1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CloneFunctionInto interface, which is used as the
10// low-level function cloner.  This is used by the CloneFunction and function
11// inliner to do the dirty work of copying the body of a function around.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/DomTreeUpdater.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DebugInfo.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/IR/Module.h"
32#include "llvm/Transforms/Utils/BasicBlockUtils.h"
33#include "llvm/Transforms/Utils/Cloning.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Transforms/Utils/ValueMapper.h"
36#include <map>
37using namespace llvm;
38
39/// See comments in Cloning.h.
40BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
41                                  const Twine &NameSuffix, Function *F,
42                                  ClonedCodeInfo *CodeInfo,
43                                  DebugInfoFinder *DIFinder) {
44  DenseMap<const MDNode *, MDNode *> Cache;
45  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46  if (BB->hasName())
47    NewBB->setName(BB->getName() + NameSuffix);
48
49  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
50  Module *TheModule = F ? F->getParent() : nullptr;
51
52  // Loop over all instructions, and copy them over.
53  for (const Instruction &I : *BB) {
54    if (DIFinder && TheModule)
55      DIFinder->processInstruction(*TheModule, I);
56
57    Instruction *NewInst = I.clone();
58    if (I.hasName())
59      NewInst->setName(I.getName() + NameSuffix);
60    NewBB->getInstList().push_back(NewInst);
61    VMap[&I] = NewInst; // Add instruction map to value.
62
63    hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64    if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65      if (isa<ConstantInt>(AI->getArraySize()))
66        hasStaticAllocas = true;
67      else
68        hasDynamicAllocas = true;
69    }
70  }
71
72  if (CodeInfo) {
73    CodeInfo->ContainsCalls          |= hasCalls;
74    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
75    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
76                                        BB != &BB->getParent()->getEntryBlock();
77  }
78  return NewBB;
79}
80
81// Clone OldFunc into NewFunc, transforming the old arguments into references to
82// VMap values.
83//
84void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
85                             ValueToValueMapTy &VMap,
86                             bool ModuleLevelChanges,
87                             SmallVectorImpl<ReturnInst*> &Returns,
88                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
89                             ValueMapTypeRemapper *TypeMapper,
90                             ValueMaterializer *Materializer) {
91  assert(NameSuffix && "NameSuffix cannot be null!");
92
93#ifndef NDEBUG
94  for (const Argument &I : OldFunc->args())
95    assert(VMap.count(&I) && "No mapping from source argument specified!");
96#endif
97
98  // Copy all attributes other than those stored in the AttributeList.  We need
99  // to remap the parameter indices of the AttributeList.
100  AttributeList NewAttrs = NewFunc->getAttributes();
101  NewFunc->copyAttributesFrom(OldFunc);
102  NewFunc->setAttributes(NewAttrs);
103
104  // Fix up the personality function that got copied over.
105  if (OldFunc->hasPersonalityFn())
106    NewFunc->setPersonalityFn(
107        MapValue(OldFunc->getPersonalityFn(), VMap,
108                 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
109                 TypeMapper, Materializer));
110
111  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
112  AttributeList OldAttrs = OldFunc->getAttributes();
113
114  // Clone any argument attributes that are present in the VMap.
115  for (const Argument &OldArg : OldFunc->args()) {
116    if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
117      NewArgAttrs[NewArg->getArgNo()] =
118          OldAttrs.getParamAttributes(OldArg.getArgNo());
119    }
120  }
121
122  NewFunc->setAttributes(
123      AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
124                         OldAttrs.getRetAttributes(), NewArgAttrs));
125
126  bool MustCloneSP =
127      OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
128  DISubprogram *SP = OldFunc->getSubprogram();
129  if (SP) {
130    assert(!MustCloneSP || ModuleLevelChanges);
131    // Add mappings for some DebugInfo nodes that we don't want duplicated
132    // even if they're distinct.
133    auto &MD = VMap.MD();
134    MD[SP->getUnit()].reset(SP->getUnit());
135    MD[SP->getType()].reset(SP->getType());
136    MD[SP->getFile()].reset(SP->getFile());
137    // If we're not cloning into the same module, no need to clone the
138    // subprogram
139    if (!MustCloneSP)
140      MD[SP].reset(SP);
141  }
142
143  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
144  OldFunc->getAllMetadata(MDs);
145  for (auto MD : MDs) {
146    NewFunc->addMetadata(
147        MD.first,
148        *MapMetadata(MD.second, VMap,
149                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
150                     TypeMapper, Materializer));
151  }
152
153  // When we remap instructions, we want to avoid duplicating inlined
154  // DISubprograms, so record all subprograms we find as we duplicate
155  // instructions and then freeze them in the MD map.
