1//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements some loop unrolling utilities for loops with run-time
10// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11// trip counts.
12//
13// The functions in this file are used to generate extra code when the
14// run-time trip count modulo the unroll factor is not 0.  When this is the
15// case, we need to generate code to execute these 'left over' iterations.
16//
17// The current strategy generates an if-then-else sequence prior to the
18// unrolled loop to execute the 'left over' iterations before or after the
19// unrolled loop.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/LoopIterator.h"
27#include "llvm/Analysis/ScalarEvolution.h"
28#include "llvm/Analysis/ScalarEvolutionExpander.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Module.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Transforms/Utils.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/Transforms/Utils/Cloning.h"
39#include "llvm/Transforms/Utils/LoopUtils.h"
40#include "llvm/Transforms/Utils/UnrollLoop.h"
41#include <algorithm>
42
43using namespace llvm;
44
45#define DEBUG_TYPE "loop-unroll"
46
47STATISTIC(NumRuntimeUnrolled,
48          "Number of loops unrolled with run-time trip counts");
49static cl::opt<bool> UnrollRuntimeMultiExit(
50    "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51    cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52             "epilog is generated"));
53
54/// Connect the unrolling prolog code to the original loop.
55/// The unrolling prolog code contains code to execute the
56/// 'extra' iterations if the run-time trip count modulo the
57/// unroll count is non-zero.
58///
59/// This function performs the following:
60/// - Create PHI nodes at prolog end block to combine values
61///   that exit the prolog code and jump around the prolog.
62/// - Add a PHI operand to a PHI node at the loop exit block
63///   for values that exit the prolog and go around the loop.
64/// - Branch around the original loop if the trip count is less
65///   than the unroll factor.
66///
67static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
68                          BasicBlock *PrologExit,
69                          BasicBlock *OriginalLoopLatchExit,
70                          BasicBlock *PreHeader, BasicBlock *NewPreHeader,
71                          ValueToValueMapTy &VMap, DominatorTree *DT,
72                          LoopInfo *LI, bool PreserveLCSSA) {
73  // Loop structure should be the following:
74  // Preheader
75  //  PrologHeader
76  //  ...
77  //  PrologLatch
78  //  PrologExit
79  //   NewPreheader
80  //    Header
81  //    ...
82  //    Latch
83  //      LatchExit
84  BasicBlock *Latch = L->getLoopLatch();
85  assert(Latch && "Loop must have a latch");
86  BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
87
88  // Create a PHI node for each outgoing value from the original loop
89  // (which means it is an outgoing value from the prolog code too).
90  // The new PHI node is inserted in the prolog end basic block.
91  // The new PHI node value is added as an operand of a PHI node in either
92  // the loop header or the loop exit block.
93  for (BasicBlock *Succ : successors(Latch)) {
94    for (PHINode &PN : Succ->phis()) {
95      // Add a new PHI node to the prolog end block and add the
96      // appropriate incoming values.
97      // TODO: This code assumes that the PrologExit (or the LatchExit block for
98      // prolog loop) contains only one predecessor from the loop, i.e. the
99      // PrologLatch. When supporting multiple-exiting block loops, we can have
100      // two or more blocks that have the LatchExit as the target in the
101      // original loop.
102      PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
103                                       PrologExit->getFirstNonPHI());
104      // Adding a value to the new PHI node from the original loop preheader.
105      // This is the value that skips all the prolog code.
106      if (L->contains(&PN)) {
107        // Succ is loop header.
108        NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
109                           PreHeader);
110      } else {
111        // Succ is LatchExit.
112        NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
113      }
114
115      Value *V = PN.getIncomingValueForBlock(Latch);
116      if (Instruction *I = dyn_cast<Instruction>(V)) {
117        if (L->contains(I)) {
118          V = VMap.lookup(I);
119        }
120      }
121      // Adding a value to the new PHI node from the last prolog block
122      // that was created.
123      NewPN->addIncoming(V, PrologLatch);
124
125      // Update the existing PHI node operand with the value from the
126      // new PHI node.  How this is done depends on if the existing
127      // PHI node is in the original loop block, or the exit block.
