1//===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass hoists and/or decomposes/recomposes integer division and remainder
10// instructions to enable CFG improvements and better codegen.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar/DivRemPairs.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/Analysis/GlobalsModRef.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/IR/Dominators.h"
21#include "llvm/IR/Function.h"
22#include "llvm/IR/PatternMatch.h"
23#include "llvm/InitializePasses.h"
24#include "llvm/Pass.h"
25#include "llvm/Support/DebugCounter.h"
26#include "llvm/Transforms/Scalar.h"
27#include "llvm/Transforms/Utils/BypassSlowDivision.h"
28
29using namespace llvm;
30using namespace llvm::PatternMatch;
31
32#define DEBUG_TYPE "div-rem-pairs"
33STATISTIC(NumPairs, "Number of div/rem pairs");
34STATISTIC(NumRecomposed, "Number of instructions recomposed");
35STATISTIC(NumHoisted, "Number of instructions hoisted");
36STATISTIC(NumDecomposed, "Number of instructions decomposed");
37DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
38              "Controls transformations in div-rem-pairs pass");
39
40namespace {
41struct ExpandedMatch {
42  DivRemMapKey Key;
43  Instruction *Value;
44};
45} // namespace
46
47/// See if we can match: (which is the form we expand into)
48///   X - ((X ?/ Y) * Y)
49/// which is equivalent to:
50///   X ?% Y
51static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
52  Value *Dividend, *XroundedDownToMultipleOfY;
53  if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
54    return llvm::None;
55
56  Value *Divisor;
57  Instruction *Div;
58  // Look for  ((X / Y) * Y)
59  if (!match(
60          XroundedDownToMultipleOfY,
61          m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
62                               m_Instruction(Div)),
63                  m_Deferred(Divisor))))
64    return llvm::None;
65
66  ExpandedMatch M;
67  M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
68  M.Key.Dividend = Dividend;
69  M.Key.Divisor = Divisor;
70  M.Value = &I;
71  return M;
72}
73
74/// A thin wrapper to store two values that we matched as div-rem pair.
75/// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
76struct DivRemPairWorklistEntry {
77  /// The actual udiv/sdiv instruction. Source of truth.
78  AssertingVH<Instruction> DivInst;
79
80  /// The instruction that we have matched as a remainder instruction.
81  /// Should only be used as Value, don't introspect it.
82  AssertingVH<Instruction> RemInst;
83
84  DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
85      : DivInst(DivInst_), RemInst(RemInst_) {
86    assert((DivInst->getOpcode() == Instruction::UDiv ||
87            DivInst->getOpcode() == Instruction::SDiv) &&
88           "Not a division.");
89    assert(DivInst->getType() == RemInst->getType() && "Types should match.");
90    // We can't check anything else about remainder instruction,
91    // it's not strictly required to be a urem/srem.
92  }
93
94  /// The type for this pair, identical for both the div and rem.
95  Type *getType() const { return DivInst->getType(); }
96
97  /// Is this pair signed or unsigned?
98  bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
99
100  /// In this pair, what are the divident and divisor?
101  Value *getDividend() const { return DivInst->getOperand(0); }
102  Value *getDivisor() const { return DivInst->getOperand(1); }
103
104  bool isRemExpanded() const {
105    switch (RemInst->getOpcode()) {
106    case Instruction::SRem:
107    case Instruction::URem:
108      return false; // single 'rem' instruction - unexpanded form.
109    default:
110      return true; // anything else means we have remainder in expanded form.
111    }
112  }
113};
114using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
115
116/// Find matching pairs of integer div/rem ops (they have the same numerator,
117/// denominator, and signedness). Place those pairs into a worklist for further
118/// processing. This indirection is needed because we have to use TrackingVH<>
119/// because we will be doing RAUW, and if one of the rem instructions we change
120/// happens to be an input to another div/rem in the maps, we'd have problems.
121static DivRemWorklistTy getWorklist(Function &F) {
122  // Insert all divide and remainder instructions into maps keyed by their
123  // operands and opcode (signed or unsigned).
124  DenseMap<DivRemMapKey, Instruction *> DivMap;
125  // Use a MapVector for RemMap so that instructions are moved/inserted in a
126  // deterministic order.
