1//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides X86 specific target descriptions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86MCTargetDesc.h"
14#include "TargetInfo/X86TargetInfo.h"
15#include "X86ATTInstPrinter.h"
16#include "X86BaseInfo.h"
17#include "X86IntelInstPrinter.h"
18#include "X86MCAsmInfo.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/Triple.h"
21#include "llvm/DebugInfo/CodeView/CodeView.h"
22#include "llvm/MC/MCDwarf.h"
23#include "llvm/MC/MCInstrAnalysis.h"
24#include "llvm/MC/MCInstrInfo.h"
25#include "llvm/MC/MCRegisterInfo.h"
26#include "llvm/MC/MCStreamer.h"
27#include "llvm/MC/MCSubtargetInfo.h"
28#include "llvm/MC/MachineLocation.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/Host.h"
31#include "llvm/Support/TargetRegistry.h"
32
33#if _MSC_VER
34#include <intrin.h>
35#endif
36
37using namespace llvm;
38
39#define GET_REGINFO_MC_DESC
40#include "X86GenRegisterInfo.inc"
41
42#define GET_INSTRINFO_MC_DESC
43#define GET_INSTRINFO_MC_HELPERS
44#include "X86GenInstrInfo.inc"
45
46#define GET_SUBTARGETINFO_MC_DESC
47#include "X86GenSubtargetInfo.inc"
48
49std::string X86_MC::ParseX86Triple(const Triple &TT) {
50  std::string FS;
51  if (TT.getArch() == Triple::x86_64)
52    FS = "+64bit-mode,-32bit-mode,-16bit-mode";
53  else if (TT.getEnvironment() != Triple::CODE16)
54    FS = "-64bit-mode,+32bit-mode,-16bit-mode";
55  else
56    FS = "-64bit-mode,-32bit-mode,+16bit-mode";
57
58  return FS;
59}
60
61unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
62  if (TT.getArch() == Triple::x86_64)
63    return DWARFFlavour::X86_64;
64
65  if (TT.isOSDarwin())
66    return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
67  if (TT.isOSCygMing())
68    // Unsupported by now, just quick fallback
69    return DWARFFlavour::X86_32_Generic;
70  return DWARFFlavour::X86_32_Generic;
71}
72
73bool X86_MC::hasLockPrefix(const MCInst &MI) {
74  return MI.getFlags() & X86::IP_HAS_LOCK;
75}
76
77void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) {
78  // FIXME: TableGen these.
79  for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
80    unsigned SEH = MRI->getEncodingValue(Reg);
81    MRI->mapLLVMRegToSEHReg(Reg, SEH);
82  }
83
84  // Mapping from CodeView to MC register id.
85  static const struct {
86    codeview::RegisterId CVReg;
87    MCPhysReg Reg;
88  } RegMap[] = {
89      {codeview::RegisterId::AL, X86::AL},
90      {codeview::RegisterId::CL, X86::CL},
91      {codeview::RegisterId::DL, X86::DL},
92      {codeview::RegisterId::BL, X86::BL},
93      {codeview::RegisterId::AH, X86::AH},
94      {codeview::RegisterId::CH, X86::CH},
95      {codeview::RegisterId::DH, X86::DH},
96      {codeview::RegisterId::BH, X86::BH},
97      {codeview::RegisterId::AX, X86::AX},
98      {codeview::RegisterId::CX, X86::CX},
99      {codeview::RegisterId::DX, X86::DX},
100      {codeview::RegisterId::BX, X86::BX},
101      {codeview::RegisterId::SP, X86::SP},
102      {codeview::RegisterId::BP, X86::BP},
103      {codeview::RegisterId::SI, X86::SI},
104      {codeview::RegisterId::DI, X86::DI},
105      {codeview::RegisterId::EAX, X86::EAX},
106      {codeview::RegisterId::ECX, X86::ECX},
107      {codeview::RegisterId::EDX, X86::EDX},
