1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for cast operations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/SetVector.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/TargetLibraryInfo.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/DIBuilder.h"
19#include "llvm/IR/PatternMatch.h"
20#include "llvm/Support/KnownBits.h"
21#include <numeric>
22using namespace llvm;
23using namespace PatternMatch;
24
25#define DEBUG_TYPE "instcombine"
26
27/// Analyze 'Val', seeing if it is a simple linear expression.
28/// If so, decompose it, returning some value X, such that Val is
29/// X*Scale+Offset.
30///
31static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32                                        uint64_t &Offset) {
33  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34    Offset = CI->getZExtValue();
35    Scale  = 0;
36    return ConstantInt::get(Val->getType(), 0);
37  }
38
39  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40    // Cannot look past anything that might overflow.
41    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43      Scale = 1;
44      Offset = 0;
45      return Val;
46    }
47
48    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49      if (I->getOpcode() == Instruction::Shl) {
50        // This is a value scaled by '1 << the shift amt'.
51        Scale = UINT64_C(1) << RHS->getZExtValue();
52        Offset = 0;
53        return I->getOperand(0);
54      }
55
56      if (I->getOpcode() == Instruction::Mul) {
57        // This value is scaled by 'RHS'.
58        Scale = RHS->getZExtValue();
59        Offset = 0;
60        return I->getOperand(0);
61      }
62
63      if (I->getOpcode() == Instruction::Add) {
64        // We have X+C.  Check to see if we really have (X*C2)+C1,
65        // where C1 is divisible by C2.
66        unsigned SubScale;
67        Value *SubVal =
68          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69        Offset += RHS->getZExtValue();
70        Scale = SubScale;
71        return SubVal;
72      }
73    }
74  }
75
76  // Otherwise, we can't look past this.
77  Scale = 1;
78  Offset = 0;
79  return Val;
80}
81
82/// If we find a cast of an allocation instruction, try to eliminate the cast by
83/// moving the type information into the alloc.
84Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85                                                   AllocaInst &AI) {
86  PointerType *PTy = cast<PointerType>(CI.getType());
87
88  BuilderTy AllocaBuilder(Builder);
89  AllocaBuilder.SetInsertPoint(&AI);
90
91  // Get the type really allocated and the type casted to.
92  Type *AllocElTy = AI.getAllocatedType();
93  Type *CastElTy = PTy->getElementType();
94  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95
96  unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97  unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98  if (CastElTyAlign < AllocElTyAlign) return nullptr;
99
100  // If the allocation has multiple uses, only promote it if we are strictly
101  // increasing the alignment of the resultant allocation.  If we keep it the
102  // same, we open the door to infinite loops of various kinds.
103  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104
105  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108
109  // If the allocation has multiple uses, only promote it if we're not
110  // shrinking the amount of memory being allocated.
111  uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114
115  // See if we can satisfy the modulus by pulling a scale out of the array
116  // size argument.
117  unsigned ArraySizeScale;
118  uint64_t ArrayOffset;
119  Value *NumElements = // See if the array size is a decomposable linear expr.
120    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121
122  // If we can now satisfy the modulus, by using a non-1 scale, we really can
123  // do the xform.
124  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126
127  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128  Value *Amt = nullptr;
129  if (Scale == 1) {
130    Amt = NumElements;
131  } else {
132    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133    // Insert before the alloca, not before the cast.
134    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135  }
136
137  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                  Offset, true);
140    Amt = AllocaBuilder.CreateAdd(Amt, Off);
141  }
142
143  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144  New->setAlignment(MaybeAlign(AI.getAlignment()));
145  New->takeName(&AI);
146  New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147
148  // If the allocation has multiple real uses, insert a cast and change all
149  // things that used it to use the new cast.  This will also hack on CI, but it
150  // will die soon.
151  if (!AI.hasOneUse()) {
152    // New is the allocation instruction, pointer typed. AI is the original
153    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155    replaceInstUsesWith(AI, NewCast);
156  }
157  return replaceInstUsesWith(CI, New);
158}
159
160/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
161/// true for, actually insert the code to evaluate the expression.
162Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
163                                             bool isSigned) {
164  if (Constant *C = dyn_cast<Constant>(V)) {
165    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
166    // If we got a constantexpr back, try to simplify it with DL info.
167    if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
168      C = FoldedC;
169    return C;
170  }
171
172  // Otherwise, it must be an instruction.
173  Instruction *I = cast<Instruction>(V);
174  Instruction *Res = nullptr;
175  unsigned Opc = I->getOpcode();
176  switch (Opc) {
177  case Instruction::Add:
178  case Instruction::Sub:
179  case Instruction::Mul:
180  case Instruction::And:
181  case Instruction::Or:
182  case Instruction::Xor:
183  case Instruction::AShr:
184  case Instruction::LShr:
185  case Instruction::Shl:
186  case Instruction::UDiv:
187  case Instruction::URem: {
188    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
189    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
190    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
191    break;
192  }
193  case Instruction::Trunc:
194  case Instruction::ZExt:
195  case Instruction::SExt:
196    // If the source type of the cast is the type we're trying for then we can
197    // just return the source.  There's no need to insert it because it is not
198    // new.
199    if (I->getOperand(0)->getType() == Ty)
200      return I->getOperand(0);
201
202    // Otherwise, must be the same type of cast, so just reinsert a new one.
203    // This also handles the case of zext(trunc(x)) -> zext(x).
204    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
205                                      Opc == Instruction::SExt);
206    break;
207  case Instruction::Select: {
208    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
209    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
210    Res = SelectInst::Create(I->getOperand(0), True, False);
211    break;
212  }
213  case Instruction::PHI: {
214    PHINode *OPN = cast<PHINode>(I);
215    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
216    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
217      Value *V =
218          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219      NPN->addIncoming(V, OPN->getIncomingBlock(i));
220    }
221    Res = NPN;
222    break;
223  }
224  default:
225    // TODO: Can handle more cases here.
226    llvm_unreachable("Unreachable!");
227  }
228
229  Res->takeName(I);
230  return InsertNewInstWith(Res, *I);
231}
232
233Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
234                                                        const CastInst *CI2) {
235  Type *SrcTy = CI1->getSrcTy();
236  Type *MidTy = CI1->getDestTy();
237  Type *DstTy = CI2->getDestTy();
238
239  Instruction::CastOps firstOp = CI1->getOpcode();
240  Instruction::CastOps secondOp = CI2->getOpcode();
241  Type *SrcIntPtrTy =
242      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
243  Type *MidIntPtrTy =
244      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
245  Type *DstIntPtrTy =
246      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
247  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
248                                                DstTy, SrcIntPtrTy, MidIntPtrTy,
249                                                DstIntPtrTy);
250
251  // We don't want to form an inttoptr or ptrtoint that converts to an integer
252  // type that differs from the pointer size.
253  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
254      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
255    Res = 0;
256
257  return Instruction::CastOps(Res);
258}
259
260/// Implement the transforms common to all CastInst visitors.
261Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
262  Value *Src = CI.getOperand(0);
263
264  // Try to eliminate a cast of a cast.
265  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
266    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
267      // The first cast (CSrc) is eliminable so we need to fix up or replace
268      // the second cast (CI). CSrc will then have a good chance of being dead.
269      auto *Ty = CI.getType();
270      auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
271      // Point debug users of the dying cast to the new one.
272      if (CSrc->hasOneUse())
273        replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
274      return Res;
275    }
276  }
277
278  if (auto *Sel = dyn_cast<SelectInst>(Src)) {
279    // We are casting a select. Try to fold the cast into the select, but only
280    // if the select does not have a compare instruction with matching operand
281    // types. Creating a select with operands that are different sizes than its
282    // condition may inhibit other folds and lead to worse codegen.
283    auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284    if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
285      if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
286        replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
287        return NV;
288      }
289  }
290
291  // If we are casting a PHI, then fold the cast into the PHI.
292  if (auto *PN = dyn_cast<PHINode>(Src)) {
293    // Don't do this if it would create a PHI node with an illegal type from a
294    // legal type.
295    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
296        shouldChangeType(CI.getType(), Src->getType()))
297      if (Instruction *NV = foldOpIntoPhi(CI, PN))
298        return NV;
299  }
300
301  return nullptr;
302}
303
304/// Constants and extensions/truncates from the destination type are always
305/// free to be evaluated in that type. This is a helper for canEvaluate*.
306static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
307  if (isa<Constant>(V))
308    return true;
309  Value *X;
310  if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
311      X->getType() == Ty)
312    return true;
313
314  return false;
315}
316
317/// Filter out values that we can not evaluate in the destination type for free.
318/// This is a helper for canEvaluate*.
319static bool canNotEvaluateInType(Value *V, Type *Ty) {
320  assert(!isa<Constant>(V) && "Constant should already be handled.");
321  if (!isa<Instruction>(V))
322    return true;
323  // We don't extend or shrink something that has multiple uses --  doing so
324  // would require duplicating the instruction which isn't profitable.
325  if (!V->hasOneUse())
326    return true;
327
328  return false;
329}
330
331/// Return true if we can evaluate the specified expression tree as type Ty
332/// instead of its larger type, and arrive with the same value.
333/// This is used by code that tries to eliminate truncates.
334///
335/// Ty will always be a type smaller than V.  We should return true if trunc(V)
336/// can be computed by computing V in the smaller type.  If V is an instruction,
337/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
338/// makes sense if x and y can be efficiently truncated.
339///
340/// This function works on both vectors and scalars.
341///
342static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
343                                 Instruction *CxtI) {
344  if (canAlwaysEvaluateInType(V, Ty))
345    return true;
346  if (canNotEvaluateInType(V, Ty))
347    return false;
348
349  auto *I = cast<Instruction>(V);
350  Type *OrigTy = V->getType();
351  switch (I->getOpcode()) {
352  case Instruction::Add:
353  case Instruction::Sub:
354  case Instruction::Mul:
355  case Instruction::And:
356  case Instruction::Or:
357  case Instruction::Xor:
358    // These operators can all arbitrarily be extended or truncated.
359    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
360           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
361
362  case Instruction::UDiv:
363  case Instruction::URem: {
364    // UDiv and URem can be truncated if all the truncated bits are zero.
