1//===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the ARM implementation of TargetFrameLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ARMFrameLowering.h"
14#include "ARMBaseInstrInfo.h"
15#include "ARMBaseRegisterInfo.h"
16#include "ARMConstantPoolValue.h"
17#include "ARMMachineFunctionInfo.h"
18#include "ARMSubtarget.h"
19#include "MCTargetDesc/ARMAddressingModes.h"
20#include "MCTargetDesc/ARMBaseInfo.h"
21#include "Utils/ARMBaseInfo.h"
22#include "llvm/ADT/BitVector.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/RegisterScavenging.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetOpcodes.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/CodeGen/TargetSubtargetInfo.h"
41#include "llvm/IR/Attributes.h"
42#include "llvm/IR/CallingConv.h"
43#include "llvm/IR/DebugLoc.h"
44#include "llvm/IR/Function.h"
45#include "llvm/MC/MCContext.h"
46#include "llvm/MC/MCDwarf.h"
47#include "llvm/MC/MCInstrDesc.h"
48#include "llvm/MC/MCRegisterInfo.h"
49#include "llvm/Support/CodeGen.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/MathExtras.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetMachine.h"
57#include "llvm/Target/TargetOptions.h"
58#include <algorithm>
59#include <cassert>
60#include <cstddef>
61#include <cstdint>
62#include <iterator>
63#include <utility>
64#include <vector>
65
66#define DEBUG_TYPE "arm-frame-lowering"
67
68using namespace llvm;
69
70static cl::opt<bool>
71SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
72                     cl::desc("Align ARM NEON spills in prolog and epilog"));
73
74static MachineBasicBlock::iterator
75skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
76                        unsigned NumAlignedDPRCS2Regs);
77
78ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
79    : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
80      STI(sti) {}
81
82bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
83  // iOS always has a FP for backtracking, force other targets to keep their FP
84  // when doing FastISel. The emitted code is currently superior, and in cases
85  // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
86  return MF.getSubtarget<ARMSubtarget>().useFastISel();
87}
88
89/// Returns true if the target can safely skip saving callee-saved registers
90/// for noreturn nounwind functions.
91bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
92  assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
93         MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
94         !MF.getFunction().hasFnAttribute(Attribute::UWTable));
95
96  // Frame pointer and link register are not treated as normal CSR, thus we
97  // can always skip CSR saves for nonreturning functions.
98  return true;
99}
100
101/// hasFP - Return true if the specified function should have a dedicated frame
102/// pointer register.  This is true if the function has variable sized allocas
103/// or if frame pointer elimination is disabled.
104bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
105  const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
106  const MachineFrameInfo &MFI = MF.getFrameInfo();
107
108  // ABI-required frame pointer.
109  if (MF.getTarget().Options.DisableFramePointerElim(MF))
110    return true;
111
112  // Frame pointer required for use within this function.
113  return (RegInfo->needsStackRealignment(MF) ||
114          MFI.hasVarSizedObjects() ||
115          MFI.isFrameAddressTaken());
116}
117
118/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
119/// not required, we reserve argument space for call sites in the function
120/// immediately on entry to the current function.  This eliminates the need for
121/// add/sub sp brackets around call sites.  Returns true if the call frame is
122/// included as part of the stack frame.
123bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
124  const MachineFrameInfo &MFI = MF.getFrameInfo();
125  unsigned CFSize = MFI.getMaxCallFrameSize();
126  // It's not always a good idea to include the call frame as part of the
127  // stack frame. ARM (especially Thumb) has small immediate offset to
128  // address the stack frame. So a large call frame can cause poor codegen
129  // and may even makes it impossible to scavenge a register.
130  if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
131    return false;
132
133  return !MFI.hasVarSizedObjects();
134}
135
136/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
137/// call frame pseudos can be simplified.  Unlike most targets, having a FP
138/// is not sufficient here since we still may reference some objects via SP
139/// even when FP is available in Thumb2 mode.
140bool
141ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
142  return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
143}
144
145static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII,
146                        const MCPhysReg *CSRegs) {
147  // Integer spill area is handled with "pop".
148  if (isPopOpcode(MI.getOpcode())) {
149    // The first two operands are predicates. The last two are
150    // imp-def and imp-use of SP. Check everything in between.
151    for (int i = 5, e = MI.getNumOperands(); i != e; ++i)
152      if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs))
153        return false;
154    return true;
155  }
156  if ((MI.getOpcode() == ARM::LDR_POST_IMM ||
157       MI.getOpcode() == ARM::LDR_POST_REG ||
158       MI.getOpcode() == ARM::t2LDR_POST) &&
159      isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) &&
160      MI.getOperand(1).getReg() == ARM::SP)
161    return true;
162
163  return false;
164}
165
166static void emitRegPlusImmediate(
167    bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
168    const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
169    unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
170    ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
171  if (isARM)
172    emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
173                            Pred, PredReg, TII, MIFlags);
174  else
175    emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
176                           Pred, PredReg, TII, MIFlags);
177}
178
179static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
180                         MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
181                         const ARMBaseInstrInfo &TII, int NumBytes,
182                         unsigned MIFlags = MachineInstr::NoFlags,
183                         ARMCC::CondCodes Pred = ARMCC::AL,
184                         unsigned PredReg = 0) {
185  emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
186                       MIFlags, Pred, PredReg);
187}
188
189static int sizeOfSPAdjustment(const MachineInstr &MI) {
190  int RegSize;
191  switch (MI.getOpcode()) {
192  case ARM::VSTMDDB_UPD:
193    RegSize = 8;
194    break;
195  case ARM::STMDB_UPD:
196  case ARM::t2STMDB_UPD:
197    RegSize = 4;
198    break;
199  case ARM::t2STR_PRE:
200  case ARM::STR_PRE_IMM:
201    return 4;
202  default:
203    llvm_unreachable("Unknown push or pop like instruction");
204  }
205
206  int count = 0;
207  // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
208  // pred) so the list starts at 4.
209  for (int i = MI.getNumOperands() - 1; i >= 4; --i)
210    count += RegSize;
211  return count;
212}
213
214static bool WindowsRequiresStackProbe(const MachineFunction &MF,
215                                      size_t StackSizeInBytes) {
216  const MachineFrameInfo &MFI = MF.getFrameInfo();
217  const Function &F = MF.getFunction();
218  unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
219  if (F.hasFnAttribute("stack-probe-size"))
220    F.getFnAttribute("stack-probe-size")
221        .getValueAsString()
222        .getAsInteger(0, StackProbeSize);
223  return (StackSizeInBytes >= StackProbeSize) &&
224         !F.hasFnAttribute("no-stack-arg-probe");
225}
226
227namespace {
228
229struct StackAdjustingInsts {
230  struct InstInfo {
231    MachineBasicBlock::iterator I;
232    unsigned SPAdjust;
233    bool BeforeFPSet;
234  };
235
236  SmallVector<InstInfo, 4> Insts;
237
238  void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
239               bool BeforeFPSet = false) {
240    InstInfo Info = {I, SPAdjust, BeforeFPSet};
241    Insts.push_back(Info);
242  }
243
244  void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
245    auto Info =
246        llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
247    assert(Info != Insts.end() && "invalid sp adjusting instruction");
248    Info->SPAdjust += ExtraBytes;
249  }
250
251  void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
252                         const ARMBaseInstrInfo &TII, bool HasFP) {
253    MachineFunction &MF = *MBB.getParent();
254    unsigned CFAOffset = 0;
255    for (auto &Info : Insts) {
256      if (HasFP && !Info.BeforeFPSet)
257        return;
258
259      CFAOffset -= Info.SPAdjust;
260      unsigned CFIIndex = MF.addFrameInst(
261          MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
262      BuildMI(MBB, std::next(Info.I), dl,
263              TII.get(TargetOpcode::CFI_INSTRUCTION))
264              .addCFIIndex(CFIIndex)
265              .setMIFlags(MachineInstr::FrameSetup);
266    }
267  }
268};
269
270} // end anonymous namespace
271
272/// Emit an instruction sequence that will align the address in
273/// register Reg by zero-ing out the lower bits.  For versions of the
274/// architecture that support Neon, this must be done in a single
275/// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
276/// single instruction. That function only gets called when optimizing
277/// spilling of D registers on a core with the Neon instruction set
278/// present.
279static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
280                                     const TargetInstrInfo &TII,
281                                     MachineBasicBlock &MBB,
282                                     MachineBasicBlock::iterator MBBI,
283                                     const DebugLoc &DL, const unsigned Reg,
284                                     const unsigned Alignment,
285                                     const bool MustBeSingleInstruction) {
286  const ARMSubtarget &AST =
287      static_cast<const ARMSubtarget &>(MF.getSubtarget());
288  const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
289  const unsigned AlignMask = Alignment - 1;
290  const unsigned NrBitsToZero = countTrailingZeros(Alignment);
291  assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
292  if (!AFI->isThumbFunction()) {
293    // if the BFC instruction is available, use that to zero the lower
294    // bits:
295    //   bfc Reg, #0, log2(Alignment)
296    // otherwise use BIC, if the mask to zero the required number of bits
297    // can be encoded in the bic immediate field
298    //   bic Reg, Reg, Alignment-1
299    // otherwise, emit
300    //   lsr Reg, Reg, log2(Alignment)
301    //   lsl Reg, Reg, log2(Alignment)
302    if (CanUseBFC) {
303      BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
304          .addReg(Reg, RegState::Kill)
305          .addImm(~AlignMask)
306          .add(predOps(ARMCC::AL));
307    } else if (AlignMask <= 255) {
308      BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
309          .addReg(Reg, RegState::Kill)
310          .addImm(AlignMask)
311          .add(predOps(ARMCC::AL))
312          .add(condCodeOp());
313    } else {
314      assert(!MustBeSingleInstruction &&
315             "Shouldn't call emitAligningInstructions demanding a single "
316             "instruction to be emitted for large stack alignment for a target "
317             "without BFC.");
318      BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
319          .addReg(Reg, RegState::Kill)
320          .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
321          .add(predOps(ARMCC::AL))
322          .add(condCodeOp());
323      BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
324          .addReg(Reg, RegState::Kill)
325          .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
326          .add(predOps(ARMCC::AL))
327          .add(condCodeOp());
328    }
329  } else {
330    // Since this is only reached for Thumb-2 targets, the BFC instruction
331    // should always be available.
332    assert(CanUseBFC);
333    BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
334        .addReg(Reg, RegState::Kill)
335        .addImm(~AlignMask)
336        .add(predOps(ARMCC::AL));
337  }
338}
339
340/// We need the offset of the frame pointer relative to other MachineFrameInfo
341/// offsets which are encoded relative to SP at function begin.
342/// See also emitPrologue() for how the FP is set up.
343/// Unfortunately we cannot determine this value in determineCalleeSaves() yet
344/// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
345/// this to produce a conservative estimate that we check in an assert() later.
346static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) {
347  // For Thumb1, push.w isn't available, so the first push will always push
348  // r7 and lr onto the stack first.
349  if (AFI.isThumb1OnlyFunction())
350    return -AFI.getArgRegsSaveSize() - (2 * 4);
351  // This is a conservative estimation: Assume the frame pointer being r7 and
352  // pc("r15") up to r8 getting spilled before (= 8 registers).
