1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CodeGenDAGPatterns class, which is used to read and
10// represent the patterns present in a .td file for instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenDAGPatterns.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/TypeSize.h"
27#include "llvm/TableGen/Error.h"
28#include "llvm/TableGen/Record.h"
29#include <algorithm>
30#include <cstdio>
31#include <iterator>
32#include <set>
33using namespace llvm;
34
35#define DEBUG_TYPE "dag-patterns"
36
37static inline bool isIntegerOrPtr(MVT VT) {
38  return VT.isInteger() || VT == MVT::iPTR;
39}
40static inline bool isFloatingPoint(MVT VT) {
41  return VT.isFloatingPoint();
42}
43static inline bool isVector(MVT VT) {
44  return VT.isVector();
45}
46static inline bool isScalar(MVT VT) {
47  return !VT.isVector();
48}
49
50template <typename Predicate>
51static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52  bool Erased = false;
53  // It is ok to iterate over MachineValueTypeSet and remove elements from it
54  // at the same time.
55  for (MVT T : S) {
56    if (!P(T))
57      continue;
58    Erased = true;
59    S.erase(T);
60  }
61  return Erased;
62}
63
64// --- TypeSetByHwMode
65
66// This is a parameterized type-set class. For each mode there is a list
67// of types that are currently possible for a given tree node. Type
68// inference will apply to each mode separately.
69
70TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71  for (const ValueTypeByHwMode &VVT : VTList) {
72    insert(VVT);
73    AddrSpaces.push_back(VVT.PtrAddrSpace);
74  }
75}
76
77bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78  for (const auto &I : *this) {
79    if (I.second.size() > 1)
80      return false;
81    if (!AllowEmpty && I.second.empty())
82      return false;
83  }
84  return true;
85}
86
87ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88  assert(isValueTypeByHwMode(true) &&
89         "The type set has multiple types for at least one HW mode");
90  ValueTypeByHwMode VVT;
91  auto ASI = AddrSpaces.begin();
92
93  for (const auto &I : *this) {
94    MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95    VVT.getOrCreateTypeForMode(I.first, T);
96    if (ASI != AddrSpaces.end())
97      VVT.PtrAddrSpace = *ASI++;
98  }
99  return VVT;
100}
101
102bool TypeSetByHwMode::isPossible() const {
103  for (const auto &I : *this)
104    if (!I.second.empty())
105      return true;
106  return false;
107}
108
109bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110  bool Changed = false;
111  bool ContainsDefault = false;
112  MVT DT = MVT::Other;
113
114  SmallDenseSet<unsigned, 4> Modes;
115  for (const auto &P : VVT) {
116    unsigned M = P.first;
117    Modes.insert(M);
118    // Make sure there exists a set for each specific mode from VVT.
119    Changed |= getOrCreate(M).insert(P.second).second;
120    // Cache VVT's default mode.
121    if (DefaultMode == M) {
122      ContainsDefault = true;
123      DT = P.second;
124    }
125  }
126
127  // If VVT has a default mode, add the corresponding type to all
128  // modes in "this" that do not exist in VVT.
129  if (ContainsDefault)
130    for (auto &I : *this)
131      if (!Modes.count(I.first))
132        Changed |= I.second.insert(DT).second;
133
134  return Changed;
135}
136
137// Constrain the type set to be the intersection with VTS.
138bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
139  bool Changed = false;
140  if (hasDefault()) {
141    for (const auto &I : VTS) {
142      unsigned M = I.first;
143      if (M == DefaultMode || hasMode(M))
144        continue;
145      Map.insert({M, Map.at(DefaultMode)});
146      Changed = true;
147    }
148  }
149
150  for (auto &I : *this) {
151    unsigned M = I.first;
152    SetType &S = I.second;
153    if (VTS.hasMode(M) || VTS.hasDefault()) {
154      Changed |= intersect(I.second, VTS.get(M));
155    } else if (!S.empty()) {
156      S.clear();
157      Changed = true;
158    }
159  }
160  return Changed;
161}
162
163template <typename Predicate>
164bool TypeSetByHwMode::constrain(Predicate P) {
165  bool Changed = false;
166  for (auto &I : *this)
167    Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
168  return Changed;
169}
170
171template <typename Predicate>
172bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
173  assert(empty());
174  for (const auto &I : VTS) {
175    SetType &S = getOrCreate(I.first);
176    for (auto J : I.second)
177      if (P(J))
178        S.insert(J);
179  }
180  return !empty();
181}
182
183void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
184  SmallVector<unsigned, 4> Modes;
185  Modes.reserve(Map.size());
186
187  for (const auto &I : *this)
188    Modes.push_back(I.first);
189  if (Modes.empty()) {
190    OS << "{}";
191    return;
192  }
193  array_pod_sort(Modes.begin(), Modes.end());
194
195  OS << '{';
196  for (unsigned M : Modes) {
197    OS << ' ' << getModeName(M) << ':';
198    writeToStream(get(M), OS);
199  }
200  OS << " }";
201}
202
203void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
204  SmallVector<MVT, 4> Types(S.begin(), S.end());
205  array_pod_sort(Types.begin(), Types.end());
206
207  OS << '[';
208  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
209    OS << ValueTypeByHwMode::getMVTName(Types[i]);
210    if (i != e-1)
211      OS << ' ';
212  }
213  OS << ']';
214}
215
216bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
217  // The isSimple call is much quicker than hasDefault - check this first.
218  bool IsSimple = isSimple();
219  bool VTSIsSimple = VTS.isSimple();
220  if (IsSimple && VTSIsSimple)
221    return *begin() == *VTS.begin();
222
223  // Speedup: We have a default if the set is simple.
224  bool HaveDefault = IsSimple || hasDefault();
225  bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
226  if (HaveDefault != VTSHaveDefault)
227    return false;
228
229  SmallDenseSet<unsigned, 4> Modes;
230  for (auto &I : *this)
231    Modes.insert(I.first);
232  for (const auto &I : VTS)
233    Modes.insert(I.first);
234
235  if (HaveDefault) {
236    // Both sets have default mode.
237    for (unsigned M : Modes) {
238      if (get(M) != VTS.get(M))
239        return false;
240    }
241  } else {
242    // Neither set has default mode.
243    for (unsigned M : Modes) {
244      // If there is no default mode, an empty set is equivalent to not having
245      // the corresponding mode.
246      bool NoModeThis = !hasMode(M) || get(M).empty();
247      bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
248      if (NoModeThis != NoModeVTS)
249        return false;
250      if (!NoModeThis)
251        if (get(M) != VTS.get(M))
252          return false;
253    }
254  }
255
256  return true;
257}
258
259namespace llvm {
260  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
261    T.writeToStream(OS);
262    return OS;
263  }
264}
265
266LLVM_DUMP_METHOD
267void TypeSetByHwMode::dump() const {
268  dbgs() << *this << '\n';
269}
270
271bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
272  bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
273  auto Int = [&In](MVT T) -> bool { return !In.count(T); };
274
275  if (OutP == InP)
276    return berase_if(Out, Int);
277
278  // Compute the intersection of scalars separately to account for only
279  // one set containing iPTR.
280  // The itersection of iPTR with a set of integer scalar types that does not
281  // include iPTR will result in the most specific scalar type:
282  // - iPTR is more specific than any set with two elements or more
283  // - iPTR is less specific than any single integer scalar type.
284  // For example
285  // { iPTR } * { i32 }     -> { i32 }
286  // { iPTR } * { i32 i64 } -> { iPTR }
287  // and
288  // { iPTR i32 } * { i32 }          -> { i32 }
289  // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
290  // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
291
292  // Compute the difference between the two sets in such a way that the
293  // iPTR is in the set that is being subtracted. This is to see if there
294  // are any extra scalars in the set without iPTR that are not in the
295  // set containing iPTR. Then the iPTR could be considered a "wildcard"
296  // matching these scalars. If there is only one such scalar, it would
297  // replace the iPTR, if there are more, the iPTR would be retained.
298  SetType Diff;
299  if (InP) {
300    Diff = Out;
301    berase_if(Diff, [&In](MVT T) { return In.count(T); });
302    // Pre-remove these elements and rely only on InP/OutP to determine
303    // whether a change has been made.
304    berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
305  } else {
306    Diff = In;
307    berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
308    Out.erase(MVT::iPTR);
309  }
310
311  // The actual intersection.
312  bool Changed = berase_if(Out, Int);
313  unsigned NumD = Diff.size();
314  if (NumD == 0)
315    return Changed;
316
317  if (NumD == 1) {
318    Out.insert(*Diff.begin());
319    // This is a change only if Out was the one with iPTR (which is now
320    // being replaced).
321    Changed |= OutP;
322  } else {
323    // Multiple elements from Out are now replaced with iPTR.
324    Out.insert(MVT::iPTR);
325    Changed |= !OutP;
326  }
327  return Changed;
328}
329
330bool TypeSetByHwMode::validate() const {
331#ifndef NDEBUG
332  if (empty())
333    return true;
334  bool AllEmpty = true;
335  for (const auto &I : *this)
336    AllEmpty &= I.second.empty();
337  return !AllEmpty;
338#endif
339  return true;
340}
341
342// --- TypeInfer
343
344bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
345                                const TypeSetByHwMode &In) {
346  ValidateOnExit _1(Out, *this);
347  In.validate();
348  if (In.empty() || Out == In || TP.hasError())
349    return false;
350  if (Out.empty()) {
351    Out = In;
352    return true;
353  }
354
355  bool Changed = Out.constrain(In);
356  if (Changed && Out.empty())
357    TP.error("Type contradiction");
358
359  return Changed;
360}
361
362bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
363  ValidateOnExit _1(Out, *this);
364  if (TP.hasError())
365    return false;
366  assert(!Out.empty() && "cannot pick from an empty set");
367
368  bool Changed = false;
369  for (auto &I : Out) {
370    TypeSetByHwMode::SetType &S = I.second;
371    if (S.size() <= 1)
372      continue;
373    MVT T = *S.begin(); // Pick the first element.
374    S.clear();
375    S.insert(T);
376    Changed = true;
377  }
378  return Changed;
379}
380
381bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
382  ValidateOnExit _1(Out, *this);
383  if (TP.hasError())
384    return false;
385  if (!Out.empty())
386    return Out.constrain(isIntegerOrPtr);
387
388  return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
389}
390
391bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
392  ValidateOnExit _1(Out, *this);
393  if (TP.hasError())
394    return false;
395  if (!Out.empty())
396    return Out.constrain(isFloatingPoint);
397
398  return Out.assign_if(getLegalTypes(), isFloatingPoint);
399}
400
401bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
402  ValidateOnExit _1(Out, *this);
403  if (TP.hasError())
404    return false;
405  if (!Out.empty())
406    return Out.constrain(isScalar);
407
408  return Out.assign_if(getLegalTypes(), isScalar);
409}
410
411bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
412  ValidateOnExit _1(Out, *this);
413  if (TP.hasError())
414    return false;
415  if (!Out.empty())
416    return Out.constrain(isVector);
417
418  return Out.assign_if(getLegalTypes(), isVector);
419}
420
421bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
422  ValidateOnExit _1(Out, *this);
423  if (TP.hasError() || !Out.empty())
424    return false;
425
426  Out = getLegalTypes();
427  return true;
428}
429
430template <typename Iter, typename Pred, typename Less>
431static Iter min_if(Iter B, Iter E, Pred P, Less L) {
432  if (B == E)
433    return E;
434  Iter Min = E;
435  for (Iter I = B; I != E; ++I) {
436    if (!P(*I))
437      continue;
438    if (Min == E || L(*I, *Min))
439      Min = I;
440  }
441  return Min;
442}
443
444template <typename Iter, typename Pred, typename Less>
445static Iter max_if(Iter B, Iter E, Pred P, Less L) {
446  if (B == E)
447    return E;
448  Iter Max = E;
449  for (Iter I = B; I != E; ++I) {
450    if (!P(*I))
451      continue;
452    if (Max == E || L(*Max, *I))
453      Max = I;
454  }
455  return Max;
456}
457
458/// Make sure that for each type in Small, there exists a larger type in Big.
459bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
460                                   TypeSetByHwMode &Big) {
461  ValidateOnExit _1(Small, *this), _2(Big, *this);
462  if (TP.hasError())
463    return false;
464  bool Changed = false;
465
466  if (Small.empty())
467    Changed |= EnforceAny(Small);
468  if (Big.empty())
469    Changed |= EnforceAny(Big);
470
471  assert(Small.hasDefault() && Big.hasDefault());
472
473  std::vector<unsigned> Modes = union_modes(Small, Big);
474
475  // 1. Only allow integer or floating point types and make sure that
476  //    both sides are both integer or both floating point.
477  // 2. Make sure that either both sides have vector types, or neither
478  //    of them does.
479  for (unsigned M : Modes) {
480    TypeSetByHwMode::SetType &S = Small.get(M);
481    TypeSetByHwMode::SetType &B = Big.get(M);
482
483    if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
484      auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
485      Changed |= berase_if(S, NotInt);
486      Changed |= berase_if(B, NotInt);
487    } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
488      auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
489      Changed |= berase_if(S, NotFP);
490      Changed |= berase_if(B, NotFP);
491    } else if (S.empty() || B.empty()) {
492      Changed = !S.empty() || !B.empty();
493      S.clear();
494      B.clear();
495    } else {
496      TP.error("Incompatible types");
497      return Changed;
498    }
499
500    if (none_of(S, isVector) || none_of(B, isVector)) {
501      Changed |= berase_if(S, isVector);
502      Changed |= berase_if(B, isVector);
503    }
504  }
505
506  auto LT = [](MVT A, MVT B) -> bool {
507    // Always treat non-scalable MVTs as smaller than scalable MVTs for the
508    // purposes of ordering.
509    auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
510                                 A.getSizeInBits());
511    auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
512                                 B.getSizeInBits());
513    return ASize < BSize;
514  };
515  auto SameKindLE = [](MVT A, MVT B) -> bool {
516    // This function is used when removing elements: when a vector is compared
517    // to a non-vector or a scalable vector to any non-scalable MVT, it should
518    // return false (to avoid removal).
519    if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
520        std::make_tuple(B.isVector(), B.isScalableVector()))
521      return false;
522
523    return std::make_tuple(A.getScalarSizeInBits(), A.getSizeInBits()) <=
524           std::make_tuple(B.getScalarSizeInBits(), B.getSizeInBits());
525  };
526
527  for (unsigned M : Modes) {
528    TypeSetByHwMode::SetType &S = Small.get(M);
529    TypeSetByHwMode::SetType &B = Big.get(M);
530    // MinS = min scalar in Small, remove all scalars from Big that are
531    // smaller-or-equal than MinS.
532    auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
533    if (MinS != S.end())
534      Changed |= berase_if(B, std::bind(SameKindLE,
535                                        std::placeholders::_1, *MinS));
536
537    // MaxS = max scalar in Big, remove all scalars from Small that are
538    // larger than MaxS.
539    auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
540    if (MaxS != B.end())
541      Changed |= berase_if(S, std::bind(SameKindLE,
542                                        *MaxS, std::placeholders::_1));
543
544    // MinV = min vector in Small, remove all vectors from Big that are
545    // smaller-or-equal than MinV.
546    auto MinV = min_if(S.begin(), S.end(), isVector, LT);
547    if (MinV != S.end())
548      Changed |= berase_if(B, std::bind(SameKindLE,
549                                        std::placeholders::_1, *MinV));
550
551    // MaxV = max vector in Big, remove all vectors from Small that are
552    // larger than MaxV.
553    auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
554    if (MaxV != B.end())
555      Changed |= berase_if(S, std::bind(SameKindLE,
556                                        *MaxV, std::placeholders::_1));
557  }
558
559  return Changed;
560}
561
562/// 1. Ensure that for each type T in Vec, T is a vector type, and that
563///    for each type U in Elem, U is a scalar type.
564/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
565///    type T in Vec, such that U is the element type of T.
566bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
567                                       TypeSetByHwMode &Elem) {
568  ValidateOnExit _1(Vec, *this), _2(Elem, *this);
569  if (TP.hasError())
570    return false;
571  bool Changed = false;
572
573  if (Vec.empty())
574    Changed |= EnforceVector(Vec);
575  if (Elem.empty())
576    Changed |= EnforceScalar(Elem);
577
578  for (unsigned M : union_modes(Vec, Elem)) {
579    TypeSetByHwMode::SetType &V = Vec.get(M);
580    TypeSetByHwMode::SetType &E = Elem.get(M);
581
582    Changed |= berase_if(V, isScalar);  // Scalar = !vector
583    Changed |= berase_if(E, isVector);  // Vector = !scalar
584    assert(!V.empty() && !E.empty());
585
586    SmallSet<MVT,4> VT, ST;
587    // Collect element types from the "vector" set.
588    for (MVT T : V)
589      VT.insert(T.getVectorElementType());
590    // Collect scalar types from the "element" set.
591    for (MVT T : E)
592      ST.insert(T);
593
594    // Remove from V all (vector) types whose element type is not in S.
595    Changed |= berase_if(V, [&ST](MVT T) -> bool {
596                              return !ST.count(T.getVectorElementType());
597                            });
598    // Remove from E all (scalar) types, for which there is no corresponding
599    // type in V.
600    Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
601  }
602
603  return Changed;
604}
605
606bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
607                                       const ValueTypeByHwMode &VVT) {
608  TypeSetByHwMode Tmp(VVT);
609  ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
610  return EnforceVectorEltTypeIs(Vec, Tmp);
611}
612
613/// Ensure that for each type T in Sub, T is a vector type, and there
614/// exists a type U in Vec such that U is a vector type with the same
615/// element type as T and at least as many elements as T.
616bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
617                                             TypeSetByHwMode &Sub) {
618  ValidateOnExit _1(Vec, *this), _2(Sub, *this);
619  if (TP.hasError())
620    return false;
621
622  /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
623  auto IsSubVec = [](MVT B, MVT P) -> bool {
624    if (!B.isVector() || !P.isVector())
625      return false;
626    // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
627    // but until there are obvious use-cases for this, keep the
628    // types separate.
629    if (B.isScalableVector() != P.isScalableVector())
630      return false;
631    if (B.getVectorElementType() != P.getVectorElementType())
632      return false;
633    return B.getVectorNumElements() < P.getVectorNumElements();
634  };
635
636  /// Return true if S has no element (vector type) that T is a sub-vector of,
637  /// i.e. has the same element type as T and more elements.
638  auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
639    for (auto I : S)
640      if (IsSubVec(T, I))
641        return false;
642    return true;
643  };
644
645  /// Return true if S has no element (vector type) that T is a super-vector
646  /// of, i.e. has the same element type as T and fewer elements.
