1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements instcombine for ExtractElement, InsertElement and
10// ShuffleVector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/VectorUtils.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/InstrTypes.h"
27#include "llvm/IR/Instruction.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/IR/PatternMatch.h"
31#include "llvm/IR/Type.h"
32#include "llvm/IR/User.h"
33#include "llvm/IR/Value.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37#include <cassert>
38#include <cstdint>
39#include <iterator>
40#include <utility>
41
42using namespace llvm;
43using namespace PatternMatch;
44
45#define DEBUG_TYPE "instcombine"
46
47/// Return true if the value is cheaper to scalarize than it is to leave as a
48/// vector operation. IsConstantExtractIndex indicates whether we are extracting
49/// one known element from a vector constant.
50///
51/// FIXME: It's possible to create more instructions than previously existed.
52static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53  // If we can pick a scalar constant value out of a vector, that is free.
54  if (auto *C = dyn_cast<Constant>(V))
55    return IsConstantExtractIndex || C->getSplatValue();
56
57  // An insertelement to the same constant index as our extract will simplify
58  // to the scalar inserted element. An insertelement to a different constant
59  // index is irrelevant to our extract.
60  if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61    return IsConstantExtractIndex;
62
63  if (match(V, m_OneUse(m_Load(m_Value()))))
64    return true;
65
66  Value *V0, *V1;
67  if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69        cheapToScalarize(V1, IsConstantExtractIndex))
70      return true;
71
72  CmpInst::Predicate UnusedPred;
73  if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75        cheapToScalarize(V1, IsConstantExtractIndex))
76      return true;
77
78  return false;
79}
80
81// If we have a PHI node with a vector type that is only used to feed
82// itself and be an operand of extractelement at a constant location,
83// try to replace the PHI of the vector type with a PHI of a scalar type.
84Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85  SmallVector<Instruction *, 2> Extracts;
86  // The users we want the PHI to have are:
87  // 1) The EI ExtractElement (we already know this)
88  // 2) Possibly more ExtractElements with the same index.
89  // 3) Another operand, which will feed back into the PHI.
90  Instruction *PHIUser = nullptr;
91  for (auto U : PN->users()) {
92    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93      if (EI.getIndexOperand() == EU->getIndexOperand())
94        Extracts.push_back(EU);
95      else
96        return nullptr;
97    } else if (!PHIUser) {
98      PHIUser = cast<Instruction>(U);
99    } else {
100      return nullptr;
101    }
102  }
103
104  if (!PHIUser)
105    return nullptr;
106
107  // Verify that this PHI user has one use, which is the PHI itself,
108  // and that it is a binary operation which is cheap to scalarize.
109  // otherwise return nullptr.
110  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112    return nullptr;
113
114  // Create a scalar PHI node that will replace the vector PHI node
115  // just before the current PHI node.
116  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118  // Scalarize each PHI operand.
119  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120    Value *PHIInVal = PN->getIncomingValue(i);
121    BasicBlock *inBB = PN->getIncomingBlock(i);
122    Value *Elt = EI.getIndexOperand();
123    // If the operand is the PHI induction variable:
124    if (PHIInVal == PHIUser) {
125      // Scalarize the binary operation. Its first operand is the
126      // scalar PHI, and the second operand is extracted from the other
127      // vector operand.
128      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130      Value *Op = InsertNewInstWith(
131          ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                     B0->getOperand(opId)->getName() + ".Elt"),
133          *B0);
134      Value *newPHIUser = InsertNewInstWith(
135          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                scalarPHI, Op, B0), *B0);
137      scalarPHI->addIncoming(newPHIUser, inBB);
138    } else {
139      // Scalarize PHI input:
140      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141      // Insert the new instruction into the predecessor basic block.
142      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143      BasicBlock::iterator InsertPos;
144      if (pos && !isa<PHINode>(pos)) {
145        InsertPos = ++pos->getIterator();
146      } else {
147        InsertPos = inBB->getFirstInsertionPt();
148      }
149
150      InsertNewInstWith(newEI, *InsertPos);
151
152      scalarPHI->addIncoming(newEI, inBB);
153    }
154  }
155
156  for (auto E : Extracts)
157    replaceInstUsesWith(*E, scalarPHI);
158
159  return &EI;
160}
161
162static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                      InstCombiner::BuilderTy &Builder,
164                                      bool IsBigEndian) {
165  Value *X;
166  uint64_t ExtIndexC;
167  if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168      !X->getType()->isVectorTy() ||
169      !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170    return nullptr;
171
172  // If this extractelement is using a bitcast from a vector of the same number
173  // of elements, see if we can find the source element from the source vector:
174  // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175  Type *SrcTy = X->getType();
176  Type *DestTy = Ext.getType();
177  unsigned NumSrcElts = SrcTy->getVectorNumElements();
178  unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179  if (NumSrcElts == NumElts)
180    if (Value *Elt = findScalarElement(X, ExtIndexC))
181      return new BitCastInst(Elt, DestTy);
182
183  // If the source elements are wider than the destination, try to shift and
184  // truncate a subset of scalar bits of an insert op.
185  if (NumSrcElts < NumElts) {
186    Value *Scalar;
187    uint64_t InsIndexC;
188    if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                  m_ConstantInt(InsIndexC))))
190      return nullptr;
191
192    // The extract must be from the subset of vector elements that we inserted
193    // into. Example: if we inserted element 1 of a <2 x i64> and we are
194    // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195    // of elements 4-7 of the bitcasted vector.
196    unsigned NarrowingRatio = NumElts / NumSrcElts;
197    if (ExtIndexC / NarrowingRatio != InsIndexC)
198      return nullptr;
199
200    // We are extracting part of the original scalar. How that scalar is
201    // inserted into the vector depends on the endian-ness. Example:
202    //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203    //                                       +--+--+--+--+--+--+--+--+
204    // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205    // extelt <4 x i16> V', 3:               |                 |S2|S3|
206    //                                       +--+--+--+--+--+--+--+--+
207    // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208    // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209    // In this example, we must right-shift little-endian. Big-endian is just a
210    // truncate.
211    unsigned Chunk = ExtIndexC % NarrowingRatio;
212    if (IsBigEndian)
213      Chunk = NarrowingRatio - 1 - Chunk;
214
215    // Bail out if this is an FP vector to FP vector sequence. That would take
216    // more instructions than we started with unless there is no shift, and it
217    // may not be handled as well in the backend.
218    bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219    bool NeedDestBitcast = DestTy->isFloatingPointTy();
220    if (NeedSrcBitcast && NeedDestBitcast)
221      return nullptr;
222
223    unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225    unsigned ShAmt = Chunk * DestWidth;
226
227    // TODO: This limitation is more strict than necessary. We could sum the
228    // number of new instructions and subtract the number eliminated to know if
229    // we can proceed.
230    if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231      if (NeedSrcBitcast || NeedDestBitcast)
232        return nullptr;
233
234    if (NeedSrcBitcast) {
235      Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236      Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237    }
238
239    if (ShAmt) {
240      // Bail out if we could end with more instructions than we started with.
241      if (!Ext.getVectorOperand()->hasOneUse())
242        return nullptr;
243      Scalar = Builder.CreateLShr(Scalar, ShAmt);
244    }
245
246    if (NeedDestBitcast) {
247      Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248      return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249    }
250    return new TruncInst(Scalar, DestTy);
251  }
252
253  return nullptr;
254}
255
256/// Find elements of V demanded by UserInstr.
257static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
258  unsigned VWidth = V->getType()->getVectorNumElements();
259
260  // Conservatively assume that all elements are needed.
261  APInt UsedElts(APInt::getAllOnesValue(VWidth));
262
263  switch (UserInstr->getOpcode()) {
264  case Instruction::ExtractElement: {
265    ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
266    assert(EEI->getVectorOperand() == V);
267    ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
268    if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
269      UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
270    }
271    break;
272  }
273  case Instruction::ShuffleVector: {
274    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
275    unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
276
277    UsedElts = APInt(VWidth, 0);
278    for (unsigned i = 0; i < MaskNumElts; i++) {
279      unsigned MaskVal = Shuffle->getMaskValue(i);
280      if (MaskVal == -1u || MaskVal >= 2 * VWidth)
281        continue;
282      if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
283        UsedElts.setBit(MaskVal);
284      if (Shuffle->getOperand(1) == V &&
285          ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
286        UsedElts.setBit(MaskVal - VWidth);
287    }
288    break;
289  }
290  default:
291    break;
292  }
293  return UsedElts;
294}
295
296/// Find union of elements of V demanded by all its users.
297/// If it is known by querying findDemandedEltsBySingleUser that
298/// no user demands an element of V, then the corresponding bit
299/// remains unset in the returned value.
300static APInt findDemandedEltsByAllUsers(Value *V) {
301  unsigned VWidth = V->getType()->getVectorNumElements();
302
303  APInt UnionUsedElts(VWidth, 0);
304  for (const Use &U : V->uses()) {
305    if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
306      UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
307    } else {
308      UnionUsedElts = APInt::getAllOnesValue(VWidth);
309      break;
310    }
311
312    if (UnionUsedElts.isAllOnesValue())
313      break;
314  }
315
316  return UnionUsedElts;
317}
318
319Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
320  Value *SrcVec = EI.getVectorOperand();
321  Value *Index = EI.getIndexOperand();
322  if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
323                                            SQ.getWithInstruction(&EI)))
324    return replaceInstUsesWith(EI, V);
325
326  // If extracting a specified index from the vector, see if we can recursively
327  // find a previously computed scalar that was inserted into the vector.
