1///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10#include "llvm/ADT/DenseMap.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/Sequence.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/Twine.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/CFG.h"
20#include "llvm/Analysis/CodeMetrics.h"
21#include "llvm/Analysis/GuardUtils.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/LoopAnalysisManager.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/LoopIterator.h"
26#include "llvm/Analysis/LoopPass.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/Analysis/Utils/Local.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/Dominators.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/Value.h"
41#include "llvm/InitializePasses.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/GenericDomTree.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Cloning.h"
52#include "llvm/Transforms/Utils/LoopUtils.h"
53#include "llvm/Transforms/Utils/ValueMapper.h"
54#include <algorithm>
55#include <cassert>
56#include <iterator>
57#include <numeric>
58#include <utility>
59
60#define DEBUG_TYPE "simple-loop-unswitch"
61
62using namespace llvm;
63
64STATISTIC(NumBranches, "Number of branches unswitched");
65STATISTIC(NumSwitches, "Number of switches unswitched");
66STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
67STATISTIC(NumTrivial, "Number of unswitches that are trivial");
68STATISTIC(
69    NumCostMultiplierSkipped,
70    "Number of unswitch candidates that had their cost multiplier skipped");
71
72static cl::opt<bool> EnableNonTrivialUnswitch(
73    "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
74    cl::desc("Forcibly enables non-trivial loop unswitching rather than "
75             "following the configuration passed into the pass."));
76
77static cl::opt<int>
78    UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
79                      cl::desc("The cost threshold for unswitching a loop."));
80
81static cl::opt<bool> EnableUnswitchCostMultiplier(
82    "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
83    cl::desc("Enable unswitch cost multiplier that prohibits exponential "
84             "explosion in nontrivial unswitch."));
85static cl::opt<int> UnswitchSiblingsToplevelDiv(
86    "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
87    cl::desc("Toplevel siblings divisor for cost multiplier."));
88static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
89    "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
90    cl::desc("Number of unswitch candidates that are ignored when calculating "
91             "cost multiplier."));
92static cl::opt<bool> UnswitchGuards(
93    "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
94    cl::desc("If enabled, simple loop unswitching will also consider "
95             "llvm.experimental.guard intrinsics as unswitch candidates."));
96
97/// Collect all of the loop invariant input values transitively used by the
98/// homogeneous instruction graph from a given root.
99///
100/// This essentially walks from a root recursively through loop variant operands
101/// which have the exact same opcode and finds all inputs which are loop
102/// invariant. For some operations these can be re-associated and unswitched out
103/// of the loop entirely.
104static TinyPtrVector<Value *>
105collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
106                                         LoopInfo &LI) {
107  assert(!L.isLoopInvariant(&Root) &&
108         "Only need to walk the graph if root itself is not invariant.");
109  TinyPtrVector<Value *> Invariants;
110
111  // Build a worklist and recurse through operators collecting invariants.
112  SmallVector<Instruction *, 4> Worklist;
113  SmallPtrSet<Instruction *, 8> Visited;
114  Worklist.push_back(&Root);
115  Visited.insert(&Root);
116  do {
117    Instruction &I = *Worklist.pop_back_val();
118    for (Value *OpV : I.operand_values()) {
119      // Skip constants as unswitching isn't interesting for them.
120      if (isa<Constant>(OpV))
121        continue;
122
123      // Add it to our result if loop invariant.
124      if (L.isLoopInvariant(OpV)) {
125        Invariants.push_back(OpV);
126        continue;
127      }
128
129      // If not an instruction with the same opcode, nothing we can do.
130      Instruction *OpI = dyn_cast<Instruction>(OpV);
131      if (!OpI || OpI->getOpcode() != Root.getOpcode())
132        continue;
133
134      // Visit this operand.
135      if (Visited.insert(OpI).second)
136        Worklist.push_back(OpI);
137    }
138  } while (!Worklist.empty());
139
140  return Invariants;
141}
142
143static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
144                                     Constant &Replacement) {
145  assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
146
147  // Replace uses of LIC in the loop with the given constant.
148  for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
149    // Grab the use and walk past it so we can clobber it in the use list.
150    Use *U = &*UI++;
151    Instruction *UserI = dyn_cast<Instruction>(U->getUser());
152
153    // Replace this use within the loop body.
154    if (UserI && L.contains(UserI))
155      U->set(&Replacement);
156  }
157}
158
159/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
160/// incoming values along this edge.
161static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
162                                         BasicBlock &ExitBB) {
163  for (Instruction &I : ExitBB) {
164    auto *PN = dyn_cast<PHINode>(&I);
165    if (!PN)
166      // No more PHIs to check.
167      return true;
168
169    // If the incoming value for this edge isn't loop invariant the unswitch
170    // won't be trivial.
171    if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
172      return false;
173  }
174  llvm_unreachable("Basic blocks should never be empty!");
175}
176
177/// Insert code to test a set of loop invariant values, and conditionally branch
178/// on them.
179static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
180                                                  ArrayRef<Value *> Invariants,
181                                                  bool Direction,
182                                                  BasicBlock &UnswitchedSucc,
183                                                  BasicBlock &NormalSucc) {
184  IRBuilder<> IRB(&BB);
185
186  Value *Cond = Direction ? IRB.CreateOr(Invariants) :
187    IRB.CreateAnd(Invariants);
188  IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
189                   Direction ? &NormalSucc : &UnswitchedSucc);
190}
191
192/// Rewrite the PHI nodes in an unswitched loop exit basic block.
193///
194/// Requires that the loop exit and unswitched basic block are the same, and
195/// that the exiting block was a unique predecessor of that block. Rewrites the
196/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
197/// PHI nodes from the old preheader that now contains the unswitched
198/// terminator.
199static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
200                                                  BasicBlock &OldExitingBB,
201                                                  BasicBlock &OldPH) {
202  for (PHINode &PN : UnswitchedBB.phis()) {
203    // When the loop exit is directly unswitched we just need to update the
204    // incoming basic block. We loop to handle weird cases with repeated
205    // incoming blocks, but expect to typically only have one operand here.
206    for (auto i : seq<int>(0, PN.getNumOperands())) {
207      assert(PN.getIncomingBlock(i) == &OldExitingBB &&
208             "Found incoming block different from unique predecessor!");
209      PN.setIncomingBlock(i, &OldPH);
210    }
211  }
212}
213
214/// Rewrite the PHI nodes in the loop exit basic block and the split off
215/// unswitched block.
216///
217/// Because the exit block remains an exit from the loop, this rewrites the
218/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
219/// nodes into the unswitched basic block to select between the value in the
220/// old preheader and the loop exit.
221static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
222                                                      BasicBlock &UnswitchedBB,
223                                                      BasicBlock &OldExitingBB,
224                                                      BasicBlock &OldPH,
225                                                      bool FullUnswitch) {
226  assert(&ExitBB != &UnswitchedBB &&
227         "Must have different loop exit and unswitched blocks!");
228  Instruction *InsertPt = &*UnswitchedBB.begin();
229  for (PHINode &PN : ExitBB.phis()) {
230    auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
231                                  PN.getName() + ".split", InsertPt);
232
233    // Walk backwards over the old PHI node's inputs to minimize the cost of
234    // removing each one. We have to do this weird loop manually so that we
235    // create the same number of new incoming edges in the new PHI as we expect
236    // each case-based edge to be included in the unswitched switch in some
237    // cases.
238    // FIXME: This is really, really gross. It would be much cleaner if LLVM
239    // allowed us to create a single entry for a predecessor block without
240    // having separate entries for each "edge" even though these edges are
241    // required to produce identical results.
242    for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
243      if (PN.getIncomingBlock(i) != &OldExitingBB)
244        continue;
245
246      Value *Incoming = PN.getIncomingValue(i);
247      if (FullUnswitch)
248        // No more edge from the old exiting block to the exit block.
249        PN.removeIncomingValue(i);
250
251      NewPN->addIncoming(Incoming, &OldPH);
252    }
253
254    // Now replace the old PHI with the new one and wire the old one in as an
255    // input to the new one.
256    PN.replaceAllUsesWith(NewPN);
257    NewPN->addIncoming(&PN, &ExitBB);
258  }
259}
260
261/// Hoist the current loop up to the innermost loop containing a remaining exit.
262///
263/// Because we've removed an exit from the loop, we may have changed the set of
264/// loops reachable and need to move the current loop up the loop nest or even
265/// to an entirely separate nest.
266static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
267                                 DominatorTree &DT, LoopInfo &LI,
268                                 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
269  // If the loop is already at the top level, we can't hoist it anywhere.
270  Loop *OldParentL = L.getParentLoop();
271  if (!OldParentL)
272    return;
273
274  SmallVector<BasicBlock *, 4> Exits;
275  L.getExitBlocks(Exits);
276  Loop *NewParentL = nullptr;
277  for (auto *ExitBB : Exits)
278    if (Loop *ExitL = LI.getLoopFor(ExitBB))
279      if (!NewParentL || NewParentL->contains(ExitL))
280        NewParentL = ExitL;
281
282  if (NewParentL == OldParentL)
283    return;
284
285  // The new parent loop (if different) should always contain the old one.
286  if (NewParentL)
287    assert(NewParentL->contains(OldParentL) &&
288           "Can only hoist this loop up the nest!");
289
290  // The preheader will need to move with the body of this loop. However,
291  // because it isn't in this loop we also need to update the primary loop map.
292  assert(OldParentL == LI.getLoopFor(&Preheader) &&
293         "Parent loop of this loop should contain this loop's preheader!");
294  LI.changeLoopFor(&Preheader, NewParentL);
295
296  // Remove this loop from its old parent.
297  OldParentL->removeChildLoop(&L);
298
299  // Add the loop either to the new parent or as a top-level loop.
300  if (NewParentL)
301    NewParentL->addChildLoop(&L);
302  else
303    LI.addTopLevelLoop(&L);
304
305  // Remove this loops blocks from the old parent and every other loop up the
306  // nest until reaching the new parent. Also update all of these
307  // no-longer-containing loops to reflect the nesting change.
308  for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
309       OldContainingL = OldContainingL->getParentLoop()) {
310    llvm::erase_if(OldContainingL->getBlocksVector(),
311                   [&](const BasicBlock *BB) {
312                     return BB == &Preheader || L.contains(BB);
313                   });
314
315    OldContainingL->getBlocksSet().erase(&Preheader);
316    for (BasicBlock *BB : L.blocks())
317      OldContainingL->getBlocksSet().erase(BB);
318
319    // Because we just hoisted a loop out of this one, we have essentially
320    // created new exit paths from it. That means we need to form LCSSA PHI
321    // nodes for values used in the no-longer-nested loop.
322    formLCSSA(*OldContainingL, DT, &LI, SE);
323
324    // We shouldn't need to form dedicated exits because the exit introduced
325    // here is the (just split by unswitching) preheader. However, after trivial
326    // unswitching it is possible to get new non-dedicated exits out of parent
327    // loop so let's conservatively form dedicated exit blocks and figure out
328    // if we can optimize later.
329    formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
330                            /*PreserveLCSSA*/ true);
331  }
332}
333
334// Return the top-most loop containing ExitBB and having ExitBB as exiting block
335// or the loop containing ExitBB, if there is no parent loop containing ExitBB
336// as exiting block.
337static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
338  Loop *TopMost = LI.getLoopFor(ExitBB);
339  Loop *Current = TopMost;
340  while (Current) {
341    if (Current->isLoopExiting(ExitBB))
342      TopMost = Current;
343    Current = Current->getParentLoop();
344  }
345  return TopMost;
346}
347
348/// Unswitch a trivial branch if the condition is loop invariant.
349///
350/// This routine should only be called when loop code leading to the branch has
351/// been validated as trivial (no side effects). This routine checks if the
352/// condition is invariant and one of the successors is a loop exit. This
353/// allows us to unswitch without duplicating the loop, making it trivial.
354///
355/// If this routine fails to unswitch the branch it returns false.
356///
357/// If the branch can be unswitched, this routine splits the preheader and
358/// hoists the branch above that split. Preserves loop simplified form
359/// (splitting the exit block as necessary). It simplifies the branch within
360/// the loop to an unconditional branch but doesn't remove it entirely. Further
361/// cleanup can be done with some simplify-cfg like pass.
362///
363/// If `SE` is not null, it will be updated based on the potential loop SCEVs
364/// invalidated by this.
365static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
366                                  LoopInfo &LI, ScalarEvolution *SE,
367                                  MemorySSAUpdater *MSSAU) {
368  assert(BI.isConditional() && "Can only unswitch a conditional branch!");
369  LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
370
371  // The loop invariant values that we want to unswitch.
372  TinyPtrVector<Value *> Invariants;
373
374  // When true, we're fully unswitching the branch rather than just unswitching
375  // some input conditions to the branch.
376  bool FullUnswitch = false;
377
378  if (L.isLoopInvariant(BI.getCondition())) {
379    Invariants.push_back(BI.getCondition());
380    FullUnswitch = true;
381  } else {
382    if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
383      Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
384    if (Invariants.empty())
385      // Couldn't find invariant inputs!
386      return false;
387  }
388
389  // Check that one of the branch's successors exits, and which one.
390  bool ExitDirection = true;
391  int LoopExitSuccIdx = 0;
392  auto *LoopExitBB = BI.getSuccessor(0);
393  if (L.contains(LoopExitBB)) {
394    ExitDirection = false;
395    LoopExitSuccIdx = 1;
396    LoopExitBB = BI.getSuccessor(1);
397    if (L.contains(LoopExitBB))
398      return false;
399  }
400  auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
401  auto *ParentBB = BI.getParent();
402  if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
403    return false;
404
405  // When unswitching only part of the branch's condition, we need the exit
406  // block to be reached directly from the partially unswitched input. This can
407  // be done when the exit block is along the true edge and the branch condition
408  // is a graph of `or` operations, or the exit block is along the false edge
409  // and the condition is a graph of `and` operations.
