1//===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Aggressive Dead Code Elimination pass.  This pass
10// optimistically assumes that all instructions are dead until proven otherwise,
11// allowing it to eliminate dead computations that other DCE passes do not
12// catch, particularly involving loop computations.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Scalar/ADCE.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/GraphTraits.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/PostOrderIterator.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/DomTreeUpdater.h"
27#include "llvm/Analysis/GlobalsModRef.h"
28#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/PostDominators.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/DebugInfoMetadata.h"
33#include "llvm/IR/DebugLoc.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/IRBuilder.h"
37#include "llvm/IR/InstIterator.h"
38#include "llvm/IR/InstrTypes.h"
39#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/PassManager.h"
43#include "llvm/IR/Use.h"
44#include "llvm/IR/Value.h"
45#include "llvm/InitializePasses.h"
46#include "llvm/Pass.h"
47#include "llvm/ProfileData/InstrProf.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Transforms/Scalar.h"
53#include <cassert>
54#include <cstddef>
55#include <utility>
56
57using namespace llvm;
58
59#define DEBUG_TYPE "adce"
60
61STATISTIC(NumRemoved, "Number of instructions removed");
62STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
63
64// This is a temporary option until we change the interface to this pass based
65// on optimization level.
66static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
67                                           cl::init(true), cl::Hidden);
68
69// This option enables removing of may-be-infinite loops which have no other
70// effect.
71static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
72                                 cl::Hidden);
73
74namespace {
75
76/// Information about Instructions
77struct InstInfoType {
78  /// True if the associated instruction is live.
79  bool Live = false;
80
81  /// Quick access to information for block containing associated Instruction.
82  struct BlockInfoType *Block = nullptr;
83};
84
85/// Information about basic blocks relevant to dead code elimination.
86struct BlockInfoType {
87  /// True when this block contains a live instructions.
88  bool Live = false;
89
90  /// True when this block ends in an unconditional branch.
91  bool UnconditionalBranch = false;
92
93  /// True when this block is known to have live PHI nodes.
94  bool HasLivePhiNodes = false;
95
96  /// Control dependence sources need to be live for this block.
97  bool CFLive = false;
98
99  /// Quick access to the LiveInfo for the terminator,
100  /// holds the value &InstInfo[Terminator]
101  InstInfoType *TerminatorLiveInfo = nullptr;
102
103  /// Corresponding BasicBlock.
104  BasicBlock *BB = nullptr;
105
106  /// Cache of BB->getTerminator().
107  Instruction *Terminator = nullptr;
108
109  /// Post-order numbering of reverse control flow graph.
110  unsigned PostOrder;
111
112  bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
113};
114
115class AggressiveDeadCodeElimination {
116  Function &F;
117
118  // ADCE does not use DominatorTree per se, but it updates it to preserve the
119  // analysis.
120  DominatorTree *DT;
121  PostDominatorTree &PDT;
122
123  /// Mapping of blocks to associated information, an element in BlockInfoVec.
124  /// Use MapVector to get deterministic iteration order.
125  MapVector<BasicBlock *, BlockInfoType> BlockInfo;
126  bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
127
128  /// Mapping of instructions to associated information.
129  DenseMap<Instruction *, InstInfoType> InstInfo;
130  bool isLive(Instruction *I) { return InstInfo[I].Live; }
131
132  /// Instructions known to be live where we need to mark
133  /// reaching definitions as live.
134  SmallVector<Instruction *, 128> Worklist;
135
136  /// Debug info scopes around a live instruction.
137  SmallPtrSet<const Metadata *, 32> AliveScopes;
138
139  /// Set of blocks with not known to have live terminators.
140  SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators;
141
142  /// The set of blocks which we have determined whose control
143  /// dependence sources must be live and which have not had
144  /// those dependences analyzed.
145  SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
146
147  /// Set up auxiliary data structures for Instructions and BasicBlocks and
148  /// initialize the Worklist to the set of must-be-live Instruscions.