328  auto *IndexC = dyn_cast<ConstantInt>(Index);
329  if (IndexC) {
330    unsigned NumElts = EI.getVectorOperandType()->getNumElements();
331
332    // InstSimplify should handle cases where the index is invalid.
333    if (!IndexC->getValue().ule(NumElts))
334      return nullptr;
335
336    // This instruction only demands the single element from the input vector.
337    if (NumElts != 1) {
338      // If the input vector has a single use, simplify it based on this use
339      // property.
340      if (SrcVec->hasOneUse()) {
341        APInt UndefElts(NumElts, 0);
342        APInt DemandedElts(NumElts, 0);
343        DemandedElts.setBit(IndexC->getZExtValue());
344        if (Value *V =
345                SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
346          EI.setOperand(0, V);
347          return &EI;
348        }
349      } else {
350        // If the input vector has multiple uses, simplify it based on a union
351        // of all elements used.
352        APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
353        if (!DemandedElts.isAllOnesValue()) {
354          APInt UndefElts(NumElts, 0);
355          if (Value *V = SimplifyDemandedVectorElts(
356                  SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
357                  true /* AllowMultipleUsers */)) {
358            if (V != SrcVec) {
359              SrcVec->replaceAllUsesWith(V);
360              return &EI;
361            }
362          }
363        }
364      }
365    }
366    if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
367      return I;
368
369    // If there's a vector PHI feeding a scalar use through this extractelement
370    // instruction, try to scalarize the PHI.
371    if (auto *Phi = dyn_cast<PHINode>(SrcVec))
372      if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
373        return ScalarPHI;
374  }
375
376  BinaryOperator *BO;
377  if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
378    // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
379    Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
380    Value *E0 = Builder.CreateExtractElement(X, Index);
381    Value *E1 = Builder.CreateExtractElement(Y, Index);
382    return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
383  }
384
385  Value *X, *Y;
386  CmpInst::Predicate Pred;
387  if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
388      cheapToScalarize(SrcVec, IndexC)) {
389    // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
390    Value *E0 = Builder.CreateExtractElement(X, Index);
391    Value *E1 = Builder.CreateExtractElement(Y, Index);
392    return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
393  }
394
395  if (auto *I = dyn_cast<Instruction>(SrcVec)) {
396    if (auto *IE = dyn_cast<InsertElementInst>(I)) {
397      // Extracting the inserted element?
398      if (IE->getOperand(2) == Index)
399        return replaceInstUsesWith(EI, IE->getOperand(1));
400      // If the inserted and extracted elements are constants, they must not
401      // be the same value, extract from the pre-inserted value instead.
402      if (isa<Constant>(IE->getOperand(2)) && IndexC) {
403        Worklist.AddValue(SrcVec);
404        EI.setOperand(0, IE->getOperand(0));
405        return &EI;
406      }
407    } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
408      // If this is extracting an element from a shufflevector, figure out where
409      // it came from and extract from the appropriate input element instead.
410      if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
411        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
412        Value *Src;
413        unsigned LHSWidth =
414          SVI->getOperand(0)->getType()->getVectorNumElements();
415
416        if (SrcIdx < 0)
417          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
418        if (SrcIdx < (int)LHSWidth)
419          Src = SVI->getOperand(0);
420        else {
421          SrcIdx -= LHSWidth;
422          Src = SVI->getOperand(1);
423        }
424        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
425        return ExtractElementInst::Create(Src,
426                                          ConstantInt::get(Int32Ty,
427                                                           SrcIdx, false));
428      }
429    } else if (auto *CI = dyn_cast<CastInst>(I)) {
430      // Canonicalize extractelement(cast) -> cast(extractelement).
431      // Bitcasts can change the number of vector elements, and they cost
432      // nothing.
433      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
434        Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
435        Worklist.AddValue(EE);
436        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
437      }
438    }
439  }
440  return nullptr;
441}
442
443/// If V is a shuffle of values that ONLY returns elements from either LHS or
444/// RHS, return the shuffle mask and true. Otherwise, return false.
445static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
446                                         SmallVectorImpl<Constant*> &Mask) {
447  assert(LHS->getType() == RHS->getType() &&
448         "Invalid CollectSingleShuffleElements");
449  unsigned NumElts = V->getType()->getVectorNumElements();
450
451  if (isa<UndefValue>(V)) {
452    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
453    return true;
454  }
455
456  if (V == LHS) {
457    for (unsigned i = 0; i != NumElts; ++i)
458      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
459    return true;
460  }
461
462  if (V == RHS) {
463    for (unsigned i = 0; i != NumElts; ++i)
464      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
465                                      i+NumElts));
466    return true;
467  }
468
469  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
470    // If this is an insert of an extract from some other vector, include it.
471    Value *VecOp    = IEI->getOperand(0);
472    Value *ScalarOp = IEI->getOperand(1);
473    Value *IdxOp    = IEI->getOperand(2);
474
475    if (!isa<ConstantInt>(IdxOp))
476      return false;
477    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
478
479    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
480      // We can handle this if the vector we are inserting into is
481      // transitively ok.
482      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
483        // If so, update the mask to reflect the inserted undef.
484        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
485        return true;
486      }
487    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
488      if (isa<ConstantInt>(EI->getOperand(1))) {
489        unsigned ExtractedIdx =
490        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
491        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
492
493        // This must be extracting from either LHS or RHS.
494        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
495          // We can handle this if the vector we are inserting into is
496          // transitively ok.
497          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
498            // If so, update the mask to reflect the inserted value.
499            if (EI->getOperand(0) == LHS) {
500              Mask[InsertedIdx % NumElts] =
501              ConstantInt::get(Type::getInt32Ty(V->getContext()),
502                               ExtractedIdx);
503            } else {
504              assert(EI->getOperand(0) == RHS);
505              Mask[InsertedIdx % NumElts] =
506              ConstantInt::get(Type::getInt32Ty(V->getContext()),
507                               ExtractedIdx + NumLHSElts);
508            }
509            return true;
510          }
511        }
512      }
513    }
514  }
515
516  return false;
517}
518
519/// If we have insertion into a vector that is wider than the vector that we
520/// are extracting from, try to widen the source vector to allow a single
521/// shufflevector to replace one or more insert/extract pairs.
522static void replaceExtractElements(InsertElementInst *InsElt,
523                                   ExtractElementInst *ExtElt,
524                                   InstCombiner &IC) {
525  VectorType *InsVecType = InsElt->getType();
526  VectorType *ExtVecType = ExtElt->getVectorOperandType();
527  unsigned NumInsElts = InsVecType->getVectorNumElements();
528  unsigned NumExtElts = ExtVecType->getVectorNumElements();
529
530  // The inserted-to vector must be wider than the extracted-from vector.
531  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
532      NumExtElts >= NumInsElts)
533    return;
534
535  // Create a shuffle mask to widen the extended-from vector using undefined
536  // values. The mask selects all of the values of the original vector followed
537  // by as many undefined values as needed to create a vector of the same length
538  // as the inserted-to vector.
539  SmallVector<Constant *, 16> ExtendMask;
540  IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
541  for (unsigned i = 0; i < NumExtElts; ++i)
542    ExtendMask.push_back(ConstantInt::get(IntType, i));
543  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
544    ExtendMask.push_back(UndefValue::get(IntType));
545
546  Value *ExtVecOp = ExtElt->getVectorOperand();
547  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
548  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
549                                   ? ExtVecOpInst->getParent()
550                                   : ExtElt->getParent();
551
552  // TODO: This restriction matches the basic block check below when creating
553  // new extractelement instructions. If that limitation is removed, this one
554  // could also be removed. But for now, we just bail out to ensure that we
555  // will replace the extractelement instruction that is feeding our
556  // insertelement instruction. This allows the insertelement to then be
557  // replaced by a shufflevector. If the insertelement is not replaced, we can
558  // induce infinite looping because there's an optimization for extractelement
559  // that will delete our widening shuffle. This would trigger another attempt
560  // here to create that shuffle, and we spin forever.
561  if (InsertionBlock != InsElt->getParent())
562    return;
563
564  // TODO: This restriction matches the check in visitInsertElementInst() and
565  // prevents an infinite loop caused by not turning the extract/insert pair
566  // into a shuffle. We really should not need either check, but we're lacking
567  // folds for shufflevectors because we're afraid to generate shuffle masks
568  // that the backend can't handle.
569  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
570    return;
571
572  auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
573                                        ConstantVector::get(ExtendMask));
574
575  // Insert the new shuffle after the vector operand of the extract is defined
576  // (as long as it's not a PHI) or at the start of the basic block of the
577  // extract, so any subsequent extracts in the same basic block can use it.
578  // TODO: Insert before the earliest ExtractElementInst that is replaced.
579  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
580    WideVec->insertAfter(ExtVecOpInst);
581  else
582    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
583
584  // Replace extracts from the original narrow vector with extracts from the new
585  // wide vector.
586  for (User *U : ExtVecOp->users()) {
587    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
588    if (!OldExt || OldExt->getParent() != WideVec->getParent())
589      continue;
590    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
591    NewExt->insertAfter(OldExt);
592    IC.replaceInstUsesWith(*OldExt, NewExt);
593  }
594}
595
596/// We are building a shuffle to create V, which is a sequence of insertelement,
597/// extractelement pairs. If PermittedRHS is set, then we must either use it or
598/// not rely on the second vector source. Return a std::pair containing the
599/// left and right vectors of the proposed shuffle (or 0), and set the Mask
600/// parameter as required.
