1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs global value numbering to eliminate fully redundant
10// instructions.  It also performs simple dead load elimination.
11//
12// Note that this pass does the value numbering itself; it does not use the
13// ValueNumbering analysis passes.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Scalar/GVN.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DepthFirstIterator.h"
20#include "llvm/ADT/Hashing.h"
21#include "llvm/ADT/MapVector.h"
22#include "llvm/ADT/PointerIntPair.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Analysis/AliasAnalysis.h"
30#include "llvm/Analysis/AssumptionCache.h"
31#include "llvm/Analysis/CFG.h"
32#include "llvm/Analysis/DomTreeUpdater.h"
33#include "llvm/Analysis/GlobalsModRef.h"
34#include "llvm/Analysis/InstructionSimplify.h"
35#include "llvm/Analysis/LoopInfo.h"
36#include "llvm/Analysis/MemoryBuiltins.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Analysis/OptimizationRemarkEmitter.h"
39#include "llvm/Analysis/PHITransAddr.h"
40#include "llvm/Analysis/TargetLibraryInfo.h"
41#include "llvm/Analysis/ValueTracking.h"
42#include "llvm/Config/llvm-config.h"
43#include "llvm/IR/Attributes.h"
44#include "llvm/IR/BasicBlock.h"
45#include "llvm/IR/CallSite.h"
46#include "llvm/IR/Constant.h"
47#include "llvm/IR/Constants.h"
48#include "llvm/IR/DataLayout.h"
49#include "llvm/IR/DebugInfoMetadata.h"
50#include "llvm/IR/DebugLoc.h"
51#include "llvm/IR/Dominators.h"
52#include "llvm/IR/Function.h"
53#include "llvm/IR/InstrTypes.h"
54#include "llvm/IR/Instruction.h"
55#include "llvm/IR/Instructions.h"
56#include "llvm/IR/IntrinsicInst.h"
57#include "llvm/IR/Intrinsics.h"
58#include "llvm/IR/LLVMContext.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Module.h"
61#include "llvm/IR/Operator.h"
62#include "llvm/IR/PassManager.h"
63#include "llvm/IR/PatternMatch.h"
64#include "llvm/IR/Type.h"
65#include "llvm/IR/Use.h"
66#include "llvm/IR/Value.h"
67#include "llvm/InitializePasses.h"
68#include "llvm/Pass.h"
69#include "llvm/Support/Casting.h"
70#include "llvm/Support/CommandLine.h"
71#include "llvm/Support/Compiler.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/raw_ostream.h"
74#include "llvm/Transforms/Utils.h"
75#include "llvm/Transforms/Utils/BasicBlockUtils.h"
76#include "llvm/Transforms/Utils/Local.h"
77#include "llvm/Transforms/Utils/SSAUpdater.h"
78#include "llvm/Transforms/Utils/VNCoercion.h"
79#include <algorithm>
80#include <cassert>
81#include <cstdint>
82#include <utility>
83#include <vector>
84
85using namespace llvm;
86using namespace llvm::gvn;
87using namespace llvm::VNCoercion;
88using namespace PatternMatch;
89
90#define DEBUG_TYPE "gvn"
91
92STATISTIC(NumGVNInstr,  "Number of instructions deleted");
93STATISTIC(NumGVNLoad,   "Number of loads deleted");
94STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
95STATISTIC(NumGVNBlocks, "Number of blocks merged");
96STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
97STATISTIC(NumGVNEqProp, "Number of equalities propagated");
98STATISTIC(NumPRELoad,   "Number of loads PRE'd");
99
100static cl::opt<bool> EnablePRE("enable-pre",
101                               cl::init(true), cl::Hidden);
102static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
103static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
104
105// Maximum allowed recursion depth.
106static cl::opt<uint32_t>
107MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
108                cl::desc("Max recurse depth in GVN (default = 1000)"));
109
110static cl::opt<uint32_t> MaxNumDeps(
111    "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
112    cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
113
114struct llvm::GVN::Expression {
115  uint32_t opcode;
116  Type *type = nullptr;
117  bool commutative = false;
118  SmallVector<uint32_t, 4> varargs;
119
120  Expression(uint32_t o = ~2U) : opcode(o) {}
121
122  bool operator==(const Expression &other) const {
123    if (opcode != other.opcode)
124      return false;
125    if (opcode == ~0U || opcode == ~1U)
126      return true;
127    if (type != other.type)
128      return false;
129    if (varargs != other.varargs)
130      return false;
131    return true;
132  }
133
134  friend hash_code hash_value(const Expression &Value) {
135    return hash_combine(
136        Value.opcode, Value.type,
137        hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
138  }
139};
140
141namespace llvm {
142
143template <> struct DenseMapInfo<GVN::Expression> {
144  static inline GVN::Expression getEmptyKey() { return ~0U; }
145  static inline GVN::Expression getTombstoneKey() { return ~1U; }
146
147  static unsigned getHashValue(const GVN::Expression &e) {
148    using llvm::hash_value;
149
150    return static_cast<unsigned>(hash_value(e));
151  }
152
153  static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
154    return LHS == RHS;
155  }
156};
157
158} // end namespace llvm
159
160/// Represents a particular available value that we know how to materialize.
161/// Materialization of an AvailableValue never fails.  An AvailableValue is
162/// implicitly associated with a rematerialization point which is the
163/// location of the instruction from which it was formed.
164struct llvm::gvn::AvailableValue {
165  enum ValType {
166    SimpleVal, // A simple offsetted value that is accessed.
167    LoadVal,   // A value produced by a load.
168    MemIntrin, // A memory intrinsic which is loaded from.
169    UndefVal   // A UndefValue representing a value from dead block (which
170               // is not yet physically removed from the CFG).
171  };
172
173  /// V - The value that is live out of the block.
174  PointerIntPair<Value *, 2, ValType> Val;
175
176  /// Offset - The byte offset in Val that is interesting for the load query.
177  unsigned Offset = 0;
178
179  static AvailableValue get(Value *V, unsigned Offset = 0) {
180    AvailableValue Res;
181    Res.Val.setPointer(V);
182    Res.Val.setInt(SimpleVal);
183    Res.Offset = Offset;
184    return Res;
185  }
186
187  static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
188    AvailableValue Res;
189    Res.Val.setPointer(MI);
190    Res.Val.setInt(MemIntrin);
191    Res.Offset = Offset;
192    return Res;
193  }
194
195  static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
196    AvailableValue Res;
197    Res.Val.setPointer(LI);
198    Res.Val.setInt(LoadVal);
199    Res.Offset = Offset;
200    return Res;
201  }
202
203  static AvailableValue getUndef() {
204    AvailableValue Res;
205    Res.Val.setPointer(nullptr);
206    Res.Val.setInt(UndefVal);
207    Res.Offset = 0;
208    return Res;
209  }
210
211  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
212  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
213  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
214  bool isUndefValue() const { return Val.getInt() == UndefVal; }
215
216  Value *getSimpleValue() const {
217    assert(isSimpleValue() && "Wrong accessor");
218    return Val.getPointer();
219  }
220
221  LoadInst *getCoercedLoadValue() const {
222    assert(isCoercedLoadValue() && "Wrong accessor");
223    return cast<LoadInst>(Val.getPointer());
224  }
225
226  MemIntrinsic *getMemIntrinValue() const {
227    assert(isMemIntrinValue() && "Wrong accessor");
228    return cast<MemIntrinsic>(Val.getPointer());
229  }
230
231  /// Emit code at the specified insertion point to adjust the value defined
232  /// here to the specified type. This handles various coercion cases.
233  Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
234                                  GVN &gvn) const;
235};
236
237/// Represents an AvailableValue which can be rematerialized at the end of
238/// the associated BasicBlock.
239struct llvm::gvn::AvailableValueInBlock {
240  /// BB - The basic block in question.
241  BasicBlock *BB = nullptr;
242
243  /// AV - The actual available value
244  AvailableValue AV;
245
246  static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
247    AvailableValueInBlock Res;
248    Res.BB = BB;
249    Res.AV = std::move(AV);
250    return Res;
251  }
252
253  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
254                                   unsigned Offset = 0) {
255    return get(BB, AvailableValue::get(V, Offset));
256  }
257
258  static AvailableValueInBlock getUndef(BasicBlock *BB) {
259    return get(BB, AvailableValue::getUndef());
260  }
261
262  /// Emit code at the end of this block to adjust the value defined here to
263  /// the specified type. This handles various coercion cases.
264  Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
265    return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
266  }
267};
268
269//===----------------------------------------------------------------------===//
270//                     ValueTable Internal Functions
271//===----------------------------------------------------------------------===//
272
273GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
274  Expression e;
275  e.type = I->getType();
276  e.opcode = I->getOpcode();
277  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
278       OI != OE; ++OI)
279    e.varargs.push_back(lookupOrAdd(*OI));
280  if (I->isCommutative()) {
281    // Ensure that commutative instructions that only differ by a permutation
282    // of their operands get the same value number by sorting the operand value
283    // numbers.  Since all commutative instructions have two operands it is more
284    // efficient to sort by hand rather than using, say, std::sort.
285    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
286    if (e.varargs[0] > e.varargs[1])
287      std::swap(e.varargs[0], e.varargs[1]);
288    e.commutative = true;
289  }
290
291  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
292    // Sort the operand value numbers so x<y and y>x get the same value number.
293    CmpInst::Predicate Predicate = C->getPredicate();
294    if (e.varargs[0] > e.varargs[1]) {
295      std::swap(e.varargs[0], e.varargs[1]);
296      Predicate = CmpInst::getSwappedPredicate(Predicate);
297    }
298    e.opcode = (C->getOpcode() << 8) | Predicate;
299    e.commutative = true;
300  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
301    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
302         II != IE; ++II)
303      e.varargs.push_back(*II);
304  }
305
306  return e;
307}
308
309GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
310                                               CmpInst::Predicate Predicate,
311                                               Value *LHS, Value *RHS) {
312  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
313         "Not a comparison!");
314  Expression e;
315  e.type = CmpInst::makeCmpResultType(LHS->getType());
316  e.varargs.push_back(lookupOrAdd(LHS));
317  e.varargs.push_back(lookupOrAdd(RHS));
318
319  // Sort the operand value numbers so x<y and y>x get the same value number.
320  if (e.varargs[0] > e.varargs[1]) {
321    std::swap(e.varargs[0], e.varargs[1]);
322    Predicate = CmpInst::getSwappedPredicate(Predicate);
323  }
324  e.opcode = (Opcode << 8) | Predicate;
325  e.commutative = true;
326  return e;
327}
328
329GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
330  assert(EI && "Not an ExtractValueInst?");
331  Expression e;
332  e.type = EI->getType();
333  e.opcode = 0;
334
335  WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
336  if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
337    // EI is an extract from one of our with.overflow intrinsics. Synthesize
338    // a semantically equivalent expression instead of an extract value
339    // expression.
340    e.opcode = WO->getBinaryOp();
341    e.varargs.push_back(lookupOrAdd(WO->getLHS()));
342    e.varargs.push_back(lookupOrAdd(WO->getRHS()));
343    return e;
344  }
345
346  // Not a recognised intrinsic. Fall back to producing an extract value
347  // expression.
348  e.opcode = EI->getOpcode();
349  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
350       OI != OE; ++OI)
351    e.varargs.push_back(lookupOrAdd(*OI));
352
353  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
354         II != IE; ++II)
355    e.varargs.push_back(*II);
356
357  return e;
358}
359
360//===----------------------------------------------------------------------===//
361//                     ValueTable External Functions
362//===----------------------------------------------------------------------===//
363
364GVN::ValueTable::ValueTable() = default;
365GVN::ValueTable::ValueTable(const ValueTable &) = default;
366GVN::ValueTable::ValueTable(ValueTable &&) = default;
367GVN::ValueTable::~ValueTable() = default;
368GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default;
369
370/// add - Insert a value into the table with a specified value number.
