1/*-
2 * Copyright (c) 1989, 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include <sys/param.h>
38#include <sys/fnv_hash.h>
39
40#define	_WANT_VNET
41
42#include <sys/user.h>
43#include <sys/linker.h>
44#include <sys/pcpu.h>
45#include <sys/stat.h>
46#include <sys/mman.h>
47
48#include <net/vnet.h>
49
50#include <assert.h>
51#include <fcntl.h>
52#include <vm/vm.h>
53#include <kvm.h>
54#include <limits.h>
55#include <paths.h>
56#include <stdint.h>
57#include <stdio.h>
58#include <stdlib.h>
59#include <string.h>
60#include <unistd.h>
61#include <stdarg.h>
62#include <inttypes.h>
63
64#include "kvm_private.h"
65
66/*
67 * Routines private to libkvm.
68 */
69
70/* from src/lib/libc/gen/nlist.c */
71int __fdnlist(int, struct nlist *);
72
73/*
74 * Report an error using printf style arguments.  "program" is kd->program
75 * on hard errors, and 0 on soft errors, so that under sun error emulation,
76 * only hard errors are printed out (otherwise, programs like gdb will
77 * generate tons of error messages when trying to access bogus pointers).
78 */
79void
80_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
81{
82	va_list ap;
83
84	va_start(ap, fmt);
85	if (program != NULL) {
86		(void)fprintf(stderr, "%s: ", program);
87		(void)vfprintf(stderr, fmt, ap);
88		(void)fputc('\n', stderr);
89	} else
90		(void)vsnprintf(kd->errbuf,
91		    sizeof(kd->errbuf), fmt, ap);
92
93	va_end(ap);
94}
95
96void
97_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
98{
99	va_list ap;
100	int n;
101
102	va_start(ap, fmt);
103	if (program != NULL) {
104		(void)fprintf(stderr, "%s: ", program);
105		(void)vfprintf(stderr, fmt, ap);
106		(void)fprintf(stderr, ": %s\n", strerror(errno));
107	} else {
108		char *cp = kd->errbuf;
109
110		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
111		n = strlen(cp);
112		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
113		    strerror(errno));
114	}
115	va_end(ap);
116}
117
118void *
119_kvm_malloc(kvm_t *kd, size_t n)
120{
121	void *p;
122
123	if ((p = calloc(n, sizeof(char))) == NULL)
124		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
125			 n, strerror(errno));
126	return (p);
127}
128
129int
130_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
131{
132
133	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
134	    kd->nlehdr.e_type == ET_EXEC &&
135	    kd->nlehdr.e_machine == machine);
136}
137
138int
139_kvm_is_minidump(kvm_t *kd)
140{
141	char minihdr[8];
142
143	if (kd->rawdump)
144		return (0);
145	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
146	    memcmp(&minihdr, "minidump", 8) == 0)
147		return (1);
148	return (0);
149}
150
151/*
152 * The powerpc backend has a hack to strip a leading kerneldump
153 * header from the core before treating it as an ELF header.
154 *
155 * We can add that here if we can get a change to libelf to support
156 * an initial offset into the file.  Alternatively we could patch
157 * savecore to extract cores from a regular file instead.
158 */
159int
160_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
161{
162	GElf_Ehdr ehdr;
163	GElf_Phdr *phdr;
164	Elf *elf;
165	size_t i, phnum;
166
167	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
168	if (elf == NULL) {
169		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
170		return (-1);
171	}
172	if (elf_kind(elf) != ELF_K_ELF) {
173		_kvm_err(kd, kd->program, "invalid core");
174		goto bad;
175	}
176	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
177		_kvm_err(kd, kd->program, "invalid core");
178		goto bad;
179	}
180	if (gelf_getehdr(elf, &ehdr) == NULL) {
181		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
182		goto bad;
183	}
184	if (ehdr.e_type != ET_CORE) {
185		_kvm_err(kd, kd->program, "invalid core");
186		goto bad;
187	}
188	if (ehdr.e_machine != kd->nlehdr.e_machine) {
189		_kvm_err(kd, kd->program, "invalid core");
190		goto bad;
191	}
192
193	if (elf_getphdrnum(elf, &phnum) == -1) {
194		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
195		goto bad;
196	}
197
198	phdr = calloc(phnum, sizeof(*phdr));
199	if (phdr == NULL) {
200		_kvm_err(kd, kd->program, "failed to allocate phdrs");
201		goto bad;
202	}
203
204	for (i = 0; i < phnum; i++) {
205		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
206			free(phdr);
207			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
208			goto bad;
209		}
210	}
211	elf_end(elf);
212	*phnump = phnum;
213	*phdrp = phdr;
214	return (0);
215
216bad:
217	elf_end(elf);
218	return (-1);
219}
220
221/*
222 * Transform v such that only bits [bit0, bitN) may be set.  Generates a
223 * bitmask covering the number of bits, then shifts so +bit0+ is the first.