601///
602/// Note: we intentionally don't try to fold earlier shuffles since they have
603/// often been chosen carefully to be efficiently implementable on the target.
604using ShuffleOps = std::pair<Value *, Value *>;
605
606static ShuffleOps collectShuffleElements(Value *V,
607                                         SmallVectorImpl<Constant *> &Mask,
608                                         Value *PermittedRHS,
609                                         InstCombiner &IC) {
610  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
611  unsigned NumElts = V->getType()->getVectorNumElements();
612
613  if (isa<UndefValue>(V)) {
614    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
615    return std::make_pair(
616        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
617  }
618
619  if (isa<ConstantAggregateZero>(V)) {
620    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
621    return std::make_pair(V, nullptr);
622  }
623
624  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
625    // If this is an insert of an extract from some other vector, include it.
626    Value *VecOp    = IEI->getOperand(0);
627    Value *ScalarOp = IEI->getOperand(1);
628    Value *IdxOp    = IEI->getOperand(2);
629
630    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
631      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
632        unsigned ExtractedIdx =
633          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
634        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
635
636        // Either the extracted from or inserted into vector must be RHSVec,
637        // otherwise we'd end up with a shuffle of three inputs.
638        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
639          Value *RHS = EI->getOperand(0);
640          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
641          assert(LR.second == nullptr || LR.second == RHS);
642
643          if (LR.first->getType() != RHS->getType()) {
644            // Although we are giving up for now, see if we can create extracts
645            // that match the inserts for another round of combining.
646            replaceExtractElements(IEI, EI, IC);
647
648            // We tried our best, but we can't find anything compatible with RHS
649            // further up the chain. Return a trivial shuffle.
650            for (unsigned i = 0; i < NumElts; ++i)
651              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
652            return std::make_pair(V, nullptr);
653          }
654
655          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
656          Mask[InsertedIdx % NumElts] =
657            ConstantInt::get(Type::getInt32Ty(V->getContext()),
658                             NumLHSElts+ExtractedIdx);
659          return std::make_pair(LR.first, RHS);
660        }
661
662        if (VecOp == PermittedRHS) {
663          // We've gone as far as we can: anything on the other side of the
664          // extractelement will already have been converted into a shuffle.
665          unsigned NumLHSElts =
666              EI->getOperand(0)->getType()->getVectorNumElements();
667          for (unsigned i = 0; i != NumElts; ++i)
668            Mask.push_back(ConstantInt::get(
669                Type::getInt32Ty(V->getContext()),
670                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
671          return std::make_pair(EI->getOperand(0), PermittedRHS);
672        }
673
674        // If this insertelement is a chain that comes from exactly these two
675        // vectors, return the vector and the effective shuffle.
676        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
677            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
678                                         Mask))
679          return std::make_pair(EI->getOperand(0), PermittedRHS);
680      }
681    }
682  }
683
684  // Otherwise, we can't do anything fancy. Return an identity vector.
685  for (unsigned i = 0; i != NumElts; ++i)
686    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
687  return std::make_pair(V, nullptr);
688}
689
690/// Try to find redundant insertvalue instructions, like the following ones:
691///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
692///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
693/// Here the second instruction inserts values at the same indices, as the
694/// first one, making the first one redundant.
695/// It should be transformed to:
696///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
697Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
698  bool IsRedundant = false;
699  ArrayRef<unsigned int> FirstIndices = I.getIndices();
700
701  // If there is a chain of insertvalue instructions (each of them except the
702  // last one has only one use and it's another insertvalue insn from this
703  // chain), check if any of the 'children' uses the same indices as the first
704  // instruction. In this case, the first one is redundant.
705  Value *V = &I;
706  unsigned Depth = 0;
707  while (V->hasOneUse() && Depth < 10) {
708    User *U = V->user_back();
709    auto UserInsInst = dyn_cast<InsertValueInst>(U);
710    if (!UserInsInst || U->getOperand(0) != V)
711      break;
712    if (UserInsInst->getIndices() == FirstIndices) {
713      IsRedundant = true;
714      break;
715    }
716    V = UserInsInst;
717    Depth++;
718  }
719
720  if (IsRedundant)
721    return replaceInstUsesWith(I, I.getOperand(0));
722  return nullptr;
723}
724
725static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
726  int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
727  int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
728
729  // A vector select does not change the size of the operands.
730  if (MaskSize != VecSize)
731    return false;
732
733  // Each mask element must be undefined or choose a vector element from one of
734  // the source operands without crossing vector lanes.
735  for (int i = 0; i != MaskSize; ++i) {
736    int Elt = Shuf.getMaskValue(i);
737    if (Elt != -1 && Elt != i && Elt != i + VecSize)
738      return false;
739  }
740
741  return true;
742}
743
744/// Turn a chain of inserts that splats a value into an insert + shuffle:
745/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
746/// shufflevector(insertelt(X, %k, 0), undef, zero)
747static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
748  // We are interested in the last insert in a chain. So if this insert has a
749  // single user and that user is an insert, bail.
750  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
751    return nullptr;
752
753  auto *VecTy = cast<VectorType>(InsElt.getType());
754  unsigned NumElements = VecTy->getNumElements();
755
756  // Do not try to do this for a one-element vector, since that's a nop,
757  // and will cause an inf-loop.
758  if (NumElements == 1)
759    return nullptr;
760
761  Value *SplatVal = InsElt.getOperand(1);
762  InsertElementInst *CurrIE = &InsElt;
763  SmallVector<bool, 16> ElementPresent(NumElements, false);
764  InsertElementInst *FirstIE = nullptr;
765
766  // Walk the chain backwards, keeping track of which indices we inserted into,
767  // until we hit something that isn't an insert of the splatted value.
768  while (CurrIE) {
769    auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
770    if (!Idx || CurrIE->getOperand(1) != SplatVal)
771      return nullptr;
772
773    auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
774    // Check none of the intermediate steps have any additional uses, except
775    // for the root insertelement instruction, which can be re-used, if it
776    // inserts at position 0.
777    if (CurrIE != &InsElt &&
778        (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
779      return nullptr;
780
781    ElementPresent[Idx->getZExtValue()] = true;
782    FirstIE = CurrIE;
783    CurrIE = NextIE;
784  }
785
786  // If this is just a single insertelement (not a sequence), we are done.
787  if (FirstIE == &InsElt)
788    return nullptr;
789
790  // If we are not inserting into an undef vector, make sure we've seen an
791  // insert into every element.
792  // TODO: If the base vector is not undef, it might be better to create a splat
793  //       and then a select-shuffle (blend) with the base vector.
794  if (!isa<UndefValue>(FirstIE->getOperand(0)))
795    if (any_of(ElementPresent, [](bool Present) { return !Present; }))
796      return nullptr;
797
798  // Create the insert + shuffle.
799  Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
800  UndefValue *UndefVec = UndefValue::get(VecTy);
801  Constant *Zero = ConstantInt::get(Int32Ty, 0);
802  if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
803    FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
804
805  // Splat from element 0, but replace absent elements with undef in the mask.
806  SmallVector<Constant *, 16> Mask(NumElements, Zero);
807  for (unsigned i = 0; i != NumElements; ++i)
808    if (!ElementPresent[i])
809      Mask[i] = UndefValue::get(Int32Ty);
810
811  return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
812}
813
814/// Try to fold an insert element into an existing splat shuffle by changing
815/// the shuffle's mask to include the index of this insert element.
816static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
817  // Check if the vector operand of this insert is a canonical splat shuffle.
818  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
819  if (!Shuf || !Shuf->isZeroEltSplat())
820    return nullptr;
821
822  // Check for a constant insertion index.
823  uint64_t IdxC;
824  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
825    return nullptr;
826
827  // Check if the splat shuffle's input is the same as this insert's scalar op.
828  Value *X = InsElt.getOperand(1);
829  Value *Op0 = Shuf->getOperand(0);
830  if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
831    return nullptr;
832
833  // Replace the shuffle mask element at the index of this insert with a zero.
834  // For example:
835  // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
836  //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
837  unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
838  SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
839  Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
840  Constant *Zero = ConstantInt::getNullValue(I32Ty);
841  for (unsigned i = 0; i != NumMaskElts; ++i)
842    NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
843
844  Constant *NewMask = ConstantVector::get(NewMaskVec);
845  return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
846}
847
848/// Try to fold an extract+insert element into an existing identity shuffle by
849/// changing the shuffle's mask to include the index of this insert element.
850static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
851  // Check if the vector operand of this insert is an identity shuffle.
852  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
853  if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
854      !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
855    return nullptr;
856
857  // Check for a constant insertion index.
858  uint64_t IdxC;
859  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
860    return nullptr;
861
862  // Check if this insert's scalar op is extracted from the identity shuffle's
863  // input vector.
864  Value *Scalar = InsElt.getOperand(1);
865  Value *X = Shuf->getOperand(0);
866  if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
867    return nullptr;
868
869  // Replace the shuffle mask element at the index of this extract+insert with
870  // that same index value.
871  // For example:
872  // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
873  unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
874  SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
875  Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
876  Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
877  Constant *OldMask = Shuf->getMask();
878  for (unsigned i = 0; i != NumMaskElts; ++i) {
879    if (i != IdxC) {
880      // All mask elements besides the inserted element remain the same.