410  if (!FullUnswitch) {
411    if (ExitDirection) {
412      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
413        return false;
414    } else {
415      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
416        return false;
417    }
418  }
419
420  LLVM_DEBUG({
421    dbgs() << "    unswitching trivial invariant conditions for: " << BI
422           << "\n";
423    for (Value *Invariant : Invariants) {
424      dbgs() << "      " << *Invariant << " == true";
425      if (Invariant != Invariants.back())
426        dbgs() << " ||";
427      dbgs() << "\n";
428    }
429  });
430
431  // If we have scalar evolutions, we need to invalidate them including this
432  // loop, the loop containing the exit block and the topmost parent loop
433  // exiting via LoopExitBB.
434  if (SE) {
435    if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
436      SE->forgetLoop(ExitL);
437    else
438      // Forget the entire nest as this exits the entire nest.
439      SE->forgetTopmostLoop(&L);
440  }
441
442  if (MSSAU && VerifyMemorySSA)
443    MSSAU->getMemorySSA()->verifyMemorySSA();
444
445  // Split the preheader, so that we know that there is a safe place to insert
446  // the conditional branch. We will change the preheader to have a conditional
447  // branch on LoopCond.
448  BasicBlock *OldPH = L.getLoopPreheader();
449  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
450
451  // Now that we have a place to insert the conditional branch, create a place
452  // to branch to: this is the exit block out of the loop that we are
453  // unswitching. We need to split this if there are other loop predecessors.
454  // Because the loop is in simplified form, *any* other predecessor is enough.
455  BasicBlock *UnswitchedBB;
456  if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
457    assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
458           "A branch's parent isn't a predecessor!");
459    UnswitchedBB = LoopExitBB;
460  } else {
461    UnswitchedBB =
462        SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
463  }
464
465  if (MSSAU && VerifyMemorySSA)
466    MSSAU->getMemorySSA()->verifyMemorySSA();
467
468  // Actually move the invariant uses into the unswitched position. If possible,
469  // we do this by moving the instructions, but when doing partial unswitching
470  // we do it by building a new merge of the values in the unswitched position.
471  OldPH->getTerminator()->eraseFromParent();
472  if (FullUnswitch) {
473    // If fully unswitching, we can use the existing branch instruction.
474    // Splice it into the old PH to gate reaching the new preheader and re-point
475    // its successors.
476    OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
477                                BI);
478    if (MSSAU) {
479      // Temporarily clone the terminator, to make MSSA update cheaper by
480      // separating "insert edge" updates from "remove edge" ones.
481      ParentBB->getInstList().push_back(BI.clone());
482    } else {
483      // Create a new unconditional branch that will continue the loop as a new
484      // terminator.
485      BranchInst::Create(ContinueBB, ParentBB);
486    }
487    BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
488    BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
489  } else {
490    // Only unswitching a subset of inputs to the condition, so we will need to
491    // build a new branch that merges the invariant inputs.
492    if (ExitDirection)
493      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
494                 Instruction::Or &&
495             "Must have an `or` of `i1`s for the condition!");
496    else
497      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
498                 Instruction::And &&
499             "Must have an `and` of `i1`s for the condition!");
500    buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
501                                          *UnswitchedBB, *NewPH);
502  }
503
504  // Update the dominator tree with the added edge.
505  DT.insertEdge(OldPH, UnswitchedBB);
506
507  // After the dominator tree was updated with the added edge, update MemorySSA
508  // if available.
509  if (MSSAU) {
510    SmallVector<CFGUpdate, 1> Updates;
511    Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
512    MSSAU->applyInsertUpdates(Updates, DT);
513  }
514
515  // Finish updating dominator tree and memory ssa for full unswitch.
516  if (FullUnswitch) {
517    if (MSSAU) {
518      // Remove the cloned branch instruction.
519      ParentBB->getTerminator()->eraseFromParent();
520      // Create unconditional branch now.
521      BranchInst::Create(ContinueBB, ParentBB);
522      MSSAU->removeEdge(ParentBB, LoopExitBB);
523    }
524    DT.deleteEdge(ParentBB, LoopExitBB);
525  }
526
527  if (MSSAU && VerifyMemorySSA)
528    MSSAU->getMemorySSA()->verifyMemorySSA();
529
530  // Rewrite the relevant PHI nodes.
531  if (UnswitchedBB == LoopExitBB)
532    rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
533  else
534    rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
535                                              *ParentBB, *OldPH, FullUnswitch);
536
537  // The constant we can replace all of our invariants with inside the loop
538  // body. If any of the invariants have a value other than this the loop won't
539  // be entered.
540  ConstantInt *Replacement = ExitDirection
541                                 ? ConstantInt::getFalse(BI.getContext())
542                                 : ConstantInt::getTrue(BI.getContext());
543
544  // Since this is an i1 condition we can also trivially replace uses of it
545  // within the loop with a constant.
546  for (Value *Invariant : Invariants)
547    replaceLoopInvariantUses(L, Invariant, *Replacement);
548
549  // If this was full unswitching, we may have changed the nesting relationship
550  // for this loop so hoist it to its correct parent if needed.
551  if (FullUnswitch)
552    hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
553
554  if (MSSAU && VerifyMemorySSA)
555    MSSAU->getMemorySSA()->verifyMemorySSA();
556
557  LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
558  ++NumTrivial;
559  ++NumBranches;
560  return true;
561}
562
563/// Unswitch a trivial switch if the condition is loop invariant.
564///
565/// This routine should only be called when loop code leading to the switch has
566/// been validated as trivial (no side effects). This routine checks if the
567/// condition is invariant and that at least one of the successors is a loop
568/// exit. This allows us to unswitch without duplicating the loop, making it
569/// trivial.
570///
571/// If this routine fails to unswitch the switch it returns false.
572///
573/// If the switch can be unswitched, this routine splits the preheader and
574/// copies the switch above that split. If the default case is one of the
575/// exiting cases, it copies the non-exiting cases and points them at the new
576/// preheader. If the default case is not exiting, it copies the exiting cases
577/// and points the default at the preheader. It preserves loop simplified form
578/// (splitting the exit blocks as necessary). It simplifies the switch within
579/// the loop by removing now-dead cases. If the default case is one of those
580/// unswitched, it replaces its destination with a new basic block containing
581/// only unreachable. Such basic blocks, while technically loop exits, are not
582/// considered for unswitching so this is a stable transform and the same
583/// switch will not be revisited. If after unswitching there is only a single
584/// in-loop successor, the switch is further simplified to an unconditional
585/// branch. Still more cleanup can be done with some simplify-cfg like pass.
586///
587/// If `SE` is not null, it will be updated based on the potential loop SCEVs
588/// invalidated by this.
589static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
590                                  LoopInfo &LI, ScalarEvolution *SE,
591                                  MemorySSAUpdater *MSSAU) {
592  LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
593  Value *LoopCond = SI.getCondition();
594
595  // If this isn't switching on an invariant condition, we can't unswitch it.
596  if (!L.isLoopInvariant(LoopCond))
597    return false;
598
599  auto *ParentBB = SI.getParent();
600
601  SmallVector<int, 4> ExitCaseIndices;
602  for (auto Case : SI.cases()) {
603    auto *SuccBB = Case.getCaseSuccessor();
604    if (!L.contains(SuccBB) &&
605        areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
606      ExitCaseIndices.push_back(Case.getCaseIndex());
607  }
608  BasicBlock *DefaultExitBB = nullptr;
609  SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
610      SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
611  if (!L.contains(SI.getDefaultDest()) &&
612      areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
613      !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
614    DefaultExitBB = SI.getDefaultDest();
615  } else if (ExitCaseIndices.empty())
616    return false;
617
618  LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
619
620  if (MSSAU && VerifyMemorySSA)
621    MSSAU->getMemorySSA()->verifyMemorySSA();
622
623  // We may need to invalidate SCEVs for the outermost loop reached by any of
624  // the exits.
625  Loop *OuterL = &L;
626
627  if (DefaultExitBB) {
628    // Clear out the default destination temporarily to allow accurate
629    // predecessor lists to be examined below.
630    SI.setDefaultDest(nullptr);
631    // Check the loop containing this exit.
632    Loop *ExitL = LI.getLoopFor(DefaultExitBB);
633    if (!ExitL || ExitL->contains(OuterL))
634      OuterL = ExitL;
635  }
636
637  // Store the exit cases into a separate data structure and remove them from
638  // the switch.
639  SmallVector<std::tuple<ConstantInt *, BasicBlock *,
640                         SwitchInstProfUpdateWrapper::CaseWeightOpt>,
641              4> ExitCases;
642  ExitCases.reserve(ExitCaseIndices.size());
643  SwitchInstProfUpdateWrapper SIW(SI);
644  // We walk the case indices backwards so that we remove the last case first
645  // and don't disrupt the earlier indices.
646  for (unsigned Index : reverse(ExitCaseIndices)) {
647    auto CaseI = SI.case_begin() + Index;
648    // Compute the outer loop from this exit.
649    Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
650    if (!ExitL || ExitL->contains(OuterL))
651      OuterL = ExitL;
652    // Save the value of this case.
653    auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
654    ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
655    // Delete the unswitched cases.
656    SIW.removeCase(CaseI);
657  }
658
659  if (SE) {
660    if (OuterL)
661      SE->forgetLoop(OuterL);
662    else
663      SE->forgetTopmostLoop(&L);
664  }
665
666  // Check if after this all of the remaining cases point at the same
667  // successor.
668  BasicBlock *CommonSuccBB = nullptr;
669  if (SI.getNumCases() > 0 &&
670      std::all_of(std::next(SI.case_begin()), SI.case_end(),
671                  [&SI](const SwitchInst::CaseHandle &Case) {
672                    return Case.getCaseSuccessor() ==
673                           SI.case_begin()->getCaseSuccessor();
674                  }))
675    CommonSuccBB = SI.case_begin()->getCaseSuccessor();
676  if (!DefaultExitBB) {
677    // If we're not unswitching the default, we need it to match any cases to
678    // have a common successor or if we have no cases it is the common
679    // successor.
680    if (SI.getNumCases() == 0)
681      CommonSuccBB = SI.getDefaultDest();
682    else if (SI.getDefaultDest() != CommonSuccBB)
683      CommonSuccBB = nullptr;
684  }
685
686  // Split the preheader, so that we know that there is a safe place to insert
687  // the switch.
688  BasicBlock *OldPH = L.getLoopPreheader();
689  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
690  OldPH->getTerminator()->eraseFromParent();
691
692  // Now add the unswitched switch.
693  auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
694  SwitchInstProfUpdateWrapper NewSIW(*NewSI);
695
696  // Rewrite the IR for the unswitched basic blocks. This requires two steps.
697  // First, we split any exit blocks with remaining in-loop predecessors. Then
698  // we update the PHIs in one of two ways depending on if there was a split.
699  // We walk in reverse so that we split in the same order as the cases
700  // appeared. This is purely for convenience of reading the resulting IR, but
701  // it doesn't cost anything really.
702  SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
703  SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
704  // Handle the default exit if necessary.
705  // FIXME: It'd be great if we could merge this with the loop below but LLVM's
706  // ranges aren't quite powerful enough yet.
707  if (DefaultExitBB) {
708    if (pred_empty(DefaultExitBB)) {
709      UnswitchedExitBBs.insert(DefaultExitBB);
710      rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
711    } else {
712      auto *SplitBB =
713          SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
714      rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
715                                                *ParentBB, *OldPH,
716                                                /*FullUnswitch*/ true);
717      DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
718    }
719  }
720  // Note that we must use a reference in the for loop so that we update the
721  // container.
722  for (auto &ExitCase : reverse(ExitCases)) {
723    // Grab a reference to the exit block in the pair so that we can update it.
724    BasicBlock *ExitBB = std::get<1>(ExitCase);
725
726    // If this case is the last edge into the exit block, we can simply reuse it
727    // as it will no longer be a loop exit. No mapping necessary.
728    if (pred_empty(ExitBB)) {
729      // Only rewrite once.
730      if (UnswitchedExitBBs.insert(ExitBB).second)
731        rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
732      continue;
733    }
734
735    // Otherwise we need to split the exit block so that we retain an exit
736    // block from the loop and a target for the unswitched condition.
737    BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
738    if (!SplitExitBB) {
739      // If this is the first time we see this, do the split and remember it.
740      SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
741      rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
742                                                *ParentBB, *OldPH,
743                                                /*FullUnswitch*/ true);
744    }
745    // Update the case pair to point to the split block.
746    std::get<1>(ExitCase) = SplitExitBB;
747  }
748
749  // Now add the unswitched cases. We do this in reverse order as we built them
750  // in reverse order.
751  for (auto &ExitCase : reverse(ExitCases)) {
752    ConstantInt *CaseVal = std::get<0>(ExitCase);
753    BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
754
755    NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
756  }
757
758  // If the default was unswitched, re-point it and add explicit cases for
759  // entering the loop.
760  if (DefaultExitBB) {
761    NewSIW->setDefaultDest(DefaultExitBB);
762    NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
763
764    // We removed all the exit cases, so we just copy the cases to the
765    // unswitched switch.
766    for (const auto &Case : SI.cases())
767      NewSIW.addCase(Case.getCaseValue(), NewPH,
768                     SIW.getSuccessorWeight(Case.getSuccessorIndex()));
769  } else if (DefaultCaseWeight) {
770    // We have to set branch weight of the default case.
