actually drive on in
12934			 * the face of such errors.  If this is an anonymous
12935			 * enabling (indicated with a NULL nmatched pointer),
12936			 * we cmn_err() a message.  We aren't expecting to
12937			 * get such an error -- such as it can exist at all,
12938			 * it would be a result of corrupted DOF in the driver
12939			 * properties.
12940			 */
12941			if (nmatched == NULL) {
12942				cmn_err(CE_WARN, "dtrace_enabling_match() "
12943				    "error on %p: %d", (void *)ep,
12944				    enab->dten_error);
12945			}
12946
12947			return (enab->dten_error);
12948		}
12949	}
12950
12951	enab->dten_probegen = dtrace_probegen;
12952	if (nmatched != NULL)
12953		*nmatched = matched;
12954
12955	return (0);
12956}
12957
12958static void
12959dtrace_enabling_matchall(void)
12960{
12961	dtrace_enabling_t *enab;
12962
12963	mutex_enter(&cpu_lock);
12964	mutex_enter(&dtrace_lock);
12965
12966	/*
12967	 * Iterate over all retained enablings to see if any probes match
12968	 * against them.  We only perform this operation on enablings for which
12969	 * we have sufficient permissions by virtue of being in the global zone
12970	 * or in the same zone as the DTrace client.  Because we can be called
12971	 * after dtrace_detach() has been called, we cannot assert that there
12972	 * are retained enablings.  We can safely load from dtrace_retained,
12973	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12974	 * block pending our completion.
12975	 */
12976	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12977#ifdef illumos
12978		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12979
12980		if (INGLOBALZONE(curproc) ||
12981		    cr != NULL && getzoneid() == crgetzoneid(cr))
12982#endif
12983			(void) dtrace_enabling_match(enab, NULL);
12984	}
12985
12986	mutex_exit(&dtrace_lock);
12987	mutex_exit(&cpu_lock);
12988}
12989
12990/*
12991 * If an enabling is to be enabled without having matched probes (that is, if
12992 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12993 * enabling must be _primed_ by creating an ECB for every ECB description.
12994 * This must be done to assure that we know the number of speculations, the
12995 * number of aggregations, the minimum buffer size needed, etc. before we
12996 * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12997 * enabling any probes, we create ECBs for every ECB decription, but with a
12998 * NULL probe -- which is exactly what this function does.
12999 */
13000static void
13001dtrace_enabling_prime(dtrace_state_t *state)
13002{
13003	dtrace_enabling_t *enab;
13004	int i;
13005
13006	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13007		ASSERT(enab->dten_vstate->dtvs_state != NULL);
13008
13009		if (enab->dten_vstate->dtvs_state != state)
13010			continue;
13011
13012		/*
13013		 * We don't want to prime an enabling more than once, lest
13014		 * we allow a malicious user to induce resource exhaustion.
13015		 * (The ECBs that result from priming an enabling aren't
13016		 * leaked -- but they also aren't deallocated until the
13017		 * consumer state is destroyed.)
13018		 */
13019		if (enab->dten_primed)
13020			continue;
13021
13022		for (i = 0; i < enab->dten_ndesc; i++) {
13023			enab->dten_current = enab->dten_desc[i];
13024			(void) dtrace_probe_enable(NULL, enab);
13025		}
13026
13027		enab->dten_primed = 1;
13028	}
13029}
13030
13031/*
13032 * Called to indicate that probes should be provided due to retained
13033 * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
13034 * must take an initial lap through the enabling calling the dtps_provide()
13035 * entry point explicitly to allow for autocreated probes.
13036 */
13037static void
13038dtrace_enabling_provide(dtrace_provider_t *prv)
13039{
13040	int i, all = 0;
13041	dtrace_probedesc_t desc;
13042	dtrace_genid_t gen;
13043
13044	ASSERT(MUTEX_HELD(&dtrace_lock));
13045	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13046
13047	if (prv == NULL) {
13048		all = 1;
13049		prv = dtrace_provider;
13050	}
13051
13052	do {
13053		dtrace_enabling_t *enab;
13054		void *parg = prv->dtpv_arg;
13055
13056retry:
13057		gen = dtrace_retained_gen;
13058		for (enab = dtrace_retained; enab != NULL;
13059		    enab = enab->dten_next) {
13060			for (i = 0; i < enab->dten_ndesc; i++) {
13061				desc = enab->dten_desc[i]->dted_probe;
13062				mutex_exit(&dtrace_lock);
13063				prv->dtpv_pops.dtps_provide(parg, &desc);
13064				mutex_enter(&dtrace_lock);
13065				/*
13066				 * Process the retained enablings again if
13067				 * they have changed while we weren't holding
13068				 * dtrace_lock.
13069				 */
13070				if (gen != dtrace_retained_gen)
13071					goto retry;
13072			}
13073		}
13074	} while (all && (prv = prv->dtpv_next) != NULL);
13075
13076	mutex_exit(&dtrace_lock);
13077	dtrace_probe_provide(NULL, all ? NULL : prv);
13078	mutex_enter(&dtrace_lock);
13079}
13080
13081/*
13082 * Called to reap ECBs that are attached to probes from defunct providers.
13083 */
13084static void
13085dtrace_enabling_reap(void)
13086{
13087	dtrace_provider_t *prov;
13088	dtrace_probe_t *probe;
13089	dtrace_ecb_t *ecb;
13090	hrtime_t when;
13091	int i;
13092
13093	mutex_enter(&cpu_lock);
13094	mutex_enter(&dtrace_lock);
13095
13096	for (i = 0; i < dtrace_nprobes; i++) {
13097		if ((probe = dtrace_probes[i]) == NULL)
13098			continue;
13099
13100		if (probe->dtpr_ecb == NULL)
13101			continue;
13102
13103		prov = probe->dtpr_provider;
13104
13105		if ((when = prov->dtpv_defunct) == 0)
13106			continue;
13107
13108		/*
13109		 * We have ECBs on a defunct provider:  we want to reap these
13110		 * ECBs to allow the provider to unregister.  The destruction
13111		 * of these ECBs must be done carefully:  if we destroy the ECB
13112		 * and the consumer later wishes to consume an EPID that
13113		 * corresponds to the destroyed ECB (and if the EPID metadata
13114		 * has not been previously consumed), the consumer will abort
13115		 * processing on the unknown EPID.  To reduce (but not, sadly,
13116		 * eliminate) the possibility of this, we will only destroy an
13117		 * ECB for a defunct provider if, for the state that
13118		 * corresponds to the ECB:
13119		 *
13120		 *  (a)	There is no speculative tracing (which can effectively
13121		 *	cache an EPID for an arbitrary amount of time).
13122		 *
13123		 *  (b)	The principal buffers have been switched twice since the
13124		 *	provider became defunct.
13125		 *
13126		 *  (c)	The aggregation buffers are of zero size or have been
13127		 *	switched twice since the provider became defunct.
13128		 *
13129		 * We use dts_speculates to determine (a) and call a function
13130		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13131		 * that as soon as we've been unable to destroy one of the ECBs
13132		 * associated with the probe, we quit trying -- reaping is only
13133		 * fruitful in as much as we can destroy all ECBs associated
13134		 * with the defunct provider's probes.
13135		 */
13136		while ((ecb = probe->dtpr_ecb) != NULL) {
13137			dtrace_state_t *state = ecb->dte_state;
13138			dtrace_buffer_t *buf = state->dts_buffer;
13139			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13140
13141			if (state->dts_speculates)
13142				break;
13143
13144			if (!dtrace_buffer_consumed(buf, when))
13145				break;
13146
13147			if (!dtrace_buffer_consumed(aggbuf, when))
13148				break;
13149
13150			dtrace_ecb_disable(ecb);
13151			ASSERT(probe->dtpr_ecb != ecb);
13152			dtrace_ecb_destroy(ecb);
13153		}
13154	}
13155
13156	mutex_exit(&dtrace_lock);
13157	mutex_exit(&cpu_lock);
13158}
13159
13160/*
13161 * DTrace DOF Functions
13162 */
13163/*ARGSUSED*/
13164static void
13165dtrace_dof_error(dof_hdr_t *dof, const char *str)
13166{
13167	if (dtrace_err_verbose)
13168		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13169
13170#ifdef DTRACE_ERRDEBUG
13171	dtrace_errdebug(str);
13172#endif
13173}
13174
13175/*
13176 * Create DOF out of a currently enabled state.  Right now, we only create
13177 * DOF containing the run-time options -- but this could be expanded to create
13178 * complete DOF representing the enabled state.
13179 */
13180static dof_hdr_t *
13181dtrace_dof_create(dtrace_state_t *state)
13182{
13183	dof_hdr_t *dof;
13184	dof_sec_t *sec;
13185	dof_optdesc_t *opt;
13186	int i, len = sizeof (dof_hdr_t) +
13187	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13188	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13189
13190	ASSERT(MUTEX_HELD(&dtrace_lock));
13191
13192	dof = kmem_zalloc(len, KM_SLEEP);
13193	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13194	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13195	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13196	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13197
13198	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13199	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13200	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13201	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13202	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13203	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13204
13205	dof->dofh_flags = 0;
13206	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13207	dof->dofh_secsize = sizeof (dof_sec_t);
13208	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13209	dof->dofh_secoff = sizeof (dof_hdr_t);
13210	dof->dofh_loadsz = len;
13211	dof->dofh_filesz = len;
13212	dof->dofh_pad = 0;
13213
13214	/*
13215	 * Fill in the option section header...
13216	 */
13217	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13218	sec->dofs_type = DOF_SECT_OPTDESC;
13219	sec->dofs_align = sizeof (uint64_t);
13220	sec->dofs_flags = DOF_SECF_LOAD;
13221	sec->dofs_entsize = sizeof (dof_optdesc_t);
13222
13223	opt = (dof_optdesc_t *)((uintptr_t)sec +
13224	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13225
13226	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13227	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13228
13229	for (i = 0; i < DTRACEOPT_MAX; i++) {
13230		opt[i].dofo_option = i;
13231		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13232		opt[i].dofo_value = state->dts_options[i];
13233	}
13234
13235	return (dof);
13236}
13237
13238static dof_hdr_t *
13239dtrace_dof_copyin(uintptr_t uarg, int *errp)
13240{
13241	dof_hdr_t hdr, *dof;
13242
13243	ASSERT(!MUTEX_HELD(&dtrace_lock));
13244
13245	/*
13246	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13247	 */
13248	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13249		dtrace_dof_error(NULL, "failed to copyin DOF header");
13250		*errp = EFAULT;
13251		return (NULL);
13252	}
13253
13254	/*
13255	 * Now we'll allocate the entire DOF and copy it in -- provided
13256	 * that the length isn't outrageous.
13257	 */
13258	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13259		dtrace_dof_error(&hdr, "load size exceeds maximum");
13260		*errp = E2BIG;
13261		return (NULL);
13262	}
13263
13264	if (hdr.dofh_loadsz < sizeof (hdr)) {
13265		dtrace_dof_error(&hdr, "invalid load size");
13266		*errp = EINVAL;
13267		return (NULL);
13268	}
13269
13270	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13271
13272	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13273	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13274		kmem_free(dof, hdr.dofh_loadsz);
13275		*errp = EFAULT;
13276		return (NULL);
13277	}
13278
13279	return (dof);
13280}
13281
13282#ifdef __FreeBSD__
13283static dof_hdr_t *
13284dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13285{
13286	dof_hdr_t hdr, *dof;
13287	struct thread *td;
13288	size_t loadsz;
13289
13290	ASSERT(!MUTEX_HELD(&dtrace_lock));
13291
13292	td = curthread;
13293
13294	/*
13295	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13296	 */
13297	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13298		dtrace_dof_error(NULL, "failed to copyin DOF header");
13299		*errp = EFAULT;
13300		return (NULL);
13301	}
13302
13303	/*
13304	 * Now we'll allocate the entire DOF and copy it in -- provided
13305	 * that the length isn't outrageous.
13306	 */
13307	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13308		dtrace_dof_error(&hdr, "load size exceeds maximum");
13309		*errp = E2BIG;
13310		return (NULL);
13311	}
13312	loadsz = (size_t)hdr.dofh_loadsz;
13313
13314	if (loadsz < sizeof (hdr)) {
13315		dtrace_dof_error(&hdr, "invalid load size");
13316		*errp = EINVAL;
13317		return (NULL);
13318	}
13319
13320	dof = kmem_alloc(loadsz, KM_SLEEP);
13321
13322	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13323	    dof->dofh_loadsz != loadsz) {
13324		kmem_free(dof, hdr.dofh_loadsz);
13325		*errp = EFAULT;
13326		return (NULL);
13327	}
13328
13329	return (dof);
13330}
13331
13332static __inline uchar_t
13333dtrace_dof_char(char c)
13334{
13335
13336	switch (c) {
13337	case '0':
13338	case '1':
13339	case '2':
13340	case '3':
13341	case '4':
13342	case '5':
13343	case '6':
13344	case '7':
13345	case '8':
13346	case '9':
13347		return (c - '0');
13348	case 'A':
13349	case 'B':
13350	case 'C':
13351	case 'D':
13352	case 'E':
13353	case 'F':
13354		return (c - 'A' + 10);
13355	case 'a':
13356	case 'b':
13357	case 'c':
13358	case 'd':
13359	case 'e':
13360	case 'f':
13361		return (c - 'a' + 10);
13362	}
13363	/* Should not reach here. */
13364	return (UCHAR_MAX);
13365}
13366#endif /* __FreeBSD__ */
13367
13368static dof_hdr_t *
13369dtrace_dof_property(const char *name)
13370{
13371#ifdef __FreeBSD__
13372	uint8_t *dofbuf;
13373	u_char *data, *eol;
13374	caddr_t doffile;
13375	size_t bytes, len, i;
13376	dof_hdr_t *dof;
13377	u_char c1, c2;
13378
13379	dof = NULL;
13380
13381	doffile = preload_search_by_type("dtrace_dof");
13382	if (doffile == NULL)
13383		return (NULL);
13384
13385	data = preload_fetch_addr(doffile);
13386	len = preload_fetch_size(doffile);
13387	for (;;) {
13388		/* Look for the end of the line. All lines end in a newline. */
13389		eol = memchr(data, '\n', len);
13390		if (eol == NULL)
13391			return (NULL);
13392
13393		if (strncmp(name, data, strlen(name)) == 0)
13394			break;
13395
13396		eol++; /* skip past the newline */
13397		len -= eol - data;
13398		data = eol;
13399	}
13400
13401	/* We've found the data corresponding to the specified key. */
13402
13403	data += strlen(name) + 1; /* skip past the '=' */
13404	len = eol - data;
13405	if (len % 2 != 0) {
13406		dtrace_dof_error(NULL, "invalid DOF encoding length");
13407		goto doferr;
13408	}
13409	bytes = len / 2;
13410	if (bytes < sizeof(dof_hdr_t)) {
13411		dtrace_dof_error(NULL, "truncated header");
13412		goto doferr;
13413	}
13414
13415	/*
13416	 * Each byte is represented by the two ASCII characters in its hex
13417	 * representation.
13418	 */
13419	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13420	for (i = 0; i < bytes; i++) {
13421		c1 = dtrace_dof_char(data[i * 2]);
13422		c2 = dtrace_dof_char(data[i * 2 + 1]);
13423		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13424			dtrace_dof_error(NULL, "invalid hex char in DOF");
13425			goto doferr;
13426		}
13427		dofbuf[i] = c1 * 16 + c2;
13428	}
13429
13430	dof = (dof_hdr_t *)dofbuf;
13431	if (bytes < dof->dofh_loadsz) {
13432		dtrace_dof_error(NULL, "truncated DOF");
13433		goto doferr;
13434	}
13435
13436	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13437		dtrace_dof_error(NULL, "oversized DOF");
13438		goto doferr;
13439	}
13440
13441	return (dof);
13442
13443doferr:
13444	free(dof, M_SOLARIS);
13445	return (NULL);
13446#else /* __FreeBSD__ */
13447	uchar_t *buf;
13448	uint64_t loadsz;
13449	unsigned int len, i;
13450	dof_hdr_t *dof;
13451
13452	/*
13453	 * Unfortunately, array of values in .conf files are always (and
13454	 * only) interpreted to be integer arrays.  We must read our DOF
13455	 * as an integer array, and then squeeze it into a byte array.
13456	 */
13457	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13458	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13459		return (NULL);
13460
13461	for (i = 0; i < len; i++)
13462		buf[i] = (uchar_t)(((int *)buf)[i]);
13463
13464	if (len < sizeof (dof_hdr_t)) {
13465		ddi_prop_free(buf);
13466		dtrace_dof_error(NULL, "truncated header");
13467		return (NULL);
13468	}
13469
13470	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13471		ddi_prop_free(buf);
13472		dtrace_dof_error(NULL, "truncated DOF");
13473		return (NULL);
13474	}
13475
13476	if (loadsz >= dtrace_dof_maxsize) {
13477		ddi_prop_free(buf);
13478		dtrace_dof_error(NULL, "oversized DOF");
13479		return (NULL);
13480	}
13481
13482	dof = kmem_alloc(loadsz, KM_SLEEP);
13483	bcopy(buf, dof, loadsz);
13484	ddi_prop_free(buf);
13485
13486	return (dof);
13487#endif /* !__FreeBSD__ */
13488}
13489
13490static void
13491dtrace_dof_destroy(dof_hdr_t *dof)
13492{
13493	kmem_free(dof, dof->dofh_loadsz);
13494}
13495
13496/*
13497 * Return the dof_sec_t pointer corresponding to a given section index.  If the
13498 * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13499 * a type other than DOF_SECT_NONE is specified, the header is checked against
13500 * this type and NULL is returned if the types do not match.