881      NewMaskVec[i] = OldMask->getAggregateElement(i);
882    } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
883      // If the mask element was already set, there's nothing to do
884      // (demanded elements analysis may unset it later).
885      return nullptr;
886    } else {
887      assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
888             "Unexpected shuffle mask element for identity shuffle");
889      NewMaskVec[i] = NewMaskEltC;
890    }
891  }
892
893  Constant *NewMask = ConstantVector::get(NewMaskVec);
894  return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
895}
896
897/// If we have an insertelement instruction feeding into another insertelement
898/// and the 2nd is inserting a constant into the vector, canonicalize that
899/// constant insertion before the insertion of a variable:
900///
901/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
902/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
903///
904/// This has the potential of eliminating the 2nd insertelement instruction
905/// via constant folding of the scalar constant into a vector constant.
906static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
907                                     InstCombiner::BuilderTy &Builder) {
908  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
909  if (!InsElt1 || !InsElt1->hasOneUse())
910    return nullptr;
911
912  Value *X, *Y;
913  Constant *ScalarC;
914  ConstantInt *IdxC1, *IdxC2;
915  if (match(InsElt1->getOperand(0), m_Value(X)) &&
916      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
917      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
918      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
919      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
920    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
921    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
922  }
923
924  return nullptr;
925}
926
927/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
928/// --> shufflevector X, CVec', Mask'
929static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
930  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
931  // Bail out if the parent has more than one use. In that case, we'd be
932  // replacing the insertelt with a shuffle, and that's not a clear win.
933  if (!Inst || !Inst->hasOneUse())
934    return nullptr;
935  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
936    // The shuffle must have a constant vector operand. The insertelt must have
937    // a constant scalar being inserted at a constant position in the vector.
938    Constant *ShufConstVec, *InsEltScalar;
939    uint64_t InsEltIndex;
940    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
941        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
942        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
943      return nullptr;
944
945    // Adding an element to an arbitrary shuffle could be expensive, but a
946    // shuffle that selects elements from vectors without crossing lanes is
947    // assumed cheap.
948    // If we're just adding a constant into that shuffle, it will still be
949    // cheap.
950    if (!isShuffleEquivalentToSelect(*Shuf))
951      return nullptr;
952
953    // From the above 'select' check, we know that the mask has the same number
954    // of elements as the vector input operands. We also know that each constant
955    // input element is used in its lane and can not be used more than once by
956    // the shuffle. Therefore, replace the constant in the shuffle's constant
957    // vector with the insertelt constant. Replace the constant in the shuffle's
958    // mask vector with the insertelt index plus the length of the vector
959    // (because the constant vector operand of a shuffle is always the 2nd
960    // operand).
961    Constant *Mask = Shuf->getMask();
962    unsigned NumElts = Mask->getType()->getVectorNumElements();
963    SmallVector<Constant *, 16> NewShufElts(NumElts);
964    SmallVector<Constant *, 16> NewMaskElts(NumElts);
965    for (unsigned I = 0; I != NumElts; ++I) {
966      if (I == InsEltIndex) {
967        NewShufElts[I] = InsEltScalar;
968        Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
969        NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
970      } else {
971        // Copy over the existing values.
972        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
973        NewMaskElts[I] = Mask->getAggregateElement(I);
974      }
975    }
976
977    // Create new operands for a shuffle that includes the constant of the
978    // original insertelt. The old shuffle will be dead now.
979    return new ShuffleVectorInst(Shuf->getOperand(0),
980                                 ConstantVector::get(NewShufElts),
981                                 ConstantVector::get(NewMaskElts));
982  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
983    // Transform sequences of insertelements ops with constant data/indexes into
984    // a single shuffle op.
985    unsigned NumElts = InsElt.getType()->getNumElements();
986
987    uint64_t InsertIdx[2];
988    Constant *Val[2];
989    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
990        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
991        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
992        !match(IEI->getOperand(1), m_Constant(Val[1])))
993      return nullptr;
994    SmallVector<Constant *, 16> Values(NumElts);
995    SmallVector<Constant *, 16> Mask(NumElts);
996    auto ValI = std::begin(Val);
997    // Generate new constant vector and mask.
998    // We have 2 values/masks from the insertelements instructions. Insert them
999    // into new value/mask vectors.
1000    for (uint64_t I : InsertIdx) {
1001      if (!Values[I]) {
1002        assert(!Mask[I]);
1003        Values[I] = *ValI;
1004        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1005                                   NumElts + I);
1006      }
1007      ++ValI;
1008    }
1009    // Remaining values are filled with 'undef' values.
1010    for (unsigned I = 0; I < NumElts; ++I) {
1011      if (!Values[I]) {
1012        assert(!Mask[I]);
1013        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1014        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1015      }
1016    }
1017    // Create new operands for a shuffle that includes the constant of the
1018    // original insertelt.
1019    return new ShuffleVectorInst(IEI->getOperand(0),
1020                                 ConstantVector::get(Values),
1021                                 ConstantVector::get(Mask));
1022  }
1023  return nullptr;
1024}
1025
1026Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1027  Value *VecOp    = IE.getOperand(0);
1028  Value *ScalarOp = IE.getOperand(1);
1029  Value *IdxOp    = IE.getOperand(2);
1030
1031  if (auto *V = SimplifyInsertElementInst(
1032          VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1033    return replaceInstUsesWith(IE, V);
1034
1035  // If the vector and scalar are both bitcast from the same element type, do
1036  // the insert in that source type followed by bitcast.
1037  Value *VecSrc, *ScalarSrc;
1038  if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1039      match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1040      (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1041      VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1042      VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1043    // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1044    //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1045    Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1046    return new BitCastInst(NewInsElt, IE.getType());
1047  }
1048
1049  // If the inserted element was extracted from some other vector and both
1050  // indexes are valid constants, try to turn this into a shuffle.
1051  uint64_t InsertedIdx, ExtractedIdx;
1052  Value *ExtVecOp;
1053  if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1054      match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1055                                       m_ConstantInt(ExtractedIdx))) &&
1056      ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1057    // TODO: Looking at the user(s) to determine if this insert is a
1058    // fold-to-shuffle opportunity does not match the usual instcombine
1059    // constraints. We should decide if the transform is worthy based only
1060    // on this instruction and its operands, but that may not work currently.
1061    //
1062    // Here, we are trying to avoid creating shuffles before reaching
1063    // the end of a chain of extract-insert pairs. This is complicated because
1064    // we do not generally form arbitrary shuffle masks in instcombine
1065    // (because those may codegen poorly), but collectShuffleElements() does
1066    // exactly that.
1067    //
1068    // The rules for determining what is an acceptable target-independent
1069    // shuffle mask are fuzzy because they evolve based on the backend's
1070    // capabilities and real-world impact.
1071    auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1072      if (!Insert.hasOneUse())
1073        return true;
1074      auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1075      if (!InsertUser)
1076        return true;
1077      return false;
1078    };
1079
1080    // Try to form a shuffle from a chain of extract-insert ops.
1081    if (isShuffleRootCandidate(IE)) {
1082      SmallVector<Constant*, 16> Mask;
1083      ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1084
1085      // The proposed shuffle may be trivial, in which case we shouldn't
1086      // perform the combine.
1087      if (LR.first != &IE && LR.second != &IE) {
1088        // We now have a shuffle of LHS, RHS, Mask.
1089        if (LR.second == nullptr)
1090          LR.second = UndefValue::get(LR.first->getType());
1091        return new ShuffleVectorInst(LR.first, LR.second,
1092                                     ConstantVector::get(Mask));
1093      }
1094    }
1095  }
1096
1097  unsigned VWidth = VecOp->getType()->getVectorNumElements();
1098  APInt UndefElts(VWidth, 0);
1099  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1100  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1101    if (V != &IE)
1102      return replaceInstUsesWith(IE, V);
1103    return &IE;
1104  }
1105
1106  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1107    return Shuf;
1108
1109  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1110    return NewInsElt;
1111
1112  if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1113    return Broadcast;
1114
1115  if (Instruction *Splat = foldInsEltIntoSplat(IE))
1116    return Splat;
1117
1118  if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1119    return IdentityShuf;
1120
1121  return nullptr;
1122}
1123
1124/// Return true if we can evaluate the specified expression tree if the vector
1125/// elements were shuffled in a different order.
1126static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1127                                unsigned Depth = 5) {
1128  // We can always reorder the elements of a constant.
1129  if (isa<Constant>(V))
1130    return true;
1131
1132  // We won't reorder vector arguments. No IPO here.
1133  Instruction *I = dyn_cast<Instruction>(V);
1134  if (!I) return false;
1135
1136  // Two users may expect different orders of the elements. Don't try it.
1137  if (!I->hasOneUse())
1138    return false;
1139
1140  if (Depth == 0) return false;
1141
1142  switch (I->getOpcode()) {
1143    case Instruction::UDiv:
1144    case Instruction::SDiv:
1145    case Instruction::URem:
1146    case Instruction::SRem:
1147      // Propagating an undefined shuffle mask element to integer div/rem is not
1148      // allowed because those opcodes can create immediate undefined behavior
1149      // from an undefined element in an operand.