371void GVN::ValueTable::add(Value *V, uint32_t num) {
372  valueNumbering.insert(std::make_pair(V, num));
373  if (PHINode *PN = dyn_cast<PHINode>(V))
374    NumberingPhi[num] = PN;
375}
376
377uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
378  if (AA->doesNotAccessMemory(C)) {
379    Expression exp = createExpr(C);
380    uint32_t e = assignExpNewValueNum(exp).first;
381    valueNumbering[C] = e;
382    return e;
383  } else if (MD && AA->onlyReadsMemory(C)) {
384    Expression exp = createExpr(C);
385    auto ValNum = assignExpNewValueNum(exp);
386    if (ValNum.second) {
387      valueNumbering[C] = ValNum.first;
388      return ValNum.first;
389    }
390
391    MemDepResult local_dep = MD->getDependency(C);
392
393    if (!local_dep.isDef() && !local_dep.isNonLocal()) {
394      valueNumbering[C] =  nextValueNumber;
395      return nextValueNumber++;
396    }
397
398    if (local_dep.isDef()) {
399      CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
400
401      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
402        valueNumbering[C] = nextValueNumber;
403        return nextValueNumber++;
404      }
405
406      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
407        uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
408        uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
409        if (c_vn != cd_vn) {
410          valueNumbering[C] = nextValueNumber;
411          return nextValueNumber++;
412        }
413      }
414
415      uint32_t v = lookupOrAdd(local_cdep);
416      valueNumbering[C] = v;
417      return v;
418    }
419
420    // Non-local case.
421    const MemoryDependenceResults::NonLocalDepInfo &deps =
422        MD->getNonLocalCallDependency(C);
423    // FIXME: Move the checking logic to MemDep!
424    CallInst* cdep = nullptr;
425
426    // Check to see if we have a single dominating call instruction that is
427    // identical to C.
428    for (unsigned i = 0, e = deps.size(); i != e; ++i) {
429      const NonLocalDepEntry *I = &deps[i];
430      if (I->getResult().isNonLocal())
431        continue;
432
433      // We don't handle non-definitions.  If we already have a call, reject
434      // instruction dependencies.
435      if (!I->getResult().isDef() || cdep != nullptr) {
436        cdep = nullptr;
437        break;
438      }
439
440      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
441      // FIXME: All duplicated with non-local case.
442      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
443        cdep = NonLocalDepCall;
444        continue;
445      }
446
447      cdep = nullptr;
448      break;
449    }
450
451    if (!cdep) {
452      valueNumbering[C] = nextValueNumber;
453      return nextValueNumber++;
454    }
455
456    if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
457      valueNumbering[C] = nextValueNumber;
458      return nextValueNumber++;
459    }
460    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
461      uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
462      uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
463      if (c_vn != cd_vn) {
464        valueNumbering[C] = nextValueNumber;
465        return nextValueNumber++;
466      }
467    }
468
469    uint32_t v = lookupOrAdd(cdep);
470    valueNumbering[C] = v;
471    return v;
472  } else {
473    valueNumbering[C] = nextValueNumber;
474    return nextValueNumber++;
475  }
476}
477
478/// Returns true if a value number exists for the specified value.
479bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
480
481/// lookup_or_add - Returns the value number for the specified value, assigning
482/// it a new number if it did not have one before.
483uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
484  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
485  if (VI != valueNumbering.end())
486    return VI->second;
487
488  if (!isa<Instruction>(V)) {
489    valueNumbering[V] = nextValueNumber;
490    return nextValueNumber++;
491  }
492
493  Instruction* I = cast<Instruction>(V);
494  Expression exp;
495  switch (I->getOpcode()) {
496    case Instruction::Call:
497      return lookupOrAddCall(cast<CallInst>(I));
498    case Instruction::FNeg:
499    case Instruction::Add:
500    case Instruction::FAdd:
501    case Instruction::Sub:
502    case Instruction::FSub:
503    case Instruction::Mul:
504    case Instruction::FMul:
505    case Instruction::UDiv:
506    case Instruction::SDiv:
507    case Instruction::FDiv:
508    case Instruction::URem:
509    case Instruction::SRem:
510    case Instruction::FRem:
511    case Instruction::Shl:
512    case Instruction::LShr:
513    case Instruction::AShr:
514    case Instruction::And:
515    case Instruction::Or:
516    case Instruction::Xor:
517    case Instruction::ICmp:
518    case Instruction::FCmp:
519    case Instruction::Trunc:
520    case Instruction::ZExt:
521    case Instruction::SExt:
522    case Instruction::FPToUI:
523    case Instruction::FPToSI:
524    case Instruction::UIToFP:
525    case Instruction::SIToFP:
526    case Instruction::FPTrunc:
527    case Instruction::FPExt:
528    case Instruction::PtrToInt:
529    case Instruction::IntToPtr:
530    case Instruction::AddrSpaceCast:
531    case Instruction::BitCast:
532    case Instruction::Select:
533    case Instruction::ExtractElement:
534    case Instruction::InsertElement:
535    case Instruction::ShuffleVector:
536    case Instruction::InsertValue:
537    case Instruction::GetElementPtr:
538      exp = createExpr(I);
539      break;
540    case Instruction::ExtractValue:
541      exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
542      break;
543    case Instruction::PHI:
544      valueNumbering[V] = nextValueNumber;
545      NumberingPhi[nextValueNumber] = cast<PHINode>(V);
546      return nextValueNumber++;
547    default:
548      valueNumbering[V] = nextValueNumber;
549      return nextValueNumber++;
550  }
551
552  uint32_t e = assignExpNewValueNum(exp).first;
553  valueNumbering[V] = e;
554  return e;
555}
556
557/// Returns the value number of the specified value. Fails if
558/// the value has not yet been numbered.
559uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
560  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
561  if (Verify) {
562    assert(VI != valueNumbering.end() && "Value not numbered?");
563    return VI->second;
564  }
565  return (VI != valueNumbering.end()) ? VI->second : 0;
566}
567
568/// Returns the value number of the given comparison,
569/// assigning it a new number if it did not have one before.  Useful when
570/// we deduced the result of a comparison, but don't immediately have an
571/// instruction realizing that comparison to hand.
572uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
573                                         CmpInst::Predicate Predicate,
574                                         Value *LHS, Value *RHS) {
575  Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
576  return assignExpNewValueNum(exp).first;
577}
578
579/// Remove all entries from the ValueTable.
580void GVN::ValueTable::clear() {
581  valueNumbering.clear();
582  expressionNumbering.clear();
583  NumberingPhi.clear();
584  PhiTranslateTable.clear();
585  nextValueNumber = 1;
586  Expressions.clear();
587  ExprIdx.clear();
588  nextExprNumber = 0;
589}
590
591/// Remove a value from the value numbering.
592void GVN::ValueTable::erase(Value *V) {
593  uint32_t Num = valueNumbering.lookup(V);
594  valueNumbering.erase(V);
595  // If V is PHINode, V <--> value number is an one-to-one mapping.
596  if (isa<PHINode>(V))
597    NumberingPhi.erase(Num);
598}
599
600/// verifyRemoved - Verify that the value is removed from all internal data
601/// structures.
602void GVN::ValueTable::verifyRemoved(const Value *V) const {
603  for (DenseMap<Value*, uint32_t>::const_iterator
604         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
605    assert(I->first != V && "Inst still occurs in value numbering map!");
606  }
607}
608
609//===----------------------------------------------------------------------===//
610//                                GVN Pass
611//===----------------------------------------------------------------------===//
612
613PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
614  // FIXME: The order of evaluation of these 'getResult' calls is very
615  // significant! Re-ordering these variables will cause GVN when run alone to
616  // be less effective! We should fix memdep and basic-aa to not exhibit this
617  // behavior, but until then don't change the order here.
618  auto &AC = AM.getResult<AssumptionAnalysis>(F);
619  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
620  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
621  auto &AA = AM.getResult<AAManager>(F);
622  auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
623  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
624  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
625  bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
626  if (!Changed)
627    return PreservedAnalyses::all();
628  PreservedAnalyses PA;
629  PA.preserve<DominatorTreeAnalysis>();
630  PA.preserve<GlobalsAA>();
631  PA.preserve<TargetLibraryAnalysis>();
632  if (LI)
633    PA.preserve<LoopAnalysis>();
634  return PA;
635}
636
637#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
638LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
639  errs() << "{\n";
640  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
641       E = d.end(); I != E; ++I) {
642      errs() << I->first << "\n";
643      I->second->dump();
644  }
645  errs() << "}\n";
646}
647#endif
648
649/// Return true if we can prove that the value
650/// we're analyzing is fully available in the specified block.  As we go, keep
651/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
652/// map is actually a tri-state map with the following values:
653///   0) we know the block *is not* fully available.
654///   1) we know the block *is* fully available.
655///   2) we do not know whether the block is fully available or not, but we are
656///      currently speculating that it will be.
657///   3) we are speculating for this block and have used that to speculate for
658///      other blocks.
659static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
660                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
661                            uint32_t RecurseDepth) {
662  if (RecurseDepth > MaxRecurseDepth)
663    return false;
664
665  // Optimistically assume that the block is fully available and check to see
666  // if we already know about this block in one lookup.
667  std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
668    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
669
670  // If the entry already existed for this block, return the precomputed value.
671  if (!IV.second) {
672    // If this is a speculative "available" value, mark it as being used for
673    // speculation of other blocks.
674    if (IV.first->second == 2)
675      IV.first->second = 3;
676    return IV.first->second != 0;
677  }
678
679  // Otherwise, see if it is fully available in all predecessors.
680  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
681
682  // If this block has no predecessors, it isn't live-in here.
683  if (PI == PE)
684    goto SpeculationFailure;
685
686  for (; PI != PE; ++PI)
687    // If the value isn't fully available in one of our predecessors, then it
688    // isn't fully available in this block either.  Undo our previous
689    // optimistic assumption and bail out.
690    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
691      goto SpeculationFailure;
692
693  return true;
694
695// If we get here, we found out that this is not, after
696// all, a fully-available block.  We have a problem if we speculated on this and
697// used the speculation to mark other blocks as available.
698SpeculationFailure:
699  char &BBVal = FullyAvailableBlocks[BB];
700
701  // If we didn't speculate on this, just return with it set to false.
702  if (BBVal == 2) {
703    BBVal = 0;
704    return false;
705  }
706
707  // If we did speculate on this value, we could have blocks set to 1 that are
708  // incorrect.  Walk the (transitive) successors of this block and mark them as
709  // 0 if set to one.
710  SmallVector<BasicBlock*, 32> BBWorklist;
711  BBWorklist.push_back(BB);
712
713  do {
714    BasicBlock *Entry = BBWorklist.pop_back_val();
715    // Note that this sets blocks to 0 (unavailable) if they happen to not
716    // already be in FullyAvailableBlocks.  This is safe.
717    char &EntryVal = FullyAvailableBlocks[Entry];
718    if (EntryVal == 0) continue;  // Already unavailable.
719
720    // Mark as unavailable.
721    EntryVal = 0;
722
723    BBWorklist.append(succ_begin(Entry), succ_end(Entry));
724  } while (!BBWorklist.empty());
725
726  return false;
727}
728
729/// Given a set of loads specified by ValuesPerBlock,
730/// construct SSA form, allowing us to eliminate LI.  This returns the value
731/// that should be used at LI's definition site.