647  auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
648    for (auto I : S)
649      if (IsSubVec(I, T))
650        return false;
651    return true;
652  };
653
654  bool Changed = false;
655
656  if (Vec.empty())
657    Changed |= EnforceVector(Vec);
658  if (Sub.empty())
659    Changed |= EnforceVector(Sub);
660
661  for (unsigned M : union_modes(Vec, Sub)) {
662    TypeSetByHwMode::SetType &S = Sub.get(M);
663    TypeSetByHwMode::SetType &V = Vec.get(M);
664
665    Changed |= berase_if(S, isScalar);
666
667    // Erase all types from S that are not sub-vectors of a type in V.
668    Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
669
670    // Erase all types from V that are not super-vectors of a type in S.
671    Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
672  }
673
674  return Changed;
675}
676
677/// 1. Ensure that V has a scalar type iff W has a scalar type.
678/// 2. Ensure that for each vector type T in V, there exists a vector
679///    type U in W, such that T and U have the same number of elements.
680/// 3. Ensure that for each vector type U in W, there exists a vector
681///    type T in V, such that T and U have the same number of elements
682///    (reverse of 2).
683bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
684  ValidateOnExit _1(V, *this), _2(W, *this);
685  if (TP.hasError())
686    return false;
687
688  bool Changed = false;
689  if (V.empty())
690    Changed |= EnforceAny(V);
691  if (W.empty())
692    Changed |= EnforceAny(W);
693
694  // An actual vector type cannot have 0 elements, so we can treat scalars
695  // as zero-length vectors. This way both vectors and scalars can be
696  // processed identically.
697  auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
698    return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
699  };
700
701  for (unsigned M : union_modes(V, W)) {
702    TypeSetByHwMode::SetType &VS = V.get(M);
703    TypeSetByHwMode::SetType &WS = W.get(M);
704
705    SmallSet<unsigned,2> VN, WN;
706    for (MVT T : VS)
707      VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
708    for (MVT T : WS)
709      WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
710
711    Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
712    Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
713  }
714  return Changed;
715}
716
717/// 1. Ensure that for each type T in A, there exists a type U in B,
718///    such that T and U have equal size in bits.
719/// 2. Ensure that for each type U in B, there exists a type T in A
720///    such that T and U have equal size in bits (reverse of 1).
721bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
722  ValidateOnExit _1(A, *this), _2(B, *this);
723  if (TP.hasError())
724    return false;
725  bool Changed = false;
726  if (A.empty())
727    Changed |= EnforceAny(A);
728  if (B.empty())
729    Changed |= EnforceAny(B);
730
731  auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
732    return !Sizes.count(T.getSizeInBits());
733  };
734
735  for (unsigned M : union_modes(A, B)) {
736    TypeSetByHwMode::SetType &AS = A.get(M);
737    TypeSetByHwMode::SetType &BS = B.get(M);
738    SmallSet<unsigned,2> AN, BN;
739
740    for (MVT T : AS)
741      AN.insert(T.getSizeInBits());
742    for (MVT T : BS)
743      BN.insert(T.getSizeInBits());
744
745    Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
746    Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
747  }
748
749  return Changed;
750}
751
752void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
753  ValidateOnExit _1(VTS, *this);
754  const TypeSetByHwMode &Legal = getLegalTypes();
755  assert(Legal.isDefaultOnly() && "Default-mode only expected");
756  const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
757
758  for (auto &I : VTS)
759    expandOverloads(I.second, LegalTypes);
760}
761
762void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
763                                const TypeSetByHwMode::SetType &Legal) {
764  std::set<MVT> Ovs;
765  for (MVT T : Out) {
766    if (!T.isOverloaded())
767      continue;
768
769    Ovs.insert(T);
770    // MachineValueTypeSet allows iteration and erasing.
771    Out.erase(T);
772  }
773
774  for (MVT Ov : Ovs) {
775    switch (Ov.SimpleTy) {
776      case MVT::iPTRAny:
777        Out.insert(MVT::iPTR);
778        return;
779      case MVT::iAny:
780        for (MVT T : MVT::integer_valuetypes())
781          if (Legal.count(T))
782            Out.insert(T);
783        for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
784          if (Legal.count(T))
785            Out.insert(T);
786        for (MVT T : MVT::integer_scalable_vector_valuetypes())
787          if (Legal.count(T))
788            Out.insert(T);
789        return;
790      case MVT::fAny:
791        for (MVT T : MVT::fp_valuetypes())
792          if (Legal.count(T))
793            Out.insert(T);
794        for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
795          if (Legal.count(T))
796            Out.insert(T);
797        for (MVT T : MVT::fp_scalable_vector_valuetypes())
798          if (Legal.count(T))
799            Out.insert(T);
800        return;
801      case MVT::vAny:
802        for (MVT T : MVT::vector_valuetypes())
803          if (Legal.count(T))
804            Out.insert(T);
805        return;
806      case MVT::Any:
807        for (MVT T : MVT::all_valuetypes())
808          if (Legal.count(T))
809            Out.insert(T);
810        return;
811      default:
812        break;
813    }
814  }
815}
816
817const TypeSetByHwMode &TypeInfer::getLegalTypes() {
818  if (!LegalTypesCached) {
819    TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
820    // Stuff all types from all modes into the default mode.
821    const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
822    for (const auto &I : LTS)
823      LegalTypes.insert(I.second);
824    LegalTypesCached = true;
825  }
826  assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
827  return LegalCache;
828}
829
830#ifndef NDEBUG
831TypeInfer::ValidateOnExit::~ValidateOnExit() {
832  if (Infer.Validate && !VTS.validate()) {
833    dbgs() << "Type set is empty for each HW mode:\n"
834              "possible type contradiction in the pattern below "
835              "(use -print-records with llvm-tblgen to see all "
836              "expanded records).\n";
837    Infer.TP.dump();
838    llvm_unreachable(nullptr);
839  }
840}
841#endif
842
843
844//===----------------------------------------------------------------------===//
845// ScopedName Implementation
846//===----------------------------------------------------------------------===//
847
848bool ScopedName::operator==(const ScopedName &o) const {
849  return Scope == o.Scope && Identifier == o.Identifier;
850}
851
852bool ScopedName::operator!=(const ScopedName &o) const {
853  return !(*this == o);
854}
855
856
857//===----------------------------------------------------------------------===//
858// TreePredicateFn Implementation
859//===----------------------------------------------------------------------===//
860
861/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
862TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
863  assert(
864      (!hasPredCode() || !hasImmCode()) &&
865      ".td file corrupt: can't have a node predicate *and* an imm predicate");
866}
867
868bool TreePredicateFn::hasPredCode() const {
869  return isLoad() || isStore() || isAtomic() ||
870         !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
871}
872
873std::string TreePredicateFn::getPredCode() const {
874  std::string Code = "";
875
876  if (!isLoad() && !isStore() && !isAtomic()) {
877    Record *MemoryVT = getMemoryVT();
878
879    if (MemoryVT)
880      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                      "MemoryVT requires IsLoad or IsStore");
882  }
883
884  if (!isLoad() && !isStore()) {
885    if (isUnindexed())
886      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887                      "IsUnindexed requires IsLoad or IsStore");
888
889    Record *ScalarMemoryVT = getScalarMemoryVT();
890
891    if (ScalarMemoryVT)
892      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
893                      "ScalarMemoryVT requires IsLoad or IsStore");
894  }
895
896  if (isLoad() + isStore() + isAtomic() > 1)
897    PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898                    "IsLoad, IsStore, and IsAtomic are mutually exclusive");
899
900  if (isLoad()) {
901    if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
902        !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
903        getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
904        getMinAlignment() < 1)
905      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906                      "IsLoad cannot be used by itself");
907  } else {
908    if (isNonExtLoad())
909      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                      "IsNonExtLoad requires IsLoad");
911    if (isAnyExtLoad())
912      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
913                      "IsAnyExtLoad requires IsLoad");
914    if (isSignExtLoad())
915      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916                      "IsSignExtLoad requires IsLoad");
917    if (isZeroExtLoad())
918      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
919                      "IsZeroExtLoad requires IsLoad");
920  }
921
922  if (isStore()) {
923    if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
924        getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
925        getAddressSpaces() == nullptr && getMinAlignment() < 1)
926      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
927                      "IsStore cannot be used by itself");
928  } else {
929    if (isNonTruncStore())
930      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931                      "IsNonTruncStore requires IsStore");
932    if (isTruncStore())
933      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                      "IsTruncStore requires IsStore");
935  }
936
937  if (isAtomic()) {
938    if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
939        getAddressSpaces() == nullptr &&
940        !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
941        !isAtomicOrderingAcquireRelease() &&
942        !isAtomicOrderingSequentiallyConsistent() &&
943        !isAtomicOrderingAcquireOrStronger() &&
944        !isAtomicOrderingReleaseOrStronger() &&
945        !isAtomicOrderingWeakerThanAcquire() &&
946        !isAtomicOrderingWeakerThanRelease())
947      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
948                      "IsAtomic cannot be used by itself");
949  } else {
950    if (isAtomicOrderingMonotonic())
951      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                      "IsAtomicOrderingMonotonic requires IsAtomic");
953    if (isAtomicOrderingAcquire())
954      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                      "IsAtomicOrderingAcquire requires IsAtomic");
956    if (isAtomicOrderingRelease())
957      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958                      "IsAtomicOrderingRelease requires IsAtomic");
959    if (isAtomicOrderingAcquireRelease())
960      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
961                      "IsAtomicOrderingAcquireRelease requires IsAtomic");
962    if (isAtomicOrderingSequentiallyConsistent())
963      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
964                      "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
965    if (isAtomicOrderingAcquireOrStronger())
966      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967                      "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
968    if (isAtomicOrderingReleaseOrStronger())
969      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970                      "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
971    if (isAtomicOrderingWeakerThanAcquire())
972      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973                      "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
974  }
975
976  if (isLoad() || isStore() || isAtomic()) {
977    if (ListInit *AddressSpaces = getAddressSpaces()) {
978      Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
979        " if (";
980
981      bool First = true;
982      for (Init *Val : AddressSpaces->getValues()) {
983        if (First)
984          First = false;
985        else
986          Code += " && ";
987
988        IntInit *IntVal = dyn_cast<IntInit>(Val);
989        if (!IntVal) {
990          PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
991                          "AddressSpaces element must be integer");
992        }
993
994        Code += "AddrSpace != " + utostr(IntVal->getValue());
995      }
996
997      Code += ")\nreturn false;\n";
998    }
999
1000    int64_t MinAlign = getMinAlignment();
1001    if (MinAlign > 0) {
1002      Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
1003      Code += utostr(MinAlign);
1004      Code += ")\nreturn false;\n";
1005    }
1006
1007    Record *MemoryVT = getMemoryVT();
1008
1009    if (MemoryVT)
1010      Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1011               MemoryVT->getName() + ") return false;\n")
1012                  .str();
1013  }
1014
1015  if (isAtomic() && isAtomicOrderingMonotonic())
1016    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1017            "AtomicOrdering::Monotonic) return false;\n";
1018  if (isAtomic() && isAtomicOrderingAcquire())
1019    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1020            "AtomicOrdering::Acquire) return false;\n";
1021  if (isAtomic() && isAtomicOrderingRelease())
1022    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1023            "AtomicOrdering::Release) return false;\n";
1024  if (isAtomic() && isAtomicOrderingAcquireRelease())
1025    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1026            "AtomicOrdering::AcquireRelease) return false;\n";
1027  if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1028    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1029            "AtomicOrdering::SequentiallyConsistent) return false;\n";
1030
1031  if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1032    Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1033            "return false;\n";
1034  if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1035    Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1036            "return false;\n";
1037
1038  if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1039    Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1040            "return false;\n";
1041  if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1042    Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1043            "return false;\n";
1044
1045  if (isLoad() || isStore()) {
1046    StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1047
1048    if (isUnindexed())
1049      Code += ("if (cast<" + SDNodeName +
1050               ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1051               "return false;\n")
1052                  .str();
1053
1054    if (isLoad()) {
1055      if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1056           isZeroExtLoad()) > 1)
1057        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1058                        "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1059                        "IsZeroExtLoad are mutually exclusive");
1060      if (isNonExtLoad())
1061        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1062                "ISD::NON_EXTLOAD) return false;\n";
1063      if (isAnyExtLoad())
1064        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1065                "return false;\n";
1066      if (isSignExtLoad())
1067        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1068                "return false;\n";
1069      if (isZeroExtLoad())
1070        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1071                "return false;\n";
1072    } else {
1073      if ((isNonTruncStore() + isTruncStore()) > 1)
1074        PrintFatalError(
1075            getOrigPatFragRecord()->getRecord()->getLoc(),
1076            "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1077      if (isNonTruncStore())
1078        Code +=
1079            " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1080      if (isTruncStore())
1081        Code +=
1082            " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1083    }
1084
1085    Record *ScalarMemoryVT = getScalarMemoryVT();
1086
1087    if (ScalarMemoryVT)
1088      Code += ("if (cast<" + SDNodeName +
1089               ">(N)->getMemoryVT().getScalarType() != MVT::" +
1090               ScalarMemoryVT->getName() + ") return false;\n")
1091                  .str();
1092  }
1093
1094  std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1095
1096  Code += PredicateCode;
1097
1098  if (PredicateCode.empty() && !Code.empty())
1099    Code += "return true;\n";
1100
1101  return Code;
1102}
1103
1104bool TreePredicateFn::hasImmCode() const {
1105  return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1106}
1107
1108std::string TreePredicateFn::getImmCode() const {
1109  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1110}
1111
1112bool TreePredicateFn::immCodeUsesAPInt() const {
1113  return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1114}
1115
1116bool TreePredicateFn::immCodeUsesAPFloat() const {
1117  bool Unset;
1118  // The return value will be false when IsAPFloat is unset.
1119  return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1120                                                                   Unset);
1121}
1122
1123bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1124                                                   bool Value) const {
1125  bool Unset;
1126  bool Result =
1127      getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1128  if (Unset)
1129    return false;
1130  return Result == Value;
1131}
1132bool TreePredicateFn::usesOperands() const {
1133  return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1134}
1135bool TreePredicateFn::isLoad() const {
1136  return isPredefinedPredicateEqualTo("IsLoad", true);
1137}
1138bool TreePredicateFn::isStore() const {
1139  return isPredefinedPredicateEqualTo("IsStore", true);
1140}
1141bool TreePredicateFn::isAtomic() const {
1142  return isPredefinedPredicateEqualTo("IsAtomic", true);
1143}
1144bool TreePredicateFn::isUnindexed() const {
1145  return isPredefinedPredicateEqualTo("IsUnindexed", true);
1146}
1147bool TreePredicateFn::isNonExtLoad() const {
1148  return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1149}
1150bool TreePredicateFn::isAnyExtLoad() const {
1151  return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1152}
1153bool TreePredicateFn::isSignExtLoad() const {
1154  return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1155}
1156bool TreePredicateFn::isZeroExtLoad() const {
1157  return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1158}
1159bool TreePredicateFn::isNonTruncStore() const {
1160  return isPredefinedPredicateEqualTo("IsTruncStore", false);
1161}
1162bool TreePredicateFn::isTruncStore() const {
1163  return isPredefinedPredicateEqualTo("IsTruncStore", true);
1164}
1165bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1166  return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1167}
1168bool TreePredicateFn::isAtomicOrderingAcquire() const {
1169  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1170}
1171bool TreePredicateFn::isAtomicOrderingRelease() const {
1172  return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1173}
1174bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1175  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1176}
1177bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1178  return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1179                                      true);
1180}
1181bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1182  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1183}
1184bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1185  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1186}
1187bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1188  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1189}
1190bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1191  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1192}
1193Record *TreePredicateFn::getMemoryVT() const {
1194  Record *R = getOrigPatFragRecord()->getRecord();
1195  if (R->isValueUnset("MemoryVT"))
1196    return nullptr;
1197  return R->getValueAsDef("MemoryVT");
1198}
1199
1200ListInit *TreePredicateFn::getAddressSpaces() const {
1201  Record *R = getOrigPatFragRecord()->getRecord();
1202  if (R->isValueUnset("AddressSpaces"))
1203    return nullptr;
1204  return R->getValueAsListInit("AddressSpaces");
1205}
1206
1207int64_t TreePredicateFn::getMinAlignment() const {
1208  Record *R = getOrigPatFragRecord()->getRecord();
1209  if (R->isValueUnset("MinAlignment"))
1210    return 0;
1211  return R->getValueAsInt("MinAlignment");
1212}
1213
1214Record *TreePredicateFn::getScalarMemoryVT() const {
1215  Record *R = getOrigPatFragRecord()->getRecord();
1216  if (R->isValueUnset("ScalarMemoryVT"))
1217    return nullptr;
1218  return R->getValueAsDef("ScalarMemoryVT");
1219}
1220bool TreePredicateFn::hasGISelPredicateCode() const {
1221  return !PatFragRec->getRecord()
1222              ->getValueAsString("GISelPredicateCode")
1223              .empty();
1224}
1225std::string TreePredicateFn::getGISelPredicateCode() const {
1226  return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1227}
1228
1229StringRef TreePredicateFn::getImmType() const {
1230  if (immCodeUsesAPInt())
1231    return "const APInt &";
1232  if (immCodeUsesAPFloat())
1233    return "const APFloat &";
1234  return "int64_t";
1235}
1236
1237StringRef TreePredicateFn::getImmTypeIdentifier() const {
1238  if (immCodeUsesAPInt())
1239    return "APInt";
1240  else if (immCodeUsesAPFloat())
1241    return "APFloat";
1242  return "I64";
1243}
1244
1245/// isAlwaysTrue - Return true if this is a noop predicate.
1246bool TreePredicateFn::isAlwaysTrue() const {
1247  return !hasPredCode() && !hasImmCode();
1248}
1249
1250/// Return the name to use in the generated code to reference this, this is
1251/// "Predicate_foo" if from a pattern fragment "foo".
1252std::string TreePredicateFn::getFnName() const {
1253  return "Predicate_" + PatFragRec->getRecord()->getName().str();
1254}
1255
1256/// getCodeToRunOnSDNode - Return the code for the function body that
1257/// evaluates this predicate.  The argument is expected to be in "Node",
1258/// not N.  This handles casting and conversion to a concrete node type as
1259/// appropriate.
1260std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1261  // Handle immediate predicates first.