365    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
366    uint32_t BitWidth = Ty->getScalarSizeInBits();
367    assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
368    APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
369    if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
370        IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
371      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
372             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
373    }
374    break;
375  }
376  case Instruction::Shl: {
377    // If we are truncating the result of this SHL, and if it's a shift of a
378    // constant amount, we can always perform a SHL in a smaller type.
379    const APInt *Amt;
380    if (match(I->getOperand(1), m_APInt(Amt))) {
381      uint32_t BitWidth = Ty->getScalarSizeInBits();
382      if (Amt->getLimitedValue(BitWidth) < BitWidth)
383        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
384    }
385    break;
386  }
387  case Instruction::LShr: {
388    // If this is a truncate of a logical shr, we can truncate it to a smaller
389    // lshr iff we know that the bits we would otherwise be shifting in are
390    // already zeros.
391    const APInt *Amt;
392    if (match(I->getOperand(1), m_APInt(Amt))) {
393      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394      uint32_t BitWidth = Ty->getScalarSizeInBits();
395      if (Amt->getLimitedValue(BitWidth) < BitWidth &&
396          IC.MaskedValueIsZero(I->getOperand(0),
397            APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
398        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399      }
400    }
401    break;
402  }
403  case Instruction::AShr: {
404    // If this is a truncate of an arithmetic shr, we can truncate it to a
405    // smaller ashr iff we know that all the bits from the sign bit of the
406    // original type and the sign bit of the truncate type are similar.
407    // TODO: It is enough to check that the bits we would be shifting in are
408    //       similar to sign bit of the truncate type.
409    const APInt *Amt;
410    if (match(I->getOperand(1), m_APInt(Amt))) {
411      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
412      uint32_t BitWidth = Ty->getScalarSizeInBits();
413      if (Amt->getLimitedValue(BitWidth) < BitWidth &&
414          OrigBitWidth - BitWidth <
415              IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
416        return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
417    }
418    break;
419  }
420  case Instruction::Trunc:
421    // trunc(trunc(x)) -> trunc(x)
422    return true;
423  case Instruction::ZExt:
424  case Instruction::SExt:
425    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
426    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
427    return true;
428  case Instruction::Select: {
429    SelectInst *SI = cast<SelectInst>(I);
430    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
431           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
432  }
433  case Instruction::PHI: {
434    // We can change a phi if we can change all operands.  Note that we never
435    // get into trouble with cyclic PHIs here because we only consider
436    // instructions with a single use.
437    PHINode *PN = cast<PHINode>(I);
438    for (Value *IncValue : PN->incoming_values())
439      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
440        return false;
441    return true;
442  }
443  default:
444    // TODO: Can handle more cases here.
445    break;
446  }
447
448  return false;
449}
450
451/// Given a vector that is bitcast to an integer, optionally logically
452/// right-shifted, and truncated, convert it to an extractelement.
453/// Example (big endian):
454///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
455///   --->
456///   extractelement <4 x i32> %X, 1
457static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
458  Value *TruncOp = Trunc.getOperand(0);
459  Type *DestType = Trunc.getType();
460  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
461    return nullptr;
462
463  Value *VecInput = nullptr;
464  ConstantInt *ShiftVal = nullptr;
465  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
466                                  m_LShr(m_BitCast(m_Value(VecInput)),
467                                         m_ConstantInt(ShiftVal)))) ||
468      !isa<VectorType>(VecInput->getType()))
469    return nullptr;
470
471  VectorType *VecType = cast<VectorType>(VecInput->getType());
472  unsigned VecWidth = VecType->getPrimitiveSizeInBits();
473  unsigned DestWidth = DestType->getPrimitiveSizeInBits();
474  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
475
476  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
477    return nullptr;
478
479  // If the element type of the vector doesn't match the result type,
480  // bitcast it to a vector type that we can extract from.
481  unsigned NumVecElts = VecWidth / DestWidth;
482  if (VecType->getElementType() != DestType) {
483    VecType = VectorType::get(DestType, NumVecElts);
484    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
485  }
486
487  unsigned Elt = ShiftAmount / DestWidth;
488  if (IC.getDataLayout().isBigEndian())
489    Elt = NumVecElts - 1 - Elt;
490
491  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
492}
493
494/// Rotate left/right may occur in a wider type than necessary because of type
495/// promotion rules. Try to narrow the inputs and convert to funnel shift.
496Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
497  assert((isa<VectorType>(Trunc.getSrcTy()) ||
498          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
499         "Don't narrow to an illegal scalar type");
500
501  // Bail out on strange types. It is possible to handle some of these patterns
502  // even with non-power-of-2 sizes, but it is not a likely scenario.
503  Type *DestTy = Trunc.getType();
504  unsigned NarrowWidth = DestTy->getScalarSizeInBits();
505  if (!isPowerOf2_32(NarrowWidth))
506    return nullptr;
507
508  // First, find an or'd pair of opposite shifts with the same shifted operand:
509  // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
510  Value *Or0, *Or1;
511  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
512    return nullptr;
513
514  Value *ShVal, *ShAmt0, *ShAmt1;
515  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
516      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
517    return nullptr;
518
519  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
520  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
521  if (ShiftOpcode0 == ShiftOpcode1)
522    return nullptr;
523
524  // Match the shift amount operands for a rotate pattern. This always matches
525  // a subtraction on the R operand.
526  auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
527    // The shift amounts may add up to the narrow bit width:
528    // (shl ShVal, L) | (lshr ShVal, Width - L)
529    if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
530      return L;
531
532    // The shift amount may be masked with negation:
533    // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
534    Value *X;
535    unsigned Mask = Width - 1;
536    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
537        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
538      return X;
539
540    // Same as above, but the shift amount may be extended after masking:
541    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
542        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
543      return X;
544
545    return nullptr;
546  };
547
548  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
549  bool SubIsOnLHS = false;
550  if (!ShAmt) {
551    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
552    SubIsOnLHS = true;
553  }
554  if (!ShAmt)
555    return nullptr;
556
557  // The shifted value must have high zeros in the wide type. Typically, this
558  // will be a zext, but it could also be the result of an 'and' or 'shift'.
559  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
560  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
561  if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
562    return nullptr;
563
564  // We have an unnecessarily wide rotate!
565  // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
566  // Narrow the inputs and convert to funnel shift intrinsic:
567  // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
568  Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
569  Value *X = Builder.CreateTrunc(ShVal, DestTy);
570  bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
571                (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
572  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
573  Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
574  return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
575}
576
577/// Try to narrow the width of math or bitwise logic instructions by pulling a
578/// truncate ahead of binary operators.
579/// TODO: Transforms for truncated shifts should be moved into here.
580Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
581  Type *SrcTy = Trunc.getSrcTy();
582  Type *DestTy = Trunc.getType();
583  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
584    return nullptr;
585
586  BinaryOperator *BinOp;
587  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
588    return nullptr;
589
590  Value *BinOp0 = BinOp->getOperand(0);
591  Value *BinOp1 = BinOp->getOperand(1);
592  switch (BinOp->getOpcode()) {
593  case Instruction::And:
594  case Instruction::Or:
595  case Instruction::Xor:
596  case Instruction::Add:
597  case Instruction::Sub:
598  case Instruction::Mul: {
599    Constant *C;
600    if (match(BinOp0, m_Constant(C))) {
601      // trunc (binop C, X) --> binop (trunc C', X)
602      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
603      Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
604      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
605    }
606    if (match(BinOp1, m_Constant(C))) {
607      // trunc (binop X, C) --> binop (trunc X, C')
608      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
609      Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
610      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
611    }
612    Value *X;
613    if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
614      // trunc (binop (ext X), Y) --> binop X, (trunc Y)
615      Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
616      return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
617    }
618    if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
619      // trunc (binop Y, (ext X)) --> binop (trunc Y), X
620      Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
621      return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
622    }
623    break;
624  }
625
626  default: break;
627  }
628
629  if (Instruction *NarrowOr = narrowRotate(Trunc))
630    return NarrowOr;
631
632  return nullptr;
633}
634
635/// Try to narrow the width of a splat shuffle. This could be generalized to any
636/// shuffle with a constant operand, but we limit the transform to avoid
637/// creating a shuffle type that targets may not be able to lower effectively.
638static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
639                                       InstCombiner::BuilderTy &Builder) {
640  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
641  if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
642      Shuf->getMask()->getSplatValue() &&
643      Shuf->getType() == Shuf->getOperand(0)->getType()) {
644    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
645    Constant *NarrowUndef = UndefValue::get(Trunc.getType());
646    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
647    return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
648  }
649
650  return nullptr;
651}
652
653/// Try to narrow the width of an insert element. This could be generalized for
654/// any vector constant, but we limit the transform to insertion into undef to
655/// avoid potential backend problems from unsupported insertion widths. This
656/// could also be extended to handle the case of inserting a scalar constant
657/// into a vector variable.
658static Instruction *shrinkInsertElt(CastInst &Trunc,
659                                    InstCombiner::BuilderTy &Builder) {
660  Instruction::CastOps Opcode = Trunc.getOpcode();
661  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
662         "Unexpected instruction for shrinking");
663
664  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
665  if (!InsElt || !InsElt->hasOneUse())
666    return nullptr;
667
668  Type *DestTy = Trunc.getType();
669  Type *DestScalarTy = DestTy->getScalarType();
670  Value *VecOp = InsElt->getOperand(0);
671  Value *ScalarOp = InsElt->getOperand(1);
672  Value *Index = InsElt->getOperand(2);
673
674  if (isa<UndefValue>(VecOp)) {
675    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
676    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
677    UndefValue *NarrowUndef = UndefValue::get(DestTy);
678    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
679    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
680  }
681
682  return nullptr;
683}
684
685Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
686  if (Instruction *Result = commonCastTransforms(CI))
687    return Result;
688
689  Value *Src = CI.getOperand(0);
690  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
691
692  // Attempt to truncate the entire input expression tree to the destination
693  // type.   Only do this if the dest type is a simple type, don't convert the
694  // expression tree to something weird like i93 unless the source is also
695  // strange.
696  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
697      canEvaluateTruncated(Src, DestTy, *this, &CI)) {
698
699    // If this cast is a truncate, evaluting in a different type always
700    // eliminates the cast, so it is always a win.