732static Value *ConstructSSAForLoadSet(LoadInst *LI,
733                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
734                                     GVN &gvn) {
735  // Check for the fully redundant, dominating load case.  In this case, we can
736  // just use the dominating value directly.
737  if (ValuesPerBlock.size() == 1 &&
738      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
739                                               LI->getParent())) {
740    assert(!ValuesPerBlock[0].AV.isUndefValue() &&
741           "Dead BB dominate this block");
742    return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
743  }
744
745  // Otherwise, we have to construct SSA form.
746  SmallVector<PHINode*, 8> NewPHIs;
747  SSAUpdater SSAUpdate(&NewPHIs);
748  SSAUpdate.Initialize(LI->getType(), LI->getName());
749
750  for (const AvailableValueInBlock &AV : ValuesPerBlock) {
751    BasicBlock *BB = AV.BB;
752
753    if (SSAUpdate.HasValueForBlock(BB))
754      continue;
755
756    // If the value is the load that we will be eliminating, and the block it's
757    // available in is the block that the load is in, then don't add it as
758    // SSAUpdater will resolve the value to the relevant phi which may let it
759    // avoid phi construction entirely if there's actually only one value.
760    if (BB == LI->getParent() &&
761        ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
762         (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
763      continue;
764
765    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
766  }
767
768  // Perform PHI construction.
769  return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
770}
771
772Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
773                                                Instruction *InsertPt,
774                                                GVN &gvn) const {
775  Value *Res;
776  Type *LoadTy = LI->getType();
777  const DataLayout &DL = LI->getModule()->getDataLayout();
778  if (isSimpleValue()) {
779    Res = getSimpleValue();
780    if (Res->getType() != LoadTy) {
781      Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
782
783      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
784                        << "  " << *getSimpleValue() << '\n'
785                        << *Res << '\n'
786                        << "\n\n\n");
787    }
788  } else if (isCoercedLoadValue()) {
789    LoadInst *Load = getCoercedLoadValue();
790    if (Load->getType() == LoadTy && Offset == 0) {
791      Res = Load;
792    } else {
793      Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
794      // We would like to use gvn.markInstructionForDeletion here, but we can't
795      // because the load is already memoized into the leader map table that GVN
796      // tracks.  It is potentially possible to remove the load from the table,
797      // but then there all of the operations based on it would need to be
798      // rehashed.  Just leave the dead load around.
799      gvn.getMemDep().removeInstruction(Load);
800      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
801                        << "  " << *getCoercedLoadValue() << '\n'
802                        << *Res << '\n'
803                        << "\n\n\n");
804    }
805  } else if (isMemIntrinValue()) {
806    Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
807                                 InsertPt, DL);
808    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
809                      << "  " << *getMemIntrinValue() << '\n'
810                      << *Res << '\n'
811                      << "\n\n\n");
812  } else {
813    assert(isUndefValue() && "Should be UndefVal");
814    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
815    return UndefValue::get(LoadTy);
816  }
817  assert(Res && "failed to materialize?");
818  return Res;
819}
820
821static bool isLifetimeStart(const Instruction *Inst) {
822  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
823    return II->getIntrinsicID() == Intrinsic::lifetime_start;
824  return false;
825}
826
827/// Try to locate the three instruction involved in a missed
828/// load-elimination case that is due to an intervening store.
829static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
830                                   DominatorTree *DT,
831                                   OptimizationRemarkEmitter *ORE) {
832  using namespace ore;
833
834  User *OtherAccess = nullptr;
835
836  OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
837  R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
838    << setExtraArgs();
839
840  for (auto *U : LI->getPointerOperand()->users())
841    if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
842        DT->dominates(cast<Instruction>(U), LI)) {
843      // FIXME: for now give up if there are multiple memory accesses that
844      // dominate the load.  We need further analysis to decide which one is
845      // that we're forwarding from.
846      if (OtherAccess)
847        OtherAccess = nullptr;
848      else
849        OtherAccess = U;
850    }
851
852  if (OtherAccess)
853    R << " in favor of " << NV("OtherAccess", OtherAccess);
854
855  R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
856
857  ORE->emit(R);
858}
859
860bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
861                                  Value *Address, AvailableValue &Res) {
862  assert((DepInfo.isDef() || DepInfo.isClobber()) &&
863         "expected a local dependence");
864  assert(LI->isUnordered() && "rules below are incorrect for ordered access");
865
866  const DataLayout &DL = LI->getModule()->getDataLayout();
867
868  Instruction *DepInst = DepInfo.getInst();
869  if (DepInfo.isClobber()) {
870    // If the dependence is to a store that writes to a superset of the bits
871    // read by the load, we can extract the bits we need for the load from the
872    // stored value.
873    if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
874      // Can't forward from non-atomic to atomic without violating memory model.
875      if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
876        int Offset =
877          analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
878        if (Offset != -1) {
879          Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
880          return true;
881        }
882      }
883    }
884
885    // Check to see if we have something like this:
886    //    load i32* P
887    //    load i8* (P+1)
888    // if we have this, replace the later with an extraction from the former.
889    if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
890      // If this is a clobber and L is the first instruction in its block, then
891      // we have the first instruction in the entry block.
892      // Can't forward from non-atomic to atomic without violating memory model.
893      if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
894        int Offset =
895          analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
896
897        if (Offset != -1) {
898          Res = AvailableValue::getLoad(DepLI, Offset);
899          return true;
900        }
901      }
902    }
903
904    // If the clobbering value is a memset/memcpy/memmove, see if we can
905    // forward a value on from it.
906    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
907      if (Address && !LI->isAtomic()) {
908        int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
909                                                      DepMI, DL);
910        if (Offset != -1) {
911          Res = AvailableValue::getMI(DepMI, Offset);
912          return true;
913        }
914      }
915    }
916    // Nothing known about this clobber, have to be conservative
917    LLVM_DEBUG(
918        // fast print dep, using operator<< on instruction is too slow.
919        dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
920        dbgs() << " is clobbered by " << *DepInst << '\n';);
921    if (ORE->allowExtraAnalysis(DEBUG_TYPE))
922      reportMayClobberedLoad(LI, DepInfo, DT, ORE);
923
924    return false;
925  }
926  assert(DepInfo.isDef() && "follows from above");
927
928  // Loading the allocation -> undef.
929  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
930      // Loading immediately after lifetime begin -> undef.
931      isLifetimeStart(DepInst)) {
932    Res = AvailableValue::get(UndefValue::get(LI->getType()));
933    return true;
934  }
935
936  // Loading from calloc (which zero initializes memory) -> zero
937  if (isCallocLikeFn(DepInst, TLI)) {
938    Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
939    return true;
940  }
941
942  if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
943    // Reject loads and stores that are to the same address but are of
944    // different types if we have to. If the stored value is larger or equal to
945    // the loaded value, we can reuse it.
946    if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
947                                         DL))
948      return false;
949
950    // Can't forward from non-atomic to atomic without violating memory model.
951    if (S->isAtomic() < LI->isAtomic())
952      return false;
953
954    Res = AvailableValue::get(S->getValueOperand());
955    return true;
956  }
957
958  if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
959    // If the types mismatch and we can't handle it, reject reuse of the load.
960    // If the stored value is larger or equal to the loaded value, we can reuse
961    // it.
962    if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
963      return false;
964
965    // Can't forward from non-atomic to atomic without violating memory model.
966    if (LD->isAtomic() < LI->isAtomic())
967      return false;
968
969    Res = AvailableValue::getLoad(LD);
970    return true;
971  }
972
973  // Unknown def - must be conservative
974  LLVM_DEBUG(
975      // fast print dep, using operator<< on instruction is too slow.
976      dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
977      dbgs() << " has unknown def " << *DepInst << '\n';);
978  return false;
979}
980
981void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
982                                  AvailValInBlkVect &ValuesPerBlock,
983                                  UnavailBlkVect &UnavailableBlocks) {
984  // Filter out useless results (non-locals, etc).  Keep track of the blocks
985  // where we have a value available in repl, also keep track of whether we see
986  // dependencies that produce an unknown value for the load (such as a call
987  // that could potentially clobber the load).
988  unsigned NumDeps = Deps.size();
989  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
990    BasicBlock *DepBB = Deps[i].getBB();
991    MemDepResult DepInfo = Deps[i].getResult();
992
993    if (DeadBlocks.count(DepBB)) {
994      // Dead dependent mem-op disguise as a load evaluating the same value
995      // as the load in question.
996      ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
997      continue;
998    }
999
1000    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1001      UnavailableBlocks.push_back(DepBB);
1002      continue;
1003    }
1004
1005    // The address being loaded in this non-local block may not be the same as
1006    // the pointer operand of the load if PHI translation occurs.  Make sure
1007    // to consider the right address.
1008    Value *Address = Deps[i].getAddress();
1009
1010    AvailableValue AV;
1011    if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
1012      // subtlety: because we know this was a non-local dependency, we know
1013      // it's safe to materialize anywhere between the instruction within
1014      // DepInfo and the end of it's block.
1015      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1016                                                          std::move(AV)));
1017    } else {
1018      UnavailableBlocks.push_back(DepBB);
1019    }
1020  }
1021
1022  assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1023         "post condition violation");
1024}
1025
1026bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1027                         UnavailBlkVect &UnavailableBlocks) {
1028  // Okay, we have *some* definitions of the value.  This means that the value
1029  // is available in some of our (transitive) predecessors.  Lets think about
1030  // doing PRE of this load.  This will involve inserting a new load into the
1031  // predecessor when it's not available.  We could do this in general, but
1032  // prefer to not increase code size.  As such, we only do this when we know
1033  // that we only have to insert *one* load (which means we're basically moving
1034  // the load, not inserting a new one).
1035
1036  SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1037                                        UnavailableBlocks.end());
1038
1039  // Let's find the first basic block with more than one predecessor.  Walk
1040  // backwards through predecessors if needed.
1041  BasicBlock *LoadBB = LI->getParent();
1042  BasicBlock *TmpBB = LoadBB;
1043  bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
1044
1045  // Check that there is no implicit control flow instructions above our load in
1046  // its block. If there is an instruction that doesn't always pass the
1047  // execution to the following instruction, then moving through it may become
1048  // invalid. For example:
1049  //
1050  // int arr[LEN];
1051  // int index = ???;
1052  // ...
1053  // guard(0 <= index && index < LEN);
1054  // use(arr[index]);
1055  //
1056  // It is illegal to move the array access to any point above the guard,
1057  // because if the index is out of bounds we should deoptimize rather than
1058  // access the array.
1059  // Check that there is no guard in this block above our instruction.
1060  if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
1061    return false;
1062  while (TmpBB->getSinglePredecessor()) {
1063    TmpBB = TmpBB->getSinglePredecessor();
1064    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1065      return false;
1066    if (Blockers.count(TmpBB))
1067      return false;
1068
1069    // If any of these blocks has more than one successor (i.e. if the edge we
1070    // just traversed was critical), then there are other paths through this
1071    // block along which the load may not be anticipated.  Hoisting the load
1072    // above this block would be adding the load to execution paths along
1073    // which it was not previously executed.
1074    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1075      return false;
1076
1077    // Check that there is no implicit control flow in a block above.
1078    if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
1079      return false;
1080  }
1081
1082  assert(TmpBB);
1083  LoadBB = TmpBB;
1084
1085  // Check to see how many predecessors have the loaded value fully
1086  // available.
1087  MapVector<BasicBlock *, Value *> PredLoads;
1088  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1089  for (const AvailableValueInBlock &AV : ValuesPerBlock)
1090    FullyAvailableBlocks[AV.BB] = true;
1091  for (BasicBlock *UnavailableBB : UnavailableBlocks)
1092    FullyAvailableBlocks[UnavailableBB] = false;
1093
1094  SmallVector<BasicBlock *, 4> CriticalEdgePred;
1095  for (BasicBlock *Pred : predecessors(LoadBB)) {
1096    // If any predecessor block is an EH pad that does not allow non-PHI
1097    // instructions before the terminator, we can't PRE the load.