353  return -AFI.getArgRegsSaveSize() - (8 * 4);
354}
355
356void ARMFrameLowering::emitPrologue(MachineFunction &MF,
357                                    MachineBasicBlock &MBB) const {
358  MachineBasicBlock::iterator MBBI = MBB.begin();
359  MachineFrameInfo  &MFI = MF.getFrameInfo();
360  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
361  MachineModuleInfo &MMI = MF.getMMI();
362  MCContext &Context = MMI.getContext();
363  const TargetMachine &TM = MF.getTarget();
364  const MCRegisterInfo *MRI = Context.getRegisterInfo();
365  const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
366  const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
367  assert(!AFI->isThumb1OnlyFunction() &&
368         "This emitPrologue does not support Thumb1!");
369  bool isARM = !AFI->isThumbFunction();
370  unsigned Align = STI.getFrameLowering()->getStackAlignment();
371  unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
372  unsigned NumBytes = MFI.getStackSize();
373  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
374
375  // Debug location must be unknown since the first debug location is used
376  // to determine the end of the prologue.
377  DebugLoc dl;
378
379  Register FramePtr = RegInfo->getFrameRegister(MF);
380
381  // Determine the sizes of each callee-save spill areas and record which frame
382  // belongs to which callee-save spill areas.
383  unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
384  int FramePtrSpillFI = 0;
385  int D8SpillFI = 0;
386
387  // All calls are tail calls in GHC calling conv, and functions have no
388  // prologue/epilogue.
389  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
390    return;
391
392  StackAdjustingInsts DefCFAOffsetCandidates;
393  bool HasFP = hasFP(MF);
394
395  // Allocate the vararg register save area.
396  if (ArgRegsSaveSize) {
397    emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
398                 MachineInstr::FrameSetup);
399    DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
400  }
401
402  if (!AFI->hasStackFrame() &&
403      (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
404    if (NumBytes - ArgRegsSaveSize != 0) {
405      emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
406                   MachineInstr::FrameSetup);
407      DefCFAOffsetCandidates.addInst(std::prev(MBBI),
408                                     NumBytes - ArgRegsSaveSize, true);
409    }
410    DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
411    return;
412  }
413
414  // Determine spill area sizes.
415  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
416    unsigned Reg = CSI[i].getReg();
417    int FI = CSI[i].getFrameIdx();
418    switch (Reg) {
419    case ARM::R8:
420    case ARM::R9:
421    case ARM::R10:
422    case ARM::R11:
423    case ARM::R12:
424      if (STI.splitFramePushPop(MF)) {
425        GPRCS2Size += 4;
426        break;
427      }
428      LLVM_FALLTHROUGH;
429    case ARM::R0:
430    case ARM::R1:
431    case ARM::R2:
432    case ARM::R3:
433    case ARM::R4:
434    case ARM::R5:
435    case ARM::R6:
436    case ARM::R7:
437    case ARM::LR:
438      if (Reg == FramePtr)
439        FramePtrSpillFI = FI;
440      GPRCS1Size += 4;
441      break;
442    default:
443      // This is a DPR. Exclude the aligned DPRCS2 spills.
444      if (Reg == ARM::D8)
445        D8SpillFI = FI;
446      if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
447        DPRCSSize += 8;
448    }
449  }
450
451  // Move past area 1.
452  MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
453  if (GPRCS1Size > 0) {
454    GPRCS1Push = LastPush = MBBI++;
455    DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
456  }
457
458  // Determine starting offsets of spill areas.
459  unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
460  unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
461  unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
462  unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
463  unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
464  int FramePtrOffsetInPush = 0;
465  if (HasFP) {
466    int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
467    assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset &&
468           "Max FP estimation is wrong");
469    FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize;
470    AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
471                                NumBytes);
472  }
473  AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
474  AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
475  AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
476
477  // Move past area 2.
478  if (GPRCS2Size > 0) {
479    GPRCS2Push = LastPush = MBBI++;
480    DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
481  }
482
483  // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
484  // .cfi_offset operations will reflect that.
485  if (DPRGapSize) {
486    assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
487    if (LastPush != MBB.end() &&
488        tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
489      DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
490    else {
491      emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
492                   MachineInstr::FrameSetup);
493      DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
494    }
495  }
496
497  // Move past area 3.
498  if (DPRCSSize > 0) {
499    // Since vpush register list cannot have gaps, there may be multiple vpush
500    // instructions in the prologue.
501    while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
502      DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
503      LastPush = MBBI++;
504    }
505  }
506
507  // Move past the aligned DPRCS2 area.
508  if (AFI->getNumAlignedDPRCS2Regs() > 0) {
509    MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
510    // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
511    // leaves the stack pointer pointing to the DPRCS2 area.
512    //
513    // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
514    NumBytes += MFI.getObjectOffset(D8SpillFI);
515  } else
516    NumBytes = DPRCSOffset;
517
518  if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
519    uint32_t NumWords = NumBytes >> 2;
520
521    if (NumWords < 65536)
522      BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
523          .addImm(NumWords)
524          .setMIFlags(MachineInstr::FrameSetup)
525          .add(predOps(ARMCC::AL));
526    else
527      BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
528        .addImm(NumWords)
529        .setMIFlags(MachineInstr::FrameSetup);
530
531    switch (TM.getCodeModel()) {
532    case CodeModel::Tiny:
533      llvm_unreachable("Tiny code model not available on ARM.");
534    case CodeModel::Small:
535    case CodeModel::Medium:
536    case CodeModel::Kernel:
537      BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
538          .add(predOps(ARMCC::AL))
539          .addExternalSymbol("__chkstk")
540          .addReg(ARM::R4, RegState::Implicit)
541          .setMIFlags(MachineInstr::FrameSetup);
542      break;
543    case CodeModel::Large:
544      BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
545        .addExternalSymbol("__chkstk")
546        .setMIFlags(MachineInstr::FrameSetup);
547
548      BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
549          .add(predOps(ARMCC::AL))
550          .addReg(ARM::R12, RegState::Kill)
551          .addReg(ARM::R4, RegState::Implicit)
552          .setMIFlags(MachineInstr::FrameSetup);
553      break;
554    }
555
556    BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
557        .addReg(ARM::SP, RegState::Kill)
558        .addReg(ARM::R4, RegState::Kill)
559        .setMIFlags(MachineInstr::FrameSetup)
560        .add(predOps(ARMCC::AL))
561        .add(condCodeOp());
562    NumBytes = 0;
563  }
564
565  if (NumBytes) {
566    // Adjust SP after all the callee-save spills.
567    if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
568        tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
569      DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
570    else {
571      emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
572                   MachineInstr::FrameSetup);
573      DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
574    }
575
576    if (HasFP && isARM)
577      // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
578      // Note it's not safe to do this in Thumb2 mode because it would have
579      // taken two instructions:
580      // mov sp, r7
581      // sub sp, #24
582      // If an interrupt is taken between the two instructions, then sp is in
583      // an inconsistent state (pointing to the middle of callee-saved area).
584      // The interrupt handler can end up clobbering the registers.
585      AFI->setShouldRestoreSPFromFP(true);
586  }
587
588  // Set FP to point to the stack slot that contains the previous FP.
589  // For iOS, FP is R7, which has now been stored in spill area 1.
590  // Otherwise, if this is not iOS, all the callee-saved registers go
591  // into spill area 1, including the FP in R11.  In either case, it
592  // is in area one and the adjustment needs to take place just after
593  // that push.
594  if (HasFP) {
595    MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
596    unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
597    emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
598                         dl, TII, FramePtr, ARM::SP,
599                         PushSize + FramePtrOffsetInPush,
600                         MachineInstr::FrameSetup);
601    if (FramePtrOffsetInPush + PushSize != 0) {
602      unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
603          nullptr, MRI->getDwarfRegNum(FramePtr, true),
604          -(ArgRegsSaveSize - FramePtrOffsetInPush)));
605      BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
606          .addCFIIndex(CFIIndex)
607          .setMIFlags(MachineInstr::FrameSetup);
608    } else {
609      unsigned CFIIndex =
610          MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
611              nullptr, MRI->getDwarfRegNum(FramePtr, true)));
612      BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
613          .addCFIIndex(CFIIndex)
614          .setMIFlags(MachineInstr::FrameSetup);
615    }
616  }
617
618  // Now that the prologue's actual instructions are finalised, we can insert
619  // the necessary DWARF cf instructions to describe the situation. Start by
620  // recording where each register ended up:
621  if (GPRCS1Size > 0) {
622    MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
623    int CFIIndex;
624    for (const auto &Entry : CSI) {
625      unsigned Reg = Entry.getReg();
626      int FI = Entry.getFrameIdx();
627      switch (Reg) {
628      case ARM::R8:
629      case ARM::R9:
630      case ARM::R10:
631      case ARM::R11:
632      case ARM::R12:
633        if (STI.splitFramePushPop(MF))
634          break;
635        LLVM_FALLTHROUGH;
636      case ARM::R0:
637      case ARM::R1:
638      case ARM::R2:
639      case ARM::R3:
640      case ARM::R4:
641      case ARM::R5:
642      case ARM::R6:
643      case ARM::R7:
644      case ARM::LR:
645        CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
646            nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
647        BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
648            .addCFIIndex(CFIIndex)
649            .setMIFlags(MachineInstr::FrameSetup);
650        break;
651      }
652    }
653  }
654
655  if (GPRCS2Size > 0) {
656    MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
657    for (const auto &Entry : CSI) {
658      unsigned Reg = Entry.getReg();
659      int FI = Entry.getFrameIdx();
660      switch (Reg) {
661      case ARM::R8:
662      case ARM::R9:
663      case ARM::R10:
664      case ARM::R11:
665      case ARM::R12:
666        if (STI.splitFramePushPop(MF)) {
667          unsigned DwarfReg =  MRI->getDwarfRegNum(Reg, true);
668          unsigned Offset = MFI.getObjectOffset(FI);
669          unsigned CFIIndex = MF.addFrameInst(
670              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
671          BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
672              .addCFIIndex(CFIIndex)
673              .setMIFlags(MachineInstr::FrameSetup);
674        }
675        break;
676      }
677    }
678  }
679
680  if (DPRCSSize > 0) {
681    // Since vpush register list cannot have gaps, there may be multiple vpush
682    // instructions in the prologue.
683    MachineBasicBlock::iterator Pos = std::next(LastPush);
684    for (const auto &Entry : CSI) {
685      unsigned Reg = Entry.getReg();
686      int FI = Entry.getFrameIdx();
687      if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
688          (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
689        unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
690        unsigned Offset = MFI.getObjectOffset(FI);
691        unsigned CFIIndex = MF.addFrameInst(
692            MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
693        BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
694            .addCFIIndex(CFIIndex)
695            .setMIFlags(MachineInstr::FrameSetup);
696      }
697    }
698  }
699
700  // Now we can emit descriptions of where the canonical frame address was
701  // throughout the process. If we have a frame pointer, it takes over the job
702  // half-way through, so only the first few .cfi_def_cfa_offset instructions
703  // actually get emitted.