701    LLVM_DEBUG(
702        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
703                  " to avoid cast: "
704               << CI << '\n');
705    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
706    assert(Res->getType() == DestTy);
707    return replaceInstUsesWith(CI, Res);
708  }
709
710  // Test if the trunc is the user of a select which is part of a
711  // minimum or maximum operation. If so, don't do any more simplification.
712  // Even simplifying demanded bits can break the canonical form of a
713  // min/max.
714  Value *LHS, *RHS;
715  if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
716    if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
717      return nullptr;
718
719  // See if we can simplify any instructions used by the input whose sole
720  // purpose is to compute bits we don't care about.
721  if (SimplifyDemandedInstructionBits(CI))
722    return &CI;
723
724  if (DestTy->getScalarSizeInBits() == 1) {
725    Value *Zero = Constant::getNullValue(Src->getType());
726    if (DestTy->isIntegerTy()) {
727      // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
728      // TODO: We canonicalize to more instructions here because we are probably
729      // lacking equivalent analysis for trunc relative to icmp. There may also
730      // be codegen concerns. If those trunc limitations were removed, we could
731      // remove this transform.
732      Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
733      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
734    }
735
736    // For vectors, we do not canonicalize all truncs to icmp, so optimize
737    // patterns that would be covered within visitICmpInst.
738    Value *X;
739    const APInt *C;
740    if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
741      // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
742      APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C);
743      Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
744      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
745    }
746    if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)),
747                                   m_Deferred(X))))) {
748      // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
749      APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1;
750      Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC));
751      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
752    }
753  }
754
755  // FIXME: Maybe combine the next two transforms to handle the no cast case
756  // more efficiently. Support vector types. Cleanup code by using m_OneUse.
757
758  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
759  Value *A = nullptr; ConstantInt *Cst = nullptr;
760  if (Src->hasOneUse() &&
761      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
762    // We have three types to worry about here, the type of A, the source of
763    // the truncate (MidSize), and the destination of the truncate. We know that
764    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
765    // between ASize and ResultSize.
766    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
767
768    // If the shift amount is larger than the size of A, then the result is
769    // known to be zero because all the input bits got shifted out.
770    if (Cst->getZExtValue() >= ASize)
771      return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
772
773    // Since we're doing an lshr and a zero extend, and know that the shift
774    // amount is smaller than ASize, it is always safe to do the shift in A's
775    // type, then zero extend or truncate to the result.
776    Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
777    Shift->takeName(Src);
778    return CastInst::CreateIntegerCast(Shift, DestTy, false);
779  }
780
781  // FIXME: We should canonicalize to zext/trunc and remove this transform.
782  // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
783  // conversion.
784  // It works because bits coming from sign extension have the same value as
785  // the sign bit of the original value; performing ashr instead of lshr
786  // generates bits of the same value as the sign bit.
787  if (Src->hasOneUse() &&
788      match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
789    Value *SExt = cast<Instruction>(Src)->getOperand(0);
790    const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
791    const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
792    const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
793    const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
794    unsigned ShiftAmt = Cst->getZExtValue();
795
796    // This optimization can be only performed when zero bits generated by
797    // the original lshr aren't pulled into the value after truncation, so we
798    // can only shift by values no larger than the number of extension bits.
799    // FIXME: Instead of bailing when the shift is too large, use and to clear
800    // the extra bits.
801    if (ShiftAmt <= MaxAmt) {
802      if (CISize == ASize)
803        return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
804                                          std::min(ShiftAmt, ASize - 1)));
805      if (SExt->hasOneUse()) {
806        Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
807        Shift->takeName(Src);
808        return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
809      }
810    }
811  }
812
813  if (Instruction *I = narrowBinOp(CI))
814    return I;
815
816  if (Instruction *I = shrinkSplatShuffle(CI, Builder))
817    return I;
818
819  if (Instruction *I = shrinkInsertElt(CI, Builder))
820    return I;
821
822  if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
823      shouldChangeType(SrcTy, DestTy)) {
824    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
825    // dest type is native and cst < dest size.
826    if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
827        !match(A, m_Shr(m_Value(), m_Constant()))) {
828      // Skip shifts of shift by constants. It undoes a combine in
829      // FoldShiftByConstant and is the extend in reg pattern.
830      const unsigned DestSize = DestTy->getScalarSizeInBits();
831      if (Cst->getValue().ult(DestSize)) {
832        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
833
834        return BinaryOperator::Create(
835          Instruction::Shl, NewTrunc,
836          ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
837      }
838    }
839  }
840
841  if (Instruction *I = foldVecTruncToExtElt(CI, *this))
842    return I;
843
844  return nullptr;
845}
846
847Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
848                                             bool DoTransform) {
849  // If we are just checking for a icmp eq of a single bit and zext'ing it
850  // to an integer, then shift the bit to the appropriate place and then
851  // cast to integer to avoid the comparison.
852  const APInt *Op1CV;
853  if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
854
855    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
856    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
857    if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
858        (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
859      if (!DoTransform) return Cmp;
860
861      Value *In = Cmp->getOperand(0);
862      Value *Sh = ConstantInt::get(In->getType(),
863                                   In->getType()->getScalarSizeInBits() - 1);
864      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
865      if (In->getType() != Zext.getType())
866        In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
867
868      if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
869        Constant *One = ConstantInt::get(In->getType(), 1);
870        In = Builder.CreateXor(In, One, In->getName() + ".not");
871      }
872
873      return replaceInstUsesWith(Zext, In);
874    }
875
876    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
877    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
878    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
879    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
880    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
881    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
882    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
883    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
884    if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
885        // This only works for EQ and NE
886        Cmp->isEquality()) {
887      // If Op1C some other power of two, convert:
888      KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
889
890      APInt KnownZeroMask(~Known.Zero);
891      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
892        if (!DoTransform) return Cmp;
893
894        bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
895        if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
896          // (X&4) == 2 --> false
897          // (X&4) != 2 --> true
898          Constant *Res = ConstantInt::get(Zext.getType(), isNE);
899          return replaceInstUsesWith(Zext, Res);
900        }
901
902        uint32_t ShAmt = KnownZeroMask.logBase2();
903        Value *In = Cmp->getOperand(0);
904        if (ShAmt) {
905          // Perform a logical shr by shiftamt.
906          // Insert the shift to put the result in the low bit.
907          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
908                                  In->getName() + ".lobit");
909        }
910
911        if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
912          Constant *One = ConstantInt::get(In->getType(), 1);
913          In = Builder.CreateXor(In, One);
914        }
915
916        if (Zext.getType() == In->getType())
917          return replaceInstUsesWith(Zext, In);
918
919        Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
920        return replaceInstUsesWith(Zext, IntCast);
921      }
922    }
923  }
924
925  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
926  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
927  // may lead to additional simplifications.
928  if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
929    if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
930      Value *LHS = Cmp->getOperand(0);
931      Value *RHS = Cmp->getOperand(1);
932
933      KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
934      KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
935
936      if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
937        APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
938        APInt UnknownBit = ~KnownBits;
939        if (UnknownBit.countPopulation() == 1) {
940          if (!DoTransform) return Cmp;
941
942          Value *Result = Builder.CreateXor(LHS, RHS);
943
944          // Mask off any bits that are set and won't be shifted away.
945          if (KnownLHS.One.uge(UnknownBit))
946            Result = Builder.CreateAnd(Result,
947                                        ConstantInt::get(ITy, UnknownBit));
948
949          // Shift the bit we're testing down to the lsb.
950          Result = Builder.CreateLShr(
951               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
952
953          if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
954            Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
955          Result->takeName(Cmp);
956          return replaceInstUsesWith(Zext, Result);
957        }
958      }
959    }
960  }
961
962  return nullptr;
963}
964
965/// Determine if the specified value can be computed in the specified wider type
966/// and produce the same low bits. If not, return false.
967///
968/// If this function returns true, it can also return a non-zero number of bits
969/// (in BitsToClear) which indicates that the value it computes is correct for
970/// the zero extend, but that the additional BitsToClear bits need to be zero'd
971/// out.  For example, to promote something like:
972///
973///   %B = trunc i64 %A to i32
974///   %C = lshr i32 %B, 8
975///   %E = zext i32 %C to i64
976///
977/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
978/// set to 8 to indicate that the promoted value needs to have bits 24-31
979/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
980/// clear the top bits anyway, doing this has no extra cost.
981///
982/// This function works on both vectors and scalars.
983static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
984                             InstCombiner &IC, Instruction *CxtI) {
985  BitsToClear = 0;
986  if (canAlwaysEvaluateInType(V, Ty))
987    return true;
988  if (canNotEvaluateInType(V, Ty))
989    return false;
990
991  auto *I = cast<Instruction>(V);
992  unsigned Tmp;
993  switch (I->getOpcode()) {
994  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
995  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
996  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
997    return true;
998  case Instruction::And:
999  case Instruction::Or:
1000  case Instruction::Xor:
1001  case Instruction::Add:
1002  case Instruction::Sub:
1003  case Instruction::Mul:
1004    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1005        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1006      return false;
1007    // These can all be promoted if neither operand has 'bits to clear'.
1008    if (BitsToClear == 0 && Tmp == 0)
1009      return true;
1010
1011    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1012    // other side, BitsToClear is ok.
1013    if (Tmp == 0 && I->isBitwiseLogicOp()) {
1014      // We use MaskedValueIsZero here for generality, but the case we care
1015      // about the most is constant RHS.
1016      unsigned VSize = V->getType()->getScalarSizeInBits();
1017      if (IC.MaskedValueIsZero(I->getOperand(1),
1018                               APInt::getHighBitsSet(VSize, BitsToClear),
1019                               0, CxtI)) {
1020        // If this is an And instruction and all of the BitsToClear are
1021        // known to be zero we can reset BitsToClear.
1022        if (I->getOpcode() == Instruction::And)
1023          BitsToClear = 0;
1024        return true;
1025      }
1026    }
1027
1028    // Otherwise, we don't know how to analyze this BitsToClear case yet.
1029    return false;
1030
1031  case Instruction::Shl: {
1032    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1033    // upper bits we can reduce BitsToClear by the shift amount.