1098    if (Pred->getTerminator()->isEHPad()) {
1099      LLVM_DEBUG(
1100          dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1101                 << Pred->getName() << "': " << *LI << '\n');
1102      return false;
1103    }
1104
1105    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1106      continue;
1107    }
1108
1109    if (Pred->getTerminator()->getNumSuccessors() != 1) {
1110      if (isa<IndirectBrInst>(Pred->getTerminator())) {
1111        LLVM_DEBUG(
1112            dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1113                   << Pred->getName() << "': " << *LI << '\n');
1114        return false;
1115      }
1116
1117      // FIXME: Can we support the fallthrough edge?
1118      if (isa<CallBrInst>(Pred->getTerminator())) {
1119        LLVM_DEBUG(
1120            dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1121                   << Pred->getName() << "': " << *LI << '\n');
1122        return false;
1123      }
1124
1125      if (LoadBB->isEHPad()) {
1126        LLVM_DEBUG(
1127            dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1128                   << Pred->getName() << "': " << *LI << '\n');
1129        return false;
1130      }
1131
1132      CriticalEdgePred.push_back(Pred);
1133    } else {
1134      // Only add the predecessors that will not be split for now.
1135      PredLoads[Pred] = nullptr;
1136    }
1137  }
1138
1139  // Decide whether PRE is profitable for this load.
1140  unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1141  assert(NumUnavailablePreds != 0 &&
1142         "Fully available value should already be eliminated!");
1143
1144  // If this load is unavailable in multiple predecessors, reject it.
1145  // FIXME: If we could restructure the CFG, we could make a common pred with
1146  // all the preds that don't have an available LI and insert a new load into
1147  // that one block.
1148  if (NumUnavailablePreds != 1)
1149      return false;
1150
1151  // Split critical edges, and update the unavailable predecessors accordingly.
1152  for (BasicBlock *OrigPred : CriticalEdgePred) {
1153    BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1154    assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1155    PredLoads[NewPred] = nullptr;
1156    LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1157                      << LoadBB->getName() << '\n');
1158  }
1159
1160  // Check if the load can safely be moved to all the unavailable predecessors.
1161  bool CanDoPRE = true;
1162  const DataLayout &DL = LI->getModule()->getDataLayout();
1163  SmallVector<Instruction*, 8> NewInsts;
1164  for (auto &PredLoad : PredLoads) {
1165    BasicBlock *UnavailablePred = PredLoad.first;
1166
1167    // Do PHI translation to get its value in the predecessor if necessary.  The
1168    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1169    // We do the translation for each edge we skipped by going from LI's block
1170    // to LoadBB, otherwise we might miss pieces needing translation.
1171
1172    // If all preds have a single successor, then we know it is safe to insert
1173    // the load on the pred (?!?), so we can insert code to materialize the
1174    // pointer if it is not available.
1175    Value *LoadPtr = LI->getPointerOperand();
1176    BasicBlock *Cur = LI->getParent();
1177    while (Cur != LoadBB) {
1178      PHITransAddr Address(LoadPtr, DL, AC);
1179      LoadPtr = Address.PHITranslateWithInsertion(
1180          Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1181      if (!LoadPtr) {
1182        CanDoPRE = false;
1183        break;
1184      }
1185      Cur = Cur->getSinglePredecessor();
1186    }
1187
1188    if (LoadPtr) {
1189      PHITransAddr Address(LoadPtr, DL, AC);
1190      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1191                                                  NewInsts);
1192    }
1193    // If we couldn't find or insert a computation of this phi translated value,
1194    // we fail PRE.
1195    if (!LoadPtr) {
1196      LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1197                        << *LI->getPointerOperand() << "\n");
1198      CanDoPRE = false;
1199      break;
1200    }
1201
1202    PredLoad.second = LoadPtr;
1203  }
1204
1205  if (!CanDoPRE) {
1206    while (!NewInsts.empty()) {
1207      // Erase instructions generated by the failed PHI translation before
1208      // trying to number them. PHI translation might insert instructions
1209      // in basic blocks other than the current one, and we delete them
1210      // directly, as markInstructionForDeletion only allows removing from the
1211      // current basic block.
1212      NewInsts.pop_back_val()->eraseFromParent();
1213    }
1214    // HINT: Don't revert the edge-splitting as following transformation may
1215    // also need to split these critical edges.
1216    return !CriticalEdgePred.empty();
1217  }
1218
1219  // Okay, we can eliminate this load by inserting a reload in the predecessor
1220  // and using PHI construction to get the value in the other predecessors, do
1221  // it.
1222  LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1223  LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
1224             << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
1225             << '\n');
1226
1227  // Assign value numbers to the new instructions.
1228  for (Instruction *I : NewInsts) {
1229    // Instructions that have been inserted in predecessor(s) to materialize
1230    // the load address do not retain their original debug locations. Doing
1231    // so could lead to confusing (but correct) source attributions.
1232    if (const DebugLoc &DL = I->getDebugLoc())
1233      I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1234
1235    // FIXME: We really _ought_ to insert these value numbers into their
1236    // parent's availability map.  However, in doing so, we risk getting into
1237    // ordering issues.  If a block hasn't been processed yet, we would be
1238    // marking a value as AVAIL-IN, which isn't what we intend.
1239    VN.lookupOrAdd(I);
1240  }
1241
1242  for (const auto &PredLoad : PredLoads) {
1243    BasicBlock *UnavailablePred = PredLoad.first;
1244    Value *LoadPtr = PredLoad.second;
1245
1246    auto *NewLoad = new LoadInst(
1247        LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(),
1248        MaybeAlign(LI->getAlignment()), LI->getOrdering(), LI->getSyncScopeID(),
1249        UnavailablePred->getTerminator());
1250    NewLoad->setDebugLoc(LI->getDebugLoc());
1251
1252    // Transfer the old load's AA tags to the new load.
1253    AAMDNodes Tags;
1254    LI->getAAMetadata(Tags);
1255    if (Tags)
1256      NewLoad->setAAMetadata(Tags);
1257
1258    if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
1259      NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1260    if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
1261      NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1262    if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
1263      NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1264
1265    // We do not propagate the old load's debug location, because the new
1266    // load now lives in a different BB, and we want to avoid a jumpy line
1267    // table.
1268    // FIXME: How do we retain source locations without causing poor debugging
1269    // behavior?
1270
1271    // Add the newly created load.
1272    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1273                                                        NewLoad));
1274    MD->invalidateCachedPointerInfo(LoadPtr);
1275    LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1276  }
1277
1278  // Perform PHI construction.
1279  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1280  LI->replaceAllUsesWith(V);
1281  if (isa<PHINode>(V))
1282    V->takeName(LI);
1283  if (Instruction *I = dyn_cast<Instruction>(V))
1284    I->setDebugLoc(LI->getDebugLoc());
1285  if (V->getType()->isPtrOrPtrVectorTy())
1286    MD->invalidateCachedPointerInfo(V);
1287  markInstructionForDeletion(LI);
1288  ORE->emit([&]() {
1289    return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
1290           << "load eliminated by PRE";
1291  });
1292  ++NumPRELoad;
1293  return true;
1294}
1295
1296static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
1297                           OptimizationRemarkEmitter *ORE) {
1298  using namespace ore;
1299
1300  ORE->emit([&]() {
1301    return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
1302           << "load of type " << NV("Type", LI->getType()) << " eliminated"
1303           << setExtraArgs() << " in favor of "
1304           << NV("InfavorOfValue", AvailableValue);
1305  });
1306}
1307
1308/// Attempt to eliminate a load whose dependencies are
1309/// non-local by performing PHI construction.
1310bool GVN::processNonLocalLoad(LoadInst *LI) {
1311  // non-local speculations are not allowed under asan.
1312  if (LI->getParent()->getParent()->hasFnAttribute(
1313          Attribute::SanitizeAddress) ||
1314      LI->getParent()->getParent()->hasFnAttribute(
1315          Attribute::SanitizeHWAddress))
1316    return false;
1317
1318  // Step 1: Find the non-local dependencies of the load.
1319  LoadDepVect Deps;
1320  MD->getNonLocalPointerDependency(LI, Deps);
1321
1322  // If we had to process more than one hundred blocks to find the
1323  // dependencies, this load isn't worth worrying about.  Optimizing
1324  // it will be too expensive.
1325  unsigned NumDeps = Deps.size();
1326  if (NumDeps > MaxNumDeps)
1327    return false;
1328
1329  // If we had a phi translation failure, we'll have a single entry which is a
1330  // clobber in the current block.  Reject this early.
1331  if (NumDeps == 1 &&
1332      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1333    LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
1334               dbgs() << " has unknown dependencies\n";);
1335    return false;
1336  }
1337
1338  // If this load follows a GEP, see if we can PRE the indices before analyzing.
1339  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
1340    for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1341                                        OE = GEP->idx_end();
1342         OI != OE; ++OI)
1343      if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1344        performScalarPRE(I);
1345  }
1346
1347  // Step 2: Analyze the availability of the load
1348  AvailValInBlkVect ValuesPerBlock;
1349  UnavailBlkVect UnavailableBlocks;
1350  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1351
1352  // If we have no predecessors that produce a known value for this load, exit
1353  // early.
1354  if (ValuesPerBlock.empty())
1355    return false;
1356
1357  // Step 3: Eliminate fully redundancy.
1358  //
1359  // If all of the instructions we depend on produce a known value for this
1360  // load, then it is fully redundant and we can use PHI insertion to compute
1361  // its value.  Insert PHIs and remove the fully redundant value now.
1362  if (UnavailableBlocks.empty()) {
1363    LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1364
1365    // Perform PHI construction.
1366    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1367    LI->replaceAllUsesWith(V);
1368
1369    if (isa<PHINode>(V))
1370      V->takeName(LI);
1371    if (Instruction *I = dyn_cast<Instruction>(V))
1372      // If instruction I has debug info, then we should not update it.
1373      // Also, if I has a null DebugLoc, then it is still potentially incorrect
1374      // to propagate LI's DebugLoc because LI may not post-dominate I.
1375      if (LI->getDebugLoc() && LI->getParent() == I->getParent())
1376        I->setDebugLoc(LI->getDebugLoc());
1377    if (V->getType()->isPtrOrPtrVectorTy())
1378      MD->invalidateCachedPointerInfo(V);
1379    markInstructionForDeletion(LI);
1380    ++NumGVNLoad;
1381    reportLoadElim(LI, V, ORE);
1382    return true;
1383  }
1384
1385  // Step 4: Eliminate partial redundancy.
1386  if (!EnablePRE || !EnableLoadPRE)
1387    return false;
1388
1389  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1390}
1391
1392static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1393  if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1394    return true;
1395
1396  // Floating point comparisons can be equal, but not equivalent.  Cases:
1397  // NaNs for unordered operators
1398  // +0.0 vs 0.0 for all operators
1399  if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1400      (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1401       Cmp->getFastMathFlags().noNaNs())) {
1402      Value *LHS = Cmp->getOperand(0);
1403      Value *RHS = Cmp->getOperand(1);
1404      // If we can prove either side non-zero, then equality must imply
1405      // equivalence.
1406      // FIXME: We should do this optimization if 'no signed zeros' is
1407      // applicable via an instruction-level fast-math-flag or some other
1408      // indicator that relaxed FP semantics are being used.
