1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 1991 Regents of the University of California.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department and William Jolitz of UUNET Technologies Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * Derived from hp300 version by Mike Hibler, this version by William
37 * Jolitz uses a recursive map [a pde points to the page directory] to
38 * map the page tables using the pagetables themselves. This is done to
39 * reduce the impact on kernel virtual memory for lots of sparse address
40 * space, and to reduce the cost of memory to each process.
41 *
42 *	from: hp300: @(#)pmap.h	7.2 (Berkeley) 12/16/90
43 *	from: @(#)pmap.h	7.4 (Berkeley) 5/12/91
44 * $FreeBSD$
45 */
46
47#ifndef _MACHINE_PMAP_H_
48#define	_MACHINE_PMAP_H_
49
50/*
51 * Page-directory and page-table entries follow this format, with a few
52 * of the fields not present here and there, depending on a lot of things.
53 */
54				/* ---- Intel Nomenclature ---- */
55#define	X86_PG_V	0x001	/* P	Valid			*/
56#define	X86_PG_RW	0x002	/* R/W	Read/Write		*/
57#define	X86_PG_U	0x004	/* U/S  User/Supervisor		*/
58#define	X86_PG_NC_PWT	0x008	/* PWT	Write through		*/
59#define	X86_PG_NC_PCD	0x010	/* PCD	Cache disable		*/
60#define	X86_PG_A	0x020	/* A	Accessed		*/
61#define	X86_PG_M	0x040	/* D	Dirty			*/
62#define	X86_PG_PS	0x080	/* PS	Page size (0=4k,1=2M)	*/
63#define	X86_PG_PTE_PAT	0x080	/* PAT	PAT index		*/
64#define	X86_PG_G	0x100	/* G	Global			*/
65#define	X86_PG_AVAIL1	0x200	/*    /	Available for system	*/
66#define	X86_PG_AVAIL2	0x400	/*   <	programmers use		*/
67#define	X86_PG_AVAIL3	0x800	/*    \				*/
68#define	X86_PG_PDE_PAT	0x1000	/* PAT	PAT index		*/
69#define	X86_PG_PKU(idx)	((pt_entry_t)idx << 59)
70#define	X86_PG_NX	(1ul<<63) /* No-execute */
71#define	X86_PG_AVAIL(x)	(1ul << (x))
72
73/* Page level cache control fields used to determine the PAT type */
74#define	X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
75#define	X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
76
77/* Protection keys indexes */
78#define	PMAP_MAX_PKRU_IDX	0xf
79#define	X86_PG_PKU_MASK		X86_PG_PKU(PMAP_MAX_PKRU_IDX)
80
81/*
82 * Intel extended page table (EPT) bit definitions.
83 */
84#define	EPT_PG_READ		0x001	/* R	Read		*/
85#define	EPT_PG_WRITE		0x002	/* W	Write		*/
86#define	EPT_PG_EXECUTE		0x004	/* X	Execute		*/
87#define	EPT_PG_IGNORE_PAT	0x040	/* IPAT	Ignore PAT	*/
88#define	EPT_PG_PS		0x080	/* PS	Page size	*/
89#define	EPT_PG_A		0x100	/* A	Accessed	*/
90#define	EPT_PG_M		0x200	/* D	Dirty		*/
91#define	EPT_PG_MEMORY_TYPE(x)	((x) << 3) /* MT Memory Type	*/
92
93/*
94 * Define the PG_xx macros in terms of the bits on x86 PTEs.