108      {codeview::RegisterId::EBX, X86::EBX},
109      {codeview::RegisterId::ESP, X86::ESP},
110      {codeview::RegisterId::EBP, X86::EBP},
111      {codeview::RegisterId::ESI, X86::ESI},
112      {codeview::RegisterId::EDI, X86::EDI},
113
114      {codeview::RegisterId::EFLAGS, X86::EFLAGS},
115
116      {codeview::RegisterId::ST0, X86::FP0},
117      {codeview::RegisterId::ST1, X86::FP1},
118      {codeview::RegisterId::ST2, X86::FP2},
119      {codeview::RegisterId::ST3, X86::FP3},
120      {codeview::RegisterId::ST4, X86::FP4},
121      {codeview::RegisterId::ST5, X86::FP5},
122      {codeview::RegisterId::ST6, X86::FP6},
123      {codeview::RegisterId::ST7, X86::FP7},
124
125      {codeview::RegisterId::MM0, X86::MM0},
126      {codeview::RegisterId::MM1, X86::MM1},
127      {codeview::RegisterId::MM2, X86::MM2},
128      {codeview::RegisterId::MM3, X86::MM3},
129      {codeview::RegisterId::MM4, X86::MM4},
130      {codeview::RegisterId::MM5, X86::MM5},
131      {codeview::RegisterId::MM6, X86::MM6},
132      {codeview::RegisterId::MM7, X86::MM7},
133
134      {codeview::RegisterId::XMM0, X86::XMM0},
135      {codeview::RegisterId::XMM1, X86::XMM1},
136      {codeview::RegisterId::XMM2, X86::XMM2},
137      {codeview::RegisterId::XMM3, X86::XMM3},
138      {codeview::RegisterId::XMM4, X86::XMM4},
139      {codeview::RegisterId::XMM5, X86::XMM5},
140      {codeview::RegisterId::XMM6, X86::XMM6},
141      {codeview::RegisterId::XMM7, X86::XMM7},
142
143      {codeview::RegisterId::XMM8, X86::XMM8},
144      {codeview::RegisterId::XMM9, X86::XMM9},
145      {codeview::RegisterId::XMM10, X86::XMM10},
146      {codeview::RegisterId::XMM11, X86::XMM11},
147      {codeview::RegisterId::XMM12, X86::XMM12},
148      {codeview::RegisterId::XMM13, X86::XMM13},
149      {codeview::RegisterId::XMM14, X86::XMM14},
150      {codeview::RegisterId::XMM15, X86::XMM15},
151
152      {codeview::RegisterId::SIL, X86::SIL},
153      {codeview::RegisterId::DIL, X86::DIL},
154      {codeview::RegisterId::BPL, X86::BPL},
155      {codeview::RegisterId::SPL, X86::SPL},
156      {codeview::RegisterId::RAX, X86::RAX},
157      {codeview::RegisterId::RBX, X86::RBX},
158      {codeview::RegisterId::RCX, X86::RCX},
159      {codeview::RegisterId::RDX, X86::RDX},
160      {codeview::RegisterId::RSI, X86::RSI},
161      {codeview::RegisterId::RDI, X86::RDI},
162      {codeview::RegisterId::RBP, X86::RBP},
163      {codeview::RegisterId::RSP, X86::RSP},
164      {codeview::RegisterId::R8, X86::R8},
165      {codeview::RegisterId::R9, X86::R9},
166      {codeview::RegisterId::R10, X86::R10},
167      {codeview::RegisterId::R11, X86::R11},
168      {codeview::RegisterId::R12, X86::R12},
169      {codeview::RegisterId::R13, X86::R13},
170      {codeview::RegisterId::R14, X86::R14},
171      {codeview::RegisterId::R15, X86::R15},
172      {codeview::RegisterId::R8B, X86::R8B},
173      {codeview::RegisterId::R9B, X86::R9B},
174      {codeview::RegisterId::R10B, X86::R10B},
175      {codeview::RegisterId::R11B, X86::R11B},
176      {codeview::RegisterId::R12B, X86::R12B},
177      {codeview::RegisterId::R13B, X86::R13B},
178      {codeview::RegisterId::R14B, X86::R14B},