1150      if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1151        return false;
1152      LLVM_FALLTHROUGH;
1153    case Instruction::Add:
1154    case Instruction::FAdd:
1155    case Instruction::Sub:
1156    case Instruction::FSub:
1157    case Instruction::Mul:
1158    case Instruction::FMul:
1159    case Instruction::FDiv:
1160    case Instruction::FRem:
1161    case Instruction::Shl:
1162    case Instruction::LShr:
1163    case Instruction::AShr:
1164    case Instruction::And:
1165    case Instruction::Or:
1166    case Instruction::Xor:
1167    case Instruction::ICmp:
1168    case Instruction::FCmp:
1169    case Instruction::Trunc:
1170    case Instruction::ZExt:
1171    case Instruction::SExt:
1172    case Instruction::FPToUI:
1173    case Instruction::FPToSI:
1174    case Instruction::UIToFP:
1175    case Instruction::SIToFP:
1176    case Instruction::FPTrunc:
1177    case Instruction::FPExt:
1178    case Instruction::GetElementPtr: {
1179      // Bail out if we would create longer vector ops. We could allow creating
1180      // longer vector ops, but that may result in more expensive codegen.
1181      Type *ITy = I->getType();
1182      if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1183        return false;
1184      for (Value *Operand : I->operands()) {
1185        if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1186          return false;
1187      }
1188      return true;
1189    }
1190    case Instruction::InsertElement: {
1191      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1192      if (!CI) return false;
1193      int ElementNumber = CI->getLimitedValue();
1194
1195      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1196      // can't put an element into multiple indices.
1197      bool SeenOnce = false;
1198      for (int i = 0, e = Mask.size(); i != e; ++i) {
1199        if (Mask[i] == ElementNumber) {
1200          if (SeenOnce)
1201            return false;
1202          SeenOnce = true;
1203        }
1204      }
1205      return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1206    }
1207  }
1208  return false;
1209}
1210
1211/// Rebuild a new instruction just like 'I' but with the new operands given.
1212/// In the event of type mismatch, the type of the operands is correct.
1213static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1214  // We don't want to use the IRBuilder here because we want the replacement
1215  // instructions to appear next to 'I', not the builder's insertion point.
1216  switch (I->getOpcode()) {
1217    case Instruction::Add:
1218    case Instruction::FAdd:
1219    case Instruction::Sub:
1220    case Instruction::FSub:
1221    case Instruction::Mul:
1222    case Instruction::FMul:
1223    case Instruction::UDiv:
1224    case Instruction::SDiv:
1225    case Instruction::FDiv:
1226    case Instruction::URem:
1227    case Instruction::SRem:
1228    case Instruction::FRem:
1229    case Instruction::Shl:
1230    case Instruction::LShr:
1231    case Instruction::AShr:
1232    case Instruction::And:
1233    case Instruction::Or:
1234    case Instruction::Xor: {
1235      BinaryOperator *BO = cast<BinaryOperator>(I);
1236      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1237      BinaryOperator *New =
1238          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1239                                 NewOps[0], NewOps[1], "", BO);
1240      if (isa<OverflowingBinaryOperator>(BO)) {
1241        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1242        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1243      }
1244      if (isa<PossiblyExactOperator>(BO)) {
1245        New->setIsExact(BO->isExact());
1246      }
1247      if (isa<FPMathOperator>(BO))
1248        New->copyFastMathFlags(I);
1249      return New;
1250    }
1251    case Instruction::ICmp:
1252      assert(NewOps.size() == 2 && "icmp with #ops != 2");
1253      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1254                          NewOps[0], NewOps[1]);
1255    case Instruction::FCmp:
1256      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1257      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1258                          NewOps[0], NewOps[1]);
1259    case Instruction::Trunc:
1260    case Instruction::ZExt:
1261    case Instruction::SExt:
1262    case Instruction::FPToUI:
1263    case Instruction::FPToSI:
1264    case Instruction::UIToFP:
1265    case Instruction::SIToFP:
1266    case Instruction::FPTrunc:
1267    case Instruction::FPExt: {
1268      // It's possible that the mask has a different number of elements from
1269      // the original cast. We recompute the destination type to match the mask.
1270      Type *DestTy =
1271          VectorType::get(I->getType()->getScalarType(),
1272                          NewOps[0]->getType()->getVectorNumElements());
1273      assert(NewOps.size() == 1 && "cast with #ops != 1");
1274      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1275                              "", I);
1276    }
1277    case Instruction::GetElementPtr: {
1278      Value *Ptr = NewOps[0];
1279      ArrayRef<Value*> Idx = NewOps.slice(1);
1280      GetElementPtrInst *GEP = GetElementPtrInst::Create(
1281          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1282      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1283      return GEP;
1284    }
1285  }
1286  llvm_unreachable("failed to rebuild vector instructions");
1287}
1288
1289static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1290  // Mask.size() does not need to be equal to the number of vector elements.
1291
1292  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1293  Type *EltTy = V->getType()->getScalarType();
1294  Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1295  if (isa<UndefValue>(V))
1296    return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1297
1298  if (isa<ConstantAggregateZero>(V))
1299    return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1300
1301  if (Constant *C = dyn_cast<Constant>(V)) {
1302    SmallVector<Constant *, 16> MaskValues;
1303    for (int i = 0, e = Mask.size(); i != e; ++i) {
1304      if (Mask[i] == -1)
1305        MaskValues.push_back(UndefValue::get(I32Ty));
1306      else
1307        MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1308    }
1309    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1310                                          ConstantVector::get(MaskValues));
1311  }
1312
1313  Instruction *I = cast<Instruction>(V);
1314  switch (I->getOpcode()) {
1315    case Instruction::Add:
1316    case Instruction::FAdd:
1317    case Instruction::Sub:
1318    case Instruction::FSub:
1319    case Instruction::Mul:
1320    case Instruction::FMul:
1321    case Instruction::UDiv:
1322    case Instruction::SDiv:
1323    case Instruction::FDiv:
1324    case Instruction::URem:
1325    case Instruction::SRem:
1326    case Instruction::FRem:
1327    case Instruction::Shl:
1328    case Instruction::LShr:
1329    case Instruction::AShr:
1330    case Instruction::And:
1331    case Instruction::Or:
1332    case Instruction::Xor:
1333    case Instruction::ICmp:
1334    case Instruction::FCmp:
1335    case Instruction::Trunc:
1336    case Instruction::ZExt:
1337    case Instruction::SExt:
1338    case Instruction::FPToUI:
1339    case Instruction::FPToSI:
1340    case Instruction::UIToFP:
1341    case Instruction::SIToFP:
1342    case Instruction::FPTrunc:
1343    case Instruction::FPExt:
1344    case Instruction::Select:
1345    case Instruction::GetElementPtr: {
1346      SmallVector<Value*, 8> NewOps;
1347      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1348      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1349        Value *V;
1350        // Recursively call evaluateInDifferentElementOrder on vector arguments
1351        // as well. E.g. GetElementPtr may have scalar operands even if the
1352        // return value is a vector, so we need to examine the operand type.
1353        if (I->getOperand(i)->getType()->isVectorTy())
1354          V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1355        else
1356          V = I->getOperand(i);
1357        NewOps.push_back(V);
1358        NeedsRebuild |= (V != I->getOperand(i));
1359      }
1360      if (NeedsRebuild) {
1361        return buildNew(I, NewOps);
1362      }
1363      return I;
1364    }
1365    case Instruction::InsertElement: {
1366      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1367
1368      // The insertelement was inserting at Element. Figure out which element
1369      // that becomes after shuffling. The answer is guaranteed to be unique
1370      // by CanEvaluateShuffled.
1371      bool Found = false;
1372      int Index = 0;
1373      for (int e = Mask.size(); Index != e; ++Index) {
1374        if (Mask[Index] == Element) {
1375          Found = true;
1376          break;
1377        }
1378      }
1379
1380      // If element is not in Mask, no need to handle the operand 1 (element to
1381      // be inserted). Just evaluate values in operand 0 according to Mask.
1382      if (!Found)
1383        return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1384
1385      Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1386      return InsertElementInst::Create(V, I->getOperand(1),
1387                                       ConstantInt::get(I32Ty, Index), "", I);
1388    }
1389  }
1390  llvm_unreachable("failed to reorder elements of vector instruction!");
1391}
1392
1393// Returns true if the shuffle is extracting a contiguous range of values from
1394// LHS, for example:
1395//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1396//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1397//   Shuffles to:  |EE|FF|GG|HH|
1398//                 +--+--+--+--+
1399static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1400                                       SmallVector<int, 16> &Mask) {
1401  unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1402  unsigned MaskElems = Mask.size();
1403  unsigned BegIdx = Mask.front();
1404  unsigned EndIdx = Mask.back();
1405  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1406    return false;
1407  for (unsigned I = 0; I != MaskElems; ++I)
1408    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1409      return false;
1410  return true;
1411}
1412
1413/// These are the ingredients in an alternate form binary operator as described
1414/// below.
1415struct BinopElts {
1416  BinaryOperator::BinaryOps Opcode;
1417  Value *Op0;
1418  Value *Op1;
1419  BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1420            Value *V0 = nullptr, Value *V1 = nullptr) :
1421      Opcode(Opc), Op0(V0), Op1(V1) {}
1422  operator bool() const { return Opcode != 0; }
1423};
1424
1425/// Binops may be transformed into binops with different opcodes and operands.
1426/// Reverse the usual canonicalization to enable folds with the non-canonical
1427/// form of the binop. If a transform is possible, return the elements of the
1428/// new binop. If not, return invalid elements.