704  DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
705
706  if (STI.isTargetELF() && hasFP(MF))
707    MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
708                            AFI->getFramePtrSpillOffset());
709
710  AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
711  AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
712  AFI->setDPRCalleeSavedGapSize(DPRGapSize);
713  AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
714
715  // If we need dynamic stack realignment, do it here. Be paranoid and make
716  // sure if we also have VLAs, we have a base pointer for frame access.
717  // If aligned NEON registers were spilled, the stack has already been
718  // realigned.
719  if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
720    unsigned MaxAlign = MFI.getMaxAlignment();
721    assert(!AFI->isThumb1OnlyFunction());
722    if (!AFI->isThumbFunction()) {
723      emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
724                               false);
725    } else {
726      // We cannot use sp as source/dest register here, thus we're using r4 to
727      // perform the calculations. We're emitting the following sequence:
728      // mov r4, sp
729      // -- use emitAligningInstructions to produce best sequence to zero
730      // -- out lower bits in r4
731      // mov sp, r4
732      // FIXME: It will be better just to find spare register here.
733      BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
734          .addReg(ARM::SP, RegState::Kill)
735          .add(predOps(ARMCC::AL));
736      emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
737                               false);
738      BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
739          .addReg(ARM::R4, RegState::Kill)
740          .add(predOps(ARMCC::AL));
741    }
742
743    AFI->setShouldRestoreSPFromFP(true);
744  }
745
746  // If we need a base pointer, set it up here. It's whatever the value
747  // of the stack pointer is at this point. Any variable size objects
748  // will be allocated after this, so we can still use the base pointer
749  // to reference locals.
750  // FIXME: Clarify FrameSetup flags here.
751  if (RegInfo->hasBasePointer(MF)) {
752    if (isARM)
753      BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
754          .addReg(ARM::SP)
755          .add(predOps(ARMCC::AL))
756          .add(condCodeOp());
757    else
758      BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
759          .addReg(ARM::SP)
760          .add(predOps(ARMCC::AL));
761  }
762
763  // If the frame has variable sized objects then the epilogue must restore
764  // the sp from fp. We can assume there's an FP here since hasFP already
765  // checks for hasVarSizedObjects.
766  if (MFI.hasVarSizedObjects())
767    AFI->setShouldRestoreSPFromFP(true);
768}
769
770void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
771                                    MachineBasicBlock &MBB) const {
772  MachineFrameInfo &MFI = MF.getFrameInfo();
773  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
774  const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
775  const ARMBaseInstrInfo &TII =
776      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
777  assert(!AFI->isThumb1OnlyFunction() &&
778         "This emitEpilogue does not support Thumb1!");
779  bool isARM = !AFI->isThumbFunction();
780
781  unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
782  int NumBytes = (int)MFI.getStackSize();
783  Register FramePtr = RegInfo->getFrameRegister(MF);
784
785  // All calls are tail calls in GHC calling conv, and functions have no
786  // prologue/epilogue.
787  if (MF.getFunction().getCallingConv() == CallingConv::GHC)
788    return;
789
790  // First put ourselves on the first (from top) terminator instructions.
791  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
792  DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
793
794  if (!AFI->hasStackFrame()) {
795    if (NumBytes - ArgRegsSaveSize != 0)
796      emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
797  } else {
798    // Unwind MBBI to point to first LDR / VLDRD.
799    const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
800    if (MBBI != MBB.begin()) {
801      do {
802        --MBBI;
803      } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs));
804      if (!isCSRestore(*MBBI, TII, CSRegs))
805        ++MBBI;
806    }
807
808    // Move SP to start of FP callee save spill area.
809    NumBytes -= (ArgRegsSaveSize +
810                 AFI->getGPRCalleeSavedArea1Size() +
811                 AFI->getGPRCalleeSavedArea2Size() +
812                 AFI->getDPRCalleeSavedGapSize() +
813                 AFI->getDPRCalleeSavedAreaSize());
814
815    // Reset SP based on frame pointer only if the stack frame extends beyond
816    // frame pointer stack slot or target is ELF and the function has FP.
817    if (AFI->shouldRestoreSPFromFP()) {
818      NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
819      if (NumBytes) {
820        if (isARM)
821          emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
822                                  ARMCC::AL, 0, TII);
823        else {
824          // It's not possible to restore SP from FP in a single instruction.
825          // For iOS, this looks like:
826          // mov sp, r7
827          // sub sp, #24
828          // This is bad, if an interrupt is taken after the mov, sp is in an
829          // inconsistent state.
830          // Use the first callee-saved register as a scratch register.
831          assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
832                 "No scratch register to restore SP from FP!");
833          emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
834                                 ARMCC::AL, 0, TII);
835          BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
836              .addReg(ARM::R4)
837              .add(predOps(ARMCC::AL));
838        }
839      } else {
840        // Thumb2 or ARM.
841        if (isARM)
842          BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
843              .addReg(FramePtr)
844              .add(predOps(ARMCC::AL))
845              .add(condCodeOp());
846        else
847          BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
848              .addReg(FramePtr)
849              .add(predOps(ARMCC::AL));
850      }
851    } else if (NumBytes &&
852               !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
853      emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
854
855    // Increment past our save areas.
856    if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
857      MBBI++;
858      // Since vpop register list cannot have gaps, there may be multiple vpop
859      // instructions in the epilogue.
860      while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
861        MBBI++;
862    }
863    if (AFI->getDPRCalleeSavedGapSize()) {
864      assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
865             "unexpected DPR alignment gap");
866      emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
867    }
868
869    if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
870    if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
871  }
872
873  if (ArgRegsSaveSize)
874    emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
875}
876
877/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
878/// debug info.  It's the same as what we use for resolving the code-gen
879/// references for now.  FIXME: This can go wrong when references are
880/// SP-relative and simple call frames aren't used.
881int
882ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
883                                         unsigned &FrameReg) const {
884  return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
885}
886
887int
888ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
889                                             int FI, unsigned &FrameReg,
890                                             int SPAdj) const {
891  const MachineFrameInfo &MFI = MF.getFrameInfo();
892  const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
893      MF.getSubtarget().getRegisterInfo());
894  const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
895  int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
896  int FPOffset = Offset - AFI->getFramePtrSpillOffset();
897  bool isFixed = MFI.isFixedObjectIndex(FI);
898
899  FrameReg = ARM::SP;
900  Offset += SPAdj;
901
902  // SP can move around if there are allocas.  We may also lose track of SP
903  // when emergency spilling inside a non-reserved call frame setup.
904  bool hasMovingSP = !hasReservedCallFrame(MF);
905
906  // When dynamically realigning the stack, use the frame pointer for
907  // parameters, and the stack/base pointer for locals.
908  if (RegInfo->needsStackRealignment(MF)) {
909    assert(hasFP(MF) && "dynamic stack realignment without a FP!");
910    if (isFixed) {
911      FrameReg = RegInfo->getFrameRegister(MF);
912      Offset = FPOffset;
913    } else if (hasMovingSP) {
914      assert(RegInfo->hasBasePointer(MF) &&
915             "VLAs and dynamic stack alignment, but missing base pointer!");
916      FrameReg = RegInfo->getBaseRegister();
917      Offset -= SPAdj;
918    }
919    return Offset;
920  }
921
922  // If there is a frame pointer, use it when we can.
923  if (hasFP(MF) && AFI->hasStackFrame()) {
924    // Use frame pointer to reference fixed objects. Use it for locals if
925    // there are VLAs (and thus the SP isn't reliable as a base).
926    if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
927      FrameReg = RegInfo->getFrameRegister(MF);
928      return FPOffset;
929    } else if (hasMovingSP) {
930      assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
931      if (AFI->isThumb2Function()) {
932        // Try to use the frame pointer if we can, else use the base pointer
933        // since it's available. This is handy for the emergency spill slot, in
934        // particular.
935        if (FPOffset >= -255 && FPOffset < 0) {
936          FrameReg = RegInfo->getFrameRegister(MF);
937          return FPOffset;
938        }
939      }
940    } else if (AFI->isThumbFunction()) {
941      // Prefer SP to base pointer, if the offset is suitably aligned and in
942      // range as the effective range of the immediate offset is bigger when
943      // basing off SP.
944      // Use  add <rd>, sp, #<imm8>
945      //      ldr <rd>, [sp, #<imm8>]
946      if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
947        return Offset;
948      // In Thumb2 mode, the negative offset is very limited. Try to avoid
949      // out of range references. ldr <rt>,[<rn>, #-<imm8>]
950      if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
951        FrameReg = RegInfo->getFrameRegister(MF);
952        return FPOffset;
953      }
954    } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
955      // Otherwise, use SP or FP, whichever is closer to the stack slot.
956      FrameReg = RegInfo->getFrameRegister(MF);
957      return FPOffset;
958    }
959  }
960  // Use the base pointer if we have one.
961  // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
962  // That can happen if we forced a base pointer for a large call frame.
963  if (RegInfo->hasBasePointer(MF)) {
964    FrameReg = RegInfo->getBaseRegister();
965    Offset -= SPAdj;
966  }
967  return Offset;
968}
969
970void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
971                                    MachineBasicBlock::iterator MI,
972                                    const std::vector<CalleeSavedInfo> &CSI,
973                                    unsigned StmOpc, unsigned StrOpc,
974                                    bool NoGap,
975                                    bool(*Func)(unsigned, bool),
976                                    unsigned NumAlignedDPRCS2Regs,
977                                    unsigned MIFlags) const {
978  MachineFunction &MF = *MBB.getParent();
979  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
980  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
981
982  DebugLoc DL;
983
984  using RegAndKill = std::pair<unsigned, bool>;
985
986  SmallVector<RegAndKill, 4> Regs;
987  unsigned i = CSI.size();
988  while (i != 0) {
989    unsigned LastReg = 0;
990    for (; i != 0; --i) {
991      unsigned Reg = CSI[i-1].getReg();
992      if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
993
994      // D-registers in the aligned area DPRCS2 are NOT spilled here.
995      if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
996        continue;
997
998      const MachineRegisterInfo &MRI = MF.getRegInfo();
999      bool isLiveIn = MRI.isLiveIn(Reg);
1000      if (!isLiveIn && !MRI.isReserved(Reg))
1001        MBB.addLiveIn(Reg);
1002      // If NoGap is true, push consecutive registers and then leave the rest
1003      // for other instructions. e.g.
1004      // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1005      if (NoGap && LastReg && LastReg != Reg-1)
1006        break;
1007      LastReg = Reg;
1008      // Do not set a kill flag on values that are also marked as live-in. This
1009      // happens with the @llvm-returnaddress intrinsic and with arguments
1010      // passed in callee saved registers.
1011      // Omitting the kill flags is conservatively correct even if the live-in
1012      // is not used after all.
1013      Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1014    }
1015
1016    if (Regs.empty())
1017      continue;
1018
1019    llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1020      return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1021    });
1022
1023    if (Regs.size() > 1 || StrOpc== 0) {
1024      MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1025                                    .addReg(ARM::SP)
1026                                    .setMIFlags(MIFlags)
1027                                    .add(predOps(ARMCC::AL));
1028      for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1029        MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1030    } else if (Regs.size() == 1) {
1031      BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1032          .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1033          .addReg(ARM::SP)
1034          .setMIFlags(MIFlags)
1035          .addImm(-4)
1036          .add(predOps(ARMCC::AL));
1037    }
1038    Regs.clear();
1039
1040    // Put any subsequent vpush instructions before this one: they will refer to
1041    // higher register numbers so need to be pushed first in order to preserve
1042    // monotonicity.
