1/*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10#include <openssl/opensslv.h>
11#include <openssl/err.h>
12#include <openssl/des.h>
13#include <openssl/aes.h>
14#include <openssl/bn.h>
15#include <openssl/evp.h>
16#include <openssl/dh.h>
17#include <openssl/hmac.h>
18#include <openssl/rand.h>
19#ifdef CONFIG_OPENSSL_CMAC
20#include <openssl/cmac.h>
21#endif /* CONFIG_OPENSSL_CMAC */
22#ifdef CONFIG_ECC
23#include <openssl/ec.h>
24#endif /* CONFIG_ECC */
25
26#include "common.h"
27#include "utils/const_time.h"
28#include "wpabuf.h"
29#include "dh_group5.h"
30#include "sha1.h"
31#include "sha256.h"
32#include "sha384.h"
33#include "sha512.h"
34#include "md5.h"
35#include "aes_wrap.h"
36#include "crypto.h"
37
38#if OPENSSL_VERSION_NUMBER < 0x10100000L || \
39	(defined(LIBRESSL_VERSION_NUMBER) && \
40	 LIBRESSL_VERSION_NUMBER < 0x20700000L)
41/* Compatibility wrappers for older versions. */
42
43static HMAC_CTX * HMAC_CTX_new(void)
44{
45	HMAC_CTX *ctx;
46
47	ctx = os_zalloc(sizeof(*ctx));
48	if (ctx)
49		HMAC_CTX_init(ctx);
50	return ctx;
51}
52
53
54static void HMAC_CTX_free(HMAC_CTX *ctx)
55{
56	if (!ctx)
57		return;
58	HMAC_CTX_cleanup(ctx);
59	bin_clear_free(ctx, sizeof(*ctx));
60}
61
62
63static EVP_MD_CTX * EVP_MD_CTX_new(void)
64{
65	EVP_MD_CTX *ctx;
66
67	ctx = os_zalloc(sizeof(*ctx));
68	if (ctx)
69		EVP_MD_CTX_init(ctx);
70	return ctx;
71}
72
73
74static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
75{
76	if (!ctx)
77		return;
78	EVP_MD_CTX_cleanup(ctx);
79	bin_clear_free(ctx, sizeof(*ctx));
80}
81
82#endif /* OpenSSL version < 1.1.0 */
83
84static BIGNUM * get_group5_prime(void)
85{
86#if OPENSSL_VERSION_NUMBER >= 0x10100000L && \
87	!(defined(LIBRESSL_VERSION_NUMBER) && \
88	  LIBRESSL_VERSION_NUMBER < 0x20700000L)
89	return BN_get_rfc3526_prime_1536(NULL);
90#elif !defined(OPENSSL_IS_BORINGSSL)
91	return get_rfc3526_prime_1536(NULL);
92#else
93	static const unsigned char RFC3526_PRIME_1536[] = {
94		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
95		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
96		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
97		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
98		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
99		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
100		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
101		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
102		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
103		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
104		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
105		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
106		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
107		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
108		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
109		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
110	};
111        return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
112#endif
113}
114
115
116static BIGNUM * get_group5_order(void)
117{
118	static const unsigned char RFC3526_ORDER_1536[] = {
119		0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xE4,0x87,0xED,0x51,
120		0x10,0xB4,0x61,0x1A,0x62,0x63,0x31,0x45,0xC0,0x6E,0x0E,0x68,
121		0x94,0x81,0x27,0x04,0x45,0x33,0xE6,0x3A,0x01,0x05,0xDF,0x53,
122		0x1D,0x89,0xCD,0x91,0x28,0xA5,0x04,0x3C,0xC7,0x1A,0x02,0x6E,
123		0xF7,0xCA,0x8C,0xD9,0xE6,0x9D,0x21,0x8D,0x98,0x15,0x85,0x36,
124		0xF9,0x2F,0x8A,0x1B,0xA7,0xF0,0x9A,0xB6,0xB6,0xA8,0xE1,0x22,
125		0xF2,0x42,0xDA,0xBB,0x31,0x2F,0x3F,0x63,0x7A,0x26,0x21,0x74,
126		0xD3,0x1B,0xF6,0xB5,0x85,0xFF,0xAE,0x5B,0x7A,0x03,0x5B,0xF6,
127		0xF7,0x1C,0x35,0xFD,0xAD,0x44,0xCF,0xD2,0xD7,0x4F,0x92,0x08,
128		0xBE,0x25,0x8F,0xF3,0x24,0x94,0x33,0x28,0xF6,0x72,0x2D,0x9E,
129		0xE1,0x00,0x3E,0x5C,0x50,0xB1,0xDF,0x82,0xCC,0x6D,0x24,0x1B,
130		0x0E,0x2A,0xE9,0xCD,0x34,0x8B,0x1F,0xD4,0x7E,0x92,0x67,0xAF,
131		0xC1,0xB2,0xAE,0x91,0xEE,0x51,0xD6,0xCB,0x0E,0x31,0x79,0xAB,
132		0x10,0x42,0xA9,0x5D,0xCF,0x6A,0x94,0x83,0xB8,0x4B,0x4B,0x36,
133		0xB3,0x86,0x1A,0xA7,0x25,0x5E,0x4C,0x02,0x78,0xBA,0x36,0x04,
134		0x65,0x11,0xB9,0x93,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
135	};
136	return BN_bin2bn(RFC3526_ORDER_1536, sizeof(RFC3526_ORDER_1536), NULL);
137}
138
139
140#ifdef OPENSSL_NO_SHA256
141#define NO_SHA256_WRAPPER
142#endif
143#ifdef OPENSSL_NO_SHA512
144#define NO_SHA384_WRAPPER
145#endif
146
147static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
148				 const u8 *addr[], const size_t *len, u8 *mac)
149{
150	EVP_MD_CTX *ctx;
151	size_t i;
152	unsigned int mac_len;
153
154	if (TEST_FAIL())
155		return -1;
156
157	ctx = EVP_MD_CTX_new();
158	if (!ctx)
159		return -1;
160	if (!EVP_DigestInit_ex(ctx, type, NULL)) {
161		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
162			   ERR_error_string(ERR_get_error(), NULL));
163		EVP_MD_CTX_free(ctx);
164		return -1;
165	}
166	for (i = 0; i < num_elem; i++) {
167		if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
168			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
169				   "failed: %s",
170				   ERR_error_string(ERR_get_error(), NULL));
171			EVP_MD_CTX_free(ctx);
172			return -1;
173		}
174	}
175	if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
176		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
177			   ERR_error_string(ERR_get_error(), NULL));
178		EVP_MD_CTX_free(ctx);
179		return -1;
180	}
181	EVP_MD_CTX_free(ctx);
182
183	return 0;
184}
185
186
187#ifndef CONFIG_FIPS
188int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
189{
190	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
191}
192#endif /* CONFIG_FIPS */
193
194
195int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
196{
197	u8 pkey[8], next, tmp;
198	int i;
199	DES_key_schedule ks;
200
201	/* Add parity bits to the key */
202	next = 0;
203	for (i = 0; i < 7; i++) {
204		tmp = key[i];
205		pkey[i] = (tmp >> i) | next | 1;
206		next = tmp << (7 - i);
207	}
208	pkey[i] = next | 1;
209
210	DES_set_key((DES_cblock *) &pkey, &ks);
211	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
212			DES_ENCRYPT);
213	return 0;
214}
215
216
217#ifndef CONFIG_NO_RC4
218int rc4_skip(const u8 *key, size_t keylen, size_t skip,
219	     u8 *data, size_t data_len)
220{
221#ifdef OPENSSL_NO_RC4
222	return -1;
223#else /* OPENSSL_NO_RC4 */
224	EVP_CIPHER_CTX *ctx;
225	int outl;
226	int res = -1;