1429static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1430  Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1431  Type *Ty = BO->getType();
1432  switch (BO->getOpcode()) {
1433    case Instruction::Shl: {
1434      // shl X, C --> mul X, (1 << C)
1435      Constant *C;
1436      if (match(BO1, m_Constant(C))) {
1437        Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1438        return { Instruction::Mul, BO0, ShlOne };
1439      }
1440      break;
1441    }
1442    case Instruction::Or: {
1443      // or X, C --> add X, C (when X and C have no common bits set)
1444      const APInt *C;
1445      if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1446        return { Instruction::Add, BO0, BO1 };
1447      break;
1448    }
1449    default:
1450      break;
1451  }
1452  return {};
1453}
1454
1455static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1456  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1457
1458  // Are we shuffling together some value and that same value after it has been
1459  // modified by a binop with a constant?
1460  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1461  Constant *C;
1462  bool Op0IsBinop;
1463  if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1464    Op0IsBinop = true;
1465  else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1466    Op0IsBinop = false;
1467  else
1468    return nullptr;
1469
1470  // The identity constant for a binop leaves a variable operand unchanged. For
1471  // a vector, this is a splat of something like 0, -1, or 1.
1472  // If there's no identity constant for this binop, we're done.
1473  auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1474  BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1475  Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1476  if (!IdC)
1477    return nullptr;
1478
1479  // Shuffle identity constants into the lanes that return the original value.
1480  // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1481  // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1482  // The existing binop constant vector remains in the same operand position.
1483  Constant *Mask = Shuf.getMask();
1484  Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1485                                ConstantExpr::getShuffleVector(IdC, C, Mask);
1486
1487  bool MightCreatePoisonOrUB =
1488      Mask->containsUndefElement() &&
1489      (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1490  if (MightCreatePoisonOrUB)
1491    NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1492
1493  // shuf (bop X, C), X, M --> bop X, C'
1494  // shuf X, (bop X, C), M --> bop X, C'
1495  Value *X = Op0IsBinop ? Op1 : Op0;
1496  Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1497  NewBO->copyIRFlags(BO);
1498
1499  // An undef shuffle mask element may propagate as an undef constant element in
1500  // the new binop. That would produce poison where the original code might not.
1501  // If we already made a safe constant, then there's no danger.
1502  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1503    NewBO->dropPoisonGeneratingFlags();
1504  return NewBO;
1505}
1506
1507/// If we have an insert of a scalar to a non-zero element of an undefined
1508/// vector and then shuffle that value, that's the same as inserting to the zero
1509/// element and shuffling. Splatting from the zero element is recognized as the
1510/// canonical form of splat.
1511static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1512                                            InstCombiner::BuilderTy &Builder) {
1513  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1514  Constant *Mask = Shuf.getMask();
1515  Value *X;
1516  uint64_t IndexC;
1517
1518  // Match a shuffle that is a splat to a non-zero element.
1519  if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1520                                           m_ConstantInt(IndexC)))) ||
1521      !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1522    return nullptr;
1523
1524  // Insert into element 0 of an undef vector.
1525  UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1526  Constant *Zero = Builder.getInt32(0);
1527  Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1528
1529  // Splat from element 0. Any mask element that is undefined remains undefined.
1530  // For example:
1531  // shuf (inselt undef, X, 2), undef, <2,2,undef>
1532  //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1533  unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1534  SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1535  for (unsigned i = 0; i != NumMaskElts; ++i)
1536    if (isa<UndefValue>(Mask->getAggregateElement(i)))
1537      NewMask[i] = Mask->getAggregateElement(i);
1538
1539  return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1540}
1541
1542/// Try to fold shuffles that are the equivalent of a vector select.
1543static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1544                                      InstCombiner::BuilderTy &Builder,
1545                                      const DataLayout &DL) {
1546  if (!Shuf.isSelect())
1547    return nullptr;
1548
1549  // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1550  // Commuting undef to operand 0 conflicts with another canonicalization.
1551  unsigned NumElts = Shuf.getType()->getVectorNumElements();
1552  if (!isa<UndefValue>(Shuf.getOperand(1)) &&
1553      Shuf.getMaskValue(0) >= (int)NumElts) {
1554    // TODO: Can we assert that both operands of a shuffle-select are not undef
1555    // (otherwise, it would have been folded by instsimplify?
1556    Shuf.commute();
1557    return &Shuf;
1558  }
1559
1560  if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1561    return I;
1562
1563  BinaryOperator *B0, *B1;
1564  if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1565      !match(Shuf.getOperand(1), m_BinOp(B1)))
1566    return nullptr;
1567
1568  Value *X, *Y;
1569  Constant *C0, *C1;
1570  bool ConstantsAreOp1;
1571  if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1572      match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1573    ConstantsAreOp1 = true;
1574  else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1575           match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1576    ConstantsAreOp1 = false;
1577  else
1578    return nullptr;
1579
1580  // We need matching binops to fold the lanes together.
1581  BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1582  BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1583  bool DropNSW = false;
1584  if (ConstantsAreOp1 && Opc0 != Opc1) {
1585    // TODO: We drop "nsw" if shift is converted into multiply because it may
1586    // not be correct when the shift amount is BitWidth - 1. We could examine
1587    // each vector element to determine if it is safe to keep that flag.
1588    if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1589      DropNSW = true;
1590    if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1591      assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1592      Opc0 = AltB0.Opcode;
1593      C0 = cast<Constant>(AltB0.Op1);
1594    } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1595      assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1596      Opc1 = AltB1.Opcode;
1597      C1 = cast<Constant>(AltB1.Op1);
1598    }
1599  }
1600
1601  if (Opc0 != Opc1)
1602    return nullptr;
1603
1604  // The opcodes must be the same. Use a new name to make that clear.
1605  BinaryOperator::BinaryOps BOpc = Opc0;
1606
1607  // Select the constant elements needed for the single binop.
1608  Constant *Mask = Shuf.getMask();
1609  Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1610
1611  // We are moving a binop after a shuffle. When a shuffle has an undefined
1612  // mask element, the result is undefined, but it is not poison or undefined
1613  // behavior. That is not necessarily true for div/rem/shift.
1614  bool MightCreatePoisonOrUB =
1615      Mask->containsUndefElement() &&
1616      (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1617  if (MightCreatePoisonOrUB)
1618    NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1619
1620  Value *V;
1621  if (X == Y) {
1622    // Remove a binop and the shuffle by rearranging the constant:
1623    // shuffle (op V, C0), (op V, C1), M --> op V, C'
1624    // shuffle (op C0, V), (op C1, V), M --> op C', V
1625    V = X;
1626  } else {
1627    // If there are 2 different variable operands, we must create a new shuffle
1628    // (select) first, so check uses to ensure that we don't end up with more
1629    // instructions than we started with.
1630    if (!B0->hasOneUse() && !B1->hasOneUse())
1631      return nullptr;
1632
1633    // If we use the original shuffle mask and op1 is *variable*, we would be
1634    // putting an undef into operand 1 of div/rem/shift. This is either UB or
1635    // poison. We do not have to guard against UB when *constants* are op1
1636    // because safe constants guarantee that we do not overflow sdiv/srem (and
1637    // there's no danger for other opcodes).
1638    // TODO: To allow this case, create a new shuffle mask with no undefs.
1639    if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1640      return nullptr;
1641
1642    // Note: In general, we do not create new shuffles in InstCombine because we
1643    // do not know if a target can lower an arbitrary shuffle optimally. In this
1644    // case, the shuffle uses the existing mask, so there is no additional risk.
1645
1646    // Select the variable vectors first, then perform the binop:
1647    // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1648    // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1649    V = Builder.CreateShuffleVector(X, Y, Mask);
1650  }
1651
1652  Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1653                                         BinaryOperator::Create(BOpc, NewC, V);
1654
1655  // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1656  // 1. If we changed an opcode, poison conditions might have changed.
1657  // 2. If the shuffle had undef mask elements, the new binop might have undefs
1658  //    where the original code did not. But if we already made a safe constant,
1659  //    then there's no danger.
1660  NewBO->copyIRFlags(B0);
1661  NewBO->andIRFlags(B1);
1662  if (DropNSW)
1663    NewBO->setHasNoSignedWrap(false);
1664  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1665    NewBO->dropPoisonGeneratingFlags();
1666  return NewBO;
1667}
1668
1669/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1670/// narrowing (concatenating with undef and extracting back to the original
1671/// length). This allows replacing the wide select with a narrow select.
1672static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1673                                       InstCombiner::BuilderTy &Builder) {
1674  // This must be a narrowing identity shuffle. It extracts the 1st N elements
1675  // of the 1st vector operand of a shuffle.
1676  if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1677    return nullptr;
1678
1679  // The vector being shuffled must be a vector select that we can eliminate.
1680  // TODO: The one-use requirement could be eased if X and/or Y are constants.
1681  Value *Cond, *X, *Y;
1682  if (!match(Shuf.getOperand(0),
1683             m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1684    return nullptr;
1685
1686  // We need a narrow condition value. It must be extended with undef elements
1687  // and have the same number of elements as this shuffle.
1688  unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1689  Value *NarrowCond;
1690  if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1691                                            m_Constant()))) ||
1692      NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1693      !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1694    return nullptr;
1695
1696  // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1697  // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1698  Value *Undef = UndefValue::get(X->getType());
1699  Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1700  Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1701  return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1702}
1703
1704/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1705static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1706  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1707  if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1708    return nullptr;
1709
1710  Value *X, *Y;
1711  Constant *Mask;
1712  if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1713    return nullptr;
1714
1715  // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1716  // then combining may result in worse codegen.