1043    if (MI != MBB.begin())
1044      --MI;
1045  }
1046}
1047
1048void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1049                                   MachineBasicBlock::iterator MI,
1050                                   std::vector<CalleeSavedInfo> &CSI,
1051                                   unsigned LdmOpc, unsigned LdrOpc,
1052                                   bool isVarArg, bool NoGap,
1053                                   bool(*Func)(unsigned, bool),
1054                                   unsigned NumAlignedDPRCS2Regs) const {
1055  MachineFunction &MF = *MBB.getParent();
1056  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1057  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1058  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1059  DebugLoc DL;
1060  bool isTailCall = false;
1061  bool isInterrupt = false;
1062  bool isTrap = false;
1063  if (MBB.end() != MI) {
1064    DL = MI->getDebugLoc();
1065    unsigned RetOpcode = MI->getOpcode();
1066    isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1067    isInterrupt =
1068        RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1069    isTrap =
1070        RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1071        RetOpcode == ARM::tTRAP;
1072  }
1073
1074  SmallVector<unsigned, 4> Regs;
1075  unsigned i = CSI.size();
1076  while (i != 0) {
1077    unsigned LastReg = 0;
1078    bool DeleteRet = false;
1079    for (; i != 0; --i) {
1080      CalleeSavedInfo &Info = CSI[i-1];
1081      unsigned Reg = Info.getReg();
1082      if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1083
1084      // The aligned reloads from area DPRCS2 are not inserted here.
1085      if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1086        continue;
1087
1088      if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1089          !isTrap && STI.hasV5TOps()) {
1090        if (MBB.succ_empty()) {
1091          Reg = ARM::PC;
1092          // Fold the return instruction into the LDM.
1093          DeleteRet = true;
1094          LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1095          // We 'restore' LR into PC so it is not live out of the return block:
1096          // Clear Restored bit.
1097          Info.setRestored(false);
1098        } else
1099          LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1100      }
1101
1102      // If NoGap is true, pop consecutive registers and then leave the rest
1103      // for other instructions. e.g.
1104      // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1105      if (NoGap && LastReg && LastReg != Reg-1)
1106        break;
1107
1108      LastReg = Reg;
1109      Regs.push_back(Reg);
1110    }
1111
1112    if (Regs.empty())
1113      continue;
1114
1115    llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1116      return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1117    });
1118
1119    if (Regs.size() > 1 || LdrOpc == 0) {
1120      MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1121                                    .addReg(ARM::SP)
1122                                    .add(predOps(ARMCC::AL));
1123      for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1124        MIB.addReg(Regs[i], getDefRegState(true));
1125      if (DeleteRet) {
1126        if (MI != MBB.end()) {
1127          MIB.copyImplicitOps(*MI);
1128          MI->eraseFromParent();
1129        }
1130      }
1131      MI = MIB;
1132    } else if (Regs.size() == 1) {
1133      // If we adjusted the reg to PC from LR above, switch it back here. We
1134      // only do that for LDM.
1135      if (Regs[0] == ARM::PC)
1136        Regs[0] = ARM::LR;
1137      MachineInstrBuilder MIB =
1138        BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1139          .addReg(ARM::SP, RegState::Define)
1140          .addReg(ARM::SP);
1141      // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1142      // that refactoring is complete (eventually).
1143      if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1144        MIB.addReg(0);
1145        MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1146      } else
1147        MIB.addImm(4);
1148      MIB.add(predOps(ARMCC::AL));
1149    }
1150    Regs.clear();
1151
1152    // Put any subsequent vpop instructions after this one: they will refer to
1153    // higher register numbers so need to be popped afterwards.
1154    if (MI != MBB.end())
1155      ++MI;
1156  }
1157}
1158
1159/// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1160/// starting from d8.  Also insert stack realignment code and leave the stack
1161/// pointer pointing to the d8 spill slot.
1162static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1163                                    MachineBasicBlock::iterator MI,
1164                                    unsigned NumAlignedDPRCS2Regs,
1165                                    const std::vector<CalleeSavedInfo> &CSI,
1166                                    const TargetRegisterInfo *TRI) {
1167  MachineFunction &MF = *MBB.getParent();
1168  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1169  DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1170  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1171  MachineFrameInfo &MFI = MF.getFrameInfo();
1172
1173  // Mark the D-register spill slots as properly aligned.  Since MFI computes
1174  // stack slot layout backwards, this can actually mean that the d-reg stack
1175  // slot offsets can be wrong. The offset for d8 will always be correct.
1176  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1177    unsigned DNum = CSI[i].getReg() - ARM::D8;
1178    if (DNum > NumAlignedDPRCS2Regs - 1)
1179      continue;
1180    int FI = CSI[i].getFrameIdx();
1181    // The even-numbered registers will be 16-byte aligned, the odd-numbered
1182    // registers will be 8-byte aligned.
1183    MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
1184
1185    // The stack slot for D8 needs to be maximally aligned because this is
1186    // actually the point where we align the stack pointer.  MachineFrameInfo
1187    // computes all offsets relative to the incoming stack pointer which is a
1188    // bit weird when realigning the stack.  Any extra padding for this
1189    // over-alignment is not realized because the code inserted below adjusts
1190    // the stack pointer by numregs * 8 before aligning the stack pointer.
1191    if (DNum == 0)
1192      MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
1193  }
1194
1195  // Move the stack pointer to the d8 spill slot, and align it at the same
1196  // time. Leave the stack slot address in the scratch register r4.
1197  //
1198  //   sub r4, sp, #numregs * 8
1199  //   bic r4, r4, #align - 1
1200  //   mov sp, r4
1201  //
1202  bool isThumb = AFI->isThumbFunction();
1203  assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1204  AFI->setShouldRestoreSPFromFP(true);
1205
1206  // sub r4, sp, #numregs * 8
1207  // The immediate is <= 64, so it doesn't need any special encoding.
1208  unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1209  BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1210      .addReg(ARM::SP)
1211      .addImm(8 * NumAlignedDPRCS2Regs)
1212      .add(predOps(ARMCC::AL))
1213      .add(condCodeOp());
1214
1215  unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment();
1216  // We must set parameter MustBeSingleInstruction to true, since
1217  // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1218  // stack alignment.  Luckily, this can always be done since all ARM
1219  // architecture versions that support Neon also support the BFC
1220  // instruction.
1221  emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1222
1223  // mov sp, r4
1224  // The stack pointer must be adjusted before spilling anything, otherwise
1225  // the stack slots could be clobbered by an interrupt handler.
1226  // Leave r4 live, it is used below.
1227  Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1228  MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1229                                .addReg(ARM::R4)
1230                                .add(predOps(ARMCC::AL));
1231  if (!isThumb)
1232    MIB.add(condCodeOp());
1233
1234  // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1235  // r4 holds the stack slot address.
1236  unsigned NextReg = ARM::D8;
1237
1238  // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1239  // The writeback is only needed when emitting two vst1.64 instructions.
1240  if (NumAlignedDPRCS2Regs >= 6) {
1241    unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1242                                               &ARM::QQPRRegClass);
1243    MBB.addLiveIn(SupReg);
1244    BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1245        .addReg(ARM::R4, RegState::Kill)
1246        .addImm(16)
1247        .addReg(NextReg)
1248        .addReg(SupReg, RegState::ImplicitKill)
1249        .add(predOps(ARMCC::AL));
1250    NextReg += 4;
1251    NumAlignedDPRCS2Regs -= 4;
1252  }
1253
1254  // We won't modify r4 beyond this point.  It currently points to the next
1255  // register to be spilled.
1256  unsigned R4BaseReg = NextReg;
1257
1258  // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1259  if (NumAlignedDPRCS2Regs >= 4) {
1260    unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1261                                               &ARM::QQPRRegClass);
1262    MBB.addLiveIn(SupReg);
1263    BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1264        .addReg(ARM::R4)
1265        .addImm(16)
1266        .addReg(NextReg)
1267        .addReg(SupReg, RegState::ImplicitKill)
1268        .add(predOps(ARMCC::AL));
1269    NextReg += 4;
1270    NumAlignedDPRCS2Regs -= 4;
1271  }
1272
1273  // 16-byte aligned vst1.64 with 2 d-regs.
1274  if (NumAlignedDPRCS2Regs >= 2) {
1275    unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1276                                               &ARM::QPRRegClass);
1277    MBB.addLiveIn(SupReg);
1278    BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1279        .addReg(ARM::R4)
1280        .addImm(16)
1281        .addReg(SupReg)
1282        .add(predOps(ARMCC::AL));
1283    NextReg += 2;
1284    NumAlignedDPRCS2Regs -= 2;
1285  }
1286
1287  // Finally, use a vanilla vstr.64 for the odd last register.
1288  if (NumAlignedDPRCS2Regs) {
1289    MBB.addLiveIn(NextReg);
1290    // vstr.64 uses addrmode5 which has an offset scale of 4.
1291    BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1292        .addReg(NextReg)
1293        .addReg(ARM::R4)
1294        .addImm((NextReg - R4BaseReg) * 2)
1295        .add(predOps(ARMCC::AL));
1296  }
1297
1298  // The last spill instruction inserted should kill the scratch register r4.
1299  std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1300}
1301
1302/// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1303/// iterator to the following instruction.
1304static MachineBasicBlock::iterator
1305skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1306                        unsigned NumAlignedDPRCS2Regs) {
1307  //   sub r4, sp, #numregs * 8
1308  //   bic r4, r4, #align - 1
1309  //   mov sp, r4
1310  ++MI; ++MI; ++MI;
1311  assert(MI->mayStore() && "Expecting spill instruction");
1312
1313  // These switches all fall through.
1314  switch(NumAlignedDPRCS2Regs) {
1315  case 7:
1316    ++MI;
1317    assert(MI->mayStore() && "Expecting spill instruction");
1318    LLVM_FALLTHROUGH;
1319  default:
1320    ++MI;
1321    assert(MI->mayStore() && "Expecting spill instruction");
1322    LLVM_FALLTHROUGH;
1323  case 1:
1324  case 2:
1325  case 4:
1326    assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1327    ++MI;
1328  }
1329  return MI;
1330}
1331
1332/// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1333/// starting from d8.  These instructions are assumed to execute while the
1334/// stack is still aligned, unlike the code inserted by emitPopInst.
1335static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1336                                      MachineBasicBlock::iterator MI,
1337                                      unsigned NumAlignedDPRCS2Regs,
1338                                      const std::vector<CalleeSavedInfo> &CSI,
1339                                      const TargetRegisterInfo *TRI) {
1340  MachineFunction &MF = *MBB.getParent();
1341  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1342  DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1343  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1344
1345  // Find the frame index assigned to d8.
1346  int D8SpillFI = 0;
1347  for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1348    if (CSI[i].getReg() == ARM::D8) {
1349      D8SpillFI = CSI[i].getFrameIdx();
1350      break;
1351    }
1352
1353  // Materialize the address of the d8 spill slot into the scratch register r4.
1354  // This can be fairly complicated if the stack frame is large, so just use
1355  // the normal frame index elimination mechanism to do it.  This code runs as
1356  // the initial part of the epilog where the stack and base pointers haven't
1357  // been changed yet.