224 */
225static uint64_t
226bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
227{
228	if (bit0 == 0 && bitN == BITS_IN(v))
229		return (v);
230
231	return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
232}
233
234/*
235 * Returns the number of bits in a given byte array range starting at a
236 * given base, from bit0 to bitN.  bit0 may be non-zero in the case of
237 * counting backwards from bitN.
238 */
239static uint64_t
240popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
241{
242	uint32_t res = bitN - bit0;
243	uint64_t count = 0;
244	uint32_t bound;
245
246	/* Align to 64-bit boundary on the left side if needed. */
247	if ((bit0 % BITS_IN(*addr)) != 0) {
248		bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
249		count += __bitcount64(bitmask_range(*addr, bit0, bound));
250		res -= (bound - bit0);
251		addr++;
252	}
253
254	while (res > 0) {
255		bound = MIN(res, BITS_IN(*addr));
256		count += __bitcount64(bitmask_range(*addr, 0, bound));
257		res -= bound;
258		addr++;
259	}
260
261	return (count);
262}
263
264void *
265_kvm_pmap_get(kvm_t *kd, u_long idx, size_t len)
266{
267	uintptr_t off = idx * len;
268
269	if ((off_t)off >= kd->pt_sparse_off)
270		return (NULL);
271	return (void *)((uintptr_t)kd->page_map + off);
272}
273
274void *
275_kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size)
276{
277	off_t off;
278	uintptr_t addr;
279
280	off = _kvm_pt_find(kd, pa, page_size);
281	if (off == -1)
282		return NULL;
283
284	addr = (uintptr_t)kd->page_map + off;
285	if (off >= kd->pt_sparse_off)
286		addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off);
287	return (void *)addr;
288}
289
290int
291_kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
292    int page_size, int word_size)
293{
294	uint64_t *addr;
295	uint32_t *popcount_bin;
296	int bin_popcounts = 0;
297	uint64_t pc_bins, res;
298	ssize_t rd;
299
300	/*
301	 * Map the bitmap specified by the arguments.
302	 */
303	kd->pt_map = _kvm_malloc(kd, map_len);
304	if (kd->pt_map == NULL) {
305		_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
306		    map_len);
307		return (-1);
308	}
309	rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
310	if (rd < 0 || rd != (ssize_t)map_len) {
311		_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
312		    map_len);
313		return (-1);
314	}
315	kd->pt_map_size = map_len;
316
317	/*
318	 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
319	 * so lookups only have to calculate the number of bits set between
320	 * a cache point and their bit.  This reduces lookups to O(1),
321	 * without significantly increasing memory requirements.
322	 *
323	 * Round up the number of bins so that 'upper half' lookups work for
324	 * the final bin, if needed.  The first popcount is 0, since no bits
325	 * precede bit 0, so add 1 for that also.  Without this, extra work
326	 * would be needed to handle the first PTEs in _kvm_pt_find().
327	 */
328	addr = kd->pt_map;
329	res = map_len;
330	pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
331	kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
332	if (kd->pt_popcounts == NULL) {
333		_kvm_err(kd, kd->program, "cannot allocate popcount bins");
334		return (-1);
335	}
336
337	for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
338	    addr++, res -= sizeof(*addr)) {
339		*popcount_bin += popcount_bytes(addr, 0,
340		    MIN(res * NBBY, BITS_IN(*addr)));
341		if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
342			popcount_bin++;
343			*popcount_bin = *(popcount_bin - 1);
344			bin_popcounts = 0;
345		}
346	}
347
348	assert(pc_bins * sizeof(*popcount_bin) ==
349	    ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
350
351	kd->pt_sparse_off = sparse_off;
352	kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size;
353	kd->pt_page_size = page_size;
354	kd->pt_word_size = word_size;
355
356	/*
357	 * Map the sparse page array.  This is useful for performing point
358	 * lookups of specific pages, e.g. for kvm_walk_pages.  Generally,
359	 * this is much larger than is reasonable to read in up front, so
360	 * mmap it in instead.