227	unsigned char skip_buf[16];
228
229	ctx = EVP_CIPHER_CTX_new();
230	if (!ctx ||
231	    !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
232	    !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
233	    !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
234	    !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
235		goto out;
236
237	while (skip >= sizeof(skip_buf)) {
238		size_t len = skip;
239		if (len > sizeof(skip_buf))
240			len = sizeof(skip_buf);
241		if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
242			goto out;
243		skip -= len;
244	}
245
246	if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
247		res = 0;
248
249out:
250	if (ctx)
251		EVP_CIPHER_CTX_free(ctx);
252	return res;
253#endif /* OPENSSL_NO_RC4 */
254}
255#endif /* CONFIG_NO_RC4 */
256
257
258#ifndef CONFIG_FIPS
259int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
260{
261	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
262}
263#endif /* CONFIG_FIPS */
264
265
266int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
267{
268	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
269}
270
271
272#ifndef NO_SHA256_WRAPPER
273int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
274		  u8 *mac)
275{
276	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
277}
278#endif /* NO_SHA256_WRAPPER */
279
280
281#ifndef NO_SHA384_WRAPPER
282int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
283		  u8 *mac)
284{
285	return openssl_digest_vector(EVP_sha384(), num_elem, addr, len, mac);
286}
287#endif /* NO_SHA384_WRAPPER */
288
289
290#ifndef NO_SHA512_WRAPPER
291int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
292		  u8 *mac)
293{
294	return openssl_digest_vector(EVP_sha512(), num_elem, addr, len, mac);
295}
296#endif /* NO_SHA512_WRAPPER */
297
298
299static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
300{
301	switch (keylen) {
302	case 16:
303		return EVP_aes_128_ecb();
304	case 24:
305		return EVP_aes_192_ecb();
306	case 32:
307		return EVP_aes_256_ecb();
308	}
309
310	return NULL;
311}
312
313
314void * aes_encrypt_init(const u8 *key, size_t len)
315{
316	EVP_CIPHER_CTX *ctx;
317	const EVP_CIPHER *type;
318
319	if (TEST_FAIL())
320		return NULL;
321
322	type = aes_get_evp_cipher(len);
323	if (!type) {
324		wpa_printf(MSG_INFO, "%s: Unsupported len=%u",
325			   __func__, (unsigned int) len);
326		return NULL;
327	}
328
329	ctx = EVP_CIPHER_CTX_new();
330	if (ctx == NULL)
331		return NULL;
332	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
333		os_free(ctx);
334		return NULL;
335	}
336	EVP_CIPHER_CTX_set_padding(ctx, 0);
337	return ctx;
338}
339
340
341int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
342{
343	EVP_CIPHER_CTX *c = ctx;
344	int clen = 16;
345	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
346		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
347			   ERR_error_string(ERR_get_error(), NULL));
348		return -1;
349	}
350	return 0;
351}
352
353
354void aes_encrypt_deinit(void *ctx)
355{
356	EVP_CIPHER_CTX *c = ctx;
357	u8 buf[16];
358	int len = sizeof(buf);
359	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
360		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
361			   "%s", ERR_error_string(ERR_get_error(), NULL));
362	}
363	if (len != 0) {
364		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
365			   "in AES encrypt", len);
366	}
367	EVP_CIPHER_CTX_free(c);
368}
369
370
371void * aes_decrypt_init(const u8 *key, size_t len)
372{
373	EVP_CIPHER_CTX *ctx;
374	const EVP_CIPHER *type;
375
376	if (TEST_FAIL())
377		return NULL;
378
379	type = aes_get_evp_cipher(len);
380	if (!type) {
381		wpa_printf(MSG_INFO, "%s: Unsupported len=%u",
382			   __func__, (unsigned int) len);
383		return NULL;
384	}
385
386	ctx = EVP_CIPHER_CTX_new();
387	if (ctx == NULL)
388		return NULL;
389	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
390		EVP_CIPHER_CTX_free(ctx);
391		return NULL;
392	}
393	EVP_CIPHER_CTX_set_padding(ctx, 0);
394	return ctx;
395}
396
397
398int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
399{
400	EVP_CIPHER_CTX *c = ctx;
401	int plen = 16;
402	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
403		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
404			   ERR_error_string(ERR_get_error(), NULL));
405		return -1;
406	}
407	return 0;
408}
409
410
411void aes_decrypt_deinit(void *ctx)
412{
413	EVP_CIPHER_CTX *c = ctx;
414	u8 buf[16];
415	int len = sizeof(buf);
416	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
417		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
418			   "%s", ERR_error_string(ERR_get_error(), NULL));
419	}
420	if (len != 0) {
421		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
422			   "in AES decrypt", len);
423	}
424	EVP_CIPHER_CTX_free(c);
425}
426
427
428#ifndef CONFIG_FIPS
429#ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
430
431int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
432{
433	AES_KEY actx;
434	int res;
435
436	if (TEST_FAIL())
437		return -1;
438	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
439		return -1;
440	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
441	OPENSSL_cleanse(&actx, sizeof(actx));
442	return res <= 0 ? -1 : 0;
443}
444
445
446int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
447	       u8 *plain)
448{
449	AES_KEY actx;
450	int res;
451
452	if (TEST_FAIL())
453		return -1;
454	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
455		return -1;
456	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
457	OPENSSL_cleanse(&actx, sizeof(actx));
458	return res <= 0 ? -1 : 0;
459}
460
461#endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
462#endif /* CONFIG_FIPS */
463
464
465int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
466{
467	EVP_CIPHER_CTX *ctx;
468	int clen, len;
469	u8 buf[16];
470	int res = -1;
471
472	if (TEST_FAIL())
473		return -1;
474
475	ctx = EVP_CIPHER_CTX_new();
476	if (!ctx)
477		return -1;
478	clen = data_len;
479	len = sizeof(buf);
480	if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
481	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
482	    EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
483	    clen == (int) data_len &&
484	    EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
485		res = 0;
486	EVP_CIPHER_CTX_free(ctx);
487
488	return res;
489}
490
491
492int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