1717  if (!Op0->hasOneUse())
1718    return nullptr;
1719
1720  // We are extracting a subvector from a shuffle. Remove excess elements from
1721  // the 1st shuffle mask to eliminate the extract.
1722  //
1723  // This transform is conservatively limited to identity extracts because we do
1724  // not allow arbitrary shuffle mask creation as a target-independent transform
1725  // (because we can't guarantee that will lower efficiently).
1726  //
1727  // If the extracting shuffle has an undef mask element, it transfers to the
1728  // new shuffle mask. Otherwise, copy the original mask element. Example:
1729  //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1730  //   shuf X, Y, <C0, undef, C2, undef>
1731  unsigned NumElts = Shuf.getType()->getVectorNumElements();
1732  SmallVector<Constant *, 16> NewMask(NumElts);
1733  assert(NumElts < Mask->getType()->getVectorNumElements() &&
1734         "Identity with extract must have less elements than its inputs");
1735
1736  for (unsigned i = 0; i != NumElts; ++i) {
1737    Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1738    Constant *MaskElt = Mask->getAggregateElement(i);
1739    NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1740  }
1741  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1742}
1743
1744/// Try to replace a shuffle with an insertelement or try to replace a shuffle
1745/// operand with the operand of an insertelement.
1746static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1747  Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1748  SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1749
1750  // The shuffle must not change vector sizes.
1751  // TODO: This restriction could be removed if the insert has only one use
1752  //       (because the transform would require a new length-changing shuffle).
1753  int NumElts = Mask.size();
1754  if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1755    return nullptr;
1756
1757  // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
1758  // not be able to handle it there if the insertelement has >1 use.
1759  // If the shuffle has an insertelement operand but does not choose the
1760  // inserted scalar element from that value, then we can replace that shuffle
1761  // operand with the source vector of the insertelement.
1762  Value *X;
1763  uint64_t IdxC;
1764  if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1765    // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
1766    if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) {
1767      Shuf.setOperand(0, X);
1768      return &Shuf;
1769    }
1770  }
1771  if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
1772    // Offset the index constant by the vector width because we are checking for
1773    // accesses to the 2nd vector input of the shuffle.
1774    IdxC += NumElts;
1775    // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
1776    if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) {
1777      Shuf.setOperand(1, X);
1778      return &Shuf;
1779    }
1780  }
1781
1782  // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1783  auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1784    // We need an insertelement with a constant index.
1785    if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1786                                   m_ConstantInt(IndexC))))
1787      return false;
1788
1789    // Test the shuffle mask to see if it splices the inserted scalar into the
1790    // operand 1 vector of the shuffle.
1791    int NewInsIndex = -1;
1792    for (int i = 0; i != NumElts; ++i) {
1793      // Ignore undef mask elements.
1794      if (Mask[i] == -1)
1795        continue;
1796
1797      // The shuffle takes elements of operand 1 without lane changes.
1798      if (Mask[i] == NumElts + i)
1799        continue;
1800
1801      // The shuffle must choose the inserted scalar exactly once.
1802      if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1803        return false;
1804
1805      // The shuffle is placing the inserted scalar into element i.
1806      NewInsIndex = i;
1807    }
1808
1809    assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1810
1811    // Index is updated to the potentially translated insertion lane.
1812    IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1813    return true;
1814  };
1815
1816  // If the shuffle is unnecessary, insert the scalar operand directly into
1817  // operand 1 of the shuffle. Example:
1818  // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1819  Value *Scalar;
1820  ConstantInt *IndexC;
1821  if (isShufflingScalarIntoOp1(Scalar, IndexC))
1822    return InsertElementInst::Create(V1, Scalar, IndexC);
1823
1824  // Try again after commuting shuffle. Example:
1825  // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1826  // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1827  std::swap(V0, V1);
1828  ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1829  if (isShufflingScalarIntoOp1(Scalar, IndexC))
1830    return InsertElementInst::Create(V1, Scalar, IndexC);
1831
1832  return nullptr;
1833}
1834
1835static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1836  // Match the operands as identity with padding (also known as concatenation
1837  // with undef) shuffles of the same source type. The backend is expected to
1838  // recreate these concatenations from a shuffle of narrow operands.
1839  auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1840  auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1841  if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1842      !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1843    return nullptr;
1844
1845  // We limit this transform to power-of-2 types because we expect that the
1846  // backend can convert the simplified IR patterns to identical nodes as the
1847  // original IR.
1848  // TODO: If we can verify the same behavior for arbitrary types, the
1849  //       power-of-2 checks can be removed.
1850  Value *X = Shuffle0->getOperand(0);
1851  Value *Y = Shuffle1->getOperand(0);
1852  if (X->getType() != Y->getType() ||
1853      !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1854      !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1855      !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1856      isa<UndefValue>(X) || isa<UndefValue>(Y))
1857    return nullptr;
1858  assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1859         isa<UndefValue>(Shuffle1->getOperand(1)) &&
1860         "Unexpected operand for identity shuffle");
1861
1862  // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1863  // operands directly by adjusting the shuffle mask to account for the narrower
1864  // types:
1865  // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1866  int NarrowElts = X->getType()->getVectorNumElements();
1867  int WideElts = Shuffle0->getType()->getVectorNumElements();
1868  assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1869
1870  Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1871  SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1872  SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1873  for (int i = 0, e = Mask.size(); i != e; ++i) {
1874    if (Mask[i] == -1)
1875      continue;
1876
1877    // If this shuffle is choosing an undef element from 1 of the sources, that
1878    // element is undef.
1879    if (Mask[i] < WideElts) {
1880      if (Shuffle0->getMaskValue(Mask[i]) == -1)
1881        continue;
1882    } else {
1883      if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1884        continue;
1885    }
1886
1887    // If this shuffle is choosing from the 1st narrow op, the mask element is
1888    // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1889    // element is offset down to adjust for the narrow vector widths.
1890    if (Mask[i] < WideElts) {
1891      assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1892      NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1893    } else {
1894      assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1895      NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1896    }
1897  }
1898  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1899}
1900
1901Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1902  Value *LHS = SVI.getOperand(0);
1903  Value *RHS = SVI.getOperand(1);
1904  if (auto *V = SimplifyShuffleVectorInst(
1905          LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1906    return replaceInstUsesWith(SVI, V);
1907
1908  // shuffle x, x, mask --> shuffle x, undef, mask'
1909  unsigned VWidth = SVI.getType()->getVectorNumElements();
1910  unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1911  SmallVector<int, 16> Mask = SVI.getShuffleMask();
1912  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1913  if (LHS == RHS) {
1914    assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
1915    // Remap any references to RHS to use LHS.
1916    SmallVector<Constant*, 16> Elts;
1917    for (unsigned i = 0; i != VWidth; ++i) {
1918      // Propagate undef elements or force mask to LHS.
1919      if (Mask[i] < 0)
1920        Elts.push_back(UndefValue::get(Int32Ty));
1921      else
1922        Elts.push_back(ConstantInt::get(Int32Ty, Mask[i] % LHSWidth));
1923    }
1924    SVI.setOperand(0, SVI.getOperand(1));
1925    SVI.setOperand(1, UndefValue::get(RHS->getType()));
1926    SVI.setOperand(2, ConstantVector::get(Elts));
1927    return &SVI;
1928  }
1929
1930  // shuffle undef, x, mask --> shuffle x, undef, mask'
1931  if (isa<UndefValue>(LHS)) {
1932    SVI.commute();
1933    return &SVI;
1934  }
1935
1936  if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1937    return I;
1938
1939  if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1940    return I;
1941
1942  if (Instruction *I = narrowVectorSelect(SVI, Builder))
1943    return I;
1944
1945  APInt UndefElts(VWidth, 0);
1946  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1947  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1948    if (V != &SVI)
1949      return replaceInstUsesWith(SVI, V);
1950    return &SVI;
1951  }
1952
1953  if (Instruction *I = foldIdentityExtractShuffle(SVI))
1954    return I;
1955
1956  // These transforms have the potential to lose undef knowledge, so they are
1957  // intentionally placed after SimplifyDemandedVectorElts().
1958  if (Instruction *I = foldShuffleWithInsert(SVI))
1959    return I;
1960  if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1961    return I;
1962
1963  if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1964    Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1965    return replaceInstUsesWith(SVI, V);
1966  }
1967
1968  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1969  // a non-vector type. We can instead bitcast the original vector followed by
1970  // an extract of the desired element:
1971  //
1972  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1973  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1974  //   %1 = bitcast <4 x i8> %sroa to i32
1975  // Becomes:
1976  //   %bc = bitcast <16 x i8> %in to <4 x i32>
1977  //   %ext = extractelement <4 x i32> %bc, i32 0
1978  //
1979  // If the shuffle is extracting a contiguous range of values from the input
1980  // vector then each use which is a bitcast of the extracted size can be
1981  // replaced. This will work if the vector types are compatible, and the begin
1982  // index is aligned to a value in the casted vector type. If the begin index
1983  // isn't aligned then we can shuffle the original vector (keeping the same
1984  // vector type) before extracting.
1985  //
1986  // This code will bail out if the target type is fundamentally incompatible
1987  // with vectors of the source type.