156  // We also record information about dbg.value and dbg.declare to avoid
157  // duplicating the types.
158  DebugInfoFinder DIFinder;
159
160  // Loop over all of the basic blocks in the function, cloning them as
161  // appropriate.  Note that we save BE this way in order to handle cloning of
162  // recursive functions into themselves.
163  //
164  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
165       BI != BE; ++BI) {
166    const BasicBlock &BB = *BI;
167
168    // Create a new basic block and copy instructions into it!
169    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
170                                      ModuleLevelChanges ? &DIFinder : nullptr);
171
172    // Add basic block mapping.
173    VMap[&BB] = CBB;
174
175    // It is only legal to clone a function if a block address within that
176    // function is never referenced outside of the function.  Given that, we
177    // want to map block addresses from the old function to block addresses in
178    // the clone. (This is different from the generic ValueMapper
179    // implementation, which generates an invalid blockaddress when
180    // cloning a function.)
181    if (BB.hasAddressTaken()) {
182      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
183                                              const_cast<BasicBlock*>(&BB));
184      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
185    }
186
187    // Note return instructions for the caller.
188    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
189      Returns.push_back(RI);
190  }
191
192  for (DISubprogram *ISP : DIFinder.subprograms())
193    if (ISP != SP)
194      VMap.MD()[ISP].reset(ISP);
195
196  for (DICompileUnit *CU : DIFinder.compile_units())
197    VMap.MD()[CU].reset(CU);
198
199  for (DIType *Type : DIFinder.types())
200    VMap.MD()[Type].reset(Type);
201
202  // Loop over all of the instructions in the function, fixing up operand
203  // references as we go.  This uses VMap to do all the hard work.
204  for (Function::iterator BB =
205           cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
206                          BE = NewFunc->end();
207       BB != BE; ++BB)
208    // Loop over all instructions, fixing each one as we find it...
209    for (Instruction &II : *BB)
210      RemapInstruction(&II, VMap,
211                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
212                       TypeMapper, Materializer);
213
214  // Register all DICompileUnits of the old parent module in the new parent module
215  auto* OldModule = OldFunc->getParent();
216  auto* NewModule = NewFunc->getParent();
217  if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
218    auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
219    // Avoid multiple insertions of the same DICompileUnit to NMD.
220    SmallPtrSet<const void*, 8> Visited;
221    for (auto* Operand : NMD->operands())
222      Visited.insert(Operand);
223    for (auto* Unit : DIFinder.compile_units())
224      // VMap.MD()[Unit] == Unit
225      if (Visited.insert(Unit).second)
226        NMD->addOperand(Unit);
227  }
228}
229
230/// Return a copy of the specified function and add it to that function's
231/// module.  Also, any references specified in the VMap are changed to refer to
232/// their mapped value instead of the original one.  If any of the arguments to
233/// the function are in the VMap, the arguments are deleted from the resultant
234/// function.  The VMap is updated to include mappings from all of the
235/// instructions and basicblocks in the function from their old to new values.
236///
237Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
238                              ClonedCodeInfo *CodeInfo) {
239  std::vector<Type*> ArgTypes;
240
241  // The user might be deleting arguments to the function by specifying them in
242  // the VMap.  If so, we need to not add the arguments to the arg ty vector
243  //
244  for (const Argument &I : F->args())
245    if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
246      ArgTypes.push_back(I.getType());
247
248  // Create a new function type...
249  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
250                                    ArgTypes, F->getFunctionType()->isVarArg());
251
252  // Create the new function...
253  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
254                                    F->getName(), F->getParent());
255
256  // Loop over the arguments, copying the names of the mapped arguments over...
257  Function::arg_iterator DestI = NewF->arg_begin();
258  for (const Argument & I : F->args())
259    if (VMap.count(&I) == 0) {     // Is this argument preserved?