179      {codeview::RegisterId::R15B, X86::R15B},
180      {codeview::RegisterId::R8W, X86::R8W},
181      {codeview::RegisterId::R9W, X86::R9W},
182      {codeview::RegisterId::R10W, X86::R10W},
183      {codeview::RegisterId::R11W, X86::R11W},
184      {codeview::RegisterId::R12W, X86::R12W},
185      {codeview::RegisterId::R13W, X86::R13W},
186      {codeview::RegisterId::R14W, X86::R14W},
187      {codeview::RegisterId::R15W, X86::R15W},
188      {codeview::RegisterId::R8D, X86::R8D},
189      {codeview::RegisterId::R9D, X86::R9D},
190      {codeview::RegisterId::R10D, X86::R10D},
191      {codeview::RegisterId::R11D, X86::R11D},
192      {codeview::RegisterId::R12D, X86::R12D},
193      {codeview::RegisterId::R13D, X86::R13D},
194      {codeview::RegisterId::R14D, X86::R14D},
195      {codeview::RegisterId::R15D, X86::R15D},
196      {codeview::RegisterId::AMD64_YMM0, X86::YMM0},
197      {codeview::RegisterId::AMD64_YMM1, X86::YMM1},
198      {codeview::RegisterId::AMD64_YMM2, X86::YMM2},
199      {codeview::RegisterId::AMD64_YMM3, X86::YMM3},
200      {codeview::RegisterId::AMD64_YMM4, X86::YMM4},
201      {codeview::RegisterId::AMD64_YMM5, X86::YMM5},
202      {codeview::RegisterId::AMD64_YMM6, X86::YMM6},
203      {codeview::RegisterId::AMD64_YMM7, X86::YMM7},
204      {codeview::RegisterId::AMD64_YMM8, X86::YMM8},
205      {codeview::RegisterId::AMD64_YMM9, X86::YMM9},
206      {codeview::RegisterId::AMD64_YMM10, X86::YMM10},
207      {codeview::RegisterId::AMD64_YMM11, X86::YMM11},
208      {codeview::RegisterId::AMD64_YMM12, X86::YMM12},
209      {codeview::RegisterId::AMD64_YMM13, X86::YMM13},
210      {codeview::RegisterId::AMD64_YMM14, X86::YMM14},
211      {codeview::RegisterId::AMD64_YMM15, X86::YMM15},
212      {codeview::RegisterId::AMD64_YMM16, X86::YMM16},
213      {codeview::RegisterId::AMD64_YMM17, X86::YMM17},
214      {codeview::RegisterId::AMD64_YMM18, X86::YMM18},
215      {codeview::RegisterId::AMD64_YMM19, X86::YMM19},
216      {codeview::RegisterId::AMD64_YMM20, X86::YMM20},
217      {codeview::RegisterId::AMD64_YMM21, X86::YMM21},
218      {codeview::RegisterId::AMD64_YMM22, X86::YMM22},
219      {codeview::RegisterId::AMD64_YMM23, X86::YMM23},
220      {codeview::RegisterId::AMD64_YMM24, X86::YMM24},
221      {codeview::RegisterId::AMD64_YMM25, X86::YMM25},
222      {codeview::RegisterId::AMD64_YMM26, X86::YMM26},
223      {codeview::RegisterId::AMD64_YMM27, X86::YMM27},
224      {codeview::RegisterId::AMD64_YMM28, X86::YMM28},
225      {codeview::RegisterId::AMD64_YMM29, X86::YMM29},
226      {codeview::RegisterId::AMD64_YMM30, X86::YMM30},
227      {codeview::RegisterId::AMD64_YMM31, X86::YMM31},
228      {codeview::RegisterId::AMD64_ZMM0, X86::ZMM0},
229      {codeview::RegisterId::AMD64_ZMM1, X86::ZMM1},
230      {codeview::RegisterId::AMD64_ZMM2, X86::ZMM2},
231      {codeview::RegisterId::AMD64_ZMM3, X86::ZMM3},
232      {codeview::RegisterId::AMD64_ZMM4, X86::ZMM4},
233      {codeview::RegisterId::AMD64_ZMM5, X86::ZMM5},
234      {codeview::RegisterId::AMD64_ZMM6, X86::ZMM6},
235      {codeview::RegisterId::AMD64_ZMM7, X86::ZMM7},
236      {codeview::RegisterId::AMD64_ZMM8, X86::ZMM8},
237      {codeview::RegisterId::AMD64_ZMM9, X86::ZMM9},