1409      if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1410        return true;
1411      if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1412        return true;;
1413      // TODO: Handle vector floating point constants
1414  }
1415  return false;
1416}
1417
1418static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1419  if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1420    return true;
1421
1422  // Floating point comparisons can be equal, but not equivelent.  Cases:
1423  // NaNs for unordered operators
1424  // +0.0 vs 0.0 for all operators
1425  if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1426       Cmp->getFastMathFlags().noNaNs()) ||
1427      Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1428      Value *LHS = Cmp->getOperand(0);
1429      Value *RHS = Cmp->getOperand(1);
1430      // If we can prove either side non-zero, then equality must imply
1431      // equivalence.
1432      // FIXME: We should do this optimization if 'no signed zeros' is
1433      // applicable via an instruction-level fast-math-flag or some other
1434      // indicator that relaxed FP semantics are being used.
1435      if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1436        return true;
1437      if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1438        return true;;
1439      // TODO: Handle vector floating point constants
1440  }
1441  return false;
1442}
1443
1444
1445static bool hasUsersIn(Value *V, BasicBlock *BB) {
1446  for (User *U : V->users())
1447    if (isa<Instruction>(U) &&
1448        cast<Instruction>(U)->getParent() == BB)
1449      return true;
1450  return false;
1451}
1452
1453bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
1454  assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
1455         "This function can only be called with llvm.assume intrinsic");
1456  Value *V = IntrinsicI->getArgOperand(0);
1457
1458  if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1459    if (Cond->isZero()) {
1460      Type *Int8Ty = Type::getInt8Ty(V->getContext());
1461      // Insert a new store to null instruction before the load to indicate that
1462      // this code is not reachable.  FIXME: We could insert unreachable
1463      // instruction directly because we can modify the CFG.
1464      new StoreInst(UndefValue::get(Int8Ty),
1465                    Constant::getNullValue(Int8Ty->getPointerTo()),
1466                    IntrinsicI);
1467    }
1468    markInstructionForDeletion(IntrinsicI);
1469    return false;
1470  } else if (isa<Constant>(V)) {
1471    // If it's not false, and constant, it must evaluate to true. This means our
1472    // assume is assume(true), and thus, pointless, and we don't want to do
1473    // anything more here.
1474    return false;
1475  }
1476
1477  Constant *True = ConstantInt::getTrue(V->getContext());
1478  bool Changed = false;
1479
1480  for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1481    BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1482
1483    // This property is only true in dominated successors, propagateEquality
1484    // will check dominance for us.
1485    Changed |= propagateEquality(V, True, Edge, false);
1486  }
1487
1488  // We can replace assume value with true, which covers cases like this:
1489  // call void @llvm.assume(i1 %cmp)
1490  // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1491  ReplaceOperandsWithMap[V] = True;
1492
1493  // If we find an equality fact, canonicalize all dominated uses in this block
1494  // to one of the two values.  We heuristically choice the "oldest" of the
1495  // two where age is determined by value number. (Note that propagateEquality
1496  // above handles the cross block case.)
1497  //
1498  // Key case to cover are:
1499  // 1)
1500  // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1501  // call void @llvm.assume(i1 %cmp)
1502  // ret float %0 ; will change it to ret float 3.000000e+00
1503  // 2)
1504  // %load = load float, float* %addr
1505  // %cmp = fcmp oeq float %load, %0
1506  // call void @llvm.assume(i1 %cmp)
1507  // ret float %load ; will change it to ret float %0
1508  if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1509    if (impliesEquivalanceIfTrue(CmpI)) {
1510      Value *CmpLHS = CmpI->getOperand(0);
1511      Value *CmpRHS = CmpI->getOperand(1);
1512      // Heuristically pick the better replacement -- the choice of heuristic
1513      // isn't terribly important here, but the fact we canonicalize on some
1514      // replacement is for exposing other simplifications.
1515      // TODO: pull this out as a helper function and reuse w/existing
1516      // (slightly different) logic.
1517      if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1518        std::swap(CmpLHS, CmpRHS);
1519      if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1520        std::swap(CmpLHS, CmpRHS);
1521      if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1522          (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1523        // Move the 'oldest' value to the right-hand side, using the value
1524        // number as a proxy for age.
1525        uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1526        uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1527        if (LVN < RVN)
1528          std::swap(CmpLHS, CmpRHS);
1529      }
1530
1531      // Handle degenerate case where we either haven't pruned a dead path or a
1532      // removed a trivial assume yet.
1533      if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1534        return Changed;
1535
1536      LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
1537                 << *CmpLHS << " with "
1538                 << *CmpRHS << " in block "
1539                 << IntrinsicI->getParent()->getName() << "\n");
1540
1541
1542      // Setup the replacement map - this handles uses within the same block
1543      if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
1544        ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
1545
1546      // NOTE: The non-block local cases are handled by the call to
1547      // propagateEquality above; this block is just about handling the block
1548      // local cases.  TODO: There's a bunch of logic in propagateEqualiy which
1549      // isn't duplicated for the block local case, can we share it somehow?
1550    }
1551  }
1552  return Changed;
1553}
1554
1555static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1556  patchReplacementInstruction(I, Repl);
1557  I->replaceAllUsesWith(Repl);
1558}
1559
1560/// Attempt to eliminate a load, first by eliminating it
1561/// locally, and then attempting non-local elimination if that fails.
1562bool GVN::processLoad(LoadInst *L) {
1563  if (!MD)
1564    return false;
1565
1566  // This code hasn't been audited for ordered or volatile memory access
1567  if (!L->isUnordered())
1568    return false;
1569
1570  if (L->use_empty()) {
1571    markInstructionForDeletion(L);
1572    return true;
1573  }
1574
1575  // ... to a pointer that has been loaded from before...
1576  MemDepResult Dep = MD->getDependency(L);
1577
1578  // If it is defined in another block, try harder.
1579  if (Dep.isNonLocal())
1580    return processNonLocalLoad(L);
1581
1582  // Only handle the local case below
1583  if (!Dep.isDef() && !Dep.isClobber()) {
1584    // This might be a NonFuncLocal or an Unknown
1585    LLVM_DEBUG(
1586        // fast print dep, using operator<< on instruction is too slow.
1587        dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1588        dbgs() << " has unknown dependence\n";);
1589    return false;
1590  }
1591
1592  AvailableValue AV;
1593  if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1594    Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1595
1596    // Replace the load!
1597    patchAndReplaceAllUsesWith(L, AvailableValue);
1598    markInstructionForDeletion(L);
1599    ++NumGVNLoad;
1600    reportLoadElim(L, AvailableValue, ORE);
1601    // Tell MDA to rexamine the reused pointer since we might have more
1602    // information after forwarding it.
1603    if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1604      MD->invalidateCachedPointerInfo(AvailableValue);
1605    return true;
1606  }
1607
1608  return false;
1609}
1610
1611/// Return a pair the first field showing the value number of \p Exp and the
1612/// second field showing whether it is a value number newly created.
1613std::pair<uint32_t, bool>
1614GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1615  uint32_t &e = expressionNumbering[Exp];
1616  bool CreateNewValNum = !e;
1617  if (CreateNewValNum) {
1618    Expressions.push_back(Exp);
1619    if (ExprIdx.size() < nextValueNumber + 1)
1620      ExprIdx.resize(nextValueNumber * 2);
1621    e = nextValueNumber;
1622    ExprIdx[nextValueNumber++] = nextExprNumber++;
1623  }
1624  return {e, CreateNewValNum};
1625}
1626
1627/// Return whether all the values related with the same \p num are
1628/// defined in \p BB.
1629bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1630                                     GVN &Gvn) {
1631  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1632  while (Vals && Vals->BB == BB)
1633    Vals = Vals->Next;
1634  return !Vals;
1635}
1636
1637/// Wrap phiTranslateImpl to provide caching functionality.
1638uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1639                                       const BasicBlock *PhiBlock, uint32_t Num,
1640                                       GVN &Gvn) {
1641  auto FindRes = PhiTranslateTable.find({Num, Pred});
1642  if (FindRes != PhiTranslateTable.end())
1643    return FindRes->second;
1644  uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1645  PhiTranslateTable.insert({{Num, Pred}, NewNum});
1646  return NewNum;
1647}
1648
1649// Return true if the value number \p Num and NewNum have equal value.
1650// Return false if the result is unknown.
1651bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1652                                       const BasicBlock *Pred,
1653                                       const BasicBlock *PhiBlock, GVN &Gvn) {
1654  CallInst *Call = nullptr;
1655  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1656  while (Vals) {
1657    Call = dyn_cast<CallInst>(Vals->Val);
1658    if (Call && Call->getParent() == PhiBlock)
1659      break;
1660    Vals = Vals->Next;
1661  }
1662
1663  if (AA->doesNotAccessMemory(Call))
1664    return true;
1665
1666  if (!MD || !AA->onlyReadsMemory(Call))
1667    return false;
1668
1669  MemDepResult local_dep = MD->getDependency(Call);
1670  if (!local_dep.isNonLocal())
1671    return false;
1672
1673  const MemoryDependenceResults::NonLocalDepInfo &deps =
1674      MD->getNonLocalCallDependency(Call);
1675
1676  // Check to see if the Call has no function local clobber.
1677  for (unsigned i = 0; i < deps.size(); i++) {
1678    if (deps[i].getResult().isNonFuncLocal())
1679      return true;
1680  }
1681  return false;
1682}
1683
1684/// Translate value number \p Num using phis, so that it has the values of
1685/// the phis in BB.
1686uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
1687                                           const BasicBlock *PhiBlock,
1688                                           uint32_t Num, GVN &Gvn) {
1689  if (PHINode *PN = NumberingPhi[Num]) {
1690    for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
1691      if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
1692        if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
1693          return TransVal;
1694    }
1695    return Num;
1696  }
1697
1698  // If there is any value related with Num is defined in a BB other than
1699  // PhiBlock, it cannot depend on a phi in PhiBlock without going through
1700  // a backedge. We can do an early exit in that case to save compile time.
1701  if (!areAllValsInBB(Num, PhiBlock, Gvn))
1702    return Num;
1703
1704  if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
1705    return Num;
1706  Expression Exp = Expressions[ExprIdx[Num]];
1707
1708  for (unsigned i = 0; i < Exp.varargs.size(); i++) {
1709    // For InsertValue and ExtractValue, some varargs are index numbers
1710    // instead of value numbers. Those index numbers should not be
1711    // translated.
1712    if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
1713        (i > 0 && Exp.opcode == Instruction::ExtractValue))
1714      continue;
1715    Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
1716  }
1717
1718  if (Exp.commutative) {
1719    assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
1720    if (Exp.varargs[0] > Exp.varargs[1]) {
1721      std::swap(Exp.varargs[0], Exp.varargs[1]);
1722      uint32_t Opcode = Exp.opcode >> 8;
1723      if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
1724        Exp.opcode = (Opcode << 8) |
1725                     CmpInst::getSwappedPredicate(
1726                         static_cast<CmpInst::Predicate>(Exp.opcode & 255));
1727    }
1728  }
1729
1730  if (uint32_t NewNum = expressionNumbering[Exp]) {
1731    if (Exp.opcode == Instruction::Call && NewNum != Num)
1732      return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
1733    return NewNum;
1734  }
1735  return Num;
1736}
1737
1738/// Erase stale entry from phiTranslate cache so phiTranslate can be computed
1739/// again.
1740void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
1741                                               const BasicBlock &CurrBlock) {
1742  for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
1743    auto FindRes = PhiTranslateTable.find({Num, Pred});
1744    if (FindRes != PhiTranslateTable.end())
1745      PhiTranslateTable.erase(FindRes);
1746  }
1747}
1748
1749// In order to find a leader for a given value number at a
1750// specific basic block, we first obtain the list of all Values for that number,
1751// and then scan the list to find one whose block dominates the block in
1752// question.  This is fast because dominator tree queries consist of only
1753// a few comparisons of DFS numbers.