361	 */
362	kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ,
363	    MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off);
364	if (kd->sparse_map == MAP_FAILED) {
365		_kvm_err(kd, kd->program, "cannot map %" PRIu64
366		    " bytes from fd %d offset %jd for sparse map: %s",
367		    kd->pt_sparse_size, kd->pmfd,
368		    (intmax_t)kd->pt_sparse_off, strerror(errno));
369		return (-1);
370	}
371	return (0);
372}
373
374int
375_kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off)
376{
377	ssize_t exp_len = pmap_size;
378
379	kd->page_map_size = pmap_size;
380	kd->page_map_off = pmap_off;
381	kd->page_map = _kvm_malloc(kd, pmap_size);
382	if (kd->page_map == NULL) {
383		_kvm_err(kd, kd->program, "cannot allocate %u bytes "
384		    "for page map", pmap_size);
385		return (-1);
386	}
387	if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) {
388		_kvm_err(kd, kd->program, "cannot read %d bytes from "
389		    "offset %jd for page map", pmap_size, (intmax_t)pmap_off);
390		return (-1);
391	}
392	return (0);
393}
394
395/*
396 * Find the offset for the given physical page address; returns -1 otherwise.
397 *
398 * A page's offset is represented by the sparse page base offset plus the
399 * number of bits set before its bit multiplied by page size.  This means
400 * that if a page exists in the dump, it's necessary to know how many pages
401 * in the dump precede it.  Reduce this O(n) counting to O(1) by caching the
402 * number of bits set at POPCOUNT_BITS intervals.
403 *
404 * Then to find the number of pages before the requested address, simply
405 * index into the cache and count the number of bits set between that cache
406 * bin and the page's bit.  Halve the number of bytes that have to be
407 * checked by also counting down from the next higher bin if it's closer.
408 */
409off_t
410_kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size)
411{
412	uint64_t *bitmap = kd->pt_map;
413	uint64_t pte_bit_id = pa / page_size;
414	uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
415	uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
416	uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
417	uint64_t bitN;
418	uint32_t count;
419
420	/* Check whether the page address requested is in the dump. */
421	if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
422	    (bitmap[pte_u64] & pte_mask) == 0)
423		return (-1);
424
425	/*
426	 * Add/sub popcounts from the bitmap until the PTE's bit is reached.
427	 * For bits that are in the upper half between the calculated
428	 * popcount id and the next one, use the next one and subtract to
429	 * minimize the number of popcounts required.
430	 */
431	if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
432		count = kd->pt_popcounts[popcount_id] + popcount_bytes(
433		    bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
434		    0, pte_bit_id - popcount_id * POPCOUNT_BITS);
435	} else {
436		/*
437		 * Counting in reverse is trickier, since we must avoid
438		 * reading from bytes that are not in range, and invert.
439		 */
440		uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
441
442		popcount_id++;
443		bitN = MIN(popcount_id * POPCOUNT_BITS,
444		    kd->pt_map_size * BITS_IN(uint8_t));
445		count = kd->pt_popcounts[popcount_id] - popcount_bytes(
446		    bitmap + pte_u64,
447		    pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
448	}
449
450	/*
451	 * This can only happen if the core is truncated.  Treat these
452	 * entries as if they don't exist, since their backing doesn't.
453	 */
454	if (count >= (kd->pt_sparse_size / page_size))
455		return (-1);
456
457	return (kd->pt_sparse_off + (uint64_t)count * page_size);
458}
459
460static int
461kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
462{
463	kvaddr_t addr;
464	int error, nfail;
465
466	if (kd->resolve_symbol == NULL) {
467		struct nlist *nl;
468		int count, i;
469
470		for (count = 0; list[count].n_name != NULL &&
471		     list[count].n_name[0] != '\0'; count++)
472			;
473		nl = calloc(count + 1, sizeof(*nl));
474		for (i = 0; i < count; i++)
475			nl[i].n_name = list[i].n_name;
476		nfail = __fdnlist(kd->nlfd, nl);
477		for (i = 0; i < count; i++) {
478			list[i].n_type = nl[i].n_type;
479			list[i].n_value = nl[i].n_value;
480		}
481		free(nl);
482		return (nfail);
483	}
484
485	nfail = 0;
486	while (list->n_name != NULL && list->n_name[0] != '\0') {
487		error = kd->resolve_symbol(list->n_name, &addr);
488		if (error != 0) {
489			nfail++;
490			list->n_value = 0;
491			list->n_type = 0;
492		} else {
493			list->n_value = addr;
494			list->n_type = N_DATA | N_EXT;
495		}
496		list++;
497	}
498	return (nfail);
499}
500
501/*
502 * Walk the list of unresolved symbols, generate a new list and prefix the
503 * symbol names, try again, and merge back what we could resolve.