149  void initialize();
150
151  /// Return true for operations which are always treated as live.
152  bool isAlwaysLive(Instruction &I);
153
154  /// Return true for instrumentation instructions for value profiling.
155  bool isInstrumentsConstant(Instruction &I);
156
157  /// Propagate liveness to reaching definitions.
158  void markLiveInstructions();
159
160  /// Mark an instruction as live.
161  void markLive(Instruction *I);
162
163  /// Mark a block as live.
164  void markLive(BlockInfoType &BB);
165  void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
166
167  /// Mark terminators of control predecessors of a PHI node live.
168  void markPhiLive(PHINode *PN);
169
170  /// Record the Debug Scopes which surround live debug information.
171  void collectLiveScopes(const DILocalScope &LS);
172  void collectLiveScopes(const DILocation &DL);
173
174  /// Analyze dead branches to find those whose branches are the sources
175  /// of control dependences impacting a live block. Those branches are
176  /// marked live.
177  void markLiveBranchesFromControlDependences();
178
179  /// Remove instructions not marked live, return if any instruction was
180  /// removed.
181  bool removeDeadInstructions();
182
183  /// Identify connected sections of the control flow graph which have
184  /// dead terminators and rewrite the control flow graph to remove them.
185  void updateDeadRegions();
186
187  /// Set the BlockInfo::PostOrder field based on a post-order
188  /// numbering of the reverse control flow graph.
189  void computeReversePostOrder();
190
191  /// Make the terminator of this block an unconditional branch to \p Target.
192  void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
193
194public:
195  AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
196                                PostDominatorTree &PDT)
197      : F(F), DT(DT), PDT(PDT) {}
198
199  bool performDeadCodeElimination();
200};
201
202} // end anonymous namespace
203
204bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
205  initialize();
206  markLiveInstructions();
207  return removeDeadInstructions();
208}
209
210static bool isUnconditionalBranch(Instruction *Term) {
211  auto *BR = dyn_cast<BranchInst>(Term);
212  return BR && BR->isUnconditional();
213}
214
215void AggressiveDeadCodeElimination::initialize() {
216  auto NumBlocks = F.size();
217
218  // We will have an entry in the map for each block so we grow the
219  // structure to twice that size to keep the load factor low in the hash table.
220  BlockInfo.reserve(NumBlocks);
221  size_t NumInsts = 0;
222
223  // Iterate over blocks and initialize BlockInfoVec entries, count
224  // instructions to size the InstInfo hash table.
225  for (auto &BB : F) {
226    NumInsts += BB.size();
227    auto &Info = BlockInfo[&BB];
228    Info.BB = &BB;
229    Info.Terminator = BB.getTerminator();
230    Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
231  }
232
233  // Initialize instruction map and set pointers to block info.
234  InstInfo.reserve(NumInsts);
235  for (auto &BBInfo : BlockInfo)
236    for (Instruction &I : *BBInfo.second.BB)
237      InstInfo[&I].Block = &BBInfo.second;
238
239  // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
240  // add any more elements to either after this point.
241  for (auto &BBInfo : BlockInfo)
242    BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
243
244  // Collect the set of "root" instructions that are known live.
245  for (Instruction &I : instructions(F))
246    if (isAlwaysLive(I))
247      markLive(&I);
248
249  if (!RemoveControlFlowFlag)
250    return;
251
252  if (!RemoveLoops) {
253    // This stores state for the depth-first iterator. In addition
254    // to recording which nodes have been visited we also record whether
255    // a node is currently on the "stack" of active ancestors of the current
256    // node.
257    using StatusMap = DenseMap<BasicBlock *, bool>;
258
259    class DFState : public StatusMap {
260    public:
261      std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
262        return StatusMap::insert(std::make_pair(BB, true));
263      }
264
265      // Invoked after we have visited all children of a node.