13501 */
13502static dof_sec_t *
13503dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13504{
13505	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13506	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13507
13508	if (i >= dof->dofh_secnum) {
13509		dtrace_dof_error(dof, "referenced section index is invalid");
13510		return (NULL);
13511	}
13512
13513	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13514		dtrace_dof_error(dof, "referenced section is not loadable");
13515		return (NULL);
13516	}
13517
13518	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13519		dtrace_dof_error(dof, "referenced section is the wrong type");
13520		return (NULL);
13521	}
13522
13523	return (sec);
13524}
13525
13526static dtrace_probedesc_t *
13527dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13528{
13529	dof_probedesc_t *probe;
13530	dof_sec_t *strtab;
13531	uintptr_t daddr = (uintptr_t)dof;
13532	uintptr_t str;
13533	size_t size;
13534
13535	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13536		dtrace_dof_error(dof, "invalid probe section");
13537		return (NULL);
13538	}
13539
13540	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13541		dtrace_dof_error(dof, "bad alignment in probe description");
13542		return (NULL);
13543	}
13544
13545	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13546		dtrace_dof_error(dof, "truncated probe description");
13547		return (NULL);
13548	}
13549
13550	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13551	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13552
13553	if (strtab == NULL)
13554		return (NULL);
13555
13556	str = daddr + strtab->dofs_offset;
13557	size = strtab->dofs_size;
13558
13559	if (probe->dofp_provider >= strtab->dofs_size) {
13560		dtrace_dof_error(dof, "corrupt probe provider");
13561		return (NULL);
13562	}
13563
13564	(void) strncpy(desc->dtpd_provider,
13565	    (char *)(str + probe->dofp_provider),
13566	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13567
13568	if (probe->dofp_mod >= strtab->dofs_size) {
13569		dtrace_dof_error(dof, "corrupt probe module");
13570		return (NULL);
13571	}
13572
13573	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13574	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13575
13576	if (probe->dofp_func >= strtab->dofs_size) {
13577		dtrace_dof_error(dof, "corrupt probe function");
13578		return (NULL);
13579	}
13580
13581	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13582	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13583
13584	if (probe->dofp_name >= strtab->dofs_size) {
13585		dtrace_dof_error(dof, "corrupt probe name");
13586		return (NULL);
13587	}
13588
13589	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13590	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13591
13592	return (desc);
13593}
13594
13595static dtrace_difo_t *
13596dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13597    cred_t *cr)
13598{
13599	dtrace_difo_t *dp;
13600	size_t ttl = 0;
13601	dof_difohdr_t *dofd;
13602	uintptr_t daddr = (uintptr_t)dof;
13603	size_t max = dtrace_difo_maxsize;
13604	int i, l, n;
13605
13606	static const struct {
13607		int section;
13608		int bufoffs;
13609		int lenoffs;
13610		int entsize;
13611		int align;
13612		const char *msg;
13613	} difo[] = {
13614		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13615		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13616		sizeof (dif_instr_t), "multiple DIF sections" },
13617
13618		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13619		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13620		sizeof (uint64_t), "multiple integer tables" },
13621
13622		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13623		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13624		sizeof (char), "multiple string tables" },
13625
13626		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13627		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13628		sizeof (uint_t), "multiple variable tables" },
13629
13630		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13631	};
13632
13633	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13634		dtrace_dof_error(dof, "invalid DIFO header section");
13635		return (NULL);
13636	}
13637
13638	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13639		dtrace_dof_error(dof, "bad alignment in DIFO header");
13640		return (NULL);
13641	}
13642
13643	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13644	    sec->dofs_size % sizeof (dof_secidx_t)) {
13645		dtrace_dof_error(dof, "bad size in DIFO header");
13646		return (NULL);
13647	}
13648
13649	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13650	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13651
13652	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13653	dp->dtdo_rtype = dofd->dofd_rtype;
13654
13655	for (l = 0; l < n; l++) {
13656		dof_sec_t *subsec;
13657		void **bufp;
13658		uint32_t *lenp;
13659
13660		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13661		    dofd->dofd_links[l])) == NULL)
13662			goto err; /* invalid section link */
13663
13664		if (ttl + subsec->dofs_size > max) {
13665			dtrace_dof_error(dof, "exceeds maximum size");
13666			goto err;
13667		}
13668
13669		ttl += subsec->dofs_size;
13670
13671		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13672			if (subsec->dofs_type != difo[i].section)
13673				continue;
13674
13675			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13676				dtrace_dof_error(dof, "section not loaded");
13677				goto err;
13678			}
13679
13680			if (subsec->dofs_align != difo[i].align) {
13681				dtrace_dof_error(dof, "bad alignment");
13682				goto err;
13683			}
13684
13685			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13686			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13687
13688			if (*bufp != NULL) {
13689				dtrace_dof_error(dof, difo[i].msg);
13690				goto err;
13691			}
13692
13693			if (difo[i].entsize != subsec->dofs_entsize) {
13694				dtrace_dof_error(dof, "entry size mismatch");
13695				goto err;
13696			}
13697
13698			if (subsec->dofs_entsize != 0 &&
13699			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13700				dtrace_dof_error(dof, "corrupt entry size");
13701				goto err;
13702			}
13703
13704			*lenp = subsec->dofs_size;
13705			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13706			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13707			    *bufp, subsec->dofs_size);
13708
13709			if (subsec->dofs_entsize != 0)
13710				*lenp /= subsec->dofs_entsize;
13711
13712			break;
13713		}
13714
13715		/*
13716		 * If we encounter a loadable DIFO sub-section that is not
13717		 * known to us, assume this is a broken program and fail.
13718		 */
13719		if (difo[i].section == DOF_SECT_NONE &&
13720		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13721			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13722			goto err;
13723		}
13724	}
13725
13726	if (dp->dtdo_buf == NULL) {
13727		/*
13728		 * We can't have a DIF object without DIF text.
13729		 */
13730		dtrace_dof_error(dof, "missing DIF text");
13731		goto err;
13732	}
13733
13734	/*
13735	 * Before we validate the DIF object, run through the variable table
13736	 * looking for the strings -- if any of their size are under, we'll set
13737	 * their size to be the system-wide default string size.  Note that
13738	 * this should _not_ happen if the "strsize" option has been set --
13739	 * in this case, the compiler should have set the size to reflect the
13740	 * setting of the option.
13741	 */
13742	for (i = 0; i < dp->dtdo_varlen; i++) {
13743		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13744		dtrace_diftype_t *t = &v->dtdv_type;
13745
13746		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13747			continue;
13748
13749		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13750			t->dtdt_size = dtrace_strsize_default;
13751	}
13752
13753	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13754		goto err;
13755
13756	dtrace_difo_init(dp, vstate);
13757	return (dp);
13758
13759err:
13760	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13761	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13762	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13763	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13764
13765	kmem_free(dp, sizeof (dtrace_difo_t));
13766	return (NULL);
13767}
13768
13769static dtrace_predicate_t *
13770dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13771    cred_t *cr)
13772{
13773	dtrace_difo_t *dp;
13774
13775	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13776		return (NULL);
13777
13778	return (dtrace_predicate_create(dp));
13779}
13780
13781static dtrace_actdesc_t *
13782dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13783    cred_t *cr)
13784{
13785	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13786	dof_actdesc_t *desc;
13787	dof_sec_t *difosec;
13788	size_t offs;
13789	uintptr_t daddr = (uintptr_t)dof;
13790	uint64_t arg;
13791	dtrace_actkind_t kind;
13792
13793	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13794		dtrace_dof_error(dof, "invalid action section");
13795		return (NULL);
13796	}
13797
13798	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13799		dtrace_dof_error(dof, "truncated action description");
13800		return (NULL);
13801	}
13802
13803	if (sec->dofs_align != sizeof (uint64_t)) {
13804		dtrace_dof_error(dof, "bad alignment in action description");
13805		return (NULL);
13806	}
13807
13808	if (sec->dofs_size < sec->dofs_entsize) {
13809		dtrace_dof_error(dof, "section entry size exceeds total size");
13810		return (NULL);
13811	}
13812
13813	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13814		dtrace_dof_error(dof, "bad entry size in action description");
13815		return (NULL);
13816	}
13817
13818	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13819		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13820		return (NULL);
13821	}
13822
13823	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13824		desc = (dof_actdesc_t *)(daddr +
13825		    (uintptr_t)sec->dofs_offset + offs);
13826		kind = (dtrace_actkind_t)desc->dofa_kind;
13827
13828		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13829		    (kind != DTRACEACT_PRINTA ||
13830		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13831		    (kind == DTRACEACT_DIFEXPR &&
13832		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13833			dof_sec_t *strtab;
13834			char *str, *fmt;
13835			uint64_t i;
13836
13837			/*
13838			 * The argument to these actions is an index into the
13839			 * DOF string table.  For printf()-like actions, this
13840			 * is the format string.  For print(), this is the
13841			 * CTF type of the expression result.
13842			 */
13843			if ((strtab = dtrace_dof_sect(dof,
13844			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13845				goto err;
13846
13847			str = (char *)((uintptr_t)dof +
13848			    (uintptr_t)strtab->dofs_offset);
13849
13850			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13851				if (str[i] == '\0')
13852					break;
13853			}
13854
13855			if (i >= strtab->dofs_size) {
13856				dtrace_dof_error(dof, "bogus format string");
13857				goto err;
13858			}
13859
13860			if (i == desc->dofa_arg) {
13861				dtrace_dof_error(dof, "empty format string");
13862				goto err;
13863			}
13864
13865			i -= desc->dofa_arg;
13866			fmt = kmem_alloc(i + 1, KM_SLEEP);
13867			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13868			arg = (uint64_t)(uintptr_t)fmt;
13869		} else {
13870			if (kind == DTRACEACT_PRINTA) {
13871				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13872				arg = 0;
13873			} else {
13874				arg = desc->dofa_arg;
13875			}
13876		}
13877
13878		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13879		    desc->dofa_uarg, arg);
13880
13881		if (last != NULL) {
13882			last->dtad_next = act;
13883		} else {
13884			first = act;
13885		}
13886
13887		last = act;
13888
13889		if (desc->dofa_difo == DOF_SECIDX_NONE)
13890			continue;
13891
13892		if ((difosec = dtrace_dof_sect(dof,
13893		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13894			goto err;
13895
13896		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13897
13898		if (act->dtad_difo == NULL)
13899			goto err;
13900	}
13901
13902	ASSERT(first != NULL);
13903	return (first);
13904
13905err:
13906	for (act = first; act != NULL; act = next) {
13907		next = act->dtad_next;
13908		dtrace_actdesc_release(act, vstate);
13909	}
13910
13911	return (NULL);
13912}
13913
13914static dtrace_ecbdesc_t *
13915dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13916    cred_t *cr)
13917{
13918	dtrace_ecbdesc_t *ep;
13919	dof_ecbdesc_t *ecb;
13920	dtrace_probedesc_t *desc;
13921	dtrace_predicate_t *pred = NULL;
13922
13923	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13924		dtrace_dof_error(dof, "truncated ECB description");
13925		return (NULL);
13926	}
13927
13928	if (sec->dofs_align != sizeof (uint64_t)) {
13929		dtrace_dof_error(dof, "bad alignment in ECB description");
13930		return (NULL);
13931	}
13932
13933	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13934	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13935
13936	if (sec == NULL)
13937		return (NULL);
13938
13939	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13940	ep->dted_uarg = ecb->dofe_uarg;
13941	desc = &ep->dted_probe;
13942
13943	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13944		goto err;
13945
13946	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13947		if ((sec = dtrace_dof_sect(dof,
13948		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13949			goto err;
13950
13951		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13952			goto err;
13953
13954		ep->dted_pred.dtpdd_predicate = pred;
13955	}
13956
13957	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13958		if ((sec = dtrace_dof_sect(dof,
13959		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13960			goto err;
13961
13962		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13963
13964		if (ep->dted_action == NULL)
13965			goto err;
13966	}
13967
13968	return (ep);
13969
13970err:
13971	if (pred != NULL)
13972		dtrace_predicate_release(pred, vstate);
13973	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13974	return (NULL);
13975}
13976
13977/*
13978 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13979 * specified DOF.  SETX relocations are computed using 'ubase', the base load
13980 * address of the object containing the DOF, and DOFREL relocations are relative
13981 * to the relocation offset within the DOF.
13982 */
13983static int
13984dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
13985    uint64_t udaddr)
13986{
13987	uintptr_t daddr = (uintptr_t)dof;
13988	uintptr_t ts_end;
13989	dof_relohdr_t *dofr =
13990	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13991	dof_sec_t *ss, *rs, *ts;
13992	dof_relodesc_t *r;
13993	uint_t i, n;
13994
13995	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13996	    sec->dofs_align != sizeof (dof_secidx_t)) {
13997		dtrace_dof_error(dof, "invalid relocation header");
13998		return (-1);
13999	}
14000
14001	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14002	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14003	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14004	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14005
14006	if (ss == NULL || rs == NULL || ts == NULL)
14007		return (-1); /* dtrace_dof_error() has been called already */
14008
14009	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14010	    rs->dofs_align != sizeof (uint64_t)) {
14011		dtrace_dof_error(dof, "invalid relocation section");
14012		return (-1);
14013	}
14014
14015	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14016	n = rs->dofs_size / rs->dofs_entsize;
14017
14018	for (i = 0; i < n; i++) {
14019		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14020
14021		switch (r->dofr_type) {
14022		case DOF_RELO_NONE:
14023			break;
14024		case DOF_RELO_SETX:
14025		case DOF_RELO_DOFREL:
14026			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14027			    sizeof (uint64_t) > ts->dofs_size) {
14028				dtrace_dof_error(dof, "bad relocation offset");
14029				return (-1);
14030			}
14031
14032			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14033				dtrace_dof_error(dof, "bad relocation offset");
14034				return (-1);
14035			}
14036
14037			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14038				dtrace_dof_error(dof, "misaligned setx relo");
14039				return (-1);
14040			}
14041
14042			if (r->dofr_type == DOF_RELO_SETX)
14043				*(uint64_t *)taddr += ubase;
14044			else
14045				*(uint64_t *)taddr +=
14046				    udaddr + ts->dofs_offset + r->dofr_offset;
14047			break;
14048		default:
14049			dtrace_dof_error(dof, "invalid relocation type");
14050			return (-1);
14051		}
14052
14053		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14054	}
14055
14056	return (0);
14057}
14058
14059/*
14060 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14061 * header:  it should be at the front of a memory region that is at least
14062 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14063 * size.  It need not be validated in any other way.
14064 */
14065static int
14066dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14067    dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14068{
14069	uint64_t len = dof->dofh_loadsz, seclen;
14070	uintptr_t daddr = (uintptr_t)dof;
14071	dtrace_ecbdesc_t *ep;
14072	dtrace_enabling_t *enab;
14073	uint_t i;
14074
14075	ASSERT(MUTEX_HELD(&dtrace_lock));
14076	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14077
14078	/*
14079	 * Check the DOF header identification bytes.  In addition to checking
14080	 * valid settings, we also verify that unused bits/bytes are zeroed so
14081	 * we can use them later without fear of regressing existing binaries.
14082	 */
14083	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14084	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14085		dtrace_dof_error(dof, "DOF magic string mismatch");
14086		return (-1);
14087	}
14088
14089	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14090	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14091		dtrace_dof_error(dof, "DOF has invalid data model");
14092		return (-1);
14093	}
14094
14095	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14096		dtrace_dof_error(dof, "DOF encoding mismatch");
14097		return (-1);
14098	}
14099
14100	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14101	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14102		dtrace_dof_error(dof, "DOF version mismatch");
14103		return (-1);
14104	}
14105
14106	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14107		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14108		return (-1);
14109	}
14110
14111	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14112		dtrace_dof_error(dof, "DOF uses too many integer registers");
14113		return (-1);
14114	}
14115
14116	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14117		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14118		return (-1);
14119	}
14120
14121	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14122		if (dof->dofh_ident[i] != 0) {
14123			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14124			return (-1);
14125		}
14126	}
14127
14128	if (dof->dofh_flags & ~DOF_FL_VALID) {
14129		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14130		return (-1);
14131	}
14132
14133	if (dof->dofh_secsize == 0) {
14134		dtrace_dof_error(dof, "zero section header size");
14135		return (-1);
14136	}
14137
14138	/*
14139	 * Check that the section headers don't exceed the amount of DOF
14140	 * data.  Note that we cast the section size and number of sections
14141	 * to uint64_t's to prevent possible overflow in the multiplication.
14142	 */
14143	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14144
14145	if (dof->dofh_secoff > len || seclen > len ||
14146	    dof->dofh_secoff + seclen > len) {
14147		dtrace_dof_error(dof, "truncated section headers");
14148		return (-1);
14149	}
14150
14151	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14152		dtrace_dof_error(dof, "misaligned section headers");
14153		return (-1);
14154	}
14155
14156	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14157		dtrace_dof_error(dof, "misaligned section size");
14158		return (-1);
14159	}
14160
14161	/*
14162	 * Take an initial pass through the section headers to be sure that
14163	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14164	 * set, do not permit sections relating to providers, probes, or args.
14165	 */
14166	for (i = 0; i < dof->dofh_secnum; i++) {
14167		dof_sec_t *sec = (dof_sec_t *)(daddr +
14168		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14169
14170		if (noprobes) {
14171			switch (sec->dofs_type) {
14172			case DOF_SECT_PROVIDER:
14173			case DOF_SECT_PROBES:
14174			case DOF_SECT_PRARGS:
14175			case DOF_SECT_PROFFS:
14176				dtrace_dof_error(dof, "illegal sections "
14177				    "for enabling");
14178				return (-1);
14179			}
14180		}
14181
14182		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14183		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14184			dtrace_dof_error(dof, "loadable section with load "
14185			    "flag unset");
14186			return (-1);
14187		}
14188
14189		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14190			continue; /* just ignore non-loadable sections */
14191
14192		if (!ISP2(sec->dofs_align)) {
14193			dtrace_dof_error(dof, "bad section alignment");
14194			return (-1);
14195		}
14196
14197		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14198			dtrace_dof_error(dof, "misaligned section");
14199			return (-1);
14200		}
14201
14202		if (sec->dofs_offset > len || sec->dofs_size > len ||
14203		    sec->dofs_offset + sec->dofs_size > len) {
14204			dtrace_dof_error(dof, "corrupt section header");
14205			return (-1);
14206		}
14207
14208		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14209		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14210			dtrace_dof_error(dof, "non-terminating string table");
14211			return (-1);
14212		}
14213	}
14214
14215	/*
14216	 * Take a second pass through the sections and locate and perform any
14217	 * relocations that are present.  We do this after the first pass to
14218	 * be sure that all sections have had their headers validated.
14219	 */
14220	for (i = 0; i < dof->dofh_secnum; i++) {
14221		dof_sec_t *sec = (dof_sec_t *)(daddr +
14222		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14223
14224		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14225			continue; /* skip sections that are not loadable */
14226
14227		switch (sec->dofs_type) {
14228		case DOF_SECT_URELHDR:
14229			if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14230				return (-1);
14231			break;
14232		}
14233	}
14234
14235	if ((enab = *enabp) == NULL)
14236		enab = *enabp = dtrace_enabling_create(vstate);
14237
14238	for (i = 0; i < dof->dofh_secnum; i++) {
14239		dof_sec_t *sec = (dof_sec_t *)(daddr +
14240		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14241
14242		if (sec->dofs_type != DOF_SECT_ECBDESC)
14243			continue;
14244
14245		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14246			dtrace_enabling_destroy(enab);
14247			*enabp = NULL;
14248			return (-1);
14249		}
14250
14251		dtrace_enabling_add(enab, ep);
14252	}
14253
14254	return (0);
14255}
14256
14257/*
14258 * Process DOF for any options.  This routine assumes that the DOF has been
14259 * at least processed by dtrace_dof_slurp().
14260 */
14261static int
14262dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14263{
14264	int i, rval;
14265	uint32_t entsize;
14266	size_t offs;
14267	dof_optdesc_t *desc;
14268
14269	for (i = 0; i < dof->dofh_secnum; i++) {
14270		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14271		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14272
14273		if (sec->dofs_type != DOF_SECT_OPTDESC)
14274			continue;
14275
14276		if (sec->dofs_align != sizeof (uint64_t)) {
14277			dtrace_dof_error(dof, "bad alignment in "
14278			    "option description");
14279			return (EINVAL);
14280		}
14281
14282		if ((entsize = sec->dofs_entsize) == 0) {
14283			dtrace_dof_error(dof, "zeroed option entry size");
14284			return (EINVAL);
14285		}
14286
14287		if (entsize < sizeof (dof_optdesc_t)) {
14288			dtrace_dof_error(dof, "bad option entry size");
14289			return (EINVAL);
14290		}
14291
14292		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14293			desc = (dof_optdesc_t *)((uintptr_t)dof +
14294			    (uintptr_t)sec->dofs_offset + offs);
14295
14296			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14297				dtrace_dof_error(dof, "non-zero option string");
14298				return (EINVAL);
14299			}
14300
14301			if (desc->dofo_value == DTRACEOPT_UNSET) {
14302				dtrace_dof_error(dof, "unset option");
14303				return (EINVAL);
14304			}
14305
14306			if ((rval = dtrace_state_option(state,
14307			    desc->dofo_option, desc->dofo_value)) != 0) {
14308				dtrace_dof_error(dof, "rejected option");
14309				return (rval);
14310			}
14311		}
14312	}
14313
14314	return (0);
14315}
14316
14317/*
14318 * DTrace Consumer State Functions
14319 */
14320static int
14321dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14322{
14323	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14324	void *base;
14325	uintptr_t limit;
14326	dtrace_dynvar_t *dvar, *next, *start;
14327	int i;
14328
14329	ASSERT(MUTEX_HELD(&dtrace_lock));
14330	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14331
14332	bzero(dstate, sizeof (dtrace_dstate_t));
14333
14334	if ((dstate->dtds_chunksize = chunksize) == 0)
14335		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14336
14337	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14338
14339	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14340		size = min;
14341
14342	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14343		return (ENOMEM);
14344
14345	dstate->dtds_size = size;
14346	dstate->dtds_base = base;
14347	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14348	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14349
14350	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14351
14352	if (hashsize != 1 && (hashsize & 1))
14353		hashsize--;
14354
14355	dstate->dtds_hashsize = hashsize;
14356	dstate->dtds_hash = dstate->dtds_base;
14357
14358	/*
14359	 * Set all of our hash buckets to point to the single sink, and (if
14360	 * it hasn't already been set), set the sink's hash value to be the
14361	 * sink sentinel value.  The sink is needed for dynamic variable
14362	 * lookups to know that they have iterated over an entire, valid hash
14363	 * chain.