1358  bool isThumb = AFI->isThumbFunction();
1359  assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1360
1361  unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1362  BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1363      .addFrameIndex(D8SpillFI)
1364      .addImm(0)
1365      .add(predOps(ARMCC::AL))
1366      .add(condCodeOp());
1367
1368  // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1369  unsigned NextReg = ARM::D8;
1370
1371  // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1372  if (NumAlignedDPRCS2Regs >= 6) {
1373    unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1374                                               &ARM::QQPRRegClass);
1375    BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1376        .addReg(ARM::R4, RegState::Define)
1377        .addReg(ARM::R4, RegState::Kill)
1378        .addImm(16)
1379        .addReg(SupReg, RegState::ImplicitDefine)
1380        .add(predOps(ARMCC::AL));
1381    NextReg += 4;
1382    NumAlignedDPRCS2Regs -= 4;
1383  }
1384
1385  // We won't modify r4 beyond this point.  It currently points to the next
1386  // register to be spilled.
1387  unsigned R4BaseReg = NextReg;
1388
1389  // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1390  if (NumAlignedDPRCS2Regs >= 4) {
1391    unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1392                                               &ARM::QQPRRegClass);
1393    BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1394        .addReg(ARM::R4)
1395        .addImm(16)
1396        .addReg(SupReg, RegState::ImplicitDefine)
1397        .add(predOps(ARMCC::AL));
1398    NextReg += 4;
1399    NumAlignedDPRCS2Regs -= 4;
1400  }
1401
1402  // 16-byte aligned vld1.64 with 2 d-regs.
1403  if (NumAlignedDPRCS2Regs >= 2) {
1404    unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1405                                               &ARM::QPRRegClass);
1406    BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1407        .addReg(ARM::R4)
1408        .addImm(16)
1409        .add(predOps(ARMCC::AL));
1410    NextReg += 2;
1411    NumAlignedDPRCS2Regs -= 2;
1412  }
1413
1414  // Finally, use a vanilla vldr.64 for the remaining odd register.
1415  if (NumAlignedDPRCS2Regs)
1416    BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1417        .addReg(ARM::R4)
1418        .addImm(2 * (NextReg - R4BaseReg))
1419        .add(predOps(ARMCC::AL));
1420
1421  // Last store kills r4.
1422  std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1423}
1424
1425bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1426                                        MachineBasicBlock::iterator MI,
1427                                        const std::vector<CalleeSavedInfo> &CSI,
1428                                        const TargetRegisterInfo *TRI) const {
1429  if (CSI.empty())
1430    return false;
1431
1432  MachineFunction &MF = *MBB.getParent();
1433  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1434
1435  unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1436  unsigned PushOneOpc = AFI->isThumbFunction() ?
1437    ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1438  unsigned FltOpc = ARM::VSTMDDB_UPD;
1439  unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1440  emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1441               MachineInstr::FrameSetup);
1442  emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1443               MachineInstr::FrameSetup);
1444  emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1445               NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1446
1447  // The code above does not insert spill code for the aligned DPRCS2 registers.
1448  // The stack realignment code will be inserted between the push instructions
1449  // and these spills.
1450  if (NumAlignedDPRCS2Regs)
1451    emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1452
1453  return true;
1454}
1455
1456bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1457                                        MachineBasicBlock::iterator MI,
1458                                        std::vector<CalleeSavedInfo> &CSI,
1459                                        const TargetRegisterInfo *TRI) const {
1460  if (CSI.empty())
1461    return false;
1462
1463  MachineFunction &MF = *MBB.getParent();
1464  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1465  bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1466  unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1467
1468  // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1469  // registers. Do that here instead.
1470  if (NumAlignedDPRCS2Regs)
1471    emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1472
1473  unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1474  unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1475  unsigned FltOpc = ARM::VLDMDIA_UPD;
1476  emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1477              NumAlignedDPRCS2Regs);
1478  emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1479              &isARMArea2Register, 0);
1480  emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1481              &isARMArea1Register, 0);
1482
1483  return true;
1484}
1485
1486// FIXME: Make generic?
1487static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1488                                            const ARMBaseInstrInfo &TII) {
1489  unsigned FnSize = 0;
1490  for (auto &MBB : MF) {
1491    for (auto &MI : MBB)
1492      FnSize += TII.getInstSizeInBytes(MI);
1493  }
1494  if (MF.getJumpTableInfo())
1495    for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1496      FnSize += Table.MBBs.size() * 4;
1497  FnSize += MF.getConstantPool()->getConstants().size() * 4;
1498  return FnSize;
1499}
1500
1501/// estimateRSStackSizeLimit - Look at each instruction that references stack
1502/// frames and return the stack size limit beyond which some of these
1503/// instructions will require a scratch register during their expansion later.
1504// FIXME: Move to TII?
1505static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1506                                         const TargetFrameLowering *TFI,
1507                                         bool &HasNonSPFrameIndex) {
1508  const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1509  const ARMBaseInstrInfo &TII =
1510      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1511  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1512  unsigned Limit = (1 << 12) - 1;
1513  for (auto &MBB : MF) {
1514    for (auto &MI : MBB) {
1515      if (MI.isDebugInstr())
1516        continue;
1517      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1518        if (!MI.getOperand(i).isFI())
1519          continue;
1520
1521        // When using ADDri to get the address of a stack object, 255 is the
1522        // largest offset guaranteed to fit in the immediate offset.
1523        if (MI.getOpcode() == ARM::ADDri) {
1524          Limit = std::min(Limit, (1U << 8) - 1);
1525          break;
1526        }
1527        // t2ADDri will not require an extra register, it can reuse the
1528        // destination.
1529        if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
1530          break;
1531
1532        const MCInstrDesc &MCID = MI.getDesc();
1533        const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
1534        if (RegClass && !RegClass->contains(ARM::SP))
1535          HasNonSPFrameIndex = true;
1536
1537        // Otherwise check the addressing mode.
1538        switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1539        case ARMII::AddrMode_i12:
1540        case ARMII::AddrMode2:
1541          // Default 12 bit limit.
1542          break;
1543        case ARMII::AddrMode3:
1544        case ARMII::AddrModeT2_i8:
1545          Limit = std::min(Limit, (1U << 8) - 1);
1546          break;
1547        case ARMII::AddrMode5FP16:
1548          Limit = std::min(Limit, ((1U << 8) - 1) * 2);
1549          break;
1550        case ARMII::AddrMode5:
1551        case ARMII::AddrModeT2_i8s4:
1552        case ARMII::AddrModeT2_ldrex:
1553          Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1554          break;
1555        case ARMII::AddrModeT2_i12:
1556          // i12 supports only positive offset so these will be converted to
1557          // i8 opcodes. See llvm::rewriteT2FrameIndex.
1558          if (TFI->hasFP(MF) && AFI->hasStackFrame())
1559            Limit = std::min(Limit, (1U << 8) - 1);
1560          break;
1561        case ARMII::AddrMode4:
1562        case ARMII::AddrMode6:
1563          // Addressing modes 4 & 6 (load/store) instructions can't encode an
1564          // immediate offset for stack references.
1565          return 0;
1566        case ARMII::AddrModeT2_i7:
1567          Limit = std::min(Limit, ((1U << 7) - 1) * 1);
1568          break;
1569        case ARMII::AddrModeT2_i7s2:
1570          Limit = std::min(Limit, ((1U << 7) - 1) * 2);
1571          break;
1572        case ARMII::AddrModeT2_i7s4:
1573          Limit = std::min(Limit, ((1U << 7) - 1) * 4);
1574          break;
1575        default:
1576          llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1577        }
1578        break; // At most one FI per instruction
1579      }
1580    }
1581  }
1582
1583  return Limit;
1584}
1585
1586// In functions that realign the stack, it can be an advantage to spill the
1587// callee-saved vector registers after realigning the stack. The vst1 and vld1
1588// instructions take alignment hints that can improve performance.
1589static void
1590checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1591  MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1592  if (!SpillAlignedNEONRegs)
1593    return;
1594
1595  // Naked functions don't spill callee-saved registers.
1596  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1597    return;
1598
1599  // We are planning to use NEON instructions vst1 / vld1.
1600  if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1601    return;
1602
1603  // Don't bother if the default stack alignment is sufficiently high.
1604  if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
1605    return;
1606
1607  // Aligned spills require stack realignment.
1608  if (!static_cast<const ARMBaseRegisterInfo *>(
1609           MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1610    return;
1611
1612  // We always spill contiguous d-registers starting from d8. Count how many
1613  // needs spilling.  The register allocator will almost always use the
1614  // callee-saved registers in order, but it can happen that there are holes in
1615  // the range.  Registers above the hole will be spilled to the standard DPRCS
1616  // area.
1617  unsigned NumSpills = 0;
1618  for (; NumSpills < 8; ++NumSpills)
1619    if (!SavedRegs.test(ARM::D8 + NumSpills))
1620      break;
1621
1622  // Don't do this for just one d-register. It's not worth it.
1623  if (NumSpills < 2)
1624    return;
1625
1626  // Spill the first NumSpills D-registers after realigning the stack.
1627  MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1628
1629  // A scratch register is required for the vst1 / vld1 instructions.
1630  SavedRegs.set(ARM::R4);
1631}
1632
1633void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1634                                            BitVector &SavedRegs,
1635                                            RegScavenger *RS) const {
1636  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1637  // This tells PEI to spill the FP as if it is any other callee-save register
1638  // to take advantage the eliminateFrameIndex machinery. This also ensures it
1639  // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1640  // to combine multiple loads / stores.
1641  bool CanEliminateFrame = true;
1642  bool CS1Spilled = false;
1643  bool LRSpilled = false;
1644  unsigned NumGPRSpills = 0;
1645  unsigned NumFPRSpills = 0;
1646  SmallVector<unsigned, 4> UnspilledCS1GPRs;
1647  SmallVector<unsigned, 4> UnspilledCS2GPRs;
1648  const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1649      MF.getSubtarget().getRegisterInfo());
1650  const ARMBaseInstrInfo &TII =
1651      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1652  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1653  MachineFrameInfo &MFI = MF.getFrameInfo();
1654  MachineRegisterInfo &MRI = MF.getRegInfo();
1655  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1656  (void)TRI;  // Silence unused warning in non-assert builds.
1657  Register FramePtr = RegInfo->getFrameRegister(MF);
1658
1659  // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1660  // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1661  // since it's not always possible to restore sp from fp in a single
1662  // instruction.
1663  // FIXME: It will be better just to find spare register here.
1664  if (AFI->isThumb2Function() &&
1665      (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1666    SavedRegs.set(ARM::R4);
1667
1668  // If a stack probe will be emitted, spill R4 and LR, since they are
1669  // clobbered by the stack probe call.
1670  // This estimate should be a safe, conservative estimate. The actual
1671  // stack probe is enabled based on the size of the local objects;
1672  // this estimate also includes the varargs store size.
1673  if (STI.isTargetWindows() &&
1674      WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1675    SavedRegs.set(ARM::R4);
1676    SavedRegs.set(ARM::LR);
1677  }
1678
1679  if (AFI->isThumb1OnlyFunction()) {
1680    // Spill LR if Thumb1 function uses variable length argument lists.