493{
494	EVP_CIPHER_CTX *ctx;
495	int plen, len;
496	u8 buf[16];
497	int res = -1;
498
499	if (TEST_FAIL())
500		return -1;
501
502	ctx = EVP_CIPHER_CTX_new();
503	if (!ctx)
504		return -1;
505	plen = data_len;
506	len = sizeof(buf);
507	if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
508	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
509	    EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
510	    plen == (int) data_len &&
511	    EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
512		res = 0;
513	EVP_CIPHER_CTX_free(ctx);
514
515	return res;
516
517}
518
519
520int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
521		   u8 *pubkey)
522{
523	size_t pubkey_len, pad;
524
525	if (os_get_random(privkey, prime_len) < 0)
526		return -1;
527	if (os_memcmp(privkey, prime, prime_len) > 0) {
528		/* Make sure private value is smaller than prime */
529		privkey[0] = 0;
530	}
531
532	pubkey_len = prime_len;
533	if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len,
534			   pubkey, &pubkey_len) < 0)
535		return -1;
536	if (pubkey_len < prime_len) {
537		pad = prime_len - pubkey_len;
538		os_memmove(pubkey + pad, pubkey, pubkey_len);
539		os_memset(pubkey, 0, pad);
540	}
541
542	return 0;
543}
544
545
546int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
547			    const u8 *order, size_t order_len,
548			    const u8 *privkey, size_t privkey_len,
549			    const u8 *pubkey, size_t pubkey_len,
550			    u8 *secret, size_t *len)
551{
552	BIGNUM *pub, *p;
553	int res = -1;
554
555	pub = BN_bin2bn(pubkey, pubkey_len, NULL);
556	p = BN_bin2bn(prime, prime_len, NULL);
557	if (!pub || !p || BN_is_zero(pub) || BN_is_one(pub) ||
558	    BN_cmp(pub, p) >= 0)
559		goto fail;
560
561	if (order) {
562		BN_CTX *ctx;
563		BIGNUM *q, *tmp;
564		int failed;
565
566		/* verify: pubkey^q == 1 mod p */
567		q = BN_bin2bn(order, order_len, NULL);
568		ctx = BN_CTX_new();
569		tmp = BN_new();
570		failed = !q || !ctx || !tmp ||
571			!BN_mod_exp(tmp, pub, q, p, ctx) ||
572			!BN_is_one(tmp);
573		BN_clear_free(q);
574		BN_clear_free(tmp);
575		BN_CTX_free(ctx);
576		if (failed)
577			goto fail;
578	}
579
580	res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len,
581			     prime, prime_len, secret, len);
582fail:
583	BN_clear_free(pub);
584	BN_clear_free(p);
585	return res;
586}
587
588
589int crypto_mod_exp(const u8 *base, size_t base_len,
590		   const u8 *power, size_t power_len,
591		   const u8 *modulus, size_t modulus_len,
592		   u8 *result, size_t *result_len)
593{
594	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
595	int ret = -1;
596	BN_CTX *ctx;
597
598	ctx = BN_CTX_new();
599	if (ctx == NULL)
600		return -1;
601
602	bn_base = BN_bin2bn(base, base_len, NULL);
603	bn_exp = BN_bin2bn(power, power_len, NULL);
604	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
605	bn_result = BN_new();
606
607	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
608	    bn_result == NULL)
609		goto error;
610
611	if (BN_mod_exp_mont_consttime(bn_result, bn_base, bn_exp, bn_modulus,
612				      ctx, NULL) != 1)
613		goto error;
614
615	*result_len = BN_bn2bin(bn_result, result);
616	ret = 0;
617
618error:
619	BN_clear_free(bn_base);
620	BN_clear_free(bn_exp);
621	BN_clear_free(bn_modulus);
622	BN_clear_free(bn_result);
623	BN_CTX_free(ctx);
624	return ret;
625}
626
627
628struct crypto_cipher {
629	EVP_CIPHER_CTX *enc;
630	EVP_CIPHER_CTX *dec;
631};
632
633
634struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
635					  const u8 *iv, const u8 *key,
636					  size_t key_len)
637{
638	struct crypto_cipher *ctx;
639	const EVP_CIPHER *cipher;
640
641	ctx = os_zalloc(sizeof(*ctx));
642	if (ctx == NULL)
643		return NULL;
644
645	switch (alg) {
646#ifndef CONFIG_NO_RC4
647#ifndef OPENSSL_NO_RC4
648	case CRYPTO_CIPHER_ALG_RC4:
649		cipher = EVP_rc4();
650		break;
651#endif /* OPENSSL_NO_RC4 */
652#endif /* CONFIG_NO_RC4 */
653#ifndef OPENSSL_NO_AES
654	case CRYPTO_CIPHER_ALG_AES:
655		switch (key_len) {
656		case 16:
657			cipher = EVP_aes_128_cbc();
658			break;
659#ifndef OPENSSL_IS_BORINGSSL
660		case 24:
661			cipher = EVP_aes_192_cbc();
662			break;
663#endif /* OPENSSL_IS_BORINGSSL */
664		case 32:
665			cipher = EVP_aes_256_cbc();
666			break;
667		default:
668			os_free(ctx);
669			return NULL;
670		}
671		break;
672#endif /* OPENSSL_NO_AES */
673#ifndef OPENSSL_NO_DES
674	case CRYPTO_CIPHER_ALG_3DES:
675		cipher = EVP_des_ede3_cbc();
676		break;
677	case CRYPTO_CIPHER_ALG_DES:
678		cipher = EVP_des_cbc();
679		break;
680#endif /* OPENSSL_NO_DES */
681#ifndef OPENSSL_NO_RC2
682	case CRYPTO_CIPHER_ALG_RC2:
683		cipher = EVP_rc2_ecb();
684		break;
685#endif /* OPENSSL_NO_RC2 */
686	default:
687		os_free(ctx);
688		return NULL;
689	}
690
691	if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
692	    !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
693	    !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
694	    !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
695	    !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
696		if (ctx->enc)
697			EVP_CIPHER_CTX_free(ctx->enc);
698		os_free(ctx);
699		return NULL;
700	}
701
702	if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
703	    !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
704	    !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
705	    !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
706	    !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
707		EVP_CIPHER_CTX_free(ctx->enc);
708		if (ctx->dec)
709			EVP_CIPHER_CTX_free(ctx->dec);
710		os_free(ctx);
711		return NULL;
712	}
713
714	return ctx;
715}
716
717
718int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
719			  u8 *crypt, size_t len)
720{
721	int outl;
722	if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
723		return -1;
724	return 0;
725}
726
727
728int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
729			  u8 *plain, size_t len)
730{
731	int outl;
732	outl = len;
733	if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
734		return -1;
735	return 0;
736}
737
738
739void crypto_cipher_deinit(struct crypto_cipher *ctx)
740{
741	EVP_CIPHER_CTX_free(ctx->enc);
742	EVP_CIPHER_CTX_free(ctx->dec);
743	os_free(ctx);
744}
745
746
747void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
748{
749#if OPENSSL_VERSION_NUMBER < 0x10100000L || \