1034    const APInt *Amt;
1035    if (match(I->getOperand(1), m_APInt(Amt))) {
1036      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1037        return false;
1038      uint64_t ShiftAmt = Amt->getZExtValue();
1039      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1040      return true;
1041    }
1042    return false;
1043  }
1044  case Instruction::LShr: {
1045    // We can promote lshr(x, cst) if we can promote x.  This requires the
1046    // ultimate 'and' to clear out the high zero bits we're clearing out though.
1047    const APInt *Amt;
1048    if (match(I->getOperand(1), m_APInt(Amt))) {
1049      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1050        return false;
1051      BitsToClear += Amt->getZExtValue();
1052      if (BitsToClear > V->getType()->getScalarSizeInBits())
1053        BitsToClear = V->getType()->getScalarSizeInBits();
1054      return true;
1055    }
1056    // Cannot promote variable LSHR.
1057    return false;
1058  }
1059  case Instruction::Select:
1060    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1061        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1062        // TODO: If important, we could handle the case when the BitsToClear are
1063        // known zero in the disagreeing side.
1064        Tmp != BitsToClear)
1065      return false;
1066    return true;
1067
1068  case Instruction::PHI: {
1069    // We can change a phi if we can change all operands.  Note that we never
1070    // get into trouble with cyclic PHIs here because we only consider
1071    // instructions with a single use.
1072    PHINode *PN = cast<PHINode>(I);
1073    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1074      return false;
1075    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1076      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1077          // TODO: If important, we could handle the case when the BitsToClear
1078          // are known zero in the disagreeing input.
1079          Tmp != BitsToClear)
1080        return false;
1081    return true;
1082  }
1083  default:
1084    // TODO: Can handle more cases here.
1085    return false;
1086  }
1087}
1088
1089Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1090  // If this zero extend is only used by a truncate, let the truncate be
1091  // eliminated before we try to optimize this zext.
1092  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1093    return nullptr;
1094
1095  // If one of the common conversion will work, do it.
1096  if (Instruction *Result = commonCastTransforms(CI))
1097    return Result;
1098
1099  Value *Src = CI.getOperand(0);
1100  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1101
1102  // Try to extend the entire expression tree to the wide destination type.
1103  unsigned BitsToClear;
1104  if (shouldChangeType(SrcTy, DestTy) &&
1105      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1106    assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1107           "Can't clear more bits than in SrcTy");
1108
1109    // Okay, we can transform this!  Insert the new expression now.
1110    LLVM_DEBUG(
1111        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1112                  " to avoid zero extend: "
1113               << CI << '\n');
1114    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1115    assert(Res->getType() == DestTy);
1116
1117    // Preserve debug values referring to Src if the zext is its last use.
1118    if (auto *SrcOp = dyn_cast<Instruction>(Src))
1119      if (SrcOp->hasOneUse())
1120        replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1121
1122    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1123    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1124
1125    // If the high bits are already filled with zeros, just replace this
1126    // cast with the result.
1127    if (MaskedValueIsZero(Res,
1128                          APInt::getHighBitsSet(DestBitSize,
1129                                                DestBitSize-SrcBitsKept),
1130                             0, &CI))
1131      return replaceInstUsesWith(CI, Res);
1132
1133    // We need to emit an AND to clear the high bits.
1134    Constant *C = ConstantInt::get(Res->getType(),
1135                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1136    return BinaryOperator::CreateAnd(Res, C);
1137  }
1138
1139  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1140  // types and if the sizes are just right we can convert this into a logical
1141  // 'and' which will be much cheaper than the pair of casts.
1142  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1143    // TODO: Subsume this into EvaluateInDifferentType.
1144
1145    // Get the sizes of the types involved.  We know that the intermediate type
1146    // will be smaller than A or C, but don't know the relation between A and C.
1147    Value *A = CSrc->getOperand(0);
1148    unsigned SrcSize = A->getType()->getScalarSizeInBits();
1149    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1150    unsigned DstSize = CI.getType()->getScalarSizeInBits();
1151    // If we're actually extending zero bits, then if
1152    // SrcSize <  DstSize: zext(a & mask)
1153    // SrcSize == DstSize: a & mask
1154    // SrcSize  > DstSize: trunc(a) & mask
1155    if (SrcSize < DstSize) {
1156      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1157      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1158      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1159      return new ZExtInst(And, CI.getType());
1160    }
1161
1162    if (SrcSize == DstSize) {
1163      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1164      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1165                                                           AndValue));
1166    }
1167    if (SrcSize > DstSize) {
1168      Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1169      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1170      return BinaryOperator::CreateAnd(Trunc,
1171                                       ConstantInt::get(Trunc->getType(),
1172                                                        AndValue));
1173    }
1174  }
1175
1176  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1177    return transformZExtICmp(Cmp, CI);
1178
1179  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1180  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1181    // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1182    // of the (zext icmp) can be eliminated. If so, immediately perform the
1183    // according elimination.
1184    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1185    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1186    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1187        (transformZExtICmp(LHS, CI, false) ||
1188         transformZExtICmp(RHS, CI, false))) {
1189      // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1190      Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1191      Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1192      Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1193      if (auto *OrInst = dyn_cast<Instruction>(Or))
1194        Builder.SetInsertPoint(OrInst);
1195
1196      // Perform the elimination.
1197      if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1198        transformZExtICmp(LHS, *LZExt);
1199      if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1200        transformZExtICmp(RHS, *RZExt);
1201
1202      return replaceInstUsesWith(CI, Or);
1203    }
1204  }
1205
1206  // zext(trunc(X) & C) -> (X & zext(C)).
1207  Constant *C;
1208  Value *X;
1209  if (SrcI &&
1210      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1211      X->getType() == CI.getType())
1212    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1213
1214  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1215  Value *And;
1216  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1217      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1218      X->getType() == CI.getType()) {
1219    Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1220    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1221  }
1222
1223  return nullptr;
1224}
1225
1226/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1227Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1228  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1229  ICmpInst::Predicate Pred = ICI->getPredicate();
1230
1231  // Don't bother if Op1 isn't of vector or integer type.
1232  if (!Op1->getType()->isIntOrIntVectorTy())
1233    return nullptr;
1234
1235  if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1236      (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1237    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1238    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1239    Value *Sh = ConstantInt::get(Op0->getType(),
1240                                 Op0->getType()->getScalarSizeInBits() - 1);
1241    Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1242    if (In->getType() != CI.getType())
1243      In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1244
1245    if (Pred == ICmpInst::ICMP_SGT)
1246      In = Builder.CreateNot(In, In->getName() + ".not");
1247    return replaceInstUsesWith(CI, In);
1248  }
1249
1250  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1251    // If we know that only one bit of the LHS of the icmp can be set and we
1252    // have an equality comparison with zero or a power of 2, we can transform
1253    // the icmp and sext into bitwise/integer operations.
1254    if (ICI->hasOneUse() &&
1255        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1256      KnownBits Known = computeKnownBits(Op0, 0, &CI);
1257
1258      APInt KnownZeroMask(~Known.Zero);
1259      if (KnownZeroMask.isPowerOf2()) {
1260        Value *In = ICI->getOperand(0);
1261
1262        // If the icmp tests for a known zero bit we can constant fold it.
1263        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1264          Value *V = Pred == ICmpInst::ICMP_NE ?
1265                       ConstantInt::getAllOnesValue(CI.getType()) :
1266                       ConstantInt::getNullValue(CI.getType());
1267          return replaceInstUsesWith(CI, V);
1268        }
1269
1270        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1271          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1272          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1273          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1274          // Perform a right shift to place the desired bit in the LSB.
1275          if (ShiftAmt)
1276            In = Builder.CreateLShr(In,
1277                                    ConstantInt::get(In->getType(), ShiftAmt));
1278
1279          // At this point "In" is either 1 or 0. Subtract 1 to turn
1280          // {1, 0} -> {0, -1}.
1281          In = Builder.CreateAdd(In,
1282                                 ConstantInt::getAllOnesValue(In->getType()),
1283                                 "sext");
1284        } else {
1285          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1286          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1287          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1288          // Perform a left shift to place the desired bit in the MSB.
1289          if (ShiftAmt)
1290            In = Builder.CreateShl(In,
1291                                   ConstantInt::get(In->getType(), ShiftAmt));
1292
1293          // Distribute the bit over the whole bit width.
1294          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1295                                  KnownZeroMask.getBitWidth() - 1), "sext");
1296        }
1297
1298        if (CI.getType() == In->getType())
1299          return replaceInstUsesWith(CI, In);
1300        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1301      }
1302    }
1303  }
1304
1305  return nullptr;
1306}
1307
1308/// Return true if we can take the specified value and return it as type Ty
1309/// without inserting any new casts and without changing the value of the common
1310/// low bits.  This is used by code that tries to promote integer operations to
1311/// a wider types will allow us to eliminate the extension.
1312///
1313/// This function works on both vectors and scalars.
1314///
1315static bool canEvaluateSExtd(Value *V, Type *Ty) {
1316  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1317         "Can't sign extend type to a smaller type");
1318  if (canAlwaysEvaluateInType(V, Ty))
1319    return true;
1320  if (canNotEvaluateInType(V, Ty))
1321    return false;
1322
1323  auto *I = cast<Instruction>(V);
1324  switch (I->getOpcode()) {
1325  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1326  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1327  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1328    return true;
1329  case Instruction::And:
1330  case Instruction::Or:
1331  case Instruction::Xor:
1332  case Instruction::Add:
1333  case Instruction::Sub:
1334  case Instruction::Mul:
1335    // These operators can all arbitrarily be extended if their inputs can.
1336    return canEvaluateSExtd(I->getOperand(0), Ty) &&
1337           canEvaluateSExtd(I->getOperand(1), Ty);
1338
1339  //case Instruction::Shl:   TODO
1340  //case Instruction::LShr:  TODO
1341
1342  case Instruction::Select:
1343    return canEvaluateSExtd(I->getOperand(1), Ty) &&
1344           canEvaluateSExtd(I->getOperand(2), Ty);
1345
1346  case Instruction::PHI: {
1347    // We can change a phi if we can change all operands.  Note that we never
1348    // get into trouble with cyclic PHIs here because we only consider
1349    // instructions with a single use.