1681    if (AFI->getArgRegsSaveSize() > 0)
1682      SavedRegs.set(ARM::LR);
1683
1684    // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1685    // requires stack alignment.  We don't know for sure what the stack size
1686    // will be, but for this, an estimate is good enough. If there anything
1687    // changes it, it'll be a spill, which implies we've used all the registers
1688    // and so R4 is already used, so not marking it here will be OK.
1689    // FIXME: It will be better just to find spare register here.
1690    if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
1691        MFI.estimateStackSize(MF) > 508)
1692      SavedRegs.set(ARM::R4);
1693  }
1694
1695  // See if we can spill vector registers to aligned stack.
1696  checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1697
1698  // Spill the BasePtr if it's used.
1699  if (RegInfo->hasBasePointer(MF))
1700    SavedRegs.set(RegInfo->getBaseRegister());
1701
1702  // Don't spill FP if the frame can be eliminated. This is determined
1703  // by scanning the callee-save registers to see if any is modified.
1704  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1705  for (unsigned i = 0; CSRegs[i]; ++i) {
1706    unsigned Reg = CSRegs[i];
1707    bool Spilled = false;
1708    if (SavedRegs.test(Reg)) {
1709      Spilled = true;
1710      CanEliminateFrame = false;
1711    }
1712
1713    if (!ARM::GPRRegClass.contains(Reg)) {
1714      if (Spilled) {
1715        if (ARM::SPRRegClass.contains(Reg))
1716          NumFPRSpills++;
1717        else if (ARM::DPRRegClass.contains(Reg))
1718          NumFPRSpills += 2;
1719        else if (ARM::QPRRegClass.contains(Reg))
1720          NumFPRSpills += 4;
1721      }
1722      continue;
1723    }
1724
1725    if (Spilled) {
1726      NumGPRSpills++;
1727
1728      if (!STI.splitFramePushPop(MF)) {
1729        if (Reg == ARM::LR)
1730          LRSpilled = true;
1731        CS1Spilled = true;
1732        continue;
1733      }
1734
1735      // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1736      switch (Reg) {
1737      case ARM::LR:
1738        LRSpilled = true;
1739        LLVM_FALLTHROUGH;
1740      case ARM::R0: case ARM::R1:
1741      case ARM::R2: case ARM::R3:
1742      case ARM::R4: case ARM::R5:
1743      case ARM::R6: case ARM::R7:
1744        CS1Spilled = true;
1745        break;
1746      default:
1747        break;
1748      }
1749    } else {
1750      if (!STI.splitFramePushPop(MF)) {
1751        UnspilledCS1GPRs.push_back(Reg);
1752        continue;
1753      }
1754
1755      switch (Reg) {
1756      case ARM::R0: case ARM::R1:
1757      case ARM::R2: case ARM::R3:
1758      case ARM::R4: case ARM::R5:
1759      case ARM::R6: case ARM::R7:
1760      case ARM::LR:
1761        UnspilledCS1GPRs.push_back(Reg);
1762        break;
1763      default:
1764        UnspilledCS2GPRs.push_back(Reg);
1765        break;
1766      }
1767    }
1768  }
1769
1770  bool ForceLRSpill = false;
1771  if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1772    unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
1773    // Force LR to be spilled if the Thumb function size is > 2048. This enables
1774    // use of BL to implement far jump. If it turns out that it's not needed
1775    // then the branch fix up path will undo it.
1776    if (FnSize >= (1 << 11)) {
1777      CanEliminateFrame = false;
1778      ForceLRSpill = true;
1779    }
1780  }
1781
1782  // If any of the stack slot references may be out of range of an immediate
1783  // offset, make sure a register (or a spill slot) is available for the
1784  // register scavenger. Note that if we're indexing off the frame pointer, the
1785  // effective stack size is 4 bytes larger since the FP points to the stack
1786  // slot of the previous FP. Also, if we have variable sized objects in the
1787  // function, stack slot references will often be negative, and some of
1788  // our instructions are positive-offset only, so conservatively consider
1789  // that case to want a spill slot (or register) as well. Similarly, if
1790  // the function adjusts the stack pointer during execution and the
1791  // adjustments aren't already part of our stack size estimate, our offset
1792  // calculations may be off, so be conservative.
1793  // FIXME: We could add logic to be more precise about negative offsets
1794  //        and which instructions will need a scratch register for them. Is it
1795  //        worth the effort and added fragility?
1796  unsigned EstimatedStackSize =
1797      MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1798
1799  // Determine biggest (positive) SP offset in MachineFrameInfo.
1800  int MaxFixedOffset = 0;
1801  for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1802    int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1803    MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1804  }
1805
1806  bool HasFP = hasFP(MF);
1807  if (HasFP) {
1808    if (AFI->hasStackFrame())
1809      EstimatedStackSize += 4;
1810  } else {
1811    // If FP is not used, SP will be used to access arguments, so count the
1812    // size of arguments into the estimation.
1813    EstimatedStackSize += MaxFixedOffset;
1814  }
1815  EstimatedStackSize += 16; // For possible paddings.
1816
1817  unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
1818  bool HasNonSPFrameIndex = false;
1819  if (AFI->isThumb1OnlyFunction()) {
1820    // For Thumb1, don't bother to iterate over the function. The only
1821    // instruction that requires an emergency spill slot is a store to a
1822    // frame index.
1823    //
1824    // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1825    // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1826    // a 5-bit unsigned immediate.
1827    //
1828    // We could try to check if the function actually contains a tSTRspi
1829    // that might need the spill slot, but it's not really important.
1830    // Functions with VLAs or extremely large call frames are rare, and
1831    // if a function is allocating more than 1KB of stack, an extra 4-byte
1832    // slot probably isn't relevant.
1833    if (RegInfo->hasBasePointer(MF))
1834      EstimatedRSStackSizeLimit = (1U << 5) * 4;
1835    else
1836      EstimatedRSStackSizeLimit = (1U << 8) * 4;
1837    EstimatedRSFixedSizeLimit = (1U << 5) * 4;
1838  } else {
1839    EstimatedRSStackSizeLimit =
1840        estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
1841    EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
1842  }
1843  // Final estimate of whether sp or bp-relative accesses might require
1844  // scavenging.
1845  bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
1846
1847  // If the stack pointer moves and we don't have a base pointer, the
1848  // estimate logic doesn't work. The actual offsets might be larger when
1849  // we're constructing a call frame, or we might need to use negative
1850  // offsets from fp.
1851  bool HasMovingSP = MFI.hasVarSizedObjects() ||
1852    (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
1853  bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
1854
1855  // If we have a frame pointer, we assume arguments will be accessed
1856  // relative to the frame pointer. Check whether fp-relative accesses to
1857  // arguments require scavenging.
1858  //
1859  // We could do slightly better on Thumb1; in some cases, an sp-relative
1860  // offset would be legal even though an fp-relative offset is not.
1861  int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI);
1862  bool HasLargeArgumentList =
1863      HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
1864
1865  bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
1866                         HasLargeArgumentList || HasNonSPFrameIndex;
1867  LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
1868                    << "; EstimatedStack: " << EstimatedStackSize
1869                    << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
1870                    << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
1871  if (BigFrameOffsets ||
1872      !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1873    AFI->setHasStackFrame(true);
1874
1875    if (HasFP) {
1876      SavedRegs.set(FramePtr);
1877      // If the frame pointer is required by the ABI, also spill LR so that we
1878      // emit a complete frame record.
1879      if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1880        SavedRegs.set(ARM::LR);
1881        LRSpilled = true;
1882        NumGPRSpills++;
1883        auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
1884        if (LRPos != UnspilledCS1GPRs.end())
1885          UnspilledCS1GPRs.erase(LRPos);
1886      }
1887      auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
1888      if (FPPos != UnspilledCS1GPRs.end())
1889        UnspilledCS1GPRs.erase(FPPos);
1890      NumGPRSpills++;
1891      if (FramePtr == ARM::R7)
1892        CS1Spilled = true;
1893    }
1894
1895    // This is true when we inserted a spill for a callee-save GPR which is
1896    // not otherwise used by the function. This guaranteees it is possible
1897    // to scavenge a register to hold the address of a stack slot. On Thumb1,
1898    // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
1899    // subtargets, this is any GPR, i.e. r4-r11 or lr.
1900    //
1901    // If we don't insert a spill, we instead allocate an emergency spill
1902    // slot, which can be used by scavenging to spill an arbitrary register.
1903    //
1904    // We currently don't try to figure out whether any specific instruction
1905    // requires scavening an additional register.
1906    bool ExtraCSSpill = false;
1907
1908    if (AFI->isThumb1OnlyFunction()) {
1909      // For Thumb1-only targets, we need some low registers when we save and
1910      // restore the high registers (which aren't allocatable, but could be
1911      // used by inline assembly) because the push/pop instructions can not
1912      // access high registers. If necessary, we might need to push more low
1913      // registers to ensure that there is at least one free that can be used
1914      // for the saving & restoring, and preferably we should ensure that as
1915      // many as are needed are available so that fewer push/pop instructions
1916      // are required.
1917
1918      // Low registers which are not currently pushed, but could be (r4-r7).
1919      SmallVector<unsigned, 4> AvailableRegs;
1920
1921      // Unused argument registers (r0-r3) can be clobbered in the prologue for
1922      // free.
1923      int EntryRegDeficit = 0;
1924      for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1925        if (!MF.getRegInfo().isLiveIn(Reg)) {
1926          --EntryRegDeficit;
1927          LLVM_DEBUG(dbgs()
1928                     << printReg(Reg, TRI)
1929                     << " is unused argument register, EntryRegDeficit = "
1930                     << EntryRegDeficit << "\n");
1931        }
1932      }
1933
1934      // Unused return registers can be clobbered in the epilogue for free.
1935      int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1936      LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
1937                        << " return regs used, ExitRegDeficit = "
1938                        << ExitRegDeficit << "\n");
1939
1940      int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1941      LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1942
1943      // r4-r6 can be used in the prologue if they are pushed by the first push
1944      // instruction.
1945      for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1946        if (SavedRegs.test(Reg)) {
1947          --RegDeficit;
1948          LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1949                            << " is saved low register, RegDeficit = "
1950                            << RegDeficit << "\n");
1951        } else {
1952          AvailableRegs.push_back(Reg);
1953          LLVM_DEBUG(
1954              dbgs()
1955              << printReg(Reg, TRI)
1956              << " is non-saved low register, adding to AvailableRegs\n");
1957        }
1958      }
1959
1960      // r7 can be used if it is not being used as the frame pointer.
1961      if (!HasFP) {
1962        if (SavedRegs.test(ARM::R7)) {
1963          --RegDeficit;
1964          LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1965                            << RegDeficit << "\n");
1966        } else {
1967          AvailableRegs.push_back(ARM::R7);
1968          LLVM_DEBUG(
1969              dbgs()
1970              << "%r7 is non-saved low register, adding to AvailableRegs\n");
1971        }
1972      }
1973
1974      // Each of r8-r11 needs to be copied to a low register, then pushed.
1975      for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
1976        if (SavedRegs.test(Reg)) {
1977          ++RegDeficit;
1978          LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1979                            << " is saved high register, RegDeficit = "
1980                            << RegDeficit << "\n");
1981        }
1982      }
1983
1984      // LR can only be used by PUSH, not POP, and can't be used at all if the
1985      // llvm.returnaddress intrinsic is used. This is only worth doing if we
1986      // are more limited at function entry than exit.