750	(defined(LIBRESSL_VERSION_NUMBER) && \
751	 LIBRESSL_VERSION_NUMBER < 0x20700000L)
752	DH *dh;
753	struct wpabuf *pubkey = NULL, *privkey = NULL;
754	size_t publen, privlen;
755
756	*priv = NULL;
757	wpabuf_free(*publ);
758	*publ = NULL;
759
760	dh = DH_new();
761	if (dh == NULL)
762		return NULL;
763
764	dh->g = BN_new();
765	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
766		goto err;
767
768	dh->p = get_group5_prime();
769	if (dh->p == NULL)
770		goto err;
771
772	dh->q = get_group5_order();
773	if (!dh->q)
774		goto err;
775
776	if (DH_generate_key(dh) != 1)
777		goto err;
778
779	publen = BN_num_bytes(dh->pub_key);
780	pubkey = wpabuf_alloc(publen);
781	if (pubkey == NULL)
782		goto err;
783	privlen = BN_num_bytes(dh->priv_key);
784	privkey = wpabuf_alloc(privlen);
785	if (privkey == NULL)
786		goto err;
787
788	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
789	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
790
791	*priv = privkey;
792	*publ = pubkey;
793	return dh;
794
795err:
796	wpabuf_clear_free(pubkey);
797	wpabuf_clear_free(privkey);
798	DH_free(dh);
799	return NULL;
800#else
801	DH *dh;
802	struct wpabuf *pubkey = NULL, *privkey = NULL;
803	size_t publen, privlen;
804	BIGNUM *p, *g, *q;
805	const BIGNUM *priv_key = NULL, *pub_key = NULL;
806
807	*priv = NULL;
808	wpabuf_free(*publ);
809	*publ = NULL;
810
811	dh = DH_new();
812	if (dh == NULL)
813		return NULL;
814
815	g = BN_new();
816	p = get_group5_prime();
817	q = get_group5_order();
818	if (!g || BN_set_word(g, 2) != 1 || !p || !q ||
819	    DH_set0_pqg(dh, p, q, g) != 1)
820		goto err;
821	p = NULL;
822	q = NULL;
823	g = NULL;
824
825	if (DH_generate_key(dh) != 1)
826		goto err;
827
828	DH_get0_key(dh, &pub_key, &priv_key);
829	publen = BN_num_bytes(pub_key);
830	pubkey = wpabuf_alloc(publen);
831	if (!pubkey)
832		goto err;
833	privlen = BN_num_bytes(priv_key);
834	privkey = wpabuf_alloc(privlen);
835	if (!privkey)
836		goto err;
837
838	BN_bn2bin(pub_key, wpabuf_put(pubkey, publen));
839	BN_bn2bin(priv_key, wpabuf_put(privkey, privlen));
840
841	*priv = privkey;
842	*publ = pubkey;
843	return dh;
844
845err:
846	BN_free(p);
847	BN_free(q);
848	BN_free(g);
849	wpabuf_clear_free(pubkey);
850	wpabuf_clear_free(privkey);
851	DH_free(dh);
852	return NULL;
853#endif
854}
855
856
857void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
858{
859#if OPENSSL_VERSION_NUMBER < 0x10100000L || \
860	(defined(LIBRESSL_VERSION_NUMBER) && \
861	 LIBRESSL_VERSION_NUMBER < 0x20700000L)
862	DH *dh;
863
864	dh = DH_new();
865	if (dh == NULL)
866		return NULL;
867
868	dh->g = BN_new();
869	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
870		goto err;
871
872	dh->p = get_group5_prime();
873	if (dh->p == NULL)
874		goto err;
875
876	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
877	if (dh->priv_key == NULL)
878		goto err;
879
880	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
881	if (dh->pub_key == NULL)
882		goto err;
883
884	if (DH_generate_key(dh) != 1)
885		goto err;
886
887	return dh;
888
889err:
890	DH_free(dh);
891	return NULL;
892#else
893	DH *dh;
894	BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL;
895
896	dh = DH_new();
897	if (dh == NULL)
898		return NULL;
899
900	g = BN_new();
901	p = get_group5_prime();
902	if (!g || BN_set_word(g, 2) != 1 || !p ||
903	    DH_set0_pqg(dh, p, NULL, g) != 1)
904		goto err;
905	p = NULL;
906	g = NULL;
907
908	priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
909	pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
910	if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 1)
911		goto err;
912	pub_key = NULL;
913	priv_key = NULL;
914
915	if (DH_generate_key(dh) != 1)
916		goto err;
917
918	return dh;
919
920err:
921	BN_free(p);
922	BN_free(g);
923	BN_free(pub_key);
924	BN_clear_free(priv_key);
925	DH_free(dh);
926	return NULL;
927#endif
928}
929
930
931struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
932				  const struct wpabuf *own_private)
933{
934	BIGNUM *pub_key;
935	struct wpabuf *res = NULL;
936	size_t rlen;
937	DH *dh = ctx;
938	int keylen;
939
940	if (ctx == NULL)
941		return NULL;
942
943	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
944			    NULL);
945	if (pub_key == NULL)
946		return NULL;
947
948	rlen = DH_size(dh);
949	res = wpabuf_alloc(rlen);
950	if (res == NULL)
951		goto err;
952
953	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
954	if (keylen < 0)
955		goto err;
956	wpabuf_put(res, keylen);
957	BN_clear_free(pub_key);
958
959	return res;
960
961err:
962	BN_clear_free(pub_key);
963	wpabuf_clear_free(res);
964	return NULL;
965}
966
967
968void dh5_free(void *ctx)
969{
970	DH *dh;
971	if (ctx == NULL)
972		return;
973	dh = ctx;
974	DH_free(dh);
975}
976
977
978struct crypto_hash {
979	HMAC_CTX *ctx;
980};
981
982
983struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
984				      size_t key_len)
985{
986	struct crypto_hash *ctx;
987	const EVP_MD *md;
988
989	switch (alg) {
990#ifndef OPENSSL_NO_MD5
991	case CRYPTO_HASH_ALG_HMAC_MD5:
992		md = EVP_md5();
993		break;
994#endif /* OPENSSL_NO_MD5 */
995#ifndef OPENSSL_NO_SHA
996	case CRYPTO_HASH_ALG_HMAC_SHA1:
997		md = EVP_sha1();
998		break;
999#endif /* OPENSSL_NO_SHA */
1000#ifndef OPENSSL_NO_SHA256
1001#ifdef CONFIG_SHA256
1002	case CRYPTO_HASH_ALG_HMAC_SHA256:
1003		md = EVP_sha256();
1004		break;
1005#endif /* CONFIG_SHA256 */
1006#endif /* OPENSSL_NO_SHA256 */
1007	default:
1008		return NULL;
1009	}
1010
1011	ctx = os_zalloc(sizeof(*ctx));
1012	if (ctx == NULL)
1013		return NULL;
1014	ctx->ctx = HMAC_CTX_new();
1015	if (!ctx->ctx) {
1016		os_free(ctx);
1017		return NULL;
1018	}
1019
1020	if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
1021		HMAC_CTX_free(ctx->ctx);
1022		bin_clear_free(ctx, sizeof(*ctx));
1023		return NULL;
1024	}
1025
1026	return ctx;
1027}
1028
1029
1030void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
1031{
1032	if (ctx == NULL)
1033		return;
1034	HMAC_Update(ctx->ctx, data, len);
1035}
1036
1037
1038int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
1039{
1040	unsigned int mdlen;
1041	int res;
1042
1043	if (ctx == NULL)
1044		return -2;
1045
1046	if (mac == NULL || len == NULL) {
1047		HMAC_CTX_free(ctx->ctx);
1048		bin_clear_free(ctx, sizeof(*ctx));
1049		return 0;
1050	}
1051
1052	mdlen = *len;
1053	res = HMAC_Final(ctx->ctx, mac, &mdlen);
1054	HMAC_CTX_free(ctx->ctx);