1350    PHINode *PN = cast<PHINode>(I);
1351    for (Value *IncValue : PN->incoming_values())
1352      if (!canEvaluateSExtd(IncValue, Ty)) return false;
1353    return true;
1354  }
1355  default:
1356    // TODO: Can handle more cases here.
1357    break;
1358  }
1359
1360  return false;
1361}
1362
1363Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1364  // If this sign extend is only used by a truncate, let the truncate be
1365  // eliminated before we try to optimize this sext.
1366  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1367    return nullptr;
1368
1369  if (Instruction *I = commonCastTransforms(CI))
1370    return I;
1371
1372  Value *Src = CI.getOperand(0);
1373  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1374
1375  // If we know that the value being extended is positive, we can use a zext
1376  // instead.
1377  KnownBits Known = computeKnownBits(Src, 0, &CI);
1378  if (Known.isNonNegative())
1379    return CastInst::Create(Instruction::ZExt, Src, DestTy);
1380
1381  // Try to extend the entire expression tree to the wide destination type.
1382  if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1383    // Okay, we can transform this!  Insert the new expression now.
1384    LLVM_DEBUG(
1385        dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1386                  " to avoid sign extend: "
1387               << CI << '\n');
1388    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1389    assert(Res->getType() == DestTy);
1390
1391    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1392    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1393
1394    // If the high bits are already filled with sign bit, just replace this
1395    // cast with the result.
1396    if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1397      return replaceInstUsesWith(CI, Res);
1398
1399    // We need to emit a shl + ashr to do the sign extend.
1400    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1401    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1402                                      ShAmt);
1403  }
1404
1405  // If the input is a trunc from the destination type, then turn sext(trunc(x))
1406  // into shifts.
1407  Value *X;
1408  if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1409    // sext(trunc(X)) --> ashr(shl(X, C), C)
1410    unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1411    unsigned DestBitSize = DestTy->getScalarSizeInBits();
1412    Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1413    return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1414  }
1415
1416  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1417    return transformSExtICmp(ICI, CI);
1418
1419  // If the input is a shl/ashr pair of a same constant, then this is a sign
1420  // extension from a smaller value.  If we could trust arbitrary bitwidth
1421  // integers, we could turn this into a truncate to the smaller bit and then
1422  // use a sext for the whole extension.  Since we don't, look deeper and check
1423  // for a truncate.  If the source and dest are the same type, eliminate the
1424  // trunc and extend and just do shifts.  For example, turn:
1425  //   %a = trunc i32 %i to i8
1426  //   %b = shl i8 %a, 6
1427  //   %c = ashr i8 %b, 6
1428  //   %d = sext i8 %c to i32
1429  // into:
1430  //   %a = shl i32 %i, 30
1431  //   %d = ashr i32 %a, 30
1432  Value *A = nullptr;
1433  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1434  ConstantInt *BA = nullptr, *CA = nullptr;
1435  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1436                        m_ConstantInt(CA))) &&
1437      BA == CA && A->getType() == CI.getType()) {
1438    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1439    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1440    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1441    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1442    A = Builder.CreateShl(A, ShAmtV, CI.getName());
1443    return BinaryOperator::CreateAShr(A, ShAmtV);
1444  }
1445
1446  return nullptr;
1447}
1448
1449
1450/// Return a Constant* for the specified floating-point constant if it fits
1451/// in the specified FP type without changing its value.
1452static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1453  bool losesInfo;
1454  APFloat F = CFP->getValueAPF();
1455  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1456  return !losesInfo;
1457}
1458
1459static Type *shrinkFPConstant(ConstantFP *CFP) {
1460  if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1461    return nullptr;  // No constant folding of this.
1462  // See if the value can be truncated to half and then reextended.
1463  if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1464    return Type::getHalfTy(CFP->getContext());
1465  // See if the value can be truncated to float and then reextended.
1466  if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1467    return Type::getFloatTy(CFP->getContext());
1468  if (CFP->getType()->isDoubleTy())
1469    return nullptr;  // Won't shrink.
1470  if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1471    return Type::getDoubleTy(CFP->getContext());
1472  // Don't try to shrink to various long double types.
1473  return nullptr;
1474}
1475
1476// Determine if this is a vector of ConstantFPs and if so, return the minimal
1477// type we can safely truncate all elements to.
1478// TODO: Make these support undef elements.
1479static Type *shrinkFPConstantVector(Value *V) {
1480  auto *CV = dyn_cast<Constant>(V);
1481  if (!CV || !CV->getType()->isVectorTy())
1482    return nullptr;
1483
1484  Type *MinType = nullptr;
1485
1486  unsigned NumElts = CV->getType()->getVectorNumElements();
1487  for (unsigned i = 0; i != NumElts; ++i) {
1488    auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1489    if (!CFP)
1490      return nullptr;
1491
1492    Type *T = shrinkFPConstant(CFP);
1493    if (!T)
1494      return nullptr;
1495
1496    // If we haven't found a type yet or this type has a larger mantissa than
1497    // our previous type, this is our new minimal type.
1498    if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1499      MinType = T;
1500  }
1501
1502  // Make a vector type from the minimal type.
1503  return VectorType::get(MinType, NumElts);
1504}
1505
1506/// Find the minimum FP type we can safely truncate to.
1507static Type *getMinimumFPType(Value *V) {
1508  if (auto *FPExt = dyn_cast<FPExtInst>(V))
1509    return FPExt->getOperand(0)->getType();
1510
1511  // If this value is a constant, return the constant in the smallest FP type
1512  // that can accurately represent it.  This allows us to turn
1513  // (float)((double)X+2.0) into x+2.0f.
1514  if (auto *CFP = dyn_cast<ConstantFP>(V))
1515    if (Type *T = shrinkFPConstant(CFP))
1516      return T;
1517
1518  // Try to shrink a vector of FP constants.
1519  if (Type *T = shrinkFPConstantVector(V))
1520    return T;
1521
1522  return V->getType();
1523}
1524
1525Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1526  if (Instruction *I = commonCastTransforms(FPT))
1527    return I;
1528
1529  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1530  // simplify this expression to avoid one or more of the trunc/extend
1531  // operations if we can do so without changing the numerical results.
1532  //
1533  // The exact manner in which the widths of the operands interact to limit
1534  // what we can and cannot do safely varies from operation to operation, and
1535  // is explained below in the various case statements.
1536  Type *Ty = FPT.getType();
1537  auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1538  if (BO && BO->hasOneUse()) {
1539    Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1540    Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1541    unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1542    unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1543    unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1544    unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1545    unsigned DstWidth = Ty->getFPMantissaWidth();
1546    switch (BO->getOpcode()) {
1547      default: break;
1548      case Instruction::FAdd:
1549      case Instruction::FSub:
1550        // For addition and subtraction, the infinitely precise result can
1551        // essentially be arbitrarily wide; proving that double rounding
1552        // will not occur because the result of OpI is exact (as we will for
1553        // FMul, for example) is hopeless.  However, we *can* nonetheless
1554        // frequently know that double rounding cannot occur (or that it is
1555        // innocuous) by taking advantage of the specific structure of
1556        // infinitely-precise results that admit double rounding.
1557        //
1558        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1559        // to represent both sources, we can guarantee that the double
1560        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1561        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1562        // for proof of this fact).
1563        //
1564        // Note: Figueroa does not consider the case where DstFormat !=
1565        // SrcFormat.  It's possible (likely even!) that this analysis
1566        // could be tightened for those cases, but they are rare (the main
1567        // case of interest here is (float)((double)float + float)).
1568        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1569          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1570          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1571          Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1572          RI->copyFastMathFlags(BO);
1573          return RI;
1574        }
1575        break;
1576      case Instruction::FMul:
1577        // For multiplication, the infinitely precise result has at most
1578        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1579        // that such a value can be exactly represented, then no double
1580        // rounding can possibly occur; we can safely perform the operation
1581        // in the destination format if it can represent both sources.
1582        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1583          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1584          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1585          return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1586        }
1587        break;
1588      case Instruction::FDiv:
1589        // For division, we use again use the bound from Figueroa's
1590        // dissertation.  I am entirely certain that this bound can be
1591        // tightened in the unbalanced operand case by an analysis based on
1592        // the diophantine rational approximation bound, but the well-known
1593        // condition used here is a good conservative first pass.
1594        // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1595        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1596          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1597          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1598          return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1599        }
1600        break;
1601      case Instruction::FRem: {
1602        // Remainder is straightforward.  Remainder is always exact, so the
1603        // type of OpI doesn't enter into things at all.  We simply evaluate
1604        // in whichever source type is larger, then convert to the
1605        // destination type.
1606        if (SrcWidth == OpWidth)
1607          break;
1608        Value *LHS, *RHS;
1609        if (LHSWidth == SrcWidth) {
1610           LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1611           RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1612        } else {
1613           LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1614           RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1615        }
1616
1617        Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1618        return CastInst::CreateFPCast(ExactResult, Ty);
1619      }
1620    }
1621  }
1622
1623  // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1624  Value *X;
1625  Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1626  if (Op && Op->hasOneUse()) {
1627    // FIXME: The FMF should propagate from the fptrunc, not the source op.
1628    IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1629    if (isa<FPMathOperator>(Op))
1630      Builder.setFastMathFlags(Op->getFastMathFlags());
1631
1632    if (match(Op, m_FNeg(m_Value(X)))) {
1633      Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1634
1635      // FIXME: Once we're sure that unary FNeg optimizations are on par with
1636      // binary FNeg, this should always return a unary operator.
1637      if (isa<BinaryOperator>(Op))
1638        return BinaryOperator::CreateFNegFMF(InnerTrunc, Op);
1639      return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1640    }
1641
1642    // If we are truncating a select that has an extended operand, we can
1643    // narrow the other operand and do the select as a narrow op.
1644    Value *Cond, *X, *Y;
1645    if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1646        X->getType() == Ty) {
1647      // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1648      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1649      Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1650      return replaceInstUsesWith(FPT, Sel);
1651    }
1652    if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1653        X->getType() == Ty) {
1654      // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1655      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1656      Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1657      return replaceInstUsesWith(FPT, Sel);
1658    }
1659  }
1660
1661  if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1662    switch (II->getIntrinsicID()) {
1663    default: break;
1664    case Intrinsic::ceil:
1665    case Intrinsic::fabs:
1666    case Intrinsic::floor:
1667    case Intrinsic::nearbyint:
1668    case Intrinsic::rint:
1669    case Intrinsic::round:
1670    case Intrinsic::trunc: {
1671      Value *Src = II->getArgOperand(0);
1672      if (!Src->hasOneUse())
1673        break;
1674
1675      // Except for fabs, this transformation requires the input of the unary FP
1676      // operation to be itself an fpext from the type to which we're
1677      // truncating.