1987      if ((EntryRegDeficit > ExitRegDeficit) &&
1988          !(MF.getRegInfo().isLiveIn(ARM::LR) &&
1989            MF.getFrameInfo().isReturnAddressTaken())) {
1990        if (SavedRegs.test(ARM::LR)) {
1991          --RegDeficit;
1992          LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
1993                            << RegDeficit << "\n");
1994        } else {
1995          AvailableRegs.push_back(ARM::LR);
1996          LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
1997        }
1998      }
1999
2000      // If there are more high registers that need pushing than low registers
2001      // available, push some more low registers so that we can use fewer push
2002      // instructions. This might not reduce RegDeficit all the way to zero,
2003      // because we can only guarantee that r4-r6 are available, but r8-r11 may
2004      // need saving.
2005      LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2006      for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2007        unsigned Reg = AvailableRegs.pop_back_val();
2008        LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2009                          << " to make up reg deficit\n");
2010        SavedRegs.set(Reg);
2011        NumGPRSpills++;
2012        CS1Spilled = true;
2013        assert(!MRI.isReserved(Reg) && "Should not be reserved");
2014        if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2015          ExtraCSSpill = true;
2016        UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2017        if (Reg == ARM::LR)
2018          LRSpilled = true;
2019      }
2020      LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2021                        << "\n");
2022    }
2023
2024    // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2025    // restore LR in that case.
2026    bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2027
2028    // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2029    // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2030    if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2031      SavedRegs.set(ARM::LR);
2032      NumGPRSpills++;
2033      SmallVectorImpl<unsigned>::iterator LRPos;
2034      LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2035      if (LRPos != UnspilledCS1GPRs.end())
2036        UnspilledCS1GPRs.erase(LRPos);
2037
2038      ForceLRSpill = false;
2039      if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2040          !AFI->isThumb1OnlyFunction())
2041        ExtraCSSpill = true;
2042    }
2043
2044    // If stack and double are 8-byte aligned and we are spilling an odd number
2045    // of GPRs, spill one extra callee save GPR so we won't have to pad between
2046    // the integer and double callee save areas.
2047    LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2048    unsigned TargetAlign = getStackAlignment();
2049    if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
2050      if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2051        for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2052          unsigned Reg = UnspilledCS1GPRs[i];
2053          // Don't spill high register if the function is thumb.  In the case of
2054          // Windows on ARM, accept R11 (frame pointer)
2055          if (!AFI->isThumbFunction() ||
2056              (STI.isTargetWindows() && Reg == ARM::R11) ||
2057              isARMLowRegister(Reg) ||
2058              (Reg == ARM::LR && !ExpensiveLRRestore)) {
2059            SavedRegs.set(Reg);
2060            LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2061                              << " to make up alignment\n");
2062            if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2063                !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2064              ExtraCSSpill = true;
2065            break;
2066          }
2067        }
2068      } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2069        unsigned Reg = UnspilledCS2GPRs.front();
2070        SavedRegs.set(Reg);
2071        LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2072                          << " to make up alignment\n");
2073        if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2074          ExtraCSSpill = true;
2075      }
2076    }
2077
2078    // Estimate if we might need to scavenge a register at some point in order
2079    // to materialize a stack offset. If so, either spill one additional
2080    // callee-saved register or reserve a special spill slot to facilitate
2081    // register scavenging. Thumb1 needs a spill slot for stack pointer
2082    // adjustments also, even when the frame itself is small.
2083    if (BigFrameOffsets && !ExtraCSSpill) {
2084      // If any non-reserved CS register isn't spilled, just spill one or two
2085      // extra. That should take care of it!
2086      unsigned NumExtras = TargetAlign / 4;
2087      SmallVector<unsigned, 2> Extras;
2088      while (NumExtras && !UnspilledCS1GPRs.empty()) {
2089        unsigned Reg = UnspilledCS1GPRs.back();
2090        UnspilledCS1GPRs.pop_back();
2091        if (!MRI.isReserved(Reg) &&
2092            (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2093          Extras.push_back(Reg);
2094          NumExtras--;
2095        }
2096      }
2097      // For non-Thumb1 functions, also check for hi-reg CS registers
2098      if (!AFI->isThumb1OnlyFunction()) {
2099        while (NumExtras && !UnspilledCS2GPRs.empty()) {
2100          unsigned Reg = UnspilledCS2GPRs.back();
2101          UnspilledCS2GPRs.pop_back();
2102          if (!MRI.isReserved(Reg)) {
2103            Extras.push_back(Reg);
2104            NumExtras--;
2105          }
2106        }
2107      }
2108      if (NumExtras == 0) {
2109        for (unsigned Reg : Extras) {
2110          SavedRegs.set(Reg);
2111          if (!MRI.isPhysRegUsed(Reg))
2112            ExtraCSSpill = true;
2113        }
2114      }
2115      if (!ExtraCSSpill && RS) {
2116        // Reserve a slot closest to SP or frame pointer.
2117        LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2118        const TargetRegisterClass &RC = ARM::GPRRegClass;
2119        unsigned Size = TRI->getSpillSize(RC);
2120        unsigned Align = TRI->getSpillAlignment(RC);
2121        RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
2122      }
2123    }
2124  }
2125
2126  if (ForceLRSpill) {
2127    SavedRegs.set(ARM::LR);
2128    AFI->setLRIsSpilledForFarJump(true);
2129  }
2130  AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2131}
2132
2133void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2134                                      BitVector &SavedRegs) const {
2135  TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2136
2137  // If we have the "returned" parameter attribute which guarantees that we
2138  // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2139  // record that fact for IPRA.
2140  const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2141  if (AFI->getPreservesR0())
2142    SavedRegs.set(ARM::R0);
2143}
2144
2145MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2146    MachineFunction &MF, MachineBasicBlock &MBB,
2147    MachineBasicBlock::iterator I) const {
2148  const ARMBaseInstrInfo &TII =
2149      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2150  if (!hasReservedCallFrame(MF)) {
2151    // If we have alloca, convert as follows:
2152    // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2153    // ADJCALLSTACKUP   -> add, sp, sp, amount
2154    MachineInstr &Old = *I;
2155    DebugLoc dl = Old.getDebugLoc();
2156    unsigned Amount = TII.getFrameSize(Old);
2157    if (Amount != 0) {
2158      // We need to keep the stack aligned properly.  To do this, we round the
2159      // amount of space needed for the outgoing arguments up to the next
2160      // alignment boundary.
2161      Amount = alignSPAdjust(Amount);
2162
2163      ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2164      assert(!AFI->isThumb1OnlyFunction() &&
2165             "This eliminateCallFramePseudoInstr does not support Thumb1!");
2166      bool isARM = !AFI->isThumbFunction();
2167
2168      // Replace the pseudo instruction with a new instruction...
2169      unsigned Opc = Old.getOpcode();
2170      int PIdx = Old.findFirstPredOperandIdx();
2171      ARMCC::CondCodes Pred =
2172          (PIdx == -1) ? ARMCC::AL
2173                       : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2174      unsigned PredReg = TII.getFramePred(Old);
2175      if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2176        emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2177                     Pred, PredReg);
2178      } else {
2179        assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2180        emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2181                     Pred, PredReg);
2182      }
2183    }
2184  }
2185  return MBB.erase(I);
2186}
2187
2188/// Get the minimum constant for ARM that is greater than or equal to the
2189/// argument. In ARM, constants can have any value that can be produced by
2190/// rotating an 8-bit value to the right by an even number of bits within a
2191/// 32-bit word.
2192static uint32_t alignToARMConstant(uint32_t Value) {
2193  unsigned Shifted = 0;
2194
2195  if (Value == 0)
2196      return 0;
2197
2198  while (!(Value & 0xC0000000)) {
2199      Value = Value << 2;
2200      Shifted += 2;
2201  }
2202
2203  bool Carry = (Value & 0x00FFFFFF);
2204  Value = ((Value & 0xFF000000) >> 24) + Carry;
2205
2206  if (Value & 0x0000100)
2207      Value = Value & 0x000001FC;
2208
2209  if (Shifted > 24)
2210      Value = Value >> (Shifted - 24);
2211  else
2212      Value = Value << (24 - Shifted);
2213
2214  return Value;
2215}
2216
2217// The stack limit in the TCB is set to this many bytes above the actual
2218// stack limit.
2219static const uint64_t kSplitStackAvailable = 256;
2220
2221// Adjust the function prologue to enable split stacks. This currently only
2222// supports android and linux.
2223//
2224// The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2225// must be well defined in order to allow for consistent implementations of the
2226// __morestack helper function. The ABI is also not a normal ABI in that it
2227// doesn't follow the normal calling conventions because this allows the
2228// prologue of each function to be optimized further.
2229//
2230// Currently, the ABI looks like (when calling __morestack)
2231//
2232//  * r4 holds the minimum stack size requested for this function call
2233//  * r5 holds the stack size of the arguments to the function
2234//  * the beginning of the function is 3 instructions after the call to
2235//    __morestack
2236//
2237// Implementations of __morestack should use r4 to allocate a new stack, r5 to
2238// place the arguments on to the new stack, and the 3-instruction knowledge to
2239// jump directly to the body of the function when working on the new stack.
2240//
2241// An old (and possibly no longer compatible) implementation of __morestack for
2242// ARM can be found at [1].
2243//
2244// [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2245void ARMFrameLowering::adjustForSegmentedStacks(
2246    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2247  unsigned Opcode;
2248  unsigned CFIIndex;
2249  const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2250  bool Thumb = ST->isThumb();
2251
2252  // Sadly, this currently doesn't support varargs, platforms other than
2253  // android/linux. Note that thumb1/thumb2 are support for android/linux.
2254  if (MF.getFunction().isVarArg())
2255    report_fatal_error("Segmented stacks do not support vararg functions.");
2256  if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2257    report_fatal_error("Segmented stacks not supported on this platform.");
2258
2259  MachineFrameInfo &MFI = MF.getFrameInfo();
2260  MachineModuleInfo &MMI = MF.getMMI();
2261  MCContext &Context = MMI.getContext();
2262  const MCRegisterInfo *MRI = Context.getRegisterInfo();
2263  const ARMBaseInstrInfo &TII =
2264      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2265  ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2266  DebugLoc DL;
2267
2268  uint64_t StackSize = MFI.getStackSize();
2269
2270  // Do not generate a prologue for leaf functions with a stack of size zero.
2271  // For non-leaf functions we have to allow for the possibility that the
2272  // callis to a non-split function, as in PR37807. This function could also
2273  // take the address of a non-split function. When the linker tries to adjust
2274  // its non-existent prologue, it would fail with an error. Mark the object
2275  // file so that such failures are not errors. See this Go language bug-report
2276  // https://go-review.googlesource.com/c/go/+/148819/
2277  if (StackSize == 0 && !MFI.hasTailCall()) {
2278    MF.getMMI().setHasNosplitStack(true);
2279    return;
2280  }
2281
2282  // Use R4 and R5 as scratch registers.
2283  // We save R4 and R5 before use and restore them before leaving the function.