128      if (L->contains(&PN))
129        PN.setIncomingValueForBlock(NewPreHeader, NewPN);
130      else
131        PN.addIncoming(NewPN, PrologExit);
132    }
133  }
134
135  // Make sure that created prolog loop is in simplified form
136  SmallVector<BasicBlock *, 4> PrologExitPreds;
137  Loop *PrologLoop = LI->getLoopFor(PrologLatch);
138  if (PrologLoop) {
139    for (BasicBlock *PredBB : predecessors(PrologExit))
140      if (PrologLoop->contains(PredBB))
141        PrologExitPreds.push_back(PredBB);
142
143    SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
144                           nullptr, PreserveLCSSA);
145  }
146
147  // Create a branch around the original loop, which is taken if there are no
148  // iterations remaining to be executed after running the prologue.
149  Instruction *InsertPt = PrologExit->getTerminator();
150  IRBuilder<> B(InsertPt);
151
152  assert(Count != 0 && "nonsensical Count!");
153
154  // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
155  // This means %xtraiter is (BECount + 1) and all of the iterations of this
156  // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
157  // then (BECount + 1) cannot unsigned-overflow.
158  Value *BrLoopExit =
159      B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
160  // Split the exit to maintain loop canonicalization guarantees
161  SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
162  SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
163                         nullptr, PreserveLCSSA);
164  // Add the branch to the exit block (around the unrolled loop)
165  B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
166  InsertPt->eraseFromParent();
167  if (DT)
168    DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
169}
170
171/// Connect the unrolling epilog code to the original loop.
172/// The unrolling epilog code contains code to execute the
173/// 'extra' iterations if the run-time trip count modulo the
174/// unroll count is non-zero.
175///
176/// This function performs the following:
177/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
178/// - Create PHI nodes at the unrolling loop exit to combine
179///   values that exit the unrolling loop code and jump around it.
180/// - Update PHI operands in the epilog loop by the new PHI nodes
181/// - Branch around the epilog loop if extra iters (ModVal) is zero.
182///
183static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
184                          BasicBlock *Exit, BasicBlock *PreHeader,
185                          BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
186                          ValueToValueMapTy &VMap, DominatorTree *DT,
187                          LoopInfo *LI, bool PreserveLCSSA)  {
188  BasicBlock *Latch = L->getLoopLatch();
189  assert(Latch && "Loop must have a latch");
190  BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
191
192  // Loop structure should be the following:
193  //
194  // PreHeader
195  // NewPreHeader
196  //   Header
197  //   ...
198  //   Latch
199  // NewExit (PN)
200  // EpilogPreHeader
201  //   EpilogHeader
202  //   ...
203  //   EpilogLatch
204  // Exit (EpilogPN)
205
206  // Update PHI nodes at NewExit and Exit.
207  for (PHINode &PN : NewExit->phis()) {
208    // PN should be used in another PHI located in Exit block as
209    // Exit was split by SplitBlockPredecessors into Exit and NewExit
210    // Basicaly it should look like:
211    // NewExit:
212    //   PN = PHI [I, Latch]
213    // ...
214    // Exit:
215    //   EpilogPN = PHI [PN, EpilogPreHeader]
216    //
217    // There is EpilogPreHeader incoming block instead of NewExit as
218    // NewExit was spilt 1 more time to get EpilogPreHeader.
219    assert(PN.hasOneUse() && "The phi should have 1 use");
220    PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
221    assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
222
223    // Add incoming PreHeader from branch around the Loop
224    PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
225
226    Value *V = PN.getIncomingValueForBlock(Latch);
227    Instruction *I = dyn_cast<Instruction>(V);
228    if (I && L->contains(I))
229      // If value comes from an instruction in the loop add VMap value.
230      V = VMap.lookup(I);
231    // For the instruction out of the loop, constant or undefined value
232    // insert value itself.
233    EpilogPN->addIncoming(V, EpilogLatch);
234
235    assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
236          "EpilogPN should have EpilogPreHeader incoming block");
237    // Change EpilogPreHeader incoming block to NewExit.
238    EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
239                               NewExit);
240    // Now PHIs should look like:
241    // NewExit:
242    //   PN = PHI [I, Latch], [undef, PreHeader]
243    // ...
244    // Exit:
245    //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
246  }
247
248  // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
249  // Update corresponding PHI nodes in epilog loop.
250  for (BasicBlock *Succ : successors(Latch)) {
251    // Skip this as we already updated phis in exit blocks.
252    if (!L->contains(Succ))
253      continue;
254    for (PHINode &PN : Succ->phis()) {
255      // Add new PHI nodes to the loop exit block and update epilog
256      // PHIs with the new PHI values.