771    uint64_t SW = *DefaultCaseWeight;
772    for (const auto &Case : SI.cases()) {
773      auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
774      assert(W &&
775             "case weight must be defined as default case weight is defined");
776      SW += *W;
777    }
778    NewSIW.setSuccessorWeight(0, SW);
779  }
780
781  // If we ended up with a common successor for every path through the switch
782  // after unswitching, rewrite it to an unconditional branch to make it easy
783  // to recognize. Otherwise we potentially have to recognize the default case
784  // pointing at unreachable and other complexity.
785  if (CommonSuccBB) {
786    BasicBlock *BB = SI.getParent();
787    // We may have had multiple edges to this common successor block, so remove
788    // them as predecessors. We skip the first one, either the default or the
789    // actual first case.
790    bool SkippedFirst = DefaultExitBB == nullptr;
791    for (auto Case : SI.cases()) {
792      assert(Case.getCaseSuccessor() == CommonSuccBB &&
793             "Non-common successor!");
794      (void)Case;
795      if (!SkippedFirst) {
796        SkippedFirst = true;
797        continue;
798      }
799      CommonSuccBB->removePredecessor(BB,
800                                      /*KeepOneInputPHIs*/ true);
801    }
802    // Now nuke the switch and replace it with a direct branch.
803    SIW.eraseFromParent();
804    BranchInst::Create(CommonSuccBB, BB);
805  } else if (DefaultExitBB) {
806    assert(SI.getNumCases() > 0 &&
807           "If we had no cases we'd have a common successor!");
808    // Move the last case to the default successor. This is valid as if the
809    // default got unswitched it cannot be reached. This has the advantage of
810    // being simple and keeping the number of edges from this switch to
811    // successors the same, and avoiding any PHI update complexity.
812    auto LastCaseI = std::prev(SI.case_end());
813
814    SI.setDefaultDest(LastCaseI->getCaseSuccessor());
815    SIW.setSuccessorWeight(
816        0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
817    SIW.removeCase(LastCaseI);
818  }
819
820  // Walk the unswitched exit blocks and the unswitched split blocks and update
821  // the dominator tree based on the CFG edits. While we are walking unordered
822  // containers here, the API for applyUpdates takes an unordered list of
823  // updates and requires them to not contain duplicates.
824  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
825  for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
826    DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
827    DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
828  }
829  for (auto SplitUnswitchedPair : SplitExitBBMap) {
830    DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
831    DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
832  }
833  DT.applyUpdates(DTUpdates);
834
835  if (MSSAU) {
836    MSSAU->applyUpdates(DTUpdates, DT);
837    if (VerifyMemorySSA)
838      MSSAU->getMemorySSA()->verifyMemorySSA();
839  }
840
841  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
842
843  // We may have changed the nesting relationship for this loop so hoist it to
844  // its correct parent if needed.
845  hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
846
847  if (MSSAU && VerifyMemorySSA)
848    MSSAU->getMemorySSA()->verifyMemorySSA();
849
850  ++NumTrivial;
851  ++NumSwitches;
852  LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
853  return true;
854}
855
856/// This routine scans the loop to find a branch or switch which occurs before
857/// any side effects occur. These can potentially be unswitched without
858/// duplicating the loop. If a branch or switch is successfully unswitched the
859/// scanning continues to see if subsequent branches or switches have become
860/// trivial. Once all trivial candidates have been unswitched, this routine
861/// returns.
862///
863/// The return value indicates whether anything was unswitched (and therefore
864/// changed).
865///
866/// If `SE` is not null, it will be updated based on the potential loop SCEVs
867/// invalidated by this.
868static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
869                                         LoopInfo &LI, ScalarEvolution *SE,
870                                         MemorySSAUpdater *MSSAU) {
871  bool Changed = false;
872
873  // If loop header has only one reachable successor we should keep looking for
874  // trivial condition candidates in the successor as well. An alternative is
875  // to constant fold conditions and merge successors into loop header (then we
876  // only need to check header's terminator). The reason for not doing this in
877  // LoopUnswitch pass is that it could potentially break LoopPassManager's
878  // invariants. Folding dead branches could either eliminate the current loop
879  // or make other loops unreachable. LCSSA form might also not be preserved
880  // after deleting branches. The following code keeps traversing loop header's
881  // successors until it finds the trivial condition candidate (condition that
882  // is not a constant). Since unswitching generates branches with constant
883  // conditions, this scenario could be very common in practice.
884  BasicBlock *CurrentBB = L.getHeader();
885  SmallPtrSet<BasicBlock *, 8> Visited;
886  Visited.insert(CurrentBB);
887  do {
888    // Check if there are any side-effecting instructions (e.g. stores, calls,
889    // volatile loads) in the part of the loop that the code *would* execute
890    // without unswitching.
891    if (MSSAU) // Possible early exit with MSSA
892      if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
893        if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
894          return Changed;
895    if (llvm::any_of(*CurrentBB,
896                     [](Instruction &I) { return I.mayHaveSideEffects(); }))
897      return Changed;
898
899    Instruction *CurrentTerm = CurrentBB->getTerminator();
900
901    if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
902      // Don't bother trying to unswitch past a switch with a constant
903      // condition. This should be removed prior to running this pass by
904      // simplify-cfg.
905      if (isa<Constant>(SI->getCondition()))
906        return Changed;
907
908      if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
909        // Couldn't unswitch this one so we're done.
910        return Changed;
911
912      // Mark that we managed to unswitch something.
913      Changed = true;
914
915      // If unswitching turned the terminator into an unconditional branch then
916      // we can continue. The unswitching logic specifically works to fold any
917      // cases it can into an unconditional branch to make it easier to
918      // recognize here.
919      auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
920      if (!BI || BI->isConditional())
921        return Changed;
922
923      CurrentBB = BI->getSuccessor(0);
924      continue;
925    }
926
927    auto *BI = dyn_cast<BranchInst>(CurrentTerm);
928    if (!BI)
929      // We do not understand other terminator instructions.
930      return Changed;
931
932    // Don't bother trying to unswitch past an unconditional branch or a branch
933    // with a constant value. These should be removed by simplify-cfg prior to
934    // running this pass.
935    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
936      return Changed;
937
938    // Found a trivial condition candidate: non-foldable conditional branch. If
939    // we fail to unswitch this, we can't do anything else that is trivial.
940    if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
941      return Changed;
942
943    // Mark that we managed to unswitch something.
944    Changed = true;
945
946    // If we only unswitched some of the conditions feeding the branch, we won't
947    // have collapsed it to a single successor.
948    BI = cast<BranchInst>(CurrentBB->getTerminator());
949    if (BI->isConditional())
950      return Changed;
951
952    // Follow the newly unconditional branch into its successor.
953    CurrentBB = BI->getSuccessor(0);
954
955    // When continuing, if we exit the loop or reach a previous visited block,
956    // then we can not reach any trivial condition candidates (unfoldable
957    // branch instructions or switch instructions) and no unswitch can happen.
958  } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
959
960  return Changed;
961}
962
963/// Build the cloned blocks for an unswitched copy of the given loop.
964///
965/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
966/// after the split block (`SplitBB`) that will be used to select between the
967/// cloned and original loop.
968///
969/// This routine handles cloning all of the necessary loop blocks and exit
970/// blocks including rewriting their instructions and the relevant PHI nodes.
971/// Any loop blocks or exit blocks which are dominated by a different successor
972/// than the one for this clone of the loop blocks can be trivially skipped. We
973/// use the `DominatingSucc` map to determine whether a block satisfies that
974/// property with a simple map lookup.
975///
976/// It also correctly creates the unconditional branch in the cloned
977/// unswitched parent block to only point at the unswitched successor.
978///
979/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
980/// block splitting is correctly reflected in `LoopInfo`, essentially all of
981/// the cloned blocks (and their loops) are left without full `LoopInfo`
982/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
983/// blocks to them but doesn't create the cloned `DominatorTree` structure and
984/// instead the caller must recompute an accurate DT. It *does* correctly
985/// update the `AssumptionCache` provided in `AC`.
986static BasicBlock *buildClonedLoopBlocks(
987    Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
988    ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
989    BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
990    const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
991    ValueToValueMapTy &VMap,
992    SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
993    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
994  SmallVector<BasicBlock *, 4> NewBlocks;
995  NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
996
997  // We will need to clone a bunch of blocks, wrap up the clone operation in
998  // a helper.
999  auto CloneBlock = [&](BasicBlock *OldBB) {
1000    // Clone the basic block and insert it before the new preheader.
1001    BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1002    NewBB->moveBefore(LoopPH);
1003
1004    // Record this block and the mapping.
1005    NewBlocks.push_back(NewBB);
1006    VMap[OldBB] = NewBB;
1007
1008    return NewBB;
1009  };
1010
1011  // We skip cloning blocks when they have a dominating succ that is not the
1012  // succ we are cloning for.
1013  auto SkipBlock = [&](BasicBlock *BB) {
1014    auto It = DominatingSucc.find(BB);
1015    return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1016  };
1017
1018  // First, clone the preheader.
1019  auto *ClonedPH = CloneBlock(LoopPH);
1020
1021  // Then clone all the loop blocks, skipping the ones that aren't necessary.
1022  for (auto *LoopBB : L.blocks())
1023    if (!SkipBlock(LoopBB))
1024      CloneBlock(LoopBB);
1025
1026  // Split all the loop exit edges so that when we clone the exit blocks, if
1027  // any of the exit blocks are *also* a preheader for some other loop, we
1028  // don't create multiple predecessors entering the loop header.
1029  for (auto *ExitBB : ExitBlocks) {
1030    if (SkipBlock(ExitBB))
1031      continue;
1032
1033    // When we are going to clone an exit, we don't need to clone all the
1034    // instructions in the exit block and we want to ensure we have an easy
1035    // place to merge the CFG, so split the exit first. This is always safe to
1036    // do because there cannot be any non-loop predecessors of a loop exit in
1037    // loop simplified form.
1038    auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1039
1040    // Rearrange the names to make it easier to write test cases by having the
1041    // exit block carry the suffix rather than the merge block carrying the
1042    // suffix.
1043    MergeBB->takeName(ExitBB);
1044    ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1045
1046    // Now clone the original exit block.
1047    auto *ClonedExitBB = CloneBlock(ExitBB);
1048    assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1049           "Exit block should have been split to have one successor!");
1050    assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1051           "Cloned exit block has the wrong successor!");
1052
1053    // Remap any cloned instructions and create a merge phi node for them.
1054    for (auto ZippedInsts : llvm::zip_first(
1055             llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1056             llvm::make_range(ClonedExitBB->begin(),
1057                              std::prev(ClonedExitBB->end())))) {
1058      Instruction &I = std::get<0>(ZippedInsts);
1059      Instruction &ClonedI = std::get<1>(ZippedInsts);
1060
1061      // The only instructions in the exit block should be PHI nodes and
1062      // potentially a landing pad.
1063      assert(
1064          (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1065          "Bad instruction in exit block!");
1066      // We should have a value map between the instruction and its clone.
1067      assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1068
1069      auto *MergePN =
1070          PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1071                          &*MergeBB->getFirstInsertionPt());
1072      I.replaceAllUsesWith(MergePN);
1073      MergePN->addIncoming(&I, ExitBB);
1074      MergePN->addIncoming(&ClonedI, ClonedExitBB);
1075    }
1076  }
1077
1078  // Rewrite the instructions in the cloned blocks to refer to the instructions
1079  // in the cloned blocks. We have to do this as a second pass so that we have
1080  // everything available. Also, we have inserted new instructions which may
1081  // include assume intrinsics, so we update the assumption cache while
1082  // processing this.
1083  for (auto *ClonedBB : NewBlocks)
1084    for (Instruction &I : *ClonedBB) {
1085      RemapInstruction(&I, VMap,
1086                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1087      if (auto *II = dyn_cast<IntrinsicInst>(&I))
1088        if (II->getIntrinsicID() == Intrinsic::assume)
1089          AC.registerAssumption(II);
1090    }
1091
1092  // Update any PHI nodes in the cloned successors of the skipped blocks to not
1093  // have spurious incoming values.
1094  for (auto *LoopBB : L.blocks())
1095    if (SkipBlock(LoopBB))
1096      for (auto *SuccBB : successors(LoopBB))
1097        if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1098          for (PHINode &PN : ClonedSuccBB->phis())
1099            PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1100
1101  // Remove the cloned parent as a predecessor of any successor we ended up
1102  // cloning other than the unswitched one.
1103  auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1104  for (auto *SuccBB : successors(ParentBB)) {
1105    if (SuccBB == UnswitchedSuccBB)
1106      continue;
1107
1108    auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1109    if (!ClonedSuccBB)
1110      continue;
1111
1112    ClonedSuccBB->removePredecessor(ClonedParentBB,
1113                                    /*KeepOneInputPHIs*/ true);
1114  }
1115
1116  // Replace the cloned branch with an unconditional branch to the cloned
1117  // unswitched successor.
1118  auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1119  ClonedParentBB->getTerminator()->eraseFromParent();
1120  BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1121
1122  // If there are duplicate entries in the PHI nodes because of multiple edges
1123  // to the unswitched successor, we need to nuke all but one as we replaced it
1124  // with a direct branch.
1125  for (PHINode &PN : ClonedSuccBB->phis()) {
1126    bool Found = false;
1127    // Loop over the incoming operands backwards so we can easily delete as we
1128    // go without invalidating the index.
1129    for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1130      if (PN.getIncomingBlock(i) != ClonedParentBB)
1131        continue;
1132      if (!Found) {
1133        Found = true;
1134        continue;
1135      }
1136      PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1137    }
1138  }
1139
1140  // Record the domtree updates for the new blocks.