1262  std::string ImmCode = getImmCode();
1263  if (!ImmCode.empty()) {
1264    if (isLoad())
1265      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1266                      "IsLoad cannot be used with ImmLeaf or its subclasses");
1267    if (isStore())
1268      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1269                      "IsStore cannot be used with ImmLeaf or its subclasses");
1270    if (isUnindexed())
1271      PrintFatalError(
1272          getOrigPatFragRecord()->getRecord()->getLoc(),
1273          "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1274    if (isNonExtLoad())
1275      PrintFatalError(
1276          getOrigPatFragRecord()->getRecord()->getLoc(),
1277          "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1278    if (isAnyExtLoad())
1279      PrintFatalError(
1280          getOrigPatFragRecord()->getRecord()->getLoc(),
1281          "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1282    if (isSignExtLoad())
1283      PrintFatalError(
1284          getOrigPatFragRecord()->getRecord()->getLoc(),
1285          "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1286    if (isZeroExtLoad())
1287      PrintFatalError(
1288          getOrigPatFragRecord()->getRecord()->getLoc(),
1289          "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1290    if (isNonTruncStore())
1291      PrintFatalError(
1292          getOrigPatFragRecord()->getRecord()->getLoc(),
1293          "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1294    if (isTruncStore())
1295      PrintFatalError(
1296          getOrigPatFragRecord()->getRecord()->getLoc(),
1297          "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1298    if (getMemoryVT())
1299      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1300                      "MemoryVT cannot be used with ImmLeaf or its subclasses");
1301    if (getScalarMemoryVT())
1302      PrintFatalError(
1303          getOrigPatFragRecord()->getRecord()->getLoc(),
1304          "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1305
1306    std::string Result = ("    " + getImmType() + " Imm = ").str();
1307    if (immCodeUsesAPFloat())
1308      Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1309    else if (immCodeUsesAPInt())
1310      Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1311    else
1312      Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1313    return Result + ImmCode;
1314  }
1315
1316  // Handle arbitrary node predicates.
1317  assert(hasPredCode() && "Don't have any predicate code!");
1318
1319  // If this is using PatFrags, there are multiple trees to search. They should
1320  // all have the same class.  FIXME: Is there a way to find a common
1321  // superclass?
1322  StringRef ClassName;
1323  for (const auto &Tree : PatFragRec->getTrees()) {
1324    StringRef TreeClassName;
1325    if (Tree->isLeaf())
1326      TreeClassName = "SDNode";
1327    else {
1328      Record *Op = Tree->getOperator();
1329      const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1330      TreeClassName = Info.getSDClassName();
1331    }
1332
1333    if (ClassName.empty())
1334      ClassName = TreeClassName;
1335    else if (ClassName != TreeClassName) {
1336      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1337                      "PatFrags trees do not have consistent class");
1338    }
1339  }
1340
1341  std::string Result;
1342  if (ClassName == "SDNode")
1343    Result = "    SDNode *N = Node;\n";
1344  else
1345    Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1346
1347  return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1348}
1349
1350//===----------------------------------------------------------------------===//
1351// PatternToMatch implementation
1352//
1353
1354static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1355  if (!P->isLeaf())
1356    return false;
1357  DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1358  if (!DI)
1359    return false;
1360
1361  Record *R = DI->getDef();
1362  return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1363}
1364
1365/// getPatternSize - Return the 'size' of this pattern.  We want to match large
1366/// patterns before small ones.  This is used to determine the size of a
1367/// pattern.
1368static unsigned getPatternSize(const TreePatternNode *P,
1369                               const CodeGenDAGPatterns &CGP) {
1370  unsigned Size = 3;  // The node itself.
1371  // If the root node is a ConstantSDNode, increases its size.
1372  // e.g. (set R32:$dst, 0).
1373  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1374    Size += 2;
1375
1376  if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1377    Size += AM->getComplexity();
1378    // We don't want to count any children twice, so return early.
1379    return Size;
1380  }
1381
1382  // If this node has some predicate function that must match, it adds to the
1383  // complexity of this node.
1384  if (!P->getPredicateCalls().empty())
1385    ++Size;
1386
1387  // Count children in the count if they are also nodes.
1388  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1389    const TreePatternNode *Child = P->getChild(i);
1390    if (!Child->isLeaf() && Child->getNumTypes()) {
1391      const TypeSetByHwMode &T0 = Child->getExtType(0);
1392      // At this point, all variable type sets should be simple, i.e. only
1393      // have a default mode.
1394      if (T0.getMachineValueType() != MVT::Other) {
1395        Size += getPatternSize(Child, CGP);
1396        continue;
1397      }
1398    }
1399    if (Child->isLeaf()) {
1400      if (isa<IntInit>(Child->getLeafValue()))
1401        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1402      else if (Child->getComplexPatternInfo(CGP))
1403        Size += getPatternSize(Child, CGP);
1404      else if (isImmAllOnesAllZerosMatch(Child))
1405        Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1406      else if (!Child->getPredicateCalls().empty())
1407        ++Size;
1408    }
1409  }
1410
1411  return Size;
1412}
1413
1414/// Compute the complexity metric for the input pattern.  This roughly
1415/// corresponds to the number of nodes that are covered.
1416int PatternToMatch::
1417getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1418  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1419}
1420
1421/// getPredicateCheck - Return a single string containing all of this
1422/// pattern's predicates concatenated with "&&" operators.
1423///
1424std::string PatternToMatch::getPredicateCheck() const {
1425  SmallVector<const Predicate*,4> PredList;
1426  for (const Predicate &P : Predicates) {
1427    if (!P.getCondString().empty())
1428      PredList.push_back(&P);
1429  }
1430  llvm::sort(PredList, deref<std::less<>>());
1431
1432  std::string Check;
1433  for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1434    if (i != 0)
1435      Check += " && ";
1436    Check += '(' + PredList[i]->getCondString() + ')';
1437  }
1438  return Check;
1439}
1440
1441//===----------------------------------------------------------------------===//
1442// SDTypeConstraint implementation
1443//
1444
1445SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1446  OperandNo = R->getValueAsInt("OperandNum");
1447
1448  if (R->isSubClassOf("SDTCisVT")) {
1449    ConstraintType = SDTCisVT;
1450    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1451    for (const auto &P : VVT)
1452      if (P.second == MVT::isVoid)
1453        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1454  } else if (R->isSubClassOf("SDTCisPtrTy")) {
1455    ConstraintType = SDTCisPtrTy;
1456  } else if (R->isSubClassOf("SDTCisInt")) {
1457    ConstraintType = SDTCisInt;
1458  } else if (R->isSubClassOf("SDTCisFP")) {
1459    ConstraintType = SDTCisFP;
1460  } else if (R->isSubClassOf("SDTCisVec")) {
1461    ConstraintType = SDTCisVec;
1462  } else if (R->isSubClassOf("SDTCisSameAs")) {
1463    ConstraintType = SDTCisSameAs;
1464    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1465  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1466    ConstraintType = SDTCisVTSmallerThanOp;
1467    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1468      R->getValueAsInt("OtherOperandNum");
1469  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1470    ConstraintType = SDTCisOpSmallerThanOp;
1471    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1472      R->getValueAsInt("BigOperandNum");
1473  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1474    ConstraintType = SDTCisEltOfVec;
1475    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1476  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1477    ConstraintType = SDTCisSubVecOfVec;
1478    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1479      R->getValueAsInt("OtherOpNum");
1480  } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1481    ConstraintType = SDTCVecEltisVT;
1482    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1483    for (const auto &P : VVT) {
1484      MVT T = P.second;
1485      if (T.isVector())
1486        PrintFatalError(R->getLoc(),
1487                        "Cannot use vector type as SDTCVecEltisVT");
1488      if (!T.isInteger() && !T.isFloatingPoint())
1489        PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1490                                     "as SDTCVecEltisVT");
1491    }
1492  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1493    ConstraintType = SDTCisSameNumEltsAs;
1494    x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1495      R->getValueAsInt("OtherOperandNum");
1496  } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1497    ConstraintType = SDTCisSameSizeAs;
1498    x.SDTCisSameSizeAs_Info.OtherOperandNum =
1499      R->getValueAsInt("OtherOperandNum");
1500  } else {
1501    PrintFatalError(R->getLoc(),
1502                    "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1503  }
1504}
1505
1506/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1507/// N, and the result number in ResNo.
1508static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1509                                      const SDNodeInfo &NodeInfo,
1510                                      unsigned &ResNo) {
1511  unsigned NumResults = NodeInfo.getNumResults();
1512  if (OpNo < NumResults) {
1513    ResNo = OpNo;
1514    return N;
1515  }
1516
1517  OpNo -= NumResults;
1518
1519  if (OpNo >= N->getNumChildren()) {
1520    std::string S;
1521    raw_string_ostream OS(S);
1522    OS << "Invalid operand number in type constraint "
1523           << (OpNo+NumResults) << " ";
1524    N->print(OS);
1525    PrintFatalError(OS.str());
1526  }
1527
1528  return N->getChild(OpNo);
1529}
1530
1531/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1532/// constraint to the nodes operands.  This returns true if it makes a
1533/// change, false otherwise.  If a type contradiction is found, flag an error.
1534bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1535                                           const SDNodeInfo &NodeInfo,
1536                                           TreePattern &TP) const {
1537  if (TP.hasError())
1538    return false;
1539
1540  unsigned ResNo = 0; // The result number being referenced.
1541  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1542  TypeInfer &TI = TP.getInfer();
1543
1544  switch (ConstraintType) {
1545  case SDTCisVT:
1546    // Operand must be a particular type.
1547    return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1548  case SDTCisPtrTy:
1549    // Operand must be same as target pointer type.
1550    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1551  case SDTCisInt:
1552    // Require it to be one of the legal integer VTs.
1553     return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1554  case SDTCisFP:
1555    // Require it to be one of the legal fp VTs.
1556    return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1557  case SDTCisVec:
1558    // Require it to be one of the legal vector VTs.
1559    return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1560  case SDTCisSameAs: {
1561    unsigned OResNo = 0;
1562    TreePatternNode *OtherNode =
1563      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1564    return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1565           OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1566  }
1567  case SDTCisVTSmallerThanOp: {
1568    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1569    // have an integer type that is smaller than the VT.
1570    if (!NodeToApply->isLeaf() ||
1571        !isa<DefInit>(NodeToApply->getLeafValue()) ||
1572        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1573               ->isSubClassOf("ValueType")) {
1574      TP.error(N->getOperator()->getName() + " expects a VT operand!");
1575      return false;
1576    }
1577    DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1578    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1579    auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1580    TypeSetByHwMode TypeListTmp(VVT);
1581
1582    unsigned OResNo = 0;
1583    TreePatternNode *OtherNode =
1584      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1585                    OResNo);
1586
1587    return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1588  }
1589  case SDTCisOpSmallerThanOp: {
1590    unsigned BResNo = 0;
1591    TreePatternNode *BigOperand =
1592      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1593                    BResNo);
1594    return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1595                                 BigOperand->getExtType(BResNo));
1596  }
1597  case SDTCisEltOfVec: {
1598    unsigned VResNo = 0;
1599    TreePatternNode *VecOperand =
1600      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1601                    VResNo);
1602    // Filter vector types out of VecOperand that don't have the right element
1603    // type.
1604    return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1605                                     NodeToApply->getExtType(ResNo));
1606  }
1607  case SDTCisSubVecOfVec: {
1608    unsigned VResNo = 0;
1609    TreePatternNode *BigVecOperand =
1610      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1611                    VResNo);
1612
1613    // Filter vector types out of BigVecOperand that don't have the
1614    // right subvector type.
1615    return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1616                                           NodeToApply->getExtType(ResNo));
1617  }
1618  case SDTCVecEltisVT: {
1619    return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1620  }
1621  case SDTCisSameNumEltsAs: {
1622    unsigned OResNo = 0;
1623    TreePatternNode *OtherNode =
1624      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1625                    N, NodeInfo, OResNo);
1626    return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1627                                 NodeToApply->getExtType(ResNo));
1628  }
1629  case SDTCisSameSizeAs: {
1630    unsigned OResNo = 0;
1631    TreePatternNode *OtherNode =
1632      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1633                    N, NodeInfo, OResNo);
1634    return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1635                              NodeToApply->getExtType(ResNo));
1636  }
1637  }
1638  llvm_unreachable("Invalid ConstraintType!");
1639}
1640
1641// Update the node type to match an instruction operand or result as specified
1642// in the ins or outs lists on the instruction definition. Return true if the
1643// type was actually changed.
1644bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1645                                             Record *Operand,
1646                                             TreePattern &TP) {
1647  // The 'unknown' operand indicates that types should be inferred from the
1648  // context.
1649  if (Operand->isSubClassOf("unknown_class"))
1650    return false;
1651
1652  // The Operand class specifies a type directly.
1653  if (Operand->isSubClassOf("Operand")) {
1654    Record *R = Operand->getValueAsDef("Type");
1655    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1656    return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1657  }
1658
1659  // PointerLikeRegClass has a type that is determined at runtime.
1660  if (Operand->isSubClassOf("PointerLikeRegClass"))
1661    return UpdateNodeType(ResNo, MVT::iPTR, TP);
1662
1663  // Both RegisterClass and RegisterOperand operands derive their types from a
1664  // register class def.
1665  Record *RC = nullptr;
1666  if (Operand->isSubClassOf("RegisterClass"))
1667    RC = Operand;
1668  else if (Operand->isSubClassOf("RegisterOperand"))
1669    RC = Operand->getValueAsDef("RegClass");
1670
1671  assert(RC && "Unknown operand type");
1672  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1673  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1674}
1675
1676bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1677  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1678    if (!TP.getInfer().isConcrete(Types[i], true))
1679      return true;
1680  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1681    if (getChild(i)->ContainsUnresolvedType(TP))
1682      return true;
1683  return false;
1684}
1685
1686bool TreePatternNode::hasProperTypeByHwMode() const {
1687  for (const TypeSetByHwMode &S : Types)
1688    if (!S.isDefaultOnly())
1689      return true;
1690  for (const TreePatternNodePtr &C : Children)
1691    if (C->hasProperTypeByHwMode())
1692      return true;
1693  return false;
1694}
1695
1696bool TreePatternNode::hasPossibleType() const {
1697  for (const TypeSetByHwMode &S : Types)
1698    if (!S.isPossible())
1699      return false;
1700  for (const TreePatternNodePtr &C : Children)
1701    if (!C->hasPossibleType())
1702      return false;
1703  return true;
1704}
1705
1706bool TreePatternNode::setDefaultMode(unsigned Mode) {
1707  for (TypeSetByHwMode &S : Types) {
1708    S.makeSimple(Mode);
1709    // Check if the selected mode had a type conflict.
1710    if (S.get(DefaultMode).empty())
1711      return false;
1712  }
1713  for (const TreePatternNodePtr &C : Children)
1714    if (!C->setDefaultMode(Mode))
1715      return false;
1716  return true;
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SDNodeInfo implementation
1721//
1722SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1723  EnumName    = R->getValueAsString("Opcode");
1724  SDClassName = R->getValueAsString("SDClass");
1725  Record *TypeProfile = R->getValueAsDef("TypeProfile");
1726  NumResults = TypeProfile->getValueAsInt("NumResults");
1727  NumOperands = TypeProfile->getValueAsInt("NumOperands");
1728
1729  // Parse the properties.
1730  Properties = parseSDPatternOperatorProperties(R);
1731
1732  // Parse the type constraints.
1733  std::vector<Record*> ConstraintList =
1734    TypeProfile->getValueAsListOfDefs("Constraints");
1735  for (Record *R : ConstraintList)
1736    TypeConstraints.emplace_back(R, CGH);
1737}
1738
1739/// getKnownType - If the type constraints on this node imply a fixed type
1740/// (e.g. all stores return void, etc), then return it as an
1741/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1742MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1743  unsigned NumResults = getNumResults();
1744  assert(NumResults <= 1 &&
1745         "We only work with nodes with zero or one result so far!");
1746  assert(ResNo == 0 && "Only handles single result nodes so far");
1747
1748  for (const SDTypeConstraint &Constraint : TypeConstraints) {
1749    // Make sure that this applies to the correct node result.
1750    if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1751      continue;
1752
1753    switch (Constraint.ConstraintType) {
1754    default: break;
1755    case SDTypeConstraint::SDTCisVT:
1756      if (Constraint.VVT.isSimple())
1757        return Constraint.VVT.getSimple().SimpleTy;
1758      break;
1759    case SDTypeConstraint::SDTCisPtrTy:
1760      return MVT::iPTR;
1761    }
1762  }
1763  return MVT::Other;
1764}
1765
1766//===----------------------------------------------------------------------===//
1767// TreePatternNode implementation
1768//
1769
1770static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1771  if (Operator->getName() == "set" ||
1772      Operator->getName() == "implicit")
1773    return 0;  // All return nothing.
1774
1775  if (Operator->isSubClassOf("Intrinsic"))
1776    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1777
1778  if (Operator->isSubClassOf("SDNode"))
1779    return CDP.getSDNodeInfo(Operator).getNumResults();
1780
1781  if (Operator->isSubClassOf("PatFrags")) {
1782    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1783    // the forward reference case where one pattern fragment references another
1784    // before it is processed.
1785    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1786      // The number of results of a fragment with alternative records is the
1787      // maximum number of results across all alternatives.
1788      unsigned NumResults = 0;
1789      for (auto T : PFRec->getTrees())
1790        NumResults = std::max(NumResults, T->getNumTypes());
1791      return NumResults;
1792    }
1793
1794    ListInit *LI = Operator->getValueAsListInit("Fragments");
1795    assert(LI && "Invalid Fragment");
1796    unsigned NumResults = 0;
1797    for (Init *I : LI->getValues()) {
1798      Record *Op = nullptr;
1799      if (DagInit *Dag = dyn_cast<DagInit>(I))
1800        if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1801          Op = DI->getDef();
1802      assert(Op && "Invalid Fragment");
1803      NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1804    }
1805    return NumResults;
1806  }
1807
1808  if (Operator->isSubClassOf("Instruction")) {
1809    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1810
1811    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1812
1813    // Subtract any defaulted outputs.
1814    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1815      Record *OperandNode = InstInfo.Operands[i].Rec;
1816
1817      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1818          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1819        --NumDefsToAdd;
1820    }
1821
1822    // Add on one implicit def if it has a resolvable type.
1823    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1824      ++NumDefsToAdd;
1825    return NumDefsToAdd;
1826  }
1827
1828  if (Operator->isSubClassOf("SDNodeXForm"))
1829    return 1;  // FIXME: Generalize SDNodeXForm
1830
1831  if (Operator->isSubClassOf("ValueType"))
1832    return 1;  // A type-cast of one result.