1678      if (II->getIntrinsicID() != Intrinsic::fabs) {
1679        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1680        if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1681          break;
1682      }
1683
1684      // Do unary FP operation on smaller type.
1685      // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1686      Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1687      Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1688                                                     II->getIntrinsicID(), Ty);
1689      SmallVector<OperandBundleDef, 1> OpBundles;
1690      II->getOperandBundlesAsDefs(OpBundles);
1691      CallInst *NewCI =
1692          CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1693      NewCI->copyFastMathFlags(II);
1694      return NewCI;
1695    }
1696    }
1697  }
1698
1699  if (Instruction *I = shrinkInsertElt(FPT, Builder))
1700    return I;
1701
1702  return nullptr;
1703}
1704
1705Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1706  return commonCastTransforms(CI);
1707}
1708
1709// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1710// This is safe if the intermediate type has enough bits in its mantissa to
1711// accurately represent all values of X.  For example, this won't work with
1712// i64 -> float -> i64.
1713Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1714  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1715    return nullptr;
1716  Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1717
1718  Value *SrcI = OpI->getOperand(0);
1719  Type *FITy = FI.getType();
1720  Type *OpITy = OpI->getType();
1721  Type *SrcTy = SrcI->getType();
1722  bool IsInputSigned = isa<SIToFPInst>(OpI);
1723  bool IsOutputSigned = isa<FPToSIInst>(FI);
1724
1725  // We can safely assume the conversion won't overflow the output range,
1726  // because (for example) (uint8_t)18293.f is undefined behavior.
1727
1728  // Since we can assume the conversion won't overflow, our decision as to
1729  // whether the input will fit in the float should depend on the minimum
1730  // of the input range and output range.
1731
1732  // This means this is also safe for a signed input and unsigned output, since
1733  // a negative input would lead to undefined behavior.
1734  int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1735  int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1736  int ActualSize = std::min(InputSize, OutputSize);
1737
1738  if (ActualSize <= OpITy->getFPMantissaWidth()) {
1739    if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1740      if (IsInputSigned && IsOutputSigned)
1741        return new SExtInst(SrcI, FITy);
1742      return new ZExtInst(SrcI, FITy);
1743    }
1744    if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1745      return new TruncInst(SrcI, FITy);
1746    if (SrcTy == FITy)
1747      return replaceInstUsesWith(FI, SrcI);
1748    return new BitCastInst(SrcI, FITy);
1749  }
1750  return nullptr;
1751}
1752
1753Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1754  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1755  if (!OpI)
1756    return commonCastTransforms(FI);
1757
1758  if (Instruction *I = FoldItoFPtoI(FI))
1759    return I;
1760
1761  return commonCastTransforms(FI);
1762}
1763
1764Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1765  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1766  if (!OpI)
1767    return commonCastTransforms(FI);
1768
1769  if (Instruction *I = FoldItoFPtoI(FI))
1770    return I;
1771
1772  return commonCastTransforms(FI);
1773}
1774
1775Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1776  return commonCastTransforms(CI);
1777}
1778
1779Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1780  return commonCastTransforms(CI);
1781}
1782
1783Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1784  // If the source integer type is not the intptr_t type for this target, do a
1785  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1786  // cast to be exposed to other transforms.
1787  unsigned AS = CI.getAddressSpace();
1788  if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1789      DL.getPointerSizeInBits(AS)) {
1790    Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1791    if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1792      Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1793
1794    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1795    return new IntToPtrInst(P, CI.getType());
1796  }
1797
1798  if (Instruction *I = commonCastTransforms(CI))
1799    return I;
1800
1801  return nullptr;
1802}
1803
1804/// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1805Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1806  Value *Src = CI.getOperand(0);
1807
1808  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1809    // If casting the result of a getelementptr instruction with no offset, turn
1810    // this into a cast of the original pointer!
1811    if (GEP->hasAllZeroIndices() &&
1812        // If CI is an addrspacecast and GEP changes the poiner type, merging
1813        // GEP into CI would undo canonicalizing addrspacecast with different
1814        // pointer types, causing infinite loops.
1815        (!isa<AddrSpaceCastInst>(CI) ||
1816         GEP->getType() == GEP->getPointerOperandType())) {
1817      // Changing the cast operand is usually not a good idea but it is safe
1818      // here because the pointer operand is being replaced with another
1819      // pointer operand so the opcode doesn't need to change.
1820      Worklist.Add(GEP);
1821      CI.setOperand(0, GEP->getOperand(0));
1822      return &CI;
1823    }
1824  }
1825
1826  return commonCastTransforms(CI);
1827}
1828
1829Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1830  // If the destination integer type is not the intptr_t type for this target,
1831  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1832  // to be exposed to other transforms.
1833
1834  Type *Ty = CI.getType();
1835  unsigned AS = CI.getPointerAddressSpace();
1836
1837  if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1838    return commonPointerCastTransforms(CI);
1839
1840  Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1841  if (Ty->isVectorTy()) // Handle vectors of pointers.
1842    PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1843
1844  Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1845  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1846}
1847
1848/// This input value (which is known to have vector type) is being zero extended
1849/// or truncated to the specified vector type. Since the zext/trunc is done
1850/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
1851/// endianness will impact which end of the vector that is extended or
1852/// truncated.
1853///
1854/// A vector is always stored with index 0 at the lowest address, which
1855/// corresponds to the most significant bits for a big endian stored integer and
1856/// the least significant bits for little endian. A trunc/zext of an integer
1857/// impacts the big end of the integer. Thus, we need to add/remove elements at
1858/// the front of the vector for big endian targets, and the back of the vector
1859/// for little endian targets.
1860///
1861/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1862///
1863/// The source and destination vector types may have different element types.
1864static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal,
1865                                                            VectorType *DestTy,
1866                                                            InstCombiner &IC) {
1867  // We can only do this optimization if the output is a multiple of the input
1868  // element size, or the input is a multiple of the output element size.
1869  // Convert the input type to have the same element type as the output.
1870  VectorType *SrcTy = cast<VectorType>(InVal->getType());
1871
1872  if (SrcTy->getElementType() != DestTy->getElementType()) {
1873    // The input types don't need to be identical, but for now they must be the
1874    // same size.  There is no specific reason we couldn't handle things like
1875    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1876    // there yet.
1877    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1878        DestTy->getElementType()->getPrimitiveSizeInBits())
1879      return nullptr;
1880
1881    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1882    InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1883  }
1884
1885  bool IsBigEndian = IC.getDataLayout().isBigEndian();
1886  unsigned SrcElts = SrcTy->getNumElements();
1887  unsigned DestElts = DestTy->getNumElements();
1888
1889  assert(SrcElts != DestElts && "Element counts should be different.");
1890
1891  // Now that the element types match, get the shuffle mask and RHS of the
1892  // shuffle to use, which depends on whether we're increasing or decreasing the
1893  // size of the input.
1894  SmallVector<uint32_t, 16> ShuffleMaskStorage;
1895  ArrayRef<uint32_t> ShuffleMask;
1896  Value *V2;
1897
1898  // Produce an identify shuffle mask for the src vector.
1899  ShuffleMaskStorage.resize(SrcElts);
1900  std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
1901
1902  if (SrcElts > DestElts) {
1903    // If we're shrinking the number of elements (rewriting an integer
1904    // truncate), just shuffle in the elements corresponding to the least
1905    // significant bits from the input and use undef as the second shuffle
1906    // input.
1907    V2 = UndefValue::get(SrcTy);
1908    // Make sure the shuffle mask selects the "least significant bits" by
1909    // keeping elements from back of the src vector for big endian, and from the
1910    // front for little endian.
1911    ShuffleMask = ShuffleMaskStorage;
1912    if (IsBigEndian)
1913      ShuffleMask = ShuffleMask.take_back(DestElts);
1914    else
1915      ShuffleMask = ShuffleMask.take_front(DestElts);
1916  } else {
1917    // If we're increasing the number of elements (rewriting an integer zext),
1918    // shuffle in all of the elements from InVal. Fill the rest of the result
1919    // elements with zeros from a constant zero.
1920    V2 = Constant::getNullValue(SrcTy);
1921    // Use first elt from V2 when indicating zero in the shuffle mask.
1922    uint32_t NullElt = SrcElts;
1923    // Extend with null values in the "most significant bits" by adding elements
1924    // in front of the src vector for big endian, and at the back for little
1925    // endian.
1926    unsigned DeltaElts = DestElts - SrcElts;
1927    if (IsBigEndian)
1928      ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
1929    else
1930      ShuffleMaskStorage.append(DeltaElts, NullElt);
1931    ShuffleMask = ShuffleMaskStorage;
1932  }
1933
1934  return new ShuffleVectorInst(InVal, V2,
1935                               ConstantDataVector::get(V2->getContext(),
1936                                                       ShuffleMask));
1937}
1938
1939static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1940  return Value % Ty->getPrimitiveSizeInBits() == 0;
1941}
1942
1943static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1944  return Value / Ty->getPrimitiveSizeInBits();
1945}
1946
1947/// V is a value which is inserted into a vector of VecEltTy.
1948/// Look through the value to see if we can decompose it into
1949/// insertions into the vector.  See the example in the comment for
1950/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1951/// The type of V is always a non-zero multiple of VecEltTy's size.
1952/// Shift is the number of bits between the lsb of V and the lsb of
1953/// the vector.
1954///
1955/// This returns false if the pattern can't be matched or true if it can,
1956/// filling in Elements with the elements found here.
1957static bool collectInsertionElements(Value *V, unsigned Shift,
1958                                     SmallVectorImpl<Value *> &Elements,
1959                                     Type *VecEltTy, bool isBigEndian) {
1960  assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1961         "Shift should be a multiple of the element type size");
1962
1963  // Undef values never contribute useful bits to the result.
1964  if (isa<UndefValue>(V)) return true;
1965
1966  // If we got down to a value of the right type, we win, try inserting into the
1967  // right element.