266      void completed(BasicBlock *BB) { (*this)[BB] = false; }
267
268      // Return true if \p BB is currently on the active stack
269      // of ancestors.
270      bool onStack(BasicBlock *BB) {
271        auto Iter = find(BB);
272        return Iter != end() && Iter->second;
273      }
274    } State;
275
276    State.reserve(F.size());
277    // Iterate over blocks in depth-first pre-order and
278    // treat all edges to a block already seen as loop back edges
279    // and mark the branch live it if there is a back edge.
280    for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
281      Instruction *Term = BB->getTerminator();
282      if (isLive(Term))
283        continue;
284
285      for (auto *Succ : successors(BB))
286        if (State.onStack(Succ)) {
287          // back edge....
288          markLive(Term);
289          break;
290        }
291    }
292  }
293
294  // Mark blocks live if there is no path from the block to a
295  // return of the function.
296  // We do this by seeing which of the postdomtree root children exit the
297  // program, and for all others, mark the subtree live.
298  for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
299    auto *BB = PDTChild->getBlock();
300    auto &Info = BlockInfo[BB];
301    // Real function return
302    if (isa<ReturnInst>(Info.Terminator)) {
303      LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
304                        << '\n';);
305      continue;
306    }
307
308    // This child is something else, like an infinite loop.
309    for (auto DFNode : depth_first(PDTChild))
310      markLive(BlockInfo[DFNode->getBlock()].Terminator);
311  }
312
313  // Treat the entry block as always live
314  auto *BB = &F.getEntryBlock();
315  auto &EntryInfo = BlockInfo[BB];
316  EntryInfo.Live = true;
317  if (EntryInfo.UnconditionalBranch)
318    markLive(EntryInfo.Terminator);
319
320  // Build initial collection of blocks with dead terminators
321  for (auto &BBInfo : BlockInfo)
322    if (!BBInfo.second.terminatorIsLive())
323      BlocksWithDeadTerminators.insert(BBInfo.second.BB);
324}
325
326bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
327  // TODO -- use llvm::isInstructionTriviallyDead
328  if (I.isEHPad() || I.mayHaveSideEffects()) {
329    // Skip any value profile instrumentation calls if they are
330    // instrumenting constants.
331    if (isInstrumentsConstant(I))
332      return false;
333    return true;
334  }
335  if (!I.isTerminator())
336    return false;
337  if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
338    return false;
339  return true;
340}
341
342// Check if this instruction is a runtime call for value profiling and
343// if it's instrumenting a constant.
344bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
345  // TODO -- move this test into llvm::isInstructionTriviallyDead
346  if (CallInst *CI = dyn_cast<CallInst>(&I))
347    if (Function *Callee = CI->getCalledFunction())
348      if (Callee->getName().equals(getInstrProfValueProfFuncName()))
349        if (isa<Constant>(CI->getArgOperand(0)))
350          return true;
351  return false;
352}
353
354void AggressiveDeadCodeElimination::markLiveInstructions() {
355  // Propagate liveness backwards to operands.
356  do {
357    // Worklist holds newly discovered live instructions
358    // where we need to mark the inputs as live.
359    while (!Worklist.empty()) {
360      Instruction *LiveInst = Worklist.pop_back_val();
361      LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););
362
363      for (Use &OI : LiveInst->operands())
364        if (Instruction *Inst = dyn_cast<Instruction>(OI))
365          markLive(Inst);
366
367      if (auto *PN = dyn_cast<PHINode>(LiveInst))
368        markPhiLive(PN);
369    }
370
371    // After data flow liveness has been identified, examine which branch
372    // decisions are required to determine live instructions are executed.
373    markLiveBranchesFromControlDependences();
374
375  } while (!Worklist.empty());
376}
377
378void AggressiveDeadCodeElimination::markLive(Instruction *I) {
379  auto &Info = InstInfo[I];
380  if (Info.Live)
381    return;
382
383  LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
384  Info.Live = true;
385  Worklist.push_back(I);
386
387  // Collect the live debug info scopes attached to this instruction.