1833
1834  if (Operator->isSubClassOf("ComplexPattern"))
1835    return 1;
1836
1837  errs() << *Operator;
1838  PrintFatalError("Unhandled node in GetNumNodeResults");
1839}
1840
1841void TreePatternNode::print(raw_ostream &OS) const {
1842  if (isLeaf())
1843    OS << *getLeafValue();
1844  else
1845    OS << '(' << getOperator()->getName();
1846
1847  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1848    OS << ':';
1849    getExtType(i).writeToStream(OS);
1850  }
1851
1852  if (!isLeaf()) {
1853    if (getNumChildren() != 0) {
1854      OS << " ";
1855      getChild(0)->print(OS);
1856      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1857        OS << ", ";
1858        getChild(i)->print(OS);
1859      }
1860    }
1861    OS << ")";
1862  }
1863
1864  for (const TreePredicateCall &Pred : PredicateCalls) {
1865    OS << "<<P:";
1866    if (Pred.Scope)
1867      OS << Pred.Scope << ":";
1868    OS << Pred.Fn.getFnName() << ">>";
1869  }
1870  if (TransformFn)
1871    OS << "<<X:" << TransformFn->getName() << ">>";
1872  if (!getName().empty())
1873    OS << ":$" << getName();
1874
1875  for (const ScopedName &Name : NamesAsPredicateArg)
1876    OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1877}
1878void TreePatternNode::dump() const {
1879  print(errs());
1880}
1881
1882/// isIsomorphicTo - Return true if this node is recursively
1883/// isomorphic to the specified node.  For this comparison, the node's
1884/// entire state is considered. The assigned name is ignored, since
1885/// nodes with differing names are considered isomorphic. However, if
1886/// the assigned name is present in the dependent variable set, then
1887/// the assigned name is considered significant and the node is
1888/// isomorphic if the names match.
1889bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1890                                     const MultipleUseVarSet &DepVars) const {
1891  if (N == this) return true;
1892  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1893      getPredicateCalls() != N->getPredicateCalls() ||
1894      getTransformFn() != N->getTransformFn())
1895    return false;
1896
1897  if (isLeaf()) {
1898    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1899      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1900        return ((DI->getDef() == NDI->getDef())
1901                && (DepVars.find(getName()) == DepVars.end()
1902                    || getName() == N->getName()));
1903      }
1904    }
1905    return getLeafValue() == N->getLeafValue();
1906  }
1907
1908  if (N->getOperator() != getOperator() ||
1909      N->getNumChildren() != getNumChildren()) return false;
1910  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1911    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1912      return false;
1913  return true;
1914}
1915
1916/// clone - Make a copy of this tree and all of its children.
1917///
1918TreePatternNodePtr TreePatternNode::clone() const {
1919  TreePatternNodePtr New;
1920  if (isLeaf()) {
1921    New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1922  } else {
1923    std::vector<TreePatternNodePtr> CChildren;
1924    CChildren.reserve(Children.size());
1925    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1926      CChildren.push_back(getChild(i)->clone());
1927    New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1928                                            getNumTypes());
1929  }
1930  New->setName(getName());
1931  New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1932  New->Types = Types;
1933  New->setPredicateCalls(getPredicateCalls());
1934  New->setTransformFn(getTransformFn());
1935  return New;
1936}
1937
1938/// RemoveAllTypes - Recursively strip all the types of this tree.
1939void TreePatternNode::RemoveAllTypes() {
1940  // Reset to unknown type.
1941  std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1942  if (isLeaf()) return;
1943  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1944    getChild(i)->RemoveAllTypes();
1945}
1946
1947
1948/// SubstituteFormalArguments - Replace the formal arguments in this tree
1949/// with actual values specified by ArgMap.
1950void TreePatternNode::SubstituteFormalArguments(
1951    std::map<std::string, TreePatternNodePtr> &ArgMap) {
1952  if (isLeaf()) return;
1953
1954  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1955    TreePatternNode *Child = getChild(i);
1956    if (Child->isLeaf()) {
1957      Init *Val = Child->getLeafValue();
1958      // Note that, when substituting into an output pattern, Val might be an
1959      // UnsetInit.
1960      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1961          cast<DefInit>(Val)->getDef()->getName() == "node")) {
1962        // We found a use of a formal argument, replace it with its value.
1963        TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1964        assert(NewChild && "Couldn't find formal argument!");
1965        assert((Child->getPredicateCalls().empty() ||
1966                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1967               "Non-empty child predicate clobbered!");
1968        setChild(i, std::move(NewChild));
1969      }
1970    } else {
1971      getChild(i)->SubstituteFormalArguments(ArgMap);
1972    }
1973  }
1974}
1975
1976
1977/// InlinePatternFragments - If this pattern refers to any pattern
1978/// fragments, return the set of inlined versions (this can be more than
1979/// one if a PatFrags record has multiple alternatives).
1980void TreePatternNode::InlinePatternFragments(
1981  TreePatternNodePtr T, TreePattern &TP,
1982  std::vector<TreePatternNodePtr> &OutAlternatives) {
1983
1984  if (TP.hasError())
1985    return;
1986
1987  if (isLeaf()) {
1988    OutAlternatives.push_back(T);  // nothing to do.
1989    return;
1990  }
1991
1992  Record *Op = getOperator();
1993
1994  if (!Op->isSubClassOf("PatFrags")) {
1995    if (getNumChildren() == 0) {
1996      OutAlternatives.push_back(T);
1997      return;
1998    }
1999
2000    // Recursively inline children nodes.
2001    std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2002    ChildAlternatives.resize(getNumChildren());
2003    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2004      TreePatternNodePtr Child = getChildShared(i);
2005      Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2006      // If there are no alternatives for any child, there are no
2007      // alternatives for this expression as whole.
2008      if (ChildAlternatives[i].empty())
2009        return;
2010
2011      for (auto NewChild : ChildAlternatives[i])
2012        assert((Child->getPredicateCalls().empty() ||
2013                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2014               "Non-empty child predicate clobbered!");
2015    }
2016
2017    // The end result is an all-pairs construction of the resultant pattern.
2018    std::vector<unsigned> Idxs;
2019    Idxs.resize(ChildAlternatives.size());
2020    bool NotDone;
2021    do {
2022      // Create the variant and add it to the output list.
2023      std::vector<TreePatternNodePtr> NewChildren;
2024      for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2025        NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2026      TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2027          getOperator(), std::move(NewChildren), getNumTypes());
2028
2029      // Copy over properties.
2030      R->setName(getName());
2031      R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2032      R->setPredicateCalls(getPredicateCalls());
2033      R->setTransformFn(getTransformFn());
2034      for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2035        R->setType(i, getExtType(i));
2036      for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2037        R->setResultIndex(i, getResultIndex(i));
2038
2039      // Register alternative.
2040      OutAlternatives.push_back(R);
2041
2042      // Increment indices to the next permutation by incrementing the
2043      // indices from last index backward, e.g., generate the sequence
2044      // [0, 0], [0, 1], [1, 0], [1, 1].
2045      int IdxsIdx;
2046      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2047        if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2048          Idxs[IdxsIdx] = 0;
2049        else
2050          break;
2051      }
2052      NotDone = (IdxsIdx >= 0);
2053    } while (NotDone);
2054
2055    return;
2056  }
2057
2058  // Otherwise, we found a reference to a fragment.  First, look up its
2059  // TreePattern record.
2060  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2061
2062  // Verify that we are passing the right number of operands.
2063  if (Frag->getNumArgs() != Children.size()) {
2064    TP.error("'" + Op->getName() + "' fragment requires " +
2065             Twine(Frag->getNumArgs()) + " operands!");
2066    return;
2067  }
2068
2069  TreePredicateFn PredFn(Frag);
2070  unsigned Scope = 0;
2071  if (TreePredicateFn(Frag).usesOperands())
2072    Scope = TP.getDAGPatterns().allocateScope();
2073
2074  // Compute the map of formal to actual arguments.
2075  std::map<std::string, TreePatternNodePtr> ArgMap;
2076  for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2077    TreePatternNodePtr Child = getChildShared(i);
2078    if (Scope != 0) {
2079      Child = Child->clone();
2080      Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2081    }
2082    ArgMap[Frag->getArgName(i)] = Child;
2083  }
2084
2085  // Loop over all fragment alternatives.
2086  for (auto Alternative : Frag->getTrees()) {
2087    TreePatternNodePtr FragTree = Alternative->clone();
2088
2089    if (!PredFn.isAlwaysTrue())
2090      FragTree->addPredicateCall(PredFn, Scope);
2091
2092    // Resolve formal arguments to their actual value.
2093    if (Frag->getNumArgs())
2094      FragTree->SubstituteFormalArguments(ArgMap);
2095
2096    // Transfer types.  Note that the resolved alternative may have fewer
2097    // (but not more) results than the PatFrags node.
2098    FragTree->setName(getName());
2099    for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2100      FragTree->UpdateNodeType(i, getExtType(i), TP);
2101
2102    // Transfer in the old predicates.
2103    for (const TreePredicateCall &Pred : getPredicateCalls())
2104      FragTree->addPredicateCall(Pred);
2105
2106    // The fragment we inlined could have recursive inlining that is needed.  See
2107    // if there are any pattern fragments in it and inline them as needed.
2108    FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2109  }
2110}
2111
2112/// getImplicitType - Check to see if the specified record has an implicit
2113/// type which should be applied to it.  This will infer the type of register
2114/// references from the register file information, for example.
2115///
2116/// When Unnamed is set, return the type of a DAG operand with no name, such as
2117/// the F8RC register class argument in:
2118///
2119///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2120///
2121/// When Unnamed is false, return the type of a named DAG operand such as the
2122/// GPR:$src operand above.
2123///
2124static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2125                                       bool NotRegisters,
2126                                       bool Unnamed,
2127                                       TreePattern &TP) {
2128  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2129
2130  // Check to see if this is a register operand.
2131  if (R->isSubClassOf("RegisterOperand")) {
2132    assert(ResNo == 0 && "Regoperand ref only has one result!");
2133    if (NotRegisters)
2134      return TypeSetByHwMode(); // Unknown.
2135    Record *RegClass = R->getValueAsDef("RegClass");
2136    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2137    return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2138  }
2139
2140  // Check to see if this is a register or a register class.
2141  if (R->isSubClassOf("RegisterClass")) {
2142    assert(ResNo == 0 && "Regclass ref only has one result!");
2143    // An unnamed register class represents itself as an i32 immediate, for
2144    // example on a COPY_TO_REGCLASS instruction.
2145    if (Unnamed)
2146      return TypeSetByHwMode(MVT::i32);
2147
2148    // In a named operand, the register class provides the possible set of
2149    // types.
2150    if (NotRegisters)
2151      return TypeSetByHwMode(); // Unknown.
2152    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2153    return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2154  }
2155
2156  if (R->isSubClassOf("PatFrags")) {
2157    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2158    // Pattern fragment types will be resolved when they are inlined.
2159    return TypeSetByHwMode(); // Unknown.
2160  }
2161
2162  if (R->isSubClassOf("Register")) {
2163    assert(ResNo == 0 && "Registers only produce one result!");
2164    if (NotRegisters)
2165      return TypeSetByHwMode(); // Unknown.
2166    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2167    return TypeSetByHwMode(T.getRegisterVTs(R));
2168  }
2169
2170  if (R->isSubClassOf("SubRegIndex")) {
2171    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2172    return TypeSetByHwMode(MVT::i32);
2173  }
2174
2175  if (R->isSubClassOf("ValueType")) {
2176    assert(ResNo == 0 && "This node only has one result!");
2177    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2178    //
2179    //   (sext_inreg GPR:$src, i16)
2180    //                         ~~~
2181    if (Unnamed)
2182      return TypeSetByHwMode(MVT::Other);
2183    // With a name, the ValueType simply provides the type of the named
2184    // variable.
2185    //
2186    //   (sext_inreg i32:$src, i16)
2187    //               ~~~~~~~~
2188    if (NotRegisters)
2189      return TypeSetByHwMode(); // Unknown.
2190    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2191    return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2192  }
2193
2194  if (R->isSubClassOf("CondCode")) {
2195    assert(ResNo == 0 && "This node only has one result!");
2196    // Using a CondCodeSDNode.
2197    return TypeSetByHwMode(MVT::Other);
2198  }
2199
2200  if (R->isSubClassOf("ComplexPattern")) {
2201    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2202    if (NotRegisters)
2203      return TypeSetByHwMode(); // Unknown.
2204    return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2205  }
2206  if (R->isSubClassOf("PointerLikeRegClass")) {
2207    assert(ResNo == 0 && "Regclass can only have one result!");
2208    TypeSetByHwMode VTS(MVT::iPTR);
2209    TP.getInfer().expandOverloads(VTS);
2210    return VTS;
2211  }
2212
2213  if (R->getName() == "node" || R->getName() == "srcvalue" ||
2214      R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2215      R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2216    // Placeholder.
2217    return TypeSetByHwMode(); // Unknown.
2218  }
2219
2220  if (R->isSubClassOf("Operand")) {
2221    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2222    Record *T = R->getValueAsDef("Type");
2223    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2224  }
2225
2226  TP.error("Unknown node flavor used in pattern: " + R->getName());
2227  return TypeSetByHwMode(MVT::Other);
2228}
2229
2230
2231/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2232/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2233const CodeGenIntrinsic *TreePatternNode::
2234getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2235  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2236      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2237      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2238    return nullptr;
2239
2240  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2241  return &CDP.getIntrinsicInfo(IID);
2242}
2243
2244/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2245/// return the ComplexPattern information, otherwise return null.
2246const ComplexPattern *
2247TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2248  Record *Rec;
2249  if (isLeaf()) {
2250    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2251    if (!DI)
2252      return nullptr;
2253    Rec = DI->getDef();
2254  } else
2255    Rec = getOperator();
2256
2257  if (!Rec->isSubClassOf("ComplexPattern"))
2258    return nullptr;
2259  return &CGP.getComplexPattern(Rec);
2260}
2261
2262unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2263  // A ComplexPattern specifically declares how many results it fills in.
2264  if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2265    return CP->getNumOperands();
2266
2267  // If MIOperandInfo is specified, that gives the count.
2268  if (isLeaf()) {
2269    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2270    if (DI && DI->getDef()->isSubClassOf("Operand")) {
2271      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2272      if (MIOps->getNumArgs())
2273        return MIOps->getNumArgs();
2274    }
2275  }
2276
2277  // Otherwise there is just one result.
2278  return 1;
2279}
2280
2281/// NodeHasProperty - Return true if this node has the specified property.
2282bool TreePatternNode::NodeHasProperty(SDNP Property,
2283                                      const CodeGenDAGPatterns &CGP) const {
2284  if (isLeaf()) {
2285    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2286      return CP->hasProperty(Property);
2287
2288    return false;
2289  }
2290
2291  if (Property != SDNPHasChain) {
2292    // The chain proprety is already present on the different intrinsic node
2293    // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2294    // on the intrinsic. Anything else is specific to the individual intrinsic.
2295    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2296      return Int->hasProperty(Property);
2297  }
2298
2299  if (!Operator->isSubClassOf("SDPatternOperator"))
2300    return false;
2301
2302  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2303}
2304
2305
2306
2307
2308/// TreeHasProperty - Return true if any node in this tree has the specified
2309/// property.
2310bool TreePatternNode::TreeHasProperty(SDNP Property,
2311                                      const CodeGenDAGPatterns &CGP) const {
2312  if (NodeHasProperty(Property, CGP))
2313    return true;
2314  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2315    if (getChild(i)->TreeHasProperty(Property, CGP))
2316      return true;
2317  return false;
2318}
2319
2320/// isCommutativeIntrinsic - Return true if the node corresponds to a
2321/// commutative intrinsic.
2322bool
2323TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2324  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2325    return Int->isCommutative;
2326  return false;
2327}
2328
2329static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2330  if (!N->isLeaf())
2331    return N->getOperator()->isSubClassOf(Class);
2332
2333  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2334  if (DI && DI->getDef()->isSubClassOf(Class))
2335    return true;
2336
2337  return false;
2338}
2339
2340static void emitTooManyOperandsError(TreePattern &TP,
2341                                     StringRef InstName,
2342                                     unsigned Expected,
2343                                     unsigned Actual) {
2344  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2345           " operands but expected only " + Twine(Expected) + "!");
2346}
2347
2348static void emitTooFewOperandsError(TreePattern &TP,
2349                                    StringRef InstName,
2350                                    unsigned Actual) {
2351  TP.error("Instruction '" + InstName +
2352           "' expects more than the provided " + Twine(Actual) + " operands!");
2353}
2354
2355/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2356/// this node and its children in the tree.  This returns true if it makes a
2357/// change, false otherwise.  If a type contradiction is found, flag an error.
2358bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2359  if (TP.hasError())
2360    return false;
2361
2362  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2363  if (isLeaf()) {
2364    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2365      // If it's a regclass or something else known, include the type.
2366      bool MadeChange = false;
2367      for (unsigned i = 0, e = Types.size(); i != e; ++i)
2368        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2369                                                        NotRegisters,
2370                                                        !hasName(), TP), TP);
2371      return MadeChange;
2372    }
2373
2374    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2375      assert(Types.size() == 1 && "Invalid IntInit");
2376
2377      // Int inits are always integers. :)
2378      bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2379
2380      if (!TP.getInfer().isConcrete(Types[0], false))
2381        return MadeChange;
2382
2383      ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2384      for (auto &P : VVT) {
2385        MVT::SimpleValueType VT = P.second.SimpleTy;
2386        if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2387          continue;
2388        unsigned Size = MVT(VT).getSizeInBits();
2389        // Make sure that the value is representable for this type.
2390        if (Size >= 32)
2391          continue;
2392        // Check that the value doesn't use more bits than we have. It must
2393        // either be a sign- or zero-extended equivalent of the original.
2394        int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2395        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2396            SignBitAndAbove == 1)
2397          continue;
2398
2399        TP.error("Integer value '" + Twine(II->getValue()) +
2400                 "' is out of range for type '" + getEnumName(VT) + "'!");
2401        break;
2402      }
2403      return MadeChange;
2404    }
2405
2406    return false;
2407  }
2408
2409  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2410    bool MadeChange = false;
2411
2412    // Apply the result type to the node.
2413    unsigned NumRetVTs = Int->IS.RetVTs.size();
2414    unsigned NumParamVTs = Int->IS.ParamVTs.size();
2415
2416    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2417      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2418
2419    if (getNumChildren() != NumParamVTs + 1) {
2420      TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2421               " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2422      return false;
2423    }
2424
2425    // Apply type info to the intrinsic ID.
2426    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2427
2428    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2429      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2430
2431      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2432      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2433      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2434    }
2435    return MadeChange;
2436  }
2437
2438  if (getOperator()->isSubClassOf("SDNode")) {
2439    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2440
2441    // Check that the number of operands is sane.  Negative operands -> varargs.