257      PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
258                                       NewExit->getFirstNonPHI());
259      // Adding a value to the new PHI node from the unrolling loop preheader.
260      NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
261      // Adding a value to the new PHI node from the unrolling loop latch.
262      NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
263
264      // Update the existing PHI node operand with the value from the new PHI
265      // node.  Corresponding instruction in epilog loop should be PHI.
266      PHINode *VPN = cast<PHINode>(VMap[&PN]);
267      VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
268    }
269  }
270
271  Instruction *InsertPt = NewExit->getTerminator();
272  IRBuilder<> B(InsertPt);
273  Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
274  assert(Exit && "Loop must have a single exit block only");
275  // Split the epilogue exit to maintain loop canonicalization guarantees
276  SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
277  SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
278                         PreserveLCSSA);
279  // Add the branch to the exit block (around the unrolling loop)
280  B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
281  InsertPt->eraseFromParent();
282  if (DT)
283    DT->changeImmediateDominator(Exit, NewExit);
284
285  // Split the main loop exit to maintain canonicalization guarantees.
286  SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
287  SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
288                         PreserveLCSSA);
289}
290
291/// Create a clone of the blocks in a loop and connect them together.
292/// If CreateRemainderLoop is false, loop structure will not be cloned,
293/// otherwise a new loop will be created including all cloned blocks, and the
294/// iterator of it switches to count NewIter down to 0.
295/// The cloned blocks should be inserted between InsertTop and InsertBot.
296/// If loop structure is cloned InsertTop should be new preheader, InsertBot
297/// new loop exit.
298/// Return the new cloned loop that is created when CreateRemainderLoop is true.
299static Loop *
300CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
301                const bool UseEpilogRemainder, const bool UnrollRemainder,
302                BasicBlock *InsertTop,
303                BasicBlock *InsertBot, BasicBlock *Preheader,
304                std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
305                ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
306  StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
307  BasicBlock *Header = L->getHeader();
308  BasicBlock *Latch = L->getLoopLatch();
309  Function *F = Header->getParent();
310  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
311  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
312  Loop *ParentLoop = L->getParentLoop();
313  NewLoopsMap NewLoops;
314  NewLoops[ParentLoop] = ParentLoop;
315  if (!CreateRemainderLoop)
316    NewLoops[L] = ParentLoop;
317
318  // For each block in the original loop, create a new copy,
319  // and update the value map with the newly created values.
320  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
321    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
322    NewBlocks.push_back(NewBB);
323
324    // If we're unrolling the outermost loop, there's no remainder loop,
325    // and this block isn't in a nested loop, then the new block is not
326    // in any loop. Otherwise, add it to loopinfo.
327    if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
328      addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
329
330    VMap[*BB] = NewBB;
331    if (Header == *BB) {
332      // For the first block, add a CFG connection to this newly
333      // created block.
334      InsertTop->getTerminator()->setSuccessor(0, NewBB);
335    }
336
337    if (DT) {
338      if (Header == *BB) {
339        // The header is dominated by the preheader.
340        DT->addNewBlock(NewBB, InsertTop);
341      } else {
342        // Copy information from original loop to unrolled loop.
343        BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
344        DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
345      }
346    }
347
348    if (Latch == *BB) {
349      // For the last block, if CreateRemainderLoop is false, create a direct
350      // jump to InsertBot. If not, create a loop back to cloned head.
351      VMap.erase((*BB)->getTerminator());
352      BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
353      BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
354      IRBuilder<> Builder(LatchBR);
355      if (!CreateRemainderLoop) {
356        Builder.CreateBr(InsertBot);
357      } else {
358        PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
359                                          suffix + ".iter",
360                                          FirstLoopBB->getFirstNonPHI());
361        Value *IdxSub =
362            Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
363                              NewIdx->getName() + ".sub");
364        Value *IdxCmp =
365            Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
366        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
367        NewIdx->addIncoming(NewIter, InsertTop);
368        NewIdx->addIncoming(IdxSub, NewBB);
369      }
370      LatchBR->eraseFromParent();
371    }
372  }
373
374  // Change the incoming values to the ones defined in the preheader or
375  // cloned loop.