388  if (const DILocation *DL = I->getDebugLoc())
389    collectLiveScopes(*DL);
390
391  // Mark the containing block live
392  auto &BBInfo = *Info.Block;
393  if (BBInfo.Terminator == I) {
394    BlocksWithDeadTerminators.remove(BBInfo.BB);
395    // For live terminators, mark destination blocks
396    // live to preserve this control flow edges.
397    if (!BBInfo.UnconditionalBranch)
398      for (auto *BB : successors(I->getParent()))
399        markLive(BB);
400  }
401  markLive(BBInfo);
402}
403
404void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
405  if (BBInfo.Live)
406    return;
407  LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
408  BBInfo.Live = true;
409  if (!BBInfo.CFLive) {
410    BBInfo.CFLive = true;
411    NewLiveBlocks.insert(BBInfo.BB);
412  }
413
414  // Mark unconditional branches at the end of live
415  // blocks as live since there is no work to do for them later
416  if (BBInfo.UnconditionalBranch)
417    markLive(BBInfo.Terminator);
418}
419
420void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
421  if (!AliveScopes.insert(&LS).second)
422    return;
423
424  if (isa<DISubprogram>(LS))
425    return;
426
427  // Tail-recurse through the scope chain.
428  collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
429}
430
431void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
432  // Even though DILocations are not scopes, shove them into AliveScopes so we
433  // don't revisit them.
434  if (!AliveScopes.insert(&DL).second)
435    return;
436
437  // Collect live scopes from the scope chain.
438  collectLiveScopes(*DL.getScope());
439
440  // Tail-recurse through the inlined-at chain.
441  if (const DILocation *IA = DL.getInlinedAt())
442    collectLiveScopes(*IA);
443}
444
445void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
446  auto &Info = BlockInfo[PN->getParent()];
447  // Only need to check this once per block.
448  if (Info.HasLivePhiNodes)
449    return;
450  Info.HasLivePhiNodes = true;
451
452  // If a predecessor block is not live, mark it as control-flow live
453  // which will trigger marking live branches upon which
454  // that block is control dependent.
455  for (auto *PredBB : predecessors(Info.BB)) {
456    auto &Info = BlockInfo[PredBB];
457    if (!Info.CFLive) {
458      Info.CFLive = true;
459      NewLiveBlocks.insert(PredBB);
460    }
461  }
462}
463
464void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
465  if (BlocksWithDeadTerminators.empty())
466    return;
467
468  LLVM_DEBUG({
469    dbgs() << "new live blocks:\n";
470    for (auto *BB : NewLiveBlocks)
471      dbgs() << "\t" << BB->getName() << '\n';
472    dbgs() << "dead terminator blocks:\n";
473    for (auto *BB : BlocksWithDeadTerminators)
474      dbgs() << "\t" << BB->getName() << '\n';
475  });
476
477  // The dominance frontier of a live block X in the reverse
478  // control graph is the set of blocks upon which X is control
479  // dependent. The following sequence computes the set of blocks
480  // which currently have dead terminators that are control
481  // dependence sources of a block which is in NewLiveBlocks.
482
483  const SmallPtrSet<BasicBlock *, 16> BWDT{
484      BlocksWithDeadTerminators.begin(),
485      BlocksWithDeadTerminators.end()
486  };
487  SmallVector<BasicBlock *, 32> IDFBlocks;
488  ReverseIDFCalculator IDFs(PDT);
489  IDFs.setDefiningBlocks(NewLiveBlocks);
490  IDFs.setLiveInBlocks(BWDT);
491  IDFs.calculate(IDFBlocks);
492  NewLiveBlocks.clear();
493
494  // Dead terminators which control live blocks are now marked live.
495  for (auto *BB : IDFBlocks) {
496    LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
497    markLive(BB->getTerminator());
498  }
499}
500
501//===----------------------------------------------------------------------===//
502//
503//  Routines to update the CFG and SSA information before removing dead code.