260      DestI->setName(I.getName()); // Copy the name over...
261      VMap[&I] = &*DestI++;        // Add mapping to VMap
262    }
263
264  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
265  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
266                    CodeInfo);
267
268  return NewF;
269}
270
271
272
273namespace {
274  /// This is a private class used to implement CloneAndPruneFunctionInto.
275  struct PruningFunctionCloner {
276    Function *NewFunc;
277    const Function *OldFunc;
278    ValueToValueMapTy &VMap;
279    bool ModuleLevelChanges;
280    const char *NameSuffix;
281    ClonedCodeInfo *CodeInfo;
282
283  public:
284    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
285                          ValueToValueMapTy &valueMap, bool moduleLevelChanges,
286                          const char *nameSuffix, ClonedCodeInfo *codeInfo)
287        : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
288          ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
289          CodeInfo(codeInfo) {}
290
291    /// The specified block is found to be reachable, clone it and
292    /// anything that it can reach.
293    void CloneBlock(const BasicBlock *BB,
294                    BasicBlock::const_iterator StartingInst,
295                    std::vector<const BasicBlock*> &ToClone);
296  };
297}
298
299/// The specified block is found to be reachable, clone it and
300/// anything that it can reach.
301void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
302                                       BasicBlock::const_iterator StartingInst,
303                                       std::vector<const BasicBlock*> &ToClone){
304  WeakTrackingVH &BBEntry = VMap[BB];
305
306  // Have we already cloned this block?
307  if (BBEntry) return;
308
309  // Nope, clone it now.
310  BasicBlock *NewBB;
311  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
312  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
313
314  // It is only legal to clone a function if a block address within that
315  // function is never referenced outside of the function.  Given that, we
316  // want to map block addresses from the old function to block addresses in
317  // the clone. (This is different from the generic ValueMapper
318  // implementation, which generates an invalid blockaddress when
319  // cloning a function.)
320  //
321  // Note that we don't need to fix the mapping for unreachable blocks;
322  // the default mapping there is safe.
323  if (BB->hasAddressTaken()) {
324    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
325                                            const_cast<BasicBlock*>(BB));
326    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
327  }
328
329  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
330
331  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
332  // loop doesn't include the terminator.
333  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
334       II != IE; ++II) {
335
336    Instruction *NewInst = II->clone();
337
338    // Eagerly remap operands to the newly cloned instruction, except for PHI
339    // nodes for which we defer processing until we update the CFG.
340    if (!isa<PHINode>(NewInst)) {
341      RemapInstruction(NewInst, VMap,
342                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
343
344      // If we can simplify this instruction to some other value, simply add
345      // a mapping to that value rather than inserting a new instruction into
346      // the basic block.
347      if (Value *V =
348              SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
349        // On the off-chance that this simplifies to an instruction in the old
350        // function, map it back into the new function.
351        if (NewFunc != OldFunc)
352          if (Value *MappedV = VMap.lookup(V))
353            V = MappedV;
354
355        if (!NewInst->mayHaveSideEffects()) {
356          VMap[&*II] = V;
357          NewInst->deleteValue();
358          continue;
359        }
360      }
361    }
362
363    if (II->hasName())
364      NewInst->setName(II->getName()+NameSuffix);
365    VMap[&*II] = NewInst; // Add instruction map to value.
366    NewBB->getInstList().push_back(NewInst);
367    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
368
369    if (CodeInfo)
370      if (auto CS = ImmutableCallSite(&*II))
371        if (CS.hasOperandBundles())
372          CodeInfo->OperandBundleCallSites.push_back(NewInst);
373
374    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
375      if (isa<ConstantInt>(AI->getArraySize()))
376        hasStaticAllocas = true;
377      else
378        hasDynamicAllocas = true;
379    }
380  }
381
382  // Finally, clone over the terminator.
383  const Instruction *OldTI = BB->getTerminator();
384  bool TerminatorDone = false;
385  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
386    if (BI->isConditional()) {
387      // If the condition was a known constant in the callee...
388      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
389      // Or is a known constant in the caller...
390      if (!Cond) {
391        Value *V = VMap.lookup(BI->getCondition());
392        Cond = dyn_cast_or_null<ConstantInt>(V);
393      }
394
395      // Constant fold to uncond branch!
396      if (Cond) {
397        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
398        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
399        ToClone.push_back(Dest);
400        TerminatorDone = true;
401      }
402    }
403  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
404    // If switching on a value known constant in the caller.