1968  if (V->getType() == VecEltTy) {
1969    // Inserting null doesn't actually insert any elements.
1970    if (Constant *C = dyn_cast<Constant>(V))
1971      if (C->isNullValue())
1972        return true;
1973
1974    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1975    if (isBigEndian)
1976      ElementIndex = Elements.size() - ElementIndex - 1;
1977
1978    // Fail if multiple elements are inserted into this slot.
1979    if (Elements[ElementIndex])
1980      return false;
1981
1982    Elements[ElementIndex] = V;
1983    return true;
1984  }
1985
1986  if (Constant *C = dyn_cast<Constant>(V)) {
1987    // Figure out the # elements this provides, and bitcast it or slice it up
1988    // as required.
1989    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1990                                        VecEltTy);
1991    // If the constant is the size of a vector element, we just need to bitcast
1992    // it to the right type so it gets properly inserted.
1993    if (NumElts == 1)
1994      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1995                                      Shift, Elements, VecEltTy, isBigEndian);
1996
1997    // Okay, this is a constant that covers multiple elements.  Slice it up into
1998    // pieces and insert each element-sized piece into the vector.
1999    if (!isa<IntegerType>(C->getType()))
2000      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2001                                       C->getType()->getPrimitiveSizeInBits()));
2002    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2003    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2004
2005    for (unsigned i = 0; i != NumElts; ++i) {
2006      unsigned ShiftI = Shift+i*ElementSize;
2007      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2008                                                                  ShiftI));
2009      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2010      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2011                                    isBigEndian))
2012        return false;
2013    }
2014    return true;
2015  }
2016
2017  if (!V->hasOneUse()) return false;
2018
2019  Instruction *I = dyn_cast<Instruction>(V);
2020  if (!I) return false;
2021  switch (I->getOpcode()) {
2022  default: return false; // Unhandled case.
2023  case Instruction::BitCast:
2024    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2025                                    isBigEndian);
2026  case Instruction::ZExt:
2027    if (!isMultipleOfTypeSize(
2028                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2029                              VecEltTy))
2030      return false;
2031    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2032                                    isBigEndian);
2033  case Instruction::Or:
2034    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2035                                    isBigEndian) &&
2036           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2037                                    isBigEndian);
2038  case Instruction::Shl: {
2039    // Must be shifting by a constant that is a multiple of the element size.
2040    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2041    if (!CI) return false;
2042    Shift += CI->getZExtValue();
2043    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2044    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2045                                    isBigEndian);
2046  }
2047
2048  }
2049}
2050
2051
2052/// If the input is an 'or' instruction, we may be doing shifts and ors to
2053/// assemble the elements of the vector manually.
2054/// Try to rip the code out and replace it with insertelements.  This is to
2055/// optimize code like this:
2056///
2057///    %tmp37 = bitcast float %inc to i32
2058///    %tmp38 = zext i32 %tmp37 to i64
2059///    %tmp31 = bitcast float %inc5 to i32
2060///    %tmp32 = zext i32 %tmp31 to i64
2061///    %tmp33 = shl i64 %tmp32, 32
2062///    %ins35 = or i64 %tmp33, %tmp38
2063///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2064///
2065/// Into two insertelements that do "buildvector{%inc, %inc5}".
2066static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2067                                                InstCombiner &IC) {
2068  VectorType *DestVecTy = cast<VectorType>(CI.getType());
2069  Value *IntInput = CI.getOperand(0);
2070
2071  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2072  if (!collectInsertionElements(IntInput, 0, Elements,
2073                                DestVecTy->getElementType(),
2074                                IC.getDataLayout().isBigEndian()))
2075    return nullptr;
2076
2077  // If we succeeded, we know that all of the element are specified by Elements
2078  // or are zero if Elements has a null entry.  Recast this as a set of
2079  // insertions.
2080  Value *Result = Constant::getNullValue(CI.getType());
2081  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2082    if (!Elements[i]) continue;  // Unset element.
2083
2084    Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2085                                            IC.Builder.getInt32(i));
2086  }
2087
2088  return Result;
2089}
2090
2091/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2092/// vector followed by extract element. The backend tends to handle bitcasts of
2093/// vectors better than bitcasts of scalars because vector registers are
2094/// usually not type-specific like scalar integer or scalar floating-point.
2095static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2096                                              InstCombiner &IC) {
2097  // TODO: Create and use a pattern matcher for ExtractElementInst.
2098  auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2099  if (!ExtElt || !ExtElt->hasOneUse())
2100    return nullptr;
2101
2102  // The bitcast must be to a vectorizable type, otherwise we can't make a new
2103  // type to extract from.
2104  Type *DestType = BitCast.getType();
2105  if (!VectorType::isValidElementType(DestType))
2106    return nullptr;
2107
2108  unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2109  auto *NewVecType = VectorType::get(DestType, NumElts);
2110  auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2111                                         NewVecType, "bc");
2112  return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2113}
2114
2115/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2116static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2117                                            InstCombiner::BuilderTy &Builder) {
2118  Type *DestTy = BitCast.getType();
2119  BinaryOperator *BO;
2120  if (!DestTy->isIntOrIntVectorTy() ||
2121      !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2122      !BO->isBitwiseLogicOp())
2123    return nullptr;
2124
2125  // FIXME: This transform is restricted to vector types to avoid backend
2126  // problems caused by creating potentially illegal operations. If a fix-up is
2127  // added to handle that situation, we can remove this check.
2128  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2129    return nullptr;
2130
2131  Value *X;
2132  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2133      X->getType() == DestTy && !isa<Constant>(X)) {
2134    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2135    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2136    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2137  }
2138
2139  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2140      X->getType() == DestTy && !isa<Constant>(X)) {
2141    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2142    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2143    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2144  }
2145
2146  // Canonicalize vector bitcasts to come before vector bitwise logic with a
2147  // constant. This eases recognition of special constants for later ops.
2148  // Example:
2149  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2150  Constant *C;
2151  if (match(BO->getOperand(1), m_Constant(C))) {
2152    // bitcast (logic X, C) --> logic (bitcast X, C')
2153    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2154    Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2155    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2156  }
2157
2158  return nullptr;
2159}
2160
2161/// Change the type of a select if we can eliminate a bitcast.
2162static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2163                                      InstCombiner::BuilderTy &Builder) {
2164  Value *Cond, *TVal, *FVal;
2165  if (!match(BitCast.getOperand(0),
2166             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2167    return nullptr;
2168
2169  // A vector select must maintain the same number of elements in its operands.
2170  Type *CondTy = Cond->getType();
2171  Type *DestTy = BitCast.getType();
2172  if (CondTy->isVectorTy()) {
2173    if (!DestTy->isVectorTy())
2174      return nullptr;
2175    if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2176      return nullptr;
2177  }
2178
2179  // FIXME: This transform is restricted from changing the select between
2180  // scalars and vectors to avoid backend problems caused by creating
2181  // potentially illegal operations. If a fix-up is added to handle that
2182  // situation, we can remove this check.
2183  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2184    return nullptr;
2185
2186  auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2187  Value *X;
2188  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2189      !isa<Constant>(X)) {
2190    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2191    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2192    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2193  }
2194
2195  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2196      !isa<Constant>(X)) {
2197    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2198    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2199    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2200  }
2201
2202  return nullptr;
2203}
2204
2205/// Check if all users of CI are StoreInsts.
2206static bool hasStoreUsersOnly(CastInst &CI) {
2207  for (User *U : CI.users()) {
2208    if (!isa<StoreInst>(U))
2209      return false;
2210  }
2211  return true;
2212}
2213
2214/// This function handles following case
2215///
2216///     A  ->  B    cast
2217///     PHI
2218///     B  ->  A    cast
2219///
2220/// All the related PHI nodes can be replaced by new PHI nodes with type A.
2221/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2222Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2223  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2224  if (hasStoreUsersOnly(CI))
2225    return nullptr;
2226
2227  Value *Src = CI.getOperand(0);
2228  Type *SrcTy = Src->getType();         // Type B
2229  Type *DestTy = CI.getType();          // Type A
2230
2231  SmallVector<PHINode *, 4> PhiWorklist;
2232  SmallSetVector<PHINode *, 4> OldPhiNodes;
2233
2234  // Find all of the A->B casts and PHI nodes.
2235  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2236  // OldPhiNodes is used to track all known PHI nodes, before adding a new
2237  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2238  PhiWorklist.push_back(PN);
2239  OldPhiNodes.insert(PN);
2240  while (!PhiWorklist.empty()) {
2241    auto *OldPN = PhiWorklist.pop_back_val();
2242    for (Value *IncValue : OldPN->incoming_values()) {
2243      if (isa<Constant>(IncValue))
2244        continue;
2245
2246      if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2247        // If there is a sequence of one or more load instructions, each loaded
2248        // value is used as address of later load instruction, bitcast is
2249        // necessary to change the value type, don't optimize it. For
2250        // simplicity we give up if the load address comes from another load.
2251        Value *Addr = LI->getOperand(0);
2252        if (Addr == &CI || isa<LoadInst>(Addr))
2253          return nullptr;
2254        if (LI->hasOneUse() && LI->isSimple())
2255          continue;
2256        // If a LoadInst has more than one use, changing the type of loaded
2257        // value may create another bitcast.
2258        return nullptr;
2259      }
2260
2261      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2262        if (OldPhiNodes.insert(PNode))
2263          PhiWorklist.push_back(PNode);
2264        continue;
2265      }
2266
2267      auto *BCI = dyn_cast<BitCastInst>(IncValue);
2268      // We can't handle other instructions.
2269      if (!BCI)
2270        return nullptr;
2271
2272      // Verify it's a A->B cast.
2273      Type *TyA = BCI->getOperand(0)->getType();
2274      Type *TyB = BCI->getType();
2275      if (TyA != DestTy || TyB != SrcTy)
2276        return nullptr;
2277    }
2278  }
2279
2280  // Check that each user of each old PHI node is something that we can
2281  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2282  for (auto *OldPN : OldPhiNodes) {
2283    for (User *V : OldPN->users()) {
2284      if (auto *SI = dyn_cast<StoreInst>(V)) {
2285        if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2286          return nullptr;
2287      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2288        // Verify it's a B->A cast.