504 */
505static int
506kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
507    const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
508{
509	struct kvm_nlist *n, *np, *p;
510	char *cp, *ce;
511	const char *ccp;
512	size_t len;
513	int slen, unresolved;
514
515	/*
516	 * Calculate the space we need to malloc for nlist and names.
517	 * We are going to store the name twice for later lookups: once
518	 * with the prefix and once the unmodified name delmited by \0.
519	 */
520	len = 0;
521	unresolved = 0;
522	for (p = nl; p->n_name && p->n_name[0]; ++p) {
523		if (p->n_type != N_UNDF)
524			continue;
525		len += sizeof(struct kvm_nlist) + strlen(prefix) +
526		    2 * (strlen(p->n_name) + 1);
527		unresolved++;
528	}
529	if (unresolved == 0)
530		return (unresolved);
531	/* Add space for the terminating nlist entry. */
532	len += sizeof(struct kvm_nlist);
533	unresolved++;
534
535	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
536	n = np = malloc(len);
537	bzero(n, len);
538	if (n == NULL)
539		return (missing);
540	cp = ce = (char *)np;
541	cp += unresolved * sizeof(struct kvm_nlist);
542	ce += len;
543
544	/* Generate shortened nlist with special prefix. */
545	unresolved = 0;
546	for (p = nl; p->n_name && p->n_name[0]; ++p) {
547		if (p->n_type != N_UNDF)
548			continue;
549		*np = *p;
550		/* Save the new\0orig. name so we can later match it again. */
551		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
552		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
553			(p->n_name + 1) : p->n_name, '\0', p->n_name);
554		if (slen < 0 || slen >= ce - cp)
555			continue;
556		np->n_name = cp;
557		cp += slen + 1;
558		np++;
559		unresolved++;
560	}
561
562	/* Do lookup on the reduced list. */
563	np = n;
564	unresolved = kvm_fdnlist(kd, np);
565
566	/* Check if we could resolve further symbols and update the list. */
567	if (unresolved >= 0 && unresolved < missing) {
568		/* Find the first freshly resolved entry. */
569		for (; np->n_name && np->n_name[0]; np++)
570			if (np->n_type != N_UNDF)
571				break;
572		/*
573		 * The lists are both in the same order,
574		 * so we can walk them in parallel.
575		 */
576		for (p = nl; np->n_name && np->n_name[0] &&
577		    p->n_name && p->n_name[0]; ++p) {
578			if (p->n_type != N_UNDF)
579				continue;
580			/* Skip expanded name and compare to orig. one. */
581			ccp = np->n_name + strlen(np->n_name) + 1;
582			if (strcmp(ccp, p->n_name) != 0)
583				continue;
584			/* Update nlist with new, translated results. */
585			p->n_type = np->n_type;
586			if (validate_fn)
587				p->n_value = (*validate_fn)(kd, np->n_value);
588			else
589				p->n_value = np->n_value;
590			missing--;
591			/* Find next freshly resolved entry. */
592			for (np++; np->n_name && np->n_name[0]; np++)
593				if (np->n_type != N_UNDF)
594					break;
595		}
596	}
597	/* We could assert missing = unresolved here. */
598
599	free(n);
600	return (unresolved);
601}
602
603int
604_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
605{
606	struct kvm_nlist *p;
607	int nvalid;
608	struct kld_sym_lookup lookup;
609	int error;
610	const char *prefix = "";
611	char symname[1024]; /* XXX-BZ symbol name length limit? */
612	int tried_vnet, tried_dpcpu;
613
614	/*
615	 * If we can't use the kld symbol lookup, revert to the
616	 * slow library call.