405    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
406    if (!Cond) { // Or known constant after constant prop in the callee...
407      Value *V = VMap.lookup(SI->getCondition());
408      Cond = dyn_cast_or_null<ConstantInt>(V);
409    }
410    if (Cond) {     // Constant fold to uncond branch!
411      SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
412      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
413      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
414      ToClone.push_back(Dest);
415      TerminatorDone = true;
416    }
417  }
418
419  if (!TerminatorDone) {
420    Instruction *NewInst = OldTI->clone();
421    if (OldTI->hasName())
422      NewInst->setName(OldTI->getName()+NameSuffix);
423    NewBB->getInstList().push_back(NewInst);
424    VMap[OldTI] = NewInst;             // Add instruction map to value.
425
426    if (CodeInfo)
427      if (auto CS = ImmutableCallSite(OldTI))
428        if (CS.hasOperandBundles())
429          CodeInfo->OperandBundleCallSites.push_back(NewInst);
430
431    // Recursively clone any reachable successor blocks.
432    const Instruction *TI = BB->getTerminator();
433    for (const BasicBlock *Succ : successors(TI))
434      ToClone.push_back(Succ);
435  }
436
437  if (CodeInfo) {
438    CodeInfo->ContainsCalls          |= hasCalls;
439    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
440    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
441      BB != &BB->getParent()->front();
442  }
443}
444
445/// This works like CloneAndPruneFunctionInto, except that it does not clone the
446/// entire function. Instead it starts at an instruction provided by the caller
447/// and copies (and prunes) only the code reachable from that instruction.
448void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
449                                     const Instruction *StartingInst,
450                                     ValueToValueMapTy &VMap,
451                                     bool ModuleLevelChanges,
452                                     SmallVectorImpl<ReturnInst *> &Returns,
453                                     const char *NameSuffix,
454                                     ClonedCodeInfo *CodeInfo) {
455  assert(NameSuffix && "NameSuffix cannot be null!");
456
457  ValueMapTypeRemapper *TypeMapper = nullptr;
458  ValueMaterializer *Materializer = nullptr;
459
460#ifndef NDEBUG
461  // If the cloning starts at the beginning of the function, verify that
462  // the function arguments are mapped.
463  if (!StartingInst)
464    for (const Argument &II : OldFunc->args())
465      assert(VMap.count(&II) && "No mapping from source argument specified!");
466#endif
467
468  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
469                            NameSuffix, CodeInfo);
470  const BasicBlock *StartingBB;
471  if (StartingInst)
472    StartingBB = StartingInst->getParent();
473  else {
474    StartingBB = &OldFunc->getEntryBlock();
475    StartingInst = &StartingBB->front();
476  }
477
478  // Clone the entry block, and anything recursively reachable from it.
479  std::vector<const BasicBlock*> CloneWorklist;
480  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
481  while (!CloneWorklist.empty()) {
482    const BasicBlock *BB = CloneWorklist.back();
483    CloneWorklist.pop_back();
484    PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
485  }
486
487  // Loop over all of the basic blocks in the old function.  If the block was
488  // reachable, we have cloned it and the old block is now in the value map:
489  // insert it into the new function in the right order.  If not, ignore it.
490  //
491  // Defer PHI resolution until rest of function is resolved.
492  SmallVector<const PHINode*, 16> PHIToResolve;
493  for (const BasicBlock &BI : *OldFunc) {
494    Value *V = VMap.lookup(&BI);
495    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
496    if (!NewBB) continue;  // Dead block.
497
498    // Add the new block to the new function.
499    NewFunc->getBasicBlockList().push_back(NewBB);
500
501    // Handle PHI nodes specially, as we have to remove references to dead
502    // blocks.
503    for (const PHINode &PN : BI.phis()) {
504      // PHI nodes may have been remapped to non-PHI nodes by the caller or
505      // during the cloning process.
506      if (isa<PHINode>(VMap[&PN]))
507        PHIToResolve.push_back(&PN);
508      else
509        break;
510    }
511
512    // Finally, remap the terminator instructions, as those can't be remapped
513    // until all BBs are mapped.