1141  SmallPtrSet<BasicBlock *, 4> SuccSet;
1142  for (auto *ClonedBB : NewBlocks) {
1143    for (auto *SuccBB : successors(ClonedBB))
1144      if (SuccSet.insert(SuccBB).second)
1145        DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1146    SuccSet.clear();
1147  }
1148
1149  return ClonedPH;
1150}
1151
1152/// Recursively clone the specified loop and all of its children.
1153///
1154/// The target parent loop for the clone should be provided, or can be null if
1155/// the clone is a top-level loop. While cloning, all the blocks are mapped
1156/// with the provided value map. The entire original loop must be present in
1157/// the value map. The cloned loop is returned.
1158static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1159                           const ValueToValueMapTy &VMap, LoopInfo &LI) {
1160  auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1161    assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1162    ClonedL.reserveBlocks(OrigL.getNumBlocks());
1163    for (auto *BB : OrigL.blocks()) {
1164      auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1165      ClonedL.addBlockEntry(ClonedBB);
1166      if (LI.getLoopFor(BB) == &OrigL)
1167        LI.changeLoopFor(ClonedBB, &ClonedL);
1168    }
1169  };
1170
1171  // We specially handle the first loop because it may get cloned into
1172  // a different parent and because we most commonly are cloning leaf loops.
1173  Loop *ClonedRootL = LI.AllocateLoop();
1174  if (RootParentL)
1175    RootParentL->addChildLoop(ClonedRootL);
1176  else
1177    LI.addTopLevelLoop(ClonedRootL);
1178  AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1179
1180  if (OrigRootL.empty())
1181    return ClonedRootL;
1182
1183  // If we have a nest, we can quickly clone the entire loop nest using an
1184  // iterative approach because it is a tree. We keep the cloned parent in the
1185  // data structure to avoid repeatedly querying through a map to find it.
1186  SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1187  // Build up the loops to clone in reverse order as we'll clone them from the
1188  // back.
1189  for (Loop *ChildL : llvm::reverse(OrigRootL))
1190    LoopsToClone.push_back({ClonedRootL, ChildL});
1191  do {
1192    Loop *ClonedParentL, *L;
1193    std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1194    Loop *ClonedL = LI.AllocateLoop();
1195    ClonedParentL->addChildLoop(ClonedL);
1196    AddClonedBlocksToLoop(*L, *ClonedL);
1197    for (Loop *ChildL : llvm::reverse(*L))
1198      LoopsToClone.push_back({ClonedL, ChildL});
1199  } while (!LoopsToClone.empty());
1200
1201  return ClonedRootL;
1202}
1203
1204/// Build the cloned loops of an original loop from unswitching.
1205///
1206/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1207/// operation. We need to re-verify that there even is a loop (as the backedge
1208/// may not have been cloned), and even if there are remaining backedges the
1209/// backedge set may be different. However, we know that each child loop is
1210/// undisturbed, we only need to find where to place each child loop within
1211/// either any parent loop or within a cloned version of the original loop.
1212///
1213/// Because child loops may end up cloned outside of any cloned version of the
1214/// original loop, multiple cloned sibling loops may be created. All of them
1215/// are returned so that the newly introduced loop nest roots can be
1216/// identified.
1217static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1218                             const ValueToValueMapTy &VMap, LoopInfo &LI,
1219                             SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1220  Loop *ClonedL = nullptr;
1221
1222  auto *OrigPH = OrigL.getLoopPreheader();
1223  auto *OrigHeader = OrigL.getHeader();
1224
1225  auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1226  auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1227
1228  // We need to know the loops of the cloned exit blocks to even compute the
1229  // accurate parent loop. If we only clone exits to some parent of the
1230  // original parent, we want to clone into that outer loop. We also keep track
1231  // of the loops that our cloned exit blocks participate in.
1232  Loop *ParentL = nullptr;
1233  SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1234  SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1235  ClonedExitsInLoops.reserve(ExitBlocks.size());
1236  for (auto *ExitBB : ExitBlocks)
1237    if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1238      if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1239        ExitLoopMap[ClonedExitBB] = ExitL;
1240        ClonedExitsInLoops.push_back(ClonedExitBB);
1241        if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1242          ParentL = ExitL;
1243      }
1244  assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1245          ParentL->contains(OrigL.getParentLoop())) &&
1246         "The computed parent loop should always contain (or be) the parent of "
1247         "the original loop.");
1248
1249  // We build the set of blocks dominated by the cloned header from the set of
1250  // cloned blocks out of the original loop. While not all of these will
1251  // necessarily be in the cloned loop, it is enough to establish that they
1252  // aren't in unreachable cycles, etc.
1253  SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1254  for (auto *BB : OrigL.blocks())
1255    if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1256      ClonedLoopBlocks.insert(ClonedBB);
1257
1258  // Rebuild the set of blocks that will end up in the cloned loop. We may have
1259  // skipped cloning some region of this loop which can in turn skip some of
1260  // the backedges so we have to rebuild the blocks in the loop based on the
1261  // backedges that remain after cloning.
1262  SmallVector<BasicBlock *, 16> Worklist;
1263  SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1264  for (auto *Pred : predecessors(ClonedHeader)) {
1265    // The only possible non-loop header predecessor is the preheader because
1266    // we know we cloned the loop in simplified form.
1267    if (Pred == ClonedPH)
1268      continue;
1269
1270    // Because the loop was in simplified form, the only non-loop predecessor
1271    // should be the preheader.
1272    assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1273                                           "header other than the preheader "
1274                                           "that is not part of the loop!");
1275
1276    // Insert this block into the loop set and on the first visit (and if it
1277    // isn't the header we're currently walking) put it into the worklist to
1278    // recurse through.
1279    if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1280      Worklist.push_back(Pred);
1281  }
1282
1283  // If we had any backedges then there *is* a cloned loop. Put the header into
1284  // the loop set and then walk the worklist backwards to find all the blocks
1285  // that remain within the loop after cloning.
1286  if (!BlocksInClonedLoop.empty()) {
1287    BlocksInClonedLoop.insert(ClonedHeader);
1288
1289    while (!Worklist.empty()) {
1290      BasicBlock *BB = Worklist.pop_back_val();
1291      assert(BlocksInClonedLoop.count(BB) &&
1292             "Didn't put block into the loop set!");
1293
1294      // Insert any predecessors that are in the possible set into the cloned
1295      // set, and if the insert is successful, add them to the worklist. Note
1296      // that we filter on the blocks that are definitely reachable via the
1297      // backedge to the loop header so we may prune out dead code within the
1298      // cloned loop.
1299      for (auto *Pred : predecessors(BB))
1300        if (ClonedLoopBlocks.count(Pred) &&
1301            BlocksInClonedLoop.insert(Pred).second)
1302          Worklist.push_back(Pred);
1303    }
1304
1305    ClonedL = LI.AllocateLoop();
1306    if (ParentL) {
1307      ParentL->addBasicBlockToLoop(ClonedPH, LI);
1308      ParentL->addChildLoop(ClonedL);
1309    } else {
1310      LI.addTopLevelLoop(ClonedL);
1311    }
1312    NonChildClonedLoops.push_back(ClonedL);
1313
1314    ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1315    // We don't want to just add the cloned loop blocks based on how we
1316    // discovered them. The original order of blocks was carefully built in
1317    // a way that doesn't rely on predecessor ordering. Rather than re-invent
1318    // that logic, we just re-walk the original blocks (and those of the child
1319    // loops) and filter them as we add them into the cloned loop.
1320    for (auto *BB : OrigL.blocks()) {
1321      auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1322      if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1323        continue;
1324
1325      // Directly add the blocks that are only in this loop.
1326      if (LI.getLoopFor(BB) == &OrigL) {
1327        ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1328        continue;
1329      }
1330
1331      // We want to manually add it to this loop and parents.
1332      // Registering it with LoopInfo will happen when we clone the top
1333      // loop for this block.
1334      for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1335        PL->addBlockEntry(ClonedBB);
1336    }
1337
1338    // Now add each child loop whose header remains within the cloned loop. All
1339    // of the blocks within the loop must satisfy the same constraints as the
1340    // header so once we pass the header checks we can just clone the entire
1341    // child loop nest.
1342    for (Loop *ChildL : OrigL) {
1343      auto *ClonedChildHeader =
1344          cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1345      if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1346        continue;
1347
1348#ifndef NDEBUG
1349      // We should never have a cloned child loop header but fail to have
1350      // all of the blocks for that child loop.
1351      for (auto *ChildLoopBB : ChildL->blocks())
1352        assert(BlocksInClonedLoop.count(
1353                   cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1354               "Child cloned loop has a header within the cloned outer "
1355               "loop but not all of its blocks!");
1356#endif
1357
1358      cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1359    }
1360  }
1361
1362  // Now that we've handled all the components of the original loop that were
1363  // cloned into a new loop, we still need to handle anything from the original
1364  // loop that wasn't in a cloned loop.
1365
1366  // Figure out what blocks are left to place within any loop nest containing
1367  // the unswitched loop. If we never formed a loop, the cloned PH is one of
1368  // them.
1369  SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1370  if (BlocksInClonedLoop.empty())
1371    UnloopedBlockSet.insert(ClonedPH);
1372  for (auto *ClonedBB : ClonedLoopBlocks)
1373    if (!BlocksInClonedLoop.count(ClonedBB))
1374      UnloopedBlockSet.insert(ClonedBB);
1375
1376  // Copy the cloned exits and sort them in ascending loop depth, we'll work
1377  // backwards across these to process them inside out. The order shouldn't
1378  // matter as we're just trying to build up the map from inside-out; we use
1379  // the map in a more stably ordered way below.
1380  auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1381  llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1382    return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1383           ExitLoopMap.lookup(RHS)->getLoopDepth();
1384  });
1385
1386  // Populate the existing ExitLoopMap with everything reachable from each
1387  // exit, starting from the inner most exit.
1388  while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1389    assert(Worklist.empty() && "Didn't clear worklist!");
1390
1391    BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1392    Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1393
1394    // Walk the CFG back until we hit the cloned PH adding everything reachable
1395    // and in the unlooped set to this exit block's loop.
1396    Worklist.push_back(ExitBB);
1397    do {
1398      BasicBlock *BB = Worklist.pop_back_val();
1399      // We can stop recursing at the cloned preheader (if we get there).
1400      if (BB == ClonedPH)
1401        continue;
1402
1403      for (BasicBlock *PredBB : predecessors(BB)) {
1404        // If this pred has already been moved to our set or is part of some
1405        // (inner) loop, no update needed.
1406        if (!UnloopedBlockSet.erase(PredBB)) {
1407          assert(
1408              (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1409              "Predecessor not mapped to a loop!");
1410          continue;
1411        }
1412
1413        // We just insert into the loop set here. We'll add these blocks to the
1414        // exit loop after we build up the set in an order that doesn't rely on
1415        // predecessor order (which in turn relies on use list order).
1416        bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1417        (void)Inserted;
1418        assert(Inserted && "Should only visit an unlooped block once!");
1419
1420        // And recurse through to its predecessors.
1421        Worklist.push_back(PredBB);
1422      }
1423    } while (!Worklist.empty());
1424  }
1425
1426  // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1427  // blocks to their outer loops, walk the cloned blocks and the cloned exits
1428  // in their original order adding them to the correct loop.
1429
1430  // We need a stable insertion order. We use the order of the original loop
1431  // order and map into the correct parent loop.
1432  for (auto *BB : llvm::concat<BasicBlock *const>(
1433           makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1434    if (Loop *OuterL = ExitLoopMap.lookup(BB))
1435      OuterL->addBasicBlockToLoop(BB, LI);
1436
1437#ifndef NDEBUG
1438  for (auto &BBAndL : ExitLoopMap) {
1439    auto *BB = BBAndL.first;
1440    auto *OuterL = BBAndL.second;
1441    assert(LI.getLoopFor(BB) == OuterL &&
1442           "Failed to put all blocks into outer loops!");
1443  }
1444#endif
1445
1446  // Now that all the blocks are placed into the correct containing loop in the
1447  // absence of child loops, find all the potentially cloned child loops and
1448  // clone them into whatever outer loop we placed their header into.
1449  for (Loop *ChildL : OrigL) {
1450    auto *ClonedChildHeader =
1451        cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1452    if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1453      continue;
1454
1455#ifndef NDEBUG
1456    for (auto *ChildLoopBB : ChildL->blocks())
1457      assert(VMap.count(ChildLoopBB) &&
1458             "Cloned a child loop header but not all of that loops blocks!");
1459#endif
1460
1461    NonChildClonedLoops.push_back(cloneLoopNest(
1462        *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1463  }
1464}
1465
1466static void
1467deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1468                       ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1469                       DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1470  // Find all the dead clones, and remove them from their successors.
1471  SmallVector<BasicBlock *, 16> DeadBlocks;
1472  for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1473    for (auto &VMap : VMaps)
1474      if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1475        if (!DT.isReachableFromEntry(ClonedBB)) {
1476          for (BasicBlock *SuccBB : successors(ClonedBB))
1477            SuccBB->removePredecessor(ClonedBB);
1478          DeadBlocks.push_back(ClonedBB);
1479        }
1480
1481  // Remove all MemorySSA in the dead blocks
1482  if (MSSAU) {
1483    SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1484                                                 DeadBlocks.end());
1485    MSSAU->removeBlocks(DeadBlockSet);
1486  }
1487
1488  // Drop any remaining references to break cycles.
1489  for (BasicBlock *BB : DeadBlocks)
1490    BB->dropAllReferences();
1491  // Erase them from the IR.