127  MapVector<DivRemMapKey, Instruction *> RemMap;
128  for (auto &BB : F) {
129    for (auto &I : BB) {
130      if (I.getOpcode() == Instruction::SDiv)
131        DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
132      else if (I.getOpcode() == Instruction::UDiv)
133        DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
134      else if (I.getOpcode() == Instruction::SRem)
135        RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
136      else if (I.getOpcode() == Instruction::URem)
137        RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
138      else if (auto Match = matchExpandedRem(I))
139        RemMap[Match->Key] = Match->Value;
140    }
141  }
142
143  // We'll accumulate the matching pairs of div-rem instructions here.
144  DivRemWorklistTy Worklist;
145
146  // We can iterate over either map because we are only looking for matched
147  // pairs. Choose remainders for efficiency because they are usually even more
148  // rare than division.
149  for (auto &RemPair : RemMap) {
150    // Find the matching division instruction from the division map.
151    Instruction *DivInst = DivMap[RemPair.first];
152    if (!DivInst)
153      continue;
154
155    // We have a matching pair of div/rem instructions.
156    NumPairs++;
157    Instruction *RemInst = RemPair.second;
158
159    // Place it in the worklist.
160    Worklist.emplace_back(DivInst, RemInst);
161  }
162
163  return Worklist;
164}
165
166/// Find matching pairs of integer div/rem ops (they have the same numerator,
167/// denominator, and signedness). If they exist in different basic blocks, bring
168/// them together by hoisting or replace the common division operation that is
169/// implicit in the remainder:
170/// X % Y <--> X - ((X / Y) * Y).
171///
172/// We can largely ignore the normal safety and cost constraints on speculation
173/// of these ops when we find a matching pair. This is because we are already
174/// guaranteed that any exceptions and most cost are already incurred by the
175/// first member of the pair.
176///
177/// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
178/// SimplifyCFG, but it's split off on its own because it's different enough
179/// that it doesn't quite match the stated objectives of those passes.
180static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
181                           const DominatorTree &DT) {
182  bool Changed = false;
183
184  // Get the matching pairs of div-rem instructions. We want this extra
185  // indirection to avoid dealing with having to RAUW the keys of the maps.
186  DivRemWorklistTy Worklist = getWorklist(F);
187
188  // Process each entry in the worklist.
189  for (DivRemPairWorklistEntry &E : Worklist) {
190    if (!DebugCounter::shouldExecute(DRPCounter))
191      continue;
192
193    bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
194
195    auto &DivInst = E.DivInst;
196    auto &RemInst = E.RemInst;
197
198    const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
199    (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
200
201    if (HasDivRemOp && E.isRemExpanded()) {
202      // The target supports div+rem but the rem is expanded.
203      // We should recompose it first.
204      Value *X = E.getDividend();
205      Value *Y = E.getDivisor();
206      Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
207                                          : BinaryOperator::CreateURem(X, Y);
208      // Note that we place it right next to the original expanded instruction,
209      // and letting further handling to move it if needed.
210      RealRem->setName(RemInst->getName() + ".recomposed");
211      RealRem->insertAfter(RemInst);
212      Instruction *OrigRemInst = RemInst;
213      // Update AssertingVH<> with new instruction so it doesn't assert.
214      RemInst = RealRem;
215      // And replace the original instruction with the new one.
216      OrigRemInst->replaceAllUsesWith(RealRem);
217      OrigRemInst->eraseFromParent();
218      NumRecomposed++;
219      // Note that we have left ((X / Y) * Y) around.
220      // If it had other uses we could rewrite it as X - X % Y
221    }
222
223    assert((!E.isRemExpanded() || !HasDivRemOp) &&
224           "*If* the target supports div-rem, then by now the RemInst *is* "
225           "Instruction::[US]Rem.");
226
227    // If the target supports div+rem and the instructions are in the same block
228    // already, there's nothing to do. The backend should handle this. If the
229    // target does not support div+rem, then we will decompose the rem.
230    if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
231      continue;
232
233    bool DivDominates = DT.dominates(DivInst, RemInst);
234    if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
235      // We have matching div-rem pair, but they are in two different blocks,
236      // neither of which dominates one another.
237      // FIXME: We could hoist both ops to the common predecessor block?
238      continue;
239    }
240
241    // The target does not have a single div/rem operation,
242    // and the rem is already in expanded form. Nothing to do.