514    RemapInstruction(NewBB->getTerminator(), VMap,
515                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
516                     TypeMapper, Materializer);
517  }
518
519  // Defer PHI resolution until rest of function is resolved, PHI resolution
520  // requires the CFG to be up-to-date.
521  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
522    const PHINode *OPN = PHIToResolve[phino];
523    unsigned NumPreds = OPN->getNumIncomingValues();
524    const BasicBlock *OldBB = OPN->getParent();
525    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
526
527    // Map operands for blocks that are live and remove operands for blocks
528    // that are dead.
529    for (; phino != PHIToResolve.size() &&
530         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
531      OPN = PHIToResolve[phino];
532      PHINode *PN = cast<PHINode>(VMap[OPN]);
533      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
534        Value *V = VMap.lookup(PN->getIncomingBlock(pred));
535        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
536          Value *InVal = MapValue(PN->getIncomingValue(pred),
537                                  VMap,
538                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
539          assert(InVal && "Unknown input value?");
540          PN->setIncomingValue(pred, InVal);
541          PN->setIncomingBlock(pred, MappedBlock);
542        } else {
543          PN->removeIncomingValue(pred, false);
544          --pred;  // Revisit the next entry.
545          --e;
546        }
547      }
548    }
549
550    // The loop above has removed PHI entries for those blocks that are dead
551    // and has updated others.  However, if a block is live (i.e. copied over)
552    // but its terminator has been changed to not go to this block, then our
553    // phi nodes will have invalid entries.  Update the PHI nodes in this
554    // case.
555    PHINode *PN = cast<PHINode>(NewBB->begin());
556    NumPreds = pred_size(NewBB);
557    if (NumPreds != PN->getNumIncomingValues()) {
558      assert(NumPreds < PN->getNumIncomingValues());
559      // Count how many times each predecessor comes to this block.
560      std::map<BasicBlock*, unsigned> PredCount;
561      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
562           PI != E; ++PI)
563        --PredCount[*PI];
564
565      // Figure out how many entries to remove from each PHI.
566      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
567        ++PredCount[PN->getIncomingBlock(i)];
568
569      // At this point, the excess predecessor entries are positive in the
570      // map.  Loop over all of the PHIs and remove excess predecessor
571      // entries.
572      BasicBlock::iterator I = NewBB->begin();
573      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
574        for (const auto &PCI : PredCount) {
575          BasicBlock *Pred = PCI.first;
576          for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
577            PN->removeIncomingValue(Pred, false);
578        }
579      }
580    }
581
582    // If the loops above have made these phi nodes have 0 or 1 operand,
583    // replace them with undef or the input value.  We must do this for
584    // correctness, because 0-operand phis are not valid.
585    PN = cast<PHINode>(NewBB->begin());
586    if (PN->getNumIncomingValues() == 0) {
587      BasicBlock::iterator I = NewBB->begin();
588      BasicBlock::const_iterator OldI = OldBB->begin();
589      while ((PN = dyn_cast<PHINode>(I++))) {
590        Value *NV = UndefValue::get(PN->getType());
591        PN->replaceAllUsesWith(NV);
592        assert(VMap[&*OldI] == PN && "VMap mismatch");
593        VMap[&*OldI] = NV;
594        PN->eraseFromParent();
595        ++OldI;
596      }
597    }
598  }
599
600  // Make a second pass over the PHINodes now that all of them have been
601  // remapped into the new function, simplifying the PHINode and performing any
602  // recursive simplifications exposed. This will transparently update the
603  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
604  // two PHINodes, the iteration over the old PHIs remains valid, and the
605  // mapping will just map us to the new node (which may not even be a PHI
606  // node).
607  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
608  SmallSetVector<const Value *, 8> Worklist;
609  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
610    if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
611      Worklist.insert(PHIToResolve[Idx]);
612
613  // Note that we must test the size on each iteration, the worklist can grow.
614  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
615    const Value *OrigV = Worklist[Idx];
616    auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
617    if (!I)
618      continue;
619
620    // Skip over non-intrinsic callsites, we don't want to remove any nodes from
621    // the CGSCC.
622    CallSite CS = CallSite(I);
623    if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
624      continue;
625
626    // See if this instruction simplifies.
627    Value *SimpleV = SimplifyInstruction(I, DL);
628    if (!SimpleV)
629      continue;
630
631    // Stash away all the uses of the old instruction so we can check them for
632    // recursive simplifications after a RAUW. This is cheaper than checking all
633    // uses of To on the recursive step in most cases.