14364	 */
14365	for (i = 0; i < hashsize; i++)
14366		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14367
14368	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14369		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14370
14371	/*
14372	 * Determine number of active CPUs.  Divide free list evenly among
14373	 * active CPUs.
14374	 */
14375	start = (dtrace_dynvar_t *)
14376	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14377	limit = (uintptr_t)base + size;
14378
14379	VERIFY((uintptr_t)start < limit);
14380	VERIFY((uintptr_t)start >= (uintptr_t)base);
14381
14382	maxper = (limit - (uintptr_t)start) / NCPU;
14383	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14384
14385#ifndef illumos
14386	CPU_FOREACH(i) {
14387#else
14388	for (i = 0; i < NCPU; i++) {
14389#endif
14390		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14391
14392		/*
14393		 * If we don't even have enough chunks to make it once through
14394		 * NCPUs, we're just going to allocate everything to the first
14395		 * CPU.  And if we're on the last CPU, we're going to allocate
14396		 * whatever is left over.  In either case, we set the limit to
14397		 * be the limit of the dynamic variable space.
14398		 */
14399		if (maxper == 0 || i == NCPU - 1) {
14400			limit = (uintptr_t)base + size;
14401			start = NULL;
14402		} else {
14403			limit = (uintptr_t)start + maxper;
14404			start = (dtrace_dynvar_t *)limit;
14405		}
14406
14407		VERIFY(limit <= (uintptr_t)base + size);
14408
14409		for (;;) {
14410			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14411			    dstate->dtds_chunksize);
14412
14413			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14414				break;
14415
14416			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14417			    (uintptr_t)dvar <= (uintptr_t)base + size);
14418			dvar->dtdv_next = next;
14419			dvar = next;
14420		}
14421
14422		if (maxper == 0)
14423			break;
14424	}
14425
14426	return (0);
14427}
14428
14429static void
14430dtrace_dstate_fini(dtrace_dstate_t *dstate)
14431{
14432	ASSERT(MUTEX_HELD(&cpu_lock));
14433
14434	if (dstate->dtds_base == NULL)
14435		return;
14436
14437	kmem_free(dstate->dtds_base, dstate->dtds_size);
14438	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14439}
14440
14441static void
14442dtrace_vstate_fini(dtrace_vstate_t *vstate)
14443{
14444	/*
14445	 * Logical XOR, where are you?
14446	 */
14447	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14448
14449	if (vstate->dtvs_nglobals > 0) {
14450		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14451		    sizeof (dtrace_statvar_t *));
14452	}
14453
14454	if (vstate->dtvs_ntlocals > 0) {
14455		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14456		    sizeof (dtrace_difv_t));
14457	}
14458
14459	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14460
14461	if (vstate->dtvs_nlocals > 0) {
14462		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14463		    sizeof (dtrace_statvar_t *));
14464	}
14465}
14466
14467#ifdef illumos
14468static void
14469dtrace_state_clean(dtrace_state_t *state)
14470{
14471	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14472		return;
14473
14474	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14475	dtrace_speculation_clean(state);
14476}
14477
14478static void
14479dtrace_state_deadman(dtrace_state_t *state)
14480{
14481	hrtime_t now;
14482
14483	dtrace_sync();
14484
14485	now = dtrace_gethrtime();
14486
14487	if (state != dtrace_anon.dta_state &&
14488	    now - state->dts_laststatus >= dtrace_deadman_user)
14489		return;
14490
14491	/*
14492	 * We must be sure that dts_alive never appears to be less than the
14493	 * value upon entry to dtrace_state_deadman(), and because we lack a
14494	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14495	 * store INT64_MAX to it, followed by a memory barrier, followed by
14496	 * the new value.  This assures that dts_alive never appears to be
14497	 * less than its true value, regardless of the order in which the
14498	 * stores to the underlying storage are issued.
14499	 */
14500	state->dts_alive = INT64_MAX;
14501	dtrace_membar_producer();
14502	state->dts_alive = now;
14503}
14504#else	/* !illumos */
14505static void
14506dtrace_state_clean(void *arg)
14507{
14508	dtrace_state_t *state = arg;
14509	dtrace_optval_t *opt = state->dts_options;
14510
14511	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14512		return;
14513
14514	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14515	dtrace_speculation_clean(state);
14516
14517	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14518	    dtrace_state_clean, state);
14519}
14520
14521static void
14522dtrace_state_deadman(void *arg)
14523{
14524	dtrace_state_t *state = arg;
14525	hrtime_t now;
14526
14527	dtrace_sync();
14528
14529	dtrace_debug_output();
14530
14531	now = dtrace_gethrtime();
14532
14533	if (state != dtrace_anon.dta_state &&
14534	    now - state->dts_laststatus >= dtrace_deadman_user)
14535		return;
14536
14537	/*
14538	 * We must be sure that dts_alive never appears to be less than the
14539	 * value upon entry to dtrace_state_deadman(), and because we lack a
14540	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14541	 * store INT64_MAX to it, followed by a memory barrier, followed by
14542	 * the new value.  This assures that dts_alive never appears to be
14543	 * less than its true value, regardless of the order in which the
14544	 * stores to the underlying storage are issued.
14545	 */
14546	state->dts_alive = INT64_MAX;
14547	dtrace_membar_producer();
14548	state->dts_alive = now;
14549
14550	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14551	    dtrace_state_deadman, state);
14552}
14553#endif	/* illumos */
14554
14555static dtrace_state_t *
14556#ifdef illumos
14557dtrace_state_create(dev_t *devp, cred_t *cr)
14558#else
14559dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14560#endif
14561{
14562#ifdef illumos
14563	minor_t minor;
14564	major_t major;
14565#else
14566	cred_t *cr = NULL;
14567	int m = 0;
14568#endif
14569	char c[30];
14570	dtrace_state_t *state;
14571	dtrace_optval_t *opt;
14572	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14573	int cpu_it;
14574
14575	ASSERT(MUTEX_HELD(&dtrace_lock));
14576	ASSERT(MUTEX_HELD(&cpu_lock));
14577
14578#ifdef illumos
14579	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14580	    VM_BESTFIT | VM_SLEEP);
14581
14582	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14583		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14584		return (NULL);
14585	}
14586
14587	state = ddi_get_soft_state(dtrace_softstate, minor);
14588#else
14589	if (dev != NULL) {
14590		cr = dev->si_cred;
14591		m = dev2unit(dev);
14592	}
14593
14594	/* Allocate memory for the state. */
14595	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14596#endif
14597
14598	state->dts_epid = DTRACE_EPIDNONE + 1;
14599
14600	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14601#ifdef illumos
14602	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14603	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14604
14605	if (devp != NULL) {
14606		major = getemajor(*devp);
14607	} else {
14608		major = ddi_driver_major(dtrace_devi);
14609	}
14610
14611	state->dts_dev = makedevice(major, minor);
14612
14613	if (devp != NULL)
14614		*devp = state->dts_dev;
14615#else
14616	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14617	state->dts_dev = dev;
14618#endif
14619
14620	/*
14621	 * We allocate NCPU buffers.  On the one hand, this can be quite
14622	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14623	 * other hand, it saves an additional memory reference in the probe
14624	 * path.
14625	 */
14626	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14627	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14628
14629	/*
14630         * Allocate and initialise the per-process per-CPU random state.
14631	 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14632         * assumed to be seeded at this point (if from Fortuna seed file).
14633	 */
14634	(void) read_random(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14635	for (cpu_it = 1; cpu_it < NCPU; cpu_it++) {
14636		/*
14637		 * Each CPU is assigned a 2^64 period, non-overlapping
14638		 * subsequence.
14639		 */
14640		dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1],
14641		    state->dts_rstate[cpu_it]);
14642	}
14643
14644#ifdef illumos
14645	state->dts_cleaner = CYCLIC_NONE;
14646	state->dts_deadman = CYCLIC_NONE;
14647#else
14648	callout_init(&state->dts_cleaner, 1);
14649	callout_init(&state->dts_deadman, 1);
14650#endif
14651	state->dts_vstate.dtvs_state = state;
14652
14653	for (i = 0; i < DTRACEOPT_MAX; i++)
14654		state->dts_options[i] = DTRACEOPT_UNSET;
14655
14656	/*
14657	 * Set the default options.
14658	 */
14659	opt = state->dts_options;
14660	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14661	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14662	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14663	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14664	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14665	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14666	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14667	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14668	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14669	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14670	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14671	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14672	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14673	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14674
14675	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14676
14677	/*
14678	 * Depending on the user credentials, we set flag bits which alter probe
14679	 * visibility or the amount of destructiveness allowed.  In the case of
14680	 * actual anonymous tracing, or the possession of all privileges, all of
14681	 * the normal checks are bypassed.
14682	 */
14683	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14684		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14685		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14686	} else {
14687		/*
14688		 * Set up the credentials for this instantiation.  We take a
14689		 * hold on the credential to prevent it from disappearing on
14690		 * us; this in turn prevents the zone_t referenced by this
14691		 * credential from disappearing.  This means that we can
14692		 * examine the credential and the zone from probe context.
14693		 */
14694		crhold(cr);
14695		state->dts_cred.dcr_cred = cr;
14696
14697		/*
14698		 * CRA_PROC means "we have *some* privilege for dtrace" and
14699		 * unlocks the use of variables like pid, zonename, etc.
14700		 */
14701		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14702		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14703			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14704		}
14705
14706		/*
14707		 * dtrace_user allows use of syscall and profile providers.
14708		 * If the user also has proc_owner and/or proc_zone, we
14709		 * extend the scope to include additional visibility and
14710		 * destructive power.
14711		 */
14712		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14713			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14714				state->dts_cred.dcr_visible |=
14715				    DTRACE_CRV_ALLPROC;
14716
14717				state->dts_cred.dcr_action |=
14718				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14719			}
14720
14721			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14722				state->dts_cred.dcr_visible |=
14723				    DTRACE_CRV_ALLZONE;
14724
14725				state->dts_cred.dcr_action |=
14726				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14727			}
14728
14729			/*
14730			 * If we have all privs in whatever zone this is,
14731			 * we can do destructive things to processes which
14732			 * have altered credentials.
14733			 */
14734#ifdef illumos
14735			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14736			    cr->cr_zone->zone_privset)) {
14737				state->dts_cred.dcr_action |=
14738				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14739			}
14740#endif
14741		}
14742
14743		/*
14744		 * Holding the dtrace_kernel privilege also implies that
14745		 * the user has the dtrace_user privilege from a visibility
14746		 * perspective.  But without further privileges, some
14747		 * destructive actions are not available.
14748		 */
14749		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14750			/*
14751			 * Make all probes in all zones visible.  However,
14752			 * this doesn't mean that all actions become available
14753			 * to all zones.
14754			 */
14755			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14756			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14757
14758			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14759			    DTRACE_CRA_PROC;
14760			/*
14761			 * Holding proc_owner means that destructive actions
14762			 * for *this* zone are allowed.
14763			 */
14764			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14765				state->dts_cred.dcr_action |=
14766				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14767
14768			/*
14769			 * Holding proc_zone means that destructive actions
14770			 * for this user/group ID in all zones is allowed.
14771			 */
14772			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14773				state->dts_cred.dcr_action |=
14774				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14775
14776#ifdef illumos
14777			/*
14778			 * If we have all privs in whatever zone this is,
14779			 * we can do destructive things to processes which
14780			 * have altered credentials.
14781			 */
14782			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14783			    cr->cr_zone->zone_privset)) {
14784				state->dts_cred.dcr_action |=
14785				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14786			}
14787#endif
14788		}
14789
14790		/*
14791		 * Holding the dtrace_proc privilege gives control over fasttrap
14792		 * and pid providers.  We need to grant wider destructive
14793		 * privileges in the event that the user has proc_owner and/or
14794		 * proc_zone.
14795		 */
14796		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14797			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14798				state->dts_cred.dcr_action |=
14799				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14800
14801			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14802				state->dts_cred.dcr_action |=
14803				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14804		}
14805	}
14806
14807	return (state);
14808}
14809
14810static int
14811dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14812{
14813	dtrace_optval_t *opt = state->dts_options, size;
14814	processorid_t cpu = 0;;
14815	int flags = 0, rval, factor, divisor = 1;
14816
14817	ASSERT(MUTEX_HELD(&dtrace_lock));
14818	ASSERT(MUTEX_HELD(&cpu_lock));
14819	ASSERT(which < DTRACEOPT_MAX);
14820	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14821	    (state == dtrace_anon.dta_state &&
14822	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14823
14824	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14825		return (0);
14826
14827	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14828		cpu = opt[DTRACEOPT_CPU];
14829
14830	if (which == DTRACEOPT_SPECSIZE)
14831		flags |= DTRACEBUF_NOSWITCH;
14832
14833	if (which == DTRACEOPT_BUFSIZE) {
14834		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14835			flags |= DTRACEBUF_RING;
14836
14837		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14838			flags |= DTRACEBUF_FILL;
14839
14840		if (state != dtrace_anon.dta_state ||
14841		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14842			flags |= DTRACEBUF_INACTIVE;
14843	}
14844
14845	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14846		/*
14847		 * The size must be 8-byte aligned.  If the size is not 8-byte
14848		 * aligned, drop it down by the difference.
14849		 */
14850		if (size & (sizeof (uint64_t) - 1))
14851			size -= size & (sizeof (uint64_t) - 1);
14852
14853		if (size < state->dts_reserve) {
14854			/*
14855			 * Buffers always must be large enough to accommodate
14856			 * their prereserved space.  We return E2BIG instead
14857			 * of ENOMEM in this case to allow for user-level
14858			 * software to differentiate the cases.
14859			 */
14860			return (E2BIG);
14861		}
14862
14863		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14864
14865		if (rval != ENOMEM) {
14866			opt[which] = size;
14867			return (rval);
14868		}
14869
14870		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14871			return (rval);
14872
14873		for (divisor = 2; divisor < factor; divisor <<= 1)
14874			continue;
14875	}
14876
14877	return (ENOMEM);
14878}
14879
14880static int
14881dtrace_state_buffers(dtrace_state_t *state)
14882{
14883	dtrace_speculation_t *spec = state->dts_speculations;
14884	int rval, i;
14885
14886	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14887	    DTRACEOPT_BUFSIZE)) != 0)
14888		return (rval);
14889
14890	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14891	    DTRACEOPT_AGGSIZE)) != 0)
14892		return (rval);
14893
14894	for (i = 0; i < state->dts_nspeculations; i++) {
14895		if ((rval = dtrace_state_buffer(state,
14896		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14897			return (rval);
14898	}
14899
14900	return (0);
14901}
14902
14903static void
14904dtrace_state_prereserve(dtrace_state_t *state)
14905{
14906	dtrace_ecb_t *ecb;
14907	dtrace_probe_t *probe;
14908
14909	state->dts_reserve = 0;
14910
14911	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14912		return;
14913
14914	/*
14915	 * If our buffer policy is a "fill" buffer policy, we need to set the
14916	 * prereserved space to be the space required by the END probes.
14917	 */
14918	probe = dtrace_probes[dtrace_probeid_end - 1];
14919	ASSERT(probe != NULL);
14920
14921	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14922		if (ecb->dte_state != state)
14923			continue;
14924
14925		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14926	}
14927}
14928
14929static int
14930dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14931{
14932	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14933	dtrace_speculation_t *spec;
14934	dtrace_buffer_t *buf;
14935#ifdef illumos
14936	cyc_handler_t hdlr;
14937	cyc_time_t when;
14938#endif
14939	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14940	dtrace_icookie_t cookie;
14941
14942	mutex_enter(&cpu_lock);
14943	mutex_enter(&dtrace_lock);
14944
14945	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14946		rval = EBUSY;
14947		goto out;
14948	}
14949
14950	/*
14951	 * Before we can perform any checks, we must prime all of the
14952	 * retained enablings that correspond to this state.
14953	 */
14954	dtrace_enabling_prime(state);
14955
14956	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14957		rval = EACCES;
14958		goto out;
14959	}
14960
14961	dtrace_state_prereserve(state);
14962
14963	/*
14964	 * Now we want to do is try to allocate our speculations.
14965	 * We do not automatically resize the number of speculations; if
14966	 * this fails, we will fail the operation.
14967	 */
14968	nspec = opt[DTRACEOPT_NSPEC];
14969	ASSERT(nspec != DTRACEOPT_UNSET);
14970
14971	if (nspec > INT_MAX) {
14972		rval = ENOMEM;
14973		goto out;
14974	}
14975
14976	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14977	    KM_NOSLEEP | KM_NORMALPRI);
14978
14979	if (spec == NULL) {
14980		rval = ENOMEM;
14981		goto out;
14982	}
14983
14984	state->dts_speculations = spec;
14985	state->dts_nspeculations = (int)nspec;
14986
14987	for (i = 0; i < nspec; i++) {
14988		if ((buf = kmem_zalloc(bufsize,
14989		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14990			rval = ENOMEM;
14991			goto err;
14992		}
14993
14994		spec[i].dtsp_buffer = buf;
14995	}
14996
14997	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14998		if (dtrace_anon.dta_state == NULL) {
14999			rval = ENOENT;
15000			goto out;
15001		}
15002
15003		if (state->dts_necbs != 0) {
15004			rval = EALREADY;
15005			goto out;
15006		}
15007
15008		state->dts_anon = dtrace_anon_grab();
15009		ASSERT(state->dts_anon != NULL);
15010		state = state->dts_anon;
15011
15012		/*
15013		 * We want "grabanon" to be set in the grabbed state, so we'll
15014		 * copy that option value from the grabbing state into the
15015		 * grabbed state.
15016		 */
15017		state->dts_options[DTRACEOPT_GRABANON] =
15018		    opt[DTRACEOPT_GRABANON];
15019
15020		*cpu = dtrace_anon.dta_beganon;
15021
15022		/*
15023		 * If the anonymous state is active (as it almost certainly
15024		 * is if the anonymous enabling ultimately matched anything),
15025		 * we don't allow any further option processing -- but we
15026		 * don't return failure.
15027		 */
15028		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15029			goto out;
15030	}
15031
15032	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15033	    opt[DTRACEOPT_AGGSIZE] != 0) {
15034		if (state->dts_aggregations == NULL) {
15035			/*
15036			 * We're not going to create an aggregation buffer
15037			 * because we don't have any ECBs that contain
15038			 * aggregations -- set this option to 0.
15039			 */
15040			opt[DTRACEOPT_AGGSIZE] = 0;
15041		} else {
15042			/*
15043			 * If we have an aggregation buffer, we must also have
15044			 * a buffer to use as scratch.