376  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
377    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
378    if (!CreateRemainderLoop) {
379      if (UseEpilogRemainder) {
380        unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
381        NewPHI->setIncomingBlock(idx, InsertTop);
382        NewPHI->removeIncomingValue(Latch, false);
383      } else {
384        VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
385        cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
386      }
387    } else {
388      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
389      NewPHI->setIncomingBlock(idx, InsertTop);
390      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
391      idx = NewPHI->getBasicBlockIndex(Latch);
392      Value *InVal = NewPHI->getIncomingValue(idx);
393      NewPHI->setIncomingBlock(idx, NewLatch);
394      if (Value *V = VMap.lookup(InVal))
395        NewPHI->setIncomingValue(idx, V);
396    }
397  }
398  if (CreateRemainderLoop) {
399    Loop *NewLoop = NewLoops[L];
400    assert(NewLoop && "L should have been cloned");
401    MDNode *LoopID = NewLoop->getLoopID();
402
403    // Only add loop metadata if the loop is not going to be completely
404    // unrolled.
405    if (UnrollRemainder)
406      return NewLoop;
407
408    Optional<MDNode *> NewLoopID = makeFollowupLoopID(
409        LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
410    if (NewLoopID.hasValue()) {
411      NewLoop->setLoopID(NewLoopID.getValue());
412
413      // Do not setLoopAlreadyUnrolled if loop attributes have been defined
414      // explicitly.
415      return NewLoop;
416    }
417
418    // Add unroll disable metadata to disable future unrolling for this loop.
419    NewLoop->setLoopAlreadyUnrolled();
420    return NewLoop;
421  }
422  else
423    return nullptr;
424}
425
426/// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
427/// is populated with all the loop exit blocks other than the LatchExit block.
428static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit,
429                                         bool PreserveLCSSA,
430                                         bool UseEpilogRemainder) {
431
432  // We currently have some correctness constrains in unrolling a multi-exit
433  // loop. Check for these below.
434
435  // We rely on LCSSA form being preserved when the exit blocks are transformed.
436  if (!PreserveLCSSA)
437    return false;
438
439  // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
440  // UnrollRuntimeMultiExit is true. This will need updating the logic in
441  // connectEpilog/connectProlog.
442  if (!LatchExit->getSinglePredecessor()) {
443    LLVM_DEBUG(
444        dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
445                  "predecessor.\n");
446    return false;
447  }
448  // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
449  // and L is an inner loop. This is because in presence of multiple exits, the
450  // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
451  // outer loop. This is automatically handled in the prolog case, so we do not
452  // have that bug in prolog generation.
453  if (UseEpilogRemainder && L->getParentLoop())
454    return false;
455
456  // All constraints have been satisfied.
457  return true;
458}
459
460/// Returns true if we can profitably unroll the multi-exit loop L. Currently,
461/// we return true only if UnrollRuntimeMultiExit is set to true.
462static bool canProfitablyUnrollMultiExitLoop(
463    Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
464    bool PreserveLCSSA, bool UseEpilogRemainder) {
465
466#if !defined(NDEBUG)
467  assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
468                                      UseEpilogRemainder) &&
469         "Should be safe to unroll before checking profitability!");
470#endif
471
472  // Priority goes to UnrollRuntimeMultiExit if it's supplied.
473  if (UnrollRuntimeMultiExit.getNumOccurrences())
474    return UnrollRuntimeMultiExit;
475
476  // The main pain point with multi-exit loop unrolling is that once unrolled,
477  // we will not be able to merge all blocks into a straight line code.
478  // There are branches within the unrolled loop that go to the OtherExits.
479  // The second point is the increase in code size, but this is true
480  // irrespective of multiple exits.
481
482  // Note: Both the heuristics below are coarse grained. We are essentially
483  // enabling unrolling of loops that have a single side exit other than the
484  // normal LatchExit (i.e. exiting into a deoptimize block).
485  // The heuristics considered are:
486  // 1. low number of branches in the unrolled version.
487  // 2. high predictability of these extra branches.
488  // We avoid unrolling loops that have more than two exiting blocks. This
489  // limits the total number of branches in the unrolled loop to be atmost
490  // the unroll factor (since one of the exiting blocks is the latch block).
491  SmallVector<BasicBlock*, 4> ExitingBlocks;
492  L->getExitingBlocks(ExitingBlocks);
493  if (ExitingBlocks.size() > 2)
494    return false;
495
496  // The second heuristic is that L has one exit other than the latchexit and
497  // that exit is a deoptimize block. We know that deoptimize blocks are rarely
498  // taken, which also implies the branch leading to the deoptimize block is
499  // highly predictable.