95 */
96#define	PG_V		X86_PG_V
97#define	PG_RW		X86_PG_RW
98#define	PG_U		X86_PG_U
99#define	PG_NC_PWT	X86_PG_NC_PWT
100#define	PG_NC_PCD	X86_PG_NC_PCD
101#define	PG_A		X86_PG_A
102#define	PG_M		X86_PG_M
103#define	PG_PS		X86_PG_PS
104#define	PG_PTE_PAT	X86_PG_PTE_PAT
105#define	PG_G		X86_PG_G
106#define	PG_AVAIL1	X86_PG_AVAIL1
107#define	PG_AVAIL2	X86_PG_AVAIL2
108#define	PG_AVAIL3	X86_PG_AVAIL3
109#define	PG_PDE_PAT	X86_PG_PDE_PAT
110#define	PG_NX		X86_PG_NX
111#define	PG_PDE_CACHE	X86_PG_PDE_CACHE
112#define	PG_PTE_CACHE	X86_PG_PTE_CACHE
113
114/* Our various interpretations of the above */
115#define	PG_W		X86_PG_AVAIL3	/* "Wired" pseudoflag */
116#define	PG_MANAGED	X86_PG_AVAIL2
117#define	EPT_PG_EMUL_V	X86_PG_AVAIL(52)
118#define	EPT_PG_EMUL_RW	X86_PG_AVAIL(53)
119#define	PG_PROMOTED	X86_PG_AVAIL(54)	/* PDE only */
120#define	PG_FRAME	(0x000ffffffffff000ul)
121#define	PG_PS_FRAME	(0x000fffffffe00000ul)
122#define	PG_PS_PDP_FRAME	(0x000fffffc0000000ul)
123
124/*
125 * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
126 * (PTE) page mappings have identical settings for the following fields:
127 */
128#define	PG_PTE_PROMOTE	(PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
129	    PG_M | PG_A | PG_U | PG_RW | PG_V | PG_PKU_MASK)
130
131/*
132 * Page Protection Exception bits
133 */
134
135#define PGEX_P		0x01	/* Protection violation vs. not present */
136#define PGEX_W		0x02	/* during a Write cycle */
137#define PGEX_U		0x04	/* access from User mode (UPL) */
138#define PGEX_RSV	0x08	/* reserved PTE field is non-zero */
139#define PGEX_I		0x10	/* during an instruction fetch */
140#define	PGEX_PK		0x20	/* protection key violation */
141#define	PGEX_SGX	0x8000	/* SGX-related */
142
143/*
144 * undef the PG_xx macros that define bits in the regular x86 PTEs that
145 * have a different position in nested PTEs. This is done when compiling
146 * code that needs to be aware of the differences between regular x86 and
147 * nested PTEs.
148 *
149 * The appropriate bitmask will be calculated at runtime based on the pmap
150 * type.
151 */
152#ifdef AMD64_NPT_AWARE
153#undef PG_AVAIL1		/* X86_PG_AVAIL1 aliases with EPT_PG_M */
154#undef PG_G
155#undef PG_A
156#undef PG_M
157#undef PG_PDE_PAT
158#undef PG_PDE_CACHE
159#undef PG_PTE_PAT
160#undef PG_PTE_CACHE
161#undef PG_RW
162#undef PG_V
163#endif
164
165/*
166 * Pte related macros.  This is complicated by having to deal with
167 * the sign extension of the 48th bit.
168 */
169#define KVADDR(l4, l3, l2, l1) ( \
170	((unsigned long)-1 << 47) | \
171	((unsigned long)(l4) << PML4SHIFT) | \
172	((unsigned long)(l3) << PDPSHIFT) | \
173	((unsigned long)(l2) << PDRSHIFT) | \
174	((unsigned long)(l1) << PAGE_SHIFT))
175
176#define UVADDR(l4, l3, l2, l1) ( \
177	((unsigned long)(l4) << PML4SHIFT) | \
178	((unsigned long)(l3) << PDPSHIFT) | \
179	((unsigned long)(l2) << PDRSHIFT) | \
180	((unsigned long)(l1) << PAGE_SHIFT))
181
182/*
183 * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
184 * but setting it larger than NDMPML4E makes no sense.
185 *
186 * Each slot provides .5 TB of kernel virtual space.