238      {codeview::RegisterId::AMD64_ZMM10, X86::ZMM10},
239      {codeview::RegisterId::AMD64_ZMM11, X86::ZMM11},
240      {codeview::RegisterId::AMD64_ZMM12, X86::ZMM12},
241      {codeview::RegisterId::AMD64_ZMM13, X86::ZMM13},
242      {codeview::RegisterId::AMD64_ZMM14, X86::ZMM14},
243      {codeview::RegisterId::AMD64_ZMM15, X86::ZMM15},
244      {codeview::RegisterId::AMD64_ZMM16, X86::ZMM16},
245      {codeview::RegisterId::AMD64_ZMM17, X86::ZMM17},
246      {codeview::RegisterId::AMD64_ZMM18, X86::ZMM18},
247      {codeview::RegisterId::AMD64_ZMM19, X86::ZMM19},
248      {codeview::RegisterId::AMD64_ZMM20, X86::ZMM20},
249      {codeview::RegisterId::AMD64_ZMM21, X86::ZMM21},
250      {codeview::RegisterId::AMD64_ZMM22, X86::ZMM22},
251      {codeview::RegisterId::AMD64_ZMM23, X86::ZMM23},
252      {codeview::RegisterId::AMD64_ZMM24, X86::ZMM24},
253      {codeview::RegisterId::AMD64_ZMM25, X86::ZMM25},
254      {codeview::RegisterId::AMD64_ZMM26, X86::ZMM26},
255      {codeview::RegisterId::AMD64_ZMM27, X86::ZMM27},
256      {codeview::RegisterId::AMD64_ZMM28, X86::ZMM28},
257      {codeview::RegisterId::AMD64_ZMM29, X86::ZMM29},
258      {codeview::RegisterId::AMD64_ZMM30, X86::ZMM30},
259      {codeview::RegisterId::AMD64_ZMM31, X86::ZMM31},
260      {codeview::RegisterId::AMD64_K0, X86::K0},
261      {codeview::RegisterId::AMD64_K1, X86::K1},
262      {codeview::RegisterId::AMD64_K2, X86::K2},
263      {codeview::RegisterId::AMD64_K3, X86::K3},
264      {codeview::RegisterId::AMD64_K4, X86::K4},
265      {codeview::RegisterId::AMD64_K5, X86::K5},
266      {codeview::RegisterId::AMD64_K6, X86::K6},
267      {codeview::RegisterId::AMD64_K7, X86::K7},
268      {codeview::RegisterId::AMD64_XMM16, X86::XMM16},
269      {codeview::RegisterId::AMD64_XMM17, X86::XMM17},
270      {codeview::RegisterId::AMD64_XMM18, X86::XMM18},
271      {codeview::RegisterId::AMD64_XMM19, X86::XMM19},
272      {codeview::RegisterId::AMD64_XMM20, X86::XMM20},
273      {codeview::RegisterId::AMD64_XMM21, X86::XMM21},
274      {codeview::RegisterId::AMD64_XMM22, X86::XMM22},
275      {codeview::RegisterId::AMD64_XMM23, X86::XMM23},
276      {codeview::RegisterId::AMD64_XMM24, X86::XMM24},
277      {codeview::RegisterId::AMD64_XMM25, X86::XMM25},
278      {codeview::RegisterId::AMD64_XMM26, X86::XMM26},
279      {codeview::RegisterId::AMD64_XMM27, X86::XMM27},
280      {codeview::RegisterId::AMD64_XMM28, X86::XMM28},
281      {codeview::RegisterId::AMD64_XMM29, X86::XMM29},
282      {codeview::RegisterId::AMD64_XMM30, X86::XMM30},
283      {codeview::RegisterId::AMD64_XMM31, X86::XMM31},
284
285  };
286  for (unsigned I = 0; I < array_lengthof(RegMap); ++I)
287    MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast<int>(RegMap[I].CVReg));
288}
289
290MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
291                                                  StringRef CPU, StringRef FS) {
292  std::string ArchFS = X86_MC::ParseX86Triple(TT);
293  assert(!ArchFS.empty() && "Failed to parse X86 triple");
294  if (!FS.empty())
295    ArchFS = (Twine(ArchFS) + "," + FS).str();
296
297  std::string CPUName = CPU;
298  if (CPUName.empty())
299    CPUName = "generic";
300