500  return (OtherExits.size() == 1 &&
501          OtherExits[0]->getTerminatingDeoptimizeCall());
502  // TODO: These can be fine-tuned further to consider code size or deopt states
503  // that are captured by the deoptimize exit block.
504  // Also, we can extend this to support more cases, if we actually
505  // know of kinds of multiexit loops that would benefit from unrolling.
506}
507
508/// Insert code in the prolog/epilog code when unrolling a loop with a
509/// run-time trip-count.
510///
511/// This method assumes that the loop unroll factor is total number
512/// of loop bodies in the loop after unrolling. (Some folks refer
513/// to the unroll factor as the number of *extra* copies added).
514/// We assume also that the loop unroll factor is a power-of-two. So, after
515/// unrolling the loop, the number of loop bodies executed is 2,
516/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
517/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
518/// the switch instruction is generated.
519///
520/// ***Prolog case***
521///        extraiters = tripcount % loopfactor
522///        if (extraiters == 0) jump Loop:
523///        else jump Prol:
524/// Prol:  LoopBody;
525///        extraiters -= 1                 // Omitted if unroll factor is 2.
526///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
527///        if (tripcount < loopfactor) jump End:
528/// Loop:
529/// ...
530/// End:
531///
532/// ***Epilog case***
533///        extraiters = tripcount % loopfactor
534///        if (tripcount < loopfactor) jump LoopExit:
535///        unroll_iters = tripcount - extraiters
536/// Loop:  LoopBody; (executes unroll_iter times);
537///        unroll_iter -= 1
538///        if (unroll_iter != 0) jump Loop:
539/// LoopExit:
540///        if (extraiters == 0) jump EpilExit:
541/// Epil:  LoopBody; (executes extraiters times)
542///        extraiters -= 1                 // Omitted if unroll factor is 2.
543///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
544/// EpilExit:
545
546bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
547                                      bool AllowExpensiveTripCount,
548                                      bool UseEpilogRemainder,
549                                      bool UnrollRemainder, bool ForgetAllSCEV,
550                                      LoopInfo *LI, ScalarEvolution *SE,
551                                      DominatorTree *DT, AssumptionCache *AC,
552                                      bool PreserveLCSSA, Loop **ResultLoop) {
553  LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
554  LLVM_DEBUG(L->dump());
555  LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
556                                : dbgs() << "Using prolog remainder.\n");
557
558  // Make sure the loop is in canonical form.
559  if (!L->isLoopSimplifyForm()) {
560    LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
561    return false;
562  }
563
564  // Guaranteed by LoopSimplifyForm.
565  BasicBlock *Latch = L->getLoopLatch();
566  BasicBlock *Header = L->getHeader();
567
568  BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
569
570  if (!LatchBR || LatchBR->isUnconditional()) {
571    // The loop-rotate pass can be helpful to avoid this in many cases.
572    LLVM_DEBUG(
573        dbgs()
574        << "Loop latch not terminated by a conditional branch.\n");
575    return false;
576  }
577
578  unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
579  BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
580
581  if (L->contains(LatchExit)) {
582    // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
583    // targets of the Latch be an exit block out of the loop.
584    LLVM_DEBUG(
585        dbgs()
586        << "One of the loop latch successors must be the exit block.\n");
587    return false;
588  }
589
590  // These are exit blocks other than the target of the latch exiting block.
591  SmallVector<BasicBlock *, 4> OtherExits;
592  L->getUniqueNonLatchExitBlocks(OtherExits);
593  bool isMultiExitUnrollingEnabled =
594      canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
595                                   UseEpilogRemainder) &&
596      canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
597                                       UseEpilogRemainder);
598  // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
599  if (!isMultiExitUnrollingEnabled &&
600      (!L->getExitingBlock() || OtherExits.size())) {
601    LLVM_DEBUG(
602        dbgs()
603        << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
604           "enabled!\n");
605    return false;
606  }
607  // Use Scalar Evolution to compute the trip count. This allows more loops to
608  // be unrolled than relying on induction var simplification.
609  if (!SE)
610    return false;
611
612  // Only unroll loops with a computable trip count, and the trip count needs
613  // to be an int value (allowing a pointer type is a TODO item).