187 */
188#define NKPML4E		4
189
190#define	NUPML4E		(NPML4EPG/2)	/* number of userland PML4 pages */
191#define	NUPDPE		(NUPML4E*NPDPEPG)/* number of userland PDP pages */
192#define	NUPDE		(NUPDPE*NPDEPG)	/* number of userland PD entries */
193
194/*
195 * NDMPML4E is the maximum number of PML4 entries that will be
196 * used to implement the direct map.  It must be a power of two,
197 * and should generally exceed NKPML4E.  The maximum possible
198 * value is 64; using 128 will make the direct map intrude into
199 * the recursive page table map.
200 */
201#define	NDMPML4E	8
202
203/*
204 * These values control the layout of virtual memory.  The starting address
205 * of the direct map, which is controlled by DMPML4I, must be a multiple of
206 * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
207 *
208 * Note: KPML4I is the index of the (single) level 4 page that maps
209 * the KVA that holds KERNBASE, while KPML4BASE is the index of the
210 * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
211 * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
212 * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
213 * KERNBASE.
214 *
215 * (KPML4I combines with KPDPI to choose where KERNBASE starts.
216 * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
217 * and KPDPI provides bits 30..38.)
218 */
219#define	PML4PML4I	(NPML4EPG/2)	/* Index of recursive pml4 mapping */
220
221#define	KPML4BASE	(NPML4EPG-NKPML4E) /* KVM at highest addresses */
222#define	DMPML4I		rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
223
224#define	KPML4I		(NPML4EPG-1)
225#define	KPDPI		(NPDPEPG-2)	/* kernbase at -2GB */
226
227/* Large map: index of the first and max last pml4 entry */
228#define	LMSPML4I	(PML4PML4I + 1)
229#define	LMEPML4I	(DMPML4I - 1)
230
231/*
232 * XXX doesn't really belong here I guess...
233 */
234#define ISA_HOLE_START    0xa0000
235#define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
236
237#define	PMAP_PCID_NONE		0xffffffff
238#define	PMAP_PCID_KERN		0
239#define	PMAP_PCID_OVERMAX	0x1000
240#define	PMAP_PCID_OVERMAX_KERN	0x800
241#define	PMAP_PCID_USER_PT	0x800
242
243#define	PMAP_NO_CR3		0xffffffffffffffff
244
245#ifndef LOCORE
246
247#include <sys/queue.h>
248#include <sys/_cpuset.h>
249#include <sys/_lock.h>
250#include <sys/_mutex.h>
251#include <sys/_pctrie.h>
252#include <sys/_rangeset.h>
253
254#include <vm/_vm_radix.h>
255
256typedef u_int64_t pd_entry_t;
257typedef u_int64_t pt_entry_t;
258typedef u_int64_t pdp_entry_t;
259typedef u_int64_t pml4_entry_t;
260
261/*
262 * Address of current address space page table maps and directories.
263 */
264#ifdef _KERNEL
265#define	addr_PTmap	(KVADDR(PML4PML4I, 0, 0, 0))
266#define	addr_PDmap	(KVADDR(PML4PML4I, PML4PML4I, 0, 0))
267#define	addr_PDPmap	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
268#define	addr_PML4map	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
269#define	addr_PML4pml4e	(addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
270#define	PTmap		((pt_entry_t *)(addr_PTmap))
271#define	PDmap		((pd_entry_t *)(addr_PDmap))
272#define	PDPmap		((pd_entry_t *)(addr_PDPmap))
273#define	PML4map		((pd_entry_t *)(addr_PML4map))
274#define	PML4pml4e	((pd_entry_t *)(addr_PML4pml4e))
275
276extern int nkpt;		/* Initial number of kernel page tables */
277extern u_int64_t KPML4phys;	/* physical address of kernel level 4 */
278
279/*
280 * virtual address to page table entry and
281 * to physical address.
282 * Note: these work recursively, thus vtopte of a pte will give
283 * the corresponding pde that in turn maps it.