504//
505//===----------------------------------------------------------------------===//
506bool AggressiveDeadCodeElimination::removeDeadInstructions() {
507  // Updates control and dataflow around dead blocks
508  updateDeadRegions();
509
510  LLVM_DEBUG({
511    for (Instruction &I : instructions(F)) {
512      // Check if the instruction is alive.
513      if (isLive(&I))
514        continue;
515
516      if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
517        // Check if the scope of this variable location is alive.
518        if (AliveScopes.count(DII->getDebugLoc()->getScope()))
519          continue;
520
521        // If intrinsic is pointing at a live SSA value, there may be an
522        // earlier optimization bug: if we know the location of the variable,
523        // why isn't the scope of the location alive?
524        if (Value *V = DII->getVariableLocation())
525          if (Instruction *II = dyn_cast<Instruction>(V))
526            if (isLive(II))
527              dbgs() << "Dropping debug info for " << *DII << "\n";
528      }
529    }
530  });
531
532  // The inverse of the live set is the dead set.  These are those instructions
533  // that have no side effects and do not influence the control flow or return
534  // value of the function, and may therefore be deleted safely.
535  // NOTE: We reuse the Worklist vector here for memory efficiency.
536  for (Instruction &I : instructions(F)) {
537    // Check if the instruction is alive.
538    if (isLive(&I))
539      continue;
540
541    if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
542      // Check if the scope of this variable location is alive.
543      if (AliveScopes.count(DII->getDebugLoc()->getScope()))
544        continue;
545
546      // Fallthrough and drop the intrinsic.
547    }
548
549    // Prepare to delete.
550    Worklist.push_back(&I);
551    I.dropAllReferences();
552  }
553
554  for (Instruction *&I : Worklist) {
555    ++NumRemoved;
556    I->eraseFromParent();
557  }
558
559  return !Worklist.empty();
560}
561
562// A dead region is the set of dead blocks with a common live post-dominator.
563void AggressiveDeadCodeElimination::updateDeadRegions() {
564  LLVM_DEBUG({
565    dbgs() << "final dead terminator blocks: " << '\n';
566    for (auto *BB : BlocksWithDeadTerminators)
567      dbgs() << '\t' << BB->getName()
568             << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
569  });
570
571  // Don't compute the post ordering unless we needed it.
572  bool HavePostOrder = false;
573
574  for (auto *BB : BlocksWithDeadTerminators) {
575    auto &Info = BlockInfo[BB];
576    if (Info.UnconditionalBranch) {
577      InstInfo[Info.Terminator].Live = true;
578      continue;
579    }
580
581    if (!HavePostOrder) {
582      computeReversePostOrder();
583      HavePostOrder = true;
584    }
585
586    // Add an unconditional branch to the successor closest to the
587    // end of the function which insures a path to the exit for each
588    // live edge.
589    BlockInfoType *PreferredSucc = nullptr;
590    for (auto *Succ : successors(BB)) {
591      auto *Info = &BlockInfo[Succ];
592      if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
593        PreferredSucc = Info;
594    }
595    assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
596           "Failed to find safe successor for dead branch");
597
598    // Collect removed successors to update the (Post)DominatorTrees.
599    SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
600    bool First = true;
601    for (auto *Succ : successors(BB)) {
602      if (!First || Succ != PreferredSucc->BB) {
603        Succ->removePredecessor(BB);
604        RemovedSuccessors.insert(Succ);
605      } else
606        First = false;
607    }
608    makeUnconditional(BB, PreferredSucc->BB);
609
610    // Inform the dominators about the deleted CFG edges.
611    SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
612    for (auto *Succ : RemovedSuccessors) {
613      // It might have happened that the same successor appeared multiple times
614      // and the CFG edge wasn't really removed.