2284  unsigned ScratchReg0 = ARM::R4;
2285  unsigned ScratchReg1 = ARM::R5;
2286  uint64_t AlignedStackSize;
2287
2288  MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2289  MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2290  MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2291  MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2292  MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2293
2294  // Grab everything that reaches PrologueMBB to update there liveness as well.
2295  SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2296  SmallVector<MachineBasicBlock *, 2> WalkList;
2297  WalkList.push_back(&PrologueMBB);
2298
2299  do {
2300    MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2301    for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2302      if (BeforePrologueRegion.insert(PredBB).second)
2303        WalkList.push_back(PredBB);
2304    }
2305  } while (!WalkList.empty());
2306
2307  // The order in that list is important.
2308  // The blocks will all be inserted before PrologueMBB using that order.
2309  // Therefore the block that should appear first in the CFG should appear
2310  // first in the list.
2311  MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2312                                      PostStackMBB};
2313
2314  for (MachineBasicBlock *B : AddedBlocks)
2315    BeforePrologueRegion.insert(B);
2316
2317  for (const auto &LI : PrologueMBB.liveins()) {
2318    for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2319      PredBB->addLiveIn(LI);
2320  }
2321
2322  // Remove the newly added blocks from the list, since we know
2323  // we do not have to do the following updates for them.
2324  for (MachineBasicBlock *B : AddedBlocks) {
2325    BeforePrologueRegion.erase(B);
2326    MF.insert(PrologueMBB.getIterator(), B);
2327  }
2328
2329  for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2330    // Make sure the LiveIns are still sorted and unique.
2331    MBB->sortUniqueLiveIns();
2332    // Replace the edges to PrologueMBB by edges to the sequences
2333    // we are about to add.
2334    MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2335  }
2336
2337  // The required stack size that is aligned to ARM constant criterion.
2338  AlignedStackSize = alignToARMConstant(StackSize);
2339
2340  // When the frame size is less than 256 we just compare the stack
2341  // boundary directly to the value of the stack pointer, per gcc.
2342  bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2343
2344  // We will use two of the callee save registers as scratch registers so we
2345  // need to save those registers onto the stack.
2346  // We will use SR0 to hold stack limit and SR1 to hold the stack size
2347  // requested and arguments for __morestack().
2348  // SR0: Scratch Register #0
2349  // SR1: Scratch Register #1
2350  // push {SR0, SR1}
2351  if (Thumb) {
2352    BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2353        .add(predOps(ARMCC::AL))
2354        .addReg(ScratchReg0)
2355        .addReg(ScratchReg1);
2356  } else {
2357    BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2358        .addReg(ARM::SP, RegState::Define)
2359        .addReg(ARM::SP)
2360        .add(predOps(ARMCC::AL))
2361        .addReg(ScratchReg0)
2362        .addReg(ScratchReg1);
2363  }
2364
2365  // Emit the relevant DWARF information about the change in stack pointer as
2366  // well as where to find both r4 and r5 (the callee-save registers)
2367  CFIIndex =
2368      MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
2369  BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2370      .addCFIIndex(CFIIndex);
2371  CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2372      nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2373  BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2374      .addCFIIndex(CFIIndex);
2375  CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2376      nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2377  BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2378      .addCFIIndex(CFIIndex);
2379
2380  // mov SR1, sp
2381  if (Thumb) {
2382    BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2383        .addReg(ARM::SP)
2384        .add(predOps(ARMCC::AL));
2385  } else if (CompareStackPointer) {
2386    BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2387        .addReg(ARM::SP)
2388        .add(predOps(ARMCC::AL))
2389        .add(condCodeOp());
2390  }
2391
2392  // sub SR1, sp, #StackSize
2393  if (!CompareStackPointer && Thumb) {
2394    BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2395        .add(condCodeOp())
2396        .addReg(ScratchReg1)
2397        .addImm(AlignedStackSize)
2398        .add(predOps(ARMCC::AL));
2399  } else if (!CompareStackPointer) {
2400    BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2401        .addReg(ARM::SP)
2402        .addImm(AlignedStackSize)
2403        .add(predOps(ARMCC::AL))
2404        .add(condCodeOp());
2405  }
2406
2407  if (Thumb && ST->isThumb1Only()) {
2408    unsigned PCLabelId = ARMFI->createPICLabelUId();
2409    ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2410        MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2411    MachineConstantPool *MCP = MF.getConstantPool();
2412    unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4);
2413
2414    // ldr SR0, [pc, offset(STACK_LIMIT)]
2415    BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2416        .addConstantPoolIndex(CPI)
2417        .add(predOps(ARMCC::AL));
2418
2419    // ldr SR0, [SR0]
2420    BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2421        .addReg(ScratchReg0)
2422        .addImm(0)
2423        .add(predOps(ARMCC::AL));
2424  } else {
2425    // Get TLS base address from the coprocessor
2426    // mrc p15, #0, SR0, c13, c0, #3
2427    BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
2428            ScratchReg0)
2429        .addImm(15)
2430        .addImm(0)
2431        .addImm(13)
2432        .addImm(0)
2433        .addImm(3)
2434        .add(predOps(ARMCC::AL));
2435
2436    // Use the last tls slot on android and a private field of the TCP on linux.
2437    assert(ST->isTargetAndroid() || ST->isTargetLinux());
2438    unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2439
2440    // Get the stack limit from the right offset
2441    // ldr SR0, [sr0, #4 * TlsOffset]
2442    BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
2443            ScratchReg0)
2444        .addReg(ScratchReg0)
2445        .addImm(4 * TlsOffset)
2446        .add(predOps(ARMCC::AL));
2447  }
2448
2449  // Compare stack limit with stack size requested.
2450  // cmp SR0, SR1
2451  Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2452  BuildMI(GetMBB, DL, TII.get(Opcode))
2453      .addReg(ScratchReg0)
2454      .addReg(ScratchReg1)
2455      .add(predOps(ARMCC::AL));
2456
2457  // This jump is taken if StackLimit < SP - stack required.
2458  Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2459  BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2460       .addImm(ARMCC::LO)
2461       .addReg(ARM::CPSR);
2462
2463
2464  // Calling __morestack(StackSize, Size of stack arguments).
2465  // __morestack knows that the stack size requested is in SR0(r4)
2466  // and amount size of stack arguments is in SR1(r5).
2467
2468  // Pass first argument for the __morestack by Scratch Register #0.
2469  //   The amount size of stack required
2470  if (Thumb) {
2471    BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2472        .add(condCodeOp())
2473        .addImm(AlignedStackSize)
2474        .add(predOps(ARMCC::AL));
2475  } else {
2476    BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2477        .addImm(AlignedStackSize)
2478        .add(predOps(ARMCC::AL))
2479        .add(condCodeOp());
2480  }
2481  // Pass second argument for the __morestack by Scratch Register #1.
2482  //   The amount size of stack consumed to save function arguments.
2483  if (Thumb) {
2484    BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2485        .add(condCodeOp())
2486        .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2487        .add(predOps(ARMCC::AL));
2488  } else {
2489    BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2490        .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2491        .add(predOps(ARMCC::AL))
2492        .add(condCodeOp());
2493  }
2494
2495  // push {lr} - Save return address of this function.
2496  if (Thumb) {
2497    BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2498        .add(predOps(ARMCC::AL))
2499        .addReg(ARM::LR);
2500  } else {
2501    BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2502        .addReg(ARM::SP, RegState::Define)
2503        .addReg(ARM::SP)
2504        .add(predOps(ARMCC::AL))
2505        .addReg(ARM::LR);
2506  }
2507
2508  // Emit the DWARF info about the change in stack as well as where to find the
2509  // previous link register
2510  CFIIndex =
2511      MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
2512  BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2513      .addCFIIndex(CFIIndex);
2514  CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2515        nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2516  BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2517      .addCFIIndex(CFIIndex);
2518
2519  // Call __morestack().
2520  if (Thumb) {
2521    BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2522        .add(predOps(ARMCC::AL))
2523        .addExternalSymbol("__morestack");
2524  } else {
2525    BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2526        .addExternalSymbol("__morestack");
2527  }
2528
2529  // pop {lr} - Restore return address of this original function.
2530  if (Thumb) {
2531    if (ST->isThumb1Only()) {
2532      BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2533          .add(predOps(ARMCC::AL))
2534          .addReg(ScratchReg0);
2535      BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2536          .addReg(ScratchReg0)
2537          .add(predOps(ARMCC::AL));
2538    } else {
2539      BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2540          .addReg(ARM::LR, RegState::Define)
2541          .addReg(ARM::SP, RegState::Define)
2542          .addReg(ARM::SP)
2543          .addImm(4)
2544          .add(predOps(ARMCC::AL));
2545    }
2546  } else {
2547    BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2548        .addReg(ARM::SP, RegState::Define)
2549        .addReg(ARM::SP)
2550        .add(predOps(ARMCC::AL))
2551        .addReg(ARM::LR);
2552  }
2553
2554  // Restore SR0 and SR1 in case of __morestack() was called.
2555  // __morestack() will skip PostStackMBB block so we need to restore
2556  // scratch registers from here.
2557  // pop {SR0, SR1}
2558  if (Thumb) {
2559    BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2560        .add(predOps(ARMCC::AL))
2561        .addReg(ScratchReg0)
2562        .addReg(ScratchReg1);
2563  } else {
2564    BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2565        .addReg(ARM::SP, RegState::Define)
2566        .addReg(ARM::SP)
2567        .add(predOps(ARMCC::AL))
2568        .addReg(ScratchReg0)
2569        .addReg(ScratchReg1);
2570  }
2571
2572  // Update the CFA offset now that we've popped
2573  CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2574  BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2575      .addCFIIndex(CFIIndex);
2576
2577  // Return from this function.
2578  BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2579
2580  // Restore SR0 and SR1 in case of __morestack() was not called.
2581  // pop {SR0, SR1}
2582  if (Thumb) {
2583    BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2584        .add(predOps(ARMCC::AL))
2585        .addReg(ScratchReg0)
2586        .addReg(ScratchReg1);
2587  } else {
2588    BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2589        .addReg(ARM::SP, RegState::Define)
2590        .addReg(ARM::SP)
2591        .add(predOps(ARMCC::AL))
2592        .addReg(ScratchReg0)
2593        .addReg(ScratchReg1);
2594  }
2595
2596  // Update the CFA offset now that we've popped
2597  CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2598  BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2599      .addCFIIndex(CFIIndex);
2600
2601  // Tell debuggers that r4 and r5 are now the same as they were in the
2602  // previous function, that they're the "Same Value".
2603  CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2604      nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2605  BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2606      .addCFIIndex(CFIIndex);
2607  CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2608      nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2609  BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2610      .addCFIIndex(CFIIndex);
2611
2612  // Organizing MBB lists
2613  PostStackMBB->addSuccessor(&PrologueMBB);
2614
2615  AllocMBB->addSuccessor(PostStackMBB);
2616
2617  GetMBB->addSuccessor(PostStackMBB);
2618  GetMBB->addSuccessor(AllocMBB);
2619
2620  McrMBB->addSuccessor(GetMBB);
2621
2622  PrevStackMBB->addSuccessor(McrMBB);
2623
2624#ifdef EXPENSIVE_CHECKS
2625  MF.verify();
2626#endif
2627}
2628