1492  for (BasicBlock *BB : DeadBlocks)
1493    BB->eraseFromParent();
1494}
1495
1496static void deleteDeadBlocksFromLoop(Loop &L,
1497                                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1498                                     DominatorTree &DT, LoopInfo &LI,
1499                                     MemorySSAUpdater *MSSAU) {
1500  // Find all the dead blocks tied to this loop, and remove them from their
1501  // successors.
1502  SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1503
1504  // Start with loop/exit blocks and get a transitive closure of reachable dead
1505  // blocks.
1506  SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1507                                                ExitBlocks.end());
1508  DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1509  while (!DeathCandidates.empty()) {
1510    auto *BB = DeathCandidates.pop_back_val();
1511    if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1512      for (BasicBlock *SuccBB : successors(BB)) {
1513        SuccBB->removePredecessor(BB);
1514        DeathCandidates.push_back(SuccBB);
1515      }
1516      DeadBlockSet.insert(BB);
1517    }
1518  }
1519
1520  // Remove all MemorySSA in the dead blocks
1521  if (MSSAU)
1522    MSSAU->removeBlocks(DeadBlockSet);
1523
1524  // Filter out the dead blocks from the exit blocks list so that it can be
1525  // used in the caller.
1526  llvm::erase_if(ExitBlocks,
1527                 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1528
1529  // Walk from this loop up through its parents removing all of the dead blocks.
1530  for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1531    for (auto *BB : DeadBlockSet)
1532      ParentL->getBlocksSet().erase(BB);
1533    llvm::erase_if(ParentL->getBlocksVector(),
1534                   [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1535  }
1536
1537  // Now delete the dead child loops. This raw delete will clear them
1538  // recursively.
1539  llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1540    if (!DeadBlockSet.count(ChildL->getHeader()))
1541      return false;
1542
1543    assert(llvm::all_of(ChildL->blocks(),
1544                        [&](BasicBlock *ChildBB) {
1545                          return DeadBlockSet.count(ChildBB);
1546                        }) &&
1547           "If the child loop header is dead all blocks in the child loop must "
1548           "be dead as well!");
1549    LI.destroy(ChildL);
1550    return true;
1551  });
1552
1553  // Remove the loop mappings for the dead blocks and drop all the references
1554  // from these blocks to others to handle cyclic references as we start
1555  // deleting the blocks themselves.
1556  for (auto *BB : DeadBlockSet) {
1557    // Check that the dominator tree has already been updated.
1558    assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1559    LI.changeLoopFor(BB, nullptr);
1560    BB->dropAllReferences();
1561  }
1562
1563  // Actually delete the blocks now that they've been fully unhooked from the
1564  // IR.
1565  for (auto *BB : DeadBlockSet)
1566    BB->eraseFromParent();
1567}
1568
1569/// Recompute the set of blocks in a loop after unswitching.
1570///
1571/// This walks from the original headers predecessors to rebuild the loop. We
1572/// take advantage of the fact that new blocks can't have been added, and so we
1573/// filter by the original loop's blocks. This also handles potentially
1574/// unreachable code that we don't want to explore but might be found examining
1575/// the predecessors of the header.
1576///
1577/// If the original loop is no longer a loop, this will return an empty set. If
1578/// it remains a loop, all the blocks within it will be added to the set
1579/// (including those blocks in inner loops).
1580static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1581                                                                 LoopInfo &LI) {
1582  SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1583
1584  auto *PH = L.getLoopPreheader();
1585  auto *Header = L.getHeader();
1586
1587  // A worklist to use while walking backwards from the header.
1588  SmallVector<BasicBlock *, 16> Worklist;
1589
1590  // First walk the predecessors of the header to find the backedges. This will
1591  // form the basis of our walk.
1592  for (auto *Pred : predecessors(Header)) {
1593    // Skip the preheader.
1594    if (Pred == PH)
1595      continue;
1596
1597    // Because the loop was in simplified form, the only non-loop predecessor
1598    // is the preheader.
1599    assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1600                               "than the preheader that is not part of the "
1601                               "loop!");
1602
1603    // Insert this block into the loop set and on the first visit and, if it
1604    // isn't the header we're currently walking, put it into the worklist to
1605    // recurse through.
1606    if (LoopBlockSet.insert(Pred).second && Pred != Header)
1607      Worklist.push_back(Pred);
1608  }
1609
1610  // If no backedges were found, we're done.
1611  if (LoopBlockSet.empty())
1612    return LoopBlockSet;
1613
1614  // We found backedges, recurse through them to identify the loop blocks.
1615  while (!Worklist.empty()) {
1616    BasicBlock *BB = Worklist.pop_back_val();
1617    assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1618
1619    // No need to walk past the header.
1620    if (BB == Header)
1621      continue;
1622
1623    // Because we know the inner loop structure remains valid we can use the
1624    // loop structure to jump immediately across the entire nested loop.
1625    // Further, because it is in loop simplified form, we can directly jump
1626    // to its preheader afterward.
1627    if (Loop *InnerL = LI.getLoopFor(BB))
1628      if (InnerL != &L) {
1629        assert(L.contains(InnerL) &&
1630               "Should not reach a loop *outside* this loop!");
1631        // The preheader is the only possible predecessor of the loop so
1632        // insert it into the set and check whether it was already handled.
1633        auto *InnerPH = InnerL->getLoopPreheader();
1634        assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1635                                      "but not contain the inner loop "
1636                                      "preheader!");
1637        if (!LoopBlockSet.insert(InnerPH).second)
1638          // The only way to reach the preheader is through the loop body
1639          // itself so if it has been visited the loop is already handled.
1640          continue;
1641
1642        // Insert all of the blocks (other than those already present) into
1643        // the loop set. We expect at least the block that led us to find the
1644        // inner loop to be in the block set, but we may also have other loop
1645        // blocks if they were already enqueued as predecessors of some other
1646        // outer loop block.
1647        for (auto *InnerBB : InnerL->blocks()) {
1648          if (InnerBB == BB) {
1649            assert(LoopBlockSet.count(InnerBB) &&
1650                   "Block should already be in the set!");
1651            continue;
1652          }
1653
1654          LoopBlockSet.insert(InnerBB);
1655        }
1656
1657        // Add the preheader to the worklist so we will continue past the
1658        // loop body.
1659        Worklist.push_back(InnerPH);
1660        continue;
1661      }
1662
1663    // Insert any predecessors that were in the original loop into the new
1664    // set, and if the insert is successful, add them to the worklist.
1665    for (auto *Pred : predecessors(BB))
1666      if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1667        Worklist.push_back(Pred);
1668  }
1669
1670  assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1671
1672  // We've found all the blocks participating in the loop, return our completed
1673  // set.
1674  return LoopBlockSet;
1675}
1676
1677/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1678///
1679/// The removal may have removed some child loops entirely but cannot have
1680/// disturbed any remaining child loops. However, they may need to be hoisted
1681/// to the parent loop (or to be top-level loops). The original loop may be
1682/// completely removed.
1683///
1684/// The sibling loops resulting from this update are returned. If the original
1685/// loop remains a valid loop, it will be the first entry in this list with all
1686/// of the newly sibling loops following it.
1687///
1688/// Returns true if the loop remains a loop after unswitching, and false if it
1689/// is no longer a loop after unswitching (and should not continue to be
1690/// referenced).
1691static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1692                                     LoopInfo &LI,
1693                                     SmallVectorImpl<Loop *> &HoistedLoops) {
1694  auto *PH = L.getLoopPreheader();
1695
1696  // Compute the actual parent loop from the exit blocks. Because we may have
1697  // pruned some exits the loop may be different from the original parent.
1698  Loop *ParentL = nullptr;
1699  SmallVector<Loop *, 4> ExitLoops;
1700  SmallVector<BasicBlock *, 4> ExitsInLoops;
1701  ExitsInLoops.reserve(ExitBlocks.size());
1702  for (auto *ExitBB : ExitBlocks)
1703    if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1704      ExitLoops.push_back(ExitL);
1705      ExitsInLoops.push_back(ExitBB);
1706      if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1707        ParentL = ExitL;
1708    }
1709
1710  // Recompute the blocks participating in this loop. This may be empty if it
1711  // is no longer a loop.
1712  auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1713
1714  // If we still have a loop, we need to re-set the loop's parent as the exit
1715  // block set changing may have moved it within the loop nest. Note that this
1716  // can only happen when this loop has a parent as it can only hoist the loop
1717  // *up* the nest.
1718  if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1719    // Remove this loop's (original) blocks from all of the intervening loops.
1720    for (Loop *IL = L.getParentLoop(); IL != ParentL;
1721         IL = IL->getParentLoop()) {
1722      IL->getBlocksSet().erase(PH);
1723      for (auto *BB : L.blocks())
1724        IL->getBlocksSet().erase(BB);
1725      llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1726        return BB == PH || L.contains(BB);
1727      });
1728    }
1729
1730    LI.changeLoopFor(PH, ParentL);
1731    L.getParentLoop()->removeChildLoop(&L);
1732    if (ParentL)
1733      ParentL->addChildLoop(&L);
1734    else
1735      LI.addTopLevelLoop(&L);
1736  }
1737
1738  // Now we update all the blocks which are no longer within the loop.
1739  auto &Blocks = L.getBlocksVector();
1740  auto BlocksSplitI =
1741      LoopBlockSet.empty()
1742          ? Blocks.begin()
1743          : std::stable_partition(
1744                Blocks.begin(), Blocks.end(),
1745                [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1746
1747  // Before we erase the list of unlooped blocks, build a set of them.
1748  SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1749  if (LoopBlockSet.empty())
1750    UnloopedBlocks.insert(PH);
1751
1752  // Now erase these blocks from the loop.
1753  for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1754    L.getBlocksSet().erase(BB);
1755  Blocks.erase(BlocksSplitI, Blocks.end());
1756
1757  // Sort the exits in ascending loop depth, we'll work backwards across these
1758  // to process them inside out.
1759  llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1760    return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1761  });
1762
1763  // We'll build up a set for each exit loop.
1764  SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1765  Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1766
1767  auto RemoveUnloopedBlocksFromLoop =
1768      [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1769        for (auto *BB : UnloopedBlocks)
1770          L.getBlocksSet().erase(BB);
1771        llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1772          return UnloopedBlocks.count(BB);
1773        });
1774      };
1775
1776  SmallVector<BasicBlock *, 16> Worklist;
1777  while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1778    assert(Worklist.empty() && "Didn't clear worklist!");
1779    assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1780
1781    // Grab the next exit block, in decreasing loop depth order.
1782    BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1783    Loop &ExitL = *LI.getLoopFor(ExitBB);
1784    assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1785
1786    // Erase all of the unlooped blocks from the loops between the previous
1787    // exit loop and this exit loop. This works because the ExitInLoops list is
1788    // sorted in increasing order of loop depth and thus we visit loops in
1789    // decreasing order of loop depth.
1790    for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1791      RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1792
1793    // Walk the CFG back until we hit the cloned PH adding everything reachable
1794    // and in the unlooped set to this exit block's loop.
1795    Worklist.push_back(ExitBB);
1796    do {
1797      BasicBlock *BB = Worklist.pop_back_val();
1798      // We can stop recursing at the cloned preheader (if we get there).
1799      if (BB == PH)
1800        continue;
1801
1802      for (BasicBlock *PredBB : predecessors(BB)) {
1803        // If this pred has already been moved to our set or is part of some
1804        // (inner) loop, no update needed.
1805        if (!UnloopedBlocks.erase(PredBB)) {
1806          assert((NewExitLoopBlocks.count(PredBB) ||
1807                  ExitL.contains(LI.getLoopFor(PredBB))) &&
1808                 "Predecessor not in a nested loop (or already visited)!");
1809          continue;
1810        }
1811
1812        // We just insert into the loop set here. We'll add these blocks to the
1813        // exit loop after we build up the set in a deterministic order rather
1814        // than the predecessor-influenced visit order.
1815        bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1816        (void)Inserted;
1817        assert(Inserted && "Should only visit an unlooped block once!");
1818
1819        // And recurse through to its predecessors.
1820        Worklist.push_back(PredBB);
1821      }
1822    } while (!Worklist.empty());
1823
1824    // If blocks in this exit loop were directly part of the original loop (as
1825    // opposed to a child loop) update the map to point to this exit loop. This
1826    // just updates a map and so the fact that the order is unstable is fine.
1827    for (auto *BB : NewExitLoopBlocks)
1828      if (Loop *BBL = LI.getLoopFor(BB))
1829        if (BBL == &L || !L.contains(BBL))
1830          LI.changeLoopFor(BB, &ExitL);
1831
1832    // We will remove the remaining unlooped blocks from this loop in the next
1833    // iteration or below.
1834    NewExitLoopBlocks.clear();
1835  }
1836
1837  // Any remaining unlooped blocks are no longer part of any loop unless they
1838  // are part of some child loop.
1839  for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1840    RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1841  for (auto *BB : UnloopedBlocks)
1842    if (Loop *BBL = LI.getLoopFor(BB))
1843      if (BBL == &L || !L.contains(BBL))
1844        LI.changeLoopFor(BB, nullptr);
1845
1846  // Sink all the child loops whose headers are no longer in the loop set to
1847  // the parent (or to be top level loops). We reach into the loop and directly
1848  // update its subloop vector to make this batch update efficient.