284 */
285pt_entry_t *vtopte(vm_offset_t);
286#define	vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
287
288#define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
289#define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
290#define	pte_store(ptep, pte) do { \
291	*(u_long *)(ptep) = (u_long)(pte); \
292} while (0)
293#define	pte_clear(ptep)			pte_store(ptep, 0)
294
295#define	pde_store(pdep, pde)		pte_store(pdep, pde)
296
297extern pt_entry_t pg_nx;
298
299#endif /* _KERNEL */
300
301/*
302 * Pmap stuff
303 */
304struct	pv_entry;
305struct	pv_chunk;
306
307/*
308 * Locks
309 * (p) PV list lock
310 */
311struct md_page {
312	TAILQ_HEAD(, pv_entry)	pv_list;  /* (p) */
313	int			pv_gen;   /* (p) */
314	int			pat_mode;
315};
316
317enum pmap_type {
318	PT_X86,			/* regular x86 page tables */
319	PT_EPT,			/* Intel's nested page tables */
320	PT_RVI,			/* AMD's nested page tables */
321};
322
323struct pmap_pcids {
324	uint32_t	pm_pcid;
325	uint32_t	pm_gen;
326};
327
328/*
329 * The kernel virtual address (KVA) of the level 4 page table page is always
330 * within the direct map (DMAP) region.
331 */
332struct pmap {
333	struct mtx		pm_mtx;
334	pml4_entry_t		*pm_pml4;	/* KVA of level 4 page table */
335	pml4_entry_t		*pm_pml4u;	/* KVA of user l4 page table */
336	uint64_t		pm_cr3;
337	uint64_t		pm_ucr3;
338	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
339	cpuset_t		pm_active;	/* active on cpus */
340	enum pmap_type		pm_type;	/* regular or nested tables */
341	struct pmap_statistics	pm_stats;	/* pmap statistics */
342	struct vm_radix		pm_root;	/* spare page table pages */
343	long			pm_eptgen;	/* EPT pmap generation id */
344	int			pm_flags;
345	struct pmap_pcids	pm_pcids[MAXCPU];
346	struct rangeset		pm_pkru;
347};
348
349/* flags */
350#define	PMAP_NESTED_IPIMASK	0xff
351#define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
352#define	PMAP_EMULATE_AD_BITS	(1 << 9)	/* needs A/D bits emulation */
353#define	PMAP_SUPPORTS_EXEC_ONLY	(1 << 10)	/* execute only mappings ok */
354
355typedef struct pmap	*pmap_t;
356
357#ifdef _KERNEL
358extern struct pmap	kernel_pmap_store;
359#define kernel_pmap	(&kernel_pmap_store)
360
361#define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
362#define	PMAP_LOCK_ASSERT(pmap, type) \
363				mtx_assert(&(pmap)->pm_mtx, (type))
364#define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
365#define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
366				    NULL, MTX_DEF | MTX_DUPOK)
367#define	PMAP_LOCKED(pmap)	mtx_owned(&(pmap)->pm_mtx)
368#define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
369#define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
370#define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
371
372int	pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
373int	pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
374#endif
375
376/*
377 * For each vm_page_t, there is a list of all currently valid virtual
378 * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
379 */
380typedef struct pv_entry {
381	vm_offset_t	pv_va;		/* virtual address for mapping */
382	TAILQ_ENTRY(pv_entry)	pv_next;
383} *pv_entry_t;
384
385/*
386 * pv_entries are allocated in chunks per-process.  This avoids the
387 * need to track per-pmap assignments.