614  // We calculate the backedge count by using getExitCount on the Latch block,
615  // which is proven to be the only exiting block in this loop. This is same as
616  // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
617  // exiting blocks).
618  const SCEV *BECountSC = SE->getExitCount(L, Latch);
619  if (isa<SCEVCouldNotCompute>(BECountSC) ||
620      !BECountSC->getType()->isIntegerTy()) {
621    LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
622    return false;
623  }
624
625  unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
626
627  // Add 1 since the backedge count doesn't include the first loop iteration.
628  const SCEV *TripCountSC =
629      SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
630  if (isa<SCEVCouldNotCompute>(TripCountSC)) {
631    LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
632    return false;
633  }
634
635  BasicBlock *PreHeader = L->getLoopPreheader();
636  BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
637  const DataLayout &DL = Header->getModule()->getDataLayout();
638  SCEVExpander Expander(*SE, DL, "loop-unroll");
639  if (!AllowExpensiveTripCount &&
640      Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
641    LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
642    return false;
643  }
644
645  // This constraint lets us deal with an overflowing trip count easily; see the
646  // comment on ModVal below.
647  if (Log2_32(Count) > BEWidth) {
648    LLVM_DEBUG(
649        dbgs()
650        << "Count failed constraint on overflow trip count calculation.\n");
651    return false;
652  }
653
654  // Loop structure is the following:
655  //
656  // PreHeader
657  //   Header
658  //   ...
659  //   Latch
660  // LatchExit
661
662  BasicBlock *NewPreHeader;
663  BasicBlock *NewExit = nullptr;
664  BasicBlock *PrologExit = nullptr;
665  BasicBlock *EpilogPreHeader = nullptr;
666  BasicBlock *PrologPreHeader = nullptr;
667
668  if (UseEpilogRemainder) {
669    // If epilog remainder
670    // Split PreHeader to insert a branch around loop for unrolling.
671    NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
672    NewPreHeader->setName(PreHeader->getName() + ".new");
673    // Split LatchExit to create phi nodes from branch above.
674    SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
675    NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI,
676                                     nullptr, PreserveLCSSA);
677    // NewExit gets its DebugLoc from LatchExit, which is not part of the
678    // original Loop.
679    // Fix this by setting Loop's DebugLoc to NewExit.
680    auto *NewExitTerminator = NewExit->getTerminator();
681    NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
682    // Split NewExit to insert epilog remainder loop.
683    EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
684    EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
685  } else {
686    // If prolog remainder
687    // Split the original preheader twice to insert prolog remainder loop
688    PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
689    PrologPreHeader->setName(Header->getName() + ".prol.preheader");
690    PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
691                            DT, LI);
692    PrologExit->setName(Header->getName() + ".prol.loopexit");
693    // Split PrologExit to get NewPreHeader.
694    NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
695    NewPreHeader->setName(PreHeader->getName() + ".new");
696  }
697  // Loop structure should be the following:
698  //  Epilog             Prolog
699  //
700  // PreHeader         PreHeader
701  // *NewPreHeader     *PrologPreHeader
702  //   Header          *PrologExit
703  //   ...             *NewPreHeader
704  //   Latch             Header
705  // *NewExit            ...
706  // *EpilogPreHeader    Latch
707  // LatchExit              LatchExit
708
709  // Calculate conditions for branch around loop for unrolling
710  // in epilog case and around prolog remainder loop in prolog case.
711  // Compute the number of extra iterations required, which is:
712  //  extra iterations = run-time trip count % loop unroll factor
713  PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
714  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
715                                            PreHeaderBR);
716  Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
717                                          PreHeaderBR);
718  IRBuilder<> B(PreHeaderBR);
719  Value *ModVal;
720  // Calculate ModVal = (BECount + 1) % Count.
721  // Note that TripCount is BECount + 1.
722  if (isPowerOf2_32(Count)) {
723    // When Count is power of 2 we don't BECount for epilog case, however we'll
724    // need it for a branch around unrolling loop for prolog case.
725    ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
726    //  1. There are no iterations to be run in the prolog/epilog loop.
727    // OR
728    //  2. The addition computing TripCount overflowed.
729    //
730    // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
731    // the number of iterations that remain to be run in the original loop is a
732    // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
733    // explicitly check this above).