301  return createX86MCSubtargetInfoImpl(TT, CPUName, ArchFS);
302}
303
304static MCInstrInfo *createX86MCInstrInfo() {
305  MCInstrInfo *X = new MCInstrInfo();
306  InitX86MCInstrInfo(X);
307  return X;
308}
309
310static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
311  unsigned RA = (TT.getArch() == Triple::x86_64)
312                    ? X86::RIP  // Should have dwarf #16.
313                    : X86::EIP; // Should have dwarf #8.
314
315  MCRegisterInfo *X = new MCRegisterInfo();
316  InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false),
317                        X86_MC::getDwarfRegFlavour(TT, true), RA);
318  X86_MC::initLLVMToSEHAndCVRegMapping(X);
319  return X;
320}
321
322static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
323                                     const Triple &TheTriple,
324                                     const MCTargetOptions &Options) {
325  bool is64Bit = TheTriple.getArch() == Triple::x86_64;
326
327  MCAsmInfo *MAI;
328  if (TheTriple.isOSBinFormatMachO()) {
329    if (is64Bit)
330      MAI = new X86_64MCAsmInfoDarwin(TheTriple);
331    else
332      MAI = new X86MCAsmInfoDarwin(TheTriple);
333  } else if (TheTriple.isOSBinFormatELF()) {
334    // Force the use of an ELF container.
335    MAI = new X86ELFMCAsmInfo(TheTriple);
336  } else if (TheTriple.isWindowsMSVCEnvironment() ||
337             TheTriple.isWindowsCoreCLREnvironment()) {
338    MAI = new X86MCAsmInfoMicrosoft(TheTriple);
339  } else if (TheTriple.isOSCygMing() ||
340             TheTriple.isWindowsItaniumEnvironment()) {
341    MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
342  } else {
343    // The default is ELF.
344    MAI = new X86ELFMCAsmInfo(TheTriple);
345  }
346
347  // Initialize initial frame state.
348  // Calculate amount of bytes used for return address storing
349  int stackGrowth = is64Bit ? -8 : -4;
350
351  // Initial state of the frame pointer is esp+stackGrowth.
352  unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP;
353  MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(
354      nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth);
355  MAI->addInitialFrameState(Inst);
356
357  // Add return address to move list
358  unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP;
359  MCCFIInstruction Inst2 = MCCFIInstruction::createOffset(
360      nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth);
361  MAI->addInitialFrameState(Inst2);
362
363  return MAI;
364}
365
366static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
367                                             unsigned SyntaxVariant,
368                                             const MCAsmInfo &MAI,
369                                             const MCInstrInfo &MII,
370                                             const MCRegisterInfo &MRI) {
371  if (SyntaxVariant == 0)
372    return new X86ATTInstPrinter(MAI, MII, MRI);
373  if (SyntaxVariant == 1)
374    return new X86IntelInstPrinter(MAI, MII, MRI);
375  return nullptr;
376}
377
378static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
379                                                   MCContext &Ctx) {
380  // Default to the stock relocation info.