1055	bin_clear_free(ctx, sizeof(*ctx));
1056
1057	if (TEST_FAIL())
1058		return -1;
1059
1060	if (res == 1) {
1061		*len = mdlen;
1062		return 0;
1063	}
1064
1065	return -1;
1066}
1067
1068
1069static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
1070			       size_t key_len, size_t num_elem,
1071			       const u8 *addr[], const size_t *len, u8 *mac,
1072			       unsigned int mdlen)
1073{
1074	HMAC_CTX *ctx;
1075	size_t i;
1076	int res;
1077
1078	if (TEST_FAIL())
1079		return -1;
1080
1081	ctx = HMAC_CTX_new();
1082	if (!ctx)
1083		return -1;
1084	res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
1085	if (res != 1)
1086		goto done;
1087
1088	for (i = 0; i < num_elem; i++)
1089		HMAC_Update(ctx, addr[i], len[i]);
1090
1091	res = HMAC_Final(ctx, mac, &mdlen);
1092done:
1093	HMAC_CTX_free(ctx);
1094
1095	return res == 1 ? 0 : -1;
1096}
1097
1098
1099#ifndef CONFIG_FIPS
1100
1101int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
1102		    const u8 *addr[], const size_t *len, u8 *mac)
1103{
1104	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
1105				   mac, 16);
1106}
1107
1108
1109int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
1110	     u8 *mac)
1111{
1112	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
1113}
1114
1115#endif /* CONFIG_FIPS */
1116
1117
1118int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
1119		int iterations, u8 *buf, size_t buflen)
1120{
1121	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
1122				   ssid_len, iterations, buflen, buf) != 1)
1123		return -1;
1124	return 0;
1125}
1126
1127
1128int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
1129		     const u8 *addr[], const size_t *len, u8 *mac)
1130{
1131	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
1132				   len, mac, 20);
1133}
1134
1135
1136int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
1137	       u8 *mac)
1138{
1139	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
1140}
1141
1142
1143#ifdef CONFIG_SHA256
1144
1145int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
1146		       const u8 *addr[], const size_t *len, u8 *mac)
1147{
1148	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
1149				   len, mac, 32);
1150}
1151
1152
1153int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
1154		size_t data_len, u8 *mac)
1155{
1156	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
1157}
1158
1159#endif /* CONFIG_SHA256 */
1160
1161
1162#ifdef CONFIG_SHA384
1163
1164int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
1165		       const u8 *addr[], const size_t *len, u8 *mac)
1166{
1167	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
1168				   len, mac, 48);
1169}
1170
1171
1172int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
1173		size_t data_len, u8 *mac)
1174{
1175	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
1176}
1177
1178#endif /* CONFIG_SHA384 */
1179
1180
1181#ifdef CONFIG_SHA512
1182
1183int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
1184		       const u8 *addr[], const size_t *len, u8 *mac)
1185{
1186	return openssl_hmac_vector(EVP_sha512(), key, key_len, num_elem, addr,
1187				   len, mac, 64);
1188}
1189
1190
1191int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
1192		size_t data_len, u8 *mac)
1193{
1194	return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
1195}
1196
1197#endif /* CONFIG_SHA512 */
1198
1199
1200int crypto_get_random(void *buf, size_t len)
1201{
1202	if (RAND_bytes(buf, len) != 1)
1203		return -1;
1204	return 0;
1205}
1206
1207
1208#ifdef CONFIG_OPENSSL_CMAC
1209int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
1210		     const u8 *addr[], const size_t *len, u8 *mac)
1211{
1212	CMAC_CTX *ctx;
1213	int ret = -1;
1214	size_t outlen, i;
1215
1216	if (TEST_FAIL())
1217		return -1;
1218
1219	ctx = CMAC_CTX_new();
1220	if (ctx == NULL)
1221		return -1;
1222
1223	if (key_len == 32) {
1224		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
1225			goto fail;
1226	} else if (key_len == 16) {
1227		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
1228			goto fail;
1229	} else {
1230		goto fail;
1231	}
1232	for (i = 0; i < num_elem; i++) {
1233		if (!CMAC_Update(ctx, addr[i], len[i]))
1234			goto fail;
1235	}
1236	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
1237		goto fail;
1238
1239	ret = 0;
1240fail:
1241	CMAC_CTX_free(ctx);
1242	return ret;
1243}
1244
1245
1246int omac1_aes_128_vector(const u8 *key, size_t num_elem,
1247			 const u8 *addr[], const size_t *len, u8 *mac)
1248{
1249	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
1250}
1251
1252
1253int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1254{
1255	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
1256}
1257
1258
1259int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1260{
1261	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
1262}
1263#endif /* CONFIG_OPENSSL_CMAC */
1264
1265
1266struct crypto_bignum * crypto_bignum_init(void)
1267{
1268	if (TEST_FAIL())
1269		return NULL;
1270	return (struct crypto_bignum *) BN_new();
1271}
1272
1273
1274struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1275{
1276	BIGNUM *bn;
1277
1278	if (TEST_FAIL())
1279		return NULL;
1280
1281	bn = BN_bin2bn(buf, len, NULL);
1282	return (struct crypto_bignum *) bn;
1283}
1284
1285
1286void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1287{
1288	if (clear)
1289		BN_clear_free((BIGNUM *) n);
1290	else
1291		BN_free((BIGNUM *) n);
1292}
1293
1294
1295int crypto_bignum_to_bin(const struct crypto_bignum *a,
1296			 u8 *buf, size_t buflen, size_t padlen)
1297{
1298	int num_bytes, offset;
1299
1300	if (TEST_FAIL())
1301		return -1;
1302
1303	if (padlen > buflen)
1304		return -1;
1305
1306	if (padlen) {
1307#ifdef OPENSSL_IS_BORINGSSL
1308		if (BN_bn2bin_padded(buf, padlen, (const BIGNUM *) a) == 0)
1309			return -1;
1310		return padlen;
1311#else /* OPENSSL_IS_BORINGSSL */
1312#if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER)
1313		return BN_bn2binpad((const BIGNUM *) a, buf, padlen);
1314#endif
1315#endif
1316	}
1317
1318	num_bytes = BN_num_bytes((const BIGNUM *) a);
1319	if ((size_t) num_bytes > buflen)
1320		return -1;
1321	if (padlen > (size_t) num_bytes)
1322		offset = padlen - num_bytes;
1323	else
1324		offset = 0;
1325
1326	os_memset(buf, 0, offset);
1327	BN_bn2bin((const BIGNUM *) a, buf + offset);
1328
1329	return num_bytes + offset;
1330}