734  } else {
735    // As (BECount + 1) can potentially unsigned overflow we count
736    // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
737    Value *ModValTmp = B.CreateURem(BECount,
738                                    ConstantInt::get(BECount->getType(),
739                                                     Count));
740    Value *ModValAdd = B.CreateAdd(ModValTmp,
741                                   ConstantInt::get(ModValTmp->getType(), 1));
742    // At that point (BECount % Count) + 1 could be equal to Count.
743    // To handle this case we need to take mod by Count one more time.
744    ModVal = B.CreateURem(ModValAdd,
745                          ConstantInt::get(BECount->getType(), Count),
746                          "xtraiter");
747  }
748  Value *BranchVal =
749      UseEpilogRemainder ? B.CreateICmpULT(BECount,
750                                           ConstantInt::get(BECount->getType(),
751                                                            Count - 1)) :
752                           B.CreateIsNotNull(ModVal, "lcmp.mod");
753  BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
754  BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
755  // Branch to either remainder (extra iterations) loop or unrolling loop.
756  B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
757  PreHeaderBR->eraseFromParent();
758  if (DT) {
759    if (UseEpilogRemainder)
760      DT->changeImmediateDominator(NewExit, PreHeader);
761    else
762      DT->changeImmediateDominator(PrologExit, PreHeader);
763  }
764  Function *F = Header->getParent();
765  // Get an ordered list of blocks in the loop to help with the ordering of the
766  // cloned blocks in the prolog/epilog code
767  LoopBlocksDFS LoopBlocks(L);
768  LoopBlocks.perform(LI);
769
770  //
771  // For each extra loop iteration, create a copy of the loop's basic blocks
772  // and generate a condition that branches to the copy depending on the
773  // number of 'left over' iterations.
774  //
775  std::vector<BasicBlock *> NewBlocks;
776  ValueToValueMapTy VMap;
777
778  // For unroll factor 2 remainder loop will have 1 iterations.
779  // Do not create 1 iteration loop.
780  bool CreateRemainderLoop = (Count != 2);
781
782  // Clone all the basic blocks in the loop. If Count is 2, we don't clone
783  // the loop, otherwise we create a cloned loop to execute the extra
784  // iterations. This function adds the appropriate CFG connections.
785  BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
786  BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
787  Loop *remainderLoop = CloneLoopBlocks(
788      L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
789      InsertTop, InsertBot,
790      NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
791
792  // Insert the cloned blocks into the function.
793  F->getBasicBlockList().splice(InsertBot->getIterator(),
794                                F->getBasicBlockList(),
795                                NewBlocks[0]->getIterator(),
796                                F->end());
797
798  // Now the loop blocks are cloned and the other exiting blocks from the
799  // remainder are connected to the original Loop's exit blocks. The remaining
800  // work is to update the phi nodes in the original loop, and take in the
801  // values from the cloned region.
802  for (auto *BB : OtherExits) {
803   for (auto &II : *BB) {
804
805     // Given we preserve LCSSA form, we know that the values used outside the
806     // loop will be used through these phi nodes at the exit blocks that are
807     // transformed below.
808     if (!isa<PHINode>(II))
809       break;
810     PHINode *Phi = cast<PHINode>(&II);
811     unsigned oldNumOperands = Phi->getNumIncomingValues();
812     // Add the incoming values from the remainder code to the end of the phi
813     // node.
814     for (unsigned i =0; i < oldNumOperands; i++){
815       Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
816       // newVal can be a constant or derived from values outside the loop, and
817       // hence need not have a VMap value. Also, since lookup already generated
818       // a default "null" VMap entry for this value, we need to populate that
819       // VMap entry correctly, with the mapped entry being itself.
820       if (!newVal) {
821         newVal = Phi->getIncomingValue(i);
822         VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
823       }
824       Phi->addIncoming(newVal,
825                           cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
826     }
827   }
828#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
829    for (BasicBlock *SuccBB : successors(BB)) {
830      assert(!(any_of(OtherExits,
831                      [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
832               SuccBB == LatchExit) &&
833             "Breaks the definition of dedicated exits!");
834    }
835#endif
836  }
837
838  // Update the immediate dominator of the exit blocks and blocks that are
839  // reachable from the exit blocks. This is needed because we now have paths
840  // from both the original loop and the remainder code reaching the exit
841  // blocks. While the IDom of these exit blocks were from the original loop,
842  // now the IDom is the preheader (which decides whether the original loop or
843  // remainder code should run).