381  return llvm::createMCRelocationInfo(TheTriple, Ctx);
382}
383
384namespace llvm {
385namespace X86_MC {
386
387class X86MCInstrAnalysis : public MCInstrAnalysis {
388  X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete;
389  X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete;
390  virtual ~X86MCInstrAnalysis() = default;
391
392public:
393  X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {}
394
395#define GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS
396#include "X86GenSubtargetInfo.inc"
397
398  bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst,
399                            APInt &Mask) const override;
400  std::vector<std::pair<uint64_t, uint64_t>>
401  findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
402                 uint64_t GotSectionVA,
403                 const Triple &TargetTriple) const override;
404  Optional<uint64_t> evaluateMemoryOperandAddress(const MCInst &Inst,
405                                                  uint64_t Addr,
406                                                  uint64_t Size) const override;
407};
408
409#define GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS
410#include "X86GenSubtargetInfo.inc"
411
412bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI,
413                                              const MCInst &Inst,
414                                              APInt &Mask) const {
415  const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
416  unsigned NumDefs = Desc.getNumDefs();
417  unsigned NumImplicitDefs = Desc.getNumImplicitDefs();
418  assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs &&
419         "Unexpected number of bits in the mask!");
420
421  bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX;
422  bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX;
423  bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP;
424
425  const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID);
426  const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID);
427  const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID);
428
429  auto ClearsSuperReg = [=](unsigned RegID) {
430    // On X86-64, a general purpose integer register is viewed as a 64-bit
431    // register internal to the processor.
432    // An update to the lower 32 bits of a 64 bit integer register is
433    // architecturally defined to zero extend the upper 32 bits.
434    if (GR32RC.contains(RegID))
435      return true;
436
437    // Early exit if this instruction has no vex/evex/xop prefix.
438    if (!HasEVEX && !HasVEX && !HasXOP)
439      return false;
440
441    // All VEX and EVEX encoded instructions are defined to zero the high bits
442    // of the destination register up to VLMAX (i.e. the maximum vector register
443    // width pertaining to the instruction).
444    // We assume the same behavior for XOP instructions too.
445    return VR128XRC.contains(RegID) || VR256XRC.contains(RegID);
446  };
447
448  Mask.clearAllBits();
449  for (unsigned I = 0, E = NumDefs; I < E; ++I) {
450    const MCOperand &Op = Inst.getOperand(I);
451    if (ClearsSuperReg(Op.getReg()))
452      Mask.setBit(I);
453  }
454
455  for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) {
456    const MCPhysReg Reg = Desc.getImplicitDefs()[I];
457    if (ClearsSuperReg(Reg))
458      Mask.setBit(NumDefs + I);
459  }
460
461  return Mask.getBoolValue();
462}
463
464static std::vector<std::pair<uint64_t, uint64_t>>
465findX86PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
466                  uint64_t GotPltSectionVA) {
467  // Do a lightweight parsing of PLT entries.
468  std::vector<std::pair<uint64_t, uint64_t>> Result;
469  for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
470    // Recognize a jmp.
471    if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0xa3) {
472      // The jmp instruction at the beginning of each PLT entry jumps to the
473      // address of the base of the .got.plt section plus the immediate.
474      uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
475      Result.push_back(
476          std::make_pair(PltSectionVA + Byte, GotPltSectionVA + Imm));
477      Byte += 6;
478    } else if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
479      // The jmp instruction at the beginning of each PLT entry jumps to the
480      // immediate.