1331
1332
1333int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m)
1334{
1335	if (TEST_FAIL())
1336		return -1;
1337	return BN_rand_range((BIGNUM *) r, (const BIGNUM *) m) == 1 ? 0 : -1;
1338}
1339
1340
1341int crypto_bignum_add(const struct crypto_bignum *a,
1342		      const struct crypto_bignum *b,
1343		      struct crypto_bignum *c)
1344{
1345	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1346		0 : -1;
1347}
1348
1349
1350int crypto_bignum_mod(const struct crypto_bignum *a,
1351		      const struct crypto_bignum *b,
1352		      struct crypto_bignum *c)
1353{
1354	int res;
1355	BN_CTX *bnctx;
1356
1357	bnctx = BN_CTX_new();
1358	if (bnctx == NULL)
1359		return -1;
1360	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
1361		     bnctx);
1362	BN_CTX_free(bnctx);
1363
1364	return res ? 0 : -1;
1365}
1366
1367
1368int crypto_bignum_exptmod(const struct crypto_bignum *a,
1369			  const struct crypto_bignum *b,
1370			  const struct crypto_bignum *c,
1371			  struct crypto_bignum *d)
1372{
1373	int res;
1374	BN_CTX *bnctx;
1375
1376	if (TEST_FAIL())
1377		return -1;
1378
1379	bnctx = BN_CTX_new();
1380	if (bnctx == NULL)
1381		return -1;
1382	res = BN_mod_exp_mont_consttime((BIGNUM *) d, (const BIGNUM *) a,
1383					(const BIGNUM *) b, (const BIGNUM *) c,
1384					bnctx, NULL);
1385	BN_CTX_free(bnctx);
1386
1387	return res ? 0 : -1;
1388}
1389
1390
1391int crypto_bignum_inverse(const struct crypto_bignum *a,
1392			  const struct crypto_bignum *b,
1393			  struct crypto_bignum *c)
1394{
1395	BIGNUM *res;
1396	BN_CTX *bnctx;
1397
1398	if (TEST_FAIL())
1399		return -1;
1400	bnctx = BN_CTX_new();
1401	if (bnctx == NULL)
1402		return -1;
1403#ifdef OPENSSL_IS_BORINGSSL
1404	/* TODO: use BN_mod_inverse_blinded() ? */
1405#else /* OPENSSL_IS_BORINGSSL */
1406	BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME);
1407#endif /* OPENSSL_IS_BORINGSSL */
1408	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1409			     (const BIGNUM *) b, bnctx);
1410	BN_CTX_free(bnctx);
1411
1412	return res ? 0 : -1;
1413}
1414
1415
1416int crypto_bignum_sub(const struct crypto_bignum *a,
1417		      const struct crypto_bignum *b,
1418		      struct crypto_bignum *c)
1419{
1420	if (TEST_FAIL())
1421		return -1;
1422	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1423		0 : -1;
1424}
1425
1426
1427int crypto_bignum_div(const struct crypto_bignum *a,
1428		      const struct crypto_bignum *b,
1429		      struct crypto_bignum *c)
1430{
1431	int res;
1432
1433	BN_CTX *bnctx;
1434
1435	if (TEST_FAIL())
1436		return -1;
1437
1438	bnctx = BN_CTX_new();
1439	if (bnctx == NULL)
1440		return -1;
1441#ifndef OPENSSL_IS_BORINGSSL
1442	BN_set_flags((BIGNUM *) a, BN_FLG_CONSTTIME);
1443#endif /* OPENSSL_IS_BORINGSSL */
1444	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1445		     (const BIGNUM *) b, bnctx);
1446	BN_CTX_free(bnctx);
1447
1448	return res ? 0 : -1;
1449}
1450
1451
1452int crypto_bignum_mulmod(const struct crypto_bignum *a,
1453			 const struct crypto_bignum *b,
1454			 const struct crypto_bignum *c,
1455			 struct crypto_bignum *d)
1456{
1457	int res;
1458
1459	BN_CTX *bnctx;
1460
1461	if (TEST_FAIL())
1462		return -1;
1463
1464	bnctx = BN_CTX_new();
1465	if (bnctx == NULL)
1466		return -1;
1467	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1468			 (const BIGNUM *) c, bnctx);
1469	BN_CTX_free(bnctx);
1470
1471	return res ? 0 : -1;
1472}
1473
1474
1475int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
1476			 struct crypto_bignum *r)
1477{
1478	/* Note: BN_rshift() does not modify the first argument even though it
1479	 * has not been marked const. */
1480	return BN_rshift((BIGNUM *) a, (BIGNUM *) r, n) == 1 ? 0 : -1;
1481}
1482
1483
1484int crypto_bignum_cmp(const struct crypto_bignum *a,
1485		      const struct crypto_bignum *b)
1486{
1487	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1488}
1489
1490
1491int crypto_bignum_is_zero(const struct crypto_bignum *a)
1492{
1493	return BN_is_zero((const BIGNUM *) a);
1494}
1495
1496
1497int crypto_bignum_is_one(const struct crypto_bignum *a)
1498{
1499	return BN_is_one((const BIGNUM *) a);
1500}
1501
1502
1503int crypto_bignum_is_odd(const struct crypto_bignum *a)
1504{
1505	return BN_is_odd((const BIGNUM *) a);
1506}
1507
1508
1509int crypto_bignum_legendre(const struct crypto_bignum *a,
1510			   const struct crypto_bignum *p)
1511{
1512	BN_CTX *bnctx;
1513	BIGNUM *exp = NULL, *tmp = NULL;
1514	int res = -2;
1515	unsigned int mask;
1516
1517	if (TEST_FAIL())
1518		return -2;
1519
1520	bnctx = BN_CTX_new();
1521	if (bnctx == NULL)
1522		return -2;
1523
1524	exp = BN_new();
1525	tmp = BN_new();
1526	if (!exp || !tmp ||
1527	    /* exp = (p-1) / 2 */
1528	    !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1529	    !BN_rshift1(exp, exp) ||
1530	    !BN_mod_exp_mont_consttime(tmp, (const BIGNUM *) a, exp,
1531				       (const BIGNUM *) p, bnctx, NULL))
1532		goto fail;
1533
1534	/* Return 1 if tmp == 1, 0 if tmp == 0, or -1 otherwise. Need to use
1535	 * constant time selection to avoid branches here. */
1536	res = -1;
1537	mask = const_time_eq(BN_is_word(tmp, 1), 1);
1538	res = const_time_select_int(mask, 1, res);
1539	mask = const_time_eq(BN_is_zero(tmp), 1);
1540	res = const_time_select_int(mask, 0, res);
1541
1542fail:
1543	BN_clear_free(tmp);
1544	BN_clear_free(exp);
1545	BN_CTX_free(bnctx);
1546	return res;
1547}
1548
1549
1550#ifdef CONFIG_ECC
1551
1552struct crypto_ec {
1553	EC_GROUP *group;
1554	int nid;
1555	BN_CTX *bnctx;
1556	BIGNUM *prime;
1557	BIGNUM *order;
1558	BIGNUM *a;
1559	BIGNUM *b;
1560};
1561
1562struct crypto_ec * crypto_ec_init(int group)
1563{
1564	struct crypto_ec *e;
1565	int nid;
1566
1567	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1568	switch (group) {
1569	case 19:
1570		nid = NID_X9_62_prime256v1;
1571		break;
1572	case 20:
1573		nid = NID_secp384r1;
1574		break;
1575	case 21:
1576		nid = NID_secp521r1;
1577		break;
1578	case 25:
1579		nid = NID_X9_62_prime192v1;
1580		break;
1581	case 26:
1582		nid = NID_secp224r1;
1583		break;
1584#ifdef NID_brainpoolP224r1
1585	case 27:
1586		nid = NID_brainpoolP224r1;
1587		break;
1588#endif /* NID_brainpoolP224r1 */
1589#ifdef NID_brainpoolP256r1
1590	case 28:
1591		nid = NID_brainpoolP256r1;
1592		break;
1593#endif /* NID_brainpoolP256r1 */
1594#ifdef NID_brainpoolP384r1
1595	case 29:
1596		nid = NID_brainpoolP384r1;