388 */
389#define	_NPCM	3
390#define	_NPCPV	168
391#define	PV_CHUNK_HEADER							\
392	pmap_t			pc_pmap;				\
393	TAILQ_ENTRY(pv_chunk)	pc_list;				\
394	uint64_t		pc_map[_NPCM];	/* bitmap; 1 = free */	\
395	TAILQ_ENTRY(pv_chunk)	pc_lru;
396
397struct pv_chunk_header {
398	PV_CHUNK_HEADER
399};
400
401struct pv_chunk {
402	PV_CHUNK_HEADER
403	struct pv_entry		pc_pventry[_NPCPV];
404};
405
406#ifdef	_KERNEL
407
408extern caddr_t	CADDR1;
409extern pt_entry_t *CMAP1;
410extern vm_paddr_t phys_avail[];
411extern vm_paddr_t dump_avail[];
412extern vm_offset_t virtual_avail;
413extern vm_offset_t virtual_end;
414extern vm_paddr_t dmaplimit;
415extern int pmap_pcid_enabled;
416extern int invpcid_works;
417
418#define	pmap_page_get_memattr(m)	((vm_memattr_t)(m)->md.pat_mode)
419#define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
420#define	pmap_unmapbios(va, sz)	pmap_unmapdev((va), (sz))
421
422struct thread;
423
424void	pmap_activate_boot(pmap_t pmap);
425void	pmap_activate_sw(struct thread *);
426void	pmap_allow_2m_x_ept_recalculate(void);
427void	pmap_bootstrap(vm_paddr_t *);
428int	pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde);
429int	pmap_change_attr(vm_offset_t, vm_size_t, int);
430int	pmap_change_prot(vm_offset_t, vm_size_t, vm_prot_t);
431void	pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
432void	pmap_flush_cache_range(vm_offset_t, vm_offset_t);
433void	pmap_flush_cache_phys_range(vm_paddr_t, vm_paddr_t, vm_memattr_t);
434void	pmap_init_pat(void);
435void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
436void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
437vm_paddr_t pmap_kextract(vm_offset_t);
438void	pmap_kremove(vm_offset_t);
439int	pmap_large_map(vm_paddr_t, vm_size_t, void **, vm_memattr_t);
440void	pmap_large_map_wb(void *sva, vm_size_t len);
441void	pmap_large_unmap(void *sva, vm_size_t len);
442void	*pmap_mapbios(vm_paddr_t, vm_size_t);
443void	*pmap_mapdev(vm_paddr_t, vm_size_t);
444void	*pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
445void	*pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size);
446bool	pmap_not_in_di(void);
447boolean_t pmap_page_is_mapped(vm_page_t m);
448void	pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
449void	pmap_pinit_pml4(vm_page_t);
450bool	pmap_ps_enabled(pmap_t pmap);
451void	pmap_unmapdev(vm_offset_t, vm_size_t);
452void	pmap_invalidate_page(pmap_t, vm_offset_t);
453void	pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
454void	pmap_invalidate_all(pmap_t);
455void	pmap_invalidate_cache(void);
456void	pmap_invalidate_cache_pages(vm_page_t *pages, int count);
457void	pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
458void	pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva);
459void	pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
460boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
461void	pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
462void	pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec);
463void	pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva);
464void	pmap_pti_pcid_invalidate(uint64_t ucr3, uint64_t kcr3);
465void	pmap_pti_pcid_invlpg(uint64_t ucr3, uint64_t kcr3, vm_offset_t va);
466void	pmap_pti_pcid_invlrng(uint64_t ucr3, uint64_t kcr3, vm_offset_t sva,
467	    vm_offset_t eva);
468int	pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
469int	pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
470	    u_int keyidx, int flags);
471void	pmap_thread_init_invl_gen(struct thread *td);
472int	pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap);
473#endif /* _KERNEL */
474
475/* Return various clipped indexes for a given VA */
476static __inline vm_pindex_t
477pmap_pte_index(vm_offset_t va)
478{
479
480	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
481}
482
483static __inline vm_pindex_t
484pmap_pde_index(vm_offset_t va)
485{
486
487	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
488}
489
490static __inline vm_pindex_t
491pmap_pdpe_index(vm_offset_t va)
492{
493
494	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
495}
496
497static __inline vm_pindex_t
498pmap_pml4e_index(vm_offset_t va)
499{
500
501	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
502}
503
504#endif /* !LOCORE */
505
506#endif /* !_MACHINE_PMAP_H_ */
507