15045			 */
15046			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15047			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15048				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15049			}
15050		}
15051	}
15052
15053	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15054	    opt[DTRACEOPT_SPECSIZE] != 0) {
15055		if (!state->dts_speculates) {
15056			/*
15057			 * We're not going to create speculation buffers
15058			 * because we don't have any ECBs that actually
15059			 * speculate -- set the speculation size to 0.
15060			 */
15061			opt[DTRACEOPT_SPECSIZE] = 0;
15062		}
15063	}
15064
15065	/*
15066	 * The bare minimum size for any buffer that we're actually going to
15067	 * do anything to is sizeof (uint64_t).
15068	 */
15069	sz = sizeof (uint64_t);
15070
15071	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15072	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15073	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15074		/*
15075		 * A buffer size has been explicitly set to 0 (or to a size
15076		 * that will be adjusted to 0) and we need the space -- we
15077		 * need to return failure.  We return ENOSPC to differentiate
15078		 * it from failing to allocate a buffer due to failure to meet
15079		 * the reserve (for which we return E2BIG).
15080		 */
15081		rval = ENOSPC;
15082		goto out;
15083	}
15084
15085	if ((rval = dtrace_state_buffers(state)) != 0)
15086		goto err;
15087
15088	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15089		sz = dtrace_dstate_defsize;
15090
15091	do {
15092		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15093
15094		if (rval == 0)
15095			break;
15096
15097		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15098			goto err;
15099	} while (sz >>= 1);
15100
15101	opt[DTRACEOPT_DYNVARSIZE] = sz;
15102
15103	if (rval != 0)
15104		goto err;
15105
15106	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15107		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15108
15109	if (opt[DTRACEOPT_CLEANRATE] == 0)
15110		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15111
15112	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15113		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15114
15115	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15116		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15117
15118	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15119#ifdef illumos
15120	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15121	hdlr.cyh_arg = state;
15122	hdlr.cyh_level = CY_LOW_LEVEL;
15123
15124	when.cyt_when = 0;
15125	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15126
15127	state->dts_cleaner = cyclic_add(&hdlr, &when);
15128
15129	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15130	hdlr.cyh_arg = state;
15131	hdlr.cyh_level = CY_LOW_LEVEL;
15132
15133	when.cyt_when = 0;
15134	when.cyt_interval = dtrace_deadman_interval;
15135
15136	state->dts_deadman = cyclic_add(&hdlr, &when);
15137#else
15138	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15139	    dtrace_state_clean, state);
15140	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15141	    dtrace_state_deadman, state);
15142#endif
15143
15144	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15145
15146#ifdef illumos
15147	if (state->dts_getf != 0 &&
15148	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15149		/*
15150		 * We don't have kernel privs but we have at least one call
15151		 * to getf(); we need to bump our zone's count, and (if
15152		 * this is the first enabling to have an unprivileged call
15153		 * to getf()) we need to hook into closef().
15154		 */
15155		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15156
15157		if (dtrace_getf++ == 0) {
15158			ASSERT(dtrace_closef == NULL);
15159			dtrace_closef = dtrace_getf_barrier;
15160		}
15161	}
15162#endif
15163
15164	/*
15165	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15166	 * interrupts here both to record the CPU on which we fired the BEGIN
15167	 * probe (the data from this CPU will be processed first at user
15168	 * level) and to manually activate the buffer for this CPU.
15169	 */
15170	cookie = dtrace_interrupt_disable();
15171	*cpu = curcpu;
15172	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15173	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15174
15175	dtrace_probe(dtrace_probeid_begin,
15176	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15177	dtrace_interrupt_enable(cookie);
15178	/*
15179	 * We may have had an exit action from a BEGIN probe; only change our
15180	 * state to ACTIVE if we're still in WARMUP.
15181	 */
15182	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15183	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15184
15185	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15186		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15187
15188#ifdef __FreeBSD__
15189	/*
15190	 * We enable anonymous tracing before APs are started, so we must
15191	 * activate buffers using the current CPU.
15192	 */
15193	if (state == dtrace_anon.dta_state)
15194		for (int i = 0; i < NCPU; i++)
15195			dtrace_buffer_activate_cpu(state, i);
15196	else
15197		dtrace_xcall(DTRACE_CPUALL,
15198		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15199#else
15200	/*
15201	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15202	 * want each CPU to transition its principal buffer out of the
15203	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15204	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15205	 * atomically transition from processing none of a state's ECBs to
15206	 * processing all of them.
15207	 */
15208	dtrace_xcall(DTRACE_CPUALL,
15209	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15210#endif
15211	goto out;
15212
15213err:
15214	dtrace_buffer_free(state->dts_buffer);
15215	dtrace_buffer_free(state->dts_aggbuffer);
15216
15217	if ((nspec = state->dts_nspeculations) == 0) {
15218		ASSERT(state->dts_speculations == NULL);
15219		goto out;
15220	}
15221
15222	spec = state->dts_speculations;
15223	ASSERT(spec != NULL);
15224
15225	for (i = 0; i < state->dts_nspeculations; i++) {
15226		if ((buf = spec[i].dtsp_buffer) == NULL)
15227			break;
15228
15229		dtrace_buffer_free(buf);
15230		kmem_free(buf, bufsize);
15231	}
15232
15233	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15234	state->dts_nspeculations = 0;
15235	state->dts_speculations = NULL;
15236
15237out:
15238	mutex_exit(&dtrace_lock);
15239	mutex_exit(&cpu_lock);
15240
15241	return (rval);
15242}
15243
15244static int
15245dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15246{
15247	dtrace_icookie_t cookie;
15248
15249	ASSERT(MUTEX_HELD(&dtrace_lock));
15250
15251	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15252	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15253		return (EINVAL);
15254
15255	/*
15256	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15257	 * to be sure that every CPU has seen it.  See below for the details
15258	 * on why this is done.
15259	 */
15260	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15261	dtrace_sync();
15262
15263	/*
15264	 * By this point, it is impossible for any CPU to be still processing
15265	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15266	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15267	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15268	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15269	 * iff we're in the END probe.
15270	 */
15271	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15272	dtrace_sync();
15273	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15274
15275	/*
15276	 * Finally, we can release the reserve and call the END probe.  We
15277	 * disable interrupts across calling the END probe to allow us to
15278	 * return the CPU on which we actually called the END probe.  This
15279	 * allows user-land to be sure that this CPU's principal buffer is
15280	 * processed last.
15281	 */
15282	state->dts_reserve = 0;
15283
15284	cookie = dtrace_interrupt_disable();
15285	*cpu = curcpu;
15286	dtrace_probe(dtrace_probeid_end,
15287	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15288	dtrace_interrupt_enable(cookie);
15289
15290	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15291	dtrace_sync();
15292
15293#ifdef illumos
15294	if (state->dts_getf != 0 &&
15295	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15296		/*
15297		 * We don't have kernel privs but we have at least one call
15298		 * to getf(); we need to lower our zone's count, and (if
15299		 * this is the last enabling to have an unprivileged call
15300		 * to getf()) we need to clear the closef() hook.
15301		 */
15302		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15303		ASSERT(dtrace_closef == dtrace_getf_barrier);
15304		ASSERT(dtrace_getf > 0);
15305
15306		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15307
15308		if (--dtrace_getf == 0)
15309			dtrace_closef = NULL;
15310	}
15311#endif
15312
15313	return (0);
15314}
15315
15316static int
15317dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15318    dtrace_optval_t val)
15319{
15320	ASSERT(MUTEX_HELD(&dtrace_lock));
15321
15322	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15323		return (EBUSY);
15324
15325	if (option >= DTRACEOPT_MAX)
15326		return (EINVAL);
15327
15328	if (option != DTRACEOPT_CPU && val < 0)
15329		return (EINVAL);
15330
15331	switch (option) {
15332	case DTRACEOPT_DESTRUCTIVE:
15333		if (dtrace_destructive_disallow)
15334			return (EACCES);
15335
15336		state->dts_cred.dcr_destructive = 1;
15337		break;
15338
15339	case DTRACEOPT_BUFSIZE:
15340	case DTRACEOPT_DYNVARSIZE:
15341	case DTRACEOPT_AGGSIZE:
15342	case DTRACEOPT_SPECSIZE:
15343	case DTRACEOPT_STRSIZE:
15344		if (val < 0)
15345			return (EINVAL);
15346
15347		if (val >= LONG_MAX) {
15348			/*
15349			 * If this is an otherwise negative value, set it to
15350			 * the highest multiple of 128m less than LONG_MAX.
15351			 * Technically, we're adjusting the size without
15352			 * regard to the buffer resizing policy, but in fact,
15353			 * this has no effect -- if we set the buffer size to
15354			 * ~LONG_MAX and the buffer policy is ultimately set to
15355			 * be "manual", the buffer allocation is guaranteed to
15356			 * fail, if only because the allocation requires two
15357			 * buffers.  (We set the the size to the highest
15358			 * multiple of 128m because it ensures that the size
15359			 * will remain a multiple of a megabyte when
15360			 * repeatedly halved -- all the way down to 15m.)
15361			 */
15362			val = LONG_MAX - (1 << 27) + 1;
15363		}
15364	}
15365
15366	state->dts_options[option] = val;
15367
15368	return (0);
15369}
15370
15371static void
15372dtrace_state_destroy(dtrace_state_t *state)
15373{
15374	dtrace_ecb_t *ecb;
15375	dtrace_vstate_t *vstate = &state->dts_vstate;
15376#ifdef illumos
15377	minor_t minor = getminor(state->dts_dev);
15378#endif
15379	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15380	dtrace_speculation_t *spec = state->dts_speculations;
15381	int nspec = state->dts_nspeculations;
15382	uint32_t match;
15383
15384	ASSERT(MUTEX_HELD(&dtrace_lock));
15385	ASSERT(MUTEX_HELD(&cpu_lock));
15386
15387	/*
15388	 * First, retract any retained enablings for this state.
15389	 */
15390	dtrace_enabling_retract(state);
15391	ASSERT(state->dts_nretained == 0);
15392
15393	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15394	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15395		/*
15396		 * We have managed to come into dtrace_state_destroy() on a
15397		 * hot enabling -- almost certainly because of a disorderly
15398		 * shutdown of a consumer.  (That is, a consumer that is
15399		 * exiting without having called dtrace_stop().) In this case,
15400		 * we're going to set our activity to be KILLED, and then
15401		 * issue a sync to be sure that everyone is out of probe
15402		 * context before we start blowing away ECBs.
15403		 */
15404		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15405		dtrace_sync();
15406	}
15407
15408	/*
15409	 * Release the credential hold we took in dtrace_state_create().
15410	 */
15411	if (state->dts_cred.dcr_cred != NULL)
15412		crfree(state->dts_cred.dcr_cred);
15413
15414	/*
15415	 * Now we can safely disable and destroy any enabled probes.  Because
15416	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15417	 * (especially if they're all enabled), we take two passes through the
15418	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15419	 * in the second we disable whatever is left over.
15420	 */
15421	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15422		for (i = 0; i < state->dts_necbs; i++) {
15423			if ((ecb = state->dts_ecbs[i]) == NULL)
15424				continue;
15425
15426			if (match && ecb->dte_probe != NULL) {
15427				dtrace_probe_t *probe = ecb->dte_probe;
15428				dtrace_provider_t *prov = probe->dtpr_provider;
15429
15430				if (!(prov->dtpv_priv.dtpp_flags & match))
15431					continue;
15432			}
15433
15434			dtrace_ecb_disable(ecb);
15435			dtrace_ecb_destroy(ecb);
15436		}
15437
15438		if (!match)
15439			break;
15440	}
15441
15442	/*
15443	 * Before we free the buffers, perform one more sync to assure that
15444	 * every CPU is out of probe context.
15445	 */
15446	dtrace_sync();
15447
15448	dtrace_buffer_free(state->dts_buffer);
15449	dtrace_buffer_free(state->dts_aggbuffer);
15450
15451	for (i = 0; i < nspec; i++)
15452		dtrace_buffer_free(spec[i].dtsp_buffer);
15453
15454#ifdef illumos
15455	if (state->dts_cleaner != CYCLIC_NONE)
15456		cyclic_remove(state->dts_cleaner);
15457
15458	if (state->dts_deadman != CYCLIC_NONE)
15459		cyclic_remove(state->dts_deadman);
15460#else
15461	callout_stop(&state->dts_cleaner);
15462	callout_drain(&state->dts_cleaner);
15463	callout_stop(&state->dts_deadman);
15464	callout_drain(&state->dts_deadman);
15465#endif
15466
15467	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15468	dtrace_vstate_fini(vstate);
15469	if (state->dts_ecbs != NULL)
15470		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15471
15472	if (state->dts_aggregations != NULL) {
15473#ifdef DEBUG
15474		for (i = 0; i < state->dts_naggregations; i++)
15475			ASSERT(state->dts_aggregations[i] == NULL);
15476#endif
15477		ASSERT(state->dts_naggregations > 0);
15478		kmem_free(state->dts_aggregations,
15479		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15480	}
15481
15482	kmem_free(state->dts_buffer, bufsize);
15483	kmem_free(state->dts_aggbuffer, bufsize);
15484
15485	for (i = 0; i < nspec; i++)
15486		kmem_free(spec[i].dtsp_buffer, bufsize);
15487
15488	if (spec != NULL)
15489		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15490
15491	dtrace_format_destroy(state);
15492
15493	if (state->dts_aggid_arena != NULL) {
15494#ifdef illumos
15495		vmem_destroy(state->dts_aggid_arena);
15496#else
15497		delete_unrhdr(state->dts_aggid_arena);
15498#endif
15499		state->dts_aggid_arena = NULL;
15500	}
15501#ifdef illumos
15502	ddi_soft_state_free(dtrace_softstate, minor);
15503	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15504#endif
15505}
15506
15507/*
15508 * DTrace Anonymous Enabling Functions
15509 */
15510static dtrace_state_t *
15511dtrace_anon_grab(void)
15512{
15513	dtrace_state_t *state;
15514
15515	ASSERT(MUTEX_HELD(&dtrace_lock));
15516
15517	if ((state = dtrace_anon.dta_state) == NULL) {
15518		ASSERT(dtrace_anon.dta_enabling == NULL);
15519		return (NULL);
15520	}
15521
15522	ASSERT(dtrace_anon.dta_enabling != NULL);
15523	ASSERT(dtrace_retained != NULL);
15524
15525	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15526	dtrace_anon.dta_enabling = NULL;
15527	dtrace_anon.dta_state = NULL;
15528
15529	return (state);
15530}
15531
15532static void
15533dtrace_anon_property(void)
15534{
15535	int i, rv;
15536	dtrace_state_t *state;
15537	dof_hdr_t *dof;
15538	char c[32];		/* enough for "dof-data-" + digits */
15539
15540	ASSERT(MUTEX_HELD(&dtrace_lock));
15541	ASSERT(MUTEX_HELD(&cpu_lock));
15542
15543	for (i = 0; ; i++) {
15544		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15545
15546		dtrace_err_verbose = 1;
15547
15548		if ((dof = dtrace_dof_property(c)) == NULL) {
15549			dtrace_err_verbose = 0;
15550			break;
15551		}
15552
15553#ifdef illumos
15554		/*
15555		 * We want to create anonymous state, so we need to transition
15556		 * the kernel debugger to indicate that DTrace is active.  If
15557		 * this fails (e.g. because the debugger has modified text in
15558		 * some way), we won't continue with the processing.
15559		 */
15560		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15561			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15562			    "enabling ignored.");
15563			dtrace_dof_destroy(dof);
15564			break;
15565		}
15566#endif
15567
15568		/*
15569		 * If we haven't allocated an anonymous state, we'll do so now.
15570		 */
15571		if ((state = dtrace_anon.dta_state) == NULL) {
15572			state = dtrace_state_create(NULL, NULL);
15573			dtrace_anon.dta_state = state;
15574
15575			if (state == NULL) {
15576				/*
15577				 * This basically shouldn't happen:  the only
15578				 * failure mode from dtrace_state_create() is a
15579				 * failure of ddi_soft_state_zalloc() that
15580				 * itself should never happen.  Still, the
15581				 * interface allows for a failure mode, and
15582				 * we want to fail as gracefully as possible:
15583				 * we'll emit an error message and cease
15584				 * processing anonymous state in this case.
15585				 */
15586				cmn_err(CE_WARN, "failed to create "
15587				    "anonymous state");
15588				dtrace_dof_destroy(dof);
15589				break;
15590			}
15591		}
15592
15593		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15594		    &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15595
15596		if (rv == 0)
15597			rv = dtrace_dof_options(dof, state);
15598
15599		dtrace_err_verbose = 0;
15600		dtrace_dof_destroy(dof);
15601
15602		if (rv != 0) {
15603			/*
15604			 * This is malformed DOF; chuck any anonymous state
15605			 * that we created.
15606			 */
15607			ASSERT(dtrace_anon.dta_enabling == NULL);
15608			dtrace_state_destroy(state);
15609			dtrace_anon.dta_state = NULL;
15610			break;
15611		}
15612
15613		ASSERT(dtrace_anon.dta_enabling != NULL);
15614	}
15615
15616	if (dtrace_anon.dta_enabling != NULL) {
15617		int rval;
15618
15619		/*
15620		 * dtrace_enabling_retain() can only fail because we are
15621		 * trying to retain more enablings than are allowed -- but
15622		 * we only have one anonymous enabling, and we are guaranteed
15623		 * to be allowed at least one retained enabling; we assert
15624		 * that dtrace_enabling_retain() returns success.
15625		 */
15626		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15627		ASSERT(rval == 0);
15628
15629		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15630	}
15631}
15632
15633/*
15634 * DTrace Helper Functions
15635 */
15636static void
15637dtrace_helper_trace(dtrace_helper_action_t *helper,
15638    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15639{
15640	uint32_t size, next, nnext, i;
15641	dtrace_helptrace_t *ent, *buffer;
15642	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15643
15644	if ((buffer = dtrace_helptrace_buffer) == NULL)
15645		return;
15646
15647	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15648
15649	/*
15650	 * What would a tracing framework be without its own tracing
15651	 * framework?  (Well, a hell of a lot simpler, for starters...)
15652	 */
15653	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15654	    sizeof (uint64_t) - sizeof (uint64_t);
15655
15656	/*
15657	 * Iterate until we can allocate a slot in the trace buffer.
15658	 */
15659	do {
15660		next = dtrace_helptrace_next;
15661
15662		if (next + size < dtrace_helptrace_bufsize) {
15663			nnext = next + size;
15664		} else {
15665			nnext = size;
15666		}
15667	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15668
15669	/*
15670	 * We have our slot; fill it in.
15671	 */
15672	if (nnext == size) {
15673		dtrace_helptrace_wrapped++;
15674		next = 0;
15675	}
15676
15677	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15678	ent->dtht_helper = helper;
15679	ent->dtht_where = where;
15680	ent->dtht_nlocals = vstate->dtvs_nlocals;
15681
15682	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15683	    mstate->dtms_fltoffs : -1;
15684	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15685	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15686
15687	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15688		dtrace_statvar_t *svar;
15689
15690		if ((svar = vstate->dtvs_locals[i]) == NULL)
15691			continue;
15692
15693		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15694		ent->dtht_locals[i] =
15695		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15696	}
15697}
15698
15699static uint64_t
15700dtrace_helper(int which, dtrace_mstate_t *mstate,
15701    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15702{
15703	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15704	uint64_t sarg0 = mstate->dtms_arg[0];
15705	uint64_t sarg1 = mstate->dtms_arg[1];
15706	uint64_t rval = 0;
15707	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15708	dtrace_helper_action_t *helper;
15709	dtrace_vstate_t *vstate;
15710	dtrace_difo_t *pred;
15711	int i, trace = dtrace_helptrace_buffer != NULL;
15712
15713	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15714
15715	if (helpers == NULL)
15716		return (0);
15717
15718	if ((helper = helpers->dthps_actions[which]) == NULL)
15719		return (0);
15720
15721	vstate = &helpers->dthps_vstate;
15722	mstate->dtms_arg[0] = arg0;
15723	mstate->dtms_arg[1] = arg1;
15724
15725	/*
15726	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15727	 * we'll call the corresponding actions.  Note that the below calls
15728	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15729	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15730	 * the stored DIF offset with its own (which is the desired behavior).