1597		break;
1598#endif /* NID_brainpoolP384r1 */
1599#ifdef NID_brainpoolP512r1
1600	case 30:
1601		nid = NID_brainpoolP512r1;
1602		break;
1603#endif /* NID_brainpoolP512r1 */
1604	default:
1605		return NULL;
1606	}
1607
1608	e = os_zalloc(sizeof(*e));
1609	if (e == NULL)
1610		return NULL;
1611
1612	e->nid = nid;
1613	e->bnctx = BN_CTX_new();
1614	e->group = EC_GROUP_new_by_curve_name(nid);
1615	e->prime = BN_new();
1616	e->order = BN_new();
1617	e->a = BN_new();
1618	e->b = BN_new();
1619	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1620	    e->order == NULL || e->a == NULL || e->b == NULL ||
1621	    !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1622	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1623		crypto_ec_deinit(e);
1624		e = NULL;
1625	}
1626
1627	return e;
1628}
1629
1630
1631void crypto_ec_deinit(struct crypto_ec *e)
1632{
1633	if (e == NULL)
1634		return;
1635	BN_clear_free(e->b);
1636	BN_clear_free(e->a);
1637	BN_clear_free(e->order);
1638	BN_clear_free(e->prime);
1639	EC_GROUP_free(e->group);
1640	BN_CTX_free(e->bnctx);
1641	os_free(e);
1642}
1643
1644
1645struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1646{
1647	if (TEST_FAIL())
1648		return NULL;
1649	if (e == NULL)
1650		return NULL;
1651	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1652}
1653
1654
1655size_t crypto_ec_prime_len(struct crypto_ec *e)
1656{
1657	return BN_num_bytes(e->prime);
1658}
1659
1660
1661size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1662{
1663	return BN_num_bits(e->prime);
1664}
1665
1666
1667size_t crypto_ec_order_len(struct crypto_ec *e)
1668{
1669	return BN_num_bytes(e->order);
1670}
1671
1672
1673const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1674{
1675	return (const struct crypto_bignum *) e->prime;
1676}
1677
1678
1679const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1680{
1681	return (const struct crypto_bignum *) e->order;
1682}
1683
1684
1685void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1686{
1687	if (clear)
1688		EC_POINT_clear_free((EC_POINT *) p);
1689	else
1690		EC_POINT_free((EC_POINT *) p);
1691}
1692
1693
1694int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
1695		      struct crypto_bignum *x)
1696{
1697	return EC_POINT_get_affine_coordinates_GFp(e->group,
1698						   (const EC_POINT *) p,
1699						   (BIGNUM *) x, NULL,
1700						   e->bnctx) == 1 ? 0 : -1;
1701}
1702
1703
1704int crypto_ec_point_to_bin(struct crypto_ec *e,
1705			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1706{
1707	BIGNUM *x_bn, *y_bn;
1708	int ret = -1;
1709	int len = BN_num_bytes(e->prime);
1710
1711	if (TEST_FAIL())
1712		return -1;
1713
1714	x_bn = BN_new();
1715	y_bn = BN_new();
1716
1717	if (x_bn && y_bn &&
1718	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1719						x_bn, y_bn, e->bnctx)) {
1720		if (x) {
1721			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1722					     x, len, len);
1723		}
1724		if (y) {
1725			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1726					     y, len, len);
1727		}
1728		ret = 0;
1729	}
1730
1731	BN_clear_free(x_bn);
1732	BN_clear_free(y_bn);
1733	return ret;
1734}
1735
1736
1737struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1738						  const u8 *val)
1739{
1740	BIGNUM *x, *y;
1741	EC_POINT *elem;
1742	int len = BN_num_bytes(e->prime);
1743
1744	if (TEST_FAIL())
1745		return NULL;
1746
1747	x = BN_bin2bn(val, len, NULL);
1748	y = BN_bin2bn(val + len, len, NULL);
1749	elem = EC_POINT_new(e->group);
1750	if (x == NULL || y == NULL || elem == NULL) {
1751		BN_clear_free(x);
1752		BN_clear_free(y);
1753		EC_POINT_clear_free(elem);
1754		return NULL;
1755	}
1756
1757	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1758						 e->bnctx)) {
1759		EC_POINT_clear_free(elem);
1760		elem = NULL;
1761	}
1762
1763	BN_clear_free(x);
1764	BN_clear_free(y);
1765
1766	return (struct crypto_ec_point *) elem;
1767}
1768
1769
1770int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1771			const struct crypto_ec_point *b,
1772			struct crypto_ec_point *c)
1773{
1774	if (TEST_FAIL())
1775		return -1;
1776	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1777			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1778}
1779
1780
1781int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1782			const struct crypto_bignum *b,
1783			struct crypto_ec_point *res)
1784{
1785	if (TEST_FAIL())
1786		return -1;
1787	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1788			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1789		? 0 : -1;
1790}
1791
1792
1793int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1794{
1795	if (TEST_FAIL())
1796		return -1;
1797	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1798}
1799
1800
1801int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1802				  struct crypto_ec_point *p,
1803				  const struct crypto_bignum *x, int y_bit)
1804{
1805	if (TEST_FAIL())
1806		return -1;
1807	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1808						     (const BIGNUM *) x, y_bit,
1809						     e->bnctx) ||
1810	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1811		return -1;
1812	return 0;
1813}
1814
1815
1816struct crypto_bignum *
1817crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1818			      const struct crypto_bignum *x)
1819{
1820	BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1821
1822	if (TEST_FAIL())
1823		return NULL;
1824
1825	tmp = BN_new();
1826	tmp2 = BN_new();
1827
1828	/* y^2 = x^3 + ax + b */
1829	if (tmp && tmp2 &&
1830	    BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1831	    BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1832	    BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1833	    BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1834	    BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1835		y_sqr = tmp2;
1836		tmp2 = NULL;
1837	}
1838
1839	BN_clear_free(tmp);
1840	BN_clear_free(tmp2);
1841
1842	return (struct crypto_bignum *) y_sqr;
1843}
1844
1845
1846int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1847				   const struct crypto_ec_point *p)
1848{
1849	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1850}
1851
1852
1853int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1854				const struct crypto_ec_point *p)
1855{
1856	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1857				    e->bnctx) == 1;
1858}