844  if (DT && !L->getExitingBlock()) {
845    SmallVector<BasicBlock *, 16> ChildrenToUpdate;
846    // NB! We have to examine the dom children of all loop blocks, not just
847    // those which are the IDom of the exit blocks. This is because blocks
848    // reachable from the exit blocks can have their IDom as the nearest common
849    // dominator of the exit blocks.
850    for (auto *BB : L->blocks()) {
851      auto *DomNodeBB = DT->getNode(BB);
852      for (auto *DomChild : DomNodeBB->getChildren()) {
853        auto *DomChildBB = DomChild->getBlock();
854        if (!L->contains(LI->getLoopFor(DomChildBB)))
855          ChildrenToUpdate.push_back(DomChildBB);
856      }
857    }
858    for (auto *BB : ChildrenToUpdate)
859      DT->changeImmediateDominator(BB, PreHeader);
860  }
861
862  // Loop structure should be the following:
863  //  Epilog             Prolog
864  //
865  // PreHeader         PreHeader
866  // NewPreHeader      PrologPreHeader
867  //   Header            PrologHeader
868  //   ...               ...
869  //   Latch             PrologLatch
870  // NewExit           PrologExit
871  // EpilogPreHeader   NewPreHeader
872  //   EpilogHeader      Header
873  //   ...               ...
874  //   EpilogLatch       Latch
875  // LatchExit              LatchExit
876
877  // Rewrite the cloned instruction operands to use the values created when the
878  // clone is created.
879  for (BasicBlock *BB : NewBlocks) {
880    for (Instruction &I : *BB) {
881      RemapInstruction(&I, VMap,
882                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
883    }
884  }
885
886  if (UseEpilogRemainder) {
887    // Connect the epilog code to the original loop and update the
888    // PHI functions.
889    ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
890                  EpilogPreHeader, NewPreHeader, VMap, DT, LI,
891                  PreserveLCSSA);
892
893    // Update counter in loop for unrolling.
894    // I should be multiply of Count.
895    IRBuilder<> B2(NewPreHeader->getTerminator());
896    Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
897    BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
898    B2.SetInsertPoint(LatchBR);
899    PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
900                                      Header->getFirstNonPHI());
901    Value *IdxSub =
902        B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
903                     NewIdx->getName() + ".nsub");
904    Value *IdxCmp;
905    if (LatchBR->getSuccessor(0) == Header)
906      IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
907    else
908      IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
909    NewIdx->addIncoming(TestVal, NewPreHeader);
910    NewIdx->addIncoming(IdxSub, Latch);
911    LatchBR->setCondition(IdxCmp);
912  } else {
913    // Connect the prolog code to the original loop and update the
914    // PHI functions.
915    ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
916                  NewPreHeader, VMap, DT, LI, PreserveLCSSA);
917  }
918
919  // If this loop is nested, then the loop unroller changes the code in the any
920  // of its parent loops, so the Scalar Evolution pass needs to be run again.
921  SE->forgetTopmostLoop(L);
922
923  // Verify that the Dom Tree is correct.
924#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
925  if (DT)
926    assert(DT->verify(DominatorTree::VerificationLevel::Full));
927#endif
928
929  // Canonicalize to LoopSimplifyForm both original and remainder loops. We
930  // cannot rely on the LoopUnrollPass to do this because it only does
931  // canonicalization for parent/subloops and not the sibling loops.
932  if (OtherExits.size() > 0) {
933    // Generate dedicated exit blocks for the original loop, to preserve
934    // LoopSimplifyForm.
935    formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
936    // Generate dedicated exit blocks for the remainder loop if one exists, to
937    // preserve LoopSimplifyForm.
938    if (remainderLoop)
939      formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
940  }
941
942  auto UnrollResult = LoopUnrollResult::Unmodified;
943  if (remainderLoop && UnrollRemainder) {
944    LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
945    UnrollResult =
946        UnrollLoop(remainderLoop,
947                   {/*Count*/ Count - 1, /*TripCount*/ Count - 1,
948                    /*Force*/ false, /*AllowRuntime*/ false,
949                    /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
950                    /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
951                    /*PeelCount*/ 0, /*UnrollRemainder*/ false, ForgetAllSCEV},
952                   LI, SE, DT, AC, /*ORE*/ nullptr, PreserveLCSSA);
953  }
954
955  if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
956    *ResultLoop = remainderLoop;
957  NumRuntimeUnrolled++;
958  return true;
959}
960