1754Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
1755  LeaderTableEntry Vals = LeaderTable[num];
1756  if (!Vals.Val) return nullptr;
1757
1758  Value *Val = nullptr;
1759  if (DT->dominates(Vals.BB, BB)) {
1760    Val = Vals.Val;
1761    if (isa<Constant>(Val)) return Val;
1762  }
1763
1764  LeaderTableEntry* Next = Vals.Next;
1765  while (Next) {
1766    if (DT->dominates(Next->BB, BB)) {
1767      if (isa<Constant>(Next->Val)) return Next->Val;
1768      if (!Val) Val = Next->Val;
1769    }
1770
1771    Next = Next->Next;
1772  }
1773
1774  return Val;
1775}
1776
1777/// There is an edge from 'Src' to 'Dst'.  Return
1778/// true if every path from the entry block to 'Dst' passes via this edge.  In
1779/// particular 'Dst' must not be reachable via another edge from 'Src'.
1780static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
1781                                       DominatorTree *DT) {
1782  // While in theory it is interesting to consider the case in which Dst has
1783  // more than one predecessor, because Dst might be part of a loop which is
1784  // only reachable from Src, in practice it is pointless since at the time
1785  // GVN runs all such loops have preheaders, which means that Dst will have
1786  // been changed to have only one predecessor, namely Src.
1787  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
1788  assert((!Pred || Pred == E.getStart()) &&
1789         "No edge between these basic blocks!");
1790  return Pred != nullptr;
1791}
1792
1793void GVN::assignBlockRPONumber(Function &F) {
1794  BlockRPONumber.clear();
1795  uint32_t NextBlockNumber = 1;
1796  ReversePostOrderTraversal<Function *> RPOT(&F);
1797  for (BasicBlock *BB : RPOT)
1798    BlockRPONumber[BB] = NextBlockNumber++;
1799  InvalidBlockRPONumbers = false;
1800}
1801
1802bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
1803  bool Changed = false;
1804  for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
1805    Value *Operand = Instr->getOperand(OpNum);
1806    auto it = ReplaceOperandsWithMap.find(Operand);
1807    if (it != ReplaceOperandsWithMap.end()) {
1808      LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
1809                        << *it->second << " in instruction " << *Instr << '\n');
1810      Instr->setOperand(OpNum, it->second);
1811      Changed = true;
1812    }
1813  }
1814  return Changed;
1815}
1816
1817/// The given values are known to be equal in every block
1818/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
1819/// 'RHS' everywhere in the scope.  Returns whether a change was made.
1820/// If DominatesByEdge is false, then it means that we will propagate the RHS
1821/// value starting from the end of Root.Start.
1822bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
1823                            bool DominatesByEdge) {
1824  SmallVector<std::pair<Value*, Value*>, 4> Worklist;
1825  Worklist.push_back(std::make_pair(LHS, RHS));
1826  bool Changed = false;
1827  // For speed, compute a conservative fast approximation to
1828  // DT->dominates(Root, Root.getEnd());
1829  const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
1830
1831  while (!Worklist.empty()) {
1832    std::pair<Value*, Value*> Item = Worklist.pop_back_val();
1833    LHS = Item.first; RHS = Item.second;
1834
1835    if (LHS == RHS)
1836      continue;
1837    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
1838
1839    // Don't try to propagate equalities between constants.
1840    if (isa<Constant>(LHS) && isa<Constant>(RHS))
1841      continue;
1842
1843    // Prefer a constant on the right-hand side, or an Argument if no constants.
1844    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
1845      std::swap(LHS, RHS);
1846    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
1847
1848    // If there is no obvious reason to prefer the left-hand side over the
1849    // right-hand side, ensure the longest lived term is on the right-hand side,
1850    // so the shortest lived term will be replaced by the longest lived.
1851    // This tends to expose more simplifications.
1852    uint32_t LVN = VN.lookupOrAdd(LHS);
1853    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
1854        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
1855      // Move the 'oldest' value to the right-hand side, using the value number
1856      // as a proxy for age.
1857      uint32_t RVN = VN.lookupOrAdd(RHS);
1858      if (LVN < RVN) {
1859        std::swap(LHS, RHS);
1860        LVN = RVN;
1861      }
1862    }
1863
1864    // If value numbering later sees that an instruction in the scope is equal
1865    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
1866    // the invariant that instructions only occur in the leader table for their
1867    // own value number (this is used by removeFromLeaderTable), do not do this
1868    // if RHS is an instruction (if an instruction in the scope is morphed into
1869    // LHS then it will be turned into RHS by the next GVN iteration anyway, so
1870    // using the leader table is about compiling faster, not optimizing better).
1871    // The leader table only tracks basic blocks, not edges. Only add to if we
1872    // have the simple case where the edge dominates the end.
1873    if (RootDominatesEnd && !isa<Instruction>(RHS))
1874      addToLeaderTable(LVN, RHS, Root.getEnd());
1875
1876    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
1877    // LHS always has at least one use that is not dominated by Root, this will
1878    // never do anything if LHS has only one use.
1879    if (!LHS->hasOneUse()) {
1880      unsigned NumReplacements =
1881          DominatesByEdge
1882              ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
1883              : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
1884
1885      Changed |= NumReplacements > 0;
1886      NumGVNEqProp += NumReplacements;
1887      // Cached information for anything that uses LHS will be invalid.
1888      if (MD)
1889        MD->invalidateCachedPointerInfo(LHS);
1890    }
1891
1892    // Now try to deduce additional equalities from this one. For example, if
1893    // the known equality was "(A != B)" == "false" then it follows that A and B
1894    // are equal in the scope. Only boolean equalities with an explicit true or
1895    // false RHS are currently supported.
1896    if (!RHS->getType()->isIntegerTy(1))
1897      // Not a boolean equality - bail out.
1898      continue;
1899    ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
1900    if (!CI)
1901      // RHS neither 'true' nor 'false' - bail out.
1902      continue;
1903    // Whether RHS equals 'true'.  Otherwise it equals 'false'.
1904    bool isKnownTrue = CI->isMinusOne();
1905    bool isKnownFalse = !isKnownTrue;
1906
1907    // If "A && B" is known true then both A and B are known true.  If "A || B"
1908    // is known false then both A and B are known false.
1909    Value *A, *B;
1910    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
1911        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
1912      Worklist.push_back(std::make_pair(A, RHS));
1913      Worklist.push_back(std::make_pair(B, RHS));
1914      continue;
1915    }
1916
1917    // If we are propagating an equality like "(A == B)" == "true" then also
1918    // propagate the equality A == B.  When propagating a comparison such as
1919    // "(A >= B)" == "true", replace all instances of "A < B" with "false".
1920    if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
1921      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1922
1923      // If "A == B" is known true, or "A != B" is known false, then replace
1924      // A with B everywhere in the scope.  For floating point operations, we
1925      // have to be careful since equality does not always imply equivalance.
1926      if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
1927          (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
1928        Worklist.push_back(std::make_pair(Op0, Op1));
1929
1930      // If "A >= B" is known true, replace "A < B" with false everywhere.
1931      CmpInst::Predicate NotPred = Cmp->getInversePredicate();
1932      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
1933      // Since we don't have the instruction "A < B" immediately to hand, work
1934      // out the value number that it would have and use that to find an
1935      // appropriate instruction (if any).
1936      uint32_t NextNum = VN.getNextUnusedValueNumber();
1937      uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
1938      // If the number we were assigned was brand new then there is no point in
1939      // looking for an instruction realizing it: there cannot be one!
1940      if (Num < NextNum) {
1941        Value *NotCmp = findLeader(Root.getEnd(), Num);
1942        if (NotCmp && isa<Instruction>(NotCmp)) {
1943          unsigned NumReplacements =
1944              DominatesByEdge
1945                  ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
1946                  : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
1947                                             Root.getStart());
1948          Changed |= NumReplacements > 0;
1949          NumGVNEqProp += NumReplacements;
1950          // Cached information for anything that uses NotCmp will be invalid.
1951          if (MD)
1952            MD->invalidateCachedPointerInfo(NotCmp);
1953        }
1954      }
1955      // Ensure that any instruction in scope that gets the "A < B" value number
1956      // is replaced with false.
1957      // The leader table only tracks basic blocks, not edges. Only add to if we
1958      // have the simple case where the edge dominates the end.
1959      if (RootDominatesEnd)
1960        addToLeaderTable(Num, NotVal, Root.getEnd());
1961
1962      continue;
1963    }
1964  }
1965
1966  return Changed;
1967}
1968
1969/// When calculating availability, handle an instruction
1970/// by inserting it into the appropriate sets
1971bool GVN::processInstruction(Instruction *I) {
1972  // Ignore dbg info intrinsics.
1973  if (isa<DbgInfoIntrinsic>(I))
1974    return false;
1975
1976  // If the instruction can be easily simplified then do so now in preference
1977  // to value numbering it.  Value numbering often exposes redundancies, for
1978  // example if it determines that %y is equal to %x then the instruction
1979  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1980  const DataLayout &DL = I->getModule()->getDataLayout();
1981  if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
1982    bool Changed = false;
1983    if (!I->use_empty()) {
1984      I->replaceAllUsesWith(V);
1985      Changed = true;
1986    }
1987    if (isInstructionTriviallyDead(I, TLI)) {
1988      markInstructionForDeletion(I);
1989      Changed = true;
1990    }
1991    if (Changed) {
1992      if (MD && V->getType()->isPtrOrPtrVectorTy())
1993        MD->invalidateCachedPointerInfo(V);
1994      ++NumGVNSimpl;
1995      return true;
1996    }
1997  }
1998
1999  if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
2000    if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
2001      return processAssumeIntrinsic(IntrinsicI);
2002
2003  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2004    if (processLoad(LI))
2005      return true;
2006
2007    unsigned Num = VN.lookupOrAdd(LI);
2008    addToLeaderTable(Num, LI, LI->getParent());
2009    return false;
2010  }
2011
2012  // For conditional branches, we can perform simple conditional propagation on
2013  // the condition value itself.
2014  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2015    if (!BI->isConditional())
2016      return false;
2017
2018    if (isa<Constant>(BI->getCondition()))
2019      return processFoldableCondBr(BI);
2020
2021    Value *BranchCond = BI->getCondition();
2022    BasicBlock *TrueSucc = BI->getSuccessor(0);
2023    BasicBlock *FalseSucc = BI->getSuccessor(1);
2024    // Avoid multiple edges early.
2025    if (TrueSucc == FalseSucc)
2026      return false;
2027
2028    BasicBlock *Parent = BI->getParent();
2029    bool Changed = false;
2030
2031    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2032    BasicBlockEdge TrueE(Parent, TrueSucc);
2033    Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2034
2035    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2036    BasicBlockEdge FalseE(Parent, FalseSucc);
2037    Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2038
2039    return Changed;
2040  }
2041
2042  // For switches, propagate the case values into the case destinations.
2043  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2044    Value *SwitchCond = SI->getCondition();
2045    BasicBlock *Parent = SI->getParent();
2046    bool Changed = false;
2047
2048    // Remember how many outgoing edges there are to every successor.
2049    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2050    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2051      ++SwitchEdges[SI->getSuccessor(i)];
2052
2053    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2054         i != e; ++i) {
2055      BasicBlock *Dst = i->getCaseSuccessor();
2056      // If there is only a single edge, propagate the case value into it.
2057      if (SwitchEdges.lookup(Dst) == 1) {
2058        BasicBlockEdge E(Parent, Dst);
2059        Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2060      }
2061    }
2062    return Changed;
2063  }
2064
2065  // Instructions with void type don't return a value, so there's
2066  // no point in trying to find redundancies in them.