1859
1860
1861int crypto_ec_point_cmp(const struct crypto_ec *e,
1862			const struct crypto_ec_point *a,
1863			const struct crypto_ec_point *b)
1864{
1865	return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1866			    (const EC_POINT *) b, e->bnctx);
1867}
1868
1869
1870struct crypto_ecdh {
1871	struct crypto_ec *ec;
1872	EVP_PKEY *pkey;
1873};
1874
1875struct crypto_ecdh * crypto_ecdh_init(int group)
1876{
1877	struct crypto_ecdh *ecdh;
1878	EVP_PKEY *params = NULL;
1879	EC_KEY *ec_params = NULL;
1880	EVP_PKEY_CTX *kctx = NULL;
1881
1882	ecdh = os_zalloc(sizeof(*ecdh));
1883	if (!ecdh)
1884		goto fail;
1885
1886	ecdh->ec = crypto_ec_init(group);
1887	if (!ecdh->ec)
1888		goto fail;
1889
1890	ec_params = EC_KEY_new_by_curve_name(ecdh->ec->nid);
1891	if (!ec_params) {
1892		wpa_printf(MSG_ERROR,
1893			   "OpenSSL: Failed to generate EC_KEY parameters");
1894		goto fail;
1895	}
1896	EC_KEY_set_asn1_flag(ec_params, OPENSSL_EC_NAMED_CURVE);
1897	params = EVP_PKEY_new();
1898	if (!params || EVP_PKEY_set1_EC_KEY(params, ec_params) != 1) {
1899		wpa_printf(MSG_ERROR,
1900			   "OpenSSL: Failed to generate EVP_PKEY parameters");
1901		goto fail;
1902	}
1903
1904	kctx = EVP_PKEY_CTX_new(params, NULL);
1905	if (!kctx)
1906		goto fail;
1907
1908	if (EVP_PKEY_keygen_init(kctx) != 1) {
1909		wpa_printf(MSG_ERROR,
1910			   "OpenSSL: EVP_PKEY_keygen_init failed: %s",
1911			   ERR_error_string(ERR_get_error(), NULL));
1912		goto fail;
1913	}
1914
1915	if (EVP_PKEY_keygen(kctx, &ecdh->pkey) != 1) {
1916		wpa_printf(MSG_ERROR, "OpenSSL: EVP_PKEY_keygen failed: %s",
1917			   ERR_error_string(ERR_get_error(), NULL));
1918		goto fail;
1919	}
1920
1921done:
1922	EC_KEY_free(ec_params);
1923	EVP_PKEY_free(params);
1924	EVP_PKEY_CTX_free(kctx);
1925
1926	return ecdh;
1927fail:
1928	crypto_ecdh_deinit(ecdh);
1929	ecdh = NULL;
1930	goto done;
1931}
1932
1933
1934struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y)
1935{
1936	struct wpabuf *buf = NULL;
1937	EC_KEY *eckey;
1938	const EC_POINT *pubkey;
1939	BIGNUM *x, *y = NULL;
1940	int len = BN_num_bytes(ecdh->ec->prime);
1941	int res;
1942
1943	eckey = EVP_PKEY_get1_EC_KEY(ecdh->pkey);
1944	if (!eckey)
1945		return NULL;
1946
1947	pubkey = EC_KEY_get0_public_key(eckey);
1948	if (!pubkey)
1949		return NULL;
1950
1951	x = BN_new();
1952	if (inc_y) {
1953		y = BN_new();
1954		if (!y)
1955			goto fail;
1956	}
1957	buf = wpabuf_alloc(inc_y ? 2 * len : len);
1958	if (!x || !buf)
1959		goto fail;
1960
1961	if (EC_POINT_get_affine_coordinates_GFp(ecdh->ec->group, pubkey,
1962						x, y, ecdh->ec->bnctx) != 1) {
1963		wpa_printf(MSG_ERROR,
1964			   "OpenSSL: EC_POINT_get_affine_coordinates_GFp failed: %s",
1965			   ERR_error_string(ERR_get_error(), NULL));
1966		goto fail;
1967	}
1968
1969	res = crypto_bignum_to_bin((struct crypto_bignum *) x,
1970				   wpabuf_put(buf, len), len, len);
1971	if (res < 0)
1972		goto fail;
1973
1974	if (inc_y) {
1975		res = crypto_bignum_to_bin((struct crypto_bignum *) y,
1976					   wpabuf_put(buf, len), len, len);
1977		if (res < 0)
1978			goto fail;
1979	}
1980
1981done:
1982	BN_clear_free(x);
1983	BN_clear_free(y);
1984	EC_KEY_free(eckey);
1985
1986	return buf;
1987fail:
1988	wpabuf_free(buf);
1989	buf = NULL;
1990	goto done;
1991}
1992
1993
1994struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
1995					const u8 *key, size_t len)
1996{
1997	BIGNUM *x, *y = NULL;
1998	EVP_PKEY_CTX *ctx = NULL;
1999	EVP_PKEY *peerkey = NULL;
2000	struct wpabuf *secret = NULL;
2001	size_t secret_len;
2002	EC_POINT *pub;
2003	EC_KEY *eckey = NULL;
2004
2005	x = BN_bin2bn(key, inc_y ? len / 2 : len, NULL);
2006	pub = EC_POINT_new(ecdh->ec->group);
2007	if (!x || !pub)
2008		goto fail;
2009
2010	if (inc_y) {
2011		y = BN_bin2bn(key + len / 2, len / 2, NULL);
2012		if (!y)
2013			goto fail;
2014		if (!EC_POINT_set_affine_coordinates_GFp(ecdh->ec->group, pub,
2015							 x, y,
2016							 ecdh->ec->bnctx)) {
2017			wpa_printf(MSG_ERROR,
2018				   "OpenSSL: EC_POINT_set_affine_coordinates_GFp failed: %s",
2019				   ERR_error_string(ERR_get_error(), NULL));
2020			goto fail;
2021		}
2022	} else if (!EC_POINT_set_compressed_coordinates_GFp(ecdh->ec->group,
2023							    pub, x, 0,
2024							    ecdh->ec->bnctx)) {
2025		wpa_printf(MSG_ERROR,
2026			   "OpenSSL: EC_POINT_set_compressed_coordinates_GFp failed: %s",
2027			   ERR_error_string(ERR_get_error(), NULL));
2028		goto fail;
2029	}
2030
2031	if (!EC_POINT_is_on_curve(ecdh->ec->group, pub, ecdh->ec->bnctx)) {
2032		wpa_printf(MSG_ERROR,
2033			   "OpenSSL: ECDH peer public key is not on curve");
2034		goto fail;
2035	}
2036
2037	eckey = EC_KEY_new_by_curve_name(ecdh->ec->nid);
2038	if (!eckey || EC_KEY_set_public_key(eckey, pub) != 1) {
2039		wpa_printf(MSG_ERROR,
2040			   "OpenSSL: EC_KEY_set_public_key failed: %s",
2041			   ERR_error_string(ERR_get_error(), NULL));
2042		goto fail;
2043	}
2044
2045	peerkey = EVP_PKEY_new();
2046	if (!peerkey || EVP_PKEY_set1_EC_KEY(peerkey, eckey) != 1)
2047		goto fail;
2048
2049	ctx = EVP_PKEY_CTX_new(ecdh->pkey, NULL);
2050	if (!ctx || EVP_PKEY_derive_init(ctx) != 1 ||
2051	    EVP_PKEY_derive_set_peer(ctx, peerkey) != 1 ||
2052	    EVP_PKEY_derive(ctx, NULL, &secret_len) != 1) {
2053		wpa_printf(MSG_ERROR,
2054			   "OpenSSL: EVP_PKEY_derive(1) failed: %s",
2055			   ERR_error_string(ERR_get_error(), NULL));
2056		goto fail;
2057	}
2058
2059	secret = wpabuf_alloc(secret_len);
2060	if (!secret)
2061		goto fail;
2062	if (EVP_PKEY_derive(ctx, wpabuf_put(secret, 0), &secret_len) != 1) {
2063		wpa_printf(MSG_ERROR,
2064			   "OpenSSL: EVP_PKEY_derive(2) failed: %s",
2065			   ERR_error_string(ERR_get_error(), NULL));
2066		goto fail;
2067	}
2068	if (secret->size != secret_len)
2069		wpa_printf(MSG_DEBUG,
2070			   "OpenSSL: EVP_PKEY_derive(2) changed secret_len %d -> %d",
2071			   (int) secret->size, (int) secret_len);
2072	wpabuf_put(secret, secret_len);
2073
2074done:
2075	BN_free(x);
2076	BN_free(y);
2077	EC_KEY_free(eckey);
2078	EC_POINT_free(pub);
2079	EVP_PKEY_CTX_free(ctx);
2080	EVP_PKEY_free(peerkey);
2081	return secret;
2082fail:
2083	wpabuf_free(secret);
2084	secret = NULL;
2085	goto done;
2086}
2087
2088
2089void crypto_ecdh_deinit(struct crypto_ecdh *ecdh)
2090{
2091	if (ecdh) {
2092		crypto_ec_deinit(ecdh->ec);
2093		EVP_PKEY_free(ecdh->pkey);
2094		os_free(ecdh);
2095	}
2096}
2097
2098#endif /* CONFIG_ECC */
2099