1849  auto &SubLoops = L.getSubLoopsVector();
1850  auto SubLoopsSplitI =
1851      LoopBlockSet.empty()
1852          ? SubLoops.begin()
1853          : std::stable_partition(
1854                SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1855                  return LoopBlockSet.count(SubL->getHeader());
1856                });
1857  for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1858    HoistedLoops.push_back(HoistedL);
1859    HoistedL->setParentLoop(nullptr);
1860
1861    // To compute the new parent of this hoisted loop we look at where we
1862    // placed the preheader above. We can't lookup the header itself because we
1863    // retained the mapping from the header to the hoisted loop. But the
1864    // preheader and header should have the exact same new parent computed
1865    // based on the set of exit blocks from the original loop as the preheader
1866    // is a predecessor of the header and so reached in the reverse walk. And
1867    // because the loops were all in simplified form the preheader of the
1868    // hoisted loop can't be part of some *other* loop.
1869    if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1870      NewParentL->addChildLoop(HoistedL);
1871    else
1872      LI.addTopLevelLoop(HoistedL);
1873  }
1874  SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1875
1876  // Actually delete the loop if nothing remained within it.
1877  if (Blocks.empty()) {
1878    assert(SubLoops.empty() &&
1879           "Failed to remove all subloops from the original loop!");
1880    if (Loop *ParentL = L.getParentLoop())
1881      ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1882    else
1883      LI.removeLoop(llvm::find(LI, &L));
1884    LI.destroy(&L);
1885    return false;
1886  }
1887
1888  return true;
1889}
1890
1891/// Helper to visit a dominator subtree, invoking a callable on each node.
1892///
1893/// Returning false at any point will stop walking past that node of the tree.
1894template <typename CallableT>
1895void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1896  SmallVector<DomTreeNode *, 4> DomWorklist;
1897  DomWorklist.push_back(DT[BB]);
1898#ifndef NDEBUG
1899  SmallPtrSet<DomTreeNode *, 4> Visited;
1900  Visited.insert(DT[BB]);
1901#endif
1902  do {
1903    DomTreeNode *N = DomWorklist.pop_back_val();
1904
1905    // Visit this node.
1906    if (!Callable(N->getBlock()))
1907      continue;
1908
1909    // Accumulate the child nodes.
1910    for (DomTreeNode *ChildN : *N) {
1911      assert(Visited.insert(ChildN).second &&
1912             "Cannot visit a node twice when walking a tree!");
1913      DomWorklist.push_back(ChildN);
1914    }
1915  } while (!DomWorklist.empty());
1916}
1917
1918static void unswitchNontrivialInvariants(
1919    Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1920    SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1921    AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1922    ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1923  auto *ParentBB = TI.getParent();
1924  BranchInst *BI = dyn_cast<BranchInst>(&TI);
1925  SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1926
1927  // We can only unswitch switches, conditional branches with an invariant
1928  // condition, or combining invariant conditions with an instruction.
1929  assert((SI || (BI && BI->isConditional())) &&
1930         "Can only unswitch switches and conditional branch!");
1931  bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1932  if (FullUnswitch)
1933    assert(Invariants.size() == 1 &&
1934           "Cannot have other invariants with full unswitching!");
1935  else
1936    assert(isa<Instruction>(BI->getCondition()) &&
1937           "Partial unswitching requires an instruction as the condition!");
1938
1939  if (MSSAU && VerifyMemorySSA)
1940    MSSAU->getMemorySSA()->verifyMemorySSA();
1941
1942  // Constant and BBs tracking the cloned and continuing successor. When we are
1943  // unswitching the entire condition, this can just be trivially chosen to
1944  // unswitch towards `true`. However, when we are unswitching a set of
1945  // invariants combined with `and` or `or`, the combining operation determines
1946  // the best direction to unswitch: we want to unswitch the direction that will
1947  // collapse the branch.
1948  bool Direction = true;
1949  int ClonedSucc = 0;
1950  if (!FullUnswitch) {
1951    if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1952      assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1953                 Instruction::And &&
1954             "Only `or` and `and` instructions can combine invariants being "
1955             "unswitched.");
1956      Direction = false;
1957      ClonedSucc = 1;
1958    }
1959  }
1960
1961  BasicBlock *RetainedSuccBB =
1962      BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1963  SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1964  if (BI)
1965    UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1966  else
1967    for (auto Case : SI->cases())
1968      if (Case.getCaseSuccessor() != RetainedSuccBB)
1969        UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1970
1971  assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1972         "Should not unswitch the same successor we are retaining!");
1973
1974  // The branch should be in this exact loop. Any inner loop's invariant branch
1975  // should be handled by unswitching that inner loop. The caller of this
1976  // routine should filter out any candidates that remain (but were skipped for
1977  // whatever reason).
1978  assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1979
1980  // Compute the parent loop now before we start hacking on things.
1981  Loop *ParentL = L.getParentLoop();
1982  // Get blocks in RPO order for MSSA update, before changing the CFG.
1983  LoopBlocksRPO LBRPO(&L);
1984  if (MSSAU)
1985    LBRPO.perform(&LI);
1986
1987  // Compute the outer-most loop containing one of our exit blocks. This is the
1988  // furthest up our loopnest which can be mutated, which we will use below to
1989  // update things.
1990  Loop *OuterExitL = &L;
1991  for (auto *ExitBB : ExitBlocks) {
1992    Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1993    if (!NewOuterExitL) {
1994      // We exited the entire nest with this block, so we're done.
1995      OuterExitL = nullptr;
1996      break;
1997    }
1998    if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1999      OuterExitL = NewOuterExitL;
2000  }
2001
2002  // At this point, we're definitely going to unswitch something so invalidate
2003  // any cached information in ScalarEvolution for the outer most loop
2004  // containing an exit block and all nested loops.
2005  if (SE) {
2006    if (OuterExitL)
2007      SE->forgetLoop(OuterExitL);
2008    else
2009      SE->forgetTopmostLoop(&L);
2010  }
2011
2012  // If the edge from this terminator to a successor dominates that successor,
2013  // store a map from each block in its dominator subtree to it. This lets us
2014  // tell when cloning for a particular successor if a block is dominated by
2015  // some *other* successor with a single data structure. We use this to
2016  // significantly reduce cloning.
2017  SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2018  for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2019           makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2020    if (SuccBB->getUniquePredecessor() ||
2021        llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2022          return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2023        }))
2024      visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2025        DominatingSucc[BB] = SuccBB;
2026        return true;
2027      });
2028
2029  // Split the preheader, so that we know that there is a safe place to insert
2030  // the conditional branch. We will change the preheader to have a conditional
2031  // branch on LoopCond. The original preheader will become the split point
2032  // between the unswitched versions, and we will have a new preheader for the
2033  // original loop.
2034  BasicBlock *SplitBB = L.getLoopPreheader();
2035  BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2036
2037  // Keep track of the dominator tree updates needed.
2038  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2039
2040  // Clone the loop for each unswitched successor.
2041  SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2042  VMaps.reserve(UnswitchedSuccBBs.size());
2043  SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2044  for (auto *SuccBB : UnswitchedSuccBBs) {
2045    VMaps.emplace_back(new ValueToValueMapTy());
2046    ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2047        L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2048        DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2049  }
2050
2051  // The stitching of the branched code back together depends on whether we're
2052  // doing full unswitching or not with the exception that we always want to
2053  // nuke the initial terminator placed in the split block.
2054  SplitBB->getTerminator()->eraseFromParent();
2055  if (FullUnswitch) {
2056    // Splice the terminator from the original loop and rewrite its
2057    // successors.
2058    SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2059
2060    // Keep a clone of the terminator for MSSA updates.
2061    Instruction *NewTI = TI.clone();
2062    ParentBB->getInstList().push_back(NewTI);
2063
2064    // First wire up the moved terminator to the preheaders.
2065    if (BI) {
2066      BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2067      BI->setSuccessor(ClonedSucc, ClonedPH);
2068      BI->setSuccessor(1 - ClonedSucc, LoopPH);
2069      DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2070    } else {
2071      assert(SI && "Must either be a branch or switch!");
2072
2073      // Walk the cases and directly update their successors.
2074      assert(SI->getDefaultDest() == RetainedSuccBB &&
2075             "Not retaining default successor!");
2076      SI->setDefaultDest(LoopPH);
2077      for (auto &Case : SI->cases())
2078        if (Case.getCaseSuccessor() == RetainedSuccBB)
2079          Case.setSuccessor(LoopPH);
2080        else
2081          Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2082
2083      // We need to use the set to populate domtree updates as even when there
2084      // are multiple cases pointing at the same successor we only want to
2085      // remove and insert one edge in the domtree.
2086      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2087        DTUpdates.push_back(
2088            {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2089    }
2090
2091    if (MSSAU) {
2092      DT.applyUpdates(DTUpdates);
2093      DTUpdates.clear();
2094
2095      // Remove all but one edge to the retained block and all unswitched
2096      // blocks. This is to avoid having duplicate entries in the cloned Phis,
2097      // when we know we only keep a single edge for each case.
2098      MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2099      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2100        MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2101
2102      for (auto &VMap : VMaps)
2103        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2104                                   /*IgnoreIncomingWithNoClones=*/true);
2105      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2106
2107      // Remove all edges to unswitched blocks.
2108      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2109        MSSAU->removeEdge(ParentBB, SuccBB);
2110    }
2111
2112    // Now unhook the successor relationship as we'll be replacing
2113    // the terminator with a direct branch. This is much simpler for branches
2114    // than switches so we handle those first.
2115    if (BI) {
2116      // Remove the parent as a predecessor of the unswitched successor.
2117      assert(UnswitchedSuccBBs.size() == 1 &&
2118             "Only one possible unswitched block for a branch!");
2119      BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2120      UnswitchedSuccBB->removePredecessor(ParentBB,
2121                                          /*KeepOneInputPHIs*/ true);
2122      DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2123    } else {
2124      // Note that we actually want to remove the parent block as a predecessor
2125      // of *every* case successor. The case successor is either unswitched,
2126      // completely eliminating an edge from the parent to that successor, or it
2127      // is a duplicate edge to the retained successor as the retained successor
2128      // is always the default successor and as we'll replace this with a direct
2129      // branch we no longer need the duplicate entries in the PHI nodes.
2130      SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2131      assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2132             "Not retaining default successor!");
2133      for (auto &Case : NewSI->cases())
2134        Case.getCaseSuccessor()->removePredecessor(
2135            ParentBB,
2136            /*KeepOneInputPHIs*/ true);
2137
2138      // We need to use the set to populate domtree updates as even when there
2139      // are multiple cases pointing at the same successor we only want to
2140      // remove and insert one edge in the domtree.
2141      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2142        DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2143    }
2144
2145    // After MSSAU update, remove the cloned terminator instruction NewTI.
2146    ParentBB->getTerminator()->eraseFromParent();
2147
2148    // Create a new unconditional branch to the continuing block (as opposed to
2149    // the one cloned).
2150    BranchInst::Create(RetainedSuccBB, ParentBB);
2151  } else {
2152    assert(BI && "Only branches have partial unswitching.");
2153    assert(UnswitchedSuccBBs.size() == 1 &&
2154           "Only one possible unswitched block for a branch!");
2155    BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2156    // When doing a partial unswitch, we have to do a bit more work to build up
2157    // the branch in the split block.
2158    buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2159                                          *ClonedPH, *LoopPH);
2160    DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2161
2162    if (MSSAU) {
2163      DT.applyUpdates(DTUpdates);
2164      DTUpdates.clear();
2165
2166      // Perform MSSA cloning updates.
2167      for (auto &VMap : VMaps)
2168        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2169                                   /*IgnoreIncomingWithNoClones=*/true);
2170      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2171    }
2172  }
2173
2174  // Apply the updates accumulated above to get an up-to-date dominator tree.
2175  DT.applyUpdates(DTUpdates);
2176
2177  // Now that we have an accurate dominator tree, first delete the dead cloned
2178  // blocks so that we can accurately build any cloned loops. It is important to
2179  // not delete the blocks from the original loop yet because we still want to
2180  // reference the original loop to understand the cloned loop's structure.
2181  deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2182
2183  // Build the cloned loop structure itself. This may be substantially
2184  // different from the original structure due to the simplified CFG. This also
2185  // handles inserting all the cloned blocks into the correct loops.
2186  SmallVector<Loop *, 4> NonChildClonedLoops;
2187  for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2188    buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2189
2190  // Now that our cloned loops have been built, we can update the original loop.
2191  // First we delete the dead blocks from it and then we rebuild the loop
2192  // structure taking these deletions into account.
2193  deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2194
2195  if (MSSAU && VerifyMemorySSA)
2196    MSSAU->getMemorySSA()->verifyMemorySSA();
2197
2198  SmallVector<Loop *, 4> HoistedLoops;
2199  bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2200
2201  if (MSSAU && VerifyMemorySSA)
2202    MSSAU->getMemorySSA()->verifyMemorySSA();
2203
2204  // This transformation has a high risk of corrupting the dominator tree, and
2205  // the below steps to rebuild loop structures will result in hard to debug
2206  // errors in that case so verify that the dominator tree is sane first.
2207  // FIXME: Remove this when the bugs stop showing up and rely on existing
2208  // verification steps.
2209  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2210
2211  if (BI) {
2212    // If we unswitched a branch which collapses the condition to a known
2213    // constant we want to replace all the uses of the invariants within both
2214    // the original and cloned blocks. We do this here so that we can use the
2215    // now updated dominator tree to identify which side the users are on.
2216    assert(UnswitchedSuccBBs.size() == 1 &&
2217           "Only one possible unswitched block for a branch!");
2218    BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2219
2220    // When considering multiple partially-unswitched invariants
2221    // we cant just go replace them with constants in both branches.
2222    //
2223    // For 'AND' we infer that true branch ("continue") means true
2224    // for each invariant operand.
2225    // For 'OR' we can infer that false branch ("continue") means false
2226    // for each invariant operand.
2227    // So it happens that for multiple-partial case we dont replace
2228    // in the unswitched branch.