15731	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15732	 * from machine state; this is okay, too.
15733	 */
15734	for (; helper != NULL; helper = helper->dtha_next) {
15735		if ((pred = helper->dtha_predicate) != NULL) {
15736			if (trace)
15737				dtrace_helper_trace(helper, mstate, vstate, 0);
15738
15739			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15740				goto next;
15741
15742			if (*flags & CPU_DTRACE_FAULT)
15743				goto err;
15744		}
15745
15746		for (i = 0; i < helper->dtha_nactions; i++) {
15747			if (trace)
15748				dtrace_helper_trace(helper,
15749				    mstate, vstate, i + 1);
15750
15751			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15752			    mstate, vstate, state);
15753
15754			if (*flags & CPU_DTRACE_FAULT)
15755				goto err;
15756		}
15757
15758next:
15759		if (trace)
15760			dtrace_helper_trace(helper, mstate, vstate,
15761			    DTRACE_HELPTRACE_NEXT);
15762	}
15763
15764	if (trace)
15765		dtrace_helper_trace(helper, mstate, vstate,
15766		    DTRACE_HELPTRACE_DONE);
15767
15768	/*
15769	 * Restore the arg0 that we saved upon entry.
15770	 */
15771	mstate->dtms_arg[0] = sarg0;
15772	mstate->dtms_arg[1] = sarg1;
15773
15774	return (rval);
15775
15776err:
15777	if (trace)
15778		dtrace_helper_trace(helper, mstate, vstate,
15779		    DTRACE_HELPTRACE_ERR);
15780
15781	/*
15782	 * Restore the arg0 that we saved upon entry.
15783	 */
15784	mstate->dtms_arg[0] = sarg0;
15785	mstate->dtms_arg[1] = sarg1;
15786
15787	return (0);
15788}
15789
15790static void
15791dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15792    dtrace_vstate_t *vstate)
15793{
15794	int i;
15795
15796	if (helper->dtha_predicate != NULL)
15797		dtrace_difo_release(helper->dtha_predicate, vstate);
15798
15799	for (i = 0; i < helper->dtha_nactions; i++) {
15800		ASSERT(helper->dtha_actions[i] != NULL);
15801		dtrace_difo_release(helper->dtha_actions[i], vstate);
15802	}
15803
15804	kmem_free(helper->dtha_actions,
15805	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15806	kmem_free(helper, sizeof (dtrace_helper_action_t));
15807}
15808
15809static int
15810dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15811{
15812	proc_t *p = curproc;
15813	dtrace_vstate_t *vstate;
15814	int i;
15815
15816	if (help == NULL)
15817		help = p->p_dtrace_helpers;
15818
15819	ASSERT(MUTEX_HELD(&dtrace_lock));
15820
15821	if (help == NULL || gen > help->dthps_generation)
15822		return (EINVAL);
15823
15824	vstate = &help->dthps_vstate;
15825
15826	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15827		dtrace_helper_action_t *last = NULL, *h, *next;
15828
15829		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15830			next = h->dtha_next;
15831
15832			if (h->dtha_generation == gen) {
15833				if (last != NULL) {
15834					last->dtha_next = next;
15835				} else {
15836					help->dthps_actions[i] = next;
15837				}
15838
15839				dtrace_helper_action_destroy(h, vstate);
15840			} else {
15841				last = h;
15842			}
15843		}
15844	}
15845
15846	/*
15847	 * Interate until we've cleared out all helper providers with the
15848	 * given generation number.
15849	 */
15850	for (;;) {
15851		dtrace_helper_provider_t *prov;
15852
15853		/*
15854		 * Look for a helper provider with the right generation. We
15855		 * have to start back at the beginning of the list each time
15856		 * because we drop dtrace_lock. It's unlikely that we'll make
15857		 * more than two passes.
15858		 */
15859		for (i = 0; i < help->dthps_nprovs; i++) {
15860			prov = help->dthps_provs[i];
15861
15862			if (prov->dthp_generation == gen)
15863				break;
15864		}
15865
15866		/*
15867		 * If there were no matches, we're done.
15868		 */
15869		if (i == help->dthps_nprovs)
15870			break;
15871
15872		/*
15873		 * Move the last helper provider into this slot.
15874		 */
15875		help->dthps_nprovs--;
15876		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15877		help->dthps_provs[help->dthps_nprovs] = NULL;
15878
15879		mutex_exit(&dtrace_lock);
15880
15881		/*
15882		 * If we have a meta provider, remove this helper provider.
15883		 */
15884		mutex_enter(&dtrace_meta_lock);
15885		if (dtrace_meta_pid != NULL) {
15886			ASSERT(dtrace_deferred_pid == NULL);
15887			dtrace_helper_provider_remove(&prov->dthp_prov,
15888			    p->p_pid);
15889		}
15890		mutex_exit(&dtrace_meta_lock);
15891
15892		dtrace_helper_provider_destroy(prov);
15893
15894		mutex_enter(&dtrace_lock);
15895	}
15896
15897	return (0);
15898}
15899
15900static int
15901dtrace_helper_validate(dtrace_helper_action_t *helper)
15902{
15903	int err = 0, i;
15904	dtrace_difo_t *dp;
15905
15906	if ((dp = helper->dtha_predicate) != NULL)
15907		err += dtrace_difo_validate_helper(dp);
15908
15909	for (i = 0; i < helper->dtha_nactions; i++)
15910		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15911
15912	return (err == 0);
15913}
15914
15915static int
15916dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15917    dtrace_helpers_t *help)
15918{
15919	dtrace_helper_action_t *helper, *last;
15920	dtrace_actdesc_t *act;
15921	dtrace_vstate_t *vstate;
15922	dtrace_predicate_t *pred;
15923	int count = 0, nactions = 0, i;
15924
15925	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15926		return (EINVAL);
15927
15928	last = help->dthps_actions[which];
15929	vstate = &help->dthps_vstate;
15930
15931	for (count = 0; last != NULL; last = last->dtha_next) {
15932		count++;
15933		if (last->dtha_next == NULL)
15934			break;
15935	}
15936
15937	/*
15938	 * If we already have dtrace_helper_actions_max helper actions for this
15939	 * helper action type, we'll refuse to add a new one.
15940	 */
15941	if (count >= dtrace_helper_actions_max)
15942		return (ENOSPC);
15943
15944	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15945	helper->dtha_generation = help->dthps_generation;
15946
15947	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15948		ASSERT(pred->dtp_difo != NULL);
15949		dtrace_difo_hold(pred->dtp_difo);
15950		helper->dtha_predicate = pred->dtp_difo;
15951	}
15952
15953	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15954		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15955			goto err;
15956
15957		if (act->dtad_difo == NULL)
15958			goto err;
15959
15960		nactions++;
15961	}
15962
15963	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15964	    (helper->dtha_nactions = nactions), KM_SLEEP);
15965
15966	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15967		dtrace_difo_hold(act->dtad_difo);
15968		helper->dtha_actions[i++] = act->dtad_difo;
15969	}
15970
15971	if (!dtrace_helper_validate(helper))
15972		goto err;
15973
15974	if (last == NULL) {
15975		help->dthps_actions[which] = helper;
15976	} else {
15977		last->dtha_next = helper;
15978	}
15979
15980	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15981		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15982		dtrace_helptrace_next = 0;
15983	}
15984
15985	return (0);
15986err:
15987	dtrace_helper_action_destroy(helper, vstate);
15988	return (EINVAL);
15989}
15990
15991static void
15992dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15993    dof_helper_t *dofhp)
15994{
15995	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15996
15997	mutex_enter(&dtrace_meta_lock);
15998	mutex_enter(&dtrace_lock);
15999
16000	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16001		/*
16002		 * If the dtrace module is loaded but not attached, or if
16003		 * there aren't isn't a meta provider registered to deal with
16004		 * these provider descriptions, we need to postpone creating
16005		 * the actual providers until later.
16006		 */
16007
16008		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16009		    dtrace_deferred_pid != help) {
16010			help->dthps_deferred = 1;
16011			help->dthps_pid = p->p_pid;
16012			help->dthps_next = dtrace_deferred_pid;
16013			help->dthps_prev = NULL;
16014			if (dtrace_deferred_pid != NULL)
16015				dtrace_deferred_pid->dthps_prev = help;
16016			dtrace_deferred_pid = help;
16017		}
16018
16019		mutex_exit(&dtrace_lock);
16020
16021	} else if (dofhp != NULL) {
16022		/*
16023		 * If the dtrace module is loaded and we have a particular
16024		 * helper provider description, pass that off to the
16025		 * meta provider.
16026		 */
16027
16028		mutex_exit(&dtrace_lock);
16029
16030		dtrace_helper_provide(dofhp, p->p_pid);
16031
16032	} else {
16033		/*
16034		 * Otherwise, just pass all the helper provider descriptions
16035		 * off to the meta provider.
16036		 */
16037
16038		int i;
16039		mutex_exit(&dtrace_lock);
16040
16041		for (i = 0; i < help->dthps_nprovs; i++) {
16042			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16043			    p->p_pid);
16044		}
16045	}
16046
16047	mutex_exit(&dtrace_meta_lock);
16048}
16049
16050static int
16051dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16052{
16053	dtrace_helper_provider_t *hprov, **tmp_provs;
16054	uint_t tmp_maxprovs, i;
16055
16056	ASSERT(MUTEX_HELD(&dtrace_lock));
16057	ASSERT(help != NULL);
16058
16059	/*
16060	 * If we already have dtrace_helper_providers_max helper providers,
16061	 * we're refuse to add a new one.
16062	 */
16063	if (help->dthps_nprovs >= dtrace_helper_providers_max)
16064		return (ENOSPC);
16065
16066	/*
16067	 * Check to make sure this isn't a duplicate.
16068	 */
16069	for (i = 0; i < help->dthps_nprovs; i++) {
16070		if (dofhp->dofhp_addr ==
16071		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
16072			return (EALREADY);
16073	}
16074
16075	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16076	hprov->dthp_prov = *dofhp;
16077	hprov->dthp_ref = 1;
16078	hprov->dthp_generation = gen;
16079
16080	/*
16081	 * Allocate a bigger table for helper providers if it's already full.
16082	 */
16083	if (help->dthps_maxprovs == help->dthps_nprovs) {
16084		tmp_maxprovs = help->dthps_maxprovs;
16085		tmp_provs = help->dthps_provs;
16086
16087		if (help->dthps_maxprovs == 0)
16088			help->dthps_maxprovs = 2;
16089		else
16090			help->dthps_maxprovs *= 2;
16091		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16092			help->dthps_maxprovs = dtrace_helper_providers_max;
16093
16094		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16095
16096		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16097		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16098
16099		if (tmp_provs != NULL) {
16100			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16101			    sizeof (dtrace_helper_provider_t *));
16102			kmem_free(tmp_provs, tmp_maxprovs *
16103			    sizeof (dtrace_helper_provider_t *));
16104		}
16105	}
16106
16107	help->dthps_provs[help->dthps_nprovs] = hprov;
16108	help->dthps_nprovs++;
16109
16110	return (0);
16111}
16112
16113static void
16114dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16115{
16116	mutex_enter(&dtrace_lock);
16117
16118	if (--hprov->dthp_ref == 0) {
16119		dof_hdr_t *dof;
16120		mutex_exit(&dtrace_lock);
16121		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16122		dtrace_dof_destroy(dof);
16123		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16124	} else {
16125		mutex_exit(&dtrace_lock);
16126	}
16127}
16128
16129static int
16130dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16131{
16132	uintptr_t daddr = (uintptr_t)dof;
16133	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16134	dof_provider_t *provider;
16135	dof_probe_t *probe;
16136	uint8_t *arg;
16137	char *strtab, *typestr;
16138	dof_stridx_t typeidx;
16139	size_t typesz;
16140	uint_t nprobes, j, k;
16141
16142	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16143
16144	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16145		dtrace_dof_error(dof, "misaligned section offset");
16146		return (-1);
16147	}
16148
16149	/*
16150	 * The section needs to be large enough to contain the DOF provider
16151	 * structure appropriate for the given version.
16152	 */
16153	if (sec->dofs_size <
16154	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16155	    offsetof(dof_provider_t, dofpv_prenoffs) :
16156	    sizeof (dof_provider_t))) {
16157		dtrace_dof_error(dof, "provider section too small");
16158		return (-1);
16159	}
16160
16161	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16162	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16163	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16164	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16165	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16166
16167	if (str_sec == NULL || prb_sec == NULL ||
16168	    arg_sec == NULL || off_sec == NULL)
16169		return (-1);
16170
16171	enoff_sec = NULL;
16172
16173	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16174	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16175	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16176	    provider->dofpv_prenoffs)) == NULL)
16177		return (-1);
16178
16179	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16180
16181	if (provider->dofpv_name >= str_sec->dofs_size ||
16182	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16183		dtrace_dof_error(dof, "invalid provider name");
16184		return (-1);
16185	}
16186
16187	if (prb_sec->dofs_entsize == 0 ||
16188	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16189		dtrace_dof_error(dof, "invalid entry size");
16190		return (-1);
16191	}
16192
16193	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16194		dtrace_dof_error(dof, "misaligned entry size");
16195		return (-1);
16196	}
16197
16198	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16199		dtrace_dof_error(dof, "invalid entry size");
16200		return (-1);
16201	}
16202
16203	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16204		dtrace_dof_error(dof, "misaligned section offset");
16205		return (-1);
16206	}
16207
16208	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16209		dtrace_dof_error(dof, "invalid entry size");
16210		return (-1);
16211	}
16212
16213	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16214
16215	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16216
16217	/*
16218	 * Take a pass through the probes to check for errors.
16219	 */
16220	for (j = 0; j < nprobes; j++) {
16221		probe = (dof_probe_t *)(uintptr_t)(daddr +
16222		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16223
16224		if (probe->dofpr_func >= str_sec->dofs_size) {
16225			dtrace_dof_error(dof, "invalid function name");
16226			return (-1);
16227		}
16228
16229		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16230			dtrace_dof_error(dof, "function name too long");
16231			/*
16232			 * Keep going if the function name is too long.
16233			 * Unlike provider and probe names, we cannot reasonably
16234			 * impose restrictions on function names, since they're
16235			 * a property of the code being instrumented. We will
16236			 * skip this probe in dtrace_helper_provide_one().
16237			 */
16238		}
16239
16240		if (probe->dofpr_name >= str_sec->dofs_size ||
16241		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16242			dtrace_dof_error(dof, "invalid probe name");
16243			return (-1);
16244		}
16245
16246		/*
16247		 * The offset count must not wrap the index, and the offsets
16248		 * must also not overflow the section's data.
16249		 */
16250		if (probe->dofpr_offidx + probe->dofpr_noffs <
16251		    probe->dofpr_offidx ||
16252		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16253		    off_sec->dofs_entsize > off_sec->dofs_size) {
16254			dtrace_dof_error(dof, "invalid probe offset");
16255			return (-1);
16256		}
16257
16258		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16259			/*
16260			 * If there's no is-enabled offset section, make sure
16261			 * there aren't any is-enabled offsets. Otherwise
16262			 * perform the same checks as for probe offsets
16263			 * (immediately above).
16264			 */
16265			if (enoff_sec == NULL) {
16266				if (probe->dofpr_enoffidx != 0 ||
16267				    probe->dofpr_nenoffs != 0) {
16268					dtrace_dof_error(dof, "is-enabled "
16269					    "offsets with null section");
16270					return (-1);
16271				}
16272			} else if (probe->dofpr_enoffidx +
16273			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16274			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16275			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16276				dtrace_dof_error(dof, "invalid is-enabled "
16277				    "offset");
16278				return (-1);
16279			}
16280
16281			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16282				dtrace_dof_error(dof, "zero probe and "
16283				    "is-enabled offsets");
16284				return (-1);
16285			}
16286		} else if (probe->dofpr_noffs == 0) {
16287			dtrace_dof_error(dof, "zero probe offsets");
16288			return (-1);
16289		}
16290
16291		if (probe->dofpr_argidx + probe->dofpr_xargc <
16292		    probe->dofpr_argidx ||
16293		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16294		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16295			dtrace_dof_error(dof, "invalid args");
16296			return (-1);
16297		}
16298
16299		typeidx = probe->dofpr_nargv;
16300		typestr = strtab + probe->dofpr_nargv;
16301		for (k = 0; k < probe->dofpr_nargc; k++) {
16302			if (typeidx >= str_sec->dofs_size) {
16303				dtrace_dof_error(dof, "bad "
16304				    "native argument type");
16305				return (-1);
16306			}
16307
16308			typesz = strlen(typestr) + 1;
16309			if (typesz > DTRACE_ARGTYPELEN) {
16310				dtrace_dof_error(dof, "native "
16311				    "argument type too long");
16312				return (-1);
16313			}
16314			typeidx += typesz;
16315			typestr += typesz;
16316		}
16317
16318		typeidx = probe->dofpr_xargv;
16319		typestr = strtab + probe->dofpr_xargv;
16320		for (k = 0; k < probe->dofpr_xargc; k++) {
16321			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16322				dtrace_dof_error(dof, "bad "
16323				    "native argument index");
16324				return (-1);
16325			}
16326
16327			if (typeidx >= str_sec->dofs_size) {
16328				dtrace_dof_error(dof, "bad "
16329				    "translated argument type");
16330				return (-1);
16331			}
16332
16333			typesz = strlen(typestr) + 1;
16334			if (typesz > DTRACE_ARGTYPELEN) {
16335				dtrace_dof_error(dof, "translated argument "
16336				    "type too long");
16337				return (-1);
16338			}
16339
16340			typeidx += typesz;
16341			typestr += typesz;
16342		}
16343	}
16344
16345	return (0);
16346}
16347
16348static int
16349dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16350{
16351	dtrace_helpers_t *help;
16352	dtrace_vstate_t *vstate;
16353	dtrace_enabling_t *enab = NULL;
16354	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16355	uintptr_t daddr = (uintptr_t)dof;
16356
16357	ASSERT(MUTEX_HELD(&dtrace_lock));
16358
16359	if ((help = p->p_dtrace_helpers) == NULL)
16360		help = dtrace_helpers_create(p);
16361
16362	vstate = &help->dthps_vstate;
16363
16364	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16365	    dhp->dofhp_dof, B_FALSE)) != 0) {
16366		dtrace_dof_destroy(dof);
16367		return (rv);
16368	}
16369
16370	/*
16371	 * Look for helper providers and validate their descriptions.
16372	 */
16373	for (i = 0; i < dof->dofh_secnum; i++) {
16374		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16375		    dof->dofh_secoff + i * dof->dofh_secsize);
16376
16377		if (sec->dofs_type != DOF_SECT_PROVIDER)
16378			continue;
16379
16380		if (dtrace_helper_provider_validate(dof, sec) != 0) {
16381			dtrace_enabling_destroy(enab);
16382			dtrace_dof_destroy(dof);
16383			return (-1);
16384		}
16385
16386		nprovs++;
16387	}
16388
16389	/*
16390	 * Now we need to walk through the ECB descriptions in the enabling.