481      uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
482      Result.push_back(std::make_pair(PltSectionVA + Byte, Imm));
483      Byte += 6;
484    } else
485      Byte++;
486  }
487  return Result;
488}
489
490static std::vector<std::pair<uint64_t, uint64_t>>
491findX86_64PltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents) {
492  // Do a lightweight parsing of PLT entries.
493  std::vector<std::pair<uint64_t, uint64_t>> Result;
494  for (uint64_t Byte = 0, End = PltContents.size(); Byte + 6 < End; ) {
495    // Recognize a jmp.
496    if (PltContents[Byte] == 0xff && PltContents[Byte + 1] == 0x25) {
497      // The jmp instruction at the beginning of each PLT entry jumps to the
498      // address of the next instruction plus the immediate.
499      uint32_t Imm = support::endian::read32le(PltContents.data() + Byte + 2);
500      Result.push_back(
501          std::make_pair(PltSectionVA + Byte, PltSectionVA + Byte + 6 + Imm));
502      Byte += 6;
503    } else
504      Byte++;
505  }
506  return Result;
507}
508
509std::vector<std::pair<uint64_t, uint64_t>> X86MCInstrAnalysis::findPltEntries(
510    uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
511    uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
512  switch (TargetTriple.getArch()) {
513    case Triple::x86:
514      return findX86PltEntries(PltSectionVA, PltContents, GotPltSectionVA);
515    case Triple::x86_64:
516      return findX86_64PltEntries(PltSectionVA, PltContents);
517    default:
518      return {};
519    }
520}
521
522Optional<uint64_t> X86MCInstrAnalysis::evaluateMemoryOperandAddress(
523    const MCInst &Inst, uint64_t Addr, uint64_t Size) const {
524  const MCInstrDesc &MCID = Info->get(Inst.getOpcode());
525  int MemOpStart = X86II::getMemoryOperandNo(MCID.TSFlags);
526  if (MemOpStart == -1)
527    return None;
528  MemOpStart += X86II::getOperandBias(MCID);
529
530  const MCOperand &SegReg = Inst.getOperand(MemOpStart + X86::AddrSegmentReg);
531  const MCOperand &BaseReg = Inst.getOperand(MemOpStart + X86::AddrBaseReg);
532  const MCOperand &IndexReg = Inst.getOperand(MemOpStart + X86::AddrIndexReg);
533  const MCOperand &ScaleAmt = Inst.getOperand(MemOpStart + X86::AddrScaleAmt);
534  const MCOperand &Disp = Inst.getOperand(MemOpStart + X86::AddrDisp);
535  if (SegReg.getReg() != 0 || IndexReg.getReg() != 0 || ScaleAmt.getImm() != 1 ||
536      !Disp.isImm())
537    return None;
538
539  // RIP-relative addressing.
540  if (BaseReg.getReg() == X86::RIP)
541    return Addr + Size + Disp.getImm();
542
543  return None;
544}
545
546} // end of namespace X86_MC
547
548} // end of namespace llvm
549
550static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
551  return new X86_MC::X86MCInstrAnalysis(Info);
552}
553
554// Force static initialization.
555extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86TargetMC() {
556  for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) {
557    // Register the MC asm info.
558    RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo);
559
560    // Register the MC instruction info.
561    TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo);
562
563    // Register the MC register info.
564    TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo);
565
566    // Register the MC subtarget info.
567    TargetRegistry::RegisterMCSubtargetInfo(*T,
568                                            X86_MC::createX86MCSubtargetInfo);
569
570    // Register the MC instruction analyzer.
571    TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis);
572
573    // Register the code emitter.
574    TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter);
575
576    // Register the obj target streamer.
577    TargetRegistry::RegisterObjectTargetStreamer(*T,
578                                                 createX86ObjectTargetStreamer);
579
580    // Register the asm target streamer.
581    TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer);
582
583    TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer);
584
585    // Register the MCInstPrinter.