615      if (Succ != PreferredSucc->BB) {
616        LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
617                          << BB->getName() << " -> " << Succ->getName()
618                          << "\n");
619        DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
620      }
621    }
622
623    DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
624        .applyUpdates(DeletedEdges);
625
626    NumBranchesRemoved += 1;
627  }
628}
629
630// reverse top-sort order
631void AggressiveDeadCodeElimination::computeReversePostOrder() {
632  // This provides a post-order numbering of the reverse control flow graph
633  // Note that it is incomplete in the presence of infinite loops but we don't
634  // need numbers blocks which don't reach the end of the functions since
635  // all branches in those blocks are forced live.
636
637  // For each block without successors, extend the DFS from the block
638  // backward through the graph
639  SmallPtrSet<BasicBlock*, 16> Visited;
640  unsigned PostOrder = 0;
641  for (auto &BB : F) {
642    if (succ_begin(&BB) != succ_end(&BB))
643      continue;
644    for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
645      BlockInfo[Block].PostOrder = PostOrder++;
646  }
647}
648
649void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
650                                                      BasicBlock *Target) {
651  Instruction *PredTerm = BB->getTerminator();
652  // Collect the live debug info scopes attached to this instruction.
653  if (const DILocation *DL = PredTerm->getDebugLoc())
654    collectLiveScopes(*DL);
655
656  // Just mark live an existing unconditional branch
657  if (isUnconditionalBranch(PredTerm)) {
658    PredTerm->setSuccessor(0, Target);
659    InstInfo[PredTerm].Live = true;
660    return;
661  }
662  LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
663  NumBranchesRemoved += 1;
664  IRBuilder<> Builder(PredTerm);
665  auto *NewTerm = Builder.CreateBr(Target);
666  InstInfo[NewTerm].Live = true;
667  if (const DILocation *DL = PredTerm->getDebugLoc())
668    NewTerm->setDebugLoc(DL);
669
670  InstInfo.erase(PredTerm);
671  PredTerm->eraseFromParent();
672}
673
674//===----------------------------------------------------------------------===//
675//
676// Pass Manager integration code
677//
678//===----------------------------------------------------------------------===//
679PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
680  // ADCE does not need DominatorTree, but require DominatorTree here
681  // to update analysis if it is already available.
682  auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
683  auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
684  if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
685    return PreservedAnalyses::all();
686
687  PreservedAnalyses PA;
688  PA.preserveSet<CFGAnalyses>();
689  PA.preserve<GlobalsAA>();
690  PA.preserve<DominatorTreeAnalysis>();
691  PA.preserve<PostDominatorTreeAnalysis>();
692  return PA;
693}
694
695namespace {
696
697struct ADCELegacyPass : public FunctionPass {
698  static char ID; // Pass identification, replacement for typeid
699
700  ADCELegacyPass() : FunctionPass(ID) {
701    initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
702  }
703
704  bool runOnFunction(Function &F) override {
705    if (skipFunction(F))
706      return false;
707
708    // ADCE does not need DominatorTree, but require DominatorTree here
709    // to update analysis if it is already available.
710    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
711    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
712    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
713    return AggressiveDeadCodeElimination(F, DT, PDT)
714        .performDeadCodeElimination();
715  }
716
717  void getAnalysisUsage(AnalysisUsage &AU) const override {
718    AU.addRequired<PostDominatorTreeWrapperPass>();
719    if (!RemoveControlFlowFlag)
720      AU.setPreservesCFG();
721    else {
722      AU.addPreserved<DominatorTreeWrapperPass>();
723      AU.addPreserved<PostDominatorTreeWrapperPass>();
724    }
725    AU.addPreserved<GlobalsAAWrapperPass>();
726  }
727};
728
729} // end anonymous namespace
730
731char ADCELegacyPass::ID = 0;
732
733INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
734                      "Aggressive Dead Code Elimination", false, false)
735INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
736INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
737                    false, false)
738
739FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
740