16391	 */
16392	for (i = 0; i < enab->dten_ndesc; i++) {
16393		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16394		dtrace_probedesc_t *desc = &ep->dted_probe;
16395
16396		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16397			continue;
16398
16399		if (strcmp(desc->dtpd_mod, "helper") != 0)
16400			continue;
16401
16402		if (strcmp(desc->dtpd_func, "ustack") != 0)
16403			continue;
16404
16405		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16406		    ep, help)) != 0) {
16407			/*
16408			 * Adding this helper action failed -- we are now going
16409			 * to rip out the entire generation and return failure.
16410			 */
16411			(void) dtrace_helper_destroygen(help,
16412			    help->dthps_generation);
16413			dtrace_enabling_destroy(enab);
16414			dtrace_dof_destroy(dof);
16415			return (-1);
16416		}
16417
16418		nhelpers++;
16419	}
16420
16421	if (nhelpers < enab->dten_ndesc)
16422		dtrace_dof_error(dof, "unmatched helpers");
16423
16424	gen = help->dthps_generation++;
16425	dtrace_enabling_destroy(enab);
16426
16427	if (nprovs > 0) {
16428		/*
16429		 * Now that this is in-kernel, we change the sense of the
16430		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16431		 * and dofhp_addr denotes the address at user-level.
16432		 */
16433		dhp->dofhp_addr = dhp->dofhp_dof;
16434		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16435
16436		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16437			mutex_exit(&dtrace_lock);
16438			dtrace_helper_provider_register(p, help, dhp);
16439			mutex_enter(&dtrace_lock);
16440
16441			destroy = 0;
16442		}
16443	}
16444
16445	if (destroy)
16446		dtrace_dof_destroy(dof);
16447
16448	return (gen);
16449}
16450
16451static dtrace_helpers_t *
16452dtrace_helpers_create(proc_t *p)
16453{
16454	dtrace_helpers_t *help;
16455
16456	ASSERT(MUTEX_HELD(&dtrace_lock));
16457	ASSERT(p->p_dtrace_helpers == NULL);
16458
16459	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16460	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16461	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16462
16463	p->p_dtrace_helpers = help;
16464	dtrace_helpers++;
16465
16466	return (help);
16467}
16468
16469#ifdef illumos
16470static
16471#endif
16472void
16473dtrace_helpers_destroy(proc_t *p)
16474{
16475	dtrace_helpers_t *help;
16476	dtrace_vstate_t *vstate;
16477#ifdef illumos
16478	proc_t *p = curproc;
16479#endif
16480	int i;
16481
16482	mutex_enter(&dtrace_lock);
16483
16484	ASSERT(p->p_dtrace_helpers != NULL);
16485	ASSERT(dtrace_helpers > 0);
16486
16487	help = p->p_dtrace_helpers;
16488	vstate = &help->dthps_vstate;
16489
16490	/*
16491	 * We're now going to lose the help from this process.
16492	 */
16493	p->p_dtrace_helpers = NULL;
16494	dtrace_sync();
16495
16496	/*
16497	 * Destory the helper actions.
16498	 */
16499	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16500		dtrace_helper_action_t *h, *next;
16501
16502		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16503			next = h->dtha_next;
16504			dtrace_helper_action_destroy(h, vstate);
16505			h = next;
16506		}
16507	}
16508
16509	mutex_exit(&dtrace_lock);
16510
16511	/*
16512	 * Destroy the helper providers.
16513	 */
16514	if (help->dthps_maxprovs > 0) {
16515		mutex_enter(&dtrace_meta_lock);
16516		if (dtrace_meta_pid != NULL) {
16517			ASSERT(dtrace_deferred_pid == NULL);
16518
16519			for (i = 0; i < help->dthps_nprovs; i++) {
16520				dtrace_helper_provider_remove(
16521				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16522			}
16523		} else {
16524			mutex_enter(&dtrace_lock);
16525			ASSERT(help->dthps_deferred == 0 ||
16526			    help->dthps_next != NULL ||
16527			    help->dthps_prev != NULL ||
16528			    help == dtrace_deferred_pid);
16529
16530			/*
16531			 * Remove the helper from the deferred list.
16532			 */
16533			if (help->dthps_next != NULL)
16534				help->dthps_next->dthps_prev = help->dthps_prev;
16535			if (help->dthps_prev != NULL)
16536				help->dthps_prev->dthps_next = help->dthps_next;
16537			if (dtrace_deferred_pid == help) {
16538				dtrace_deferred_pid = help->dthps_next;
16539				ASSERT(help->dthps_prev == NULL);
16540			}
16541
16542			mutex_exit(&dtrace_lock);
16543		}
16544
16545		mutex_exit(&dtrace_meta_lock);
16546
16547		for (i = 0; i < help->dthps_nprovs; i++) {
16548			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16549		}
16550
16551		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16552		    sizeof (dtrace_helper_provider_t *));
16553	}
16554
16555	mutex_enter(&dtrace_lock);
16556
16557	dtrace_vstate_fini(&help->dthps_vstate);
16558	kmem_free(help->dthps_actions,
16559	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16560	kmem_free(help, sizeof (dtrace_helpers_t));
16561
16562	--dtrace_helpers;
16563	mutex_exit(&dtrace_lock);
16564}
16565
16566#ifdef illumos
16567static
16568#endif
16569void
16570dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16571{
16572	dtrace_helpers_t *help, *newhelp;
16573	dtrace_helper_action_t *helper, *new, *last;
16574	dtrace_difo_t *dp;
16575	dtrace_vstate_t *vstate;
16576	int i, j, sz, hasprovs = 0;
16577
16578	mutex_enter(&dtrace_lock);
16579	ASSERT(from->p_dtrace_helpers != NULL);
16580	ASSERT(dtrace_helpers > 0);
16581
16582	help = from->p_dtrace_helpers;
16583	newhelp = dtrace_helpers_create(to);
16584	ASSERT(to->p_dtrace_helpers != NULL);
16585
16586	newhelp->dthps_generation = help->dthps_generation;
16587	vstate = &newhelp->dthps_vstate;
16588
16589	/*
16590	 * Duplicate the helper actions.
16591	 */
16592	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16593		if ((helper = help->dthps_actions[i]) == NULL)
16594			continue;
16595
16596		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16597			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16598			    KM_SLEEP);
16599			new->dtha_generation = helper->dtha_generation;
16600
16601			if ((dp = helper->dtha_predicate) != NULL) {
16602				dp = dtrace_difo_duplicate(dp, vstate);
16603				new->dtha_predicate = dp;
16604			}
16605
16606			new->dtha_nactions = helper->dtha_nactions;
16607			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16608			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16609
16610			for (j = 0; j < new->dtha_nactions; j++) {
16611				dtrace_difo_t *dp = helper->dtha_actions[j];
16612
16613				ASSERT(dp != NULL);
16614				dp = dtrace_difo_duplicate(dp, vstate);
16615				new->dtha_actions[j] = dp;
16616			}
16617
16618			if (last != NULL) {
16619				last->dtha_next = new;
16620			} else {
16621				newhelp->dthps_actions[i] = new;
16622			}
16623
16624			last = new;
16625		}
16626	}
16627
16628	/*
16629	 * Duplicate the helper providers and register them with the
16630	 * DTrace framework.
16631	 */
16632	if (help->dthps_nprovs > 0) {
16633		newhelp->dthps_nprovs = help->dthps_nprovs;
16634		newhelp->dthps_maxprovs = help->dthps_nprovs;
16635		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16636		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16637		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16638			newhelp->dthps_provs[i] = help->dthps_provs[i];
16639			newhelp->dthps_provs[i]->dthp_ref++;
16640		}
16641
16642		hasprovs = 1;
16643	}
16644
16645	mutex_exit(&dtrace_lock);
16646
16647	if (hasprovs)
16648		dtrace_helper_provider_register(to, newhelp, NULL);
16649}
16650
16651/*
16652 * DTrace Hook Functions
16653 */
16654static void
16655dtrace_module_loaded(modctl_t *ctl)
16656{
16657	dtrace_provider_t *prv;
16658
16659	mutex_enter(&dtrace_provider_lock);
16660#ifdef illumos
16661	mutex_enter(&mod_lock);
16662#endif
16663
16664#ifdef illumos
16665	ASSERT(ctl->mod_busy);
16666#endif
16667
16668	/*
16669	 * We're going to call each providers per-module provide operation
16670	 * specifying only this module.
16671	 */
16672	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16673		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16674
16675#ifdef illumos
16676	mutex_exit(&mod_lock);
16677#endif
16678	mutex_exit(&dtrace_provider_lock);
16679
16680	/*
16681	 * If we have any retained enablings, we need to match against them.
16682	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16683	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16684	 * module.  (In particular, this happens when loading scheduling
16685	 * classes.)  So if we have any retained enablings, we need to dispatch
16686	 * our task queue to do the match for us.
16687	 */
16688	mutex_enter(&dtrace_lock);
16689
16690	if (dtrace_retained == NULL) {
16691		mutex_exit(&dtrace_lock);
16692		return;
16693	}
16694
16695	(void) taskq_dispatch(dtrace_taskq,
16696	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16697
16698	mutex_exit(&dtrace_lock);
16699
16700	/*
16701	 * And now, for a little heuristic sleaze:  in general, we want to
16702	 * match modules as soon as they load.  However, we cannot guarantee
16703	 * this, because it would lead us to the lock ordering violation
16704	 * outlined above.  The common case, of course, is that cpu_lock is
16705	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16706	 * long enough for the task queue to do its work.  If it's not, it's
16707	 * not a serious problem -- it just means that the module that we
16708	 * just loaded may not be immediately instrumentable.
16709	 */
16710	delay(1);
16711}
16712
16713static void
16714#ifdef illumos
16715dtrace_module_unloaded(modctl_t *ctl)
16716#else
16717dtrace_module_unloaded(modctl_t *ctl, int *error)
16718#endif
16719{
16720	dtrace_probe_t template, *probe, *first, *next;
16721	dtrace_provider_t *prov;
16722#ifndef illumos
16723	char modname[DTRACE_MODNAMELEN];
16724	size_t len;
16725#endif
16726
16727#ifdef illumos
16728	template.dtpr_mod = ctl->mod_modname;
16729#else
16730	/* Handle the fact that ctl->filename may end in ".ko". */
16731	strlcpy(modname, ctl->filename, sizeof(modname));
16732	len = strlen(ctl->filename);
16733	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16734		modname[len - 3] = '\0';
16735	template.dtpr_mod = modname;
16736#endif
16737
16738	mutex_enter(&dtrace_provider_lock);
16739#ifdef illumos
16740	mutex_enter(&mod_lock);
16741#endif
16742	mutex_enter(&dtrace_lock);
16743
16744#ifndef illumos
16745	if (ctl->nenabled > 0) {
16746		/* Don't allow unloads if a probe is enabled. */
16747		mutex_exit(&dtrace_provider_lock);
16748		mutex_exit(&dtrace_lock);
16749		*error = -1;
16750		printf(
16751	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16752		return;
16753	}
16754#endif
16755
16756	if (dtrace_bymod == NULL) {
16757		/*
16758		 * The DTrace module is loaded (obviously) but not attached;
16759		 * we don't have any work to do.
16760		 */
16761		mutex_exit(&dtrace_provider_lock);
16762#ifdef illumos
16763		mutex_exit(&mod_lock);
16764#endif
16765		mutex_exit(&dtrace_lock);
16766		return;
16767	}
16768
16769	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16770	    probe != NULL; probe = probe->dtpr_nextmod) {
16771		if (probe->dtpr_ecb != NULL) {
16772			mutex_exit(&dtrace_provider_lock);
16773#ifdef illumos
16774			mutex_exit(&mod_lock);
16775#endif
16776			mutex_exit(&dtrace_lock);
16777
16778			/*
16779			 * This shouldn't _actually_ be possible -- we're
16780			 * unloading a module that has an enabled probe in it.
16781			 * (It's normally up to the provider to make sure that
16782			 * this can't happen.)  However, because dtps_enable()
16783			 * doesn't have a failure mode, there can be an
16784			 * enable/unload race.  Upshot:  we don't want to
16785			 * assert, but we're not going to disable the
16786			 * probe, either.
16787			 */
16788			if (dtrace_err_verbose) {
16789#ifdef illumos
16790				cmn_err(CE_WARN, "unloaded module '%s' had "
16791				    "enabled probes", ctl->mod_modname);
16792#else
16793				cmn_err(CE_WARN, "unloaded module '%s' had "
16794				    "enabled probes", modname);
16795#endif
16796			}
16797
16798			return;
16799		}
16800	}
16801
16802	probe = first;
16803
16804	for (first = NULL; probe != NULL; probe = next) {
16805		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16806
16807		dtrace_probes[probe->dtpr_id - 1] = NULL;
16808
16809		next = probe->dtpr_nextmod;
16810		dtrace_hash_remove(dtrace_bymod, probe);
16811		dtrace_hash_remove(dtrace_byfunc, probe);
16812		dtrace_hash_remove(dtrace_byname, probe);
16813
16814		if (first == NULL) {
16815			first = probe;
16816			probe->dtpr_nextmod = NULL;
16817		} else {
16818			probe->dtpr_nextmod = first;
16819			first = probe;
16820		}
16821	}
16822
16823	/*
16824	 * We've removed all of the module's probes from the hash chains and
16825	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16826	 * everyone has cleared out from any probe array processing.
16827	 */
16828	dtrace_sync();
16829
16830	for (probe = first; probe != NULL; probe = first) {
16831		first = probe->dtpr_nextmod;
16832		prov = probe->dtpr_provider;
16833		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16834		    probe->dtpr_arg);
16835		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16836		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16837		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16838#ifdef illumos
16839		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16840#else
16841		free_unr(dtrace_arena, probe->dtpr_id);
16842#endif
16843		kmem_free(probe, sizeof (dtrace_probe_t));
16844	}
16845
16846	mutex_exit(&dtrace_lock);
16847#ifdef illumos
16848	mutex_exit(&mod_lock);
16849#endif
16850	mutex_exit(&dtrace_provider_lock);
16851}
16852
16853#ifndef illumos
16854static void
16855dtrace_kld_load(void *arg __unused, linker_file_t lf)
16856{
16857
16858	dtrace_module_loaded(lf);
16859}
16860
16861static void
16862dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16863{
16864
16865	if (*error != 0)
16866		/* We already have an error, so don't do anything. */
16867		return;
16868	dtrace_module_unloaded(lf, error);
16869}
16870#endif
16871
16872#ifdef illumos
16873static void
16874dtrace_suspend(void)
16875{
16876	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16877}
16878
16879static void
16880dtrace_resume(void)
16881{
16882	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16883}
16884#endif
16885
16886static int
16887dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16888{
16889	ASSERT(MUTEX_HELD(&cpu_lock));
16890	mutex_enter(&dtrace_lock);
16891
16892	switch (what) {
16893	case CPU_CONFIG: {
16894		dtrace_state_t *state;
16895		dtrace_optval_t *opt, rs, c;
16896
16897		/*
16898		 * For now, we only allocate a new buffer for anonymous state.
16899		 */
16900		if ((state = dtrace_anon.dta_state) == NULL)
16901			break;
16902
16903		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16904			break;
16905
16906		opt = state->dts_options;
16907		c = opt[DTRACEOPT_CPU];
16908
16909		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16910			break;
16911
16912		/*
16913		 * Regardless of what the actual policy is, we're going to
16914		 * temporarily set our resize policy to be manual.  We're
16915		 * also going to temporarily set our CPU option to denote
16916		 * the newly configured CPU.
16917		 */
16918		rs = opt[DTRACEOPT_BUFRESIZE];
16919		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16920		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16921
16922		(void) dtrace_state_buffers(state);
16923
16924		opt[DTRACEOPT_BUFRESIZE] = rs;
16925		opt[DTRACEOPT_CPU] = c;
16926
16927		break;
16928	}
16929
16930	case CPU_UNCONFIG:
16931		/*
16932		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16933		 * buffer will be freed when the consumer exits.)
16934		 */
16935		break;
16936
16937	default:
16938		break;
16939	}
16940
16941	mutex_exit(&dtrace_lock);
16942	return (0);
16943}
16944
16945#ifdef illumos
16946static void
16947dtrace_cpu_setup_initial(processorid_t cpu)
16948{
16949	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16950}
16951#endif
16952
16953static void
16954dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16955{
16956	if (dtrace_toxranges >= dtrace_toxranges_max) {
16957		int osize, nsize;
16958		dtrace_toxrange_t *range;
16959
16960		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16961
16962		if (osize == 0) {
16963			ASSERT(dtrace_toxrange == NULL);
16964			ASSERT(dtrace_toxranges_max == 0);
16965			dtrace_toxranges_max = 1;
16966		} else {
16967			dtrace_toxranges_max <<= 1;
16968		}
16969
16970		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16971		range = kmem_zalloc(nsize, KM_SLEEP);
16972
16973		if (dtrace_toxrange != NULL) {
16974			ASSERT(osize != 0);
16975			bcopy(dtrace_toxrange, range, osize);
16976			kmem_free(dtrace_toxrange, osize);
16977		}
16978
16979		dtrace_toxrange = range;
16980	}
16981
16982	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16983	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16984
16985	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16986	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16987	dtrace_toxranges++;
16988}
16989
16990static void
16991dtrace_getf_barrier()
16992{
16993#ifdef illumos
16994	/*
16995	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16996	 * that contain calls to getf(), this routine will be called on every
16997	 * closef() before either the underlying vnode is released or the
16998	 * file_t itself is freed.  By the time we are here, it is essential
16999	 * that the file_t can no longer be accessed from a call to getf()
17000	 * in probe context -- that assures that a dtrace_sync() can be used
17001	 * to clear out any enablings referring to the old structures.
17002	 */
17003	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17004	    kcred->cr_zone->zone_dtrace_getf != 0)
17005		dtrace_sync();
17006#endif
17007}
17008
17009/*
17010 * DTrace Driver Cookbook Functions
17011 */
17012#ifdef illumos
17013/*ARGSUSED*/
17014static int
17015dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17016{
17017	dtrace_provider_id_t id;
17018	dtrace_state_t *state = NULL;
17019	dtrace_enabling_t *enab;
17020
17021	mutex_enter(&cpu_lock);
17022	mutex_enter(&dtrace_provider_lock);
17023	mutex_enter(&dtrace_lock);
17024
17025	if (ddi_soft_state_init(&dtrace_softstate,
17026	    sizeof (dtrace_state_t), 0) != 0) {
17027		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17028		mutex_exit(&cpu_lock);
17029		mutex_exit(&dtrace_provider_lock);
17030		mutex_exit(&dtrace_lock);
17031		return (DDI_FAILURE);
17032	}
17033
17034	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17035	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17036	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17037	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17038		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17039		ddi_remove_minor_node(devi, NULL);
17040		ddi_soft_state_fini(&dtrace_softstate);
17041		mutex_exit(&cpu_lock);
17042		mutex_exit(&dtrace_provider_lock);
17043		mutex_exit(&dtrace_lock);
17044		return (DDI_FAILURE);
17045	}
17046
17047	ddi_report_dev(devi);
17048	dtrace_devi = devi;
17049
17050	dtrace_modload = dtrace_module_loaded;
17051	dtrace_modunload = dtrace_module_unloaded;
17052	dtrace_cpu_init = dtrace_cpu_setup_initial;
17053	dtrace_helpers_cleanup = dtrace_helpers_destroy;
17054	dtrace_helpers_fork = dtrace_helpers_duplicate;
17055	dtrace_cpustart_init = dtrace_suspend;
17056	dtrace_cpustart_fini = dtrace_resume;
17057	dtrace_debugger_init = dtrace_suspend;
17058	dtrace_debugger_fini = dtrace_resume;
17059
17060	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17061
17062	ASSERT(MUTEX_HELD(&cpu_lock));
17063
17064	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17065	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17066	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17067	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17068	    VM_SLEEP | VMC_IDENTIFIER);
17069	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17070	    1, INT_MAX, 0);
17071
17072	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17073	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17074	    NULL, NULL, NULL, NULL, NULL, 0);
17075
17076	ASSERT(MUTEX_HELD(&cpu_lock));
17077	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17078	    offsetof(dtrace_probe_t, dtpr_nextmod),
17079	    offsetof(dtrace_probe_t, dtpr_prevmod));
17080
17081	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17082	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17083	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17084
17085	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17086	    offsetof(dtrace_probe_t, dtpr_nextname),
17087	    offsetof(dtrace_probe_t, dtpr_prevname));
17088
17089	if (dtrace_retain_max < 1) {
17090		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
17091		    "setting to 1", dtrace_retain_max);
17092		dtrace_retain_max = 1;
17093	}
17094
17095	/*
17096	 * Now discover our toxic ranges.