243    if (!HasDivRemOp && E.isRemExpanded())
244      continue;
245
246    if (HasDivRemOp) {
247      // The target has a single div/rem operation. Hoist the lower instruction
248      // to make the matched pair visible to the backend.
249      if (DivDominates)
250        RemInst->moveAfter(DivInst);
251      else
252        DivInst->moveAfter(RemInst);
253      NumHoisted++;
254    } else {
255      // The target does not have a single div/rem operation,
256      // and the rem is *not* in a already-expanded form.
257      // Decompose the remainder calculation as:
258      // X % Y --> X - ((X / Y) * Y).
259
260      assert(!RemOriginallyWasInExpandedForm &&
261             "We should not be expanding if the rem was in expanded form to "
262             "begin with.");
263
264      Value *X = E.getDividend();
265      Value *Y = E.getDivisor();
266      Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
267      Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
268
269      // If the remainder dominates, then hoist the division up to that block:
270      //
271      // bb1:
272      //   %rem = srem %x, %y
273      // bb2:
274      //   %div = sdiv %x, %y
275      // -->
276      // bb1:
277      //   %div = sdiv %x, %y
278      //   %mul = mul %div, %y
279      //   %rem = sub %x, %mul
280      //
281      // If the division dominates, it's already in the right place. The mul+sub
282      // will be in a different block because we don't assume that they are
283      // cheap to speculatively execute:
284      //
285      // bb1:
286      //   %div = sdiv %x, %y
287      // bb2:
288      //   %rem = srem %x, %y
289      // -->
290      // bb1:
291      //   %div = sdiv %x, %y
292      // bb2:
293      //   %mul = mul %div, %y
294      //   %rem = sub %x, %mul
295      //
296      // If the div and rem are in the same block, we do the same transform,
297      // but any code movement would be within the same block.
298
299      if (!DivDominates)
300        DivInst->moveBefore(RemInst);
301      Mul->insertAfter(RemInst);
302      Sub->insertAfter(Mul);
303
304      // Now kill the explicit remainder. We have replaced it with:
305      // (sub X, (mul (div X, Y), Y)
306      Sub->setName(RemInst->getName() + ".decomposed");
307      Instruction *OrigRemInst = RemInst;
308      // Update AssertingVH<> with new instruction so it doesn't assert.
309      RemInst = Sub;
310      // And replace the original instruction with the new one.
311      OrigRemInst->replaceAllUsesWith(Sub);
312      OrigRemInst->eraseFromParent();
313      NumDecomposed++;
314    }
315    Changed = true;
316  }
317
318  return Changed;
319}
320
321// Pass manager boilerplate below here.
322
323namespace {
324struct DivRemPairsLegacyPass : public FunctionPass {
325  static char ID;
326  DivRemPairsLegacyPass() : FunctionPass(ID) {
327    initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
328  }
329
330  void getAnalysisUsage(AnalysisUsage &AU) const override {
331    AU.addRequired<DominatorTreeWrapperPass>();
332    AU.addRequired<TargetTransformInfoWrapperPass>();
333    AU.setPreservesCFG();
334    AU.addPreserved<DominatorTreeWrapperPass>();
335    AU.addPreserved<GlobalsAAWrapperPass>();
336    FunctionPass::getAnalysisUsage(AU);
337  }
338
339  bool runOnFunction(Function &F) override {
340    if (skipFunction(F))
341      return false;
342    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
343    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
344    return optimizeDivRem(F, TTI, DT);
345  }
346};
347} // namespace
348
349char DivRemPairsLegacyPass::ID = 0;
350INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
351                      "Hoist/decompose integer division and remainder", false,
352                      false)
353INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
354INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
355                    "Hoist/decompose integer division and remainder", false,
356                    false)
357FunctionPass *llvm::createDivRemPairsPass() {
358  return new DivRemPairsLegacyPass();
359}
360
361PreservedAnalyses DivRemPairsPass::run(Function &F,
362                                       FunctionAnalysisManager &FAM) {
363  TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
364  DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
365  if (!optimizeDivRem(F, TTI, DT))
366    return PreservedAnalyses::all();
367  // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
368  PreservedAnalyses PA;
369  PA.preserveSet<CFGAnalyses>();
370  PA.preserve<GlobalsAA>();
371  return PA;
372}
373