2067  if (I->getType()->isVoidTy())
2068    return false;
2069
2070  uint32_t NextNum = VN.getNextUnusedValueNumber();
2071  unsigned Num = VN.lookupOrAdd(I);
2072
2073  // Allocations are always uniquely numbered, so we can save time and memory
2074  // by fast failing them.
2075  if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2076    addToLeaderTable(Num, I, I->getParent());
2077    return false;
2078  }
2079
2080  // If the number we were assigned was a brand new VN, then we don't
2081  // need to do a lookup to see if the number already exists
2082  // somewhere in the domtree: it can't!
2083  if (Num >= NextNum) {
2084    addToLeaderTable(Num, I, I->getParent());
2085    return false;
2086  }
2087
2088  // Perform fast-path value-number based elimination of values inherited from
2089  // dominators.
2090  Value *Repl = findLeader(I->getParent(), Num);
2091  if (!Repl) {
2092    // Failure, just remember this instance for future use.
2093    addToLeaderTable(Num, I, I->getParent());
2094    return false;
2095  } else if (Repl == I) {
2096    // If I was the result of a shortcut PRE, it might already be in the table
2097    // and the best replacement for itself. Nothing to do.
2098    return false;
2099  }
2100
2101  // Remove it!
2102  patchAndReplaceAllUsesWith(I, Repl);
2103  if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2104    MD->invalidateCachedPointerInfo(Repl);
2105  markInstructionForDeletion(I);
2106  return true;
2107}
2108
2109/// runOnFunction - This is the main transformation entry point for a function.
2110bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2111                  const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2112                  MemoryDependenceResults *RunMD, LoopInfo *LI,
2113                  OptimizationRemarkEmitter *RunORE) {
2114  AC = &RunAC;
2115  DT = &RunDT;
2116  VN.setDomTree(DT);
2117  TLI = &RunTLI;
2118  VN.setAliasAnalysis(&RunAA);
2119  MD = RunMD;
2120  ImplicitControlFlowTracking ImplicitCFT(DT);
2121  ICF = &ImplicitCFT;
2122  this->LI = LI;
2123  VN.setMemDep(MD);
2124  ORE = RunORE;
2125  InvalidBlockRPONumbers = true;
2126
2127  bool Changed = false;
2128  bool ShouldContinue = true;
2129
2130  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2131  // Merge unconditional branches, allowing PRE to catch more
2132  // optimization opportunities.
2133  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2134    BasicBlock *BB = &*FI++;
2135
2136    bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
2137    if (removedBlock)
2138      ++NumGVNBlocks;
2139
2140    Changed |= removedBlock;
2141  }
2142
2143  unsigned Iteration = 0;
2144  while (ShouldContinue) {
2145    LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2146    ShouldContinue = iterateOnFunction(F);
2147    Changed |= ShouldContinue;
2148    ++Iteration;
2149  }
2150
2151  if (EnablePRE) {
2152    // Fabricate val-num for dead-code in order to suppress assertion in
2153    // performPRE().
2154    assignValNumForDeadCode();
2155    bool PREChanged = true;
2156    while (PREChanged) {
2157      PREChanged = performPRE(F);
2158      Changed |= PREChanged;
2159    }
2160  }
2161
2162  // FIXME: Should perform GVN again after PRE does something.  PRE can move
2163  // computations into blocks where they become fully redundant.  Note that
2164  // we can't do this until PRE's critical edge splitting updates memdep.
2165  // Actually, when this happens, we should just fully integrate PRE into GVN.
2166
2167  cleanupGlobalSets();
2168  // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2169  // iteration.
2170  DeadBlocks.clear();
2171
2172  return Changed;
2173}
2174
2175bool GVN::processBlock(BasicBlock *BB) {
2176  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2177  // (and incrementing BI before processing an instruction).
2178  assert(InstrsToErase.empty() &&
2179         "We expect InstrsToErase to be empty across iterations");
2180  if (DeadBlocks.count(BB))
2181    return false;
2182
2183  // Clearing map before every BB because it can be used only for single BB.
2184  ReplaceOperandsWithMap.clear();
2185  bool ChangedFunction = false;
2186
2187  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2188       BI != BE;) {
2189    if (!ReplaceOperandsWithMap.empty())
2190      ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2191    ChangedFunction |= processInstruction(&*BI);
2192
2193    if (InstrsToErase.empty()) {
2194      ++BI;
2195      continue;
2196    }
2197
2198    // If we need some instructions deleted, do it now.
2199    NumGVNInstr += InstrsToErase.size();
2200
2201    // Avoid iterator invalidation.
2202    bool AtStart = BI == BB->begin();
2203    if (!AtStart)
2204      --BI;
2205
2206    for (auto *I : InstrsToErase) {
2207      assert(I->getParent() == BB && "Removing instruction from wrong block?");
2208      LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2209      salvageDebugInfo(*I);
2210      if (MD) MD->removeInstruction(I);
2211      LLVM_DEBUG(verifyRemoved(I));
2212      ICF->removeInstruction(I);
2213      I->eraseFromParent();
2214    }
2215    InstrsToErase.clear();
2216
2217    if (AtStart)
2218      BI = BB->begin();
2219    else
2220      ++BI;
2221  }
2222
2223  return ChangedFunction;
2224}
2225
2226// Instantiate an expression in a predecessor that lacked it.
2227bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2228                                    BasicBlock *Curr, unsigned int ValNo) {
2229  // Because we are going top-down through the block, all value numbers
2230  // will be available in the predecessor by the time we need them.  Any
2231  // that weren't originally present will have been instantiated earlier
2232  // in this loop.
2233  bool success = true;
2234  for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2235    Value *Op = Instr->getOperand(i);
2236    if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2237      continue;
2238    // This could be a newly inserted instruction, in which case, we won't
2239    // find a value number, and should give up before we hurt ourselves.
2240    // FIXME: Rewrite the infrastructure to let it easier to value number
2241    // and process newly inserted instructions.
2242    if (!VN.exists(Op)) {
2243      success = false;
2244      break;
2245    }
2246    uint32_t TValNo =
2247        VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2248    if (Value *V = findLeader(Pred, TValNo)) {
2249      Instr->setOperand(i, V);
2250    } else {
2251      success = false;
2252      break;
2253    }
2254  }
2255
2256  // Fail out if we encounter an operand that is not available in
2257  // the PRE predecessor.  This is typically because of loads which
2258  // are not value numbered precisely.
2259  if (!success)
2260    return false;
2261
2262  Instr->insertBefore(Pred->getTerminator());
2263  Instr->setName(Instr->getName() + ".pre");
2264  Instr->setDebugLoc(Instr->getDebugLoc());
2265
2266  unsigned Num = VN.lookupOrAdd(Instr);
2267  VN.add(Instr, Num);
2268
2269  // Update the availability map to include the new instruction.
2270  addToLeaderTable(Num, Instr, Pred);
2271  return true;
2272}
2273
2274bool GVN::performScalarPRE(Instruction *CurInst) {
2275  if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2276      isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2277      CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2278      isa<DbgInfoIntrinsic>(CurInst))
2279    return false;
2280
2281  // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2282  // sinking the compare again, and it would force the code generator to
2283  // move the i1 from processor flags or predicate registers into a general
2284  // purpose register.
2285  if (isa<CmpInst>(CurInst))
2286    return false;
2287
2288  // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2289  // sinking the addressing mode computation back to its uses. Extending the
2290  // GEP's live range increases the register pressure, and therefore it can
2291  // introduce unnecessary spills.
2292  //
2293  // This doesn't prevent Load PRE. PHI translation will make the GEP available
2294  // to the load by moving it to the predecessor block if necessary.
2295  if (isa<GetElementPtrInst>(CurInst))
2296    return false;
2297
2298  // We don't currently value number ANY inline asm calls.
2299  if (auto *CallB = dyn_cast<CallBase>(CurInst))
2300    if (CallB->isInlineAsm())
2301      return false;
2302
2303  uint32_t ValNo = VN.lookup(CurInst);
2304
2305  // Look for the predecessors for PRE opportunities.  We're
2306  // only trying to solve the basic diamond case, where
2307  // a value is computed in the successor and one predecessor,
2308  // but not the other.  We also explicitly disallow cases
2309  // where the successor is its own predecessor, because they're
2310  // more complicated to get right.
2311  unsigned NumWith = 0;
2312  unsigned NumWithout = 0;
2313  BasicBlock *PREPred = nullptr;
2314  BasicBlock *CurrentBlock = CurInst->getParent();
2315
2316  // Update the RPO numbers for this function.
2317  if (InvalidBlockRPONumbers)
2318    assignBlockRPONumber(*CurrentBlock->getParent());
2319
2320  SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2321  for (BasicBlock *P : predecessors(CurrentBlock)) {
2322    // We're not interested in PRE where blocks with predecessors that are
2323    // not reachable.
2324    if (!DT->isReachableFromEntry(P)) {
2325      NumWithout = 2;
2326      break;
2327    }
2328    // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2329    // when CurInst has operand defined in CurrentBlock (so it may be defined
2330    // by phi in the loop header).
2331    assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2332           "Invalid BlockRPONumber map.");
2333    if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2334        llvm::any_of(CurInst->operands(), [&](const Use &U) {
2335          if (auto *Inst = dyn_cast<Instruction>(U.get()))
2336            return Inst->getParent() == CurrentBlock;
2337          return false;
2338        })) {
2339      NumWithout = 2;
2340      break;
2341    }
2342
2343    uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2344    Value *predV = findLeader(P, TValNo);
2345    if (!predV) {
2346      predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2347      PREPred = P;
2348      ++NumWithout;
2349    } else if (predV == CurInst) {
2350      /* CurInst dominates this predecessor. */
2351      NumWithout = 2;
2352      break;
2353    } else {
2354      predMap.push_back(std::make_pair(predV, P));
2355      ++NumWith;
2356    }
2357  }
2358
2359  // Don't do PRE when it might increase code size, i.e. when
2360  // we would need to insert instructions in more than one pred.
2361  if (NumWithout > 1 || NumWith == 0)
2362    return false;
2363
2364  // We may have a case where all predecessors have the instruction,
2365  // and we just need to insert a phi node. Otherwise, perform
2366  // insertion.
2367  Instruction *PREInstr = nullptr;
2368
2369  if (NumWithout != 0) {
2370    if (!isSafeToSpeculativelyExecute(CurInst)) {
2371      // It is only valid to insert a new instruction if the current instruction
2372      // is always executed. An instruction with implicit control flow could
2373      // prevent us from doing it. If we cannot speculate the execution, then
2374      // PRE should be prohibited.
2375      if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2376        return false;
2377    }
2378
2379    // Don't do PRE across indirect branch.
2380    if (isa<IndirectBrInst>(PREPred->getTerminator()))
2381      return false;
2382
2383    // Don't do PRE across callbr.
2384    // FIXME: Can we do this across the fallthrough edge?
2385    if (isa<CallBrInst>(PREPred->getTerminator()))
2386      return false;
2387
2388    // We can't do PRE safely on a critical edge, so instead we schedule
2389    // the edge to be split and perform the PRE the next time we iterate
2390    // on the function.
2391    unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2392    if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2393      toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2394      return false;
2395    }
2396    // We need to insert somewhere, so let's give it a shot
2397    PREInstr = CurInst->clone();
2398    if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2399      // If we failed insertion, make sure we remove the instruction.
2400      LLVM_DEBUG(verifyRemoved(PREInstr));
2401      PREInstr->deleteValue();
2402      return false;
2403    }
2404  }
2405
2406  // Either we should have filled in the PRE instruction, or we should
2407  // not have needed insertions.