17097	 */
17098	dtrace_toxic_ranges(dtrace_toxrange_add);
17099
17100	/*
17101	 * Before we register ourselves as a provider to our own framework,
17102	 * we would like to assert that dtrace_provider is NULL -- but that's
17103	 * not true if we were loaded as a dependency of a DTrace provider.
17104	 * Once we've registered, we can assert that dtrace_provider is our
17105	 * pseudo provider.
17106	 */
17107	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17108	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17109
17110	ASSERT(dtrace_provider != NULL);
17111	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17112
17113	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17114	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17115	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17116	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17117	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17118	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17119
17120	dtrace_anon_property();
17121	mutex_exit(&cpu_lock);
17122
17123	/*
17124	 * If there are already providers, we must ask them to provide their
17125	 * probes, and then match any anonymous enabling against them.  Note
17126	 * that there should be no other retained enablings at this time:
17127	 * the only retained enablings at this time should be the anonymous
17128	 * enabling.
17129	 */
17130	if (dtrace_anon.dta_enabling != NULL) {
17131		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17132
17133		dtrace_enabling_provide(NULL);
17134		state = dtrace_anon.dta_state;
17135
17136		/*
17137		 * We couldn't hold cpu_lock across the above call to
17138		 * dtrace_enabling_provide(), but we must hold it to actually
17139		 * enable the probes.  We have to drop all of our locks, pick
17140		 * up cpu_lock, and regain our locks before matching the
17141		 * retained anonymous enabling.
17142		 */
17143		mutex_exit(&dtrace_lock);
17144		mutex_exit(&dtrace_provider_lock);
17145
17146		mutex_enter(&cpu_lock);
17147		mutex_enter(&dtrace_provider_lock);
17148		mutex_enter(&dtrace_lock);
17149
17150		if ((enab = dtrace_anon.dta_enabling) != NULL)
17151			(void) dtrace_enabling_match(enab, NULL);
17152
17153		mutex_exit(&cpu_lock);
17154	}
17155
17156	mutex_exit(&dtrace_lock);
17157	mutex_exit(&dtrace_provider_lock);
17158
17159	if (state != NULL) {
17160		/*
17161		 * If we created any anonymous state, set it going now.
17162		 */
17163		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17164	}
17165
17166	return (DDI_SUCCESS);
17167}
17168#endif	/* illumos */
17169
17170#ifndef illumos
17171static void dtrace_dtr(void *);
17172#endif
17173
17174/*ARGSUSED*/
17175static int
17176#ifdef illumos
17177dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17178#else
17179dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17180#endif
17181{
17182	dtrace_state_t *state;
17183	uint32_t priv;
17184	uid_t uid;
17185	zoneid_t zoneid;
17186
17187#ifdef illumos
17188	if (getminor(*devp) == DTRACEMNRN_HELPER)
17189		return (0);
17190
17191	/*
17192	 * If this wasn't an open with the "helper" minor, then it must be
17193	 * the "dtrace" minor.
17194	 */
17195	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17196		return (ENXIO);
17197#else
17198	cred_t *cred_p = NULL;
17199	cred_p = dev->si_cred;
17200
17201	/*
17202	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17203	 * caller lacks sufficient permission to do anything with DTrace.
17204	 */
17205	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17206	if (priv == DTRACE_PRIV_NONE) {
17207#endif
17208
17209		return (EACCES);
17210	}
17211
17212	/*
17213	 * Ask all providers to provide all their probes.
17214	 */
17215	mutex_enter(&dtrace_provider_lock);
17216	dtrace_probe_provide(NULL, NULL);
17217	mutex_exit(&dtrace_provider_lock);
17218
17219	mutex_enter(&cpu_lock);
17220	mutex_enter(&dtrace_lock);
17221	dtrace_opens++;
17222	dtrace_membar_producer();
17223
17224#ifdef illumos
17225	/*
17226	 * If the kernel debugger is active (that is, if the kernel debugger
17227	 * modified text in some way), we won't allow the open.
17228	 */
17229	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17230		dtrace_opens--;
17231		mutex_exit(&cpu_lock);
17232		mutex_exit(&dtrace_lock);
17233		return (EBUSY);
17234	}
17235
17236	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17237		/*
17238		 * If DTrace helper tracing is enabled, we need to allocate the
17239		 * trace buffer and initialize the values.
17240		 */
17241		dtrace_helptrace_buffer =
17242		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17243		dtrace_helptrace_next = 0;
17244		dtrace_helptrace_wrapped = 0;
17245		dtrace_helptrace_enable = 0;
17246	}
17247
17248	state = dtrace_state_create(devp, cred_p);
17249#else
17250	state = dtrace_state_create(dev, NULL);
17251	devfs_set_cdevpriv(state, dtrace_dtr);
17252#endif
17253
17254	mutex_exit(&cpu_lock);
17255
17256	if (state == NULL) {
17257#ifdef illumos
17258		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17259			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17260#else
17261		--dtrace_opens;
17262#endif
17263		mutex_exit(&dtrace_lock);
17264		return (EAGAIN);
17265	}
17266
17267	mutex_exit(&dtrace_lock);
17268
17269	return (0);
17270}
17271
17272/*ARGSUSED*/
17273#ifdef illumos
17274static int
17275dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17276#else
17277static void
17278dtrace_dtr(void *data)
17279#endif
17280{
17281#ifdef illumos
17282	minor_t minor = getminor(dev);
17283	dtrace_state_t *state;
17284#endif
17285	dtrace_helptrace_t *buf = NULL;
17286
17287#ifdef illumos
17288	if (minor == DTRACEMNRN_HELPER)
17289		return (0);
17290
17291	state = ddi_get_soft_state(dtrace_softstate, minor);
17292#else
17293	dtrace_state_t *state = data;
17294#endif
17295
17296	mutex_enter(&cpu_lock);
17297	mutex_enter(&dtrace_lock);
17298
17299#ifdef illumos
17300	if (state->dts_anon)
17301#else
17302	if (state != NULL && state->dts_anon)
17303#endif
17304	{
17305		/*
17306		 * There is anonymous state. Destroy that first.
17307		 */
17308		ASSERT(dtrace_anon.dta_state == NULL);
17309		dtrace_state_destroy(state->dts_anon);
17310	}
17311
17312	if (dtrace_helptrace_disable) {
17313		/*
17314		 * If we have been told to disable helper tracing, set the
17315		 * buffer to NULL before calling into dtrace_state_destroy();
17316		 * we take advantage of its dtrace_sync() to know that no
17317		 * CPU is in probe context with enabled helper tracing
17318		 * after it returns.
17319		 */
17320		buf = dtrace_helptrace_buffer;
17321		dtrace_helptrace_buffer = NULL;
17322	}
17323
17324#ifdef illumos
17325	dtrace_state_destroy(state);
17326#else
17327	if (state != NULL) {
17328		dtrace_state_destroy(state);
17329		kmem_free(state, 0);
17330	}
17331#endif
17332	ASSERT(dtrace_opens > 0);
17333
17334#ifdef illumos
17335	/*
17336	 * Only relinquish control of the kernel debugger interface when there
17337	 * are no consumers and no anonymous enablings.
17338	 */
17339	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17340		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17341#else
17342	--dtrace_opens;
17343#endif
17344
17345	if (buf != NULL) {
17346		kmem_free(buf, dtrace_helptrace_bufsize);
17347		dtrace_helptrace_disable = 0;
17348	}
17349
17350	mutex_exit(&dtrace_lock);
17351	mutex_exit(&cpu_lock);
17352
17353#ifdef illumos
17354	return (0);
17355#endif
17356}
17357
17358#ifdef illumos
17359/*ARGSUSED*/
17360static int
17361dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17362{
17363	int rval;
17364	dof_helper_t help, *dhp = NULL;
17365
17366	switch (cmd) {
17367	case DTRACEHIOC_ADDDOF:
17368		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17369			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17370			return (EFAULT);
17371		}
17372
17373		dhp = &help;
17374		arg = (intptr_t)help.dofhp_dof;
17375		/*FALLTHROUGH*/
17376
17377	case DTRACEHIOC_ADD: {
17378		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17379
17380		if (dof == NULL)
17381			return (rval);
17382
17383		mutex_enter(&dtrace_lock);
17384
17385		/*
17386		 * dtrace_helper_slurp() takes responsibility for the dof --
17387		 * it may free it now or it may save it and free it later.
17388		 */
17389		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17390			*rv = rval;
17391			rval = 0;
17392		} else {
17393			rval = EINVAL;
17394		}
17395
17396		mutex_exit(&dtrace_lock);
17397		return (rval);
17398	}
17399
17400	case DTRACEHIOC_REMOVE: {
17401		mutex_enter(&dtrace_lock);
17402		rval = dtrace_helper_destroygen(NULL, arg);
17403		mutex_exit(&dtrace_lock);
17404
17405		return (rval);
17406	}
17407
17408	default:
17409		break;
17410	}
17411
17412	return (ENOTTY);
17413}
17414
17415/*ARGSUSED*/
17416static int
17417dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17418{
17419	minor_t minor = getminor(dev);
17420	dtrace_state_t *state;
17421	int rval;
17422
17423	if (minor == DTRACEMNRN_HELPER)
17424		return (dtrace_ioctl_helper(cmd, arg, rv));
17425
17426	state = ddi_get_soft_state(dtrace_softstate, minor);
17427
17428	if (state->dts_anon) {
17429		ASSERT(dtrace_anon.dta_state == NULL);
17430		state = state->dts_anon;
17431	}
17432
17433	switch (cmd) {
17434	case DTRACEIOC_PROVIDER: {
17435		dtrace_providerdesc_t pvd;
17436		dtrace_provider_t *pvp;
17437
17438		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17439			return (EFAULT);
17440
17441		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17442		mutex_enter(&dtrace_provider_lock);
17443
17444		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17445			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17446				break;
17447		}
17448
17449		mutex_exit(&dtrace_provider_lock);
17450
17451		if (pvp == NULL)
17452			return (ESRCH);
17453
17454		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17455		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17456
17457		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17458			return (EFAULT);
17459
17460		return (0);
17461	}
17462
17463	case DTRACEIOC_EPROBE: {
17464		dtrace_eprobedesc_t epdesc;
17465		dtrace_ecb_t *ecb;
17466		dtrace_action_t *act;
17467		void *buf;
17468		size_t size;
17469		uintptr_t dest;
17470		int nrecs;
17471
17472		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17473			return (EFAULT);
17474
17475		mutex_enter(&dtrace_lock);
17476
17477		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17478			mutex_exit(&dtrace_lock);
17479			return (EINVAL);
17480		}
17481
17482		if (ecb->dte_probe == NULL) {
17483			mutex_exit(&dtrace_lock);
17484			return (EINVAL);
17485		}
17486
17487		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17488		epdesc.dtepd_uarg = ecb->dte_uarg;
17489		epdesc.dtepd_size = ecb->dte_size;
17490
17491		nrecs = epdesc.dtepd_nrecs;
17492		epdesc.dtepd_nrecs = 0;
17493		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17494			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17495				continue;
17496
17497			epdesc.dtepd_nrecs++;
17498		}
17499
17500		/*
17501		 * Now that we have the size, we need to allocate a temporary
17502		 * buffer in which to store the complete description.  We need
17503		 * the temporary buffer to be able to drop dtrace_lock()
17504		 * across the copyout(), below.
17505		 */
17506		size = sizeof (dtrace_eprobedesc_t) +
17507		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17508
17509		buf = kmem_alloc(size, KM_SLEEP);
17510		dest = (uintptr_t)buf;
17511
17512		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17513		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17514
17515		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17516			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17517				continue;
17518
17519			if (nrecs-- == 0)
17520				break;
17521
17522			bcopy(&act->dta_rec, (void *)dest,
17523			    sizeof (dtrace_recdesc_t));
17524			dest += sizeof (dtrace_recdesc_t);
17525		}
17526
17527		mutex_exit(&dtrace_lock);
17528
17529		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17530			kmem_free(buf, size);
17531			return (EFAULT);
17532		}
17533
17534		kmem_free(buf, size);
17535		return (0);
17536	}
17537
17538	case DTRACEIOC_AGGDESC: {
17539		dtrace_aggdesc_t aggdesc;
17540		dtrace_action_t *act;
17541		dtrace_aggregation_t *agg;
17542		int nrecs;
17543		uint32_t offs;
17544		dtrace_recdesc_t *lrec;
17545		void *buf;
17546		size_t size;
17547		uintptr_t dest;
17548
17549		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17550			return (EFAULT);
17551
17552		mutex_enter(&dtrace_lock);
17553
17554		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17555			mutex_exit(&dtrace_lock);
17556			return (EINVAL);
17557		}
17558
17559		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17560
17561		nrecs = aggdesc.dtagd_nrecs;
17562		aggdesc.dtagd_nrecs = 0;
17563
17564		offs = agg->dtag_base;
17565		lrec = &agg->dtag_action.dta_rec;
17566		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17567
17568		for (act = agg->dtag_first; ; act = act->dta_next) {
17569			ASSERT(act->dta_intuple ||
17570			    DTRACEACT_ISAGG(act->dta_kind));
17571
17572			/*
17573			 * If this action has a record size of zero, it
17574			 * denotes an argument to the aggregating action.
17575			 * Because the presence of this record doesn't (or
17576			 * shouldn't) affect the way the data is interpreted,
17577			 * we don't copy it out to save user-level the
17578			 * confusion of dealing with a zero-length record.
17579			 */
17580			if (act->dta_rec.dtrd_size == 0) {
17581				ASSERT(agg->dtag_hasarg);
17582				continue;
17583			}
17584
17585			aggdesc.dtagd_nrecs++;
17586
17587			if (act == &agg->dtag_action)
17588				break;
17589		}
17590
17591		/*
17592		 * Now that we have the size, we need to allocate a temporary
17593		 * buffer in which to store the complete description.  We need
17594		 * the temporary buffer to be able to drop dtrace_lock()
17595		 * across the copyout(), below.
17596		 */
17597		size = sizeof (dtrace_aggdesc_t) +
17598		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17599
17600		buf = kmem_alloc(size, KM_SLEEP);
17601		dest = (uintptr_t)buf;
17602
17603		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17604		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17605
17606		for (act = agg->dtag_first; ; act = act->dta_next) {
17607			dtrace_recdesc_t rec = act->dta_rec;
17608
17609			/*
17610			 * See the comment in the above loop for why we pass
17611			 * over zero-length records.
17612			 */
17613			if (rec.dtrd_size == 0) {
17614				ASSERT(agg->dtag_hasarg);
17615				continue;
17616			}
17617
17618			if (nrecs-- == 0)
17619				break;
17620
17621			rec.dtrd_offset -= offs;
17622			bcopy(&rec, (void *)dest, sizeof (rec));
17623			dest += sizeof (dtrace_recdesc_t);
17624
17625			if (act == &agg->dtag_action)
17626				break;
17627		}
17628
17629		mutex_exit(&dtrace_lock);
17630
17631		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17632			kmem_free(buf, size);
17633			return (EFAULT);
17634		}
17635
17636		kmem_free(buf, size);
17637		return (0);
17638	}
17639
17640	case DTRACEIOC_ENABLE: {
17641		dof_hdr_t *dof;
17642		dtrace_enabling_t *enab = NULL;
17643		dtrace_vstate_t *vstate;
17644		int err = 0;
17645
17646		*rv = 0;
17647
17648		/*
17649		 * If a NULL argument has been passed, we take this as our
17650		 * cue to reevaluate our enablings.
17651		 */
17652		if (arg == NULL) {
17653			dtrace_enabling_matchall();
17654
17655			return (0);
17656		}
17657
17658		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17659			return (rval);
17660
17661		mutex_enter(&cpu_lock);
17662		mutex_enter(&dtrace_lock);
17663		vstate = &state->dts_vstate;
17664
17665		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17666			mutex_exit(&dtrace_lock);
17667			mutex_exit(&cpu_lock);
17668			dtrace_dof_destroy(dof);
17669			return (EBUSY);
17670		}
17671
17672		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17673			mutex_exit(&dtrace_lock);
17674			mutex_exit(&cpu_lock);
17675			dtrace_dof_destroy(dof);
17676			return (EINVAL);
17677		}
17678
17679		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17680			dtrace_enabling_destroy(enab);
17681			mutex_exit(&dtrace_lock);
17682			mutex_exit(&cpu_lock);
17683			dtrace_dof_destroy(dof);
17684			return (rval);
17685		}
17686
17687		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17688			err = dtrace_enabling_retain(enab);
17689		} else {
17690			dtrace_enabling_destroy(enab);
17691		}
17692
17693		mutex_exit(&cpu_lock);
17694		mutex_exit(&dtrace_lock);
17695		dtrace_dof_destroy(dof);
17696
17697		return (err);
17698	}
17699
17700	case DTRACEIOC_REPLICATE: {
17701		dtrace_repldesc_t desc;
17702		dtrace_probedesc_t *match = &desc.dtrpd_match;
17703		dtrace_probedesc_t *create = &desc.dtrpd_create;
17704		int err;
17705
17706		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17707			return (EFAULT);
17708
17709		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17710		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17711		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17712		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17713
17714		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17715		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17716		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17717		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17718
17719		mutex_enter(&dtrace_lock);
17720		err = dtrace_enabling_replicate(state, match, create);
17721		mutex_exit(&dtrace_lock);
17722
17723		return (err);
17724	}
17725
17726	case DTRACEIOC_PROBEMATCH:
17727	case DTRACEIOC_PROBES: {
17728		dtrace_probe_t *probe = NULL;
17729		dtrace_probedesc_t desc;
17730		dtrace_probekey_t pkey;
17731		dtrace_id_t i;
17732		int m = 0;
17733		uint32_t priv;
17734		uid_t uid;
17735		zoneid_t zoneid;
17736
17737		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17738			return (EFAULT);
17739
17740		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17741		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17742		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17743		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17744
17745		/*
17746		 * Before we attempt to match this probe, we want to give
17747		 * all providers the opportunity to provide it.