1988  //
1989  // Example of <16 x i8>, target type i32:
1990  // Index range [4,8):         v-----------v Will work.
1991  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1992  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1993  //     <4 x i32>: |           |           |           |           |
1994  //                +-----------+-----------+-----------+-----------+
1995  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1996  // Target type i40:           ^--------------^ Won't work, bail.
1997  bool MadeChange = false;
1998  if (isShuffleExtractingFromLHS(SVI, Mask)) {
1999    Value *V = LHS;
2000    unsigned MaskElems = Mask.size();
2001    VectorType *SrcTy = cast<VectorType>(V->getType());
2002    unsigned VecBitWidth = SrcTy->getBitWidth();
2003    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2004    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2005    unsigned SrcNumElems = SrcTy->getNumElements();
2006    SmallVector<BitCastInst *, 8> BCs;
2007    DenseMap<Type *, Value *> NewBCs;
2008    for (User *U : SVI.users())
2009      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2010        if (!BC->use_empty())
2011          // Only visit bitcasts that weren't previously handled.
2012          BCs.push_back(BC);
2013    for (BitCastInst *BC : BCs) {
2014      unsigned BegIdx = Mask.front();
2015      Type *TgtTy = BC->getDestTy();
2016      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2017      if (!TgtElemBitWidth)
2018        continue;
2019      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2020      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2021      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2022      if (!VecBitWidthsEqual)
2023        continue;
2024      if (!VectorType::isValidElementType(TgtTy))
2025        continue;
2026      VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2027      if (!BegIsAligned) {
2028        // Shuffle the input so [0,NumElements) contains the output, and
2029        // [NumElems,SrcNumElems) is undef.
2030        SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2031                                                UndefValue::get(Int32Ty));
2032        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2033          ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2034        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2035                                        ConstantVector::get(ShuffleMask),
2036                                        SVI.getName() + ".extract");
2037        BegIdx = 0;
2038      }
2039      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2040      assert(SrcElemsPerTgtElem);
2041      BegIdx /= SrcElemsPerTgtElem;
2042      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2043      auto *NewBC =
2044          BCAlreadyExists
2045              ? NewBCs[CastSrcTy]
2046              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2047      if (!BCAlreadyExists)
2048        NewBCs[CastSrcTy] = NewBC;
2049      auto *Ext = Builder.CreateExtractElement(
2050          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2051      // The shufflevector isn't being replaced: the bitcast that used it
2052      // is. InstCombine will visit the newly-created instructions.
2053      replaceInstUsesWith(*BC, Ext);
2054      MadeChange = true;
2055    }
2056  }
2057
2058  // If the LHS is a shufflevector itself, see if we can combine it with this
2059  // one without producing an unusual shuffle.
2060  // Cases that might be simplified:
2061  // 1.
2062  // x1=shuffle(v1,v2,mask1)
2063  //  x=shuffle(x1,undef,mask)
2064  //        ==>
2065  //  x=shuffle(v1,undef,newMask)
2066  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2067  // 2.
2068  // x1=shuffle(v1,undef,mask1)
2069  //  x=shuffle(x1,x2,mask)
2070  // where v1.size() == mask1.size()
2071  //        ==>
2072  //  x=shuffle(v1,x2,newMask)
2073  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2074  // 3.
2075  // x2=shuffle(v2,undef,mask2)
2076  //  x=shuffle(x1,x2,mask)
2077  // where v2.size() == mask2.size()
2078  //        ==>
2079  //  x=shuffle(x1,v2,newMask)
2080  // newMask[i] = (mask[i] < x1.size())
2081  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2082  // 4.
2083  // x1=shuffle(v1,undef,mask1)
2084  // x2=shuffle(v2,undef,mask2)
2085  //  x=shuffle(x1,x2,mask)
2086  // where v1.size() == v2.size()
2087  //        ==>
2088  //  x=shuffle(v1,v2,newMask)
2089  // newMask[i] = (mask[i] < x1.size())
2090  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2091  //
2092  // Here we are really conservative:
2093  // we are absolutely afraid of producing a shuffle mask not in the input
2094  // program, because the code gen may not be smart enough to turn a merged
2095  // shuffle into two specific shuffles: it may produce worse code.  As such,
2096  // we only merge two shuffles if the result is either a splat or one of the
2097  // input shuffle masks.  In this case, merging the shuffles just removes
2098  // one instruction, which we know is safe.  This is good for things like
2099  // turning: (splat(splat)) -> splat, or
2100  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2101  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2102  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2103  if (LHSShuffle)
2104    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2105      LHSShuffle = nullptr;
2106  if (RHSShuffle)
2107    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2108      RHSShuffle = nullptr;
2109  if (!LHSShuffle && !RHSShuffle)
2110    return MadeChange ? &SVI : nullptr;
2111
2112  Value* LHSOp0 = nullptr;
2113  Value* LHSOp1 = nullptr;
2114  Value* RHSOp0 = nullptr;
2115  unsigned LHSOp0Width = 0;
2116  unsigned RHSOp0Width = 0;
2117  if (LHSShuffle) {
2118    LHSOp0 = LHSShuffle->getOperand(0);
2119    LHSOp1 = LHSShuffle->getOperand(1);
2120    LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2121  }
2122  if (RHSShuffle) {
2123    RHSOp0 = RHSShuffle->getOperand(0);
2124    RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2125  }
2126  Value* newLHS = LHS;
2127  Value* newRHS = RHS;
2128  if (LHSShuffle) {
2129    // case 1
2130    if (isa<UndefValue>(RHS)) {
2131      newLHS = LHSOp0;
2132      newRHS = LHSOp1;
2133    }
2134    // case 2 or 4
2135    else if (LHSOp0Width == LHSWidth) {
2136      newLHS = LHSOp0;
2137    }
2138  }
2139  // case 3 or 4
2140  if (RHSShuffle && RHSOp0Width == LHSWidth) {
2141    newRHS = RHSOp0;
2142  }
2143  // case 4
2144  if (LHSOp0 == RHSOp0) {
2145    newLHS = LHSOp0;
2146    newRHS = nullptr;
2147  }
2148
2149  if (newLHS == LHS && newRHS == RHS)
2150    return MadeChange ? &SVI : nullptr;
2151
2152  SmallVector<int, 16> LHSMask;
2153  SmallVector<int, 16> RHSMask;
2154  if (newLHS != LHS)
2155    LHSMask = LHSShuffle->getShuffleMask();
2156  if (RHSShuffle && newRHS != RHS)
2157    RHSMask = RHSShuffle->getShuffleMask();
2158
2159  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2160  SmallVector<int, 16> newMask;
2161  bool isSplat = true;
2162  int SplatElt = -1;
2163  // Create a new mask for the new ShuffleVectorInst so that the new
2164  // ShuffleVectorInst is equivalent to the original one.
2165  for (unsigned i = 0; i < VWidth; ++i) {
2166    int eltMask;
2167    if (Mask[i] < 0) {
2168      // This element is an undef value.
2169      eltMask = -1;
2170    } else if (Mask[i] < (int)LHSWidth) {
2171      // This element is from left hand side vector operand.
2172      //
2173      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2174      // new mask value for the element.
2175      if (newLHS != LHS) {
2176        eltMask = LHSMask[Mask[i]];
2177        // If the value selected is an undef value, explicitly specify it
2178        // with a -1 mask value.
2179        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2180          eltMask = -1;
2181      } else
2182        eltMask = Mask[i];
2183    } else {
2184      // This element is from right hand side vector operand
2185      //
2186      // If the value selected is an undef value, explicitly specify it
2187      // with a -1 mask value. (case 1)
2188      if (isa<UndefValue>(RHS))
2189        eltMask = -1;
2190      // If RHS is going to be replaced (case 3 or 4), calculate the
2191      // new mask value for the element.
2192      else if (newRHS != RHS) {
2193        eltMask = RHSMask[Mask[i]-LHSWidth];
2194        // If the value selected is an undef value, explicitly specify it
2195        // with a -1 mask value.
2196        if (eltMask >= (int)RHSOp0Width) {
2197          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2198                 && "should have been check above");
2199          eltMask = -1;
2200        }
2201      } else
2202        eltMask = Mask[i]-LHSWidth;
2203
2204      // If LHS's width is changed, shift the mask value accordingly.
2205      // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2206      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2207      // If newRHS == newLHS, we want to remap any references from newRHS to
2208      // newLHS so that we can properly identify splats that may occur due to
2209      // obfuscation across the two vectors.
2210      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2211        eltMask += newLHSWidth;
2212    }
2213
2214    // Check if this could still be a splat.
2215    if (eltMask >= 0) {
2216      if (SplatElt >= 0 && SplatElt != eltMask)
2217        isSplat = false;
2218      SplatElt = eltMask;
2219    }
2220
2221    newMask.push_back(eltMask);
2222  }
2223
2224  // If the result mask is equal to one of the original shuffle masks,
2225  // or is a splat, do the replacement.
2226  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2227    SmallVector<Constant*, 16> Elts;
2228    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2229      if (newMask[i] < 0) {
2230        Elts.push_back(UndefValue::get(Int32Ty));
2231      } else {
2232        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2233      }
2234    }
2235    if (!newRHS)
2236      newRHS = UndefValue::get(newLHS->getType());
2237    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2238  }
2239
2240  return MadeChange ? &SVI : nullptr;
2241}
2242