586    TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter);
587
588    // Register the MC relocation info.
589    TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo);
590  }
591
592  // Register the asm backend.
593  TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(),
594                                       createX86_32AsmBackend);
595  TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(),
596                                       createX86_64AsmBackend);
597}
598
599MCRegister llvm::getX86SubSuperRegisterOrZero(MCRegister Reg, unsigned Size,
600                                              bool High) {
601  switch (Size) {
602  default: return X86::NoRegister;
603  case 8:
604    if (High) {
605      switch (Reg.id()) {
606      default: return getX86SubSuperRegisterOrZero(Reg, 64);
607      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
608        return X86::SI;
609      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
610        return X86::DI;
611      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
612        return X86::BP;
613      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
614        return X86::SP;
615      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
616        return X86::AH;
617      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
618        return X86::DH;
619      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
620        return X86::CH;
621      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
622        return X86::BH;
623      }
624    } else {
625      switch (Reg.id()) {
626      default: return X86::NoRegister;
627      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
628        return X86::AL;
629      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
630        return X86::DL;
631      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
632        return X86::CL;
633      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
634        return X86::BL;
635      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
636        return X86::SIL;
637      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
638        return X86::DIL;
639      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
640        return X86::BPL;
641      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
642        return X86::SPL;
643      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
644        return X86::R8B;
645      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
646        return X86::R9B;
647      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
648        return X86::R10B;
649      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
650        return X86::R11B;
651      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
652        return X86::R12B;
653      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
654        return X86::R13B;
655      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
656        return X86::R14B;
657      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
658        return X86::R15B;
659      }
660    }
661  case 16:
662    switch (Reg.id()) {
663    default: return X86::NoRegister;
664    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
665      return X86::AX;
666    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
667      return X86::DX;
668    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
669      return X86::CX;
670    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
671      return X86::BX;
672    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
673      return X86::SI;
674    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
675      return X86::DI;
676    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
677      return X86::BP;
678    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
679      return X86::SP;
680    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
681      return X86::R8W;
682    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
683      return X86::R9W;
684    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
685      return X86::R10W;
686    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
687      return X86::R11W;
688    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
689      return X86::R12W;
690    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
691      return X86::R13W;
692    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
693      return X86::R14W;
694    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
695      return X86::R15W;
696    }
697  case 32:
698    switch (Reg.id()) {
699    default: return X86::NoRegister;
700    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
701      return X86::EAX;
702    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
703      return X86::EDX;
704    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
705      return X86::ECX;
706    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
707      return X86::EBX;
708    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
709      return X86::ESI;
710    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
711      return X86::EDI;
712    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
713      return X86::EBP;
714    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
715      return X86::ESP;
716    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
717      return X86::R8D;
718    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
719      return X86::R9D;
720    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
721      return X86::R10D;
722    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
723      return X86::R11D;
724    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
725      return X86::R12D;
726    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
727      return X86::R13D;
728    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
729      return X86::R14D;
730    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
731      return X86::R15D;
732    }
733  case 64:
734    switch (Reg.id()) {
735    default: return 0;
736    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
737      return X86::RAX;
738    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
739      return X86::RDX;
740    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
741      return X86::RCX;
742    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
743      return X86::RBX;
744    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
745      return X86::RSI;
746    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
747      return X86::RDI;
748    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
749      return X86::RBP;
750    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
751      return X86::RSP;
752    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
753      return X86::R8;
754    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
755      return X86::R9;
756    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
757      return X86::R10;
758    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
759      return X86::R11;
760    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
761      return X86::R12;
762    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
763      return X86::R13;
764    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
765      return X86::R14;
766    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
767      return X86::R15;
768    }
769  }
770}
771
772MCRegister llvm::getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High) {
773  MCRegister Res = getX86SubSuperRegisterOrZero(Reg, Size, High);
774  assert(Res != X86::NoRegister && "Unexpected register or VT");
775  return Res;
776}
777
778
779