634    for (const User *U : OrigV->users())
635      Worklist.insert(cast<Instruction>(U));
636
637    // Replace the instruction with its simplified value.
638    I->replaceAllUsesWith(SimpleV);
639
640    // If the original instruction had no side effects, remove it.
641    if (isInstructionTriviallyDead(I))
642      I->eraseFromParent();
643    else
644      VMap[OrigV] = I;
645  }
646
647  // Now that the inlined function body has been fully constructed, go through
648  // and zap unconditional fall-through branches. This happens all the time when
649  // specializing code: code specialization turns conditional branches into
650  // uncond branches, and this code folds them.
651  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
652  Function::iterator I = Begin;
653  while (I != NewFunc->end()) {
654    // We need to simplify conditional branches and switches with a constant
655    // operand. We try to prune these out when cloning, but if the
656    // simplification required looking through PHI nodes, those are only
657    // available after forming the full basic block. That may leave some here,
658    // and we still want to prune the dead code as early as possible.
659    //
660    // Do the folding before we check if the block is dead since we want code
661    // like
662    //  bb:
663    //    br i1 undef, label %bb, label %bb
664    // to be simplified to
665    //  bb:
666    //    br label %bb
667    // before we call I->getSinglePredecessor().
668    ConstantFoldTerminator(&*I);
669
670    // Check if this block has become dead during inlining or other
671    // simplifications. Note that the first block will appear dead, as it has
672    // not yet been wired up properly.
673    if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
674                       I->getSinglePredecessor() == &*I)) {
675      BasicBlock *DeadBB = &*I++;
676      DeleteDeadBlock(DeadBB);
677      continue;
678    }
679
680    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
681    if (!BI || BI->isConditional()) { ++I; continue; }
682
683    BasicBlock *Dest = BI->getSuccessor(0);
684    if (!Dest->getSinglePredecessor()) {
685      ++I; continue;
686    }
687
688    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
689    // above should have zapped all of them..
690    assert(!isa<PHINode>(Dest->begin()));
691
692    // We know all single-entry PHI nodes in the inlined function have been
693    // removed, so we just need to splice the blocks.
694    BI->eraseFromParent();
695
696    // Make all PHI nodes that referred to Dest now refer to I as their source.
697    Dest->replaceAllUsesWith(&*I);
698
699    // Move all the instructions in the succ to the pred.
700    I->getInstList().splice(I->end(), Dest->getInstList());
701
702    // Remove the dest block.
703    Dest->eraseFromParent();
704
705    // Do not increment I, iteratively merge all things this block branches to.
706  }
707
708  // Make a final pass over the basic blocks from the old function to gather
709  // any return instructions which survived folding. We have to do this here
710  // because we can iteratively remove and merge returns above.
711  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
712                          E = NewFunc->end();
713       I != E; ++I)
714    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
715      Returns.push_back(RI);
716}
717
718
719/// This works exactly like CloneFunctionInto,
720/// except that it does some simple constant prop and DCE on the fly.  The
721/// effect of this is to copy significantly less code in cases where (for
722/// example) a function call with constant arguments is inlined, and those
723/// constant arguments cause a significant amount of code in the callee to be
724/// dead.  Since this doesn't produce an exact copy of the input, it can't be
725/// used for things like CloneFunction or CloneModule.
726void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
727                                     ValueToValueMapTy &VMap,
728                                     bool ModuleLevelChanges,
729                                     SmallVectorImpl<ReturnInst*> &Returns,
730                                     const char *NameSuffix,
731                                     ClonedCodeInfo *CodeInfo,
732                                     Instruction *TheCall) {
733  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
734                            ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
735}
736
737/// Remaps instructions in \p Blocks using the mapping in \p VMap.
738void llvm::remapInstructionsInBlocks(
739    const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
740  // Rewrite the code to refer to itself.
741  for (auto *BB : Blocks)
742    for (auto &Inst : *BB)
743      RemapInstruction(&Inst, VMap,
744                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
745}
746
747/// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
748/// Blocks.