17748		 */
17749		if (desc.dtpd_id == DTRACE_IDNONE) {
17750			mutex_enter(&dtrace_provider_lock);
17751			dtrace_probe_provide(&desc, NULL);
17752			mutex_exit(&dtrace_provider_lock);
17753			desc.dtpd_id++;
17754		}
17755
17756		if (cmd == DTRACEIOC_PROBEMATCH)  {
17757			dtrace_probekey(&desc, &pkey);
17758			pkey.dtpk_id = DTRACE_IDNONE;
17759		}
17760
17761		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17762
17763		mutex_enter(&dtrace_lock);
17764
17765		if (cmd == DTRACEIOC_PROBEMATCH) {
17766			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17767				if ((probe = dtrace_probes[i - 1]) != NULL &&
17768				    (m = dtrace_match_probe(probe, &pkey,
17769				    priv, uid, zoneid)) != 0)
17770					break;
17771			}
17772
17773			if (m < 0) {
17774				mutex_exit(&dtrace_lock);
17775				return (EINVAL);
17776			}
17777
17778		} else {
17779			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17780				if ((probe = dtrace_probes[i - 1]) != NULL &&
17781				    dtrace_match_priv(probe, priv, uid, zoneid))
17782					break;
17783			}
17784		}
17785
17786		if (probe == NULL) {
17787			mutex_exit(&dtrace_lock);
17788			return (ESRCH);
17789		}
17790
17791		dtrace_probe_description(probe, &desc);
17792		mutex_exit(&dtrace_lock);
17793
17794		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17795			return (EFAULT);
17796
17797		return (0);
17798	}
17799
17800	case DTRACEIOC_PROBEARG: {
17801		dtrace_argdesc_t desc;
17802		dtrace_probe_t *probe;
17803		dtrace_provider_t *prov;
17804
17805		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17806			return (EFAULT);
17807
17808		if (desc.dtargd_id == DTRACE_IDNONE)
17809			return (EINVAL);
17810
17811		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17812			return (EINVAL);
17813
17814		mutex_enter(&dtrace_provider_lock);
17815		mutex_enter(&mod_lock);
17816		mutex_enter(&dtrace_lock);
17817
17818		if (desc.dtargd_id > dtrace_nprobes) {
17819			mutex_exit(&dtrace_lock);
17820			mutex_exit(&mod_lock);
17821			mutex_exit(&dtrace_provider_lock);
17822			return (EINVAL);
17823		}
17824
17825		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17826			mutex_exit(&dtrace_lock);
17827			mutex_exit(&mod_lock);
17828			mutex_exit(&dtrace_provider_lock);
17829			return (EINVAL);
17830		}
17831
17832		mutex_exit(&dtrace_lock);
17833
17834		prov = probe->dtpr_provider;
17835
17836		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17837			/*
17838			 * There isn't any typed information for this probe.
17839			 * Set the argument number to DTRACE_ARGNONE.
17840			 */
17841			desc.dtargd_ndx = DTRACE_ARGNONE;
17842		} else {
17843			desc.dtargd_native[0] = '\0';
17844			desc.dtargd_xlate[0] = '\0';
17845			desc.dtargd_mapping = desc.dtargd_ndx;
17846
17847			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17848			    probe->dtpr_id, probe->dtpr_arg, &desc);
17849		}
17850
17851		mutex_exit(&mod_lock);
17852		mutex_exit(&dtrace_provider_lock);
17853
17854		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17855			return (EFAULT);
17856
17857		return (0);
17858	}
17859
17860	case DTRACEIOC_GO: {
17861		processorid_t cpuid;
17862		rval = dtrace_state_go(state, &cpuid);
17863
17864		if (rval != 0)
17865			return (rval);
17866
17867		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17868			return (EFAULT);
17869
17870		return (0);
17871	}
17872
17873	case DTRACEIOC_STOP: {
17874		processorid_t cpuid;
17875
17876		mutex_enter(&dtrace_lock);
17877		rval = dtrace_state_stop(state, &cpuid);
17878		mutex_exit(&dtrace_lock);
17879
17880		if (rval != 0)
17881			return (rval);
17882
17883		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17884			return (EFAULT);
17885
17886		return (0);
17887	}
17888
17889	case DTRACEIOC_DOFGET: {
17890		dof_hdr_t hdr, *dof;
17891		uint64_t len;
17892
17893		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17894			return (EFAULT);
17895
17896		mutex_enter(&dtrace_lock);
17897		dof = dtrace_dof_create(state);
17898		mutex_exit(&dtrace_lock);
17899
17900		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17901		rval = copyout(dof, (void *)arg, len);
17902		dtrace_dof_destroy(dof);
17903
17904		return (rval == 0 ? 0 : EFAULT);
17905	}
17906
17907	case DTRACEIOC_AGGSNAP:
17908	case DTRACEIOC_BUFSNAP: {
17909		dtrace_bufdesc_t desc;
17910		caddr_t cached;
17911		dtrace_buffer_t *buf;
17912
17913		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17914			return (EFAULT);
17915
17916		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17917			return (EINVAL);
17918
17919		mutex_enter(&dtrace_lock);
17920
17921		if (cmd == DTRACEIOC_BUFSNAP) {
17922			buf = &state->dts_buffer[desc.dtbd_cpu];
17923		} else {
17924			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17925		}
17926
17927		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17928			size_t sz = buf->dtb_offset;
17929
17930			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17931				mutex_exit(&dtrace_lock);
17932				return (EBUSY);
17933			}
17934
17935			/*
17936			 * If this buffer has already been consumed, we're
17937			 * going to indicate that there's nothing left here
17938			 * to consume.
17939			 */
17940			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17941				mutex_exit(&dtrace_lock);
17942
17943				desc.dtbd_size = 0;
17944				desc.dtbd_drops = 0;
17945				desc.dtbd_errors = 0;
17946				desc.dtbd_oldest = 0;
17947				sz = sizeof (desc);
17948
17949				if (copyout(&desc, (void *)arg, sz) != 0)
17950					return (EFAULT);
17951
17952				return (0);
17953			}
17954
17955			/*
17956			 * If this is a ring buffer that has wrapped, we want
17957			 * to copy the whole thing out.
17958			 */
17959			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17960				dtrace_buffer_polish(buf);
17961				sz = buf->dtb_size;
17962			}
17963
17964			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17965				mutex_exit(&dtrace_lock);
17966				return (EFAULT);
17967			}
17968
17969			desc.dtbd_size = sz;
17970			desc.dtbd_drops = buf->dtb_drops;
17971			desc.dtbd_errors = buf->dtb_errors;
17972			desc.dtbd_oldest = buf->dtb_xamot_offset;
17973			desc.dtbd_timestamp = dtrace_gethrtime();
17974
17975			mutex_exit(&dtrace_lock);
17976
17977			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17978				return (EFAULT);
17979
17980			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17981
17982			return (0);
17983		}
17984
17985		if (buf->dtb_tomax == NULL) {
17986			ASSERT(buf->dtb_xamot == NULL);
17987			mutex_exit(&dtrace_lock);
17988			return (ENOENT);
17989		}
17990
17991		cached = buf->dtb_tomax;
17992		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17993
17994		dtrace_xcall(desc.dtbd_cpu,
17995		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17996
17997		state->dts_errors += buf->dtb_xamot_errors;
17998
17999		/*
18000		 * If the buffers did not actually switch, then the cross call
18001		 * did not take place -- presumably because the given CPU is
18002		 * not in the ready set.  If this is the case, we'll return
18003		 * ENOENT.
18004		 */
18005		if (buf->dtb_tomax == cached) {
18006			ASSERT(buf->dtb_xamot != cached);
18007			mutex_exit(&dtrace_lock);
18008			return (ENOENT);
18009		}
18010
18011		ASSERT(cached == buf->dtb_xamot);
18012
18013		/*
18014		 * We have our snapshot; now copy it out.
18015		 */
18016		if (copyout(buf->dtb_xamot, desc.dtbd_data,
18017		    buf->dtb_xamot_offset) != 0) {
18018			mutex_exit(&dtrace_lock);
18019			return (EFAULT);
18020		}
18021
18022		desc.dtbd_size = buf->dtb_xamot_offset;
18023		desc.dtbd_drops = buf->dtb_xamot_drops;
18024		desc.dtbd_errors = buf->dtb_xamot_errors;
18025		desc.dtbd_oldest = 0;
18026		desc.dtbd_timestamp = buf->dtb_switched;
18027
18028		mutex_exit(&dtrace_lock);
18029
18030		/*
18031		 * Finally, copy out the buffer description.
18032		 */
18033		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18034			return (EFAULT);
18035
18036		return (0);
18037	}
18038
18039	case DTRACEIOC_CONF: {
18040		dtrace_conf_t conf;
18041
18042		bzero(&conf, sizeof (conf));
18043		conf.dtc_difversion = DIF_VERSION;
18044		conf.dtc_difintregs = DIF_DIR_NREGS;
18045		conf.dtc_diftupregs = DIF_DTR_NREGS;
18046		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18047
18048		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18049			return (EFAULT);
18050
18051		return (0);
18052	}
18053
18054	case DTRACEIOC_STATUS: {
18055		dtrace_status_t stat;
18056		dtrace_dstate_t *dstate;
18057		int i, j;
18058		uint64_t nerrs;
18059
18060		/*
18061		 * See the comment in dtrace_state_deadman() for the reason
18062		 * for setting dts_laststatus to INT64_MAX before setting
18063		 * it to the correct value.
18064		 */
18065		state->dts_laststatus = INT64_MAX;
18066		dtrace_membar_producer();
18067		state->dts_laststatus = dtrace_gethrtime();
18068
18069		bzero(&stat, sizeof (stat));
18070
18071		mutex_enter(&dtrace_lock);
18072
18073		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18074			mutex_exit(&dtrace_lock);
18075			return (ENOENT);
18076		}
18077
18078		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18079			stat.dtst_exiting = 1;
18080
18081		nerrs = state->dts_errors;
18082		dstate = &state->dts_vstate.dtvs_dynvars;
18083
18084		for (i = 0; i < NCPU; i++) {
18085			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18086
18087			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18088			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18089			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18090
18091			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18092				stat.dtst_filled++;
18093
18094			nerrs += state->dts_buffer[i].dtb_errors;
18095
18096			for (j = 0; j < state->dts_nspeculations; j++) {
18097				dtrace_speculation_t *spec;
18098				dtrace_buffer_t *buf;
18099
18100				spec = &state->dts_speculations[j];
18101				buf = &spec->dtsp_buffer[i];
18102				stat.dtst_specdrops += buf->dtb_xamot_drops;
18103			}
18104		}
18105
18106		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18107		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18108		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18109		stat.dtst_dblerrors = state->dts_dblerrors;
18110		stat.dtst_killed =
18111		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18112		stat.dtst_errors = nerrs;
18113
18114		mutex_exit(&dtrace_lock);
18115
18116		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18117			return (EFAULT);
18118
18119		return (0);
18120	}
18121
18122	case DTRACEIOC_FORMAT: {
18123		dtrace_fmtdesc_t fmt;
18124		char *str;
18125		int len;
18126
18127		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18128			return (EFAULT);
18129
18130		mutex_enter(&dtrace_lock);
18131
18132		if (fmt.dtfd_format == 0 ||
18133		    fmt.dtfd_format > state->dts_nformats) {
18134			mutex_exit(&dtrace_lock);
18135			return (EINVAL);
18136		}
18137
18138		/*
18139		 * Format strings are allocated contiguously and they are
18140		 * never freed; if a format index is less than the number
18141		 * of formats, we can assert that the format map is non-NULL
18142		 * and that the format for the specified index is non-NULL.
18143		 */
18144		ASSERT(state->dts_formats != NULL);
18145		str = state->dts_formats[fmt.dtfd_format - 1];
18146		ASSERT(str != NULL);
18147
18148		len = strlen(str) + 1;
18149
18150		if (len > fmt.dtfd_length) {
18151			fmt.dtfd_length = len;
18152
18153			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18154				mutex_exit(&dtrace_lock);
18155				return (EINVAL);
18156			}
18157		} else {
18158			if (copyout(str, fmt.dtfd_string, len) != 0) {
18159				mutex_exit(&dtrace_lock);
18160				return (EINVAL);
18161			}
18162		}
18163
18164		mutex_exit(&dtrace_lock);
18165		return (0);
18166	}
18167
18168	default:
18169		break;
18170	}
18171
18172	return (ENOTTY);
18173}
18174
18175/*ARGSUSED*/
18176static int
18177dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18178{
18179	dtrace_state_t *state;
18180
18181	switch (cmd) {
18182	case DDI_DETACH:
18183		break;
18184
18185	case DDI_SUSPEND:
18186		return (DDI_SUCCESS);
18187
18188	default:
18189		return (DDI_FAILURE);
18190	}
18191
18192	mutex_enter(&cpu_lock);
18193	mutex_enter(&dtrace_provider_lock);
18194	mutex_enter(&dtrace_lock);
18195
18196	ASSERT(dtrace_opens == 0);
18197
18198	if (dtrace_helpers > 0) {
18199		mutex_exit(&dtrace_provider_lock);
18200		mutex_exit(&dtrace_lock);
18201		mutex_exit(&cpu_lock);
18202		return (DDI_FAILURE);
18203	}
18204
18205	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18206		mutex_exit(&dtrace_provider_lock);
18207		mutex_exit(&dtrace_lock);
18208		mutex_exit(&cpu_lock);
18209		return (DDI_FAILURE);
18210	}
18211
18212	dtrace_provider = NULL;
18213
18214	if ((state = dtrace_anon_grab()) != NULL) {
18215		/*
18216		 * If there were ECBs on this state, the provider should
18217		 * have not been allowed to detach; assert that there is
18218		 * none.
18219		 */
18220		ASSERT(state->dts_necbs == 0);
18221		dtrace_state_destroy(state);
18222
18223		/*
18224		 * If we're being detached with anonymous state, we need to
18225		 * indicate to the kernel debugger that DTrace is now inactive.
18226		 */
18227		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18228	}
18229
18230	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18231	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18232	dtrace_cpu_init = NULL;
18233	dtrace_helpers_cleanup = NULL;
18234	dtrace_helpers_fork = NULL;
18235	dtrace_cpustart_init = NULL;
18236	dtrace_cpustart_fini = NULL;
18237	dtrace_debugger_init = NULL;
18238	dtrace_debugger_fini = NULL;
18239	dtrace_modload = NULL;
18240	dtrace_modunload = NULL;
18241
18242	ASSERT(dtrace_getf == 0);
18243	ASSERT(dtrace_closef == NULL);
18244
18245	mutex_exit(&cpu_lock);
18246
18247	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18248	dtrace_probes = NULL;
18249	dtrace_nprobes = 0;
18250
18251	dtrace_hash_destroy(dtrace_bymod);
18252	dtrace_hash_destroy(dtrace_byfunc);
18253	dtrace_hash_destroy(dtrace_byname);
18254	dtrace_bymod = NULL;
18255	dtrace_byfunc = NULL;
18256	dtrace_byname = NULL;
18257
18258	kmem_cache_destroy(dtrace_state_cache);
18259	vmem_destroy(dtrace_minor);
18260	vmem_destroy(dtrace_arena);
18261
18262	if (dtrace_toxrange != NULL) {
18263		kmem_free(dtrace_toxrange,
18264		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18265		dtrace_toxrange = NULL;
18266		dtrace_toxranges = 0;
18267		dtrace_toxranges_max = 0;
18268	}
18269
18270	ddi_remove_minor_node(dtrace_devi, NULL);
18271	dtrace_devi = NULL;
18272
18273	ddi_soft_state_fini(&dtrace_softstate);
18274
18275	ASSERT(dtrace_vtime_references == 0);
18276	ASSERT(dtrace_opens == 0);
18277	ASSERT(dtrace_retained == NULL);
18278
18279	mutex_exit(&dtrace_lock);
18280	mutex_exit(&dtrace_provider_lock);
18281
18282	/*
18283	 * We don't destroy the task queue until after we have dropped our
18284	 * locks (taskq_destroy() may block on running tasks).  To prevent
18285	 * attempting to do work after we have effectively detached but before
18286	 * the task queue has been destroyed, all tasks dispatched via the
18287	 * task queue must check that DTrace is still attached before
18288	 * performing any operation.
18289	 */
18290	taskq_destroy(dtrace_taskq);
18291	dtrace_taskq = NULL;
18292
18293	return (DDI_SUCCESS);
18294}
18295#endif
18296
18297#ifdef illumos
18298/*ARGSUSED*/
18299static int
18300dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18301{
18302	int error;
18303
18304	switch (infocmd) {
18305	case DDI_INFO_DEVT2DEVINFO:
18306		*result = (void *)dtrace_devi;
18307		error = DDI_SUCCESS;
18308		break;
18309	case DDI_INFO_DEVT2INSTANCE:
18310		*result = (void *)0;
18311		error = DDI_SUCCESS;
18312		break;
18313	default:
18314		error = DDI_FAILURE;
18315	}
18316	return (error);
18317}
18318#endif
18319
18320#ifdef illumos
18321static struct cb_ops dtrace_cb_ops = {
18322	dtrace_open,		/* open */
18323	dtrace_close,		/* close */
18324	nulldev,		/* strategy */
18325	nulldev,		/* print */
18326	nodev,			/* dump */
18327	nodev,			/* read */
18328	nodev,			/* write */
18329	dtrace_ioctl,		/* ioctl */
18330	nodev,			/* devmap */
18331	nodev,			/* mmap */
18332	nodev,			/* segmap */
18333	nochpoll,		/* poll */
18334	ddi_prop_op,		/* cb_prop_op */
18335	0,			/* streamtab  */
18336	D_NEW | D_MP		/* Driver compatibility flag */
18337};
18338
18339static struct dev_ops dtrace_ops = {
18340	DEVO_REV,		/* devo_rev */
18341	0,			/* refcnt */
18342	dtrace_info,		/* get_dev_info */
18343	nulldev,		/* identify */
18344	nulldev,		/* probe */
18345	dtrace_attach,		/* attach */
18346	dtrace_detach,		/* detach */
18347	nodev,			/* reset */
18348	&dtrace_cb_ops,		/* driver operations */
18349	NULL,			/* bus operations */
18350	nodev			/* dev power */
18351};
18352
18353static struct modldrv modldrv = {
18354	&mod_driverops,		/* module type (this is a pseudo driver) */
18355	"Dynamic Tracing",	/* name of module */
18356	&dtrace_ops,		/* driver ops */
18357};
18358
18359static struct modlinkage modlinkage = {
18360	MODREV_1,
18361	(void *)&modldrv,
18362	NULL
18363};
18364
18365int
18366_init(void)
18367{
18368	return (mod_install(&modlinkage));
18369}
18370
18371int
18372_info(struct modinfo *modinfop)
18373{
18374	return (mod_info(&modlinkage, modinfop));
18375}
18376
18377int
18378_fini(void)
18379{
18380	return (mod_remove(&modlinkage));
18381}
18382#else
18383
18384static d_ioctl_t	dtrace_ioctl;
18385static d_ioctl_t	dtrace_ioctl_helper;
18386static void		dtrace_load(void *);
18387static int		dtrace_unload(void);
18388static struct cdev	*dtrace_dev;
18389static struct cdev	*helper_dev;
18390
18391void dtrace_invop_init(void);
18392void dtrace_invop_uninit(void);
18393
18394static struct cdevsw dtrace_cdevsw = {
18395	.d_version	= D_VERSION,
18396	.d_ioctl	= dtrace_ioctl,
18397	.d_open		= dtrace_open,
18398	.d_name		= "dtrace",
18399};
18400
18401static struct cdevsw helper_cdevsw = {
18402	.d_version	= D_VERSION,
18403	.d_ioctl	= dtrace_ioctl_helper,
18404	.d_name		= "helper",
18405};
18406
18407#include <dtrace_anon.c>
18408#include <dtrace_ioctl.c>
18409#include <dtrace_load.c>
18410#include <dtrace_modevent.c>
18411#include <dtrace_sysctl.c>
18412#include <dtrace_unload.c>
18413#include <dtrace_vtime.c>
18414#include <dtrace_hacks.c>
18415#include <dtrace_isa.c>
18416
18417SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18418SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18419SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18420
18421DEV_MODULE(dtrace, dtrace_modevent, NULL);
18422MODULE_VERSION(dtrace, 1);
18423MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18424#endif
18425