2229    bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2230
2231    ConstantInt *UnswitchedReplacement =
2232        Direction ? ConstantInt::getTrue(BI->getContext())
2233                  : ConstantInt::getFalse(BI->getContext());
2234    ConstantInt *ContinueReplacement =
2235        Direction ? ConstantInt::getFalse(BI->getContext())
2236                  : ConstantInt::getTrue(BI->getContext());
2237    for (Value *Invariant : Invariants)
2238      for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2239           UI != UE;) {
2240        // Grab the use and walk past it so we can clobber it in the use list.
2241        Use *U = &*UI++;
2242        Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2243        if (!UserI)
2244          continue;
2245
2246        // Replace it with the 'continue' side if in the main loop body, and the
2247        // unswitched if in the cloned blocks.
2248        if (DT.dominates(LoopPH, UserI->getParent()))
2249          U->set(ContinueReplacement);
2250        else if (ReplaceUnswitched &&
2251                 DT.dominates(ClonedPH, UserI->getParent()))
2252          U->set(UnswitchedReplacement);
2253      }
2254  }
2255
2256  // We can change which blocks are exit blocks of all the cloned sibling
2257  // loops, the current loop, and any parent loops which shared exit blocks
2258  // with the current loop. As a consequence, we need to re-form LCSSA for
2259  // them. But we shouldn't need to re-form LCSSA for any child loops.
2260  // FIXME: This could be made more efficient by tracking which exit blocks are
2261  // new, and focusing on them, but that isn't likely to be necessary.
2262  //
2263  // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2264  // loop nest and update every loop that could have had its exits changed. We
2265  // also need to cover any intervening loops. We add all of these loops to
2266  // a list and sort them by loop depth to achieve this without updating
2267  // unnecessary loops.
2268  auto UpdateLoop = [&](Loop &UpdateL) {
2269#ifndef NDEBUG
2270    UpdateL.verifyLoop();
2271    for (Loop *ChildL : UpdateL) {
2272      ChildL->verifyLoop();
2273      assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2274             "Perturbed a child loop's LCSSA form!");
2275    }
2276#endif
2277    // First build LCSSA for this loop so that we can preserve it when
2278    // forming dedicated exits. We don't want to perturb some other loop's
2279    // LCSSA while doing that CFG edit.
2280    formLCSSA(UpdateL, DT, &LI, SE);
2281
2282    // For loops reached by this loop's original exit blocks we may
2283    // introduced new, non-dedicated exits. At least try to re-form dedicated
2284    // exits for these loops. This may fail if they couldn't have dedicated
2285    // exits to start with.
2286    formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2287  };
2288
2289  // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2290  // and we can do it in any order as they don't nest relative to each other.
2291  //
2292  // Also check if any of the loops we have updated have become top-level loops
2293  // as that will necessitate widening the outer loop scope.
2294  for (Loop *UpdatedL :
2295       llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2296    UpdateLoop(*UpdatedL);
2297    if (!UpdatedL->getParentLoop())
2298      OuterExitL = nullptr;
2299  }
2300  if (IsStillLoop) {
2301    UpdateLoop(L);
2302    if (!L.getParentLoop())
2303      OuterExitL = nullptr;
2304  }
2305
2306  // If the original loop had exit blocks, walk up through the outer most loop
2307  // of those exit blocks to update LCSSA and form updated dedicated exits.
2308  if (OuterExitL != &L)
2309    for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2310         OuterL = OuterL->getParentLoop())
2311      UpdateLoop(*OuterL);
2312
2313#ifndef NDEBUG
2314  // Verify the entire loop structure to catch any incorrect updates before we
2315  // progress in the pass pipeline.
2316  LI.verify(DT);
2317#endif
2318
2319  // Now that we've unswitched something, make callbacks to report the changes.
2320  // For that we need to merge together the updated loops and the cloned loops
2321  // and check whether the original loop survived.
2322  SmallVector<Loop *, 4> SibLoops;
2323  for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2324    if (UpdatedL->getParentLoop() == ParentL)
2325      SibLoops.push_back(UpdatedL);
2326  UnswitchCB(IsStillLoop, SibLoops);
2327
2328  if (MSSAU && VerifyMemorySSA)
2329    MSSAU->getMemorySSA()->verifyMemorySSA();
2330
2331  if (BI)
2332    ++NumBranches;
2333  else
2334    ++NumSwitches;
2335}
2336
2337/// Recursively compute the cost of a dominator subtree based on the per-block
2338/// cost map provided.
2339///
2340/// The recursive computation is memozied into the provided DT-indexed cost map
2341/// to allow querying it for most nodes in the domtree without it becoming
2342/// quadratic.
2343static int
2344computeDomSubtreeCost(DomTreeNode &N,
2345                      const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2346                      SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2347  // Don't accumulate cost (or recurse through) blocks not in our block cost
2348  // map and thus not part of the duplication cost being considered.
2349  auto BBCostIt = BBCostMap.find(N.getBlock());
2350  if (BBCostIt == BBCostMap.end())
2351    return 0;
2352
2353  // Lookup this node to see if we already computed its cost.
2354  auto DTCostIt = DTCostMap.find(&N);
2355  if (DTCostIt != DTCostMap.end())
2356    return DTCostIt->second;
2357
2358  // If not, we have to compute it. We can't use insert above and update
2359  // because computing the cost may insert more things into the map.
2360  int Cost = std::accumulate(
2361      N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2362        return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2363      });
2364  bool Inserted = DTCostMap.insert({&N, Cost}).second;
2365  (void)Inserted;
2366  assert(Inserted && "Should not insert a node while visiting children!");
2367  return Cost;
2368}
2369
2370/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2371/// making the following replacement:
2372///
2373///   --code before guard--
2374///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2375///   --code after guard--
2376///
2377/// into
2378///
2379///   --code before guard--
2380///   br i1 %cond, label %guarded, label %deopt
2381///
2382/// guarded:
2383///   --code after guard--
2384///
2385/// deopt:
2386///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2387///   unreachable
2388///
2389/// It also makes all relevant DT and LI updates, so that all structures are in
2390/// valid state after this transform.
2391static BranchInst *
2392turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2393                    SmallVectorImpl<BasicBlock *> &ExitBlocks,
2394                    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2395  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2396  LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2397  BasicBlock *CheckBB = GI->getParent();
2398
2399  if (MSSAU && VerifyMemorySSA)
2400     MSSAU->getMemorySSA()->verifyMemorySSA();
2401
2402  // Remove all CheckBB's successors from DomTree. A block can be seen among
2403  // successors more than once, but for DomTree it should be added only once.
2404  SmallPtrSet<BasicBlock *, 4> Successors;
2405  for (auto *Succ : successors(CheckBB))
2406    if (Successors.insert(Succ).second)
2407      DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2408
2409  Instruction *DeoptBlockTerm =
2410      SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2411  BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2412  // SplitBlockAndInsertIfThen inserts control flow that branches to
2413  // DeoptBlockTerm if the condition is true.  We want the opposite.
2414  CheckBI->swapSuccessors();
2415
2416  BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2417  GuardedBlock->setName("guarded");
2418  CheckBI->getSuccessor(1)->setName("deopt");
2419  BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2420
2421  // We now have a new exit block.
2422  ExitBlocks.push_back(CheckBI->getSuccessor(1));
2423
2424  if (MSSAU)
2425    MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2426
2427  GI->moveBefore(DeoptBlockTerm);
2428  GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2429
2430  // Add new successors of CheckBB into DomTree.
2431  for (auto *Succ : successors(CheckBB))
2432    DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2433
2434  // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2435  // successors.
2436  for (auto *Succ : Successors)
2437    DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2438
2439  // Make proper changes to DT.
2440  DT.applyUpdates(DTUpdates);
2441  // Inform LI of a new loop block.
2442  L.addBasicBlockToLoop(GuardedBlock, LI);
2443
2444  if (MSSAU) {
2445    MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2446    MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2447    if (VerifyMemorySSA)
2448      MSSAU->getMemorySSA()->verifyMemorySSA();
2449  }
2450
2451  ++NumGuards;
2452  return CheckBI;
2453}
2454
2455/// Cost multiplier is a way to limit potentially exponential behavior
2456/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2457/// candidates available. Also accounting for the number of "sibling" loops with
2458/// the idea to account for previous unswitches that already happened on this
2459/// cluster of loops. There was an attempt to keep this formula simple,
2460/// just enough to limit the worst case behavior. Even if it is not that simple
2461/// now it is still not an attempt to provide a detailed heuristic size
2462/// prediction.
2463///
2464/// TODO: Make a proper accounting of "explosion" effect for all kinds of
2465/// unswitch candidates, making adequate predictions instead of wild guesses.
2466/// That requires knowing not just the number of "remaining" candidates but
2467/// also costs of unswitching for each of these candidates.
2468static int calculateUnswitchCostMultiplier(
2469    Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2470    ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2471        UnswitchCandidates) {
2472
2473  // Guards and other exiting conditions do not contribute to exponential
2474  // explosion as soon as they dominate the latch (otherwise there might be
2475  // another path to the latch remaining that does not allow to eliminate the
2476  // loop copy on unswitch).
2477  BasicBlock *Latch = L.getLoopLatch();
2478  BasicBlock *CondBlock = TI.getParent();
2479  if (DT.dominates(CondBlock, Latch) &&
2480      (isGuard(&TI) ||
2481       llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2482         return L.contains(SuccBB);
2483       }) <= 1)) {
2484    NumCostMultiplierSkipped++;
2485    return 1;
2486  }
2487
2488  auto *ParentL = L.getParentLoop();
2489  int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2490                               : std::distance(LI.begin(), LI.end()));
2491  // Count amount of clones that all the candidates might cause during
2492  // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2493  int UnswitchedClones = 0;
2494  for (auto Candidate : UnswitchCandidates) {
2495    Instruction *CI = Candidate.first;
2496    BasicBlock *CondBlock = CI->getParent();
2497    bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2498    if (isGuard(CI)) {
2499      if (!SkipExitingSuccessors)
2500        UnswitchedClones++;
2501      continue;
2502    }
2503    int NonExitingSuccessors = llvm::count_if(
2504        successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2505          return !SkipExitingSuccessors || L.contains(SuccBB);
2506        });
2507    UnswitchedClones += Log2_32(NonExitingSuccessors);
2508  }
2509
2510  // Ignore up to the "unscaled candidates" number of unswitch candidates
2511  // when calculating the power-of-two scaling of the cost. The main idea
2512  // with this control is to allow a small number of unswitches to happen
2513  // and rely more on siblings multiplier (see below) when the number
2514  // of candidates is small.
2515  unsigned ClonesPower =
2516      std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2517
2518  // Allowing top-level loops to spread a bit more than nested ones.
2519  int SiblingsMultiplier =
2520      std::max((ParentL ? SiblingsCount
2521                        : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2522               1);
2523  // Compute the cost multiplier in a way that won't overflow by saturating
2524  // at an upper bound.
2525  int CostMultiplier;
2526  if (ClonesPower > Log2_32(UnswitchThreshold) ||
2527      SiblingsMultiplier > UnswitchThreshold)
2528    CostMultiplier = UnswitchThreshold;
2529  else
2530    CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2531                              (int)UnswitchThreshold);
2532
2533  LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2534                    << " (siblings " << SiblingsMultiplier << " * clones "
2535                    << (1 << ClonesPower) << ")"
2536                    << " for unswitch candidate: " << TI << "\n");
2537  return CostMultiplier;
2538}
2539
2540static bool
2541unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2542                      AssumptionCache &AC, TargetTransformInfo &TTI,
2543                      function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2544                      ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2545  // Collect all invariant conditions within this loop (as opposed to an inner
2546  // loop which would be handled when visiting that inner loop).
2547  SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2548      UnswitchCandidates;
2549
2550  // Whether or not we should also collect guards in the loop.
2551  bool CollectGuards = false;
2552  if (UnswitchGuards) {
2553    auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2554        Intrinsic::getName(Intrinsic::experimental_guard));
2555    if (GuardDecl && !GuardDecl->use_empty())
2556      CollectGuards = true;
2557  }
2558
2559  for (auto *BB : L.blocks()) {
2560    if (LI.getLoopFor(BB) != &L)
2561      continue;
2562
2563    if (CollectGuards)
2564      for (auto &I : *BB)
2565        if (isGuard(&I)) {
2566          auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2567          // TODO: Support AND, OR conditions and partial unswitching.
2568          if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2569            UnswitchCandidates.push_back({&I, {Cond}});
2570        }
2571
2572    if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2573      // We can only consider fully loop-invariant switch conditions as we need
2574      // to completely eliminate the switch after unswitching.
2575      if (!isa<Constant>(SI->getCondition()) &&
2576          L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2577        UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2578      continue;
2579    }
2580
2581    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2582    if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2583        BI->getSuccessor(0) == BI->getSuccessor(1))
2584      continue;
2585
2586    if (L.isLoopInvariant(BI->getCondition())) {
2587      UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2588      continue;
2589    }
2590
2591    Instruction &CondI = *cast<Instruction>(BI->getCondition());
2592    if (CondI.getOpcode() != Instruction::And &&
2593      CondI.getOpcode() != Instruction::Or)
2594      continue;
2595
2596    TinyPtrVector<Value *> Invariants =
2597        collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2598    if (Invariants.empty())
2599      continue;
2600
2601    UnswitchCandidates.push_back({BI, std::move(Invariants)});
2602  }
2603
2604  // If we didn't find any candidates, we're done.
2605  if (UnswitchCandidates.empty())
2606    return false;
2607
2608  // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2609  // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2610  // irreducible control flow into reducible control flow and introduce new
2611  // loops "out of thin air". If we ever discover important use cases for doing
2612  // this, we can add support to loop unswitch, but it is a lot of complexity
2613  // for what seems little or no real world benefit.