749///
750/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
751/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
752Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
753                                   Loop *OrigLoop, ValueToValueMapTy &VMap,
754                                   const Twine &NameSuffix, LoopInfo *LI,
755                                   DominatorTree *DT,
756                                   SmallVectorImpl<BasicBlock *> &Blocks) {
757  Function *F = OrigLoop->getHeader()->getParent();
758  Loop *ParentLoop = OrigLoop->getParentLoop();
759  DenseMap<Loop *, Loop *> LMap;
760
761  Loop *NewLoop = LI->AllocateLoop();
762  LMap[OrigLoop] = NewLoop;
763  if (ParentLoop)
764    ParentLoop->addChildLoop(NewLoop);
765  else
766    LI->addTopLevelLoop(NewLoop);
767
768  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
769  assert(OrigPH && "No preheader");
770  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
771  // To rename the loop PHIs.
772  VMap[OrigPH] = NewPH;
773  Blocks.push_back(NewPH);
774
775  // Update LoopInfo.
776  if (ParentLoop)
777    ParentLoop->addBasicBlockToLoop(NewPH, *LI);
778
779  // Update DominatorTree.
780  DT->addNewBlock(NewPH, LoopDomBB);
781
782  for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
783    Loop *&NewLoop = LMap[CurLoop];
784    if (!NewLoop) {
785      NewLoop = LI->AllocateLoop();
786
787      // Establish the parent/child relationship.
788      Loop *OrigParent = CurLoop->getParentLoop();
789      assert(OrigParent && "Could not find the original parent loop");
790      Loop *NewParentLoop = LMap[OrigParent];
791      assert(NewParentLoop && "Could not find the new parent loop");
792
793      NewParentLoop->addChildLoop(NewLoop);
794    }
795  }
796
797  for (BasicBlock *BB : OrigLoop->getBlocks()) {
798    Loop *CurLoop = LI->getLoopFor(BB);
799    Loop *&NewLoop = LMap[CurLoop];
800    assert(NewLoop && "Expecting new loop to be allocated");
801
802    BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
803    VMap[BB] = NewBB;
804
805    // Update LoopInfo.
806    NewLoop->addBasicBlockToLoop(NewBB, *LI);
807    if (BB == CurLoop->getHeader())
808      NewLoop->moveToHeader(NewBB);
809
810    // Add DominatorTree node. After seeing all blocks, update to correct
811    // IDom.
812    DT->addNewBlock(NewBB, NewPH);
813
814    Blocks.push_back(NewBB);
815  }
816
817  for (BasicBlock *BB : OrigLoop->getBlocks()) {
818    // Update DominatorTree.
819    BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
820    DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
821                                 cast<BasicBlock>(VMap[IDomBB]));
822  }
823
824  // Move them physically from the end of the block list.
825  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
826                                NewPH);
827  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
828                                NewLoop->getHeader()->getIterator(), F->end());
829
830  return NewLoop;
831}
832
833/// Duplicate non-Phi instructions from the beginning of block up to
834/// StopAt instruction into a split block between BB and its predecessor.
835BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
836    BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
837    ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
838
839  assert(count(successors(PredBB), BB) == 1 &&
840         "There must be a single edge between PredBB and BB!");
841  // We are going to have to map operands from the original BB block to the new
842  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
843  // account for entry from PredBB.
844  BasicBlock::iterator BI = BB->begin();
845  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
846    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
847
848  BasicBlock *NewBB = SplitEdge(PredBB, BB);
849  NewBB->setName(PredBB->getName() + ".split");
850  Instruction *NewTerm = NewBB->getTerminator();
851
852  // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
853  //        in the update set here.
854  DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
855                    {DominatorTree::Insert, PredBB, NewBB},
856                    {DominatorTree::Insert, NewBB, BB}});
857
858  // Clone the non-phi instructions of BB into NewBB, keeping track of the
859  // mapping and using it to remap operands in the cloned instructions.
860  // Stop once we see the terminator too. This covers the case where BB's
861  // terminator gets replaced and StopAt == BB's terminator.
862  for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
863    Instruction *New = BI->clone();
864    New->setName(BI->getName());
865    New->insertBefore(NewTerm);
866    ValueMapping[&*BI] = New;
867
868    // Remap operands to patch up intra-block references.
869    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
870      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
871        auto I = ValueMapping.find(Inst);
872        if (I != ValueMapping.end())
873          New->setOperand(i, I->second);
874      }
875  }
876
877  return NewBB;
878}
879