2442    if (NI.getNumOperands() >= 0 &&
2443        getNumChildren() != (unsigned)NI.getNumOperands()) {
2444      TP.error(getOperator()->getName() + " node requires exactly " +
2445               Twine(NI.getNumOperands()) + " operands!");
2446      return false;
2447    }
2448
2449    bool MadeChange = false;
2450    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2451      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2452    MadeChange |= NI.ApplyTypeConstraints(this, TP);
2453    return MadeChange;
2454  }
2455
2456  if (getOperator()->isSubClassOf("Instruction")) {
2457    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2458    CodeGenInstruction &InstInfo =
2459      CDP.getTargetInfo().getInstruction(getOperator());
2460
2461    bool MadeChange = false;
2462
2463    // Apply the result types to the node, these come from the things in the
2464    // (outs) list of the instruction.
2465    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2466                                        Inst.getNumResults());
2467    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2468      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2469
2470    // If the instruction has implicit defs, we apply the first one as a result.
2471    // FIXME: This sucks, it should apply all implicit defs.
2472    if (!InstInfo.ImplicitDefs.empty()) {
2473      unsigned ResNo = NumResultsToAdd;
2474
2475      // FIXME: Generalize to multiple possible types and multiple possible
2476      // ImplicitDefs.
2477      MVT::SimpleValueType VT =
2478        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2479
2480      if (VT != MVT::Other)
2481        MadeChange |= UpdateNodeType(ResNo, VT, TP);
2482    }
2483
2484    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2485    // be the same.
2486    if (getOperator()->getName() == "INSERT_SUBREG") {
2487      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2488      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2489      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2490    } else if (getOperator()->getName() == "REG_SEQUENCE") {
2491      // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2492      // variadic.
2493
2494      unsigned NChild = getNumChildren();
2495      if (NChild < 3) {
2496        TP.error("REG_SEQUENCE requires at least 3 operands!");
2497        return false;
2498      }
2499
2500      if (NChild % 2 == 0) {
2501        TP.error("REG_SEQUENCE requires an odd number of operands!");
2502        return false;
2503      }
2504
2505      if (!isOperandClass(getChild(0), "RegisterClass")) {
2506        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2507        return false;
2508      }
2509
2510      for (unsigned I = 1; I < NChild; I += 2) {
2511        TreePatternNode *SubIdxChild = getChild(I + 1);
2512        if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2513          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2514                   Twine(I + 1) + "!");
2515          return false;
2516        }
2517      }
2518    }
2519
2520    // If one or more operands with a default value appear at the end of the
2521    // formal operand list for an instruction, we allow them to be overridden
2522    // by optional operands provided in the pattern.
2523    //
2524    // But if an operand B without a default appears at any point after an
2525    // operand A with a default, then we don't allow A to be overridden,
2526    // because there would be no way to specify whether the next operand in
2527    // the pattern was intended to override A or skip it.
2528    unsigned NonOverridableOperands = Inst.getNumOperands();
2529    while (NonOverridableOperands > 0 &&
2530           CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2531      --NonOverridableOperands;
2532
2533    unsigned ChildNo = 0;
2534    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2535      Record *OperandNode = Inst.getOperand(i);
2536
2537      // If the operand has a default value, do we use it? We must use the
2538      // default if we've run out of children of the pattern DAG to consume,
2539      // or if the operand is followed by a non-defaulted one.
2540      if (CDP.operandHasDefault(OperandNode) &&
2541          (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2542        continue;
2543
2544      // If we have run out of child nodes and there _isn't_ a default
2545      // value we can use for the next operand, give an error.
2546      if (ChildNo >= getNumChildren()) {
2547        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2548        return false;
2549      }
2550
2551      TreePatternNode *Child = getChild(ChildNo++);
2552      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2553
2554      // If the operand has sub-operands, they may be provided by distinct
2555      // child patterns, so attempt to match each sub-operand separately.
2556      if (OperandNode->isSubClassOf("Operand")) {
2557        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2558        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2559          // But don't do that if the whole operand is being provided by
2560          // a single ComplexPattern-related Operand.
2561
2562          if (Child->getNumMIResults(CDP) < NumArgs) {
2563            // Match first sub-operand against the child we already have.
2564            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2565            MadeChange |=
2566              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2567
2568            // And the remaining sub-operands against subsequent children.
2569            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2570              if (ChildNo >= getNumChildren()) {
2571                emitTooFewOperandsError(TP, getOperator()->getName(),
2572                                        getNumChildren());
2573                return false;
2574              }
2575              Child = getChild(ChildNo++);
2576
2577              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2578              MadeChange |=
2579                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2580            }
2581            continue;
2582          }
2583        }
2584      }
2585
2586      // If we didn't match by pieces above, attempt to match the whole
2587      // operand now.
2588      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2589    }
2590
2591    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2592      emitTooManyOperandsError(TP, getOperator()->getName(),
2593                               ChildNo, getNumChildren());
2594      return false;
2595    }
2596
2597    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2598      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2599    return MadeChange;
2600  }
2601
2602  if (getOperator()->isSubClassOf("ComplexPattern")) {
2603    bool MadeChange = false;
2604
2605    for (unsigned i = 0; i < getNumChildren(); ++i)
2606      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2607
2608    return MadeChange;
2609  }
2610
2611  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2612
2613  // Node transforms always take one operand.
2614  if (getNumChildren() != 1) {
2615    TP.error("Node transform '" + getOperator()->getName() +
2616             "' requires one operand!");
2617    return false;
2618  }
2619
2620  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2621  return MadeChange;
2622}
2623
2624/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2625/// RHS of a commutative operation, not the on LHS.
2626static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2627  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2628    return true;
2629  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2630    return true;
2631  return false;
2632}
2633
2634
2635/// canPatternMatch - If it is impossible for this pattern to match on this
2636/// target, fill in Reason and return false.  Otherwise, return true.  This is
2637/// used as a sanity check for .td files (to prevent people from writing stuff
2638/// that can never possibly work), and to prevent the pattern permuter from
2639/// generating stuff that is useless.
2640bool TreePatternNode::canPatternMatch(std::string &Reason,
2641                                      const CodeGenDAGPatterns &CDP) {
2642  if (isLeaf()) return true;
2643
2644  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2645    if (!getChild(i)->canPatternMatch(Reason, CDP))
2646      return false;
2647
2648  // If this is an intrinsic, handle cases that would make it not match.  For
2649  // example, if an operand is required to be an immediate.
2650  if (getOperator()->isSubClassOf("Intrinsic")) {
2651    // TODO:
2652    return true;
2653  }
2654
2655  if (getOperator()->isSubClassOf("ComplexPattern"))
2656    return true;
2657
2658  // If this node is a commutative operator, check that the LHS isn't an
2659  // immediate.
2660  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2661  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2662  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2663    // Scan all of the operands of the node and make sure that only the last one
2664    // is a constant node, unless the RHS also is.
2665    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2666      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2667      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2668        if (OnlyOnRHSOfCommutative(getChild(i))) {
2669          Reason="Immediate value must be on the RHS of commutative operators!";
2670          return false;
2671        }
2672    }
2673  }
2674
2675  return true;
2676}
2677
2678//===----------------------------------------------------------------------===//
2679// TreePattern implementation
2680//
2681
2682TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2683                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2684                         isInputPattern(isInput), HasError(false),
2685                         Infer(*this) {
2686  for (Init *I : RawPat->getValues())
2687    Trees.push_back(ParseTreePattern(I, ""));
2688}
2689
2690TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2691                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2692                         isInputPattern(isInput), HasError(false),
2693                         Infer(*this) {
2694  Trees.push_back(ParseTreePattern(Pat, ""));
2695}
2696
2697TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2698                         CodeGenDAGPatterns &cdp)
2699    : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2700      Infer(*this) {
2701  Trees.push_back(Pat);
2702}
2703
2704void TreePattern::error(const Twine &Msg) {
2705  if (HasError)
2706    return;
2707  dump();
2708  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2709  HasError = true;
2710}
2711
2712void TreePattern::ComputeNamedNodes() {
2713  for (TreePatternNodePtr &Tree : Trees)
2714    ComputeNamedNodes(Tree.get());
2715}
2716
2717void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2718  if (!N->getName().empty())
2719    NamedNodes[N->getName()].push_back(N);
2720
2721  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2722    ComputeNamedNodes(N->getChild(i));
2723}
2724
2725TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2726                                                 StringRef OpName) {
2727  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2728    Record *R = DI->getDef();
2729
2730    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2731    // TreePatternNode of its own.  For example:
2732    ///   (foo GPR, imm) -> (foo GPR, (imm))
2733    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2734      return ParseTreePattern(
2735        DagInit::get(DI, nullptr,
2736                     std::vector<std::pair<Init*, StringInit*> >()),
2737        OpName);
2738
2739    // Input argument?
2740    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2741    if (R->getName() == "node" && !OpName.empty()) {
2742      if (OpName.empty())
2743        error("'node' argument requires a name to match with operand list");
2744      Args.push_back(OpName);
2745    }
2746
2747    Res->setName(OpName);
2748    return Res;
2749  }
2750
2751  // ?:$name or just $name.
2752  if (isa<UnsetInit>(TheInit)) {
2753    if (OpName.empty())
2754      error("'?' argument requires a name to match with operand list");
2755    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2756    Args.push_back(OpName);
2757    Res->setName(OpName);
2758    return Res;
2759  }
2760
2761  if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2762    if (!OpName.empty())
2763      error("Constant int or bit argument should not have a name!");
2764    if (isa<BitInit>(TheInit))
2765      TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2766    return std::make_shared<TreePatternNode>(TheInit, 1);
2767  }
2768
2769  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2770    // Turn this into an IntInit.
2771    Init *II = BI->convertInitializerTo(IntRecTy::get());
2772    if (!II || !isa<IntInit>(II))
2773      error("Bits value must be constants!");
2774    return ParseTreePattern(II, OpName);
2775  }
2776
2777  DagInit *Dag = dyn_cast<DagInit>(TheInit);
2778  if (!Dag) {
2779    TheInit->print(errs());
2780    error("Pattern has unexpected init kind!");
2781  }
2782  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2783  if (!OpDef) error("Pattern has unexpected operator type!");
2784  Record *Operator = OpDef->getDef();
2785
2786  if (Operator->isSubClassOf("ValueType")) {
2787    // If the operator is a ValueType, then this must be "type cast" of a leaf
2788    // node.
2789    if (Dag->getNumArgs() != 1)
2790      error("Type cast only takes one operand!");
2791
2792    TreePatternNodePtr New =
2793        ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2794
2795    // Apply the type cast.
2796    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2797    const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2798    New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2799
2800    if (!OpName.empty())
2801      error("ValueType cast should not have a name!");
2802    return New;
2803  }
2804
2805  // Verify that this is something that makes sense for an operator.
2806  if (!Operator->isSubClassOf("PatFrags") &&
2807      !Operator->isSubClassOf("SDNode") &&
2808      !Operator->isSubClassOf("Instruction") &&
2809      !Operator->isSubClassOf("SDNodeXForm") &&
2810      !Operator->isSubClassOf("Intrinsic") &&
2811      !Operator->isSubClassOf("ComplexPattern") &&
2812      Operator->getName() != "set" &&
2813      Operator->getName() != "implicit")
2814    error("Unrecognized node '" + Operator->getName() + "'!");
2815
2816  //  Check to see if this is something that is illegal in an input pattern.
2817  if (isInputPattern) {
2818    if (Operator->isSubClassOf("Instruction") ||
2819        Operator->isSubClassOf("SDNodeXForm"))
2820      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2821  } else {
2822    if (Operator->isSubClassOf("Intrinsic"))
2823      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2824
2825    if (Operator->isSubClassOf("SDNode") &&
2826        Operator->getName() != "imm" &&
2827        Operator->getName() != "timm" &&
2828        Operator->getName() != "fpimm" &&
2829        Operator->getName() != "tglobaltlsaddr" &&
2830        Operator->getName() != "tconstpool" &&
2831        Operator->getName() != "tjumptable" &&
2832        Operator->getName() != "tframeindex" &&
2833        Operator->getName() != "texternalsym" &&
2834        Operator->getName() != "tblockaddress" &&
2835        Operator->getName() != "tglobaladdr" &&
2836        Operator->getName() != "bb" &&
2837        Operator->getName() != "vt" &&
2838        Operator->getName() != "mcsym")
2839      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2840  }
2841
2842  std::vector<TreePatternNodePtr> Children;
2843
2844  // Parse all the operands.
2845  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2846    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2847
2848  // Get the actual number of results before Operator is converted to an intrinsic
2849  // node (which is hard-coded to have either zero or one result).
2850  unsigned NumResults = GetNumNodeResults(Operator, CDP);
2851
2852  // If the operator is an intrinsic, then this is just syntactic sugar for
2853  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2854  // convert the intrinsic name to a number.
2855  if (Operator->isSubClassOf("Intrinsic")) {
2856    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2857    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2858
2859    // If this intrinsic returns void, it must have side-effects and thus a
2860    // chain.
2861    if (Int.IS.RetVTs.empty())
2862      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2863    else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2864      // Has side-effects, requires chain.
2865      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2866    else // Otherwise, no chain.
2867      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2868
2869    Children.insert(Children.begin(),
2870                    std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2871  }
2872
2873  if (Operator->isSubClassOf("ComplexPattern")) {
2874    for (unsigned i = 0; i < Children.size(); ++i) {
2875      TreePatternNodePtr Child = Children[i];
2876
2877      if (Child->getName().empty())
2878        error("All arguments to a ComplexPattern must be named");
2879
2880      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2881      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2882      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2883      auto OperandId = std::make_pair(Operator, i);
2884      auto PrevOp = ComplexPatternOperands.find(Child->getName());
2885      if (PrevOp != ComplexPatternOperands.end()) {
2886        if (PrevOp->getValue() != OperandId)
2887          error("All ComplexPattern operands must appear consistently: "
2888                "in the same order in just one ComplexPattern instance.");
2889      } else
2890        ComplexPatternOperands[Child->getName()] = OperandId;
2891    }
2892  }
2893
2894  TreePatternNodePtr Result =
2895      std::make_shared<TreePatternNode>(Operator, std::move(Children),
2896                                        NumResults);
2897  Result->setName(OpName);
2898
2899  if (Dag->getName()) {
2900    assert(Result->getName().empty());
2901    Result->setName(Dag->getNameStr());
2902  }
2903  return Result;
2904}
2905
2906/// SimplifyTree - See if we can simplify this tree to eliminate something that
2907/// will never match in favor of something obvious that will.  This is here
2908/// strictly as a convenience to target authors because it allows them to write
2909/// more type generic things and have useless type casts fold away.
2910///
2911/// This returns true if any change is made.
2912static bool SimplifyTree(TreePatternNodePtr &N) {
2913  if (N->isLeaf())
2914    return false;
2915
2916  // If we have a bitconvert with a resolved type and if the source and
2917  // destination types are the same, then the bitconvert is useless, remove it.
2918  if (N->getOperator()->getName() == "bitconvert" &&
2919      N->getExtType(0).isValueTypeByHwMode(false) &&
2920      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2921      N->getName().empty()) {
2922    N = N->getChildShared(0);
2923    SimplifyTree(N);
2924    return true;
2925  }
2926
2927  // Walk all children.
2928  bool MadeChange = false;
2929  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2930    TreePatternNodePtr Child = N->getChildShared(i);
2931    MadeChange |= SimplifyTree(Child);
2932    N->setChild(i, std::move(Child));
2933  }
2934  return MadeChange;
2935}
2936
2937
2938
2939/// InferAllTypes - Infer/propagate as many types throughout the expression
2940/// patterns as possible.  Return true if all types are inferred, false
2941/// otherwise.  Flags an error if a type contradiction is found.
2942bool TreePattern::
2943InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2944  if (NamedNodes.empty())
2945    ComputeNamedNodes();
2946
2947  bool MadeChange = true;
2948  while (MadeChange) {
2949    MadeChange = false;
2950    for (TreePatternNodePtr &Tree : Trees) {
2951      MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2952      MadeChange |= SimplifyTree(Tree);
2953    }
2954
2955    // If there are constraints on our named nodes, apply them.
2956    for (auto &Entry : NamedNodes) {
2957      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2958
2959      // If we have input named node types, propagate their types to the named
2960      // values here.
2961      if (InNamedTypes) {
2962        if (!InNamedTypes->count(Entry.getKey())) {
2963          error("Node '" + std::string(Entry.getKey()) +
2964                "' in output pattern but not input pattern");
2965          return true;
2966        }
2967
2968        const SmallVectorImpl<TreePatternNode*> &InNodes =
2969          InNamedTypes->find(Entry.getKey())->second;
2970
2971        // The input types should be fully resolved by now.
2972        for (TreePatternNode *Node : Nodes) {
2973          // If this node is a register class, and it is the root of the pattern
2974          // then we're mapping something onto an input register.  We allow
2975          // changing the type of the input register in this case.  This allows
2976          // us to match things like:
2977          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2978          if (Node == Trees[0].get() && Node->isLeaf()) {
2979            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2980            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2981                       DI->getDef()->isSubClassOf("RegisterOperand")))
2982              continue;
2983          }
2984
2985          assert(Node->getNumTypes() == 1 &&
2986                 InNodes[0]->getNumTypes() == 1 &&
2987                 "FIXME: cannot name multiple result nodes yet");
2988          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2989                                             *this);
2990        }
2991      }
2992
2993      // If there are multiple nodes with the same name, they must all have the
2994      // same type.
2995      if (Entry.second.size() > 1) {
2996        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2997          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2998          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2999                 "FIXME: cannot name multiple result nodes yet");
3000
3001          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3002          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3003        }
3004      }
3005    }
3006  }
3007
3008  bool HasUnresolvedTypes = false;
3009  for (const TreePatternNodePtr &Tree : Trees)
3010    HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3011  return !HasUnresolvedTypes;
3012}
3013
3014void TreePattern::print(raw_ostream &OS) const {
3015  OS << getRecord()->getName();
3016  if (!Args.empty()) {
3017    OS << "(" << Args[0];
3018    for (unsigned i = 1, e = Args.size(); i != e; ++i)
3019      OS << ", " << Args[i];
3020    OS << ")";
3021  }
3022  OS << ": ";
3023
3024  if (Trees.size() > 1)
3025    OS << "[\n";
3026  for (const TreePatternNodePtr &Tree : Trees) {
3027    OS << "\t";
3028    Tree->print(OS);
3029    OS << "\n";
3030  }
3031
3032  if (Trees.size() > 1)
3033    OS << "]\n";
3034}
3035
3036void TreePattern::dump() const { print(errs()); }
3037
3038//===----------------------------------------------------------------------===//
3039// CodeGenDAGPatterns implementation
3040//
3041
3042CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3043                                       PatternRewriterFn PatternRewriter)
3044    : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3045      PatternRewriter(PatternRewriter) {
3046
3047  Intrinsics = CodeGenIntrinsicTable(Records);
3048  ParseNodeInfo();
3049  ParseNodeTransforms();
3050  ParseComplexPatterns();
3051  ParsePatternFragments();
3052  ParseDefaultOperands();
3053  ParseInstructions();
3054  ParsePatternFragments(/*OutFrags*/true);
3055  ParsePatterns();
3056
3057  // Break patterns with parameterized types into a series of patterns,
3058  // where each one has a fixed type and is predicated on the conditions
3059  // of the associated HW mode.