2614  LoopBlocksRPO RPOT(&L);
2615  RPOT.perform(&LI);
2616  if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2617    return false;
2618
2619  SmallVector<BasicBlock *, 4> ExitBlocks;
2620  L.getUniqueExitBlocks(ExitBlocks);
2621
2622  // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2623  // don't know how to split those exit blocks.
2624  // FIXME: We should teach SplitBlock to handle this and remove this
2625  // restriction.
2626  for (auto *ExitBB : ExitBlocks)
2627    if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2628      dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2629      return false;
2630    }
2631
2632  LLVM_DEBUG(
2633      dbgs() << "Considering " << UnswitchCandidates.size()
2634             << " non-trivial loop invariant conditions for unswitching.\n");
2635
2636  // Given that unswitching these terminators will require duplicating parts of
2637  // the loop, so we need to be able to model that cost. Compute the ephemeral
2638  // values and set up a data structure to hold per-BB costs. We cache each
2639  // block's cost so that we don't recompute this when considering different
2640  // subsets of the loop for duplication during unswitching.
2641  SmallPtrSet<const Value *, 4> EphValues;
2642  CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2643  SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2644
2645  // Compute the cost of each block, as well as the total loop cost. Also, bail
2646  // out if we see instructions which are incompatible with loop unswitching
2647  // (convergent, noduplicate, or cross-basic-block tokens).
2648  // FIXME: We might be able to safely handle some of these in non-duplicated
2649  // regions.
2650  int LoopCost = 0;
2651  for (auto *BB : L.blocks()) {
2652    int Cost = 0;
2653    for (auto &I : *BB) {
2654      if (EphValues.count(&I))
2655        continue;
2656
2657      if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2658        return false;
2659      if (auto CS = CallSite(&I))
2660        if (CS.isConvergent() || CS.cannotDuplicate())
2661          return false;
2662
2663      Cost += TTI.getUserCost(&I);
2664    }
2665    assert(Cost >= 0 && "Must not have negative costs!");
2666    LoopCost += Cost;
2667    assert(LoopCost >= 0 && "Must not have negative loop costs!");
2668    BBCostMap[BB] = Cost;
2669  }
2670  LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2671
2672  // Now we find the best candidate by searching for the one with the following
2673  // properties in order:
2674  //
2675  // 1) An unswitching cost below the threshold
2676  // 2) The smallest number of duplicated unswitch candidates (to avoid
2677  //    creating redundant subsequent unswitching)
2678  // 3) The smallest cost after unswitching.
2679  //
2680  // We prioritize reducing fanout of unswitch candidates provided the cost
2681  // remains below the threshold because this has a multiplicative effect.
2682  //
2683  // This requires memoizing each dominator subtree to avoid redundant work.
2684  //
2685  // FIXME: Need to actually do the number of candidates part above.
2686  SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2687  // Given a terminator which might be unswitched, computes the non-duplicated
2688  // cost for that terminator.
2689  auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2690    BasicBlock &BB = *TI.getParent();
2691    SmallPtrSet<BasicBlock *, 4> Visited;
2692
2693    int Cost = LoopCost;
2694    for (BasicBlock *SuccBB : successors(&BB)) {
2695      // Don't count successors more than once.
2696      if (!Visited.insert(SuccBB).second)
2697        continue;
2698
2699      // If this is a partial unswitch candidate, then it must be a conditional
2700      // branch with a condition of either `or` or `and`. In that case, one of
2701      // the successors is necessarily duplicated, so don't even try to remove
2702      // its cost.
2703      if (!FullUnswitch) {
2704        auto &BI = cast<BranchInst>(TI);
2705        if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2706            Instruction::And) {
2707          if (SuccBB == BI.getSuccessor(1))
2708            continue;
2709        } else {
2710          assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2711                     Instruction::Or &&
2712                 "Only `and` and `or` conditions can result in a partial "
2713                 "unswitch!");
2714          if (SuccBB == BI.getSuccessor(0))
2715            continue;
2716        }
2717      }
2718
2719      // This successor's domtree will not need to be duplicated after
2720      // unswitching if the edge to the successor dominates it (and thus the
2721      // entire tree). This essentially means there is no other path into this
2722      // subtree and so it will end up live in only one clone of the loop.
2723      if (SuccBB->getUniquePredecessor() ||
2724          llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2725            return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2726          })) {
2727        Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2728        assert(Cost >= 0 &&
2729               "Non-duplicated cost should never exceed total loop cost!");
2730      }
2731    }
2732
2733    // Now scale the cost by the number of unique successors minus one. We
2734    // subtract one because there is already at least one copy of the entire
2735    // loop. This is computing the new cost of unswitching a condition.
2736    // Note that guards always have 2 unique successors that are implicit and
2737    // will be materialized if we decide to unswitch it.
2738    int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2739    assert(SuccessorsCount > 1 &&
2740           "Cannot unswitch a condition without multiple distinct successors!");
2741    return Cost * (SuccessorsCount - 1);
2742  };
2743  Instruction *BestUnswitchTI = nullptr;
2744  int BestUnswitchCost = 0;
2745  ArrayRef<Value *> BestUnswitchInvariants;
2746  for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2747    Instruction &TI = *TerminatorAndInvariants.first;
2748    ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2749    BranchInst *BI = dyn_cast<BranchInst>(&TI);
2750    int CandidateCost = ComputeUnswitchedCost(
2751        TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2752                                     Invariants[0] == BI->getCondition()));
2753    // Calculate cost multiplier which is a tool to limit potentially
2754    // exponential behavior of loop-unswitch.
2755    if (EnableUnswitchCostMultiplier) {
2756      int CostMultiplier =
2757          calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2758      assert(
2759          (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2760          "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2761      CandidateCost *= CostMultiplier;
2762      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2763                        << " (multiplier: " << CostMultiplier << ")"
2764                        << " for unswitch candidate: " << TI << "\n");
2765    } else {
2766      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2767                        << " for unswitch candidate: " << TI << "\n");
2768    }
2769
2770    if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2771      BestUnswitchTI = &TI;
2772      BestUnswitchCost = CandidateCost;
2773      BestUnswitchInvariants = Invariants;
2774    }
2775  }
2776  assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2777
2778  if (BestUnswitchCost >= UnswitchThreshold) {
2779    LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2780                      << BestUnswitchCost << "\n");
2781    return false;
2782  }
2783
2784  // If the best candidate is a guard, turn it into a branch.
2785  if (isGuard(BestUnswitchTI))
2786    BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2787                                         ExitBlocks, DT, LI, MSSAU);
2788
2789  LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2790                    << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2791                    << "\n");
2792  unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2793                               ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2794  return true;
2795}
2796
2797/// Unswitch control flow predicated on loop invariant conditions.
2798///
2799/// This first hoists all branches or switches which are trivial (IE, do not
2800/// require duplicating any part of the loop) out of the loop body. It then
2801/// looks at other loop invariant control flows and tries to unswitch those as
2802/// well by cloning the loop if the result is small enough.
2803///
2804/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2805/// updated based on the unswitch.
2806/// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2807///
2808/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2809/// true, we will attempt to do non-trivial unswitching as well as trivial
2810/// unswitching.
2811///
2812/// The `UnswitchCB` callback provided will be run after unswitching is
2813/// complete, with the first parameter set to `true` if the provided loop
2814/// remains a loop, and a list of new sibling loops created.
2815///
2816/// If `SE` is non-null, we will update that analysis based on the unswitching
2817/// done.
2818static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2819                         AssumptionCache &AC, TargetTransformInfo &TTI,
2820                         bool NonTrivial,
2821                         function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2822                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2823  assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2824         "Loops must be in LCSSA form before unswitching.");
2825  bool Changed = false;
2826
2827  // Must be in loop simplified form: we need a preheader and dedicated exits.
2828  if (!L.isLoopSimplifyForm())
2829    return false;
2830
2831  // Try trivial unswitch first before loop over other basic blocks in the loop.
2832  if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2833    // If we unswitched successfully we will want to clean up the loop before
2834    // processing it further so just mark it as unswitched and return.
2835    UnswitchCB(/*CurrentLoopValid*/ true, {});
2836    return true;
2837  }
2838
2839  // If we're not doing non-trivial unswitching, we're done. We both accept
2840  // a parameter but also check a local flag that can be used for testing
2841  // a debugging.
2842  if (!NonTrivial && !EnableNonTrivialUnswitch)
2843    return false;
2844
2845  // For non-trivial unswitching, because it often creates new loops, we rely on
2846  // the pass manager to iterate on the loops rather than trying to immediately
2847  // reach a fixed point. There is no substantial advantage to iterating
2848  // internally, and if any of the new loops are simplified enough to contain
2849  // trivial unswitching we want to prefer those.
2850
2851  // Try to unswitch the best invariant condition. We prefer this full unswitch to
2852  // a partial unswitch when possible below the threshold.
2853  if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2854    return true;
2855
2856  // No other opportunities to unswitch.
2857  return Changed;
2858}
2859
2860PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2861                                              LoopStandardAnalysisResults &AR,
2862                                              LPMUpdater &U) {
2863  Function &F = *L.getHeader()->getParent();
2864  (void)F;
2865
2866  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2867                    << "\n");
2868
2869  // Save the current loop name in a variable so that we can report it even
2870  // after it has been deleted.
2871  std::string LoopName = L.getName();
2872
2873  auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2874                                        ArrayRef<Loop *> NewLoops) {
2875    // If we did a non-trivial unswitch, we have added new (cloned) loops.
2876    if (!NewLoops.empty())
2877      U.addSiblingLoops(NewLoops);
2878
2879    // If the current loop remains valid, we should revisit it to catch any
2880    // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2881    if (CurrentLoopValid)
2882      U.revisitCurrentLoop();
2883    else
2884      U.markLoopAsDeleted(L, LoopName);
2885  };
2886
2887  Optional<MemorySSAUpdater> MSSAU;
2888  if (AR.MSSA) {
2889    MSSAU = MemorySSAUpdater(AR.MSSA);
2890    if (VerifyMemorySSA)
2891      AR.MSSA->verifyMemorySSA();
2892  }
2893  if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2894                    &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2895    return PreservedAnalyses::all();
2896
2897  if (AR.MSSA && VerifyMemorySSA)
2898    AR.MSSA->verifyMemorySSA();
2899
2900  // Historically this pass has had issues with the dominator tree so verify it
2901  // in asserts builds.
2902  assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2903
2904  auto PA = getLoopPassPreservedAnalyses();
2905  if (AR.MSSA)
2906    PA.preserve<MemorySSAAnalysis>();
2907  return PA;
2908}
2909
2910namespace {
2911
2912class SimpleLoopUnswitchLegacyPass : public LoopPass {
2913  bool NonTrivial;
2914
2915public:
2916  static char ID; // Pass ID, replacement for typeid
2917
2918  explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2919      : LoopPass(ID), NonTrivial(NonTrivial) {
2920    initializeSimpleLoopUnswitchLegacyPassPass(
2921        *PassRegistry::getPassRegistry());
2922  }
2923
2924  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2925
2926  void getAnalysisUsage(AnalysisUsage &AU) const override {
2927    AU.addRequired<AssumptionCacheTracker>();
2928    AU.addRequired<TargetTransformInfoWrapperPass>();
2929    if (EnableMSSALoopDependency) {
2930      AU.addRequired<MemorySSAWrapperPass>();
2931      AU.addPreserved<MemorySSAWrapperPass>();
2932    }
2933    getLoopAnalysisUsage(AU);
2934  }
2935};
2936
2937} // end anonymous namespace
2938
2939bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2940  if (skipLoop(L))
2941    return false;
2942
2943  Function &F = *L->getHeader()->getParent();
2944
2945  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2946                    << "\n");
2947
2948  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2949  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2950  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2951  auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2952  MemorySSA *MSSA = nullptr;
2953  Optional<MemorySSAUpdater> MSSAU;
2954  if (EnableMSSALoopDependency) {
2955    MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2956    MSSAU = MemorySSAUpdater(MSSA);
2957  }
2958
2959  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2960  auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2961
2962  auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2963                               ArrayRef<Loop *> NewLoops) {
2964    // If we did a non-trivial unswitch, we have added new (cloned) loops.
2965    for (auto *NewL : NewLoops)
2966      LPM.addLoop(*NewL);
2967
2968    // If the current loop remains valid, re-add it to the queue. This is
2969    // a little wasteful as we'll finish processing the current loop as well,
2970    // but it is the best we can do in the old PM.
2971    if (CurrentLoopValid)
2972      LPM.addLoop(*L);
2973    else
2974      LPM.markLoopAsDeleted(*L);
2975  };
2976
2977  if (MSSA && VerifyMemorySSA)
2978    MSSA->verifyMemorySSA();
2979
2980  bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2981                              MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2982
2983  if (MSSA && VerifyMemorySSA)
2984    MSSA->verifyMemorySSA();
2985
2986  // If anything was unswitched, also clear any cached information about this
2987  // loop.
2988  LPM.deleteSimpleAnalysisLoop(L);
2989
2990  // Historically this pass has had issues with the dominator tree so verify it
2991  // in asserts builds.
2992  assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2993
2994  return Changed;
2995}
2996
2997char SimpleLoopUnswitchLegacyPass::ID = 0;
2998INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2999                      "Simple unswitch loops", false, false)
3000INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3001INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3002INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3003INITIALIZE_PASS_DEPENDENCY(LoopPass)
3004INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3005INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3006INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3007                    "Simple unswitch loops", false, false)
3008
3009Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3010  return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3011}
3012