2408  assert(PREInstr != nullptr || NumWithout == 0);
2409
2410  ++NumGVNPRE;
2411
2412  // Create a PHI to make the value available in this block.
2413  PHINode *Phi =
2414      PHINode::Create(CurInst->getType(), predMap.size(),
2415                      CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2416  for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2417    if (Value *V = predMap[i].first) {
2418      // If we use an existing value in this phi, we have to patch the original
2419      // value because the phi will be used to replace a later value.
2420      patchReplacementInstruction(CurInst, V);
2421      Phi->addIncoming(V, predMap[i].second);
2422    } else
2423      Phi->addIncoming(PREInstr, PREPred);
2424  }
2425
2426  VN.add(Phi, ValNo);
2427  // After creating a new PHI for ValNo, the phi translate result for ValNo will
2428  // be changed, so erase the related stale entries in phi translate cache.
2429  VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2430  addToLeaderTable(ValNo, Phi, CurrentBlock);
2431  Phi->setDebugLoc(CurInst->getDebugLoc());
2432  CurInst->replaceAllUsesWith(Phi);
2433  if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2434    MD->invalidateCachedPointerInfo(Phi);
2435  VN.erase(CurInst);
2436  removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2437
2438  LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2439  if (MD)
2440    MD->removeInstruction(CurInst);
2441  LLVM_DEBUG(verifyRemoved(CurInst));
2442  // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2443  // some assertion failures.
2444  ICF->removeInstruction(CurInst);
2445  CurInst->eraseFromParent();
2446  ++NumGVNInstr;
2447
2448  return true;
2449}
2450
2451/// Perform a purely local form of PRE that looks for diamond
2452/// control flow patterns and attempts to perform simple PRE at the join point.
2453bool GVN::performPRE(Function &F) {
2454  bool Changed = false;
2455  for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2456    // Nothing to PRE in the entry block.
2457    if (CurrentBlock == &F.getEntryBlock())
2458      continue;
2459
2460    // Don't perform PRE on an EH pad.
2461    if (CurrentBlock->isEHPad())
2462      continue;
2463
2464    for (BasicBlock::iterator BI = CurrentBlock->begin(),
2465                              BE = CurrentBlock->end();
2466         BI != BE;) {
2467      Instruction *CurInst = &*BI++;
2468      Changed |= performScalarPRE(CurInst);
2469    }
2470  }
2471
2472  if (splitCriticalEdges())
2473    Changed = true;
2474
2475  return Changed;
2476}
2477
2478/// Split the critical edge connecting the given two blocks, and return
2479/// the block inserted to the critical edge.
2480BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2481  BasicBlock *BB =
2482      SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT, LI));
2483  if (MD)
2484    MD->invalidateCachedPredecessors();
2485  InvalidBlockRPONumbers = true;
2486  return BB;
2487}
2488
2489/// Split critical edges found during the previous
2490/// iteration that may enable further optimization.
2491bool GVN::splitCriticalEdges() {
2492  if (toSplit.empty())
2493    return false;
2494  do {
2495    std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2496    SplitCriticalEdge(Edge.first, Edge.second,
2497                      CriticalEdgeSplittingOptions(DT, LI));
2498  } while (!toSplit.empty());
2499  if (MD) MD->invalidateCachedPredecessors();
2500  InvalidBlockRPONumbers = true;
2501  return true;
2502}
2503
2504/// Executes one iteration of GVN
2505bool GVN::iterateOnFunction(Function &F) {
2506  cleanupGlobalSets();
2507
2508  // Top-down walk of the dominator tree
2509  bool Changed = false;
2510  // Needed for value numbering with phi construction to work.
2511  // RPOT walks the graph in its constructor and will not be invalidated during
2512  // processBlock.
2513  ReversePostOrderTraversal<Function *> RPOT(&F);
2514
2515  for (BasicBlock *BB : RPOT)
2516    Changed |= processBlock(BB);
2517
2518  return Changed;
2519}
2520
2521void GVN::cleanupGlobalSets() {
2522  VN.clear();
2523  LeaderTable.clear();
2524  BlockRPONumber.clear();
2525  TableAllocator.Reset();
2526  ICF->clear();
2527  InvalidBlockRPONumbers = true;
2528}
2529
2530/// Verify that the specified instruction does not occur in our
2531/// internal data structures.
2532void GVN::verifyRemoved(const Instruction *Inst) const {
2533  VN.verifyRemoved(Inst);
2534
2535  // Walk through the value number scope to make sure the instruction isn't
2536  // ferreted away in it.
2537  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2538       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2539    const LeaderTableEntry *Node = &I->second;
2540    assert(Node->Val != Inst && "Inst still in value numbering scope!");
2541
2542    while (Node->Next) {
2543      Node = Node->Next;
2544      assert(Node->Val != Inst && "Inst still in value numbering scope!");
2545    }
2546  }
2547}
2548
2549/// BB is declared dead, which implied other blocks become dead as well. This
2550/// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2551/// live successors, update their phi nodes by replacing the operands
2552/// corresponding to dead blocks with UndefVal.
2553void GVN::addDeadBlock(BasicBlock *BB) {
2554  SmallVector<BasicBlock *, 4> NewDead;
2555  SmallSetVector<BasicBlock *, 4> DF;
2556
2557  NewDead.push_back(BB);
2558  while (!NewDead.empty()) {
2559    BasicBlock *D = NewDead.pop_back_val();
2560    if (DeadBlocks.count(D))
2561      continue;
2562
2563    // All blocks dominated by D are dead.
2564    SmallVector<BasicBlock *, 8> Dom;
2565    DT->getDescendants(D, Dom);
2566    DeadBlocks.insert(Dom.begin(), Dom.end());
2567
2568    // Figure out the dominance-frontier(D).
2569    for (BasicBlock *B : Dom) {
2570      for (BasicBlock *S : successors(B)) {
2571        if (DeadBlocks.count(S))
2572          continue;
2573
2574        bool AllPredDead = true;
2575        for (BasicBlock *P : predecessors(S))
2576          if (!DeadBlocks.count(P)) {
2577            AllPredDead = false;
2578            break;
2579          }
2580
2581        if (!AllPredDead) {
2582          // S could be proved dead later on. That is why we don't update phi
2583          // operands at this moment.
2584          DF.insert(S);
2585        } else {
2586          // While S is not dominated by D, it is dead by now. This could take
2587          // place if S already have a dead predecessor before D is declared
2588          // dead.
2589          NewDead.push_back(S);
2590        }
2591      }
2592    }
2593  }
2594
2595  // For the dead blocks' live successors, update their phi nodes by replacing
2596  // the operands corresponding to dead blocks with UndefVal.
2597  for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2598        I != E; I++) {
2599    BasicBlock *B = *I;
2600    if (DeadBlocks.count(B))
2601      continue;
2602
2603    // First, split the critical edges. This might also create additional blocks
2604    // to preserve LoopSimplify form and adjust edges accordingly.
2605    SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
2606    for (BasicBlock *P : Preds) {
2607      if (!DeadBlocks.count(P))
2608        continue;
2609
2610      if (llvm::any_of(successors(P),
2611                       [B](BasicBlock *Succ) { return Succ == B; }) &&
2612          isCriticalEdge(P->getTerminator(), B)) {
2613        if (BasicBlock *S = splitCriticalEdges(P, B))
2614          DeadBlocks.insert(P = S);
2615      }
2616    }
2617
2618    // Now undef the incoming values from the dead predecessors.
2619    for (BasicBlock *P : predecessors(B)) {
2620      if (!DeadBlocks.count(P))
2621        continue;
2622      for (PHINode &Phi : B->phis()) {
2623        Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
2624        if (MD)
2625          MD->invalidateCachedPointerInfo(&Phi);
2626      }
2627    }
2628  }
2629}
2630
2631// If the given branch is recognized as a foldable branch (i.e. conditional
2632// branch with constant condition), it will perform following analyses and
2633// transformation.
2634//  1) If the dead out-coming edge is a critical-edge, split it. Let
2635//     R be the target of the dead out-coming edge.
2636//  1) Identify the set of dead blocks implied by the branch's dead outcoming
2637//     edge. The result of this step will be {X| X is dominated by R}
2638//  2) Identify those blocks which haves at least one dead predecessor. The
2639//     result of this step will be dominance-frontier(R).
2640//  3) Update the PHIs in DF(R) by replacing the operands corresponding to
2641//     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2642//
2643// Return true iff *NEW* dead code are found.
2644bool GVN::processFoldableCondBr(BranchInst *BI) {
2645  if (!BI || BI->isUnconditional())
2646    return false;
2647
2648  // If a branch has two identical successors, we cannot declare either dead.
2649  if (BI->getSuccessor(0) == BI->getSuccessor(1))
2650    return false;
2651
2652  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2653  if (!Cond)
2654    return false;
2655
2656  BasicBlock *DeadRoot =
2657      Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
2658  if (DeadBlocks.count(DeadRoot))
2659    return false;
2660
2661  if (!DeadRoot->getSinglePredecessor())
2662    DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2663
2664  addDeadBlock(DeadRoot);
2665  return true;
2666}
2667
2668// performPRE() will trigger assert if it comes across an instruction without
2669// associated val-num. As it normally has far more live instructions than dead
2670// instructions, it makes more sense just to "fabricate" a val-number for the
2671// dead code than checking if instruction involved is dead or not.
2672void GVN::assignValNumForDeadCode() {
2673  for (BasicBlock *BB : DeadBlocks) {
2674    for (Instruction &Inst : *BB) {
2675      unsigned ValNum = VN.lookupOrAdd(&Inst);
2676      addToLeaderTable(ValNum, &Inst, BB);
2677    }
2678  }
2679}
2680
2681class llvm::gvn::GVNLegacyPass : public FunctionPass {
2682public:
2683  static char ID; // Pass identification, replacement for typeid
2684
2685  explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
2686      : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
2687    initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
2688  }
2689
2690  bool runOnFunction(Function &F) override {
2691    if (skipFunction(F))
2692      return false;
2693
2694    auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2695
2696    return Impl.runImpl(
2697        F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
2698        getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
2699        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2700        getAnalysis<AAResultsWrapperPass>().getAAResults(),
2701        NoMemDepAnalysis
2702            ? nullptr
2703            : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
2704        LIWP ? &LIWP->getLoopInfo() : nullptr,
2705        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
2706  }
2707
2708  void getAnalysisUsage(AnalysisUsage &AU) const override {
2709    AU.addRequired<AssumptionCacheTracker>();
2710    AU.addRequired<DominatorTreeWrapperPass>();
2711    AU.addRequired<TargetLibraryInfoWrapperPass>();
2712    AU.addRequired<LoopInfoWrapperPass>();
2713    if (!NoMemDepAnalysis)
2714      AU.addRequired<MemoryDependenceWrapperPass>();
2715    AU.addRequired<AAResultsWrapperPass>();
2716
2717    AU.addPreserved<DominatorTreeWrapperPass>();
2718    AU.addPreserved<GlobalsAAWrapperPass>();
2719    AU.addPreserved<TargetLibraryInfoWrapperPass>();
2720    AU.addPreserved<LoopInfoWrapperPass>();
2721    AU.addPreservedID(LoopSimplifyID);
2722    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2723  }
2724
2725private:
2726  bool NoMemDepAnalysis;
2727  GVN Impl;
2728};
2729
2730char GVNLegacyPass::ID = 0;
2731
2732INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2733INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2734INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2735INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2736INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2737INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2738INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2739INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2740INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
2741
2742// The public interface to this file...
2743FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
2744  return new GVNLegacyPass(NoMemDepAnalysis);
2745}
2746