3060  ExpandHwModeBasedTypes();
3061
3062  // Generate variants.  For example, commutative patterns can match
3063  // multiple ways.  Add them to PatternsToMatch as well.
3064  GenerateVariants();
3065
3066  // Infer instruction flags.  For example, we can detect loads,
3067  // stores, and side effects in many cases by examining an
3068  // instruction's pattern.
3069  InferInstructionFlags();
3070
3071  // Verify that instruction flags match the patterns.
3072  VerifyInstructionFlags();
3073}
3074
3075Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3076  Record *N = Records.getDef(Name);
3077  if (!N || !N->isSubClassOf("SDNode"))
3078    PrintFatalError("Error getting SDNode '" + Name + "'!");
3079
3080  return N;
3081}
3082
3083// Parse all of the SDNode definitions for the target, populating SDNodes.
3084void CodeGenDAGPatterns::ParseNodeInfo() {
3085  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3086  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3087
3088  while (!Nodes.empty()) {
3089    Record *R = Nodes.back();
3090    SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3091    Nodes.pop_back();
3092  }
3093
3094  // Get the builtin intrinsic nodes.
3095  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3096  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3097  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3098}
3099
3100/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3101/// map, and emit them to the file as functions.
3102void CodeGenDAGPatterns::ParseNodeTransforms() {
3103  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3104  while (!Xforms.empty()) {
3105    Record *XFormNode = Xforms.back();
3106    Record *SDNode = XFormNode->getValueAsDef("Opcode");
3107    StringRef Code = XFormNode->getValueAsString("XFormFunction");
3108    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3109
3110    Xforms.pop_back();
3111  }
3112}
3113
3114void CodeGenDAGPatterns::ParseComplexPatterns() {
3115  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3116  while (!AMs.empty()) {
3117    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3118    AMs.pop_back();
3119  }
3120}
3121
3122
3123/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3124/// file, building up the PatternFragments map.  After we've collected them all,
3125/// inline fragments together as necessary, so that there are no references left
3126/// inside a pattern fragment to a pattern fragment.
3127///
3128void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3129  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3130
3131  // First step, parse all of the fragments.
3132  for (Record *Frag : Fragments) {
3133    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3134      continue;
3135
3136    ListInit *LI = Frag->getValueAsListInit("Fragments");
3137    TreePattern *P =
3138        (PatternFragments[Frag] = std::make_unique<TreePattern>(
3139             Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3140             *this)).get();
3141
3142    // Validate the argument list, converting it to set, to discard duplicates.
3143    std::vector<std::string> &Args = P->getArgList();
3144    // Copy the args so we can take StringRefs to them.
3145    auto ArgsCopy = Args;
3146    SmallDenseSet<StringRef, 4> OperandsSet;
3147    OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3148
3149    if (OperandsSet.count(""))
3150      P->error("Cannot have unnamed 'node' values in pattern fragment!");
3151
3152    // Parse the operands list.
3153    DagInit *OpsList = Frag->getValueAsDag("Operands");
3154    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3155    // Special cases: ops == outs == ins. Different names are used to
3156    // improve readability.
3157    if (!OpsOp ||
3158        (OpsOp->getDef()->getName() != "ops" &&
3159         OpsOp->getDef()->getName() != "outs" &&
3160         OpsOp->getDef()->getName() != "ins"))
3161      P->error("Operands list should start with '(ops ... '!");
3162
3163    // Copy over the arguments.
3164    Args.clear();
3165    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3166      if (!isa<DefInit>(OpsList->getArg(j)) ||
3167          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3168        P->error("Operands list should all be 'node' values.");
3169      if (!OpsList->getArgName(j))
3170        P->error("Operands list should have names for each operand!");
3171      StringRef ArgNameStr = OpsList->getArgNameStr(j);
3172      if (!OperandsSet.count(ArgNameStr))
3173        P->error("'" + ArgNameStr +
3174                 "' does not occur in pattern or was multiply specified!");
3175      OperandsSet.erase(ArgNameStr);
3176      Args.push_back(ArgNameStr);
3177    }
3178
3179    if (!OperandsSet.empty())
3180      P->error("Operands list does not contain an entry for operand '" +
3181               *OperandsSet.begin() + "'!");
3182
3183    // If there is a node transformation corresponding to this, keep track of
3184    // it.
3185    Record *Transform = Frag->getValueAsDef("OperandTransform");
3186    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3187      for (auto T : P->getTrees())
3188        T->setTransformFn(Transform);
3189  }
3190
3191  // Now that we've parsed all of the tree fragments, do a closure on them so
3192  // that there are not references to PatFrags left inside of them.
3193  for (Record *Frag : Fragments) {
3194    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3195      continue;
3196
3197    TreePattern &ThePat = *PatternFragments[Frag];
3198    ThePat.InlinePatternFragments();
3199
3200    // Infer as many types as possible.  Don't worry about it if we don't infer
3201    // all of them, some may depend on the inputs of the pattern.  Also, don't
3202    // validate type sets; validation may cause spurious failures e.g. if a
3203    // fragment needs floating-point types but the current target does not have
3204    // any (this is only an error if that fragment is ever used!).
3205    {
3206      TypeInfer::SuppressValidation SV(ThePat.getInfer());
3207      ThePat.InferAllTypes();
3208      ThePat.resetError();
3209    }
3210
3211    // If debugging, print out the pattern fragment result.
3212    LLVM_DEBUG(ThePat.dump());
3213  }
3214}
3215
3216void CodeGenDAGPatterns::ParseDefaultOperands() {
3217  std::vector<Record*> DefaultOps;
3218  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3219
3220  // Find some SDNode.
3221  assert(!SDNodes.empty() && "No SDNodes parsed?");
3222  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3223
3224  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3225    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3226
3227    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3228    // SomeSDnode so that we can parse this.
3229    std::vector<std::pair<Init*, StringInit*> > Ops;
3230    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3231      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3232                                   DefaultInfo->getArgName(op)));
3233    DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3234
3235    // Create a TreePattern to parse this.
3236    TreePattern P(DefaultOps[i], DI, false, *this);
3237    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3238
3239    // Copy the operands over into a DAGDefaultOperand.
3240    DAGDefaultOperand DefaultOpInfo;
3241
3242    const TreePatternNodePtr &T = P.getTree(0);
3243    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3244      TreePatternNodePtr TPN = T->getChildShared(op);
3245      while (TPN->ApplyTypeConstraints(P, false))
3246        /* Resolve all types */;
3247
3248      if (TPN->ContainsUnresolvedType(P)) {
3249        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3250                        DefaultOps[i]->getName() +
3251                        "' doesn't have a concrete type!");
3252      }
3253      DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3254    }
3255
3256    // Insert it into the DefaultOperands map so we can find it later.
3257    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3258  }
3259}
3260
3261/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3262/// instruction input.  Return true if this is a real use.
3263static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3264                      std::map<std::string, TreePatternNodePtr> &InstInputs) {
3265  // No name -> not interesting.
3266  if (Pat->getName().empty()) {
3267    if (Pat->isLeaf()) {
3268      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3269      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3270                 DI->getDef()->isSubClassOf("RegisterOperand")))
3271        I.error("Input " + DI->getDef()->getName() + " must be named!");
3272    }
3273    return false;
3274  }
3275
3276  Record *Rec;
3277  if (Pat->isLeaf()) {
3278    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3279    if (!DI)
3280      I.error("Input $" + Pat->getName() + " must be an identifier!");
3281    Rec = DI->getDef();
3282  } else {
3283    Rec = Pat->getOperator();
3284  }
3285
3286  // SRCVALUE nodes are ignored.
3287  if (Rec->getName() == "srcvalue")
3288    return false;
3289
3290  TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3291  if (!Slot) {
3292    Slot = Pat;
3293    return true;
3294  }
3295  Record *SlotRec;
3296  if (Slot->isLeaf()) {
3297    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3298  } else {
3299    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3300    SlotRec = Slot->getOperator();
3301  }
3302
3303  // Ensure that the inputs agree if we've already seen this input.
3304  if (Rec != SlotRec)
3305    I.error("All $" + Pat->getName() + " inputs must agree with each other");
3306  // Ensure that the types can agree as well.
3307  Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3308  Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3309  if (Slot->getExtTypes() != Pat->getExtTypes())
3310    I.error("All $" + Pat->getName() + " inputs must agree with each other");
3311  return true;
3312}
3313
3314/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3315/// part of "I", the instruction), computing the set of inputs and outputs of
3316/// the pattern.  Report errors if we see anything naughty.
3317void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3318    TreePattern &I, TreePatternNodePtr Pat,
3319    std::map<std::string, TreePatternNodePtr> &InstInputs,
3320    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3321        &InstResults,
3322    std::vector<Record *> &InstImpResults) {
3323
3324  // The instruction pattern still has unresolved fragments.  For *named*
3325  // nodes we must resolve those here.  This may not result in multiple
3326  // alternatives.
3327  if (!Pat->getName().empty()) {
3328    TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3329    SrcPattern.InlinePatternFragments();
3330    SrcPattern.InferAllTypes();
3331    Pat = SrcPattern.getOnlyTree();
3332  }
3333
3334  if (Pat->isLeaf()) {
3335    bool isUse = HandleUse(I, Pat, InstInputs);
3336    if (!isUse && Pat->getTransformFn())
3337      I.error("Cannot specify a transform function for a non-input value!");
3338    return;
3339  }
3340
3341  if (Pat->getOperator()->getName() == "implicit") {
3342    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3343      TreePatternNode *Dest = Pat->getChild(i);
3344      if (!Dest->isLeaf())
3345        I.error("implicitly defined value should be a register!");
3346
3347      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3348      if (!Val || !Val->getDef()->isSubClassOf("Register"))
3349        I.error("implicitly defined value should be a register!");
3350      InstImpResults.push_back(Val->getDef());
3351    }
3352    return;
3353  }
3354
3355  if (Pat->getOperator()->getName() != "set") {
3356    // If this is not a set, verify that the children nodes are not void typed,
3357    // and recurse.
3358    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3359      if (Pat->getChild(i)->getNumTypes() == 0)
3360        I.error("Cannot have void nodes inside of patterns!");
3361      FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3362                                  InstResults, InstImpResults);
3363    }
3364
3365    // If this is a non-leaf node with no children, treat it basically as if
3366    // it were a leaf.  This handles nodes like (imm).
3367    bool isUse = HandleUse(I, Pat, InstInputs);
3368
3369    if (!isUse && Pat->getTransformFn())
3370      I.error("Cannot specify a transform function for a non-input value!");
3371    return;
3372  }
3373
3374  // Otherwise, this is a set, validate and collect instruction results.
3375  if (Pat->getNumChildren() == 0)
3376    I.error("set requires operands!");
3377
3378  if (Pat->getTransformFn())
3379    I.error("Cannot specify a transform function on a set node!");
3380
3381  // Check the set destinations.
3382  unsigned NumDests = Pat->getNumChildren()-1;
3383  for (unsigned i = 0; i != NumDests; ++i) {
3384    TreePatternNodePtr Dest = Pat->getChildShared(i);
3385    // For set destinations we also must resolve fragments here.
3386    TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3387    DestPattern.InlinePatternFragments();
3388    DestPattern.InferAllTypes();
3389    Dest = DestPattern.getOnlyTree();
3390
3391    if (!Dest->isLeaf())
3392      I.error("set destination should be a register!");
3393
3394    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3395    if (!Val) {
3396      I.error("set destination should be a register!");
3397      continue;
3398    }
3399
3400    if (Val->getDef()->isSubClassOf("RegisterClass") ||
3401        Val->getDef()->isSubClassOf("ValueType") ||
3402        Val->getDef()->isSubClassOf("RegisterOperand") ||
3403        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3404      if (Dest->getName().empty())
3405        I.error("set destination must have a name!");
3406      if (InstResults.count(Dest->getName()))
3407        I.error("cannot set '" + Dest->getName() + "' multiple times");
3408      InstResults[Dest->getName()] = Dest;
3409    } else if (Val->getDef()->isSubClassOf("Register")) {
3410      InstImpResults.push_back(Val->getDef());
3411    } else {
3412      I.error("set destination should be a register!");
3413    }
3414  }
3415
3416  // Verify and collect info from the computation.
3417  FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3418                              InstResults, InstImpResults);
3419}
3420
3421//===----------------------------------------------------------------------===//
3422// Instruction Analysis
3423//===----------------------------------------------------------------------===//
3424
3425class InstAnalyzer {
3426  const CodeGenDAGPatterns &CDP;
3427public:
3428  bool hasSideEffects;
3429  bool mayStore;
3430  bool mayLoad;
3431  bool isBitcast;
3432  bool isVariadic;
3433  bool hasChain;
3434
3435  InstAnalyzer(const CodeGenDAGPatterns &cdp)
3436    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3437      isBitcast(false), isVariadic(false), hasChain(false) {}
3438
3439  void Analyze(const PatternToMatch &Pat) {
3440    const TreePatternNode *N = Pat.getSrcPattern();
3441    AnalyzeNode(N);
3442    // These properties are detected only on the root node.
3443    isBitcast = IsNodeBitcast(N);
3444  }
3445
3446private:
3447  bool IsNodeBitcast(const TreePatternNode *N) const {
3448    if (hasSideEffects || mayLoad || mayStore || isVariadic)
3449      return false;
3450
3451    if (N->isLeaf())
3452      return false;
3453    if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3454      return false;
3455
3456    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3457    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3458      return false;
3459    return OpInfo.getEnumName() == "ISD::BITCAST";
3460  }
3461
3462public:
3463  void AnalyzeNode(const TreePatternNode *N) {
3464    if (N->isLeaf()) {
3465      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3466        Record *LeafRec = DI->getDef();
3467        // Handle ComplexPattern leaves.
3468        if (LeafRec->isSubClassOf("ComplexPattern")) {
3469          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3470          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3471          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3472          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3473        }
3474      }
3475      return;
3476    }
3477
3478    // Analyze children.
3479    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3480      AnalyzeNode(N->getChild(i));
3481
3482    // Notice properties of the node.
3483    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3484    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3485    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3486    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3487    if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3488
3489    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3490      // If this is an intrinsic, analyze it.
3491      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3492        mayLoad = true;// These may load memory.
3493
3494      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3495        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3496
3497      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3498          IntInfo->hasSideEffects)
3499        // ReadWriteMem intrinsics can have other strange effects.
3500        hasSideEffects = true;
3501    }
3502  }
3503
3504};
3505
3506static bool InferFromPattern(CodeGenInstruction &InstInfo,
3507                             const InstAnalyzer &PatInfo,
3508                             Record *PatDef) {
3509  bool Error = false;
3510
3511  // Remember where InstInfo got its flags.
3512  if (InstInfo.hasUndefFlags())
3513      InstInfo.InferredFrom = PatDef;
3514
3515  // Check explicitly set flags for consistency.
3516  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3517      !InstInfo.hasSideEffects_Unset) {
3518    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3519    // the pattern has no side effects. That could be useful for div/rem
3520    // instructions that may trap.
3521    if (!InstInfo.hasSideEffects) {
3522      Error = true;
3523      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3524                 Twine(InstInfo.hasSideEffects));
3525    }
3526  }
3527
3528  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3529    Error = true;
3530    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3531               Twine(InstInfo.mayStore));
3532  }
3533
3534  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3535    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3536    // Some targets translate immediates to loads.
3537    if (!InstInfo.mayLoad) {
3538      Error = true;
3539      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3540                 Twine(InstInfo.mayLoad));
3541    }
3542  }
3543
3544  // Transfer inferred flags.
3545  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3546  InstInfo.mayStore |= PatInfo.mayStore;
3547  InstInfo.mayLoad |= PatInfo.mayLoad;
3548
3549  // These flags are silently added without any verification.
3550  // FIXME: To match historical behavior of TableGen, for now add those flags
3551  // only when we're inferring from the primary instruction pattern.
3552  if (PatDef->isSubClassOf("Instruction")) {
3553    InstInfo.isBitcast |= PatInfo.isBitcast;
3554    InstInfo.hasChain |= PatInfo.hasChain;
3555    InstInfo.hasChain_Inferred = true;
3556  }
3557
3558  // Don't infer isVariadic. This flag means something different on SDNodes and
3559  // instructions. For example, a CALL SDNode is variadic because it has the
3560  // call arguments as operands, but a CALL instruction is not variadic - it
3561  // has argument registers as implicit, not explicit uses.
3562
3563  return Error;
3564}
3565
3566/// hasNullFragReference - Return true if the DAG has any reference to the
3567/// null_frag operator.
3568static bool hasNullFragReference(DagInit *DI) {
3569  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3570  if (!OpDef) return false;
3571  Record *Operator = OpDef->getDef();
3572
3573  // If this is the null fragment, return true.
3574  if (Operator->getName() == "null_frag") return true;
3575  // If any of the arguments reference the null fragment, return true.
3576  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3577    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3578    if (Arg && hasNullFragReference(Arg))
3579      return true;
3580  }
3581
3582  return false;
3583}
3584
3585/// hasNullFragReference - Return true if any DAG in the list references
3586/// the null_frag operator.
3587static bool hasNullFragReference(ListInit *LI) {
3588  for (Init *I : LI->getValues()) {
3589    DagInit *DI = dyn_cast<DagInit>(I);
3590    assert(DI && "non-dag in an instruction Pattern list?!");
3591    if (hasNullFragReference(DI))
3592      return true;
3593  }
3594  return false;
3595}
3596
3597/// Get all the instructions in a tree.
3598static void
3599getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3600  if (Tree->isLeaf())
3601    return;
3602  if (Tree->getOperator()->isSubClassOf("Instruction"))
3603    Instrs.push_back(Tree->getOperator());
3604  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3605    getInstructionsInTree(Tree->getChild(i), Instrs);
3606}
3607
3608/// Check the class of a pattern leaf node against the instruction operand it
3609/// represents.
3610static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3611                              Record *Leaf) {
3612  if (OI.Rec == Leaf)
3613    return true;
3614
3615  // Allow direct value types to be used in instruction set patterns.
3616  // The type will be checked later.
3617  if (Leaf->isSubClassOf("ValueType"))
3618    return true;
3619
3620  // Patterns can also be ComplexPattern instances.