617	 */
618	if (!ISALIVE(kd)) {
619		error = kvm_fdnlist(kd, nl);
620		if (error <= 0)			/* Hard error or success. */
621			return (error);
622
623		if (_kvm_vnet_initialized(kd, initialize))
624			error = kvm_fdnlist_prefix(kd, nl, error,
625			    VNET_SYMPREFIX, _kvm_vnet_validaddr);
626
627		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
628			error = kvm_fdnlist_prefix(kd, nl, error,
629			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
630
631		return (error);
632	}
633
634	/*
635	 * We can use the kld lookup syscall.  Go through each nlist entry
636	 * and look it up with a kldsym(2) syscall.
637	 */
638	nvalid = 0;
639	tried_vnet = 0;
640	tried_dpcpu = 0;
641again:
642	for (p = nl; p->n_name && p->n_name[0]; ++p) {
643		if (p->n_type != N_UNDF)
644			continue;
645
646		lookup.version = sizeof(lookup);
647		lookup.symvalue = 0;
648		lookup.symsize = 0;
649
650		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
651		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
652			(p->n_name + 1) : p->n_name);
653		if (error < 0 || error >= (int)sizeof(symname))
654			continue;
655		lookup.symname = symname;
656		if (lookup.symname[0] == '_')
657			lookup.symname++;
658
659		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
660			p->n_type = N_TEXT;
661			if (_kvm_vnet_initialized(kd, initialize) &&
662			    strcmp(prefix, VNET_SYMPREFIX) == 0)
663				p->n_value =
664				    _kvm_vnet_validaddr(kd, lookup.symvalue);
665			else if (_kvm_dpcpu_initialized(kd, initialize) &&
666			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
667				p->n_value =
668				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
669			else
670				p->n_value = lookup.symvalue;
671			++nvalid;
672			/* lookup.symsize */
673		}
674	}
675
676	/*
677	 * Check the number of entries that weren't found. If they exist,
678	 * try again with a prefix for virtualized or DPCPU symbol names.
679	 */
680	error = ((p - nl) - nvalid);
681	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
682		tried_vnet = 1;
683		prefix = VNET_SYMPREFIX;
684		goto again;
685	}
686	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
687		tried_dpcpu = 1;
688		prefix = DPCPU_SYMPREFIX;
689		goto again;
690	}
691
692	/*
693	 * Return the number of entries that weren't found. If they exist,
694	 * also fill internal error buffer.
695	 */
696	error = ((p - nl) - nvalid);
697	if (error)
698		_kvm_syserr(kd, kd->program, "kvm_nlist");
699	return (error);
700}
701
702int
703_kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx)
704{
705
706	*idx = ULONG_MAX;
707	bm->map = calloc(bitmapsize, sizeof *bm->map);
708	if (bm->map == NULL)
709		return (0);
710	bm->size = bitmapsize;
711	return (1);
712}
713
714void
715_kvm_bitmap_set(struct kvm_bitmap *bm, u_long pa, unsigned int page_size)
716{
717	u_long bm_index = pa / page_size;
718	uint8_t *byte = &bm->map[bm_index / 8];
719
720	*byte |= (1UL << (bm_index % 8));
721}
722
723int
724_kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx)
725{
726	u_long first_invalid = bm->size * CHAR_BIT;
727
728	if (*idx == ULONG_MAX)
729		*idx = 0;
730	else
731		(*idx)++;
732
733	/* Find the next valid idx. */
734	for (; *idx < first_invalid; (*idx)++) {
735		unsigned int mask = *idx % CHAR_BIT;
736		if ((bm->map[*idx * CHAR_BIT] & mask) == 0)
737			break;
738	}
739
740	return (*idx < first_invalid);
741}
742
743void
744_kvm_bitmap_deinit(struct kvm_bitmap *bm)
745{
746
747	free(bm->map);
748}
749
750int
751_kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa,
752    u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len,
753    unsigned int page_size)
754{
755	unsigned int pgsz = page_size ? page_size : len;
756	struct kvm_page p = {
757		.version = LIBKVM_WALK_PAGES_VERSION,
758		.paddr = pa,
759		.kmap_vaddr = kmap_vaddr,
760		.dmap_vaddr = dmap_vaddr,
761		.prot = prot,
762		.offset = _kvm_pt_find(kd, pa, pgsz),
763		.len = len,
764	};
765
766	return cb(&p, arg);
767}
768