2289        Type *TyB = BCI->getOperand(0)->getType();
2290        Type *TyA = BCI->getType();
2291        if (TyA != DestTy || TyB != SrcTy)
2292          return nullptr;
2293      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2294        // As long as the user is another old PHI node, then even if we don't
2295        // rewrite it, the PHI web we're considering won't have any users
2296        // outside itself, so it'll be dead.
2297        if (OldPhiNodes.count(PHI) == 0)
2298          return nullptr;
2299      } else {
2300        return nullptr;
2301      }
2302    }
2303  }
2304
2305  // For each old PHI node, create a corresponding new PHI node with a type A.
2306  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2307  for (auto *OldPN : OldPhiNodes) {
2308    Builder.SetInsertPoint(OldPN);
2309    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2310    NewPNodes[OldPN] = NewPN;
2311  }
2312
2313  // Fill in the operands of new PHI nodes.
2314  for (auto *OldPN : OldPhiNodes) {
2315    PHINode *NewPN = NewPNodes[OldPN];
2316    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2317      Value *V = OldPN->getOperand(j);
2318      Value *NewV = nullptr;
2319      if (auto *C = dyn_cast<Constant>(V)) {
2320        NewV = ConstantExpr::getBitCast(C, DestTy);
2321      } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2322        // Explicitly perform load combine to make sure no opposing transform
2323        // can remove the bitcast in the meantime and trigger an infinite loop.
2324        Builder.SetInsertPoint(LI);
2325        NewV = combineLoadToNewType(*LI, DestTy);
2326        // Remove the old load and its use in the old phi, which itself becomes
2327        // dead once the whole transform finishes.
2328        replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
2329        eraseInstFromFunction(*LI);
2330      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2331        NewV = BCI->getOperand(0);
2332      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2333        NewV = NewPNodes[PrevPN];
2334      }
2335      assert(NewV);
2336      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2337    }
2338  }
2339
2340  // Traverse all accumulated PHI nodes and process its users,
2341  // which are Stores and BitcCasts. Without this processing
2342  // NewPHI nodes could be replicated and could lead to extra
2343  // moves generated after DeSSA.
2344  // If there is a store with type B, change it to type A.
2345
2346
2347  // Replace users of BitCast B->A with NewPHI. These will help
2348  // later to get rid off a closure formed by OldPHI nodes.
2349  Instruction *RetVal = nullptr;
2350  for (auto *OldPN : OldPhiNodes) {
2351    PHINode *NewPN = NewPNodes[OldPN];
2352    for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) {
2353      User *V = *It;
2354      // We may remove this user, advance to avoid iterator invalidation.
2355      ++It;
2356      if (auto *SI = dyn_cast<StoreInst>(V)) {
2357        assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2358        Builder.SetInsertPoint(SI);
2359        auto *NewBC =
2360          cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2361        SI->setOperand(0, NewBC);
2362        Worklist.Add(SI);
2363        assert(hasStoreUsersOnly(*NewBC));
2364      }
2365      else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2366        Type *TyB = BCI->getOperand(0)->getType();
2367        Type *TyA = BCI->getType();
2368        assert(TyA == DestTy && TyB == SrcTy);
2369        (void) TyA;
2370        (void) TyB;
2371        Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2372        if (BCI == &CI)
2373          RetVal = I;
2374      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2375        assert(OldPhiNodes.count(PHI) > 0);
2376        (void) PHI;
2377      } else {
2378        llvm_unreachable("all uses should be handled");
2379      }
2380    }
2381  }
2382
2383  return RetVal;
2384}
2385
2386Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2387  // If the operands are integer typed then apply the integer transforms,
2388  // otherwise just apply the common ones.
2389  Value *Src = CI.getOperand(0);
2390  Type *SrcTy = Src->getType();
2391  Type *DestTy = CI.getType();
2392
2393  // Get rid of casts from one type to the same type. These are useless and can
2394  // be replaced by the operand.
2395  if (DestTy == Src->getType())
2396    return replaceInstUsesWith(CI, Src);
2397
2398  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2399    PointerType *SrcPTy = cast<PointerType>(SrcTy);
2400    Type *DstElTy = DstPTy->getElementType();
2401    Type *SrcElTy = SrcPTy->getElementType();
2402
2403    // Casting pointers between the same type, but with different address spaces
2404    // is an addrspace cast rather than a bitcast.
2405    if ((DstElTy == SrcElTy) &&
2406        (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2407      return new AddrSpaceCastInst(Src, DestTy);
2408
2409    // If we are casting a alloca to a pointer to a type of the same
2410    // size, rewrite the allocation instruction to allocate the "right" type.
2411    // There is no need to modify malloc calls because it is their bitcast that
2412    // needs to be cleaned up.
2413    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2414      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2415        return V;
2416
2417    // When the type pointed to is not sized the cast cannot be
2418    // turned into a gep.
2419    Type *PointeeType =
2420        cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2421    if (!PointeeType->isSized())
2422      return nullptr;
2423
2424    // If the source and destination are pointers, and this cast is equivalent
2425    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2426    // This can enhance SROA and other transforms that want type-safe pointers.
2427    unsigned NumZeros = 0;
2428    while (SrcElTy != DstElTy &&
2429           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2430           SrcElTy->getNumContainedTypes() /* not "{}" */) {
2431      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2432      ++NumZeros;
2433    }
2434
2435    // If we found a path from the src to dest, create the getelementptr now.
2436    if (SrcElTy == DstElTy) {
2437      SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2438      GetElementPtrInst *GEP =
2439          GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2440
2441      // If the source pointer is dereferenceable, then assume it points to an
2442      // allocated object and apply "inbounds" to the GEP.
2443      bool CanBeNull;
2444      if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
2445        // In a non-default address space (not 0), a null pointer can not be
2446        // assumed inbounds, so ignore that case (dereferenceable_or_null).
2447        // The reason is that 'null' is not treated differently in these address
2448        // spaces, and we consequently ignore the 'gep inbounds' special case
2449        // for 'null' which allows 'inbounds' on 'null' if the indices are
2450        // zeros.
2451        if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2452          GEP->setIsInBounds();
2453      }
2454      return GEP;
2455    }
2456  }
2457
2458  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2459    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2460      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2461      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2462                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2463      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2464    }
2465
2466    if (isa<IntegerType>(SrcTy)) {
2467      // If this is a cast from an integer to vector, check to see if the input
2468      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2469      // the casts with a shuffle and (potentially) a bitcast.
2470      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2471        CastInst *SrcCast = cast<CastInst>(Src);
2472        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2473          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2474            if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2475                    BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2476              return I;
2477      }
2478
2479      // If the input is an 'or' instruction, we may be doing shifts and ors to
2480      // assemble the elements of the vector manually.  Try to rip the code out
2481      // and replace it with insertelements.
2482      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2483        return replaceInstUsesWith(CI, V);
2484    }
2485  }
2486
2487  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2488    if (SrcVTy->getNumElements() == 1) {
2489      // If our destination is not a vector, then make this a straight
2490      // scalar-scalar cast.
2491      if (!DestTy->isVectorTy()) {
2492        Value *Elem =
2493          Builder.CreateExtractElement(Src,
2494                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2495        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2496      }
2497
2498      // Otherwise, see if our source is an insert. If so, then use the scalar
2499      // component directly:
2500      // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2501      if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2502        return new BitCastInst(InsElt->getOperand(1), DestTy);
2503    }
2504  }
2505
2506  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2507    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2508    // a bitcast to a vector with the same # elts.
2509    Value *ShufOp0 = Shuf->getOperand(0);
2510    Value *ShufOp1 = Shuf->getOperand(1);
2511    unsigned NumShufElts = Shuf->getType()->getVectorNumElements();
2512    unsigned NumSrcVecElts = ShufOp0->getType()->getVectorNumElements();
2513    if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2514        DestTy->getVectorNumElements() == NumShufElts &&
2515        NumShufElts == NumSrcVecElts) {
2516      BitCastInst *Tmp;
2517      // If either of the operands is a cast from CI.getType(), then
2518      // evaluating the shuffle in the casted destination's type will allow
2519      // us to eliminate at least one cast.
2520      if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2521           Tmp->getOperand(0)->getType() == DestTy) ||
2522          ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2523           Tmp->getOperand(0)->getType() == DestTy)) {
2524        Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2525        Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2526        // Return a new shuffle vector.  Use the same element ID's, as we
2527        // know the vector types match #elts.
2528        return new ShuffleVectorInst(LHS, RHS, Shuf->getOperand(2));
2529      }
2530    }
2531
2532    // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2533    // a byte-swap:
2534    // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2535    // TODO: We should match the related pattern for bitreverse.
2536    if (DestTy->isIntegerTy() &&
2537        DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2538        SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
2539        Shuf->hasOneUse() && Shuf->isReverse()) {
2540      assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2541      assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
2542      Function *Bswap =
2543          Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2544      Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2545      return IntrinsicInst::Create(Bswap, { ScalarX });
2546    }
2547  }
2548
2549  // Handle the A->B->A cast, and there is an intervening PHI node.
2550  if (PHINode *PN = dyn_cast<PHINode>(Src))
2551    if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2552      return I;
2553
2554  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2555    return I;
2556
2557  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2558    return I;
2559
2560  if (Instruction *I = foldBitCastSelect(CI, Builder))
2561    return I;
2562
2563  if (SrcTy->isPointerTy())
2564    return commonPointerCastTransforms(CI);
2565  return commonCastTransforms(CI);
2566}
2567
2568Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2569  // If the destination pointer element type is not the same as the source's
2570  // first do a bitcast to the destination type, and then the addrspacecast.
2571  // This allows the cast to be exposed to other transforms.
2572  Value *Src = CI.getOperand(0);
2573  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2574  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2575
2576  Type *DestElemTy = DestTy->getElementType();
2577  if (SrcTy->getElementType() != DestElemTy) {
2578    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2579    if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2580      // Handle vectors of pointers.
2581      MidTy = VectorType::get(MidTy, VT->getNumElements());
2582    }
2583
2584    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2585    return new AddrSpaceCastInst(NewBitCast, CI.getType());
2586  }
2587
2588  return commonPointerCastTransforms(CI);
2589}
2590