3621  if (Leaf->isSubClassOf("ComplexPattern"))
3622    return true;
3623
3624  return false;
3625}
3626
3627void CodeGenDAGPatterns::parseInstructionPattern(
3628    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3629
3630  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3631
3632  // Parse the instruction.
3633  TreePattern I(CGI.TheDef, Pat, true, *this);
3634
3635  // InstInputs - Keep track of all of the inputs of the instruction, along
3636  // with the record they are declared as.
3637  std::map<std::string, TreePatternNodePtr> InstInputs;
3638
3639  // InstResults - Keep track of all the virtual registers that are 'set'
3640  // in the instruction, including what reg class they are.
3641  MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3642      InstResults;
3643
3644  std::vector<Record*> InstImpResults;
3645
3646  // Verify that the top-level forms in the instruction are of void type, and
3647  // fill in the InstResults map.
3648  SmallString<32> TypesString;
3649  for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3650    TypesString.clear();
3651    TreePatternNodePtr Pat = I.getTree(j);
3652    if (Pat->getNumTypes() != 0) {
3653      raw_svector_ostream OS(TypesString);
3654      for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3655        if (k > 0)
3656          OS << ", ";
3657        Pat->getExtType(k).writeToStream(OS);
3658      }
3659      I.error("Top-level forms in instruction pattern should have"
3660               " void types, has types " +
3661               OS.str());
3662    }
3663
3664    // Find inputs and outputs, and verify the structure of the uses/defs.
3665    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3666                                InstImpResults);
3667  }
3668
3669  // Now that we have inputs and outputs of the pattern, inspect the operands
3670  // list for the instruction.  This determines the order that operands are
3671  // added to the machine instruction the node corresponds to.
3672  unsigned NumResults = InstResults.size();
3673
3674  // Parse the operands list from the (ops) list, validating it.
3675  assert(I.getArgList().empty() && "Args list should still be empty here!");
3676
3677  // Check that all of the results occur first in the list.
3678  std::vector<Record*> Results;
3679  std::vector<unsigned> ResultIndices;
3680  SmallVector<TreePatternNodePtr, 2> ResNodes;
3681  for (unsigned i = 0; i != NumResults; ++i) {
3682    if (i == CGI.Operands.size()) {
3683      const std::string &OpName =
3684          std::find_if(InstResults.begin(), InstResults.end(),
3685                       [](const std::pair<std::string, TreePatternNodePtr> &P) {
3686                         return P.second;
3687                       })
3688              ->first;
3689
3690      I.error("'" + OpName + "' set but does not appear in operand list!");
3691    }
3692
3693    const std::string &OpName = CGI.Operands[i].Name;
3694
3695    // Check that it exists in InstResults.
3696    auto InstResultIter = InstResults.find(OpName);
3697    if (InstResultIter == InstResults.end() || !InstResultIter->second)
3698      I.error("Operand $" + OpName + " does not exist in operand list!");
3699
3700    TreePatternNodePtr RNode = InstResultIter->second;
3701    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3702    ResNodes.push_back(std::move(RNode));
3703    if (!R)
3704      I.error("Operand $" + OpName + " should be a set destination: all "
3705               "outputs must occur before inputs in operand list!");
3706
3707    if (!checkOperandClass(CGI.Operands[i], R))
3708      I.error("Operand $" + OpName + " class mismatch!");
3709
3710    // Remember the return type.
3711    Results.push_back(CGI.Operands[i].Rec);
3712
3713    // Remember the result index.
3714    ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3715
3716    // Okay, this one checks out.
3717    InstResultIter->second = nullptr;
3718  }
3719
3720  // Loop over the inputs next.
3721  std::vector<TreePatternNodePtr> ResultNodeOperands;
3722  std::vector<Record*> Operands;
3723  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3724    CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3725    const std::string &OpName = Op.Name;
3726    if (OpName.empty())
3727      I.error("Operand #" + Twine(i) + " in operands list has no name!");
3728
3729    if (!InstInputs.count(OpName)) {
3730      // If this is an operand with a DefaultOps set filled in, we can ignore
3731      // this.  When we codegen it, we will do so as always executed.
3732      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3733        // Does it have a non-empty DefaultOps field?  If so, ignore this
3734        // operand.
3735        if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3736          continue;
3737      }
3738      I.error("Operand $" + OpName +
3739               " does not appear in the instruction pattern");
3740    }
3741    TreePatternNodePtr InVal = InstInputs[OpName];
3742    InstInputs.erase(OpName);   // It occurred, remove from map.
3743
3744    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3745      Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3746      if (!checkOperandClass(Op, InRec))
3747        I.error("Operand $" + OpName + "'s register class disagrees"
3748                 " between the operand and pattern");
3749    }
3750    Operands.push_back(Op.Rec);
3751
3752    // Construct the result for the dest-pattern operand list.
3753    TreePatternNodePtr OpNode = InVal->clone();
3754
3755    // No predicate is useful on the result.
3756    OpNode->clearPredicateCalls();
3757
3758    // Promote the xform function to be an explicit node if set.
3759    if (Record *Xform = OpNode->getTransformFn()) {
3760      OpNode->setTransformFn(nullptr);
3761      std::vector<TreePatternNodePtr> Children;
3762      Children.push_back(OpNode);
3763      OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3764                                                 OpNode->getNumTypes());
3765    }
3766
3767    ResultNodeOperands.push_back(std::move(OpNode));
3768  }
3769
3770  if (!InstInputs.empty())
3771    I.error("Input operand $" + InstInputs.begin()->first +
3772            " occurs in pattern but not in operands list!");
3773
3774  TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3775      I.getRecord(), std::move(ResultNodeOperands),
3776      GetNumNodeResults(I.getRecord(), *this));
3777  // Copy fully inferred output node types to instruction result pattern.
3778  for (unsigned i = 0; i != NumResults; ++i) {
3779    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3780    ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3781    ResultPattern->setResultIndex(i, ResultIndices[i]);
3782  }
3783
3784  // FIXME: Assume only the first tree is the pattern. The others are clobber
3785  // nodes.
3786  TreePatternNodePtr Pattern = I.getTree(0);
3787  TreePatternNodePtr SrcPattern;
3788  if (Pattern->getOperator()->getName() == "set") {
3789    SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3790  } else{
3791    // Not a set (store or something?)
3792    SrcPattern = Pattern;
3793  }
3794
3795  // Create and insert the instruction.
3796  // FIXME: InstImpResults should not be part of DAGInstruction.
3797  Record *R = I.getRecord();
3798  DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3799                   std::forward_as_tuple(Results, Operands, InstImpResults,
3800                                         SrcPattern, ResultPattern));
3801
3802  LLVM_DEBUG(I.dump());
3803}
3804
3805/// ParseInstructions - Parse all of the instructions, inlining and resolving
3806/// any fragments involved.  This populates the Instructions list with fully
3807/// resolved instructions.
3808void CodeGenDAGPatterns::ParseInstructions() {
3809  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3810
3811  for (Record *Instr : Instrs) {
3812    ListInit *LI = nullptr;
3813
3814    if (isa<ListInit>(Instr->getValueInit("Pattern")))
3815      LI = Instr->getValueAsListInit("Pattern");
3816
3817    // If there is no pattern, only collect minimal information about the
3818    // instruction for its operand list.  We have to assume that there is one
3819    // result, as we have no detailed info. A pattern which references the
3820    // null_frag operator is as-if no pattern were specified. Normally this
3821    // is from a multiclass expansion w/ a SDPatternOperator passed in as
3822    // null_frag.
3823    if (!LI || LI->empty() || hasNullFragReference(LI)) {
3824      std::vector<Record*> Results;
3825      std::vector<Record*> Operands;
3826
3827      CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3828
3829      if (InstInfo.Operands.size() != 0) {
3830        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3831          Results.push_back(InstInfo.Operands[j].Rec);
3832
3833        // The rest are inputs.
3834        for (unsigned j = InstInfo.Operands.NumDefs,
3835               e = InstInfo.Operands.size(); j < e; ++j)
3836          Operands.push_back(InstInfo.Operands[j].Rec);
3837      }
3838
3839      // Create and insert the instruction.
3840      std::vector<Record*> ImpResults;
3841      Instructions.insert(std::make_pair(Instr,
3842                            DAGInstruction(Results, Operands, ImpResults)));
3843      continue;  // no pattern.
3844    }
3845
3846    CodeGenInstruction &CGI = Target.getInstruction(Instr);
3847    parseInstructionPattern(CGI, LI, Instructions);
3848  }
3849
3850  // If we can, convert the instructions to be patterns that are matched!
3851  for (auto &Entry : Instructions) {
3852    Record *Instr = Entry.first;
3853    DAGInstruction &TheInst = Entry.second;
3854    TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3855    TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3856
3857    if (SrcPattern && ResultPattern) {
3858      TreePattern Pattern(Instr, SrcPattern, true, *this);
3859      TreePattern Result(Instr, ResultPattern, false, *this);
3860      ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3861    }
3862  }
3863}
3864
3865typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3866
3867static void FindNames(TreePatternNode *P,
3868                      std::map<std::string, NameRecord> &Names,
3869                      TreePattern *PatternTop) {
3870  if (!P->getName().empty()) {
3871    NameRecord &Rec = Names[P->getName()];
3872    // If this is the first instance of the name, remember the node.
3873    if (Rec.second++ == 0)
3874      Rec.first = P;
3875    else if (Rec.first->getExtTypes() != P->getExtTypes())
3876      PatternTop->error("repetition of value: $" + P->getName() +
3877                        " where different uses have different types!");
3878  }
3879
3880  if (!P->isLeaf()) {
3881    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3882      FindNames(P->getChild(i), Names, PatternTop);
3883  }
3884}
3885
3886std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3887  std::vector<Predicate> Preds;
3888  for (Init *I : L->getValues()) {
3889    if (DefInit *Pred = dyn_cast<DefInit>(I))
3890      Preds.push_back(Pred->getDef());
3891    else
3892      llvm_unreachable("Non-def on the list");
3893  }
3894
3895  // Sort so that different orders get canonicalized to the same string.
3896  llvm::sort(Preds);
3897  return Preds;
3898}
3899
3900void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3901                                           PatternToMatch &&PTM) {
3902  // Do some sanity checking on the pattern we're about to match.
3903  std::string Reason;
3904  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3905    PrintWarning(Pattern->getRecord()->getLoc(),
3906      Twine("Pattern can never match: ") + Reason);
3907    return;
3908  }
3909
3910  // If the source pattern's root is a complex pattern, that complex pattern
3911  // must specify the nodes it can potentially match.
3912  if (const ComplexPattern *CP =
3913        PTM.getSrcPattern()->getComplexPatternInfo(*this))
3914    if (CP->getRootNodes().empty())
3915      Pattern->error("ComplexPattern at root must specify list of opcodes it"
3916                     " could match");
3917
3918
3919  // Find all of the named values in the input and output, ensure they have the
3920  // same type.
3921  std::map<std::string, NameRecord> SrcNames, DstNames;
3922  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3923  FindNames(PTM.getDstPattern(), DstNames, Pattern);
3924
3925  // Scan all of the named values in the destination pattern, rejecting them if
3926  // they don't exist in the input pattern.
3927  for (const auto &Entry : DstNames) {
3928    if (SrcNames[Entry.first].first == nullptr)
3929      Pattern->error("Pattern has input without matching name in output: $" +
3930                     Entry.first);
3931  }
3932
3933  // Scan all of the named values in the source pattern, rejecting them if the
3934  // name isn't used in the dest, and isn't used to tie two values together.
3935  for (const auto &Entry : SrcNames)
3936    if (DstNames[Entry.first].first == nullptr &&
3937        SrcNames[Entry.first].second == 1)
3938      Pattern->error("Pattern has dead named input: $" + Entry.first);
3939
3940  PatternsToMatch.push_back(PTM);
3941}
3942
3943void CodeGenDAGPatterns::InferInstructionFlags() {
3944  ArrayRef<const CodeGenInstruction*> Instructions =
3945    Target.getInstructionsByEnumValue();
3946
3947  unsigned Errors = 0;
3948
3949  // Try to infer flags from all patterns in PatternToMatch.  These include
3950  // both the primary instruction patterns (which always come first) and
3951  // patterns defined outside the instruction.
3952  for (const PatternToMatch &PTM : ptms()) {
3953    // We can only infer from single-instruction patterns, otherwise we won't
3954    // know which instruction should get the flags.
3955    SmallVector<Record*, 8> PatInstrs;
3956    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3957    if (PatInstrs.size() != 1)
3958      continue;
3959
3960    // Get the single instruction.
3961    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3962
3963    // Only infer properties from the first pattern. We'll verify the others.
3964    if (InstInfo.InferredFrom)
3965      continue;
3966
3967    InstAnalyzer PatInfo(*this);
3968    PatInfo.Analyze(PTM);
3969    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3970  }
3971
3972  if (Errors)
3973    PrintFatalError("pattern conflicts");
3974
3975  // If requested by the target, guess any undefined properties.
3976  if (Target.guessInstructionProperties()) {
3977    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3978      CodeGenInstruction *InstInfo =
3979        const_cast<CodeGenInstruction *>(Instructions[i]);
3980      if (InstInfo->InferredFrom)
3981        continue;
3982      // The mayLoad and mayStore flags default to false.
3983      // Conservatively assume hasSideEffects if it wasn't explicit.
3984      if (InstInfo->hasSideEffects_Unset)
3985        InstInfo->hasSideEffects = true;
3986    }
3987    return;
3988  }
3989
3990  // Complain about any flags that are still undefined.
3991  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3992    CodeGenInstruction *InstInfo =
3993      const_cast<CodeGenInstruction *>(Instructions[i]);
3994    if (InstInfo->InferredFrom)
3995      continue;
3996    if (InstInfo->hasSideEffects_Unset)
3997      PrintError(InstInfo->TheDef->getLoc(),
3998                 "Can't infer hasSideEffects from patterns");
3999    if (InstInfo->mayStore_Unset)
4000      PrintError(InstInfo->TheDef->getLoc(),
4001                 "Can't infer mayStore from patterns");
4002    if (InstInfo->mayLoad_Unset)
4003      PrintError(InstInfo->TheDef->getLoc(),
4004                 "Can't infer mayLoad from patterns");
4005  }
4006}
4007
4008
4009/// Verify instruction flags against pattern node properties.
4010void CodeGenDAGPatterns::VerifyInstructionFlags() {
4011  unsigned Errors = 0;
4012  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
4013    const PatternToMatch &PTM = *I;
4014    SmallVector<Record*, 8> Instrs;
4015    getInstructionsInTree(PTM.getDstPattern(), Instrs);
4016    if (Instrs.empty())
4017      continue;
4018
4019    // Count the number of instructions with each flag set.
4020    unsigned NumSideEffects = 0;
4021    unsigned NumStores = 0;
4022    unsigned NumLoads = 0;
4023    for (const Record *Instr : Instrs) {
4024      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4025      NumSideEffects += InstInfo.hasSideEffects;
4026      NumStores += InstInfo.mayStore;
4027      NumLoads += InstInfo.mayLoad;
4028    }
4029
4030    // Analyze the source pattern.
4031    InstAnalyzer PatInfo(*this);
4032    PatInfo.Analyze(PTM);
4033
4034    // Collect error messages.
4035    SmallVector<std::string, 4> Msgs;
4036
4037    // Check for missing flags in the output.
4038    // Permit extra flags for now at least.
4039    if (PatInfo.hasSideEffects && !NumSideEffects)
4040      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4041
4042    // Don't verify store flags on instructions with side effects. At least for
4043    // intrinsics, side effects implies mayStore.
4044    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4045      Msgs.push_back("pattern may store, but mayStore isn't set");
4046
4047    // Similarly, mayStore implies mayLoad on intrinsics.
4048    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4049      Msgs.push_back("pattern may load, but mayLoad isn't set");
4050
4051    // Print error messages.
4052    if (Msgs.empty())
4053      continue;
4054    ++Errors;
4055
4056    for (const std::string &Msg : Msgs)
4057      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4058                 (Instrs.size() == 1 ?
4059                  "instruction" : "output instructions"));
4060    // Provide the location of the relevant instruction definitions.
4061    for (const Record *Instr : Instrs) {
4062      if (Instr != PTM.getSrcRecord())
4063        PrintError(Instr->getLoc(), "defined here");
4064      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4065      if (InstInfo.InferredFrom &&
4066          InstInfo.InferredFrom != InstInfo.TheDef &&
4067          InstInfo.InferredFrom != PTM.getSrcRecord())
4068        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4069    }
4070  }
4071  if (Errors)
4072    PrintFatalError("Errors in DAG patterns");
4073}
4074
4075/// Given a pattern result with an unresolved type, see if we can find one
4076/// instruction with an unresolved result type.  Force this result type to an
4077/// arbitrary element if it's possible types to converge results.
4078static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4079  if (N->isLeaf())
4080    return false;
4081
4082  // Analyze children.
4083  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4084    if (ForceArbitraryInstResultType(N->getChild(i), TP))
4085      return true;
4086
4087  if (!N->getOperator()->isSubClassOf("Instruction"))
4088    return false;
4089
4090  // If this type is already concrete or completely unknown we can't do
4091  // anything.
4092  TypeInfer &TI = TP.getInfer();
4093  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4094    if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4095      continue;
4096
4097    // Otherwise, force its type to an arbitrary choice.
4098    if (TI.forceArbitrary(N->getExtType(i)))
4099      return true;
4100  }
4101
4102  return false;
4103}
4104
4105// Promote xform function to be an explicit node wherever set.
4106static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4107  if (Record *Xform = N->getTransformFn()) {
4108      N->setTransformFn(nullptr);
4109      std::vector<TreePatternNodePtr> Children;
4110      Children.push_back(PromoteXForms(N));
4111      return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4112                                               N->getNumTypes());
4113  }
4114
4115  if (!N->isLeaf())
4116    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4117      TreePatternNodePtr Child = N->getChildShared(i);
4118      N->setChild(i, PromoteXForms(Child));
4119    }
4120  return N;
4121}
4122
4123void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4124       TreePattern &Pattern, TreePattern &Result,
4125       const std::vector<Record *> &InstImpResults) {
4126
4127  // Inline pattern fragments and expand multiple alternatives.
4128  Pattern.InlinePatternFragments();
4129  Result.InlinePatternFragments();
4130
4131  if (Result.getNumTrees() != 1)
4132    Result.error("Cannot use multi-alternative fragments in result pattern!");
4133
4134  // Infer types.
4135  bool IterateInference;
4136  bool InferredAllPatternTypes, InferredAllResultTypes;
4137  do {
4138    // Infer as many types as possible.  If we cannot infer all of them, we
4139    // can never do anything with this pattern: report it to the user.
4140    InferredAllPatternTypes =
4141        Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4142
4143    // Infer as many types as possible.  If we cannot infer all of them, we
4144    // can never do anything with this pattern: report it to the user.
4145    InferredAllResultTypes =
4146        Result.InferAllTypes(&Pattern.getNamedNodesMap());
4147
4148    IterateInference = false;
4149
4150    // Apply the type of the result to the source pattern.  This helps us
4151    // resolve cases where the input type is known to be a pointer type (which
4152    // is considered resolved), but the result knows it needs to be 32- or
4153    // 64-bits.  Infer the other way for good measure.
4154    for (auto T : Pattern.getTrees())
4155      for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4156                                        T->getNumTypes());
4157         i != e; ++i) {
4158        IterateInference |= T->UpdateNodeType(
4159            i, Result.getOnlyTree()->getExtType(i), Result);
4160        IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4161            i, T->getExtType(i), Result);
4162      }
4163
4164    // If our iteration has converged and the input pattern's types are fully
4165    // resolved but the result pattern is not fully resolved, we may have a
4166    // situation where we have two instructions in the result pattern and
4167    // the instructions require a common register class, but don't care about
4168    // what actual MVT is used.  This is actually a bug in our modelling:
4169    // output patterns should have register classes, not MVTs.
4170    //
4171    // In any case, to handle this, we just go through and disambiguate some
4172    // arbitrary types to the result pattern's nodes.
4173    if (!IterateInference && InferredAllPatternTypes &&
4174        !InferredAllResultTypes)
4175      IterateInference =
4176          ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4177  } while (IterateInference);
4178
4179  // Verify that we inferred enough types that we can do something with the
4180  // pattern and result.  If these fire the user has to add type casts.
4181  if (!InferredAllPatternTypes)
4182    Pattern.error("Could not infer all types in pattern!");
4183  if (!InferredAllResultTypes) {
4184    Pattern.dump();
4185    Result.error("Could not infer all types in pattern result!");
4186  }
4187
4188  // Promote xform function to be an explicit node wherever set.
4189  TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4190
4191  TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4192  Temp.InferAllTypes();
4193
4194  ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4195  int Complexity = TheDef->getValueAsInt("AddedComplexity");
4196
4197  if (PatternRewriter)
4198    PatternRewriter(&Pattern);
4199
4200  // A pattern may end up with an "impossible" type, i.e. a situation
4201  // where all types have been eliminated for some node in this pattern.
4202  // This could occur for intrinsics that only make sense for a specific
4203  // value type, and use a specific register class. If, for some mode,
4204  // that register class does not accept that type, the type inference
4205  // will lead to a contradiction, which is not an error however, but
4206  // a sign that this pattern will simply never match.
4207  if (Temp.getOnlyTree()->hasPossibleType())
4208    for (auto T : Pattern.getTrees())
4209      if (T->hasPossibleType())
4210        AddPatternToMatch(&Pattern,
4211                          PatternToMatch(TheDef, makePredList(Preds),
4212                                         T, Temp.getOnlyTree(),
4213                                         InstImpResults, Complexity,
4214                                         TheDef->getID()));
4215}
4216
4217void CodeGenDAGPatterns::ParsePatterns() {
4218  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4219
4220  for (Record *CurPattern : Patterns) {
4221    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4222
4223    // If the pattern references the null_frag, there's nothing to do.
4224    if (hasNullFragReference(Tree))
4225      continue;
4226
4227    TreePattern Pattern(CurPattern, Tree, true, *this);
4228
4229    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4230    if (LI->empty()) continue;  // no pattern.
4231
4232    // Parse the instruction.
4233    TreePattern Result(CurPattern, LI, false, *this);
4234
4235    if (Result.getNumTrees() != 1)
4236      Result.error("Cannot handle instructions producing instructions "
4237                   "with temporaries yet!");
4238
4239    // Validate that the input pattern is correct.
4240    std::map<std::string, TreePatternNodePtr> InstInputs;
4241    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4242        InstResults;
4243    std::vector<Record*> InstImpResults;
4244    for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4245      FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4246                                  InstResults, InstImpResults);
4247
4248    ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4249  }
4250}
4251
4252static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4253  for (const TypeSetByHwMode &VTS : N->getExtTypes())
4254    for (const auto &I : VTS)
4255      Modes.insert(I.first);
4256
4257  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4258    collectModes(Modes, N->getChild(i));
4259}
4260
4261void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4262  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4263  std::map<unsigned,std::vector<Predicate>> ModeChecks;
4264  std::vector<PatternToMatch> Copy = PatternsToMatch;
4265  PatternsToMatch.clear();
4266
4267  auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4268    TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4269    TreePatternNodePtr NewDst = P.DstPattern->clone();
4270    if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4271      return;
4272    }
4273
4274    std::vector<Predicate> Preds = P.Predicates;
4275    const std::vector<Predicate> &MC = ModeChecks[Mode];
4276    Preds.insert(Preds.end(), MC.begin(), MC.end());
4277    PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4278                                 std::move(NewDst), P.getDstRegs(),
4279                                 P.getAddedComplexity(), Record::getNewUID(),
4280                                 Mode);
4281  };
4282
4283  for (PatternToMatch &P : Copy) {
4284    TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4285    if (P.SrcPattern->hasProperTypeByHwMode())
4286      SrcP = P.SrcPattern;
4287    if (P.DstPattern->hasProperTypeByHwMode())
4288      DstP = P.DstPattern;
4289    if (!SrcP && !DstP) {
4290      PatternsToMatch.push_back(P);
4291      continue;
4292    }
4293
4294    std::set<unsigned> Modes;
4295    if (SrcP)
4296      collectModes(Modes, SrcP.get());
4297    if (DstP)
4298      collectModes(Modes, DstP.get());
4299
4300    // The predicate for the default mode needs to be constructed for each
4301    // pattern separately.
4302    // Since not all modes must be present in each pattern, if a mode m is
4303    // absent, then there is no point in constructing a check for m. If such
4304    // a check was created, it would be equivalent to checking the default
4305    // mode, except not all modes' predicates would be a part of the checking
4306    // code. The subsequently generated check for the default mode would then
4307    // have the exact same patterns, but a different predicate code. To avoid
4308    // duplicated patterns with different predicate checks, construct the
4309    // default check as a negation of all predicates that are actually present
4310    // in the source/destination patterns.
4311    std::vector<Predicate> DefaultPred;
4312
4313    for (unsigned M : Modes) {
4314      if (M == DefaultMode)
4315        continue;
4316      if (ModeChecks.find(M) != ModeChecks.end())
4317        continue;
4318
4319      // Fill the map entry for this mode.
4320      const HwMode &HM = CGH.getMode(M);
4321      ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4322
4323      // Add negations of the HM's predicates to the default predicate.
4324      DefaultPred.emplace_back(Predicate(HM.Features, false));
4325    }
4326
4327    for (unsigned M : Modes) {
4328      if (M == DefaultMode)
4329        continue;
4330      AppendPattern(P, M);
4331    }
4332
4333    bool HasDefault = Modes.count(DefaultMode);
4334    if (HasDefault)
4335      AppendPattern(P, DefaultMode);
4336  }
4337}
4338
4339/// Dependent variable map for CodeGenDAGPattern variant generation
4340typedef StringMap<int> DepVarMap;
4341
4342static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4343  if (N->isLeaf()) {
4344    if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4345      DepMap[N->getName()]++;
4346  } else {
4347    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4348      FindDepVarsOf(N->getChild(i), DepMap);
4349  }
4350}
4351
4352/// Find dependent variables within child patterns
4353static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4354  DepVarMap depcounts;
4355  FindDepVarsOf(N, depcounts);
4356  for (const auto &Pair : depcounts) {
4357    if (Pair.getValue() > 1)
4358      DepVars.insert(Pair.getKey());
4359  }
4360}
4361
4362#ifndef NDEBUG
4363/// Dump the dependent variable set:
4364static void DumpDepVars(MultipleUseVarSet &DepVars) {
4365  if (DepVars.empty()) {
4366    LLVM_DEBUG(errs() << "<empty set>");
4367  } else {
4368    LLVM_DEBUG(errs() << "[ ");
4369    for (const auto &DepVar : DepVars) {
4370      LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4371    }
4372    LLVM_DEBUG(errs() << "]");
4373  }
4374}
4375#endif
4376
4377
4378/// CombineChildVariants - Given a bunch of permutations of each child of the
4379/// 'operator' node, put them together in all possible ways.
4380static void CombineChildVariants(
4381    TreePatternNodePtr Orig,
4382    const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4383    std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4384    const MultipleUseVarSet &DepVars) {
4385  // Make sure that each operand has at least one variant to choose from.
4386  for (const auto &Variants : ChildVariants)
4387    if (Variants.empty())
4388      return;
4389
4390  // The end result is an all-pairs construction of the resultant pattern.
4391  std::vector<unsigned> Idxs;
4392  Idxs.resize(ChildVariants.size());
4393  bool NotDone;
4394  do {
4395#ifndef NDEBUG
4396    LLVM_DEBUG(if (!Idxs.empty()) {
4397      errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4398      for (unsigned Idx : Idxs) {
4399        errs() << Idx << " ";
4400      }
4401      errs() << "]\n";
4402    });
4403#endif
4404    // Create the variant and add it to the output list.
4405    std::vector<TreePatternNodePtr> NewChildren;
4406    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4407      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4408    TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4409        Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4410
4411    // Copy over properties.
4412    R->setName(Orig->getName());
4413    R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4414    R->setPredicateCalls(Orig->getPredicateCalls());
4415    R->setTransformFn(Orig->getTransformFn());
4416    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4417      R->setType(i, Orig->getExtType(i));
4418
4419    // If this pattern cannot match, do not include it as a variant.
4420    std::string ErrString;
4421    // Scan to see if this pattern has already been emitted.  We can get
4422    // duplication due to things like commuting:
4423    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4424    // which are the same pattern.  Ignore the dups.
4425    if (R->canPatternMatch(ErrString, CDP) &&
4426        none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4427          return R->isIsomorphicTo(Variant.get(), DepVars);
4428        }))
4429      OutVariants.push_back(R);
4430
4431    // Increment indices to the next permutation by incrementing the
4432    // indices from last index backward, e.g., generate the sequence
4433    // [0, 0], [0, 1], [1, 0], [1, 1].
4434    int IdxsIdx;
4435    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4436      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4437        Idxs[IdxsIdx] = 0;
4438      else
4439        break;
4440    }
4441    NotDone = (IdxsIdx >= 0);
4442  } while (NotDone);
4443}
4444
4445/// CombineChildVariants - A helper function for binary operators.
4446///
4447static void CombineChildVariants(TreePatternNodePtr Orig,
4448                                 const std::vector<TreePatternNodePtr> &LHS,
4449                                 const std::vector<TreePatternNodePtr> &RHS,
4450                                 std::vector<TreePatternNodePtr> &OutVariants,
4451                                 CodeGenDAGPatterns &CDP,
4452                                 const MultipleUseVarSet &DepVars) {
4453  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4454  ChildVariants.push_back(LHS);
4455  ChildVariants.push_back(RHS);
4456  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4457}
4458
4459static void
4460GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4461                                  std::vector<TreePatternNodePtr> &Children) {
4462  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4463  Record *Operator = N->getOperator();
4464
4465  // Only permit raw nodes.
4466  if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4467      N->getTransformFn()) {
4468    Children.push_back(N);
4469    return;
4470  }
4471
4472  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4473    Children.push_back(N->getChildShared(0));
4474  else
4475    GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4476
4477  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4478    Children.push_back(N->getChildShared(1));
4479  else
4480    GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4481}
4482
4483/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4484/// the (potentially recursive) pattern by using algebraic laws.
4485///
4486static void GenerateVariantsOf(TreePatternNodePtr N,
4487                               std::vector<TreePatternNodePtr> &OutVariants,
4488                               CodeGenDAGPatterns &CDP,
4489                               const MultipleUseVarSet &DepVars) {
4490  // We cannot permute leaves or ComplexPattern uses.
4491  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4492    OutVariants.push_back(N);
4493    return;
4494  }
4495
4496  // Look up interesting info about the node.
4497  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4498
4499  // If this node is associative, re-associate.
4500  if (NodeInfo.hasProperty(SDNPAssociative)) {
4501    // Re-associate by pulling together all of the linked operators
4502    std::vector<TreePatternNodePtr> MaximalChildren;
4503    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4504
4505    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4506    // permutations.
4507    if (MaximalChildren.size() == 3) {
4508      // Find the variants of all of our maximal children.
4509      std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4510      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4511      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4512      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4513
4514      // There are only two ways we can permute the tree:
4515      //   (A op B) op C    and    A op (B op C)
4516      // Within these forms, we can also permute A/B/C.
4517
4518      // Generate legal pair permutations of A/B/C.
4519      std::vector<TreePatternNodePtr> ABVariants;
4520      std::vector<TreePatternNodePtr> BAVariants;
4521      std::vector<TreePatternNodePtr> ACVariants;
4522      std::vector<TreePatternNodePtr> CAVariants;
4523      std::vector<TreePatternNodePtr> BCVariants;
4524      std::vector<TreePatternNodePtr> CBVariants;
4525      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4526      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4527      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4528      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4529      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4530      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4531
4532      // Combine those into the result: (x op x) op x
4533      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4534      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4535      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4536      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4537      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4538      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4539
4540      // Combine those into the result: x op (x op x)
4541      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4542      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4543      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4544      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4545      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4546      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4547      return;
4548    }
4549  }
4550
4551  // Compute permutations of all children.
4552  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4553  ChildVariants.resize(N->getNumChildren());
4554  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4555    GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4556
4557  // Build all permutations based on how the children were formed.
4558  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4559
4560  // If this node is commutative, consider the commuted order.
4561  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4562  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4563    assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4564           "Commutative but doesn't have 2 children!");
4565    // Don't count children which are actually register references.
4566    unsigned NC = 0;
4567    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4568      TreePatternNode *Child = N->getChild(i);
4569      if (Child->isLeaf())
4570        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4571          Record *RR = DI->getDef();
4572          if (RR->isSubClassOf("Register"))
4573            continue;
4574        }
4575      NC++;
4576    }
4577    // Consider the commuted order.
4578    if (isCommIntrinsic) {
4579      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4580      // operands are the commutative operands, and there might be more operands
4581      // after those.
4582      assert(NC >= 3 &&
4583             "Commutative intrinsic should have at least 3 children!");
4584      std::vector<std::vector<TreePatternNodePtr>> Variants;
4585      Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4586      Variants.push_back(std::move(ChildVariants[2]));
4587      Variants.push_back(std::move(ChildVariants[1]));
4588      for (unsigned i = 3; i != NC; ++i)
4589        Variants.push_back(std::move(ChildVariants[i]));
4590      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4591    } else if (NC == N->getNumChildren()) {
4592      std::vector<std::vector<TreePatternNodePtr>> Variants;
4593      Variants.push_back(std::move(ChildVariants[1]));
4594      Variants.push_back(std::move(ChildVariants[0]));
4595      for (unsigned i = 2; i != NC; ++i)
4596        Variants.push_back(std::move(ChildVariants[i]));
4597      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4598    }
4599  }
4600}
4601
4602
4603// GenerateVariants - Generate variants.  For example, commutative patterns can
4604// match multiple ways.  Add them to PatternsToMatch as well.
4605void CodeGenDAGPatterns::GenerateVariants() {
4606  LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4607
4608  // Loop over all of the patterns we've collected, checking to see if we can
4609  // generate variants of the instruction, through the exploitation of
4610  // identities.  This permits the target to provide aggressive matching without
4611  // the .td file having to contain tons of variants of instructions.
4612  //
4613  // Note that this loop adds new patterns to the PatternsToMatch list, but we
4614  // intentionally do not reconsider these.  Any variants of added patterns have
4615  // already been added.
4616  //
4617  const unsigned NumOriginalPatterns = PatternsToMatch.size();
4618  BitVector MatchedPatterns(NumOriginalPatterns);
4619  std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4620                                           BitVector(NumOriginalPatterns));
4621
4622  typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4623      DepsAndVariants;
4624  std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4625
4626  // Collect patterns with more than one variant.
4627  for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4628    MultipleUseVarSet DepVars;
4629    std::vector<TreePatternNodePtr> Variants;
4630    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4631    LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4632    LLVM_DEBUG(DumpDepVars(DepVars));
4633    LLVM_DEBUG(errs() << "\n");
4634    GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4635                       *this, DepVars);
4636
4637    assert(!Variants.empty() && "Must create at least original variant!");
4638    if (Variants.size() == 1) // No additional variants for this pattern.
4639      continue;
4640
4641    LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4642               PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4643
4644    PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4645
4646    // Cache matching predicates.
4647    if (MatchedPatterns[i])
4648      continue;
4649
4650    const std::vector<Predicate> &Predicates =
4651        PatternsToMatch[i].getPredicates();
4652
4653    BitVector &Matches = MatchedPredicates[i];
4654    MatchedPatterns.set(i);
4655    Matches.set(i);
4656
4657    // Don't test patterns that have already been cached - it won't match.
4658    for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4659      if (!MatchedPatterns[p])
4660        Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4661
4662    // Copy this to all the matching patterns.
4663    for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4664      if (p != (int)i) {
4665        MatchedPatterns.set(p);
4666        MatchedPredicates[p] = Matches;
4667      }
4668  }
4669
4670  for (auto it : PatternsWithVariants) {
4671    unsigned i = it.first;
4672    const MultipleUseVarSet &DepVars = it.second.first;
4673    const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4674
4675    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4676      TreePatternNodePtr Variant = Variants[v];
4677      BitVector &Matches = MatchedPredicates[i];
4678
4679      LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4680                 errs() << "\n");
4681
4682      // Scan to see if an instruction or explicit pattern already matches this.
4683      bool AlreadyExists = false;
4684      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4685        // Skip if the top level predicates do not match.
4686        if (!Matches[p])
4687          continue;
4688        // Check to see if this variant already exists.
4689        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4690                                    DepVars)) {
4691          LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4692          AlreadyExists = true;
4693          break;
4694        }
4695      }
4696      // If we already have it, ignore the variant.
4697      if (AlreadyExists) continue;
4698
4699      // Otherwise, add it to the list of patterns we have.
4700      PatternsToMatch.push_back(PatternToMatch(
4701          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4702          Variant, PatternsToMatch[i].getDstPatternShared(),
4703          PatternsToMatch[i].getDstRegs(),
4704          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4705      MatchedPredicates.push_back(Matches);
4706
4707      // Add a new match the same as this pattern.
4708      for (auto &P : MatchedPredicates)
4709        P.push_back(P[i]);
4710    }
4711
4712    LLVM_DEBUG(errs() << "\n");
4713  }
4714}
4715